
applied  
sciences

Article

Adaptive Observer-Based Grid-Synchronization and Sequence
Extraction Techniques for Renewable Energy Systems:
A Comparative Analysis †

Hafiz Ahmed 1,* and Mohamed Benbouzid 2,3

����������
�������

Citation: Ahmed, H.; Benbouzid, M.

Adaptive Observer-Based

Grid-Synchronization and Sequence

Extraction Techniques for Renewable

Energy Systems: A Comparative

Analysis. Appl. Sci. 2021, 11, 653.

https://doi.org/10.3390/app11020653

Received: 9 November 2020

Accepted: 1 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Engineering and the Built Environment, Birmingham City University, Birmingham B4 7XG, UK
2 UMR CNRS 6027 IRDL, University of Brest, 29238 Brest, France; mohamed.benbouzid@univ-brest.fr
3 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
* Correspondence: hafiz.h.ahmed@ieee.org
† This paper is an extended version of our paper published in the 46th Annual Conference of the IEEE

Industrial Electronics Society (IECON-2020), Singapore.

Abstract: Various faults and disturbances often make the grid unbalanced and distorted. To make
the grid-connected converters resilient to unbalanced and distorted grid, real-time estimation of
grid voltage sequences are essential. Adaptive-observer based grid-synchronization techniques are
very suitable for this purpose. In this paper, a comparative analysis of three recently proposed
adaptive observer-based grid-synchronization technique are presented for frequency estimation
and sequence extraction. The considered techniques are: global adaptive observer, gain normalized
adaptive observer, and second-order generalized integrator type adaptive observer. Following a
fair and systematic gain tuning process, the performances are verified through extensive numerical
simulation and experiments. Experimental results demonstrate the merits and demerits of the
individual techniques. Academic researchers and industrial practitioners will find the results useful
for the selection of adaptive observer-based grid-synchronization and sequence extraction techniques.

Keywords: grid-synchronization; frequency-locked loop; sequence extraction; grid-connected renewable
energy systems

1. Introduction

Renewable energy systems (RES) are the way forward towards achieving net-zero
carbon emission target as mandated by many countries around the globe. This has con-
tributed to a major push for ever increasing integration of RES into the existing electric
power grid. This has attracted a lot of research attention into the control of grid-connected
converters (GCC) [1–11]. Grid-connected converters can transfer maximum power to the
grid only when the operation is in-phase with the grid voltage signal. Moreover, operation
of GCC in unbalanced grid also require real-time extraction of grid voltage sequences. This
motivated the researchers to devote significant attention to grid-synchronization based
sequence extraction techniques [12–15].

Some of the recent and most popular grid synchronization techniques are: Kalman
filter [16–18], demodulation [19,20], phase-locked loop (PLL) [21–26], adaptive observer
[27–29], second-order generalized integrator (SOGI) [30–32], open-loop techniques [33], etc.
Kalman filter [16] and least square-based techniques [34] typically work by considering a
linear-parametric model of the grid voltage. Real-time matrix inversion are required for
these techniques. This adds computational complexity for real-time low-cost embedded sys-
tems. Similar problems are to some extent true for the maximum likelihood estimator [18].
Demodulation [19] has several low-pass filters to tune, requires the use of trigonometric
function, and can only be used for frequency estimation and not for sequence extraction.

Phase-locked loop (PLL) [21–26] has gained lot of attention for grid-synchronization
application due to simplicity. Classical PLL generates double frequency oscillation in the
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presence of unbalanced grid. To avoid this issue, several solutions are proposed in the
literature that require additional filtering. Moreover, tuning the PLL in the presence of
additional filtering stage can be complicated. PLL is a closed-loop system where the stability
is dependent on various parameters. Open-loop grid-synchronization technique [33] has a
significant advantage in this regard as unconditional stability can be guaranteed. However,
this type of technique often require calculating the derivative. Real-time estimation of
signal derivatives are often challenging when the base signal is noisy.

Many nonlinear techniques are presented in the literature in recent times, such as
adaptive observer [27–29,35], adaptive notch filter (ANF) [4], self-tuning filter (STF) [5],
second-order generalized integrator (SOGI) [30–32], etc. Unlike PLL, these techniques
perform the task of grid-synchronization through the help of frequency-locked loop. ANF,
SOGI, and STF are similar in nature. All these techniques have band-pass filter property.
SOGI has a limited complex conjugate closed-loop poles tuning range [36]. Adaptive
observers [27–29] do not have any such limitation. This made adaptive observers-based
technique a suitable choice for grid-synchronization in the literature.

Shah and Singh, in Reference [28], proposed the application of adaptive observer for
grid-synchronization and sequence extraction. Using Lyapunov function and LaSalle’s
invariance principle, this observer provides global asymptotic stability of the state and
parameter estimation error dynamics. Unfortunately, the frequency update law used in this
work do not use any gain normalization. This makes the frequency estimation dynamics
dependent on the grid voltage amplitude. This can slow down the convergence of the
unknown frequency estimation when the grid voltages suffer significant sag. This issue
has been resolved in Reference [27] by introducing gain normalized frequency estimation
law. Both [27,28] consider the grid voltage and its derivative as the state variables to obtain
the dynamic model. SOGI-type adaptive observers as introduced in Reference [29,36] use
the same dynamical model as used by SOGI. In this case, quadrature signals are used as
the state variables. This type of observer can further enhance the dynamic tuning range of
SOGI.

In this paper, the focus is on comparative analysis of these recently proposed adaptive
observers. Such a comparative comparison is not yet available in the literature. To this end,
the observers are used for the purpose of grid-synchronization based sequence extraction
for unbalanced and distorted grid. The comparison is facilitated by a systematic and fair
gain tuning method. Extensive numerical simulations with adaptive notch filter-based
frequency-locked loop [37–39] and experimental results are provided to highlight the
advantages of the selected technique over the literature. Comprehensive and systemic
presentation and extensive performance comparison of three recently proposed adaptive
observer-based grid-synchronization techniques are the main contribution of this paper.

The rest of this paper is organized as follows: Problem formulation is given in
Section 2, overview of the selected techniques are given in Section 3, numerical simulation
and experimental performance comparison are given in Section 4, and, finally, Section 5
concludes this paper.

2. Problem Formulation

Unbalanced three-phase grid voltages comprise of positive (+), negative (−) and zero
(0) sequence components are given by:
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Ua = A+ sin
(
ωt + φ+

)︸ ︷︷ ︸
U+

a

+ A− sin
(
ωt + φ−

)︸ ︷︷ ︸
U−a

+ A0 sin
(

ωt + φ0
)

︸ ︷︷ ︸
U0

a

, (1)

Ub = A+ sin
(

ωt− 2π

3
+ φ+

)
︸ ︷︷ ︸

U+
b

+ A− sin
(

ωt +
2π

3
+ φ−

)
︸ ︷︷ ︸

U−b

+ A0 sin
(

ωt + φ0
)

︸ ︷︷ ︸
U0

b

, (2)

Uc = A+ sin
(

ωt +
2π

3
+ φ+

)
︸ ︷︷ ︸

U+
c

+ A− sin
(

ωt− 2π

3
+ φ−

)
︸ ︷︷ ︸

U−c

+ A0 sin
(

ωt + φ0
)

︸ ︷︷ ︸
U0

c

, (3)

where the amplitude is denoted by A, the initial phase angle is denoted by φ, and the
angular frequency is denoted by ω with the nominal value being given by ωn = 100π.
In this paper, the problem is to estimate the unknown angular frequency, ω and extract
the positive U+ =

[
U+

a U+
b U+

c
]T , negative U− =

[
U−a U−b U−c

]T , and zero

U0 =
[

U0
a U0

b U0
c
]T sequence components from the measured grid voltages (1)–(3).

For this purpose, let us consider the 90◦ phase shifted version of the grid voltages (1)–(3):

qUa = A+ cos
(
ωt + φ+

)︸ ︷︷ ︸
qU+

a

+ A− cos
(
ωt + φ−

)︸ ︷︷ ︸
qU−a

+ A0 cos
(

ωt + φ0
)

︸ ︷︷ ︸
qU0

a

, (4)

qUb = A+ cos
(

ωt− 2π

3
+ φ+

)
︸ ︷︷ ︸

qU+
b

+ A− cos
(

ωt +
2π

3
+ φ−

)
︸ ︷︷ ︸

qU−b

+ A0 cos
(

ωt + φ0
)

︸ ︷︷ ︸
qU0

b

, (5)

qUc = A+ cos
(

ωt +
2π

3
+ φ+

)
︸ ︷︷ ︸

U+
c

+ A− cos
(

ωt− 2π

3
+ φ−

)
︸ ︷︷ ︸

U−c

+ A0 cos
(

ωt + φ0
)

︸ ︷︷ ︸
U0

c

. (6)

From the grid voltages (1)–(3) and their quadrature version (4)–(6), the positive,
negative and zero sequence components can be extracted by the following equations [39]: U+

a
U+

b
U+

c

 =
1
3

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1

 Ua
Ub
Uc

+
1

2
√

3

 0 1 −1
−1 0 1
1 −1 0

 qUa
qUb
qUc

, (7)

 U−a
U−b
U−c

 =
1
3

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1

 Ua
Ub
Uc

− 1
2
√

3

 0 1 −1
−1 0 1
1 −1 0

 qUa
qUb
qUc

, (8)

 U0
a

U0
b

U0
c

 =


 1 0 0

0 1 0
0 0 1

− 1
3

 1 − 1
2 − 1

2
− 1

2 1 − 1
2

− 1
2 − 1

2 1


 Ua

Ub
Uc

. (9)

From Equations (7)–(9), it is clear that to extract the positive, negative, and zero
sequence components, quadrature signals are required. Adaptive observer-based grid-
synchronization techniques will be used for this purpose. Details of the selected adaptive-
observer based techniques are given in the following section.

3. Overview of the Selected Techniques
3.1. Global Adaptive Observer (GAO)

This section briefly presents the globally asymptotically stable adaptive observer
(GAO) as proposed in Reference [28,40].
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3.1.1. Development of Phase Voltage Dynamical Model

Let us first consider the phase a. Models of phase b and c are the same as phase a. To
develop the state-space model, let us first consider the phase voltage Ua and its derivative
as the following state variables:

ξ1 = Ua = A+ sin
(
ωt + φ+

)
+ A− sin

(
ωt + φ−

)
+ A0 sin

(
ωt + φ0

)
,

ξ2 = ξ̇1 = U̇a = ω
{

A+ cos
(
ωt + φ+

)
+ A− cos

(
ωt + φ−

)
+ A0 cos

(
ωt + φ0

)}
.

By considering the state vector, ξ =
[

ξ1 ξ2
]T , the state-space model of the phase

voltage dynamics can be written as:

ξ̇ = Aξ, (10)

Ua = Cξ, (11)

where

A =

[
0 1
−ω2 0

]
, C =

[
1 0

]
.

State matrix A contains the unknown grid frequency ω. To facilitate the frequency
adaptation law development for ω, let us rewrite the frequency in terms of the known
nominal frequency as, ω2 = ηω2

n, η > 0. Observability matrix of system (10) and (11) is
given by:

O =

[
C
CA

]
=

[
1 0
0 1

]
. (12)

Since the observability matrix O is of rank 2 which is the same as the rank of the
state matrix A, the system (10) and (11) is observable. Observer design for this system is
described in the following section.

3.1.2. Observer Design

Let us the consider the following transformation for the state vector ξ:

Ξ = T ξ, (13)

where Ξ =
[

Ξ1 Ξ2
]T is the transformed state vector and the non-singular matrix T is

given by:

T =
(1 + η)−1

ω2
n

[
1 − 1

ωn
ηωn 1

]
.

For the state vector Ξ, the transformed state and output matrices are given by:

AΞ = T AT −1 = A, CΞ = CT −1.

Then, the transformed dynamical model for the phase voltage Ua is given by:

Ξ̇ = AΞΞ, (14)

Ua = CΞΞ. (15)

The following Luenberger observer can be designed for the system (14) and (15):

˙̂Ξ = ÂΞΞ̂ + L
(
Ua − Ûa

)
(16)

whereˆrepresents estimated value, Ûa = CΞ̂, L ∈ R2×1 is the observer gain matrix, and

ÂΞ =

[
0 1

−η̂ω2
n 0

]
.
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To study the convergence of the observer, let us consider the state and parameter
estimation errors as:

Ξ̃ = Ξ− Ξ̂,

η̃ = η − η̂.

Then, the closed-loop error dynamics for the system (14) and (15) and the observer
(16) are given by:

˙̃Ξ = Ξ̇− ˙̂Ξ,

= AΞΞ−
{
ÂΞΞ̂ + L

(
CΞ− CΞ̂

)}
,

= AΞΞ−
{
AΞΞ̂−AΞΞ̂ + ÂΞΞ̂ + L

(
CΞΞ− CΞΞ̂

)}
,

= (AΞ −LCΞ)
(
Ξ− Ξ̂

)
+
(
AΞ − ÂΞ

)
Ξ̂,

= (AΞ −LCΞ)Ξ̃ +Rω2
nµ̃Ξ̂1, (17)

whereR =
[

0 1
]T . For suitably designed observer gain matrix L ∈ R2×1, the matrix,

AΞ −LCΞ can be made Hurwitz, i.e., all the eigenvalues have strictly negative real parts.
This makes the closed-loop error system strictly positive real (SPR) [41] and according to
the SPR lemma, there exists a matrixM =MT > 0, such that

(AΞ −LCΞ)
TM+ M(AΞ −LCΞ) = −Q,Q = QT > 0, (18)

MR = CT
Ξ . (19)

The following Lyapunov function is considered for system (17):

V(Ξ̃, η̃) = Ξ̃TMΞ̃ + γ−1η̃2, γ > 0. (20)

Then, the derivative of the Lyapunov function becomes:

V̇ = −Ξ̃TΞ̃ + 2
(
Ua − Ûa

)
η̃ω2

nΞ̂1 − 2γ−1η̃ ˙̂η. (21)

If the frequency update law is chosen as:

˙̂η = γω2
n
(
Ua − Ûa

)
Ξ̂1. (22)

Then, it becomes that V̇ ≤ 0, which proves the Lyapunov stability of the estimation
error dynamics. From the estimated transformed state vector Ξ̂, the state vector ξ can be
found through the following equation:

ξ̂ = T −1Ξ̂, (23)

where

T −1 = ω2
n

[
1 1

ωn
−η̂ωn 1

]
.

The process described above can be applied in the same way to the grid phase voltages
Ub and Uc. As the frequency is same for all phases, only one frequency identification law
is enough. From the signals Ua, Ub, and Uc and their derivatives (i.e., quadrature signal)
obtained through the observer (16), the sequences can be easily estimated through the
Equations (7)–(9).

3.2. Gain Normalized Adaptive Observer

This section briefly presents the gain normalized adaptive observer (GNAO) as
published in Reference [27]. This observer uses the same dynamic model as presented
in Section 3.1.1. For further development, let us define the unknown frequency ω as,
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ω = ωn + ∆ω, where ∆ω is the frequency deviation. Let us consider the following state
transformation:

Ξ = T ξ, (24)

where

T =
1

2ω3

[
ω −1
ω2 ω

]
.

Then, the transformed state and output matrices are given by:

AΞ = T AT −1 = A, CΞ = CT −1 =
[

ω2 ω
]
.

Then, the following Luenberger type linear observer is designed:

˙̂Ξ = ÂΞΞ̂ + L
(
Ua − Ûa

)
, (25)

where L =
[
L1 L2

]T is the gain matrix for the observer and

ÂΞ =

[
0 1

−
(
ωn + ∆̂ω

)2 0

]
. (26)

The frequency deviation estimation law is given by:

˙̂∆ω = −
γ(L1 + L2)ω̂

3Ξ̂1
(
Ua − Ûa

)√
(Ξ̂12ω̂3)

2
+(Ξ̂22ω̂2)

2

2ω̂2

, γ > 0. (27)

The denominator term in the right hand side of Equation (27) scales the frequency
deviation update law by the estimate of the grid voltage signal amplitude. This makes
the adaptation law less sensitive to large voltage sag/swell. This can be very suitable
to provide low voltage ride through capability if the observer is used inside the control
module of any grid-connected converter.

Lyapunov function-based stability analysis as presented in Section 3.1.2 cannot be
applied to the observer (25) due to the presence of gain normalization term in Equation (27).
As such, only local stability results are presented in Reference [27]. From the estimated
state vector Ξ̂, the state vector ξ̂ can be calculated through the following equation:

Ξ̂ = T −1ξ̂, (28)

where

T −1 =

[
ω̂2 ω̂
−ω̂3 ω̂2

]
.

The same observer (25) can be applied to grid phase voltages Ub and Uc. From the
signals Ua, Ub, and Uc and their derivatives (i.e., quadrature signal) obtained through the
observer (25), the sequences can be easily estimated through the Equations (7)–(9).

3.3. SOGI-Type Adaptive Observer

This Section briefly presents the SOGI-type adaptive observer (SAO) result proposed
in Reference [29]. Unlike the previous two observers, this observer uses a different dynamic
model.

3.3.1. Quadrature Signal-Based Dynamic Model Development

For model development purposes, let us consider that the states are:
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ξ1 = U⊥a = −A+ cos
(
ωt + φ+

)
− A− cos

(
ωt + φ−

)
− A0 cos

(
ωt + φ0

)
,

ξ2 = Ua = A+ sin
(
ωt + φ+

)
+ A− sin

(
ωt + φ−

)
+ A0 sin

(
ωt + φ0

)
.

Then, the following can be obtained:

ξ̇1 = ξ2ω,

ξ̇2 = −ξ1ω.

By considering the state vector, ξ =
[

ξ1 ξ2
]T , the dynamic model for the grid

phase voltage Ua is given by:

ξ̇ = Aξ, (29)

Ua = Cξ, (30)

where

A =

[
0 ω
−ω 0

]
, C =

[
0 1

]
.

Observability matrix of system (29) and (30) is given by:

O =

[
C
CA

]
=

[
0 1
−ω 0

]
. (31)

Since the observability matrix O is of rank 2 which is the same as the rank of the
state matrix A, the system (29) and (30) is observable. Observer design for this system is
described in the following section.

3.3.2. Observer Design

Let us consider the following transformation:

Ξ = T ξ, (32)

where

T =
1

2ω

[
1 1
−1 1

]
.

Then, the transformed state and output matrices are given by:

AΞ = T AT −1 = A, CΞ = CT −1 =
[

ω ω
]
.

Then, the transformed dynamic model for the phase voltage Ua is given by:

Ξ̇ = AΞΞ, (33)

Ua = CΞΞ. (34)

For model (33) and (34), the following Luenberger type linear observer is designed:

˙̂Ξ = ÂΞΞ̂ + L
(
Ua − Ûa

)
, (35)

where L =
[
L1 L2

]T is the gain matrix for the observer and

ÂΞ =

[
0 ωn + ∆̂ω

−(ωn + ∆̂ω) 0

]
. (36)
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Moreover, the gain normalized frequency deviation estimation law is given by:

˙̂∆ω = −
γ(L1 + L2)ω̂Ξ̂1

(
Ua − Ûa

)
Ξ̂TΞ̂

, γ > 0. (37)

Similar to the gain normalized adaptive observer presented in Section 3.2, only local
stability results are presented in Reference [29] due to the presence of the gain normalization
term in Equation (37). From the estimated state vector Ξ̂, the state vector ξ̂ can be calculated
through the following equation:

ξ̂ = T −1Ξ̂, (38)

where

T −1 = ω̂

[
1 −1
1 1

]
.

The same observer (35) can be applied to grid phase voltages Ub and Uc. From the
signals Ua, Ub, and Uc and their derivatives (i.e., quadrature signal) obtained through the
observer (35), the sequences can be easily estimated through the Equations (7)–(9).

4. Results and Discussions

In this section, comparative performance verification is considered. The selected
observers are tuned by considering the closed-loop poles as: −1.5ωn ± iωn. This corre-
sponds to L = [0.0012 2.6250]T (GAO and GNAO) and L= [0.3750 2.6250]T . A 2-cycle
convergence criterion is used to tune the parameter γ through trial and error. This corre-
sponds to the value of γ as 1000, 150 and 0.2 for GAO, GNAO, and SAO, respectively. With
these gains, the selected techniques have the same dynamic response in the presence of
frequency step change in the ideal grid voltage situation. FLL-based adaptive notch filter
(ANF-FLL) [37–39] is selected as the comparison technique. The ANF gain is selected as
1/
√

2, while the FLL gain is selected as 18,000, as suggested in Reference [39].

4.1. Simulation Results

The following test cases are considered in this section:

• Test-I: Balanced to unbalanced grid,
• Test-II: Voltage sag,
• Test-III: Phase step change, and
• Test-IV: DC offset.

Figure 1 shows the comparative simulation for Test-I. In this test, the negative and
zero sequence voltage had a sudden step change of +0.1 p.u. and +0.05 p.u., while the
positive sequence voltage had a step change of −0.2 p.u. The frequency estimated by the
adaptive observer-based techniques converged in 2-cycles, while ANF took 2.5 cycles
with significantly higher overshoot. In addition, the positive, negative, and zero sequence
amplitudes are estimated within ≈0.5 cycle by the adaptive observer-based techniques,
while it is more than ≈1 cycle for ANF.

Voltage sag of −0.5 p.u. in balanced grid is considered in Test-II. Simulation results
are given in Figure 2. As shown in Figure 2c, SAO and GNAO converged within 2 cycles,
and GAO took 3 cycles, while, for ANF, it is almost 5 cycles. This shows that adaptive
observer-based techniques are suitable for fast and accurate estimation of grid frequency
in the presence of large voltage sag. In case of positive sequence amplitude estimation, half
cycle convergence can be observed for the adaptive observer-based techniques, while it is
≈1 cycle for the ANF-FLL.

A sudden jump of −45◦ phase angle in a balanced grid is considered in Test-III.
Simulation results as shown in Figure 3 demonstrate that all the techniques are heavily
affected by the sudden change in phase angle. However, adaptive observer-based tech-
niques converged very fast within roughly 45 milliseconds, while ANF took more than
60 milliseco-nds. In addition, the peak overshoot for ANF was also ≈+1.5 Hz higher than
the adaptive observer-based techniques. This demonstrates the advantage of the adaptive
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observer-based techniques for challenging scenarios, such as sudden large change in phase
angle.

Due to current transformer saturation, signal conditioning problem, etc., DC offset can
often corrupt the measured voltages. This is considered in Test-IV. The considered DC offset
values are +0.05 p.u., +0.1 p.u., and −0.05 p.u. in phase a, b, and c, respectively. Results in
Figure 4b show that ANF is very sensitive to DC offset. The frequency estimation ripple is
between 48.2 Hz and 50.8 Hz for ANF. Among the adaptive observer-based techniques,
GAO is the most sensitive with estimation ripple between 49 Hz and 50.78 Hz. GNAO and
SAO have similar estimation ripple and the amplitude is lower than ANF and GAO.

By considering the test results as shown in Figures 1–4, it can be claimed that adaptive
observer-based techniques have performed better than ANF in almost every situations. As
such ANF will not be considered for experimental validation test in Section 4.2. Among
adaptive observer-based techniques, GAO under performed compared to GNAO and
SAO. It is to be noted here that all the adaptive observer-based techniques have similar
dynamic performance.

(a) Simulated three-phase grid voltage signal (b) Estimated frequencies

(c) Extracted positive sequence amplitudes (d) Extracted negative sequence amplitudes

(e) Extracted zero sequence amplitudes

Figure 1. Numerical simulation results for Test-I.
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(a) Simulated three-phase grid voltage signal (b) Extracted positive sequence amplitudes

(c) Estimated frequencies

Figure 2. Numerical simulation results for Test-II.

(a) Simulated three-phase grid voltage signal (b) Estimated frequencies

Figure 3. Numerical simulation results for Test-III.

(a) Simulated three-phase grid voltage signal (b) Estimated frequencies

Figure 4. Numerical simulation results for Test-IV.

4.2. Experimental Results

For the experimental validation, dSPACE MicroLabBox is used to implement the
adaptive observer-based techniques in real-time. An overview of the experimental setup is
given in Figure 5.

Figure 5. Experimental setup overview.
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4.2.1. Unbalanced Grid

In this test, initially the grid is balanced, i.e., no negative and zero sequence compo-
nents. Suddenly, the positive sequence amplitude had a step change of −0.2 p.u. Moreover,
negative sequence and positive sequence voltages of 0.2 p.u. and 0.1 p.u. are added into the
grid. In addition, the phase angle of the positive, negative, and zero sequence components
had a step change of −22.5◦, −22.5◦, and 22.5◦, respectively. Experimental results for this
test are given in Figure 6. From the estimated frequencies, it can be seen that the three
techniques have roughly similar dynamic performance and converged in ≈2 cycles. This
validates the gain tuning. GAO converged faster than the others, however, with the highest
peak overshoot. Similarly, SAO had the lowest peak overshoot and the same time the slow-
est convergence time among the selected techniques. The sequence extraction performance
of all the techniques are similar. The techniques extracted the positive, negative, and zero
sequence components from the measured three-phase grid voltage in a fast and accurate
manner.

4.2.2. Unbalanced and Distorted Grid

Grid distortion is often inevitable. So, this test considers unbalance and distortion at
the same time. In this test, initially balanced grid is consider with 1.0 p.u. positive sequence
component. After the fault, negative sequence of 0.1 p.u. and zero sequence of 0.05 p.u.
are added. In addition, 5th and 13th-order positive sequence harmonics of 0.015 p.u. and
0.012 p.u. and 7th-order negative sequence harmonics of 0.017 p.u. are added. So, the
negative sequence component has a distortion of 17% which is a highly challenging test
scenario. Experimental results are given in Figure 7. Due to the presence of distortion in
the voltage, the estimated frequencies also have estimation ripple. Similar to the previous
test, GAO has the highest peak overshoot (≈0.5 Hz) and steady-state estimation ripple
(≈0.3 Hz). SAO demonstrated the lowest peak overshoot (≈0.3 Hz) and steady-state
estimation ripple (≈0.1 Hz).

Based on simulation and experimental results, a comparative summary of the adaptive
observer-based techniques are presented in Table 1.

Table 1. Comparative analysis of the adaptive observer-based techniques.

Characteristics GAO GNAO SAO

Dynamic Performance Very Fast Very Fast Very Fast

Voltage Sag Sensitivity High Low Low

Harmonic Disturbance Good Very Good Very Good

DC Offset Rejection Good Very Good Very Good

Computational Complexity Medium High Medium
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(a) Experimental three-phase grid voltage signal (b) Estimated frequencies

(c) Extracted positive sequence by GAO (d) Extracted positive sequence by GNAO

(e) Extracted positive sequence by SAO (f) Extracted negative sequence by GAO

(g) Extracted negative sequence by GNAO (h) Extracted negative sequence by SAO

(i) Extracted zero sequence component by the selected techniques

Figure 6. Experimental results for balanced to unbalanced grid.
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(a) Experimental three-phase grid voltage signal (b) Estimated frequencies

(c) Extracted positive sequence by GAO (d) Extracted positive sequence by GNAO

(e) Extracted positive sequence by SAO (f) Extracted negative sequence by GAO

(g) Extracted negative sequence by GNAO (h) Extracted negative sequence by SAO

(i) Extracted zero sequence component by the selected techniques

Figure 7. Experimental results for unbalanced and distorted grid.
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5. Conclusions

Three recently proposed adaptive observer-based grid-synchronization techniques
are presented in this paper. These techniques are used to extract the positive, negative, and
zero sequence components of unbalanced and distorted three-phase grid voltage signal.
A systematic gain tuning procedure has been followed to ensure fair control parameters
selection for the selected techniques. Using challenging test cases, the performance of
the selected techniques are assessed experimentally. Comparative experimental results
revealed the merits and demerits of individual techniques. Comparative experimental
results as presented in this paper have the potential to give some guidance on the selection
of the adaptive observer-based sequence extraction techniques for power and energy
applications.
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