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Abstract: This paper presents a novel incentive-based load shedding management scheme within a1

microgrid environment equipped with the required IoT infrastructure. The proposed mechanism2

works on the principles of reverse combinatorial auction. We consider a region of multiple consumers3

who are willing to curtail their load in the peak hours in order to gain some incentives later. Using4

the properties of combinatorial auctions, the participants can bid in packages or combinations in5

order to maximize their and overall social welfare of the system. The winner determination problem6

of the proposed combinatorial auction, determined using particle swarm optimization algorithm and7

hybrid genetic algorithm, is also presented in this paper. The performance evaluation and stability8

test of the proposed scheme are simulated using MATLAB and presented in this paper. The results9

indicate that combinatorial auctions are an excellent choice for load shedding management where a10

maximum of 50 users participate.11

Keywords: Combinatorial Auction ; Energy Efficiency ; Evolutionary Algorithms ; Load Shedding ;12

Microgrid ; Smart Grid; IoT13

1. Introduction14

With the ever increasing population and growing industrial sector in the developing countries,15

providing a reliable energy service can be very difficult. With a wide gap in the supply capacity16

and the demand on the grid, a lot of investment is needed to improve the gird’s capacity to fulfil17

the demand of its users [1]. To solve this issue, a lot of efforts are now being made to replace the18

macrogrids with microgrids [2]. However, the major source of electricity generation for microgrids19

has been the renewable energy system, which often, is unable to fulfil the grid’s electrical demand.20

In such a scenario, a microgrid can have two possible solutions, a) it can trade electricity from the21

other microgrids or the main grid or b) it can curtail the energy released to its users to match supply22

capacity [2,3]. In this paper, we address the issue of load (or energy) curtailment or load shedding in a23

microgrid setting.24

Previously, some work has been done to manage load shedding. For a fair load shedding smart25

meters can be used to learn the patterns of energy consumption in households [1]. Additionally, the26
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demand response of the households for load shedding can be modelled using two major approaches:27

a) incentive based and b) price based. Incentive based models are considered better in performance [3];28

in such models the users curtail their loads for a pre-determined tariff [3]. Incentive based models have29

been proposed previously. Lee et al gave an idea of using load curtailment as virtual generation, where30

a demand response service provider bade with the generators while giving load reduction instead of31

actual generation as the product [4]. Chai et al used the principle of giving incentives to the customers32

in order to shift their load from the peak prices and in turn maximize the profit of the retailer [4].33

However, the aforementioned work leaves significant scope for improvement. For example, no34

platform exists that selects the customers if several of them are willing to curtail load at the same time.35

This can allow to maximize the payment of load curtailment paid to different users as well as the36

profit for the grid operator. Moreover, all the previous works offer fixed incentives to all the customers37

instead of offering the incentives on merit. Furthermore, most of the works did not consider that a user38

can behave dynamically at different time periods, that is, the user’s willingness to curtail the load or39

afford a different price can change from time to time. In this paper, we propose an auction mechanism40

whereby the users can bid for energy curtailment. Therefore, below, we describe the precedent of using41

auction mechanisms in different scenarios in the power sector.42

Since the arrival of smart grid and the concept of smart cities, a lot has changed on the technology43

front [5–8]. A lot of work has been carried out for the architecture of IoT for smart grids to collect the44

information, thus enabling a lot of different fields [9]. In [10,11], a three-layer structure containing45

device layer, application layer and network layer is discussed. Device layer (or the perception layer )46

utilizes several kinds of different sensor tags and readers or sensor equipment to collect information.47

In [12], four layers are proposed: application layer, device layer, cloud management layer, and network48

layer. The device layer is further divided into two sub-layers: the first one being the thing layer to49

sense environment, control home appliances, and collect data and the second one being the gateway50

layer which controls how to establish a connection to the elements of thing layer. These advancements51

have helped in collecting and processing data from smart and micro grids for applications of energy52

trading and load management.53

IoT devices have been introduced in homes and buildings in recent years in order to collect54

data on the building and its surroundings. These IoT devices can be used to collect several types55

of information and can be deployed on the installations (air handling unit (AHU), lift, chiller, etc.)56

to extract data such as temperature and vibration [13,14]. For the microgrid infrastructure, many57

communication protocols can be adopted. However, by applying different private protocols will result58

in poor interoperability and higher development costs. An alternative is the Internet of Things (IoT),59

an infrastructure of interconnected devices and systems, together with information resources and60

intelligent services. By using IoT to interconnect the devices within the microgrid, the system will61

become more intelligent and efficient. Moreover, the microgrid and energy management systems of62

the customers would no longer be stand-alone entities but part of a ubiquitous network.63

Recently, a lot of efforts have been made on energy trading and its various applications. Energy64

trading has previously been done successfully for energy storage sharing and load sharing [15,16].65

Trading methods for energy can be classified into two different categories, that is, the auction based66

approach and the game theoretic approach [16]. Auction mechanism is seen as a corner stone of the67

energy trading applications [7]. In this study, we have used auction mechanism as a platform to select68

participants in the load curtailment activity in order for them to gain some incentives in return. The69

main purpose of an energy auction is to find the lowest cost relation between demand and supply, and70

increase the overall social welfare, that is, the percentage sum of consumers’ surplus and producers’71

surplus [17]. Competition in an energy auction motivates the users to go for energy saving devices and72

techniques such as demand response. However, most of the deployed auctions ignore the fact the at73

times bidders want to bid in compound ways, that is, they want to submit and win multiple bids at a74

time, in order to maximize their revenues. This problem is known as the exposure problem. A problem75

is defined as an exposure problem, when the will of the user is to win multiple unit of an item or wants76
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to win several different items but end up winning too few [18]. According to different economist,77

exposure problem should be avoided in order to increase the efficiency of the auction process and78

increase the total revenue [18].79

A Combinatorial auctions (CA) are touted as the best possible solution for the exposure problem.80

Using the properties of combinatorial auctions, bidders can place bids on individual items as well as81

combination of items present in the auction in form of packages [19]. The feature of package bidding82

helps combinatorial auctions in solving the exposure problem [20–22].83

Despite their extensive use to solve the exposure problem, the combinatorial auctions have only84

sparingly been used in the field of energy trading that also faces the exposure problem. Penna et al85

introduced the combinatorial auctions in electricity market and used them for seasonal electricity tariff86

[23]. Zaidi et al used combinatorial auctions for multiple microgrid trading [2]. These auctions have87

also been used for allocation of common energy storage sharing and shared facility control application88

[5,15,16,23]. In this research, a reverse combinatorial auction has been used. An auction is said to89

be a reverse auction when it has multiple sellers and one buyer only. In our case, we have multiple90

sellers (the users willing to curtail electricity) and a single buyer (microgird). Each seller sells its91

load reduction for a price incentive. Using reverse combinatorial auction, the users can express their92

willingness in complex combinations in order to maximize their profits.93

The winner determination problem of these auctions is defined to be as NP-Hard [2]. Historically,94

combinatorial auctions have been successfully been solved using Evalutionary algorithms (EA). EA’s95

ability to simultaneously exploit a number of solutions in a search space makes it a promising solution96

for solving various dynamic problems.97

In this study, we use a hybrid algorithm that combines a genetic algorithm (GA) with Binary98

Particle Swarm Optimization (BPSO) to solve the winner determination problems (WDP) for the99

proposed reverse combinatorial auction. The Darwin’s theory of evolution is the main inspiration100

for Genetic Algorithms [24], which in turn define a class of evolutionary algorithms [17,25,26]. These101

Genetic Algorithms use techniques inspired by evolutionary biology such as mutation, inheritance,102

crossover and selection. Using social behaviour model-closely related to the swarming theory- of103

insects, fishes and birds as the main inspiration, Kennedy et al proposed Partical Swarm Optimization,104

more commonly known as PSO [27,28]. Authors of [28], while comparing GA and PSO, concluded that105

the computational cost of both the algorithms is mainly problem dependent. [29] gave a comparison of106

GA and PSO for solving unconstrained and constrained non-linear problems. The authors concluded107

that PSO works better in former problem type whereas, GA outperform PSO when exposed to the later108

problem types, However, studies have showed that despite some strengths and shortcomings or of109

both of the algorithms, hybridization yields better results for many problems in comparison to the110

standalone GA or PSO [27,28,30]; hybridization of metaheuristics is indeed common across a variety111

of evolutionary algorithms [31].112

Both these methods have been extensively used for solving combinatorial auctions’ WDP. A113

Genetic algorithm based determination problem (WDP) is introduced in [32]. The bidders are only114

allowed to generate bid and offers in the XOR bid format because the use of OR and AND bid formats115

entails extra complexities and increases computational time. The PSO method is used in [33] for116

solving the WDP, but this produced suboptimal results. WDP in CA is similar to 0-1 knapsack problem117

and can be optimized using the algorithms used for solving Multi-dimensional Knapsack Problem118

[34]. In the past, hybrid meta heuristics have heavily been used to solve knapsack problem, in order to119

achieve optimality at a quicker rate [33–35].120

The key contributions of this paper are:121

• Idea of setting up a separate market for load curtailment within a microgrid environment with122

suitable IoT infrastructure.123

• The idea of giving different incentives to various different users according to their bids for energy124

curtailment rather than fixed incentives for all.125
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Figure 1. The System Model for proposed mechanism

• An auction mechanism for users to compete for load curtailment in a microgrid based on126

combinatorial auctions127

• A winner determination solution for single sided reverse combinatorial auction for energy128

trading applications (one buyer multiple sellers).129

This work is an extension of [2] where Zaidi et al introduced combinatorial auction based multiple130

microgrid trading mechanism to enable trading in between microgrids, having IoT infrastructure.131

However, this paper focuses on how microgrids can manage their electricity need during peak hours,132

if they are not able to buy any electricity from other microgrids.133

The paper organization is as follows: System model is presented in Section 2; Section 3 presents134

the overall auction process along with the winner determination process; a detailed simulation study135

is explained in Section 4; and finally, Section 5 concludes the paper.136

2. System Model137

Consider a microgrid consisting of n number of consumers such that i = 1, 2, 3..., n. Each consumer138

is supposedly equipped with a load forecast system and energy storage system. Moreover, each day139

is divided into m time intervals such that j = 1, 2, 3..., m. Each consumer Ci expects to consume Coij140

amount of energy at time interval j; however, at the same time it expects to reserve Dij amount of141

energy for energy curtailment, that is, it should be ready to curtail Dij energy whenever the grid needs.142

A microgrid manager (MGM) is connected with the consumers and is also equipped with the load and143

generation forecast system. When for time interval j, MGM predicts the shortfall of energy, it requests144

the auctioneer to start the auction for load curtailment. The auctioneer then sends the auction start145

notification to the consumers. MGC has a maximum reservation price Pj.Similarly, each consumer also146

has a minimum desirable incentive they are expecting for load curtailment.147

Figure 1 shows the overall system model. The overall system is divided into three entities; buyer,148

sellers and auctioneer. In the proposed mechanism, MGM is the buyer, consumers are the sellers,149

whereas the auctioneer is a third party, who is responsible for gathering the bids from different entities,150

processing the winning bids and calculating the price of each trade. Provided with the load profile of151

the overall system and at the end based on combinatorial auctions a load curtailment market is set up.152

In this study, the energy management system, the auctioneer, and the microgrid manager are all153

located within the same microgrid and are connected by either a wireless or a wired network. For the154

wireless networks, lightweight IP stacks and the IPv6-based communication protocol can be used to155

enable communication between the energy management systems of the customers and the auctioneer.156



Version March 1, 2021 Journal Not Specified 5 of 17

Figure 2. Overall auction process

For this purpose, 6LoWPAN [36,37] can be applied to low-power devices with limited processing157

capabilities allowing them to participate in the IoT infrastructure.158

3. Overall Auction process159

3.1. Main Entities160

The buyer, sellers and the auctioneer are the three main entities involved the auction process.161

Users acts as sellers as they are selling their capability to sell load curtailment, grid becomes the buyer,162

which buys users ability to curtail load at a certain given incentive. Whereas, auctioneer is the central163

figure which controls this trade between users and the grid. Figure 2 shows the overall auction process.164

At the start of the auction, the auctioneer collects the bids from the grid and users and arranges them165

in accordance to their order design. After bids initialization, winners are selected using the WDP. The166

WDP of the combinatorial auctions improves the overall social welfare. The buyer, sellers and the167

auctioneer are the three main entities involved the auction process. At the start of the auction, the168

auctioneer collects the bids from the buyer and sellers and arranges them in accordance to their order169

design. After bids initialization, winners are selected using the WDP. The WDP of the combinatorial170

auctions improves the overall social welfare.171

3.2. Structure of the Auctioneer172

Figure 3 shows the overall structure of the auctioneer. The key components of auctioneer are as173

follows;174

a. Market Communication Manager: For Communication between auctioneer and bidders. It175

collects the bids, informs the bidders about the results, communicates with the matching module176

via order book and output manager.177
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Figure 3. Structure of the auctioneer

b. New Bid Clock: Keeps an eye on new bids. If the timer runs out, the winners are announced178

and round of auction is concluded. Refreshes to the initial stage, whenever there is a new bid is179

received180

c. New Winner Clock: Keeps a tab on new Winner. Refreshes whenever there is a new winner181

(buyer and sellers selected for trade).182

d. Matching Module: Runs the Winner Determination algorithm and selects the winners. Looks for183

new winners until round of auction has ended. Gets the bids from market logs and announce the184

results through output manager and communication manager.185

e. Order Book: All the bids are collected in the order book and remains there until they win or are186

expired.187

f. Market Output Manager: Gets the results from the matching module and store them in market188

log, while also giving the results to users via market communication manager189

g. Market Log: Keeps the history of the market trades, all the winning and non-winning bids which190

(valid and expired bids) via order book and output manager. Provides historical data to the users191

and the grid.192

3.3. Social Welfare193

The percentage sum of consumers’ surplus and producers’ surplus is said be as the social welfare194

[5]. This can be expressed as195

S.W. = (ΣConsur + ΣProsur) (1)

Consur =
(Conwill − Willacual)

Conwill
(2)

Prosur =
(Willactual − Prowill)

Prowill
(3)

where, S.W. is the social welfare, Consur is consumer’s surplus, Prosur is the producer’s surplus,196

Conwill ; in EUR; is the price the consumer is willing to pay, Prowill ; in EUR;is the minimum price the197

producer is willing to get, and Willactual in EUR, is the trading price determined by the auctioneer.198
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3.4. Bid Configurations for Submission199

The idea of package bidding or combinations is used in the combinatorial auctions. In package200

bidding, bidders are entitled to submit more than one bid, according to their needs and optimal201

function, at any time [20–22]. In this study, users are permitted to bid in order configuration using OR202

bids, XOR bids and atomic bids [20–22].203

3.5. Winner Determination Process204

Integer programming can be used to express the winner determination problem also termed205

here as utility or fitness function. In this study, solving the winner determination problem means206

maximizing the overall load reduction for the MGM along as well as the increasing the incentives for207

the consumers. The winner determination is given by ,208

max
m

∑
j=1

n

∑
i=1

Hi,j (4)

such that,209

m

∑
j=1

n

∑
i=1

Hi,j ≤ Sh (5)

m

∑
j=1

Pj ≥
m

∑
j=1

n

∑
i=1

TPi,j (6)

Hi = Di.ai (7)

TPi,j ≥ RPi,j (8)

where, Hi,j, measured in KW represents all the accepted load reductions, Di is the load reduction210

bade by the individual customer I, whereas ai shows whether the bid is accepted or rejected; ai can211

be either 1 or 0. If any part of the bid is accepted, the value of ai becomes 1. Pj, in EUR is the grid212

(buyer)’s maximum reservation price for all hours of the day, whereas, TPi,j, in EUR, is the incentive213

price allotted to customer i at time j. Sh is the maximum value of curtailment in KW, needed at time j.214

And RPi,j, in EUR is the minimum reservation price of the users (sellers).215

The winner determination problem (WDP) of combinatorial auctions is considered to be NP-Hard216

problem. And it is similar to the 0 − 1 knapsack problem (KP) [38,39]. A KP problem occurs when217

resource allocation must obey different constraints. Initially, single-unit winner determination problem218

was equated to weighted set packing problem [40]. However, authors of [39] discussed a relationship219

between winner determination and knapsack problems [39]. Since, KPs -which are intensively studied220

in the past – are relatively easy to understand; solving CA as 0 − 1 KP has been a common practice ,221

To solve the 0 − 1 KPs, the use of meta-heuristics has been frequent [41].As combinatorial problems222

require larger search space as compared to other optimization problems; thus, Meta-heuristics such223

as EAs have been seen as an ideal solution.. Additionally, EA’s ability to simultaneously exploit a224

number of solutions in a search space makes it a promising solution for solving various dynamic225

problems. It is well known that the research on WDP algorithms has profited from the algorithms226

used for Multi-Dimensional KP [39,40]. Many of previous studies have considered EA for winner227

determination of combinatorial auctions by mapping the WDP as KP [29,32]. However, these works228

have their limitations as well; for example, the time taken to find the optimal solution is large,229

or the optimal solution is not found at all. This is because in combinatorial auctions, each and230

every combination possible is checked similar to the KP; this produces a large search space. Hybrid231

Meta-heuristics are able to find the optimal solution for such problems and effectively solve the WDP232

of combinatorial auctions [2,32]. In this study, we use a hybrid algorithm that combines a genetic233

algorithm (GA) with Binary Particle Swarm Optimization (BPSO) to solve the winner determination234
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Figure 4. Population Type

Figure 5. Bid selection structure in Binary form

problems for the proposed reverse combinatorial auction. In the past, hybrid meta heuristics have235

heavily been used to solve knapsack problem, in order to achieve optimality at a quicker rate [33–35].236

3.6. Proposed Algorithms237

The BPSO algorithm is an iterative method that we leverage to optimise the objective function238

defined in 4 subject to eqs. 5- 7. BPSO starts by randomly generating a swarm of particles, where each239

particle is a binary string as shown in Figures 4 and 5. A signle particle is depicted in Figure 4. Particles240

indicate a suggested solution in terms of accepted and rejected bids, as shown in Figure 5, where bid241

acceptance is represented using 1 and 0 shows a rejected bid. While generating the swarm, OR and242

XOR bids have the most priority, while the atomic bids have the least priority. In BPSO, each particle243

has a position vector and a velocity vector. A particle’s position encodes a candidate solution to the244

problem at hand (a combination of bids in our case). Since the current position (or the solution) is not245

necessarily optimal, the PSO iteratively changes the position of each particle such that the average246

quality of the solutions in the swarm improves. The velocity of each particle represents the magnitude247

and the direction of change in its position in the next iteration.248

Initially, as stated earlier, each particle k is assigned a random position zk and a random velocity249

vk [2]. Each particle’s fitness value (that is the quality of the solution that it represents) is calculated250

using the objective function defined in eq. 4 subject to eqs. 5 – 8; as the fitness values are evaluated for251

each particle, the personal best position found for each particle and the global best position for the252

entire swarm are updated. The personal best position indicates the best fitness value of each particle253

(so far given the changes in its position), whereas the global best position indicates the best fitness254

value amongst all the particles. This process is run until the saturation point is reached. A saturation255

point is defined as the stage after which there is no change in the global or personal best positions. The256

particles with the lower fitness values are discarded and the global best solution along with other fit257

particles are taken to the next step.258

After the above process, a group of particles with the highest fitness values, that is, the elite259

particle group, is further refined via a Genetic Algorithm (GA). Following the GA terminology, each260

particle’s position vector is now called a chromosome. Instead of using velocity vectors to manipulate261

these chromosomes, these chromosomes are now manipulated via the artificial genetic operators, that262

is, mutation and crossover to form new chromosomes [5]. As earlier in the PSO, the fitness of each263

chromosome resulting from the artificial genetic operators is calculated using the winner determination264

objective defined in eq. 4 subject to eqs. 5 – 8. The process is repeated until the saturation point is265
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reached. TThe final successful bid matches are represented by the chromosome with the best fitness266

value. The overall winner determination process is shown by Algorithm 1.267

Algorithm 1: Hybrid GA and BPSO For Combinatorial Auction (AUCGENPSO)
# Binary Particle Swarm Optimization
Initialize wpopulation

Priority Order
OR-Bids
XOR- Bids
Atomic Bids

Repeat
Calculate particle’s position and velocity
Calculate Fitness Function using Eq. 4

Until saturation is reached
# Genetic Algorithm

Select the set of fittest particles from PSO to initialise the GA population
Repeat

Perform reproduction using crossover and mutation
Calculate fitness function using Eq. 4
Until saturation is reached

END

268

4. Experimental Study269

4.1. Simulation Scenario270

We assume that 50 households are connected in a microgrid environment. The users are connected271

to the microgrid controller via an auctioneer. The microgrid is equipped with a generation capacity272

of 350 KW to 400 KW. The households bid for the load reduction for incentives at different times of273

the day using combinatorial auction mechanism. Profile of households along with the price data was274

taken from [42,43]. MATLAB R2015a was used to implement the proposed auction mechanism. Using275

a Matlab based bid generator, combinatorial bids were generated for the simulation purpose [44]. The276

simulation results are compared to the sequential double auction [45]. The load profiles, showing277

average and maximum load of the participating users are shown in Table 1.278

Table 1. Load Profiles of Households

Household 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Avg. Load (KW) 2.32 4.26 4.3 3.13 4.76 3.9 4.06 4.17 3.8 3.79 4.03 4.45 5.71 5.54 4.49

Max Load (KW) 3.72 4.57 5.81 4.61 6.25 5.73 5.35 5.2 5.29 4.94 5.182 5.76 6.82 6.21 5.42

Household 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Avg. Load 2.83 3.78 4.9 4.8 3.9 3.84 5.6 4.03 5.44 4.23 4.38 3.771 3.81 4.74 5.44

Max Load 3.96 4.51 5.67 5.72 4.94 4.81 6.3 4.97 6.31 5.09 5.21 4.67 4.89 5.64 6.23

279

4.2. Simulation Analysis280

The simulations analyses conducted in this study are described next.281
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Figure 6. Average load profile before and after load reduction is presented.

4.2.1. Average Load Profile282

The overall load profile of the micro-grid is compared in two cases; a) without any load reduction283

and b) with load reduction. As illustrated in 6, the red line shows the maximum generation capacity284

of the microgrid, so it is necessary for the load to stay below this line. However, the original load285

profile peaks at around 20 and 42 hours, which in turn requires load shedding. However, after the286

load reduction, these peaks stay under the maximum generation capacity and the load is successfully287

shifted at other times, that is, between 10 and 15 hours and 25 and 40 hours. Moreover, in the load288

profile after load reduction, the overall load stays below the maximum generation time for the entire289

time, thus eliminating the load-shedding scenario at all times.290

4.2.2. Load Reduction291

In this subsection, we compared the load reduction done using combinatorial auctions and292

Sequential Double Auction. As illustrated in 7 , the amount of load reduction increases as the number293

of users increases. Furthermore, the load reduction with respect to the number of users is better for294

combinatorial auctions than for sequential auctions for up to 65 users. However, the load reduction295

through combinatorial auctions got saturated around 75 users, highlighting its limitation for larger296

number of users. Whereas, load reduction through sequential auctions maintained an increasing trend.297

298

4.2.3. Average Incentives299

In this subsection, we compared the average incentives per unit for combinatorial and sequential300

double auctions. As shown in Figure 8, as the number of users are increased, the amount of incentive301

per KWh is decreased because of the increase in number of winners. Moreover, the results of302

combinatorial auctions are better than the sequential auctions. Though, the combinatorial auctions303

saturate around 55 user but have a better results than sequential auction for up to 75 users. This304

concludes that for a region where number of users are less than 75, combinatorial auctions are good305

choice and vice versa.306

4.2.4. Social Welfare307

In this subsection, we have compared the social welfare, explained in equations 1-3, of the auction.308

In Figure 9 the social welfare of combinatorial auctions is compared to the social welfare of the309

sequential double auction. For up to 65 users, at 1.25(25%) the overall social welfare is better for the310

combinatorial auctions than at 1.2(20%) for the sequential double auction case. Figure 9 shows the311
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Figure 7. Overall load reduction.

Figure 8. Average Incentive per KW Reduction.
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Figure 9. (a) Social Welfare Comparison (b) Social Welfare Comparison for Different Bid Types in
Combinatorial Auctions

comparison of social welfare for different bid types used in the combinatorial auctions, that is, OR,312

XOR and the atomic bids. The XOR bids have the highest social welfare value of 1.27 whereas, OR has313

the maximum figure of around 1.22. The atomic bids have a maximum social welfare value of up to 1.2.314

Moreover, it was also noted that the overall social welfare value saturates around 45 to 50 number of315

users for the combinatorial auction. Thus, making the proposed combinatorial auctions a good choice316

for up to 50 users.317

4.2.5. Optimality Analysis of Proposed Algorithm318

Under this heading, we compare our the proposed technique, with BPSO and GA, with the number319

of generations and the fitness value or generally iterations as the main parameter for performance320

evaluation. An optimal solution, having low number of iterations and high fitness value, was the321

desired outcome. While increasing the number of users from 10 to 30, the number of generations322

required to obtain the optimal fitness value were observed. A comparison between the proposed323

algorithm with GA and BPSO is depicted in Figure 10. BPSO, while converging early for up to 30 users324

, has a lower fitness value as compared to GA, which takes the highest time to converge However,325

AUCGENPSO clearly outperforms GA as it converges early with a higher fitness value.326
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Figure 10. Optimality Results (a) No. of Bidders = 10 (b) No. of Bidders = 20 (c) Number of Bidders =
30

5. Conclusion327

Load shedding is a major issue especially with the ever growing power demand. With the328

advancement in IoT technology, it is easier for the grids to ask users to curtail load at the time of329

peak demand. In this paper, we focused on a scenario where in a microgrid environment, the service330

provider hands out incentives to customers to curtail their load during the peak hours. Problem from331

the service provider’s end was discussed in this paper and was solved using auction mechanism to332

select the customers to participate in load curtailment in order to gain some incentives. For better333

efficiency of the system, combinatorial auctions were used. The proposed method was shown to be334

useful in a microgrid environment by performing the performance evaluation of the overall auction335

process. Moreover, it was noted that the social welfare improved as the number of participants336

increased.337

This work can be further extended by adding non-financial incentives along with the financial338

incentives. Furthermore, many different combinations such as AND can also be included in the future339

studies. Finally, other machine learning algorithms [47] can also be explored, compared and contrasted.340

Appendix A. Sequential Auctions341

A scenario where multiple players share a common ES plant was established. Sequential auctions342

is organized at different time intervals t. Supplier submitted its supply bids including the minimum343

price at which it is willing to trade and each player submitted their demand bid, which includes the344

maximum price at which they can trade. Then, by using supply and demand curves, the uniform345
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clearing price and trading volume are identified. Buyers who bid more than the maximum clearing346

price are allowed to buy storage rights [42].347

Appendix B. Genetic Operators348

B.1. Crossover Mechanism349

Crossover is a process to combine two or more solutions (or chromosomes as they are called in the GA350

parlance) to create new solutions [46]. In this study, we have used the uniform crossover mechanism.351

In the uniform crossover mechanism, corresponding genes (bit positions) of two parent chromosomes352

are exchanged to form two new (or offspring) chromosomes. Figure 11 exemplifies the crossover353

mechanism used in this study. In this example, the offspring particles have half the information from354

each of the parent particles arranged in a random manner.

Figure 11. CrossOver Mechanism

355

B.2. Mutation Mechanism356

In mutation, one or more chromosome gene values are altered randomly [46]. Figure 12 shows the357

mutation mechanism used in this study. One chromosome representing bid matches is changed to a358

new one using a bit-flip mutation (0 is flipped to 1). This forms a new set of chromosomes and hence359

increases the variability of the population.

Figure 12. Mutation Mechanism

360
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