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Abstract—We tackle the problem of sharing eHealth data
across different jurisdictions. As a general rule, and due to the
sensitive nature of the information, different national regulations
impose severe limits on what can be exchanged, even in case of
emergencies. Furthermore, different systems in different juris-
dictions do not communicate. We propose BRUE as a scheme
that allows eHealth data to be securely exchanged, with the data
subject always in the position of mediation. We combine several
technologies, namely, Blockchain, OAuth and User-Managed
Access, and concept Receipts, to achieve our aim.

Index Terms—eHealth data exchange, blockchain, smart-
contracts, distribute, cross-jurisdiction

I. INTRODUCTION

People like to travel and may visit different doctors across
different jurisdictions (such as countries). eHealth data of
individuals is managed by the diverse health service providers
and stored in different locations. Although there are many
agreements between different jurisdictions (such as countries),
in general they do not allow eHealth data to be shared
externally. Often, sharing is not even allowed within the
same country between different healthcare providers. There
are several reasons but, as a general theme, it is due to
a lack of trust or data disclosure considerations stemming
from compliance and regulations. There is a consensus that
healthcare data is sensitive personal information that must be
well protected.

In this paper, we tackle the problem of sharing eHealth
data across different jurisdictions. The overall challenge stems
from three fundamental problems. First, there needs to be
full accountability (e.g., non-repudiation) when sharing data;
accountability also refers to the possibility of someone shar-
ing healthcare data without the authorisation of the patient.
Second, since there is no global infrastructure to discover the
locations of eHealth data, it must be a truly decentralised
scheme. Third, before sharing eHealth data, explicit consent
must be obtained from the data subject. The eHealth data
custodian needs to be able to demonstrate that appropriate
measures had been taken to address these problems if there is
an audit or breach in the future.

We tackle this problem by, first, centring all the information
exchange and control on the data subject. The user is who

mediates all steps and is, effectively, the (cryptographically)
trusted communication channel between all the parties. Sec-
ond, we combine a set of technologies and standards, each
addressing a particular requirement. For authorisation and
managing access to the records, we use and extend OAuth’s-
based User-Managed Access (UMA) [1]. For a trusted and
confidential communication channel, distributed discoverabil-
ity and overall accountability, we use a public blockchain
able to run smart-contracts. To handle the requirement of
demonstration of valid consent, we use Kantara’s Consent
Receipts [2]. This combination of technologies motivates the
name of our scheme: Blockchain, Receipts and UMA for
eHealth data exchange (BRUE).

To illustrate the problem, we informally analyse a simple
working scenario of international eHealth data exchange.

Alice (A) has had heart trouble since she was born in
France. She has registered a GP (FGP ) in her original city.
Then she moved to the UK after 10 years. When she was 20
years old and travelled to Canada, she fell sick and visited a
GP (CGP ) to get e temporary treatment in Canada. After
that trip, she returned to the UK and visited her British
doctor (BGP , where GP stands for ”General Practitioner”).
She would like to share the British GP with her previous
medical data which is stored respectively in Canada and
France. However, she doesn’t want to simply give British GP
her personal credential but would rather authorize British GP
which could gain access using GP’s credential.

In the scenario, there are four entities: the data subject
A, a requesting party BGP , and data controllers which are
healthcare service providers FGP and CGP . To note that A,
BGP , CGP , and FGP , are independent parties located in
different jurisdictions. Some of them are not known to the
others; their only point of contact is their relationship with
A, the patient and data subject. Furthermore, we assume, as
is overwhelmingly the case, that there is no global system in
place that allows all parties to directly communicate, find each
other, or self-certify. In other words, BGP needs to access A’s
medical data from FGP and CGP but FGP and CGP do
not recognise BGP so A needs to intermediate the request and
grant access. A, in turn, needs to authenticate against FGP



and CGP .
In the remainder of the paper, Section II reviews the litera-

ture on eHealth data exchanges and highlights our contribution
of this paper. Section III formally defines the problem and
introduces notation and terminology. Section IV presents our
approach to the problem. In Section V, we describe and
discuss a proof-of-concept application of our approach based
on Ethereum. In Section VI we conclude our paper and discuss
future work.

II. RELATED WORK

Healthcare is a sensitive domain that poses and processes
a large amount of personal medical data daily. Regarding
the requirement of eHealth data exchange, the application
of blockchain (Distribute ledger) technology in eHealth data
exchange is a continuous hot topic which has been signifi-
cantly discussed in the literature. We show relevant work of
distributed ledger in eHealth data exchange in this section.

A. Blockchain in Healthcare Data Exchange

Prior literature about eHealth data exchange with distributed
ledger commonly review the current research situation and
evaluate the existing distributed application. This raises a
problem of performance feasibility as there is no any imple-
mentation work prove in practise. Angraal et al. [3] assess
several healthcare applications based on blockchain and point
out that key limitations of blockchain technology expanded
to large-scale production deployment in future research are
system scalability, security and cost-effectiveness. Zhang et
al. [4] define a set of evaluation metrics for blockchain-based
healthcare decentralized applications to guild the development
of blockchain applications in the healthcare domain, which
include cost-effectiveness, patient-centred care model, system
scalability, interoperability, user identification, and Turing-
complete operations. However, those metrics concern only the
requirements of HIPAA1, the key Healthcare regulation in
the United States. McGhin et al. [5] compare nine types of
existing blockchain-based applications in healthcare and give
tips on how blockchain technology meet which requirements
of the healthcare industry. They also present limitations and
technical issues of blockchain technology, such as mining
incentives and standardization, although its applications have
potential benefits for the healthcare industry. Mackey et. al. [6]
recommend a ‘fit-for-purpose’ framework as a guide of health
blockchain application design.

The remaining of literature propose theoretical approaches
without/with performance prove in practise, which can be clas-
sified by the data storage. Some approaches attempt to store
all data with a public, or private, or consortium blockchain
instead of traditional data storage; other approaches use a
mixed approach in data storage. MA-ABS [7] scheme is a
typical approach for medical data exchange with blockchain,
which is using blockchain to exchange encapsulated elec-
tronic medical record (EMR) with an attribute-based signature

1HIPAA: https://www.hhs.gov/hipaa/index.html

scheme authorized by multiple authorities. In this approach,
although the exchanged message is endorsed by participants
without any information disclosure, it has a scalability problem
due to a significant volume of storage of EMRs data in the
blockchain. Another example is a blockchain-based secure and
privacy-preserving personal health information sharing (BSPP)
[8] scheme for diagnosis improvement. It uses a private
blockchain to store eHealth data and a consortium blockchain
to record the secure indexes of eHealth data. These approaches
have benefits on access control and confidentiality because
of storing all data in the blockchain, they are not compliant
with regulations and specifications, such as EU/GDPR2, which
requires data subjects to have the right to erase personal
information. However, depending on the type of blockchain,
it may not be possible to modify or delete after-the-fact.

MedBlock [9] is a blockchain-based information manage-
ment system, which attempts to provide large scale data
retrieval and share without extra costs and network con-
gestion. While it does not consider participants’ incentive
in the system, MeDShare [10] is a blockchain application
to improve security and data authentication in medical data
sharing. MedRec [11], in turn, built upon existing databases
that support open standards of healthcare exchange to facilitate
data share and authentication. The key focus is on designing
mining incentives and is not focused on the security issue of
the existing database.

Esposito et al. [12] suggest an approach that uses a con-
ventional or distributed database to store medical data and
an online chain to record the hash value of those data. This
scheme is not implemented in practise [13]. Zhang et al. [14]
recommend a use case ‘Decentralized Application for Smart
Health’ (DASH) to solve problems of storage requirements,
privacy and scalability. It needs to verify or prove by experi-
ments for feasibility and concern the auditability. They also
propose a hybrid on-chain/off-chain framework to improve
the security and scalability in clinical data sharing, named
FHIRchain [15], to address requirements of FHIR [16], an
industry standard of healthcare information exchange.

B. Contribution of This Paper

In the design of BRUE, we focus on auditability, confiden-
tiality, and distributedness in cross-jurisdiction eHealth data
exchange. Firstly, minimise the information exchanged in the
sharing network. It is designed to verify identity information in
the local jurisdiction and it is not necessary to check and share
identity information cross-jurisdiction. Secondly, we propose a
scheme where lightweight and short-lived authorisation tokens
are created and shared between entities to access eHealth data
cross region. For the identity information, a token without
identity information is produced by authorization party to
represent the verified identity. All entities share and verify
these tokens with each other to create an individual identity
while not disclosing information. Tokens are shared through
blockchain with smart-contracts, which are system-agnostic

2GDPR: https://gdpr.eu



for the existing infrastructure. It improves system scalability.
Furthermore, since tokens can be revoked at any time with
immediate effect, it promotes compliance with virtually all
regulations. Thirdly, we reuse the notion of Personal Data
Receipt from the Data Protection communities [17]. BRUE
provides acknowledgement Receipts for all operations of the
involved entities. Receipts not only meet accountability re-
quirements (for data controllers) but also provide the data
subject with means to trace accesses to the past. Finally,
cryptographic access is required for any exchange between
two entities. For this matter, we adapt the well-known Diffie-
Hellman secret sharing scheme [18] to be used in a blockchain
providing the useful result of proving, beyond any doubt, that
the two parties were engaged. It further provides forward-
secrecy and confidentiality.

III. PROBLEM STATEMENT

The key requirements of a distributed cross-jurisdiction
eHealth data exchange architecture needs to target auditability,
non-repudiation, confidentiality, and compatibility.

A. Overall Perspective

Figure 1: Data exchange between two parties.

Figure 1 shows actions for a simple data exchange between
only two parties, N and M . All data flow of transactions
from entities go through the blockchain network (for prove-
nance and accountability). A receipt of each transaction is
also produced following the data flow. In the sketch, N
and M start by preparing R-wallet to receive receipts3; N
then requests services from M by invoking smart-contracts
running on the blockchain. M processes work pulled from
the blockchain (via notifications) to complete the request from
N . When M returns the expected outcome and pushes the

3We reuse the familiar term of “wallet” as the (digital) container of a receipt

result to the blockchain, N then obtains the outcome from the
blockchain itself. The fact that the communication channel is
the blockchain itself guarantees traceability.

The receipt as proof of an intermediate transaction is
generated and follows the data flow in both directions. The
peer-to-peer data exchange between N and M terminates at
this point. The receipt generated while the data flow progresses
is composed of the individual audit records. Should a concern
or dispute arise in the future, this receipt holds all the evidence
needed to keep all participants accountable.

Figure 2 shows a general scenario of a cross-jurisdiction
eHealth data exchange flows with multiple parties: data sub-
ject, a requesting party, the data controller, and a verifier/au-
thorizer. Each entity contributes to the overall data flow work
done. The topology of participants is established before it
starts because of services request and data flow direction. It is
also static for its duration. We assume, without loss of work
generalisation and rejection, that the graph is acyclic when
each entity is a requester or responder. In other words, data
flows the graph with a path by order such that no entity is a
requester or a responder twice. If a particular data exchange
workflow uses the same participant twice at different times, the
model has a different node in the graph. BRUE is agnostic in
terms of the actual eHealth data format.

Figure 2: Multi-party data exchange flow.

B. notation
We use the following notation in our proposed approach:
• DS is the data subject who owns eHealth data.
• RO stands for resource owner who, on behalf of the data

subject, can process authorization.
• RqP is the requesting party that wants to access the

health records.
• AS is an authorization server which is an organisation

which is authorized to manage access rights of health
records. We assume, for simplicity, that each jurisdiction
has only one AS.

• LAS is a local authorization server so that AS is located
in the same jurisdiction as RqP .

• RAS is a remote authorization server which means AS
is located in a different jurisdiction as RqP .

• RS are resource servers which hold the actual healthcare
records – such as hospitals.



• LRS is a local resource server located in the same
jurisdiction as RqP .

• RRS is a remote resource server located in a different
jurisdiction than RqP .

• PT is a permission token which provides a proof of
service request permission for RqP authorized by data
subject.

• V IT stands for verified identity token which is an au-
thorization identity proof after individual identity verifi-
cation; it is authorized by LAS for RqP .

• RPT represents a requesting party token which is an
authorization proof of the data access permission with
specified conditions by AS to RqP .

• kN,M is a shared secret key of entity N and M in the data
flow following the Diffie-Hellman key exchange method.

• RN,M is a service request sent from entity N to M .
• R1‖R2 denotes concatenation of request R1 and R2.
• IN expresses the identity of entity N .
• signN (RN,M ) is a request RN,M signed by entity N .
• enckN,M

(RN,M ) presents a request RN,M encrypted with
key kN,M .

• REN,M is a receipt of transaction between entity N and
M .

• hash(R) is a digest of request R using a one-way
collision-resistant function (a “hash”).

We use the following data formats in our signalling diagram:
• permission token

PT = enckDS,RqP
(signDS(PT ))

Entity RO is sending a token PT to RqP as a response
for request RRqP,DS and, to assure auditability, it signs
the message. For confidentiality, RO encrypts the token
with their common secret key kDS,RqP . A plaintext of
PT includes consent status of RRqP,DS , URL of LAS,
duration of permission, start date of permission, original
jurisdiction, jurisdiction of destination, expired data of
permission, name of DS, RO, LAS and RqP .

• verified identity token

V IT = enckLAS,RqP
(signLAS(V IT ))

Entity LAS sends a token V IT to RqP for request
of identity and authorization validation as a response
proof. V IT is signed by LAS and encrypted with their
common secret key kLAS,RqP . A plaintext of V IT is
made of consent status of RRqP,DS , URL of RAS,
status of identity verification, duration of permission, start
date of permission, expired data of permission, original
jurisdiction, jurisdiction of destination, name of DS, RO,
LAS and RqP .

• requesting party token

RPT = enckRAS,RqP
(signRAS(RPT ))

Entity RAS shares a token RPT with RqP after ver-
ification. RPT is signed and encrypted by RAS with
their common secret key kRAS,RqP . The original RPT

is composed of consent status of RRqP,DS , URL of RRS,
duration of permission, start date of permission, expired
data of permission, original jurisdiction, jurisdiction of
destination, name of DS, RO, RRS, LAS and RqP .

• receipt

REN,M = signN (RN,M )‖hash(RN,M )

REN,M = signN (PT )‖hash(PT )

REN,M = signN (V IT )‖hash(V IT )

REN,M = signN (RPT )‖hash(RPT )

After N shares information with M , a receipt of delivery
is produced that includes this encrypted transaction and
a digest.

IV. ARCHITECTURE

Our approach provides the feasibility of cross-jurisdiction
eHealth data exchange. It produces receipt record as par-
ticipants’ consent integrated with UMA standards to target
auditability and compatibility; in addition to, runs on a public
blockchain to achieve non-repudiation and confidentiality with
blockchain’s features. In this section, we present how our
approach achieves these.

Figure 3: The representation of proposed approach structure

Figure 3 shows the sequence of actions in BRUE. RqP
is located in jurisdiction 2 (e.g., it’s a foreign hospital) who
needs to access eHealth data of data subject from RRS located
in jurisdiction 1. A completed data flow is shown as below.
At first, RqP requests service from the data subject. RO
processes this request on behalf of the data subject. RO checks
service request and then returns a PT . Then, RqP pulls PT
and then sends to LAS with identity information for identity
verification. LAS returns a V IT to RqP after verification.
RqP uses V IT to RAS for identity and authorization check in
the cross-jurisdiction. RAS then gives a RPT to RqP for final
progress of eHealth data access. RqP shares RPT with RRS
to get eHealth data. After permission check, RRS returns the
required eHealth data to RqP . The whole data flow terminates



at this point. During transactions progresses, all authorized
tokens are pushed to the blockchain firstly and then pulled by
entities always mediated by the blockchain. In the blockchain,
smart-contracts are triggered by transactions to process tokens
sharing. A receipt is always generated following transaction
of new information, such as a new token generation and push.

A. Key Management

We develop a variant of the Diffie-Hellman key exchange
method to produce secret key, on-the-fly, for token exchange
encryption. This provides full accountability of requests and
non-repudiation. Whereas writing in a blockchain requires a
secret key (tied to the specific blockchain), reading from a
public blockchain is open and unaccountable. This key, kN,M ,
is generated as in Figure 4.

Figure 4: Diffie-Hellman variant over a public blockchain.

Entity M , as a requester, pushes a modulus p and base g
to blockchain for entity N . Entity N then pulls them from
blockchain. M and N publicly agree to use p and g for key
generation. After that, M and N respectively select a secret
random integer a or b. N pushes A to blockchain for M and
M sends B to N through blockchain. Then, N pulls B from
blockchain and generate secret key kN,M with calculation. M
does the similar work as N to get a common secret key kN,M .
Thus, they have a shared secret key kN,M .

B. Token Exchange

Tokens are designed to grant access; in the process, a record
is generated in the form of a receipt that a party keeps in its
possession if later is audited. Entities share tokens with each
other only via a public blockchain running smart-contracts –
see Algorithm 1. Algorithm 1 presents how an entity shares a
token with another entity running smart-contract on a public
blockchain. We define two kinds of tokens. One is generated
between RO or AS with RqP . When RO or AS generates
a new signed token, they send it to blockchain encrypted
by key kRO,RqP or kAS,RqP . Then, RqP gets it from the
blockchain and decrypts it with a shared key kRO,RqP or
kAS,RqP . Another token is used between RqP and AS or RS.
RqP shares an authorisation token PT with LAS, or shares
V IT with RAS, or shares RPT with RS through blockchain.
Before the token exchange, RqP needs to sign and encrypt the

token. For example, a shared token PT between RqP with
LAS is delivered as enckLAS,RqP

(signRqP (PT )). After the
token is pushed, AS or RS pulls the protected tokens from
the blockchain and decrypts with key kAS,RqP or kRS,RqP .

Algorithm 1 Smart-contract of token exchange
Input: Token Rec[]
. an encrypted signed token reported by a participant
Id Rec[]
. identity information reporting by the recipient to pull token
Output: Indicating if a token is shared successfully

1: if Token Rec[] !=∅ then
2: func(saveToken) . save Token into blockchain
3: return True
4: end if
5: Blockchain.push(Id Rec[])

. upload identity to blockchain for search and pull token
6: if Blockchain.push(Id Rec[]) !=∅ then
7: func(getToken)
8: for each Id Rec[] ∈Token Rec[] do
9: while Id Rec[signature]==Token Rec[signature]

do
10: return Token Rec[]
11: end while
12: end for
13: else
14: return False
15: end if

C. Receipt Management

Our approach use receipts for transaction records to assure
auditability. When a new information (and with a token) is
shared between entities, a receipt is generated. For the BRUE,
there are two kinds of receipts:

• Receipt for services request. If RqP starts a service
request to access eHealth data for DS, a receipt is
generated and a hash digest of the request is included.

• Receipt for new token generated and shared. When en-
tity N generates a token and then pushes it into the
blockchain, a receipt is returned to N which has the hash
value of this transaction.

D. Protocol

The protocol consists of five phases: initialisation, service
request, identity verification, authorization verification and
resource exchange. See signalling diagram in Figure 5.

1) Initialisation: The initialisation phase is a preparation
step that includes entity delegation, key generation, entity
registration and receipt wallet (R-wallet) initialisation.

• delegation The data subject needs to authorize a resource
owner and select some authorization servers and resource
servers. RO is only delegated as the representative of
DS. DS and RO can be the same individual or different
entities. For instance, if DS is a child, RO could be
a parent. Furthermore, there is only one AS required



Figure 5: Signalling diagram of data request and exchange.

and some RS in the same region. The number of RS
is dependent on the selection from DS.

• registration After participants delegation, entities are re-
quired to register. This step is executed based on UMA.
All entities are required to register in the blockchain and
initialise their own R-wallets. An R-wallet is a client
application used to aggregate all generated receipts. RS
is also required to register in its local AS. Therefore, AS
manages a list of RS. In other words, LAS has a list of
LRS and RAS has another list for RRS. A receipt is
generated to record the registration of RS for auditability
principle.

• key generation The secret key of an entity is generated
using the described variant of Diffie-Hellman key ex-
change scheme over a blockchain. This key is a common
shared between two parties. For RO and RqP , the key is
kRO,RqP . The key of AS and RqP is kAS,RqP and the
key of RS and RqP is kRS,RqP .

2) Services request: The service request phase happens
between RO and RqP and starts the data flow. RqP starts
a service request RRqP,RO to RO without any permission for
eHealth data access of DS. A receipt follows. As seen in

Figure 5, RO checks RRqP,RO and then generates a token
PT . PT is signed and encrypted by RO with a secret key
kRO,RqP . RO pushes this token PT to blockchain and RqP
pulls it from the blockchain. RqP gets the information of
permission authorization and AS. At the same time, a consent
receipt is produced following the PT push. To note that this
transaction is also recorded in the blockchain.

3) Identity verification: To meet the requirement of confi-
dentiality, identity information cannot be shared across juris-
dictions. It needs to be conducted by an authority located in
the same region with the identity owner. In Figure 5, RqP is
required to verify the identity at the local authorization server
LAS before any data is accessed. RqP signs and encrypts
PT by itself with another secret key kLAS,RqP to share
with LAS, following with the identity. In other words, RqP
finally shares PT‖IRqP with LAS through blockchain. Then,
LAS gets shared information through decryption with key
kLAS,RqP . When information of PT‖IRqP is verified, LAS
sends a new protected token V IT to the blockchain. V IT is
an identity verification proof with permission information for
RqP . RqP pulls V IT from blockchain and decrypts V IT to
get information of RAS and permission. There are two kinds



of receipts involved in it in the purpose of transaction evidence.
One receipt is produced when a token PT is pushed by RqP .
The other is produced when V IT is pushed by LAS.

4) Authorization verification: Entity RqP starts the request
cross-jurisdiction with identity proof token V IT . RqP needs
to sign and encrypt V IT with key kRAS,RqP to share with
RAS through blockchain. Here a receipt generated for the
transaction of token V IT sharing. RAS pulls V IT and
decrypts it with key kRAS,RqP for authorization verification.
When RAS confirms the information from V IT , RAS shares
a new token RPT with RqP for final data access. RPT is
signed by RAS and encrypted with key kRAS,RqP . After that,
RqP pulls and decrypts RPT to confirm and get informa-
tion of RRS and permission. A receipt is produced for the
transaction of a token RPT push by RAS. The authorization
verification phase ends.

5) Resource exchange: RqP is now able to access the
eHealth data of DS from RRS. RqP shares RPT with RRS
with its signature and encryption. A receipt follows token
sharing. RRS pulls RPT from blockchain and decrypts with
key kRRS,RqP to confirm whether RqP is authorised to access
specific eHealth data. Then, RRS shares the protected eHealth
data with RqP following a receipt as a transaction record
proof.

E. Discussion

We discuss our approach by revisiting our key requirements:
auditability, non-repudiation, confidentiality, and compatibil-
ity.

1) Auditability: BRUE is designed to audit transactions
of entities. Regarding our protocol, it can be expressed in
three ways: (i) Data flows need to go through smart-contracts
running on a public blockchain and requires token PT . The
trace of a transaction is timely recorded in the blocks generated
in the blockchain that assures if entities need to view a
transaction after the fact. All existing blocks in a chain
are practically impossible to modify or destroy because of
blockchain properties. (ii) Transaction records require cryp-
tographic signatures which assures authenticity and supports
auditability. (iii) A receipt REN,M is produced as evidence of
new information sharing. Receipts are returned to entities after
they sent a request or token to others. In the receipt, a digest
hash of transaction is embedded. It prevents the modification
of the receipt after-the-fact. This signed receipt is also an
evidence record for the purpose of transaction auditing.

2) Non-Repudiation: Entities need to sign the exchanged
information before a transaction starts. We follow the principle
that who shares information is who signs it. This guaran-
tees non-repudiation. Furthermore, the nature of a public
blockchain also guarantees non-repudiation since a transaction
can only be sent with private keys which are attested at the
initialisation phase.

3) Confidentiality: Confidentiality is a key requirement for
eHealth data exchange. The encryption operation with a secret
key is a first option to target the confidentiality principle. We
use the Diffie-Hellman key exchange method to generate a

secret shared key for entities which can be made as strong as
desired. We also use protected tokens to share with entities,
instead of the actual personal data, to minimize the possibility
of data disclosure. Besides, tokens require a validity period
and can be revoked at any time with immediate effect.

4) Compatibility: BRUE is designed to reuse the OAu-
th/UMA framework and extended with receipts running on
a public blockchain. It relies on an open protocol that is
compliance with data sharing protection regulations, such as
GDPR. Besides, our proposed protocol provides feasibility
to compatibly apply in cross-jurisdiction for eHealth data
exchange without requiring a well-known discovering point
(Rendez-vous points). This jurisdiction can be a country or
a specified federation of some entities or a city. The scope
of jurisdiction is flexibly defined by the data subject or
resource owner. Numbers of RS are not restricted involved
in the protocol for data sharing. RqP can require access to
eHealth data from some RS located in some different or one
jurisdiction. The compatibility of RS joint and services request
for RqP are stronger.

V. EVALUATION

In this section, we present and discuss the results of a proof-
of-concept implementation of BRUE.

A. Implementation

Our implementation was not designed for performance but
only to demonstrate the feasibility and completeness of our
proposed approach. We used common desktop hardware (Intel
Core i7 at 2.9 GHz with 8GB RAM). All source code is open
and available on request. The implementation of initialisation
phase is not important concerned and introduced in here. For
the blockchain, we used Ethereum with the default developer
settings. We used Truffle4, a library to use with web appli-
cations. In our proof-of-concept, entities share tokens through
Ethereum running smart-contracts. There are four forms of
information sharing implemented with smart-contracts involv-
ing RN,M , PT , V IT , and RPT . The following code shows
a smart-contract allowing tokens sharing. It includes two
functions. Function saveToken is to receive tokens pushed
by an entity and then store it in the blockchain; function
getToken is to return token information from blockchain to
the recipient. Both functions implement the design of token
exchange shown in Algorithm 1.

c o n t r a c t Token {
e v e n t NewToken ( s t r i n g s i g n a t u r e , s t r i n g

r e c e i v e r , s t r i n g t o k e n ) ;
s t r u c t Token { s t r i n g s i g n a t u r e ; s t r i n g

r e c e i v e r ; s t r i n g t o k e n ;}
Token [ ] p u b l i c t o k e n ;
mapping ( u i n t => a d d r e s s ) tokenToOwner ;
mapping ( a d d r e s s => s t r i n g ) s ignToToken ;

4Truffle: https://www.trufflesuite.com



f u n c t i o n saveToken ( s t r i n g memory
s i g n a t u r e , s t r i n g memory r e c e i v e r ,

s t r i n g memory to ke n ) p u b l i c p a y a b l e
r e t u r n s ( boo l ) {

u i n t i d = t o k e n . push ( Token ( s i g n a t u r e
, r e c e i v e r , t o ke n ) ) − 1 ;

tokenToOwner [ i d ] = msg . s e n d e r ;
s ignToToken [ msg . s e n d e r ]= s i g n a t u r e ;
emi t NewToken ( s i g n a t u r e , r e c e i v e r ,

t o ke n ) ;
re turn true ; }

f u n c t i o n ge tToken ( s t r i n g memory
s i g n a t u r e , s t r i n g memory r e c e i v e r )

p u b l i c view r e t u r n s ( s t r i n g memory ) {
f o r ( u i n t i =0 ; i<t o k e n . l e n g t h ; i ++){

Token s t o r a g e myToken = t o k e n [ i ] ;
i f ( keccak256 ( b y t e s ( s i g n a t u r e ) )

== keccak256 ( b y t e s ( myToken .
s i g n a t u r e ) ) && keccak256 ( b y t e s
( r e c e i v e r ) ) == keccak256 (
b y t e s ( myToken . r e c e i v e r ) ) ) {

re turn myToken . t o k e n ; }
} re turn ” wrong i n p u t o r no r e c o r d ” ;}

}

Figure 6 shows the structure of the user interface as below.
We used a web front interface. This interface is implemented
by JavaScript codes to achieve operations of entities, which
include the generation of tokens and receipts. Three kinds of
entities were applied: requesting party, data subject (which
was also the resource owner), and authority organisation
(equivalent to AS and RS). To note that RO is a delegation of
DS in BRUE. Both of AS and RS have a similar role in our
approach which is to get tokens from the blockchain, generate
new tokens and then share with RqP . Therefore, for our proof-
of-concept, we combine both roles. A complete representation
of the full data flow is shown in Figure 6. Graph arrow
represents the direction of data flow and integer represents
the sequence of data flow. We introduce the implementation
details of the demo separately by roles as below.

Figure 6: The structure of the proof-of-concept implementation

RqP can send a request without permission, get a token, and

share a token. Figure 7 presents screenshots of the interface
for RqP . Figure 7a shows a request form for RqP to request
authorization of data access. Figure 7b shows how RqP gets
a token from the blockchain. Figure 7c shows two operations:
one is RqP uploads a token for sharing and the other is RqP
shares a token with a signature. A download button of receipt
is available for RqP to obtain the corresponding receipt after
token sharing.

(a) Interface of service request

(b) Interface of token exchange

(c) Interface of token view and download

Figure 7: Proof-of-concept of BRUE - RqP operations

RO is required to check service request from RqP and then
authorize a token for data access. Figure 8 illustrates how RO
views the request from RqP and then authorizes this request.
If RO permits the request, a signed and encrypted token is
generated and shared. RO can download a receipt after its
sharing operation.
AS and RS are authorization parties, which get token from

blockchain to verify permission or produce a new authorized



Figure 8: Proof-of-concept of BRUE - RO or DS operations

token for RqP . Figure 9 shows operations of authority party
in token receive and authorization. Authority party gets token
from blockchain after RqP push (see Figure 9a). Then, a new
protected token is generated and uploaded by authority party
to share with RqP (see Figure 9b). A receipt record of token
sharing is produced and can be download by authority party
after the transaction.

B. Discussion

Even though BRUE is technically complex and has several
components, its execution can be made simple to non-technical
end-users. Whereas our proof-of-concept is not ideal in terms
of usability, it does shed light on how simple it can be. Our
proof-of-concept also did not show any particular limitation
in terms of performance as it is mainly driven by user action.
The notion of a wallet of receipts can be simply implemented
as a directory with files which are the receipts themselves.
This could be converted into a simple mobile application if so
desired.

Combining different technologies also proved to be feasi-
ble. OAuth/UMA open-source libraries exist which helps fu-
ture interoperability with eHealth proprietary systems. Diffie-
Hellman key exchange scheme is a mature technology to
implement key generation. As for the smart-contracts, which
we do not discuss in depth given space limitations, they are not
very complex and the fact that they use a readily available, and
fairly mature, blockchain (Ethereum) shows great promise for
real-world trials. We have already shown codes of one smart
contract for our proof-of-concept implementation as a sample.

VI. CONCLUSIONS AND FUTURE WORK

We designed and proposed BRUE for eHealth data exchange
and evaluated its feasibility. It relies on open protocols so that
it is easier to adopt in existing systems. BRUE seems able to
satisfy key requirements such as auditability, confidentiality,

(a) Interface of token view and download

(b) Interface of token authorization

Figure 9: Proof-of-concept of BRUE - AS or RS operations

non-repudiation, and compatibility when supporting cross-
jurisdiction eHealth data exchange. Preliminary results of our
prototype show it is not complex to implement and the user-
interface can be simple for non-technical users.

Our paper also opens new research directions. On one hand,
there essential features that we should be able to accom-
modate. For example, we need a break-the-glass procedure
for emergencies when the data subject cannot give timely
consent for resource owner. On the other hand, we did not
make any assumptions on the actual eHealth data. Whereas
BRUE is agnostic to it, selective disclosure of data, instead
of everything, is a crucial feature which requires a data
model and fine-grained permissions. Furthermore, the identity
of participants is deliberately overlooked. Finally, we did
not present a detailed threat model and worked under the
assumption that all entities are honest. It is quite possible that
BRUE, in its current stage, can be abused or manipulated,
particularly in the case of availability and denial-of-service.
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