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Abstract

Human Papilloma Virus (HPV) is a major risk factor for the development of

oropharyngeal cancer. Automatic detection of HPV in digitized pathology tis-

sues using in situ hybridisation (ISH) is a difficult task due to the variability

and complexity of staining patterns as well as the presence of imaging and stain-
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ing artefacts. This paper proposes an intelligent image analysis framework to

determine HPV status in digitized samples of oropharyngeal cancer tissue micro-

arrays (TMA). The proposed pipeline mixes handcrafted feature extraction with

a deep learning for epithelial region segmentation as a preliminary step. We ap-

ply a deep central attention learning technique to segment epithelial regions and

within those assess the presence of regions representing ISH products. We then

extract relevant morphological measurements from those regions which are then

input into a supervised learning model for the identification of HPV status.

The performance of the proposed method has been evaluated on 2,009 TMA

images of oropharyngeal carcinoma tissues captured with a ×20 objective. The

experimental results show that our technique provides around 91% classification

accuracy in detecting HPV status when compared with the histopatholgist gold

standard. We also tested the performance of end-to-end deep learning classifi-

cation methods to assess HPV status by learning directly from the original ISH

processed images, rather than from the handcrafted features extracted from the

segmented images. We examined the performance of sequential convolutional

neural networks (CNN) architectures including three popular image recognition

networks (VGG-16, ResNet and Inception V3) in their pre-trained and trained

from scratch versions, however their highest classification accuracy was inferior

(78%) to the hybrid pipeline presented here.

Keywords: histology, human papilloma virus, in situ hybridisation, deep

learning, machine learning

1. Introduction and Background

Oropharyngeal Carcinoma (OPC), is a type of head and neck cancer affect-

ing the epithelium of the oropharyngeal mucosa which has seen a significant

increase in incidence over the last decade [1]. Infection with certain types of

Human Papilloma Virus (HPV) (called ‘high risk’) is considered a major risk5

factor for the development of OPC. According to [1], HPV is responsible for

over 70% of OPC in Europe and the USA. It has been found in [2] that patients
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with tumours positive for HPV infection (HPV+) tend to have better progno-

sis than those with HPV negative (HPV-) tumors. Therefore, there is interest

in histological assessment of HPV status in OPC samples as both diagnostic10

and prognostic features. This is often performed using microscopy on biopsy

or resection samples processed with, for example, in situ hybridization (ISH), a

laboratory method that enables the direct histological detection of viral genome

sequences in tissues [2, 3]. Owing to the high morphological diversity and com-

plexity of pathology samples, HPV assessment/diagnosis remains a challenging15

task to histpathologists [1, 2, 3]. Figure 1 shows HPV+ and HPV- samples of

OPC images processed by ISH.

Over the past years there have been significant improvements in Digital

Pathology (DP) that allow whole histopathology slides to be digitised as high-

resolution images. This, in turn, has opened the possibility of using image pro-20

cessing routines and intelligent techniques to resolve a variety of histopathology

problems (typically tumor vs. non-tumour classification). Various approaches

have been proposed to integrate computer vision, machine learning and deep

learning tools to analyse histopathological data, e.g. [4, 5, 6]. Those efforts in

general aim to reduce the workload of histopathologists and therefore reduce25

cost and time of diagnosis while performing at known levels of accuracy. Fur-

thermore, it has been suggested that they could be used as a second readers

helping to reduce inter- and intra-observer variability among pathologists [7].

Deep learning techniques have made an important contribution in histopathol-

ogy image classification tasks, specially those involving convolutional neural30

networks (CNNs). For example, in [6] CNN was used to classify breast cancer

histopathology images independent of magnification, by exploiting two different

CNN architectures: single-task and multi-task to predict malignancy and image

magnification level, respectively. A CNN-based approach was also proposed in

[4] for the binary classification (carcinoma vs. non-carcinoma)of H&E stained35

histological images of breast cancer by extracting information at different scales,

from nuclei to overall tissue organization.

Although deep learning-based techniques have proved in general a superior
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performance against traditional methods based on handcrafted features in digi-

tal pathology tasks (e.g. [8]), they suffer from several drawbacks. First, training40

a deep CNN from scratch requires large amounts of annotated images, which

is very expensive and difficult to obtain in practice. Secondly, deep learning

is also deemed as complex process, computationally expensive and with poor

explainability (i.e., a black box approach). In addition, histological techniques

often suffer from variability in staining uptake, distortion and sectioning and45

staining artefacts. These challenges make it necessary to sometimes design be-

spoke approaches that suite the complexity of digital pathology tasks. As a

consequence, several methods have been proposed in the literature to integrate

biologically interpretable handcrafted features with deep learning models to im-

prove performance on complex histopathology images. Such hybrid models have50

shown to perform better than their deep learning counterparts alone. E.g. in

[9], textural handcrafted features were augmented in the input of the CNN to

improve the detection of tumor cells in H&E histology images. In [10] mitosis

detection was implemented combining a light CNN mode with handcrafted fea-

tures (morphology, color, and texture features) which provided a more accurate55

and faster solution with lower computational requirements when compared to

other existing approaches.

Despite AI-based techniques have made an important contribution to the

analysis of tumour images, their applications for the assessment of HPV status

are still lacking. Some progress in assessing tumour HPV status has been made60

using multivariate statistics on radiomics data, e.g. [11, 12, 13]. In [14] machine

learning models were used to classify HPV status in computed tomography (CT)

using texture analysis applied to regions of interest in contrast-enhanced neck

CT of OPC cases. However, the study utilized a small experimental sample

(n=107 subjects) and the accuracy achieved when compared to ground truth65

clinical cohorts was not particularly high (75.7%) despite it being higher those

achieved by two blinded neuroradiologists (accuracy of 44.9 and 55.1% respec-

tively). However, the analysis of histological data should provide a more direct,

richer and more accurate results, based on morphological features at the cellular
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and tissue level. HPV status in tissues has been investigated in [15] using tex-70

ture features of the nuclear chromatin condensation from images to indirectly

infer HPV positivity. The overall accuracy, however, was low (68%) to be useful

for robust diagnostic purposes. To the best of our knowledge, analysis and de-

tection of HPV status from ISH histopathology images using intelligent methods

(deep learning combined with machine learning) have not yet been investigated.75

In [16] we reported a preliminary machine learning/imaging workflow to

identify high risk HPV genomes in digitized tissue micro-array samples of OPC

processed by ISH. The segmentation algorithm used mathematical morphol-

ogy to extract ISH-stained regions, however, the identification of HPV in [16]

was performed on features extracted from whole core tissue images which are80

most often heterogeneous in composition, i.e. they include neoplastic epithe-

lium as well as non epithelial (stromal) regions and can potentially contain

staining artefacts. In reality, robust HPV status assessment requires the con-

ditional detection of ISH chromogen precipitation (blue stained features with

the methodology used here) in epithelial tumour regions of the specimen while85

ignoring other tissue regions and artefacts (typically non-specific precipitation

of the chromogen, drying artefacts, non-specific leukocyte cytoplasm staining)

all of which can lead to false positive readings. Not surprisingly, accurate iden-

tification of positive ISH products in epithelial regions can be a difficult task

for histopathologists and it is further complicated for two reasons: 1) the blue90

hybridisation staining is fine patterned and 2) the counterstain dye used to

reveal the general morphology of tissues (Red Counterstain II) is not tissue

type-specific and has similar staining uptake in stroma and epithelium, there-

fore discriminating between these two tissue types poses additional hurdles to

the observer.95

This paper presents an extension of our preliminary work introduced in [16]

for automated identification of HPV status in ISH processed sections, this time

guiding the analysis to the epithelial tissue compartment, while excluding fea-

tures in non-epithelial tissues (e.g. connective stroma, background) and image

artefacts. To this end, we exploited a deep central attention residual network,100
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proposed in [17], to segment epithelial regions from the information provided by

the counterstain dye and then restricted the identified ISH precipitiation region

(indicating the presence of HPV genomes) to the segmented epithelial compart-

ments. The proposed pipeline mixes handcrafted feature extraction with a deep

learning for epithelial region segmentation as a previous step. The extracted105

morphological measurements are then fed to a Machine learning algorithm to

classify microscopy images as HPV+ or HPV-.

2. Methodology

The dataset consists of tissue micro-arrays (TMAs) slides containing 2,009

OPC cores plus associated clinical data. The TMAs were stained by ISH and110

prepared at the Institute of Cancer and Genomic Sciences, University of Birm-

ingham, UK. OPC specimens were processed using the Ventana INFORM HPV

III system (Roche), consisting of a mixture of HPV genomic probes of high-

risk HPV strains which are labelled with an enzyme capable of precipitating

a chromogen molecule on the tissues (in this case, the chormogen was nitrob-115

lue tretrazolium or NBT/BCIP, visible as a blue navy colour). This enables

the visualisation of the hybridised genomes directly in the samples, in the case

of OPC, in the nucleus of the infected epithelial cells. A counterstain (Red

Counterstain II, pink in colour) is also used to facilitate identifying the general

tissue morphology of the sample. Figure 1 shows core samples of HPV- (a,120

b) and HPV+ (c, d) OPC tumours processed by ISH, where the characteristic

blue staining patterns in epithelial cell nuclei indicate positive viral infection (c

and e). As illustrated in Figure 1(a), tissues may also include non-specific (i.e.

non-HPV associated) artefacts which can mislead the HPV status assessment.

TMA slides were digitised using an Olympus BX50 microscope (Olympus125

Optical Co. Ltd, Tokyo, Japan) equipped with a ×20 magnification objec-

tive. The individual core images were approximately 3300×3300 pixels in size

(inter-pixel distance = 0.367µm). The associated data included seven clinical

measures: patient gender, age at diagnosis, tumour size, lymph node status,
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Figure 1: In situ hybridisation for high-risk HPV strains in oropharyngeal carcinoma tissue

cores: (a) and (b) are HPV- tumour cases while (c) and (d) are HPV+ tumour cases (the blue

stain in the epithelial tissue indicate the presence of the HPV genomes). Note that it can be

difficult to assess whether the blue stain is localised in tumour epithelial regions or in other

tissues (e.g. stroma).

smoking status, overall years of survival and recurrence free survival (in years).130

In addition, the data also included the P16 H-score [18]. P16 is a protein ex-

pressed in HPV+ tumours which has been called a ‘surrogate marker’ for HPV

status, although the exact relation between P16 expression and HPV detec-

tion in tumours is still not completely resolved (e.g. HPV is not detectable in

some proportion of P16 overexpressing tumours). While overexpression of P16135

has been suggested to indicate favourable prognosis independent of HPV status

[19], more recently it has been shown that P16 is not sufficiently accurate for

prognosis and a HPV specific test is required [20]. The P16 H-score is assessed

semi-quantitatively using immunohistochemistry: an expert histopathologist in-

terprets the images and calculates a score given by the product of the percentage140

of P16+ cells and the intensity class they belong to using a categorical scale from

1 (weak) to 3 (strong) staining. In clinical practice, P16 expression in a tumour

is considered as ‘positive’ using a cut-off value [21]: strong and diffuse nuclear

and cytoplasmic staining present in ≥ 70% of the tumour. That is an H-score

equivalent to ≥ 2 intensity × ≥ 70% = H-score ≥ 140. For HPV status detection145
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(the ‘reference standard’ in this paper), the histopathologist examined the TMA

slides, recording them as either HPV+ or HPV- depending on the presence or

absence of hybridisation products in epithelial regions of the samples[22]. In

this study, 1355 cores were labelled as HPV- and 654 were labelled as HPV+.

The proposed HPV status detection algorithm is shown in Figure 2 and can150

be described in five main steps as follows:

Step 1 - Colour deconvolution of the original ISH image.

This step is used to generate three ‘staining’ channel images based on the colours

of the individual dyes. The procedure was originally introduced by Ruifrok and

Johnston [23] and assumes that the dye colours mix subtractively. This type155

of colour separation is particularly useful in histopathology as it allows explor-

ing different histological components based on dye uptake. We determined a

set of colour vectors to perform colour deconvolution on ISH images [24] so the

contribution of the ISH dyes is separated into three channels containing the con-

tribution of: i) tissues counterstained with Red Counterstain II (pink channel)160

(Figure 2(b)), ii) blue stained regions (NBT/BCIP, blue channel) (Figure 2(c))

and iii) a ‘residual’ component (showed as the complementary of the other two

colours, Figure 2(d)) which retains ‘unexplained’ colours (those which do not

correspond to the subtractive mixing of the other two dyes).

Step 2 - Extraction of stained regions from the blue stain (NBT/BCIP)165

channel image.

First, the empty unstained background is separated from the stained regions to

ensure that the subsequent process is applied only to the stained components for

segmentation consistency. This was achieved by (a) computing the minimum

pixel intensity image between the blue and pink image channels to guarantee170

capturing all stained pixels, (b) applying Gaussian blur function to the gen-

erated image to reduce staining heterogeneity, (c) binarising the result using

an auto threshold method to separate the core from its background and finally

(d) removing isolated noisy particles from the binary image using an opening

by reconstruction procedure (after five consecutive erosions, determined exper-175

imentally).
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Figure 2: Overview of the proposed method. (a) RGB image of a core tissue sample processed

by ISH, (b) ‘pink’ tissue channel (Red Counterstain II), (c) blue channel image (stained regions

with BT/BCIP) and (d) residual colour component image obtained after colour deconvolution

(see Figure 3). (e) The deep Central Attention Residual (CAR) learning network (see Figure 4)

is used to identify epithelium regions from (b) (results shown in white in (f)). In (g) are shown

the segmented regions from the blue stain (NBT/BCIP) channel after artefact removal (see

Figure 3). In (h) is shown the the final segmentation result with the ‘blue stained regions’ (in

red) located in the detected epithelial regions (in green). Morphological features are extracted

from these and submitted to the machine learning model (see Figure 5).
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Second, an auto threshold method is applied to the blue channel (Figure

2(c)) to extract binary objects representing the NBT/BCIP stained regions.

Experimentally Renyi’s entropy auto threshold [25] returned the best results

when compared to other available methods. For simplicity, these binary objects180

shall be referred to as ‘blue stained regions’ for the remaining of the paper.

Third, ‘artefact’ regions are minimised in the blue stain image. Artefacts are

extraneous (non-histological) features arising from a variety of causes, such as

contamination, faulty tissue processing, etc., and which can lead to erroneous

interpretation of the hybridisation results. Figure 3 top left shows an example185

with imaging artefacts (in this case large dark regions). A considerable number

of such artefacts can be identified by shape and size (e.g. not matching expected

histological structures), while others can be detected by their colour, i.e. they

are also detected in the residual colour deconvolution channel. This is so because

artefacts rarely have the same colour characteristics of true histological features,190

therefore appear prominently in the residual channel (green regions in Figure 3).

To identify artefact regions in the blue channel we firstly binarise the residual

channel and apply a morphological opening by reconstruction, using a copy of

the blue stained regions image as mask and the binarised residual channel as

seeds. The result retains the blue (binarised) regions that also overlap regions in195

the residual channel; those are subtracted from the original blue regions image.

The complete process is illustrated in Figure 3.

Step 3 - Epithelial segmentation using a deep Central Attention

Residual (CAR) network.

This step is applied to the counterstain (pink) channel (Figure 2(b)) to assess200

which blue stained regions are located in epithelial tissue, while ignoring those

in others non-epithelial regions (e.g. connective stroma, background). This is

necessary because the diagnostic value of the ISH products in OPC relies on

identifying HPV genomes strictly in the epithelial cells. To perform this, we

exploited our deep learning-based approach, presented in [17], to identify the205

epithelial component in the pink counterstained image (Figure 2(b)). This is

a particularly difficult task even for expert human observers because all tissues
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Figure 3: An example to illustrate the process of removing histological artefacts by colour

deconvolution. The RGB image (containing large, dark arefacts) is colour-deconvolved into

three channels. The artefacts appear in the residual colour channel as they are not purely

stained with the blue chromogen. After binarisation, the artefacts in the blue channel are

identified as those regions with a spatially related counterpart in the binarised residual channel.

are stained in the same colour and therefore a good understanding the fine

tissue morphology is required. Despite this, the pink channel still retains a level

of tissue morphological information, without the influence of ISH precipitation210

products or the presence of staining artefacts (also shown in Figure 2(b)).

To achieve this segmentation step, the pink channel is first partitioned into

superpixels (2,500 pixels in size) using the SLIC algorithm [26]. The resulting

superpixel regions are then framed within square patches of size 100×100 pixels,

which are used as input images for a deep Central Attention Residual (CAR)215

network that is trained based on a gold standard produced by an experienced

microscopist to discriminate superpixels belonging to epithelium from those be-

longing to non-epithelial (e.g. stroma) regions by considering the features of

each superpixel and its surrounding area.

The network consists of a) four convolution layers that generate a number220

of feature maps and reduce their dimensions, b) four CAR blocks, c) an average
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pooling layer and d) a softmax classifier. Each CAR block utilizes the concept of

residual network to efficiently learn specific features and achieve more accurate

identifications than traditional CNNs [27]. In addition, the CAR blocks in-

clude three convolution layers, a central attention (CA) unit, which emphasizes225

the features information of the central area of the input image, batch normal-

ization and a rectified linear unit (ReLu) activation function. Figure 4 shows

the architecture of our CAR network and the whole framework for epithelium

segmentation based on the counterstain (pink) channel. More details of the

architecture of the CAR network can be found in [17].230

The segmentation result is shown in Figure 2(f), where the detected epithelial

sections are shown in white and non-epithelial in grey. The blue regions in the

epithelium are obtained by the intersection of the epithelial regions in Figure

2(f) with the segmented blue regions in Figure 2(g). The final segmentation

results are shown in Figure 2(h), with epithelial regions labelled in green and235

the blue regions in red.

Figure 4: Overview of the Epithelial segmentation method using a deep Central Attention

Residual (CAR) network . The parameters d and S denote the number of feature maps and

the sliding pixel shift, respectively. The blue lower box shows the structure of the central

attention residual (CAR) block.

Step 4 - Extraction of morphological features from blue stained

regions.
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A set of morphological features describing shape and size is extracted from the

blue stained regions described previously, using an ImageJ plugin that com-240

putes geometrical properties of binary 8-connected regions (Particles8, [28]).

The distribution characteristics of these features in HPV+ and HPV- images

(as determined by the ‘reference standard’) were preliminary inspected using

Kolmogorov–Smirnov tests to select those with distributions statistically dif-

ferent (i.e. p value≤0.05) across HPV+ and HPV- images. This procedure245

identified 20 morphological descriptors (listed in Figure 5) to produce a fea-

ture matrix of size 20×m, where m is the total number of blue stained regions

per image. To create a single vector summarising and describing the morpho-

logical characteristics of a single image, four different distribution statistics of

the morphological parameters were computed (mean, minimum, maximum and250

standard deviation), bringing the total number of extracted features per image

to (4×20=80), plus, the number of blue stained regions in the image.

Figure 5: Description of the extracted morphological features.

Step 5 - Determining HPV status using machine learning algo-

rithms.

The extracted morphological features are pre-processed, using standard proce-255
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dures (normalization, noise removal) and passed to a supervised machine learn-

ing algorithm classifier which predicts the HPV status as + or -. The dataset

(containing imaging and clinical data) is split into training and testing sets, so

the classifier learns the characteristics of the HPV+ and HPV- features. After

training, the classifier can be used to detect the HPV status of unseen images.260

3. Experiments and Results

3.1. Evaluation of the proposed model and comparison against classical machine

learning methods (handcrafted features)

This section evaluates the effectiveness of the proposed method in the con-

text of HPV status as a binary classification (HPV+ or HPV-) and compares265

it against our preliminary approach in [16], which exploits classical machine

learning methods (using handcrafted features only) and hence doesn’t discrimi-

nate epithelial from non-epithelial regions. It also compares the results against

other baseline methods using non-imaging features (clinical data, survival char-

acteristics and P16 H-score) without any of the histological features derived270

programmatically from the image.

A description of the feature sets used in the experiments is provided in Table

1. Imaging features in PECP16 and PE were extracted using the proposed

framework while in PWCP16 and PW they were extracted using the analysis

described in [16]. The architecture of our deep central attention learning was275

the same as in [17]. Gaussian parameter (σ2) of the central attention function

was set to 0.4. The Adam optimiser was used with a learning rate of 10−3 to

minimise the network loss and cross-entropy was used as the loss function.

To assess the predictive ability of the feature sets provided in Table 1, five

well-known classifier algorithms were used, namely (1) Support Vector Machine280

(SVM)[29, 30], a procedure that finds a hyperplane in the feature space that

maximizes the margin (distance) between data points of classes, (2) k-Nearest

Neighbours (KNN)[31, 30], which classifies data points by a majority vote of its

k nearest neighbors, (3) Random Forests (RF) [32, 30], based on the construcion
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Table 1: Description of the feature sets used in the experiments.

Feature set Description

Pathology-

Epithelial-

Clinical-P16

(PECP16)

Histopathology imaging features obtained from the proposed ap-

proach (morphology of blue stained regions in epithelial regions) +

clinical features (listed in section 2) + P16 H-score

Pathology-

Wholeimage-

Clinical-P16

(PWCP16)

Histopathology imaging features obtained from the analysis in [16]

(morphology of blue stained regions anywhere in the slide image) +

clinical features (listed in section 2) + P16 H-score

Pathology-

Epithelial

(PE)

Histopathology imaging features only obtained from the proposed ap-

proach (morphology of blue stained regions in epithelial regions)

Pathology-

Wholeimage

(PW)

Histopathology imaging features only obtained from the analysis in

[16] (morphology of blue stained regions anywhere in the slide image)

Clinical-P16

(CP16)

Clinical features (listed in section 2) + P16 H-score

Clinical (C) Clinical features only (listed in section 2)

of multiple decision trees with a final classification decision made based on the285

majority of the trees, (4) Logistic Regression (LR)[30], a statistical model that

uses a logistic function to estimate the probability of a certain class and (5)

Multilayer Perceptron (MLP) [30] that consists of a feed-forward supervised

learning network with up to two hidden layers. In all experiments, the (hyper-

)parameters of the classification algorithms were tuned using a randomized the290

grid-search technique.

To build the HPV status classifiers, the dataset was randomly partitioned

into 70%, 10%, and 20% for training, validation, and testing, respectively. Data

was normalized to zero mean and unit variance to ensure that all features con-

tributed to the classification comparably. The unequal distribution of classes295

within the dataset (1355 HPV- vs. 654 HPV+) was addressed using the SMOTE

technique [33], which looks at the feature space for the minority class data points
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and oversamples it by considering k nearest neighbours.

HPV status classification results were evaluated using the two following per-

formance measures:300

• The classification accuracy, measures all of the correctly identified

cases,
TP + TN

TP + FP + TN + FN
(1)

where TP , FP , FN and TN denotes true positives, false positives, false

negatives and true negatives, respectively.

• The F1-score,305

2 × (Recall × Precision)

(Recall + Precision)
(2)

where Precision is the ratio of correctly predicted positive records to the

total predicted positive records

TP

TP + FP
(3)

and Recall is the ratio of correctly predicted positive records to the all

data records in a class,
TP

TP + FN
(4)

For fair comparisons, the experiments were run five times for each classical310

classifier and we reported the average classification accuracy and F1-score over

five runs in Tables 2 and 3, respectively.

Tables 2 and 3 show that feature sets containing histology imaging features

perform generally better than those with only clinical features or P16 H-score

across all learning algorithms. The results also reveal that the classification315

using histological features (PECP16 and PE) outperforms our preliminary

analysis in [16] (PWCP16 and PW), across all learning algorithms. We be-

lieve this is because the morphology of the blue stained regions in epithelium

is more representative of how pathologists assess visually HPV status unlike

in [16], where there was no distinction made of where the ISH precipitation320
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Table 2: Comparative analysis against classical (using handcrafted features only) Average

classification accuracy (along with standard deviation over five runs) obtained with five well-

known supervised learning algorithms using the features in table 1.

Learning

Algorithms

PECP16 PWCP16 PE PW CP16 C

KNN 0.89

(±0.09)

0.85

(±0.14)

0.87

(±0.10)

0.83

(±0.07)

0.75

(±0.07)

0.74

(±0.07)

SVM 0.91

(±0.07)

0.89

(±0.15)

0.90

(±0.08)

0.88

(±0.07)

0.79

(±0.09)

0.74

(±0.07)

MLP 0.89

(±0.09)

0.85

(±0.11)

0.87

(±0.07)

0.85

(±0.05)

0.74

(±0.09)

0.72

(±0.09)

LR 0.89

(±0.10)

0.86

(±0.10)

0.88

(±0.09)

0.86

(±0.09)

0.76

(±0.08)

0.72

(±0.12)

RF 0.90

(±0.12)

0.88

(±0.11)

0.89

(±0.09)

0.88

(±0.09)

0.79

(±0.09)

0.77

(±0.08)

Best results are marked with bold font.

products were localised. Furthermore, results obtained using PECP16 (com-

bination of histology imaging features, clinical data and P16 score) is better

than the ones obtained using PE (histology imaging features only), across all

learning algorithms. This result suggests that clinical features also play a role

in determining HPV status.325

The best result was obtained by the SVM algorithm using PECP16 feature

set with an accuracy and F1-score of (91%) and (89%), respectively. The SVM

was used with the following parameters: ’C’= 10, ’gamma’= 75 and ’kernel’=

’rbf’. By contrast, clinical (clinical data without P16 H-score) provided an accu-

racy and F1-score of (74%) and (65%), respectively, much inferior results using330

the same algorithm (SVM), which highlights the importance of the histological

imaging features extracted using the proposed imaging workflow.

3.2. Comparison with end-to-end deep learning classification methods

In order to further evaluate the efficiency of our proposed approach in detect-

ing HPV status we compared it against end-to-end deep learning classification335
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Table 3: Average F1-scores (along with standard deviation over five runs) obtained with five

well-known supervised learning algorithms using the features in table 1.

Learning

Algorithms

PECP16 PWCP16 PE PW CP16 C

KNN 0.87

(±0.14)

0.80

(±0.15)

0.85

(±0.07)

0.79

(±0.06)

0.72

(±0.08)

0.73

(±0.07)

SVM 0.89

(±0.10)

0.85

(±0.11)

0.88

(±0.09)

0.83

(±0.10)

0.74

(±0.10)

0.65

(±0.13)

MLP 0.86

(±0.11)

0.84

(±0.09)

0.85

(±0.07)

0.80

(±0.11)

0.72

(±0.12)

0.69

(±0.09)

LR 0.88

(±0.11)

0.85

(±0.07)

0.86

(±0.1)

0.81

(±0.05)

0.72

(±0.09)

0.65

(±0.07)

RF 0.88

(±0.11)

0.87

(±0.15)

0.87

(±0.05)

0.86

(±0.06)

0.77

(±0.09)

0.76

(±0.12)

Best results are marked with bold font.

for HPV status in ISH processed images. While our hybrid method combines

CAR deep learning network, classical machine leaning algorithms, handcrafted

morphology features of blue stained regions in epithelium, clinical measurements

and P16 scores, the end-to-end deep learning classification determines the HPV

status by learning directly from the whole ISH processed images and don’t focus340

on the biologically important regions (epithelial). Furthermore, it doesn’t have

the capacity to encounter and learn from other relevant information that might

boost the learning process such as those provided by clinical measurements or

P16 scores.

In this experiment, the ISH images were randomly partitioned into groups345

containing 70%, 10%, and 20% of the images for training, validation, and test-

ing, respectively. Images were then resized and normalized to a zero mean and

unit variance to assist in faster convergence. Different image sizes were tried

(200×200, 400×400, 600×600, 800×800) to determine the best performing im-

age size, which was 400×400. As discussed earlier, our data set suffers from an350

unequal distribution of classes (1355 HPV- vs. 654 HPV+). This imbalance in
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the training set could affect the performance of the CNN as it would not get the

optimized results for the less popular class (HPV+). Hence, data augmentation

to handle the cardinality of the training set for all classes was achieved by over-

sampling the HPV+ images in the training set. Data augmentation purposely355

changes the appearance of some images in the training examples, before passing

them into the network for training. We applied image rotations by 90◦, 180◦

and 270◦ as well as horizontal flips but no adjustments of contrast or intensity

were applied, in order to preserve the color and morphological properties of the

histological images.360

3.2.1. Comparative Analysis of the Proposed Framework with sequential Convo-

lutional Neural Network (CNN) architectures

The performance of several Convolutional Neural Network (CNN) architec-

tures to classify HPV status by learning directly from the original ISH processed

images was examined. CNN is one of the most powerful and successful deep365

learning approaches used in the analysis of cancer images (e.g. [34], [4],[35],

[36],[37]). CNN models exploit local feature detectors or filters over the whole

image to measure the correspondence between individual image and class la-

bel within the training set. Then, the dimensionality of the feature space is

reduced using an aggregation or pooling function. In this experiment, we em-370

pirically evaluated several possible CNN architectures but we report results of

the most successful ones in Table 4. Other CNN architectures are possible,

however performing an exhaustive evaluation is highly time consuming and out

of the scope of this research.

Inspired by [37], we examined the performance of multiple sequential CNN375

architectures that were used in similar pathology image classification problems

(e.g. [34], [35], [36]). In particular, we changed various settings in CNN model

characteristics including network depth, layer properties, kernel sizes and num-

ber of filters as described later. The attempted networks were composed of

multiple blocks of convolution layer followed by (RELU) rectified linear acti-380

vation function, Batch Normalization, Max pooling and Dropout, as shown in
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Figure 6. ReLU helps to speed up the convergence learning and introduce the

non-linearity [38] 3. Batch Normalization aims to stabilize training and make

tuning hyperparameters [39]. The max pooling layer reduces the spatial dimen-

sion with a filter of 2×2 and a stride of length equal to 2. The pooled output of385

the last convolutional layer is fed to the one fully-connected layer that has 256

neurons across all attempted networks. Dropout layer was applied on convolu-

tional layers as well as after the fully connected layer with a keep probability of

0.25 and 0.5, respectively. Dropout is commonly used to regularize deep neural

networks and it also helps the network to generalize and not overfit. The output390

of the fully-connected layer was fed into the Softmax classifier to predict if an

image was HPV+ or HPV-.

As shown in Table 4, different numbers of feature maps were attempted such

that layers early in the network architecture learn fewer convolutional filters

(32), and going deeper in the network, the number of filters were increased395

to 64, 128 and 256 (a common practice when designing CNN networks). We

also attempted different kernel sizes in convolutional layers; these determine the

number of kernels to convolve with the input volume. Kernel sizes used were in

the range of 3, 5, 7 to help learn larger spatial filters and reduce volume size.

Same padding was applied, meaning that the size of output feature-maps are400

the same as the input feature-maps. Each of the attempted models was trained

on the training set the performance evaluated using the validation set.

For all the attempted CNN, a parameter exploration was performed using

training and the validation sets. The parameter selection was done according

to validation accuracy. As illustrated in 4, Model no. 3 returned the best405

validation accuracy. For this model, optimal CNN parameter values for number

of epochs, initial learning rate and learning rate decay were found to be 50, 1e-2

and 1e-3 respectively.

3The RELU is a piecewise linear function that outputs the input directly if is positive, or

zero otherwise, following function: f(x) = max (0, x). It is one of the most common and best

performing activation functions for many types of neural networks.
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Table 4: Details of most successful empirically evaluated CNN architectures for HPV status

(HPV+ or HPV-) prediction applied on core tissue samples processed by ISH.

Model

No.

Total

No. of

layers

No. of

convolu-

tion layers

blocks

Kernel sizes

in convolu-

tion layers

No. of fea-

ture maps

Validation

accuracy

1 6 3 3,3,3 32, 64, 128 0.70

2 6 3 7,5,3 32, 64, 128 0.72

3 9 4 3,3,3,3 32, 64, 128, 256 0.75

4 9 4 7,5,3,3 32, 64, 128, 256 0.69

5 12 5 7,5,3,3,3 32, 64, 128,

128, 256

0.62

6 12 5 7,5,5,3,3 32, 64, 128,

128, 256

0.63

Best results are marked with bold font.

Figure 6: Architecture of the most successful empirically evaluated CNN (Model No. 3 in

Table 4) for HPV status prediction applied on core tissue samples processed by ISH.
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3.2.2. Comparative Analysis of the Proposed Framework with three popular CNN

Architectures (VGG-16, Resnet and Inception V3)410

In this experiment we compare our work against three popular CNN archi-

tectures (VGG-16 [40], Resnet [41] and Inception V3[42]). These architectures

were specifically chosen for comparison because they have been widely adopted

for image recognition tasks and their performances are commonly used as bench-

marks for other architectures. In addition, they have been shown to perform415

well in pathology image classification tasks (e.g. [43]). Furthermore, pre-trained

versions of these models are available so that a transfer learning approach can

be adopted.

VGG16 is a CNN architecture used to win ILSVR (Imagenet) competition in

2014. One main feature of VGG-16 is the use of convolution layers of 3x3 filters420

with a stride 1 while using the same padding and maxpool layer of a 2x2 filters of

stride 1. This arrangement of convolution and max pool layers was consistently

used throughout the whole architecture. Our VGG-16 network had two fully

connected layers followed by a softmax function for classification. The network

was composed of 16 convolutional layers belonging to five convolution blocks.425

The small kernel sizes allow for training a deeper CNN while still reserving

the fine-grained information in the network. Here, VGG-16 was trained from

scratch using the formerly described architecture.

VGG16 networks exploit deeper networks to improve classification perfor-

mance, however, they are often more difficult to train. The performance of a430

ResNet (Deep Residual Learning for Image Recognition) was also examined.

This procedure skips the connection in convolution blocks by sending the previ-

ous feature map to the next convolution for a smoother training process. Here

a compact version of ResNet was trained from scratch. ResNet performed (3, 4,

6) stacking with (64, 128, 256, 512) convolutional layers. This implies, the first435

convolutional layer in ResNet had a total of 64 filters. Then, we stacked 3 sets

of residual modules. Each residual module had three convolutional layers which

learned 32, 32 and 128 filters respectively. This is followed by another stack of
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four sets of residual modules, each had three convolutional layers which learned

64, 64, and 256 filters. The final stack had six sets of residual modules, where440

each convolutional layer learned 128, 128, and 512 filters. Spatial dimensions

were reduced between first, second and third convolutional block layers and a

softmax classifier applied.

The Inception model, also known as GoogleNet, has been developed by

Google during the ImageNet Recognition Challenge. Inception network has a445

lower computational cost and memory requirement when compared to the VGG

and ResNet, which makes it more suitable for large data classification tasks. The

Inception network consists of a collection of Inception modules, which is a block

of parallel convolutional layers with different kernel-sized filters (e.g. 3× 3) and

a 3×3 max pooling layer, the results of which are then concatenated. Our net-450

work included five convolutional layers, each followed by a batch normalization

layer, 2 pooling layers and 11 inception modules.

VGG16, ResNet and Inception were optimized for hyper-parameters by the

randomized grid search method. For VGG16 and Inception, optimal parameter

values for number of epochs, initial learning rate and learning rate decay were455

50, 1e-2 and 1e-2 respectively. For ResNet, optimal parameter values for number

of epochs, initial learning rate, learning rate decay and classification threshold

of stochastic gradient descent algorithm were found to be 50, 1e-2, 1e-5, and

0.9 respectively. The best performing CNN model (model 3 in Table 4 and

Figure 6), VGG16, ResNet and Inception networks were trained from scratch460

and deployed on the entire data set using the optimized parameters.

In this experiment we compare our work against VGG16, ResNet and Inception-

V3 networks using a transfer learning process, where the parameters are initially

trained on the ImageNet [44] dataset. ImageNet is a dataset containing thou-

sands of images of different objects and scenes used to train and evaluate image465

classification models. Transfer learning is a well-known machine learning tech-

nique where a model developed for a learning task is reused as the starting

point for another relevant learning task. This allows for faster and more accu-

rate training by transferring the knowledge from very large public image data
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sets to the studied problem. Transfer learning has previously been used to470

train models to detect various diseases from pathology images [45]. Here, the

transfer learning approach was applied by fine-tuning three pre-trained models

(VGG16, ResNet and Inception-V3) on our imaging dataset. Model weights

were initialized based on pre-training on the ImageNet dataset, except for the

final, fully connected layers which were randomly initialized. Additional train-475

ing was performed using our training set images to fine-tune these networks

for detecting the HPV status. We applied the three pre-trained models on the

previously partitioned (training, validation and testing) data sets. We used the

optimizer Adam, batch size 32, with 100 epochs using a learning rate of 10−3.

The model that achieved the highest performance on the validation dataset was480

selected for evaluation on the testing dataset. This process was repeated for

each architecture (VGG16, ResNet and Inception-V3).

3.2.3. Experimental Results

For fair comparisons with the above experiments (section 3.1), all deep learn-

ing models were run five times on the randomly partitioned data and we report485

the average sensitivity, specificity, accuracy and F1-score for the testing data

over five runs in Tables 5, respectively.

In terms of classification accuracy, VGG-16 (trained from scratch) returned

the lowest F1-score for all evaluation measures, CNN (Model No.3 in Table

4) performed relatively better than VGG-16 and ResNet was deemed as the490

best performing end-to-end deep learning network with classification accuracy of

78%. On the other hand, our imaging framework (hybrid method), which com-

bines CAR deep learning network with classical machine leaning algorithms, re-

turned the best results across all evaluation measures when acting on PECP16

feature set (handcrafted morphology features of blue stained regions in epithe-495

lium, clinical measurements and P16 scores) as well as PE feature set (hand-

crafted morphology features of blue stained regions in epithelium).
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Table 5: Comparative analysis of proposed framework with other CNN architectures in terms

of average Sensitivity, Specificity, Accuracy and F1-score.

Learning Algorithms Sensitivity Specificity Accuracy F1-score

VGG-16 (trained from

scratch using the studied

dataset)

0.70 (±0.17) 0.65 (±0.15) 0.68 (±0.17) 0.66

(±0.15)

VGG-16 (pre-trained on

imagenet dataset)

0.54 (±0.20) 0.86 (±0.18) 0.68 (±0.19) 0.71

(±0.18)

Inception-V3 (trained

from scratch using the

studied dataset)

0.65 (±0.14) 0.64 (±0.17) 0.68 (±0.15) 0.68

(±0.15)

Inception-V3 (pre-

trained on imagenet

dataset)

0.70 (±0.18) 0.53 (±0.18) 0.62 (±0.19) 0.69

(±0.18)

Resnet (trained from

scratch using the studied

dataset)

0.77 (±0.13) 0.74 (±0.10) 0.78 (±0.14) 0.77

(±0.13)

Resnet (pre-trained on

imagenet dataset)

0.76 (±0.19) 0.42 (±0.18) 0.61 (±0.18) 0.72

(±0.19)

Best performing CNN

(Model No.3 in Table 4)

0.69 (±0.15) 0.72 (±0.13) 0.71 (±0.12) 0.70

(±0.15)

Proposed framework

applied on imaging

information, clinical

measurements and

P16 scores (PECP16

feature set - Table 1)

0.89 (±0.07) 0.91 (±0.08) 0.91 (±0.07) 0.89

(±0.10)

Proposed framework ap-

plied on imaging infor-

mation only (PE feature

set - Table 1)

0.88 (±0.07) 0.90 (±0.08) 0.90 (±0.09) 0.89

(±0.05)

Values in brackets indicate the standard deviation over five runs. Best results are marked

with bold font.
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4. Discussion

The first experiment revealed that classifying HPV status using the mor-

phology of blue stained regions in the epithelium tissue compartment is more500

accurate than when considering whole tissue regions. This was perhaps ex-

pected because the virus infects epithelial cells and excluding non-epithelial

regions from the analysis should in reduce the possibility of false positive de-

tection. It also highlights the importance of preliminary tissue segmentation

before extracting ISH features. However, the detection accuracy also improves505

further when including clinical data (PECP16 feature set). The second exper-

iment indicated that the proposed handcrafted feature technique outperforms

the end-to-end deep learning classification methods (including the pre-trained

models where the parameters were pre-trained on the ImageNet dataset) in this

particular problem. There are a number of possible reasons for this: (1) Deep510

learning-based methods learn the HPV status using the whole core tissue image,

which contains a mixture of epithelial and stroma tissues, i.e. not focusing on

features in epithelial cells. In contrast, the deep central attention learning tech-

nique that identifies epithelial regions (step 3 in the imaging workflow), allows

the assessment of ISH products in the target tissue, (2) Deep learning-based515

methods seem to be unable to capture critical imaging information such as that

provided by the morphological descriptors (step 4 in our imaging workflow), (3)

The ISH images pose a particularly challenging problem due to the complexity

of staining patterns and the presence of staining artefacts. Unlike the proposed

workflow which removes certain type of staining artefacts (step 2 in our imag-520

ing workflow), deep learning methods might be unable to avoid the effect of

such artefacts resulting in false positive results. (4) It is harder to incorporate

the clinical features in a deep learning image classification frameworks. They

mainly rely on imaging features without considering important clinical hand-

crafted features such as P16 score, age at diagnosis or smoking status. However,525

our future studies will examine the integration of such clinical features to deep

learning image classification frameworks.
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We believe that the method presented allows more explainability in the anal-

ysis of ISH images when compared with deep learning alone. Understanding the

actual model and exploiting handcrafted features appears to be intuitive and530

straightforward and less ambiguous for applications such as diagnosis where the

understanding of tissue changes in terms of known morphological architectural

features is most desirable.

(5) Although transfer learning has proven to be successful in various image

classification tasks, its application to medical images is still debatable because535

the pre-training of models is done using large datasets that might not be directly

relevant to medical images (e.g., CT, MRI, microscopy images). For example,

ImageNet pre-training is done using natural images (e.g. plants, sports, people,

animals, etc.), which are different in content from medical images. Recent re-

search suggested that ImageNet pre-trained models are of limited help for some540

tasks, including medical imaging [46]. Our results show that the application

of transfer learning to our images resulted in an inferior detection performance

when compared to the proposed approach.

5. Conclusion

The incidence of HPV-related oropharyngeal cancer has been reported to545

be in the increase in the Western world. Determining the HPV status in

histopathology is therefore essential for accurate patient diagnosis, prognosis

as well as for epidemiological studies. Unfortunately the task of assessing HPV

status in ISH slides is both challenging and time-consuming for pathologists

and therefore would significantly benefit from automation. In addition, defining550

formal numerical methods to diagnosis is likely to improve its reproducibility

by reducing the level of subjectivity inherent in perceptual tasks.

We presented an intelligent technique for the detection of HPV status in

tumours from digitized samples using ISH. The framework consists of a seg-

mentation algorithm, based on mathematical morphology to identify ISH prod-555

ucts, plus a deep learning network that identifies epithelium. ISH by being a
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technique based on hybridisation of complementary strands of DNA and RNA

sequences has many uses in molecular biology, apart from the viral genome

detection shown here, therefore the principles presented are likely to be trans-

ferable to a variety of other applications.560

Our experimental results from the analysis of 2,009 TMA images predicted

the HPV status with 91% accuracy. This outperformed baseline methods which

exploit other learning predictors, including clinical data, P16 H-score and their

combinations. The results also revealed that the morphology of the blue stained

regions in the epithelium are better HPV status predictors than the morphology565

of blue stained regions in the whole core tissue.

The work also showed that the results obtained from the handcrafted feature

set, compared favourably with popular end-to-end deep learning networks in-

cluding CNN, VGG-16, ResNet and Inception-V3 which learn directly from the

colour images. Interestingly, our results outperformed those obtained from deep570

learning architectures pre-trained with the ImageNet dataset. Approaches based

on morphologically-relevant data representing biological levels of structure and

organisation might be preferable to the ‘black box’ approach of deep learning

because of the ‘explainability’, in biological terms, of the results, specially in

this type of life-critical applications. In addition, unavoidable artefacts in histo-575

logical preparations might be better detected and controlled by procedures like

those described here to prevent them acting as adversarial examples that might

lead to misinterpretation of the histological scenes. At the same time, unlike

deep learning methods, our approach uses an ’interpretable’ machine learning

model enabling pathologists to understand why the model has taken such deci-580

sion and check the plausibility of computer-based image classification.
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