
Neurosymbolic Spike Concept Learner towards Neuromorphic 
General Intelligence  

Ahmad Najiy Wahab, Khaled Mahbub and Abdel-Rahman Tawil 
School of Computing and Digital Technology, Birmingham City University, Birmingham, U.K. 

{Ahmad.Wahab, Khaled.Mahbub, Abdel-Rahman.Tawil}@bcu.ac.uk 

Keywords: Neuromorphic General Intelligence, Spiking Neural Networks, Functional Plasticity, Structural Plasticity, 
Neurosymbolic, Representation Learning, Concept Learning. 

Abstract: Current research in the area of concept learning makes use of deep learning and ensembles methods to learn 
concepts. Concept learning allows us to combine heterogeneous entities in data which could collectively 
identify as individual concepts. Heterogeneity and compositionality are crucial areas to explore in machine 
learning as it has the potential to contribute profoundly to artificial general intelligence. We investigate the 
use of spiking neural networks for concept learning. Spiking neurones inclusively model the temporal 
properties as observed in biological neurones. A benefit of spike-based neurones allows for localised learning 
rules that only adapts connections between relevant neurones. In this position paper, we propose a technique 
allowing dynamic formation of synapse (connections) in spiking neural networks, the basis of structural 
plasticity. Achieving dynamic formation of synapse allows for a unique approach to concept learning with a 
malleable neural structure. We call this technique Neurosymbolic Spike-Concept Learner (NS-SCL). The 
limitations of NS-SCL can be overcome with the neuromorphic computing paradigm. Furthermore, 
introducing NS-SCL as a technique on neuromorphic platforms should motivate a new direction of research 
towards Neuromorphic General Intelligence (NGI), a term we define to some extent.  

1 INTRODUCTION 

Neuromorphic computing (NC) is introducing a new 
computing paradigm along with a class of processors 
that differs from conventional computing to simulate 
neural networks. The neural networks that NC adopts 
behave as closely as possible to spike-based neurones 
in biology. Initially the goal of NC was to simulate 
the brain with large scale integrations of hardware-
based neurones. With the prominent advancement of 
deep learning algorithms, dedicated processors or 
Neural Processing Units (NPU) are being developed 
to accelerate machine learning algorithms. 

To mention a few NPUs and their use cases, the 
Tensor Processing Unit (TPU) by Google have been 
developed to accelerate deep learning algorithms for 
consumers through Google’s cloud AI compute 
services (Sengupta, Kubendran, Neftci, & Andreou, 
2020); Vision Processing Units (VPU) have been 
developed to serve as co-processors to accelerate 
vision compute tasks and a few can perform image 
inference tasks (Barry & Riordan, 2015; Rivas-
Gomez, Pena, Moloney, Laure, & Markidis, 2018); 
Field Programmable Gate Arrays (FPGA) have been 

used to conduct research on neural networks and their 
various learning mechanisms (Lammie, Hamilton, 
Van Schaik, & Azghadi, 2019; Perez-Peña, Cifredo-
Chacon, & Quiros-Olozabal, 2020; Rosado-Muñoz, 
Bataller-Mompeán, & Guerrero-Martínez, 2012), but 
these applications are demonstrated towards visual 
pattern recognition (Liu & Yue, 2019).  

It is important to note that majority of NPUs are 
currently being developed to accelerate existing 
neural network algorithms. Only a few are being 
developed at the frontier of brain-inspired computing 
research, that focuses on biologically plausible neural 
models. Plausible neural models constitute of 
neurones that neurologically functions much closer to 
neurones observed in our central nervous system 
(CNS). These plausible neurones are the spike-based 
neurones which makes the 3rd generation of neural 
networks. Intel’s Loihi, IBM’s TrueNorth, 
SpiNNaker and Neurogrid (Boahen, 2017; Davies et 
al., 2018; Debole et al., 2019; Painkras et al., 2013) 
are few examples that could be considered as NPUs 
with 3rd generation neural networks but distinctively 
are being considered as Neuromorphic Processors. 
The defining aspect of Neuromorphic Processors are 



their scalability and massively parallel compute 
potential to simulate spiking neurones at grand scales. 

With neuromorphic devices on the rise, more 
specialised devices/hardware is being developed to 
host and accelerate various neural networks. We 
acknowledge that these devices increase the 
performance of such networks but, from a much 
broader perspective in the domain of neuromorphic 
computing, there is relatively slow advancements 
being made on the algorithmic developments for what 
could potentially be machine learning techniques 
unique to the neuromorphic platforms. 

It is highly probable, perhaps inevitable, that the 
future of artificial intelligence will have mankind in 
an age where general intelligence machines are more 
like human beings contributing to society: reasoning 
with and learning from its environment causing real 
world effects. To reach such an age, cognition and 
behavioural dynamics in general intelligence 
machines should exhibit the likeness to behaviours of 
human beings. This may be achieved by somewhat 
imitating the underlying cognitive processes or 
neurological processes that is observed in our central 
nervous systems. Alternatively, purely speculative 
developments that do not imitate nature may also lead 
to general AI, this raises the questions as to which is 
more favourable for the future of general AI. We may 
perhaps trust more on general AI that work closer to 
our biology than a more obscure forms of general AI 
that we cannot relate to in processing rationality.  

Artificial general intelligence (AGI) is considered 
the holy grail of AI for decades and has been the core 
motivation of machine learning since the birth of the 
field. AGI is still anticipated to bring about 
revolutionary advancement to science and 
technology, with a wave of machine reasoning. 
Initially, AGI is considered as intelligence expressed 
by machines in contrast to natural intelligence 
expressed by humans. Nevertheless, general 
intelligence can also be considered loosely yet sub-
specifically as a form of intelligence that possess 
cross-domain expertise. 

Considering general intelligence in the context of 
neuromorphic computing, it is reasonable to define a 
very specific branch of artificial general intelligence 
that is achieved through Neuromorphic means as a 
form of Neuromorphic General Intelligence (NGI). 
General intelligence can be achieved through 
cognitive models consisting of various machine 
learning techniques, formal methods and algorithms 
like State, Operator, And Result (SOAR), Adaptive 
Control Thought – Rational (ACT-R) and Learning 
Intelligence Decision Agent (LIDA) (Bruckner, 
Zeilinger, & Dietrich, 2012). We can differentiate 

NGI as an approach of general intelligence emerging 
from Neuromorphics, spike-based neural computing 
platforms. 

In this work we investigate the possibility of 
delivering general intelligence on the neuromorphic 
computing paradigm. Specifically, we propose to 
investigate a method of structural and functional 
plasticity for learning on a neurosymbolic spike-
based network to achieve concept learning on 
neuromorphic platforms. Concept learning is a crucial 
element to inaugurate generality in machine 
intelligence. 

 

Key questions this work will address towards NGI: 

 How can spike-based networks achieve concept 
learning? 

 How will such spike-based concept learners be 
employed in future neuromorphic platforms? 

 Will spike-based concept learners inform any 
design specification for neuromorphic hardware? 

 

The real-world use cases – for concept learning 
emphasising structural plasticity – can be in situations 
where intelligent dynamical systems are required that 
are extensible, flexible and function in real-time. The 
world of Internet of Things (IoT) are such situations 
as new sensors are constantly added to extend a 
system in its wide variety of uses. Applying concept 
learning in IoT situations allows us to form real-time 
associations between various sensors regardless of 
sensor type. The supposed intelligent dynamical 
systems require algorithms that are unconstrained, we 
have proposed structural plasticity for our approach 
to adapt with extensibility as associations can form 
with new components whilst existing associations 
remains unaffected yet functional. The intelligence 
aspect of our approach as a concept learner lies in the 
neurosymbolic space. Concepts could consist of 
entities in the symbolic space, representing 
composites derived by heterogeneous data streamed 
from different IoT sensors. The universality of 
neurosymbolic space due to the heterogeneity enables 
inter-correlation of information across different 
sensors in an IoT ecosystem. For IoT sensor, data 
requires spike-encoding for spike-based neural 
processing. The encoding provides a standard 
mechanism for processing data further promoting the 
universality of symbolic space. 

The rest of this paper will be presented as follows. 
In section 2, we cover related works on inter-domain 
knowledge, representation and concept learning. In 
section 3, we briefly describe different aspects of our 
algorithm and their rationale to realise our take on 
concept learning with spiking neurones. In section 4, 



we discuss the potential implications of our 
techniques and the prospect of our approach to further 
research in NGI. 

2 RELATED WORK 

Within the domain of computer science, machine 
learning has given machines the ability to exhibit 
intelligence and in cases excel humans in certain 
intelligence tasks. However, modern AI in the current 
academic standpoint are considered as narrow AI 
(weak AI), excelling at a very specific intelligence 
task at which they were purposefully trained for 
(Fjelland, 2020). Narrow AI are domain specific, 
requires human intervention to develop with and 
utilise. Strong AI are not necessarily domain specific 
because they are, as they should be, domain-neutral 
(multi-domain). Strong AI should fundamentally 
learn in an unsupervised general manner, thus, are 
educated into domains they have been exposed to, as 
opposed to being trained objectively and specifically. 

With cross-domain knowledge in intelligent 
systems, agents could tackle problems in a more 
rational way by addressing new information with 
consideration of patterns acquired from past 
observations inter-correlated across domains. This 
feat mirrors the inductive process facilitating 
reasoning, to make conclusions based on one or 
several evidence, in all its various forms, from past 
observations and experiences. Concept learning is a 
strategy of combining features or attributes 
(fundamental pieces of information) which 
collectively identify as one distinct concept. The goal 
of concept learning, we assume in our context, is the 
ability to capture complex patterns based on past 
observations. The complexity of constituents making 
complex patterns may be derived from the 
heterogeneity of data. Concept learning is crucial to 
achieving the domain-unconstrained learning 
complimentary to general forms of intelligence.  

Neural network algorithms are a sophisticated 
development that has given us the techniques to 
perform classifications and predictions. However, 
neural network as a technique alone are obscure in the 
sense that knowing the basis for which it took to reach 
its conclusions are near impossible. The reasoning of 
such is behind a ‘wall of matrices’ with little to no 
semantic grounds. This has introduced a branch of AI 
known as explainable AI (XAI) (Barredo Arrieta et 
al., 2020) in which the goal is to make AI as 
transparent as possible. Furthermore, a goal to make 
AI that can explain the reasoning behind its own 
conclusions and if not be as transparent as possible 

for humans to interpret and understand. For humans, 
we understand each other due to the same mental 
model and social context we innately possess and 
grew with. XAI aims to endow intelligent systems 
with the communicative style through that shared 
model and context for users to understand with 
minimal comprehension barrier. 

Neuro-symbolic AI is one approach that can 
achieve reasoning with generality and yet with 
interpretability, this approach couples the opaqueness 
of old-school rule-based symbolic AI with the 
obscure internal workings of neural networks. 
Symbols are established to give fundamental meaning 
to individual neurones in neural networks. 
Compositionality through hierarchical attribution is a 
symbolic method to represent concepts. 

The techniques towards concept learning have 
been explored in machine learning but the approaches 
often employ ensemble methods – using multiple AI 
algorithms to accomplish concept learning. Existing 
literature in concept-learning consists of deep neural 
networks coupled with natural language processing, 
taking visual and question-answer pair as inputs in 
order to learn concepts in a joint visual-linguistic 
space. This technique is known as grounded learning, 
using a joint representational space for both visual 
and linguistic compositions. The shared space further 
benefits as the semantic interface for users and 
interactors to understand the reasonings behind AI’s 
conclusions. Some of the outcomes on this line of 
research have introduced Visual Concept-
Metaconcept Learner as VCML (Han, Mao, Gan, 
Tenenbaum, & Wu, 2019), Neuro-symbolic Concept 
Learner as NS-CL (Mao, Gan, Kohli, Tenenbaum, & 
Wu, 2019) and Neuro-symbolic Visual Question 
Answering as NS-VQA (Yi et al., 2018). 

Further research in the area of concept 
compositionality and semantic representation that 
utilise spiking neural networks is the Semantic 
Pointer Architecture: Unified Network (SPAUN) 
(Stewart, Choo, & Eliasmith, 2012). SPAUN is 
among one of the most accurate cognitive models on 
the spiking neurone framework. The primary 
component of SPAUN is the Semantic Pointer 
Architecture (SPA) (Blouw, Solodkin, Thagard, & 
Eliasmith, 2016) which have demonstrated 
compositionality and symbolic induction. 
Compositionality allows items to form associations 
making composites, in symbolic terms, making up 
concepts. Symbolic induction in this case is the 
predictive process based on sequences of temporally 
presented visual inputs, to be precise, the temporal 
sequences of activities in the symbolic space in 
correlation to the visual inputs. 



For advanced concept learners; a certain set of 
inputs patterns could influence and affect other set of 
patterns regardless of sensory and perception 
modalities. Associations can be formed from data of 
disparate sources such as sights, sound and touch – in 
computing this can extend to sensors beyond common 
sensory modalities of biology. Symbolically a set of 
description-patterns can be regarded as individual 
concepts by compositionality and symbolic 
induction. Conveniently concepts could consist of 
description-patterns fragmented across different 
modalities in a unified symbolic space. 

For this position paper, we propose a structurally 
unconstrained concept learner that can learn 
dynamically from heterogeneous data streams, 
Neuro-Symbolic Spiking Concept Learner (NS-
SCL). 

3 SPIKE CONCEPT LEARNER 

In artificial neural networks (ANN) and deep learning 
(DL) frameworks, neural networks are substantially 
non-spiking and during the training phases the models 
undergo global weight changes. Spike-based 
networks can be feasibly unique in this respect as 
learning could involve making localised changes only 
between relevant neurones. These localised changes 
are mediated and determined by spike activities and 
is known to play essential roles in learning as 
observed in biology. Several learning rules have been 
postulated due to the variety of learning dynamics 
observed between neurones from various regions of 
our central nervous system. We will cover the 
learning rules further on in this section. 

 

Figure 1: NS-SCL overlapping aspects. 

Our proposed concept learner (NS-SCL) is based 
on the spiking neural framework, but we 
deterministically and dynamically structure the 
network in a neuro-symbolic way based on incoming 

spike-encoded data. In this work, we will exploit the 
localised learning of spike-based networks and its 
temporal properties to learn neuro-symbolic 
constructs in an unsupervised way. We investigate 
further into synaptic enhancements as derived in 
neuroscience to mean functional forms of plasticity – 
how synapse (connections) between neurones adapts 
during neural processing and learning. We have 
devised a learning mechanism for NS-SCL to achieve 
experiential learning. The learning mechanism is 
inspired by functional plasticity observed in the 
central nervous system with regards to changes to 
synapses (connections). The novelty lies in how we 
incorporate many synaptic enhancements profiles, 
this is achieved through synapse manifolds briefly 
covered in Section 3.3. 

Furthermore, we investigate the creation and 
formation of synapse between neurones based on the 
synaptic enhancement conditions as a form of 
structural plasticity. New synapse indicates a new 
association between neurones, in the symbolic space 
we can form associations between items resulting in 
the composition of higher symbolic constructs. The 
conditions for when synaptic association should form 
depending on spikes (of data). Two neurones spiking 
may be spuriously correlated yet we form the synapse 
but treating such synaptic association as a latent 
connection with no functional effect to the network. 
Latent synapse will cease to exist after a given period 
if not subjected to further stimulation. However, if 
further stimulation occurs the latent connections will 
persist to exists and it should have a functional effect 
in the network. Persistent stimulation indicates a 
deterministically coordinated activity, it is then 
reasonable to treat the synapse as overt since the 
frequency of firings would satisfy some synaptic 
enhancement conditions as it could be part of a 
genuine association. We will cover briefly the 
mechanism of structural plasticity within a neuro-
symbolic space in Section 3.4. 

 

Figure 2: Essential algorithms of NS-SCL. 

The essential algorithms in Figure 2 are required 
to realise spike-based concept learning. The 
functional plasticity aspect of the network is very 
much like ANNs and DL with connections between 
neurones strengthening or weakening based on the 
training data given. The difference is our adoption of  



 

Figure 3: NS-SCL framework. 

the spiking neurone paradigm and so our approach to 
functional plasticity would differ, an approach being 
unique to the spike-based paradigm. Structural 
plasticity is our approach to introduce a symbolic 
space with spiking neural networks, this symbolic 
space allows us to examine and make sense of the 
network – this represents an unconstrained ontology-
like space that holds relationships and concepts. 
Introducing a neural-symbolic space with live 
learning mechanisms as concept leaners opens the 
possibility of a self-learning NGI agent that can learn 
through experience (with structural and functional 
plasticity). 

We will employ NS-SCL for concept learning in 
an IoT space, as such space is rich with data of various 
forms, with varying breadth and lengths. Here, NS-
SCL will generate concepts constituting patterns 
present in data across several sensor streams. Figure 
3 illustrates the framework of NS-SCL. At process A, 
data from sensor streams are encoded into spike-
trains. At process B, we form new neurones and 
synapse in symbolic space, where associations are 
non-existent – will be based on spike timings in spike-
train evaluation space. At process C, we apply our 
manifold algorithm to process spikes in evaluation 
space – reinforcing associations where relevant in 
symbolic space. In summary, the framework is a real-
time learning model with characteristics of functional 
and structural neuroplasticity. 

3.1 Learning with Neuroplasticity 

In ANNs and DL, the core algorithm for learning is 
founded on functional plasticity. Functional plasticity 
refers to the changes made to weightings of 

connections between neurones as training takes place. 
We will not go into further details about functional 
plasticity regarding ANNs and DL since the direction 
of this paper is towards spike-based functional 
plasticity. 

Functional plasticity is derived from synaptic 
enhancements in neuroscience. Synaptic 
enhancements are the changes made to the 
neurotransmitter release probability as observed at 
the synapse between neurones. Effectively, higher 
probability indicates more influence a neurone has 
through such synapse in causing another neurone to 
fire. Furthermore, short-lived synaptic enhancements 
have been classified as paired-pulse facilitation, 
synaptic augmentation and post-tetanic potentiation 
(Regehr, 2012). The variation between these 
classifications are the magnitude and duration for 
which the synapse can influence subsequent 
neurones, these duration ranges from milliseconds to 
minutes. For our concept learner, NS-SCL, we 
propose a novel mechanism for learning to cater all 
scopes of synaptic influence (facilitation, 
augmentation and potentiation) into one unified 
neuro-symbolic spiking model. The method in which 
we achieve all this is through a technique we call 
Temporal Scope Synapse Manifolds (TSSM), further 
covered in Section 3.3. 

In biology, spiking activities and synaptic 
enhancements functions on the 100th millisecond 
timescales. With the compute performance of current 
general-purpose computers, simulating spiking 
activities at natural speeds is unachievable. Hence, it 
is the core motivation of Neuromorphic Computing. 
Nevertheless, we can exploit the mechanisms by 
simulation altering the duration of spikes and 



simulation speed to a larger scale in order to 
demonstrate the feasibility and potential of our 
algorithm. 

Structural plasticity is another form of 
neuroplasticity regarding the changes to the structure 
of the network. It has been observed that neural 
structures are continuously growing and rearranging. 
Dendrites are parts of neurones that allows 
connections from/to other neurones. Dendritic spines 
have been observed to appear and disappear 
depending on their relevance. Spines can last for 
months to few days and less (Trachtenberg et al., 
2002). It has been revealed that dendritic spines allow 
for the formation of new synapse and is considered to 
play a role in learning. The dendritic spine evidently 
implies neural networks not only adapts by changes 
to connections but by establishing new connections. 

In ANNs and DL, the structure of the network is 
often defined at the beginning during initialisation – 
number of layers, neurones and connection 
configurations. The structure of networks in ANNs 
and DL do not change once initialised and remains 
constant, but the weightings are subjected to 
alteration during training. In spiked-based networks, 
it is plausible to allow structural change since in 
biology this phenomenon happens continuously and 
frequently. The structural plasticity method for NS-
SCL will be briefly covered in Section 3.4. 

3.2 Functional Plasticity Fundamentals 

There is well-known postulate by Donald Hebb in 
1949 regarding the activities of neurones during 
learning (Hebb, 1949). Hebbian learning, as it is well-
known as, have led to significant advancement in 
machine learning for the past decades - specifically 
the area of neural networks across its generations. The 
very most recent technological advancement in the 
past decade that had emerged from the long-credited 
postulate have led to the sophisticated deep learning 
algorithms. 

Hebb's rule is a learning rule regarding the 
activities neurones exhibit during learning, 
specifically, by persistent stimulation of a neurone 
results in the rise in synaptic efficacy (influence on 
subsequent neurones). With higher synaptic efficacy, 
the more influence the pre-synaptic neurone has on 
the post-synaptic neurones. Following the date of 
Hebb's postulate, the field of neuroscience have made 
further progress through new observations in the 
biological process of neurones and spike activities. 
Later observations have found that the timing of 
neurones firing is a critical component in the process 
of learning. 

Synaptic plasticity is the observed process that 
demonstrates that synaptic efficacy only rises when 
connected neurones fires within a very short time-
window. Spike-Time-Dependant-Plasticity (STDP) is 
the biological process by which neurones changes the 
synaptic efficacy exclusively depending on the 
timings of spikes between neurones, the inter-spike 
interval (Shrestha, Ahmed, Wang, & Qiu, 2017). 
Spike-Rate-Dependant-Plasticity (SRDP) is another 
extension by which the persistent number of spikes 
leads to more pronounced adjustments to synaptic 
efficacy (He et al., 2014). SRDP uses spike averages 
to temporally sum the potentials for synaptic 
enhancements. 

For NS-SCL, we will investigate how STDP can 
be used with our discrete-time spiking neural model 
for synapse formation. Spiking neural networks in 
Neuromorphics embraces the learning rules adapting 
with local changes to achieve synaptic plasticity (Liu 
& Yue, 2019; Moraitis et al., 2017; Shrestha et al., 
2017). The localised nature of the adaptation 
conveniently allows us to extend the structure of the 
network without affecting the entire network 
functionally. This kind of dynamic structural 
characteristics is perhaps not so different to our own 
central nervous systems. 

3.3 Functional Plasticity with 
Temporal Scope Synapse Manifolds 

In order to cater for all scope of synaptic influence we 
can assume having one connection between neurones 
but functionally we can compute the connection with 
many different synaptic enhancement profiles – 
facilitation, augmentation and potentiation. 

 

Figure 4: Temporal Scope Synapse Manifold (TSSM). 

Figure 4 illustrates four synaptic enhancements (SE) 
each would have different profiles – varying in 
duration and magnitude of influence. All 
enhancement profile shares the same vector-direction 
component between neurones. Since each SE 
functions at different durations, we have imposed 
temporal boundaries – for spikes satisfying within, 
only the corresponding synapse would be made the 
subject to adaptation. 

Increasing the base speed at which the network 
operate could yield abnormally different result with 
the same SE profile. For temporal manifolds, we can 



introduce and establish our own parameters that do 
not necessarily correspond to natural synaptic 
enhancement properties as observed in neuroscience. 
We can change to find ideal parameters optimal for 
certain base network speeds. We consider defining 
SE parameters as the optimisation aspect of our 
algorithm. 

Table 1: A crude temporal upscaling of SE profiles. 

SE 
Profile 

Mag. Dur. Condition 

Facilitation 0.8 1 s 0 < s < 1s 
Augmentation 0.2 10 s 1s < s < 10s 
Potentiation 0.05 5 mins 10s < s < 5mins 
Long-Term P. 0.05 1 hr 5 min < s < 1hr 

 
Table 1 is an example of such SE profiles for 

synapse manifolds. The magnitude represents the 
weight of influence synapse have on post-neurone at 
each spike simulation tick. The duration is how long 
the influence will last on post-neurone. The condition 
is what must be satisfied for the influence to take 
place. Our algorithm will not treat the SE profile 
parameters as definitive constants but as modifiable 
parameters to fine-tune the behaviour of our spike-
symbolic network. We assume that different 
applications for our algorithm will benefit from 
different set of SE profiles. 

3.4 Structural Plasticity for 
Neurosymbolic  

This aspect of NS-SCL is to allow the generation of 
new neurones and synapses. We will form new 
synapse between neurones when they fire satisfying 
the manifold rules, and if there are no existing 
synaptic connections between them. In the neuro-
symbolic space, new neurones and synapse 
effectively forms new symbolic representation of an 
item. Manifold rules and unconstrained structure 
results in a deterministic yet dynamic behaviour as 
unsupervised learning. 

Initially the generated synapse will be treated as 
latent synapse, causing no real functional effects in 
neuro-symbolic network but subjected to functional 
plasticity. Latent properties are applied to individual 
SE profile. Latent synapse is our mechanism to 
structurally regulate the neuro-symbolic space. We 
will give generated synapses a probationary period. If 
no subsequent changes are made to the synapse 
within a set period, we will discard the SE profile 
associated as we can conclude that the spike activities 
leading to their generations were spuriously 
grounded. 

Latent synapse could become more progressively 
enhanced through our plasticity learning mechanics; 
they can be promoted to an overt state. In an overt 
state, synapses are effectively active in the network. 
Progressive synaptic enhancement can only occur 
with well-coordinated spikes across spike-trains; 
therefore, we can conclude that the synapse is well-
grounded yet not necessarily known for what cause. 
However, the cause can be traced to by observing 
neurones that fire depending on the input spike-trains 
(data) and would fire somewhat deterministically. 
NS-SCL requires each neurone to atomically 
represent a concept/constructs in the neuro-symbolic 
space. When a neurone fires it would indicate that a 
learned-pattern or concept is relevant in present 
moment which can be considered as short-term recall. 

Two unrelated neurones – having no direct 
connections – can form synapse by the temporal 
manifold conditions. Thus, NS-SCL can form 
complex hierarchical structures of which is 
determined by temporal activity. 

4 DISCUSSION 

Concept learners such as VSCL, NS-CL and NS-
VQA are examples on some of the work aiming to 
couple different types of learning spaces. These 
approaches have demonstrated learning can be done 
on joint visual-semantic space. NS-SCL is our 
approach where the joint space is universal. We use 
spike-based neural framework which allows us to 
temporally encode any information into a shared 
universal symbolic space – allowing for information 
such as those originating from visual sources, 
semantic sources, auditory sources, etc. Hence, NS-
SCL should be able to relate information from one 
sensory mode to other sensory modes. This approach 
is inspired by how our central nervous system handles 
information from various sources. 

Major constraints of our approach of concept 
learning relates to compute and memory resources. 
Since new synapse and neurones can be formed 
dynamically, it would require a machine with 
considerable processing capabilities and storage 
volumes to handle large NS-SCL networks. On 
general-purpose computers with the Von Neumann 
architecture, the processor would need to process the 
number of dynamically formed neurones in under 
milliseconds along with synapse which could be 
much greater in number. This is impracticable, there 
is a point at which exceeding a certain number of 
neurones in the NS-SCL neuro-symbolic space will 
render the whole algorithm incomputable. We 



proposed upscaling the algorithm’s timing-related 
mechanisms and slowing the spiking simulation 
speed to avoid such scenarios allowing the processor 
time to compute. Though, reducing the spiking 
simulation speed allows for the system to function 
with heavy loads, the feasibility depends on the use 
case of the algorithm. For IoT use case, we can adapt 
sensors to function slower to better accommodate the 
sensor data in numbers considering the limitations of 
NS-SCL algorithm on the Von Neumann computing 
paradigm. 

Neuromorphic Computing is a broad field and 
requires contribution from many different disciplines. 
The motivation of Neuromorphic Computing is to 
allow for extreme parallel processing of neurones at 
grand scales. Developing algorithms for NC can also 
inform the design requirements for neuromorphic 
processors. Adapting NS-SCL for Neuromorphic 
platforms is the ideal solution as it would eliminate 
the Von Neumann compute and memory constraints 
that impedes neural processing. NS-SCL requires 
dynamical creation of neurones and synapse. In 
neuromorphic hardware we require a reserved pool of 
unused neurones that can be utilised spontaneously at 
runtime in addition forming latent synapse.  

Further algorithmic developments should be 
made in neuromorphic computing as it has the 
potential to influence future developments of 
neuromorphic hardware. Future improvements, 
regarding concept learning on such platform, could 
further reach a level of sophistication where spike-
based concept learners exhibit a degree of general 
intelligence functioning in real-time. There have also 
been emerging concerns as to the level of 
sophistication AI could reach on the intelligence 
spectrum. A valid proposition of maintaining AI is to 
contain the general forms of AI within isolated 
computing mediums like Neuromorphics. Thus, it is 
plausible to define a specific branch of artificial 
general intelligence that emphasises the 
neuromorphic approaches – where intelligence is 
coupled to hardware. We identify this specific branch 
as Neuromorphic General Intelligence, NGI. 
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