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Dynamic and Adaptive Load Balancing (DALB) and Controller Adaption and Migration Decision (CAMD) frameworks are
the recently developed efficient controller selection frameworks that solved the challenge of load-imbalance in Software-Defined
Networking (SDN). While CAMD framework was established to be efficient over DALB framework yet it was not efficient when
the incoming-traffic load was elephant flow, hence, leading to a significant reduction in the overall system performance. This study
had proposed an Improved Switch Migration Decision Algorithm (ISMDA) that solved the network challenge when the incoming
load is elephant flow. The balancing module of the switch migration framework, which runs on each controller, is initiated during
the controller load imbalance phase. The improved framework used the controller variance and controller average load status to
determine the set of underloaded controllers in the network. The constructed efficient migration model was used to, simultaneously,
identify both the migration cost and load-balancing variation for the optimal selection of controller among the set of underloaded
controllers. The controller throughput, response time, number of migration space and packet loss were used as the performance
comparison metrics. The average controller throughput of ISMDA increased with 7.4% over CAMD framework while average
response time of the proposed algorithm improved over CAMD framework with 5.7%. Similarly, the proposed framework had 5.6%
average improved migration space over CAMD framework and the packet-loss of ISMDA had average 6.4% performance over the
CAMD framework. It was concluded that ISMDA was efficient over CAMD framework when the incoming traffic load is elephant
flow.

Index Terms—SDN, load balancing, switch migration, algorithm, distributed controllers

I. INTRODUCTION

SOftware Defined Networking (SDN) is known to be
a promising architecture that separates control planes

and the data plane. One of the applications of SDN is the
adaptive energy consumption of IoT infrastructures in the
deployment of Internet of Everything [1]. SDN come with a
new network architecture that simplifies the network through
rapid innovation, flexible management, and programmability
such that the behaviors of the system are dynamically
customized [2]. The single centralized controller, such as
(Floodlight [3], and Ryu [4] implemented on the control
plane cannot withstand today’s current traffic requirements
with the rapid growth in network size. Therefore, researchers
have introduced multiple controller architecture (logically
centralized but physically distributed), which divides the
networks into several subdomains with distinct controllers.
Some of the controller architectures are (Kandoo [5],
HyperFlow [6], and Onix [7]).

The multiple controller had introduced the advantages of
controller scalability and reliability to the network community.
However, the state of the network flow is not the same as
suggested by [8]. Its vary in space and time. The mapping
between switches and controllers are static. Consequently,
there will be an uneven distribution of traffic flow in the
network with the dynamic change of traffic flow requests.
This static mapping between switch and controller can easily
lead to availability of limited amount of control resources in
order to satisfy switch requirements. This process would lead
to limited use of control resources. Hence, leading to the

challenge of controller load imbalance.

Controller load balancing method is classified into
controller optimization and switch migration methods. The
controller optimization class determines the optimized number
and the optimized position of controllers within the network
for the purpose of load balancing distribution. However,
this approach suffers from the real-time change since it
only optimizes controller nodes. On the other hand, the
switch migration approach is used to balance the load of
the controller. These two methods improve the flexibility
of networks and load balance dynamically, however, the
methods do not consider an efficient switch selection and
target controller for load shifting. Hence, there is need to
develop an efficient method that would optimize the switch
selection process and the target controller selection for load
shifting in the network.

The remaining part of this study is arranged as below:
Related work is discussed in Section II. The system model
proposed in this study along with the load judgment, switch
selection, and controller selection is discussed in Section III.
The experimentation of the proposed framework is discussed
in section IV. Similarly, the analyses, the simulated result and
discussion of the proposed framework are shown in section
V while the conclusion is presented in section VI.

II. RELATED WORKS

The conventional application of SDN relies on the concept
of a centralized control plane which has several drawbacks
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related to scalability and reliability [6]. The launch of
OpenFlow 1.3 protocol by Open Networking Foundation
(ONF) [9], helps in providing means for the implementation
of switch migration in SDN. The OpenFlow 1.3 protocol
defines three different roles of SDN controller as master,
equal, and slave roles. A switch in SDN can be connected to
only one controller at a time in the master role state, while it
can be connected to more than one controller in either slave
or equal role state. The role request message is used by every
controller to communicate its role to the switch, and every
switch in its capacity must remember the position of each
controller connections. If an active controller (in master state
role) gets overloaded or the traffic flow requests of connected
switches grow bigger than expected, the reassignment of
switches to other domains can easily be achieved. Due to the
significant benefits of OpenFlow version 1.3, researchers had
proposed switch migration approach for SDN controllers load
balancing.

The work in [10] proposed an efficient load balancing
strategy towards the utilization of resources on the controller
to minimize power consumption by switching off a light-
loaded controller among the cluster pool of distributed
controllers. The study extended the work of [10]. It
developed an enhanced and detailed distributed control plane
achieved by switch migration protocol in [11] to resolve the
challenge of high response time of overloaded controllers.
The response time goes down when the number of packet-in
messages surpasses a predefined threshold. The work of [10]
adopted an instance pool approach of the controller where
the pool increases or decreases based on the load arrival from
the data plane. However, the framework, randomly, chooses
switches for migration without considering the effect on the
target controller. Similarly, the study did not describe the
process of target controller selection for the acceptance of
load shifting.

Similarly, the work in [12] developed a load balancing
mechanism that balanced load distribution among distributed
controllers. The device recommended a coordinator which
is a centralized controller, that periodically collects load
statistics among controllers and decides either to perform
switch migration or not. However, this method had several
limitations that may reduce the performance of the systems.
These limitations included high memory, bandwidth, and
CPU power due to frequently exchange messages with other
controllers. Similarly, if the centralized coordinator collapses,
the whole balancing mechanism will go down, which does
not conform with the availability and scalability features of
distributed controllers in SDN.

Furthermore, [13] developed a safe migration mechanism
by selecting the nearest controller as their target controller,
considering the distance between the migrated switch and
the target controller to have a reduced migration cost. This
approach may reduce packet-loss and low response time in
the whole system. However, considering the nearest controller
as the target controller for switch migration without proper

consideration of the target controller workload will lead to
another controller load imbalance.

To achieve an active load balancing among distributed
controllers, the work of [14], expressed switch migration
problem as a resource maximization problem, taking an
approximation algorithm approach in solving each of the
distributed controllers to find an optimal solution. However,
this approach randomly chooses both the migrated switch and
the target controller, which may lead to high response time
and low network throughput.

In addition, the work in [15] proposed a Dynamic
and Adaptive Load Balancing (DALB) framework. This
framework, during switch migration, selects the nearest
neighbour’s controller among the set of under-loaded
controller to accept load shifting. DALB was designed
to accept elephant flows (traffic load between 501p/s and
5000p/s, inclusively) as against the mice flow (traffic load
between 1p/s and 499p/s, inclusively). The strength in DALB
framework is the choice of the nearest controller for accepting
load shifting. This implies that at each phase of migration,
the nearest neighbor controller will always be considered for
migration. This can lead to fast execution time and brings
about a reduction in the cost of migration. However, the
process leads to traffic congestion in accepting load shifting.

Controller Adaption and Migration Decision (CAMD)
framework were proposed by [16], as the Least-loaded
controller selector among the set of the under-loaded
controllers for accepting load shifting during switch
migration. This approach is efficient and accepts more loads
when the incoming traffic is mice flow (traffic load between
1p/s and 499p/s, inclusively). It was ascertained that CAMD
algorithm outperformed DALB [15] and Elasticon [11]
algorithms with respect to throughput, response time, and
less migration cost under Least-loaded controller. However,
switch selection with the lightest load for migration in CAMD
approach would lead to low Load Balancing Rate (LBR).
Similarly, CAMD approach produces reduction in the network
efficiency, low throughput in the network, high response time
and high packet loss.

DALB [15] is associated with the problem of increase in
congestion when chosen the target controller while CAMD
[16] approach of switch selection is associated with the
problem of switch selection inefficiency, low throughput,
high response time and high packet loss. This study aims
to address the aforementioned problems associated with the
CAMD and DALB frameworks. The proposed algorithm
(ISMDA) is expected to select a heavily-loaded switch for
migration (just like DALB) from the overloaded controller
but will migrate it to the most appropriate controller during
migration so that that maximum clustered resources would be
left free.
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III. PROPOSED ISMDA FOR SDN CONTROLLER
LOAD BALANCING OVERVIEW

The first subsection introduces the various notations used
in this study while the subsequent subsections illustrate the
ISMDA design.

A. Notations

The SDN is constructed as an undirected graph G = (V,E),
where V denotes the set of nodes and E composes a set of
links. This study takes into account, the assumption that the
controller had been optimally deployed in the topology such
that a set of switches is managed by each controller. The
main notations used in this study are recorded in Table 1.

Table 1. Main Notations used in the study

Notation Definition
C = N Controllers set
S = K Switch sets
(β′) Load collection threshold
ρ The load balancing rate
CLcur Current controller load
(CUL) The set of light-loaded controllers
(COL) The set of over-loaded controllers
CUL and COL ∈ C Both sub-controllers are member of C
Jth The controller that belongs to CUL

ith The controller that belongs to COL

P (sk) The set of switches controlled by COL

P (sk) The set of switches controlled by COL

mcij The mapping relationship between sk and cj

B. ISMDA LOAD BALANCING STRATEGY

One of the effective ways of managing overload controller
is load balancing through switch migration mechanism. This
study introduces a framework that balances load distribution
among the controllers, through dynamic switch migration
system. This approach optimizes migration efficiency and
improves the rate of load balancing.

1) ASSOCIATED ASSUMPTIONS
The associated assumptions for the use of the proposed

framework are presented below.
• There is a means of communication among all the con-

trollers and the load can be shared easily among all these
controllers. This means that switches connected in the
network can easily access every other controller in the
network and migrate to the appropriate controller when
the load balancing strategy gets triggered.

• A distributed data store (Hazelcast) that connects sets
of controllers together to give a logically centralized
controller already exists in the network. Similarly, a
messaging library protocol (Zookeeper) for seamless
communication also exists.

• Once a particular switch had been chosen for migration,
it cannot go back to its original controller until the
process of migration had been completed.

2) The Flowchart of ISMDA framework
The flowchart of proposed ISMDA framework is depicted

in Fig. 1. ISMDA introduced in this work runs on every
controller, and they work together to ensure load balance
among controllers.

Fig. 1: The Flowchart of ISMDA framework

The ISMDA runs as a module on the controller. The
controller intermittently checks to know when the load
goes beyond the predefined threshold (see algorithm 2).
During switch migration operation the set of an underloaded
controllers, according to ISMDA design, accepts more of
elephant flow than mice flow which improves the overall
throughput and brings more stable balanced networks. If the
load surpasses the predefined threshold, the load judgment
module (see module 1) gets initiated. The controller collects
other controllers load statistics with its load information
and compute the estimated load mean and variance. The
controller simultaneously initiates the load judgment module
(see module 1), the switch selection module (see module 2)
and target controller module (see module 3). The computed
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variance is used to identify the set of underloaded controllers
and the most appropriate underloaded controller is selected.
Subsequently, the load judgment module (see module 1)
then passes the flow operation to the switch module of the
ISMDA. The switch with the highest load request would
be chosen for migration such that the load reduction of the
overloaded controller is not more than the increase of the
target controller load in order to have a successful balanced
system. The controller ensures that the weight on the switch
to be migrated is equal or less than the difference between
the half of the overloaded controller and the target controller.
The ISMDA formulated two efficiency model to evaluate
the selection of the switch and the controller efficiency. The
overloaded controller after switch selection with the help
of zookeeper (message library protocol) will then migrate
the selected switch (maximum loaded) to the most suitable
controller among the set of underloaded controllers such that
the maximum clustered resources are left free.

3) Load balancing mechanism for ISMDA strategy
Fig. 2 depicts the system architecture of ISMDA, which

consists of three different modules that run locally on each
controller in the network topology. From Algorithm 1, the load
judgment module (in module 1) is triggered immediately when
the load capacity of the controller is more than its predefined
threshold. Each controller, in the network, collects all other
controller loads with its load and calculates the controller
mean and variance. These determine the set of underloaded
controllers in the topology such that any controller whose
weight is less than or equal to the average of controllers load
is known as underloaded controller set.

Fig. 2: Load balancing mechanism for ISMDA strategy

Consequently, the switch selection module (in module 2)
also gets triggered along with the load judgment module in
(module 1) and its main job is to select the heavily-loaded
switch from the overloaded controller for migration, which
improves selection efficiency based on the high load balancing
rate. On the other hand, the controller selection module (in
module 3) also gets started along with module 1 and 2. It
ensures that the most appropriate controller of the underloaded
controller set is selected, which is carefully done with migra-
tion efficiency in mind and ensures that maximum clustered
resources are left free. The distributed database (Hazelcast)
is a storage application where all shared information (con-

troller threshold and load statistics) between the distributed
controllers stored for easy access, and the Zookeeper is a
coordinating service that glues the communication between the
controllers. During uneven load distribution in the network, the
flow of switch 3 in Fig. 2 of controller A in domain A will
migrate its flow to the controller B of domain B.

This study, further, describes the different modules of
ISMDA and its main functions. The main function of
ISMDA is shown in Algorithm 1, and the adjustable
controller threshold is shown in Algorithm 2. When
the current load status of controller goes beyond a
specified threshold (β′), the algorithm immediately calls
Load_Judgement_module (in module 1) to calculate
the load status of all controller in the network. There is,
also, a simultaneous call on both Switch_Selection (in
module 2) and Target_Controller_Selection_module (in
module 3) for Switch and Controller selection respectively.
Consequently, the algorithm takes a decision and the switch
then migrate to the target controller. The Overview of ISMDA
is presented in 4. This study also presented a dynamic
controller load threshold in 5. that enhances the update of
controller threshold in the network.

4) ISMDA Algorithm (Algorithm 1)
Algorithm 1 comprises of dynamic controller threshold

algorithm (Algorithm 2) and the three modules (modules 1,2
and 3) that are used in this study. ISMDA Algorithm uses
Algorithm 2 to check if the controller load surpasses the
predefined threshold set by the user. Consequently, If the
condition is true, then the three modules would be triggered
for respective operations.

Algorithm 1: Depiction of the overview of ISMDA.

1: Input: N, β′, ρ, CLcur

2: Output: Balanced Distributed Controllers
3: if CLcur > β′ then
4: Initialize Load_Judgement_module
5: Initialize Switch_Selection_module
6: Initialize Target_Controller_Selection_module
7: Switch_Migration(cj ← sk)
8: Update N (current and target)
9: end if

10: return Balanced Distributed controllers

5) Dynamic Controller Threshold (Algorithm 2)
Algorithm 2 performs the dynamic update of the controller

threshold. The value of the threshold is stored in the
distributed database. Every controller in the network checks
to know if its load surpasses the predefined threshold. If the
condition is true; it estimates the mean load of all connected
controllers in the network. If the estimated mean is less than
or equal to the predefined initial threshold, it returns the initial
threshold. Otherwise, the estimated average load is set as the
new threshold and updates itself dynamically. ISMDA needs
to collect every other controller load in the system in order
to make a proper load balancing decision. However, frequent
collection of load statistics messages in the network to make
load balancing decisions can reduce system performance with
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a static controller threshold approach.

Algorithm 2: ISMDA Dynamic Controller Threshold.

1: Input: Controller’s load list {CL1, ..., CLn}
2: Output: Adjustable (β′)

3: Find mean load CL(ci) = 1
n

n∑
i=1

CL(ci)

4: Let Initial (β′) = 1600
5: if CL(ci) ≤ Initial(β′) then
6: (β′) = 1600
7: if CL(ci) ≥ Initial(β′) then
8: (β′) = CL(ci)
9: end if

10: end if
11: return (β′)

In order to solve the problem of reduced system performance,
this study had proposed a dynamic load collection threshold
approach (presented in Algorithm 2). This is stored in the
distributed database where every controller can easily read it.

6) Load judgement Module (Module 1)
This module tracks and reports, in real-time, load statistics

of each controller. The statistics include controller resources
like memory usage, CPU usage, and bandwidth usage.
When the controller load surpasses a predefined threshold
(in algorithm 2), it estimates the average load of all other
controllers and then identifies the under-loaded controller
using a system variance (system performance error). The
lower the system performance error the better the system.
Consequently, all controllers which their current load is less
than or equal to the system average value is considered as
under-loaded.
There are basically two methods in getting the load status of
SDN controllers as described by the author in [18]. These
methods are centralized load collection algorithm and the
distributed load collection algorithm. In a centralized load
collection algorithm, the load balancer is deployed to track
and collect the load status of the controller. This approach is
not efficient enough and can only be applicable to a smaller
network environment. However, every controller node in
the distributed load collection algorithm can act as a load
balancer. It can also easily track, estimate, and report its own
load information regardless of the size of the network which
makes it more appropriate and applicable in a large-size
network.

The load on the controller can be measured in either of two
ways. These two ways are switch input metrics and perfor-
mance metric. Metrics like response time, average message
arrival rate, and the flow table entries are generally used
by switch input metrics in describing the load condition of
the controller. However, this study does not make use of
switch input metric since it will directly affect the resources
on the controller. The performance metrics are related to
the controller resources and are considered in this study to

describe the load status of a controller. The metrics of the
controller used are bandwidth usage, memory usage, and CPU
usage. The total control event message from switches to the
controller is taken as the input load from a switch. Since
the demand of switch on controller differs from one another,
and the resources on the controller are multi-dimensional, it
becomes difficult to compare their requirements. A weighted
sum is, therefore, assigned to integrate different types of
resources which adjusts the weight in order to change the
utilization fraction contributed by controller resources.

Every controller in the domain estimates its total load of
CL(ci). This can be achieved in real-time based on the metrics
specified above with their corresponding assigned weights
which can be defined as

CL(ci) =
[
w1 w2 w3

] CLband(ci)
CLmem(ci)
CLcpu(ci)

 . (1)

Where w1, w2 and w3 are the weights of control plane
resources (memory, bandwidth, and CPU) and CLband(ci),
CLmem(ci) and CLcpu(ci) represent the actual bandwidth,
memory, and CPU utilized on the control plane by switch
flow request.

Assuming that θk is the packet_in message generated by
switch sk to controller ci during the time slot t. Since these
resources domicile on the same control-plane (homogeneous
systems), there is need to introduce a weighting (w1, w2 and
w3) system. Weight is assigned to control-plane resources here
to unify the differences and similarities between resources. It
will help in knowing the true consumption of resources by the
switch. The main importance of weight to controller resources
is to minimize bias. Without the weight, the inconsistency
will shoot up and increase general error.
Hence, the accumulated load on the controller as a result of
the packet_in control messages can be expressed as

CL(ci) =
∑
sk∈ci

θk(t)αki. (2)

CL(ci) represents the current load status of controller (ci),
αki represents control plane resource utilization value and
θk(t) represents the number of control events messages sent by
the switch sk to controller ci at time frame t. This study takes
αi to represent the resource utilisation value of the controller
ci and is defined as

αi =
∑
sk∈ci

αki. (3)

The value of αki is expressed as the weighted sum of
network utilisation generated by each switch sk to controller
ci and can be depicted as

αki =

(
ωx
i

θk ∗ xi
µi

+ ωy
i

θk ∗ yi
νi

+ ωz
i

θk ∗ zi
τi

)
. (4)

Where θk represents the control load events (Packet_in
message) generated by the connected switches. The CPU
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usage, memory usage, and bandwidth usage of ci per
control event for switch sk are represented by xi, yi and
zi, respectively. The value ωx

i , ωy
i and ωz

i represent the
estimated weights of controller resources. The CPU usage,
memory usage and the bandwidth usage must satisfy the
condition ωx

i + ωy
i + ωz

i = 1. Also, µi, νi and τi represent
the CPU, memory, and bandwidth capacity of controller (ci),
respectively.

Module 1: Depiction of the Load_Judgement module of
ISMDA

1: Input: n(number of controller load), ρi, β′

2: Output: CUL

3: max = NULL
4: for i = 1 to n do
5: read controller load CL(ci)
6: max = max + CL(ci)
7: if CL(ci) > β′ then
8: end if
9: end for

10: Find mean load CL(ci) = 1
n

n∑
i=1

CL(ci)

11: Find load variance λ = 1
n

n∑
i=1

(
CL(ci)− CL(ci)

)2

12: for i = 1 to n do
13:
14: ρi = CL(ci)

1
n

n∑
i=1

CL(ci)

15: if ρi < 1 then
16: CUL ← ci

17: if ρi > 1 then
18: COL ← ci
19: end if
20: end if
21: end for
22: return CUL

The concept of population variance is introduced to estimate
the control plane equilibrium level since all the controllers are
considered. This variance is expressed as

λ =
1

n

n∑
i=1

(
CL(ci)− CL(ci)

)2

. (5)

Where λ denotes the variance, n (in this case, is the population
size) denotes the number of controllers, CL(ci) indicates
the controller load status in real-time and CL(ci) denotes
controller mean load. Consequently, the load balancing module
will trigger a load balancing strategy according to the variance.
Also, the switch migration will be triggered when there is
controller load imbalance.

The module will collect other loads in the network and find
the average value of the load factor which can be determined
by

CL =
1

n

n∑
i=1

CL(ci). (6)

A controller load balancing rate, denoted by ρi, is used
express to the ratio of the controller’s current load status to
their mean load. This is denoted by

ρi =
CL(ci)

1
n

n∑
i=1

CL(ci)

. (7)

The module then computes the following three ratios upon
which its decision making for migration is based on
• ρi < 1: This means that the current status of load on

the controller is not up to the current average load. This
implies that the controller is under-loaded and can still
accommodate more loads or receive a switch migration

• ρi > 1: This implies that the current status of the load on
the controller is more than the current average load. This
means that the controller is overloaded and would lead
to network overhead and imbalance.

• ρi = 1: This means that the current status of load on
the controller is equal to the average load of all active
controllers. Hence, the controller is neither in overloaded
mode nor under-load mode. Consequently, the controller
will not accommodate any additional load.

Based on the above procedures, controllers are, therefore,
grouped into the set of the overloaded controller and the set of
the under-loaded controller. This is represented mathematically
as 

ρi > 1 controller in overload mode
ρi = 1 controller in unstable mode
ρi < 1 controllerin under-load mode.

7) Switch selection module (Module 2)
This module selects the maximum load switch from the

overloaded controller for migration purposes. Some of the
useful statistics reported by the load judgment module were the
round trip time, switch flow table entries, and the packet arrival
rate. Generally, round trip time and the flow table entries
are typically used for controller selection, while the average
message arrival rate is used for both controller selection and
threshold estimation.
According to the OpenFlow protocol, these three aforemen-
tioned statistics are helpful for the switch selection. The
controller load is in proportion to the number of messages
sent from the connected switches at time-span (t). Different
messages such as Packet_in messages, Hello message, Echo
messages, and others can be forwarded by the switch to the
controller. However, the Packet-in flow messages do contribute
more to the weight on the controller. This study had considered
the average Packet-in message pushed from the switch to the
controller to depicts the controller load. The goal of ISMDA
is to spread the load among distributed controllers.
This study assumed that the load reduction of the overloaded
controller, in an ideal condition, should not be more than the
increase of the target controller load to have a successful
balanced system. Subsequently, this study concluded that in
the selection of switch for migration purposes, the weight on
the switch to be migrated should be equal or less than the
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difference between the half of the overloaded controller and
the target controller. Hence, the choice of selection is made
under the condition of

SLMigrate ≤
CLOverloaded − CLTarget

2
. (8)

SLMigrate represents the load of the migrated switch from
the overloaded controller, CLOverloaded represents the load
of the overloaded controller, and the CLTarget represents the
load of the most appropriate controller which is the target
controller.
This concept emerges from the NSGS Procedure for
Indifference Zone method [17]. This procedure, immediately,
notifies switch migration module of its selection. NSGS
Procedure abridges the Ranking and Selection (R&S)
procedure and the fully sequential procedure. NSGS is an
acronym from Nelson, Swann, Goldsman, and Song, which
were the authors’ first name in the work of [17].

Module 2: Depiction of Switch_Selection module of IS-
MDA.

1: Input: Overloaded controller COL

2: Output: set of migrated switches sk from COL

3: Initialise switch set P = {}
4: for ∀ sk ∈ COL do
5: for ∀ Flows ∈ COL do
6: Find migrated switch
7: end for
8: end for

9:

(
1
n

n∑
i=1

(Ci)

)
/

n
max
i=1

(Ci) to find selection efficiency

10: sk = argmax{Psk}
sk∈COL

11: Migrate SLMigrate ≤ CLOverloaded−CLTarget

2
12: Return switch set P{}

In this study, it is expected that a switch can be connected
to multiple controllers at the same time. However, a master
controller is the only one that will be fully operational and
attending to the request of the switch at a time, while the
others can be in slave or in equal mode state. The change
in the role is achievable with the help of a messaging
library protocol like ZeroMQ(ZMQ) and Zookeeper while
the HA-TCP is used to ensure message delivery between the
switch and controller.

8) Controller Selection module (Module 3)
The purpose of this module is to select the most suitable

controller to accept the load from the overloaded controller
so as to ensure that the maximum clustered resources are
reserved. For the optimal selection of controller, this study
constructed a migration efficiency model that simultaneously
identified both migration cost and load balancing variation.
Migration cost and the load balancing variation are defined
to further enhance their use on efficiency model constructed.

When switch migration occurs, the load balance of the
network increases. However, it does cause extra migration
cost to the network. Hence, the concept of migration cost
needs to be introduced. Migration costs, primarily, comprises
two main components namely, the increase in load on the
controller and the number of a packet exchanged between the
controllers. During migration of sk from ci to cj . Migration
cost is expressed as

mcskcj = mcex +mclc. (9)

Where mcex is the message exchange cost and the mclc
denotes the load increased cost. The load increased cost is
the increase in load that happens when the target controller
accepts the migrated switch from the overloaded controller.
This is expressed below as

mclc =

{
θimcskcj − θimcskci , mcskcj > mcskci
0, mcskcj ≤ mcskci .

(10)

Where θi denotes the packet_in control events messages
produced from switch sk.
Consequently, there is need to introduce the technique of load
variance as a selection factor. This study used the load variance
of controller as the balancing factor and CL(ci) as the mean
load of N controllers. This selection factor of a network before
switch migration is re-expressed from equation (5) as

ϑ =
1

n

n∑
i=1

(
CL(ci)− CL(ci)

)2

. (11)

Where ϑ denotes network load variance before switch migra-
tion occurs. CL(ci) denotes load on controllers and CL(ci)
denotes average load of controller n. The load selection factor
of the network after switch migration ensures that system
biasness is reduced to a minimum. This is defined as

ϑ∗ =
1

n

n∑
i=1,i6=j

[CL∗(ci)−CL∗)2+CL∗(cj)−CL∗)2], (12)

where CL∗(ci) =
(
CL(ci) - θskmcskci

)
and CL∗(cj) =

CL(cj) + θskmcskcj .
In equation (12), ϑ∗ simply denotes the load variance of

the network after switch migration had occurred. Migration
efficiency is formulated to further enhance the selection of the
target controller and also to indicate a trade-off between load
balancing rate and cost of migration. Migration efficiency in
this study is defined as the ratio of load balancing rate to the
migration cost. It is expressed as

∆ =
| ϑ∗ − ϑ |
mcskcj

, (13)

∀sk ∈ S, cj ∈ C, J(sk, cj) = {0, 1} (14)

∀sk ∈ S,
∑
ci∈C

J(sk, cj) = 1, (15)

∃ci ∈ C,CL(ci) ≤ β′ (16)
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Equation (14) limits the connections among devices,
while equation (15) ensures that each switch at a time (t) is
managed by the master controller while Equation (16) ensures
that it is not possible for all controllers in the network to be
overloaded at the same time.

Module 3: Depiction of the Target_Controller_Selection
module of ISMDA

1: Input: sk, CUL, mclc
2: Output: Target Controller cj
3: Get the current load on CUL

4: for ∀ controller cj ∈ CUL do
5: for j = 1 to n ∈ CUL do
6: Estimate variance ϑ and ϑ∗using (11)and(12)
7: Calculate migration efficiency using (13)
8: end for
9: end for

10: Check that CL(ci) + SL(si) ≤ CL(cj)
11: CTS = argmax{CUL}

cj∈CUL

: CL(ci) + SL(si) ≤ CL(cj)

12: update {CUL} with current load status
13: return target controller, cj

C. Example for illustration

This study illustrates a simple example to prove the
significance of load variance and migration efficiency in switch
migration conditions under the same controller capacity.
Assuming the controller C = {C1, C2, C3, C4} and their
respective load is represented as LS = {80, 30, 50, 40}p/s.
The average controller load of LS = 50p/s. Controller
Threshold (CT) is assumed as 60p/s. Due to the above
computation, C1 will be the overloaded controller. Generally,
variance determines the deviation of the set of numbers
from its mean value, in a given distribution. The individual
controller variance are v(C1) = 900, v(C2) = 400,v(C3) = 0,
and v(C4) = 100, and variance of the load of the controller
before migration is 350. The overloaded controller C1 can
either shift the extra load of 20 to C2 or C4. If controller C1
chooses C2, individual variance becomes {100, 0, 0, 100},
and its global load variance for the network is 50(p/s)2.
Subsequently, if C4 is chosen, the individual variance
then becomes {100, 400, 0, 100}p/s, and its load variance
becomes 150p/s2. Therefore, the migration efficiency for C2
approximately becomes 15, whereas, for C4, the migration
efficiency becomes 10. It is therefore concluded, that this
study considered a higher migration efficiency controller as
the best choice. C2 will be considered as the most appropriate
controller because the overall load balance will be in a stable
mode.

Table 2. Switch to controller flow arrival rate
Lemma 1: A switch with the maximum loaded flow requests

on the overloaded controller is considered in this study during
the migration stage, as this will Load Balancing rate (LBR)
of the network.

Controller set C1 C2 C3

Switch set s1 s2 s3 s4 s5 s6 s7 s8 s9

Switch Flow
rate (KB/s) 400 300 300 300 500 400 700 200 300

Controller
Threshold 1600

Proof 1: The degree of closeness to the real load
distribution can be measured with a load balancing rate. In
this study, Table II, shows the flow arrival rate of different
switches to the controller. Controller C2, at time (t), has the
total load of 1900p/s which makes it an overloaded controller.

Controller C3, with higher migration efficiency, will be
selected as the target controller for load shifting. This study
describes how the LBR is affected by choosing a switch with
less flow requests. This study had considered equation (17)
for the evaluation of LBR which is defined as

LBR =

(
1

n

n∑
i=1

(Ci)

)
/

n
max
i=1

(Ci). (17)

Where {Ci, ..., Cn} constitutes the load list of the connected
systems which includes overloaded controller’s load within the
co-domain of 0 and 1. Before migration, the LBR is computed
as 0.59. For instance, if controller C2, selects switch s4, its
lightest loaded switch for migration, the LBR in equation (17)
after migration will be 0.71. Meanwhile, if C2 decides to
select its highest loaded switch s7 for migration, the LBR
becomes 0.94. From the above analysis, this study revealed
that selecting a switch with the highest flow request will bring
about significant improvement in the network efficiency.

IV. EXPERIMENTATION

The experimentation of this study is discussed in
this section. This study used a simulation approach and the
assessment of throughput, number of migration, response time,
and packet loss for the performance evaluation. The python
code used for this experiment is made available on github
code repository https://github.com/dipokoya2003/ISMDA.git.

In setting up the simulation environment, this study was
carried out on a PC equipped with an Intel Core i7-6700HQ
CPU @2.60GHZ with 16GB of 1600MHz DDR3 memory
and a Windows 10 professional system. The experiment was
conducted with a Jupyter notebook compiler, a free and open
source software(FOSS) that allows creation of live code. In
the algorithm, it was assumed that the controller threshold
was set at 2000p/s. The current load on the controller
A-D before any migration phase was assumed to be 500p/s,
processing rate was set to 70%, and the total sum of incoming
load generated was initiated from (10000-26000)p/s with the
size of 20.

For each of the iterations, the predefined Controller Thresh-
old (CT) which the proposed ISMDA used in taking its
migration strategy was set to be 2000p/s on all of the

https://github.com/dipokoya2003/ISMDA.git
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simulated controllers. The current load on controller A, B, C,
and D before any migration phase was set to be 500p/s. The
processing rate to simulate a real control scenario was set to be
70%. In each of the iterations, the experiment was conducted
with the total incoming load between (10000-26000)p/s, while
each of these iterations was executed 1500 times in order to
obtain the accuracy of the experiment. The proposed ISMDA
will trigger Module 1 when the computation of the load is
more than the predefined controller threshold. Subsequently,
the ISMDA will call the switch selection (module 2) and
the controller selection module (module 3). These modules
will select the switch that is heavily loaded for migration and
select the most appropriate controller to accept the incoming
load, respectively. This study proposes an ISMDA that ensures
that at each stage of the migration phase, the maximum
clustered resources are left free. Hence, leading to a significant
improvement over the baseline frameworks when the incoming
traffic is elephant flows. The elephant flow in this study is
defined between 501p/s and 5000p/s while the mice flows is
defined as between 1p/s and 499p/s

V. RESULT AND DISCUSSION

For the performance of this study to be validated, the IS-
MDA strategy is introduced and compared with the other two
similar works in the literature by [15] and [16]. DALB [15]
(also referred to as nearest controller selection approach) easily
gives rise to traffic congestion for accepting load shifting. It
increases the communication overheads between switches and
controllers since it is possible for multiple switches to migrate
into the nearest controller at the same time. CAMD [16], (also
referred to as Least-loaded controller selection approach) may
only be efficient in accepting load shifting when the incoming
traffic flow is mice flow. Also, CAMD choice of a switch,
with the lowest flow request rate for migration, is not suitable
as compared to heavily-loaded switch. Selecting a switch with
a minimum flow request, as proved in the last paragraph of
section 3, may not improve the efficiency of the network as
compared to choosing the heavily-loaded switch. Due to this
reason, ISMDA selects a heavily loaded switch for migration.
It carefully selects the most appropriate controller with the
migration indexing factor to accept the load. The results of
the simulation are discussed as follows, with a brief definition
of each performance metric.
• Controller throughput: This refers to the maximum

amount of packets that can be processed successfully by
a controller. The average controller throughput was esti-
mated based on the traffic generated during the simulation
process. The total incoming load used in this study was
between (10000 - 26000)p/s. Fig. 3, 4, and 5 shows the
controller throughput of each of the reviewed studies and
the proposed ISMDA. It was established from the graph
that the number of flow requests successfully processed
by the proposed ISMDA is more than the reviewed works.
The Fig. 6 shows the average throughput comparisons of
different Algorithms.
In Fig. 3, the DALB approach processed more flow
requests and seemed consistent at the peak of the load

Fig. 3: DALB Controller throughput

with a reduced decline rate as compared with the CAMD
approach. Though, this was not consistent as compared
to the proposed ISMDA, as shown in Fig. 5 at the same
level.

Fig. 4: CAMD Controller throughput

In Fig. 4, the CAMD algorithm could not maintain
consistency at the peak of the load, The decline rate goes
as low as 250 as compared to the proposed ISMDA and
DALB. This, consequently, reduced the total throughput.
In Fig. 5, ISMDA successfully processed more flow re-
quests than both DALB and CAMD. It is more consistent
at the peak of the load, and the decline rate is more
reduced as compared with both DALB and CAMD. Fig.
6 shows the average throughput comparison for the three
algorithms.
Fig. 6 reveals that the proposed ISMDA accepted more
traffic than CAMD and DALB algorithms. The average
controller throughput of the proposed framework in
Fig. 6 rises to about 444p/s, which is an increase of
approximately 7.4% over the CAMD and about 1.1%
over the DALB. While, there is a similar throughput
between DALB and ISMDA, it is shown that the
proposed ISMDA has an improvement over DALB and
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Fig. 5: Proposed ISMDA Controller throughput

Fig. 6: Throughput comparison of different Algorithm

CAMD algorithms.

• Response time: It is expected that when there is a
controller load imbalance, the response time in a given
network will increase. For response time computation,
this study adopted equation (18) developed by Netforecast
[19]. All variables, in this equation, were fixed during es-
timation since this study was only interested in measuring
the effect of packet-loss on response time. The number
of rejected packets was used for packet-loss values. The
adopted equation is presented as

R = Rd +Rt, (18)

where

Rd = 2
[
D + Cc + Ct

]
+

[
D +

[
Cc + Cs

]
2

]
T − 2

m
+

Dln

[
T − 2

m
+ 1

]
+KT (

L

1− L
), (19)

and

Rt =

MAX

[
8p 1+OHD

B ∗D p
w

]
1−
√
L

. (20)

In equation (17), R is the response time, Rd depicts
propagation delay time, and Rt depicts the transmission
delay time. In equation (18), D depicts round-trip delay;
Cc depicts current processing time; Ct depicts server
TCP processing; Cs depicts server processing time; T
depicts application turns; m depicts multiplexing factor;
Dln depicts packet-loss ratio and K depicts TCP timeout.
Similarly, In equation (19), P depicts payload length;
OHD depicts overhead ratio; B depicts minimum path
bandwidth and W depicts the effective window size.

Fig. 7: Response Time comparison of different Algorithm

This study used average response time to compare the
three algorithms in the simulation analysis. When an
incoming load increases, the average response time of
the three algorithms increase also. Fig. 7 reveals that the
response time of the proposed ISMDA performs better
than the CAMD and DALB with about 5.7% and about
1% less, respectively. Effective mechanism deployed in
this study for selecting a controller to accept incoming
load from the overloaded controller played a significant
role. ISMDA selects the most appropriate controller at
any phase of migration such that the maximum clustered
of resources are left free. Consequently, ISDMA ensures
that resources were well utilized which brought about
a reduction in the number of rejected packets and
significantly increased controller response time.

• The number of Migration space: This is the number of
times each algorithm has to perform migration during
controller load imbalance or overloading. The average
count of the rejected packet was used to analyze and
estimate the performance of ISMDA, DALB, and CAMD.
Fig. 8 shows the number of times on an average that
each of the algorithms had to perform the migration. It
reveals that increase in the incoming load would lead to
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increase in the average number of migration for the three
algorithms. The proposed framework performs better than
DALB and CAMD with 1.7% and 5.6% less, respectively.
This implies that the proposed framework will bring
about reduction in the number of times it migrates a
switch during controller load imbalance, as compared to
DALB and CAMD.

Fig. 8: Migration time comparison of different Algorithm

The efficient mechanism deployed and the choice of
most suitable controller at every phase of migration are
considered to be responsible. This led to a significant
reduction in the number of times migration took place.

• Packet Loss: the number of packets that get dropped dur-
ing transmission is regarded as packet-loss. In this study,
the average number of rejected packets were estimated
for the performance analyzes of the three algorithms.

Fig. 9: Packet-loss comparison of different Algorithm

Fig. 9 reveals that as incoming load increases, the
average packet lost increases for the three algorithms.

However, CAMD had the highest average packet loss
which ISMDA and DALB had similar average packet
loss. Analysis estimated ISMDA to be 1.1% and 6.4%
efficient over DALB and CAMD, respectively, with
respect to average packet loss. This is so due to the
effective mechanism brought forward in this study.
ISMDA accepts more load than any of CAMD and
DALB. Consequently, it had a fewer number of packet
rejected.

VI. CONCLUSION

This study had proposed ISDMA to solve the challenge
of SDN load imbalance when there is elephant flow in the
incoming traffic load during controller load imbalance. IS-
DMA used controller load adjustment module, switch selection
module and the target controller selection module. When the
current load of a controller is above a predefined threshold,
the balancing module of the switch running on each controller
in the network is called upon to assure proper load balancing
among controllers. The balancing module finds the unloaded
controller among the controller set using variance and the
mean load status of the controllers. The proposed algorithm,
efficiently, migrates heavily loaded switches from an over-
loaded controller to the most appropriate controller among
the underloaded set of controllers such that the maximum
clustered resources are left free. The study, also, constructed a
migration efficiency model, which showed a trade-off between
variation in load balancing and the migration cost.
Results revealed that ISMDA outperformed both CAMD and
DALB approaches in terms of throughput, the number of
migration phases, packet-loss, and response time. Based on the
simulation conducted, the proposed ISMDA is more efficient
over CAMD and DALB under the condition of elephant traffic
flow. The proposed ISMDA, the resource utilization of the
distributed controller is now more balanced. It also improves
controller throughput, results in less migration time in the
network, improves the packet-loss and response time of the
control plane. Future research shall focus on the implementa-
tion of a topology-aware switch migration intelligent system
on an actual SDN controller. It is expected that the future
research will predict the load of the control plane in advance,
hence, improve the scalability and reliability of the network
in a real large-scale environment.
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