
Received March 29, 2021, accepted March 30, 2021, date of publication April 5, 2021, date of current version April 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3070911

Design and Implementation of CryptoCargo:
A Blockchain-Powered Smart Shipping
Container for Vaccine Distribution
OMAR ALKHOORI 1, ABDURAOUF HASSAN 1, OMAR ALMANSOORI 1, MAZIN DEBE 1,
KHALED SALAH 1, (Senior Member, IEEE), RAJA JAYARAMAN 2, JUNAID ARSHAD 3,
AND MUHAMMAD HABIB UR REHMAN 1, (Senior Member, IEEE)
1Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
2Department of Industrial and Systems Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
3School of Computing and Digital Technology, Birmingham City University, Birmingham B5 5JU, U.K.

Corresponding author: Raja Jayaraman (raja.jayaraman@ku.ac.ae)

This work was supported by the Khalifa University of Science and Technology under Award CIRA-2019-001.

ABSTRACT A large number of shipments are moved everyday domestically and internationally. A con-
siderable number of items such as food, commodities, and pharmaceutical drugs are prone to damage in
transit. This can be caused due to various reasons such as improper storage conditions and exposure to air or
sunlight. The Internet of Things (IoT) has been used to enhance fundamental shipment tracking by improving
transparency and visibility to such transport systems. This paper introduces a blockchain-powered smart
container system (CryptoCargo) that monitors the conditions of the shipment and detects any violations
that may damage its contents. These violations are recorded on the blockchain via smart contracts, which
provides a secure and immutable storage thereby improving its trustworthiness in an inherently trustless
environment comprising ofmultiple stakeholders.We present the design and implementation of CryptoCargo
including architectural concerns and implementation details using a test Ethereum blockchain platform and
cloud services. Moreover, we present details of thorough evaluation of the system to validate its function as
well as to assess its effectiveness with respect to performance efficiency and real-time operation. We have
made our smart contract code publicly available on Github.

INDEX TERMS Blockchain, IoT, cloud computing, supply chain, smart shipping, Ethereum, trust.

I. INTRODUCTION
A large number of containers are being shipped on a daily
basis among numerous entities. As shbbown by [1], 753 mil-
lion twenty-foot equivalent units (TEUs) of containers were
handled in ports in 2017 worldwide. The absence of accu-
rate real-time visibility to the state of freight throughout its
shipment process is despised by stakeholders. Disputes and
claims are likely to be raised if the shipped goods sustain
any damage. In addition to the possible loss of the items,
such disputes can result in additional costs and losses to all
parties involved. Therefore, there is an omnipresent need for
a practice that would help protect the rights of stakeholders
and shippers and resolve conflicts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

As a shipment is being transported, it is susceptible to
various types of damages. This depends on the sensitivity
of the product being transported to the environment. A cold
chain is typically implemented for these type of shipments.
As shown in Fig. 1, a cold chain is a temperature-regulated
supply chain that manages items that require storage in spe-
cific temperatures. The most common sources that could
damage these items is subjecting them to extreme temper-
atures, humidity levels, and luminosity conditions. Special
containers are used to move such sensitive items such as
human organs, vaccines, chemicals, meat, dairy products, etc.
Poor and incorrect packing of these transport units contributes
to 65% of cargo damage claims [2]. Additionally, the integrity
of resilient and reliable containers may still be compromised
if it was opened or subjected to severe vibrations or shock
movements. Shipments are also often vulnerable to burglary
attempts; a recent study by BSI Supply Chain Services and

53786 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4127-6815
https://orcid.org/0000-0001-6721-5610
https://orcid.org/0000-0002-6067-4643
https://orcid.org/0000-0001-6328-271X
https://orcid.org/0000-0002-2310-2558
https://orcid.org/0000-0002-2749-2688
https://orcid.org/0000-0003-0424-9498
https://orcid.org/0000-0001-7428-2272
https://orcid.org/0000-0002-0945-2674

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 1. Cold supply chain for temperature-sensitive shipments.

Solutions highlighted global cargo theft from road vehicles
accounted for 84% of all modalities of theft [3]. Therefore,
tracking the shipment path is as important as monitoring the
vitals of shipment such as its temperature.

A report byMaersk revealed that a shipment of refrigerated
goods from East Africa to Europe could move through nearly
30 different parties, with more than 200 different interactions
among them [4]. At each stage, several risk factors threatens
the health of the shipment andmakes it susceptible to damage,
which might increase the cost on the involved stakeholders.
A study [5] declares that there are $140 billion tied up daily
in disputes for payments in the transportation industry. This
insinuates that organizations and individuals in a supply chain
need real-time data about their shipments to make decisions.
Therein, a dependable solution is required to ensure the safe-
guarding of the cargo’s integrity and the continuous tracking
of the transported goods. In particular, the shipment needs
to be continuously monitored for vital signs and provide
immediate alerts to the stakeholders in case of detection of
any abnormalities. Furthermore, all gathered data need to
be securely stored and made available to stakeholders in a
trustworthy manner as to protect against potential collusion
or data tampering.

Our blockchain-powered smart shipping container aims to
provide an enhanced supply chainmanagement experience by
offering real-time insights and increased visibility throughout
the shipment process. Hence, allowing involved parties to
collaborate together and work in a proactive manner. In brief,
the main contributions of this paper can be summarized as
follows:
• We examine the underlying causes that lead to ship-
ments’ damage and eventually disputes between the par-
ties involved in a shipment’s life-cycle.

• We propose a solution to monitor sensitive shipments
by tracking it using a smart container. This container
is capable of continuous measurement and recording of
vital signs of the shipment’s well-being and integrity,
as well as constantly tracking its path.

• We design an automated monitoring system that detects
real-time violations or abnormalities. This system uti-
lizes blockchain smart contracts to record these vio-
lations by pushing immediate alerts on the immutable
blockchain network where it is broadcasted to all rele-
vant parties.

• We provide a cloud service as an off-chain storage
solution for enhanced usability. The cloud server stores
monitoring data that are not required to be recorded on

the blockchain. We also create a user-friendly front-end
decentralized application (DApp) that offers global
access to the data stored in the cloud and on the
blockchain.

• We implement the solution including the blockchain
smart contracts,1 cloud services, and web applications
using their respective platforms.We integrate all parts of
the system and perform elaborate testing using different
scenarios. Finally, we provide comprehensive evaluation
of the system performance.

The remainder of this paper is organized as follows:
Section II presents background information about the tech-
nology used for the proposed system. Section III provides
a brief review of the work done that is relevant to ours.
Section IV presents the system architecture and design of the
proposed system, while the implementation of this design is
elaborated in section V. Section VI presents a thorough evalu-
ation of the proposed system including testing and validation
with respect to primary requirements. Section VII present the
challenges faced and future improvements for this project.
Section VIII concludes the paper.

II. BACKGROUND INFORMATION
This section will discuss important technologies used to
develop the solution, including Microsoft Azure, blockchain,
and Infura.

A. MICROSOFT AZURE
Microsoft Azure is a cloud computing service provided by
Microsoft creating, developing, deploying, and managing
applications, resources, and services. According to the NIST
definition, Cloud computing is a model for providing ‘‘ubiq-
uitous, convenient, on-demand’’ access to a shared pool of
computing resources that can rapidly be launched with min-
imal service provider intervention [6]. Azure provides many
services that provide different service models; infrastructure,
platform, software, function, artificial intelligence, and smart
contracts as services. For example, there are services for
communicating with IoT devices, storage services, database
servers, virtual computing machines, and web app services.
Using the Azure Cloud, programs can be developed with
availability, security, and scalability guarantees.

B. BLOCKCHAIN
Blockchain has been mostly known for its application in
cryptocurrencies such as the Bitcoin [7]. Blockchain provides
an immutable record that consists of a series of time-stamped,
chained blocks of data that hold transactions [8]. Before
executing and confirming transactions, miners first validate
transactions and blocks of anonymous identities and then
verify the availability of resources. Each block is linked to the
previous block, thus ensuring that the chain is never broken
and that the new block is permanently recorded. Depending
upon the consensus algorithm used and other dynamics of the
blockchain implementation, miners usually get rewarded for

1https://github.com/CryptoCargo/violations

VOLUME 9, 2021 53787

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

verifying transactions, forming blocks, and appending them
to the chain of blocks.

Blockchain’s collective trust model is based on four main
pillars: a shared ledger, cryptography techniques, consen-
sus protocols, and smart contracts. It consists of a shared,
immutable ledger which is not managed by a single node,
but by a cluster of nodes in a decentralized peer-to-peer
manner. The cryptographic technology used in the blockchain
involves SHA-2 and Elliptic-curve cryptography (ECC). The
blockchain can incorporate consensus protocols that guaran-
tee consent between different entities making it more secure
and fault-tolerant. Additionally, through the collective con-
sensus, one single truth is always reached. Examples of such
protocols are the Proof-of-Work (PoW) and Proof-of-Stake
(PoS). For instance, PoW consensus protocol functions by
having miners use the block header hash and nonce values
to compete in solving a puzzle. The nature of the puzzle is
asymmetric, meaning that it is hard for miners to solve it,
yet it is easy for the network to verify it. The first miner to
successfully solve it is considered the winner and is rewarded.
This protocol is effective as attacking the network is not
possible through since 51% of the peers in the network will be
needed to collude together. In contrast, a different consensus
protocol, Proof of Stake, 51% of the cryptocurrency available
is needed to be acquired by one entity or a group of collud-
ing members to put the network down. However, it can be
assumed that the attackers would not be interested in a net-
work where they own over half the stakes in it, and therefore,
there is no need for it to exist [9]. The integrity of blocks in
the blockchain is secured by including the Merkle tree in the
header, which stores the hashes of state root, transaction root,
and receipt root. A smart contract is a computer protocol that
allows for code execution and helps transform the blockchain
into a computational framework. It allows executing logic
and storing state. However, smart contract functionality is not
available on all blockchain distributed computing platforms.

These fundamentals concepts help make the decentralized
blockchain network a permanent, append-only distributed
ledger that represents a conclusive trust model. Through
these features, the blockchain brings about increased trans-
parency and auditing potential and increases the resiliency
and integrity of the data [10], [11].

C. ETHEREUM
Blockchain-based distributed computing platforms are well
known for their application in cryptocurrency. As opposed
to Bitcoin, Ethereum allows for embedding business logic
through its smart contracts besides the transfer of value
(Ethers). A smart contract can be seen as a piece of software
intended to enforce a set of pre-defined rules without the
need for any third parties. Smart contracts allow for code
execution and thus help transform the blockchain into a
computational framework. Smart contracts are written in a
high-level language called Solidity. Once compiled, they are
transformed into bytecode, which is then read and executed
on decentralized virtual machines known as EthereumVirtual

Machines (EVM). EVMs make use of their built-in instruc-
tions set and execute such scripts using international networks
of public nodes. Smart contracts allow for increased auton-
omy, automation, and usability of the Ethereum network.

D. INFURA
A smart contract’s development life cycle often iterates
through a local development stage using a locally simulated
blockchain network such as Ganache. Afterward, it goes
through being deployed on the test Ethereum network (Test-
net), before being finally deployed on the main Ethereum
network (Mainnet). However, to interact with the Ethereum
blockchain network, access to an Ethereum node in the net-
work is needed. Infura is a hosted Ethereum node cluster
that allows blockchain users to run their applications without
the need to install full Ethereum nodes locally [12]. It pro-
vides a Web3.js API suite that enables the communication
with the Ethereum network through the use of a remote
node over Remote Procedure Calls (RPC) [13]. Web3.js,
which is the most used JavaScript interface to the blockchain,
allows for interaction with smart contracts as if they were JS
objects. It converts JSON interfaces and calls into low-level
Application Binary Interface (ABI) over RPC. Furthermore,
Metamask is a browser extension that injects Web3 into the
browser and hence delivers the same capabilities as Infura.
In fact, Infura is the Ethereum provider that powers Meta-
mask. Besides being a Web3 provider, Metamask also deliv-
ers an Ethereum wallet that acts as a browser-based wallet
RPC client. Such features of Metamask has shaped it into
becoming the standard for DApps. A DApp is an application
that acts as the front-end for a distributed computing back-end
that is typically paired with the blockchain. Integrating a
DApp’s front-end using Web3.js often requires additional
libraries that can be found from Node.js. Node.js is an
open-source JavaScript run-time environment that executes
JavaScript code on the server-side. It is cross-platform and
uses Chrome’s JavaScript in run time for deploying fast and
scalable network applications [14].

All of these technologies were utilized in order to achieve
the system requirements. Explaining the foundations and
concepts behind them is vital to fully comprehend the pro-
posed approach and the technical choices. Cloud services,
and specifically Microsoft Azure services were exploited
along with the Ethereum blockchain network to complement
the use of IoT in tracking sensitive shipments. The shipping
container has a controller that connects to the cloud server
to transfer data about the shipment. In addition, it contacts
the Ethereum blockchain through the Infura gateway to report
violations.

III. RELATED WORK
This section presents an overview of the relevant research in
the field of monitoring and tracking shipments using decen-
tralized technology. The blockchain technology has not yet
been fully adopted to track shipments but several efforts have

53788 VOLUME 9, 2021

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

been made to achieve blockchain-based solutions for this
use-case.

Some research work, such as in [15]–[17], argue that the
application of the blockchain along with IoT devices can
greatly complement supply chain solutions and provide extra
value to the work flow by increasing its effectiveness and effi-
ciency. Saberi et al.explored the role of blockchain in building
a sustainable supply chain [15]. They presented some of
the main obstacles that hinder the adoption of blockchain
in a comprehensive manner. The authors categorizes these
into four categories: inter-organisational, intraorganisational,
technical, and external barriers. Francisco et al.provided a
conceptual model based on the Unified Theory of Accep-
tance and Use of Technology (UTAUT) [16]. The authors
utilize this model to present several research propositions
that empower the endorsement of the blockchain technology
in the field of supply chain. This model offers better trans-
parency and traceability of the supply chain by endorsing six
of the research variables mentioned in the UTAUT. In addi-
tion to general application of the blockchain in the realm
of supply chain, Rejeb et al.address this implementation by
combining the blockchain technology with IoT [17]. The
authors in this paper discuss how this consolidation can help
enhance the current supply chain applications. They specifi-
cally propose six key suggestions that summarize how lever-
aging the blockchain technology can benefit IoT applications.

A lot of research has been conducted on applying the
blockchain technology to IoT-based solutions. However,
we are specifically interested in employing the blockchain
network on IoT devices used for shipping purposes. Practi-
cally implemented blockchain-IoT solutions for shipping are
hardly found in the literature. Despite that, the theoretical
work for potential adoption of the blockchain in this industry
is sufficient enough to be used as building blocks to develop
and implement our solution. Yang discusses the intent for
adopting the blockchain technology to digitalize current mar-
itime shipping [18]. The author conducts a study and presents
key factors that affect this adoption and how can they increase
the efficacy and effectiveness ofmaritime shipping. The study
also examines the usability of the blockchain technology to
the operators of existing supply chains. In addition, the chal-
lenges that face implementing the blockchain technology
are presented in this paper, such as revising and unifying
existing standards, the system scalability, interoperability,
and the ambiguity regarding regulatory affairs. Di Gregorio
et al.also describe in a study the likeliness of introducing
blockchain in maritime shipping [19]. This is done through
presenting research findings in addition to conducting several
interviews with professionals from the shipping industry. The
aggregated is analysed with scenario-based techniques and
using a model known as TASC model. The authors presented
their findings and showcased the opportunities of deploying
the blockchain technology as well as the potential risks. This
helps managers make an informed decision by taking advan-
tage of the available opportunity of blockchain while mini-
mizing risks and uncertainties. Jović et al.also review several

noteworthy examples of attempts at digitizing seaports [20].
The authors also identify some crucial drawbacks that are
inhibiting the introduction of blockchain, such as the lack of
a common standard, scalability issues, and the learning curve
for learning blockchain concepts. Li et al.present a com-
prehensive survey of seven blockchain-based applications in
the shipping industry [21]. In light of these applications,
the authors discuss the value added by the blockchain and
improvements in terms of cost, transparency, and effective-
ness. Furthermore, several critical aspects are recognized in
order to utilize the blockchain efficiently. These include but
are not limited to scalability concerns, security and interop-
erability, and legal compliance.

Tsiulin et al.also examined in their paper the tendency of
employing the blockchain in the shipping industry [22]. The
paper also discusses the feasibility of using the blockchain
technology into the current existing supply chain workflow.
The authors conduct a thorough review of the available lit-
erature and projects and construct a framework realizing the
effect of blockchain in the realm of maritime port manage-
ment. They report that current blockchain-based applications
tend to prioritize the same features in contrast to traditional
solutions. Bavassano et al.published a study to explain clearly
the possible impact that the blockchain technology could have
on the shipping industry and logistics [23]. By exploring the
literature, data from the media, and input from, this study
specifies the actors that affect the blockchain adoption the
most in addition to the biggest challenges as well. The paper
also demonstrates various options available on the market.
The authors conclude from their study that the biggest chal-
lenge that faces full adoption of blockchain is the regulatory
standard, or rather the lack thereof. In addition to the research
done on the potential of blockchain in the field of shipping,
a paper by Iakushkin et al.presented an implementation for
a blockchain-supported smart container [24]. This container
provides users the ability to track the location of the shipment
as it is transported. In addition, the container is locked and
can only be accessed by users that are pre-registered users
recorded using smart contracts.

Besides the work done in the literature on the implemen-
tation of blockchain in the supply chains, several imple-
mentations of blockchain-powered shipping have been intro-
duced by leading firms. With the recent advancements in
IoT and blockchain solutions, companies in the transporta-
tion and logistics industry have adopted such technologies to
improve their quality of service.Maersk, which is responsible
for 18% of the global container trade, has introduced its
Remote Container Management (RCM) solution to its fleet
of 300,000 refrigerated containers [25]. Through its piloted
RCM, Maersk enabled its containers to monitor and send
data such as temperature and location to its cloud. By doing
so, Maersk has managed to lower its physical inspection to
only inspect 60% of its containers. In 2018, Maersk and
IBM ventured to develop the TradeLens platform, which
they described as the first blockchain-powered platform for
supply chain applications in the industry [26]. Their use of

VOLUME 9, 2021 53789

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

blockchain is intended to offer better paper trail management,
where the paperwork regarding shipment information and
officials’ approvals are all submitted through a blockchain
digitized infrastructure. In doing so, they aim to reduce delays
by automating the paperwork, eliminate frauds and errors,
and minimize costs, which is expected to be the equivalent of
only 1/5 of the actual physical paperwork costs. TradeLens
has been recently put in a trial, as Maersk has been working
with ecosystem partners to identify opportunities to prevent
delays and have managed to record more than 154 million
shipping events. Similarly, in an ICO, the Swiss company
Smart Containers has revealed its aims to combine IoT sen-
sors and blockchain to rent out airfreight containers used
for food and medicine transportation [27]. Smart Containers
claim that their products, Food Guardians and Sky Cell,
allow them to lower the temperature deviations of sensitive
pharmaceutical shipments to 0.1%, compared to the average
rate of 8.5%, which rises to 15-20% in the Middle East [5].
Likewise, the purpose behind their adoption to the blockchain
is to better manage paper documentations.

IV. BLOCKCHAIN-BASED SOLUTION
In this paper, we propose a cost-effective blockchain-powered
shipping container that aims to address the need to have a
traceable supply chain, where each stakeholder can view the
status and progress of its shipment. Accurate vital data points
about the container are continuously monitored with built-in
sensors and pushed through a real-time exchange mechanism
to the cloud. Users will be equipped with a mobile application
that pulls the data from the cloud. Similarly, in case of detec-
tion of any abnormalities, users will be immediately notified
with data that is retrieved from a security-rich, transparent
blockchain network.

We propose a blockchain-based container that is designed
to achieve the integrity and safety of the items being delivered
by continuously tracking its location and vital signs through
its journey. The smart container is designed to encompass
sensors that will provide precise data readings pertaining
to temperature conditions, container integrity, and position
tracking. Our choices of the actual physical components used
are impacted by our intentions of making the solution highly
efficient, as well as maintaining cost-effectiveness and size
flexibility. They are also affected by the characteristics of the
environment in which our product operates. The container
accurately processes and manages the data received from the
sensors as well as communicating them in real-time to the
different stakeholders. After refining the data, it is pushed
to an always-available cloud server. Users can then retrieve
backups of the data by pulling them via the mobile applica-
tion. Most importantly, any violations recorded need to be
registered on the blockchain, and subsequently, all relevant
participants will be notified via the connected application.
By utilizing the blockchain, we inherit its peer-to-peer trust
model, where no single entity can modify any record without
the consensus of others on the network.

FIGURE 2. Main capabilities of the blockchain-powered smart container.

As highlighted in Fig. 2, the key features of our proposed
solution are: monitoring item status, tracking shipment,
alerting relevant entities of any breach, and secure and
reliable record of shipment data and events for customer
consumption.

In order to achieve its key features, sensors are placed to
monitor and measure the temperature, humidity levels, and
light exposure, as well as detecting when the container is
opened. The container is being tracked at all times using
a GPS logger. This can be used to alert if a shipment is
going out, of course, in critical scenarios. Whenever one
of the monitoring metrics is violated, such as opening the
container without permission, the user gets a real-time update
and is notified instantly on their mobile device. Finally, all
records and events need to be stored in a way that makes
them accessible from anywhere. The storage feature will
involve both cloud services and the blockchain. The cloud
services are used for providing live monitoring metrics of the
container as well as other non-critical data. The blockchain is
used to securely record any detected violations, which means
they are tamper-proof. The cloud is used to store some data
as the blockchain is expensive to conduct transactions and
is not suitable for transactions of larger sizes. Furthermore,
blockchains by design are not computationally efficient for
query processing and therefore storing all data on blockchain
risks performance efficiency.

A. SYSTEM ARCHITECTURE
The proposed system consists of four major subsystems:
the container, the cloud, the blockchain, and the web appli-
cation. The overall system follows a client-server model
and uses different communication mediums and protocols
to handle the interoperability of these diverse subsystems.
A high-level overview of the proposed architecture is pre-
sented in Fig. 3. The IoT container communicates with both
Ethereum blockchain (to record violations) and the cloud
(to store non-critical data). To connect the container with
Ethereum and the cloud, a 4G connection is used. The Infura
Ethereum client is utilized to perform API calls between
both the container and mobile client with Infura and thus,
with Ethereum. The mobile client adopts a simpler way of

53790 VOLUME 9, 2021

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 3. Proposed system architecture for the blockchain-based smart shipping container.

performing transactions between the clients and the Ethereum
smart contract. It sends messages to Azure’s IoT Hub service,
which acts as a gateway to communicate with the cloud over
MQTT.

The cloud subsystem of the smart shipping container han-
dles the monitoring and tracking of the container, as well as
the user to device messaging during the setup stage. A web
application is hosted on the cloud to provide the monitoring
means for users. Sensor readings are routed from the IoT
Hub and stored in the blob storage. The stored data is then
picked up by the web application and is presented visually
to the users through the application front-end. In addition,
the web application utilizes a database to store different users,
along with their corresponding registered shipping contain-
ers. Moreover, the application listens for any violation on the
Ethereum smart contract and sends a notification email to the
user. Users can access monitoring and tracking features via a
web browser through the web application.

B. COMMUNICATION MODEL
In view of the complex interactions between different sub-
systems, it is paramount to generate a communication model
to understand how these subsystems exchange information.
The smart shipping containers are equipped with SDKs and
libraries to communicate with different APIs of various
servers. The on-board Infura client uses APIs that commu-
nicate over HTTPS, while the Azure IoT Hub will use its
own protocols to communicate with the shipping container
via MQTT. The user can access the data stored in the cloud’s

database via an HTTPS request. In addition, it is important
to note how the container will be able to establish this com-
munication. For the use-case of the shipment container, it is
most logical to use a 4G connection rather than Wi-Fi as the
packagewould constantly be on themove. This setup required
a separate slave device connected serially to with our master
device, which utilizes the Web3 APIs separately. With all
these points in perspective, the model presented in Fig. 4 was
devised.

C. SYSTEM DESIGN
This section discusses the technology choices taken to
achieve the objectives of the system. The decisions
were made regarding cloud services and the blockchain
infrastructure.

1) CLOUD AND SERVER TECHNOLOGY
Choosing to work with a cloud solution for this IoT system
is a lot more favorable as compared to establishing an MQTT
or HTTP server from scratch. Cloud platforms provide high
availability, secure and safe data transfer, and storage and
processing capabilities. In addition, it significantlyminimizes
the developmental time and expense. The cloud platform
is used to handle messages from the devices, manage data
storage, and host the web-based application of the system,
as well as programs that need to be always running. There are
many available IoT Cloud solution providers in the market.
Some examples include Azure IoT Hub, AWS IoT Core,
and Google Cloud IoT Core. All of the mentioned services

VOLUME 9, 2021 53791

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 4. Communication model demonstrating how the system components exchange information.

provide a reliable and secure IoT solution platform that could
scale to millions of devices. Azure’s IoT Hub was selected
because it can be integrated with other Azure services seam-
lessly. Azure IoT Hub is also versatile as it supports MQTT,
HTTPS, AMQP, and web sockets [28]. Moreover, using
Azure IoT Hub for the development of this purpose was
suitable as a free pricing tier that allowed for up to 8,000 mes-
sages per day [29], which is sufficient for the development
and testing purposes. The technology selection choices and
decision making does not stop with selecting the cloud ser-
vice provider. It was also critical to design the architecture
of the smart shipping container system on the cloud, which
includes selecting services to use and interactions among
them. Fig. 5 showcases the design of the architecture of the
Azure-hosted subsystem of the system.

The IoT Hub acts as the gateway between the cloud and
the device. All device messages will be received on the hub.
This ensures the separation of concerns between the IoT
device development and cloud development. The services on
the cloud are not aware of how the messages are sent to
the hub and are not concerned with the used protocol and
communication security. This is all handled by the IoT Hub
service. Messages are not automatically stored by Azure’s
IoT Hub. They are rather events that can be listened to. Azure
IoT Hub does provide a built-in feature to route messages
to a blob storage account. However, the data is organized
according to the order of the message’s arrival as presumed
by their time-stamp, rather than being classified by other
dynamic parameters, such as the source device ID and the
shipment ID the device is linked to. Thus, a program is needed
to process the messages as they arrive at the hub. A microser-
vice could be created and launched on a virtual machine on
the cloud. However, it is more cost-effective to use Azure
Functions, which follow the Functions-as-a-Service (FaaS)
model, in which users are charged for the actual compute per-
formed. This is desirable as the program is only needed when
a message arrival trigger happens and does not need to be on

all the time in addition to the functionality being relatively
lightweight. Thus, dedicating a microservice for it would be
inefficient. In addition, using FaaS speeds up the development
process, as only the source code needs to be publishedwithout
having concerns over hosting. Additionally, another function
was deployed to send email notifications when a transaction
is recorded on the smart contract on Ethereum.

The data in the messages received from devices is in JSON
format. To visualize the data on the web application using
JavaScript, JSON format is used. Thus, it is more efficient
to store the data as it is in JSON rather than converting to
SQL tables, for example, and then converting back when
retrieving. In addition, SQL databases are more useful for
referential data that could be used for indexing and searching.
Since sensor readings are more of raw bulk block data that are
more likely to be read sequentially, it is better to use Azure’s
Blob Storage for this scenario. Azure blobs are easier to scale
for object storage of text and binary data. In addition, a blob
storage account is less costly for storing the large sizes of
data expected from containers than an SQL server [30], [31].
A Web App Service was selected to be the means of hosting
the web application in this solution. A web app service pro-
vides a Platform-as-a-Service (PaaS) model for developing,
launching, and hosting web applications. This approach was
chosen rather than running a server on a computing resource
to save development time and avoid having concerns on the
running stack. The web application will be developed in PHP
with MySQL, with a front-end website running HTML, CSS,
and JavaScript, along with the Bootstrap framework. The
flow of data receiving the IoT client message in the IoT hub
till the storage in Azure blob storage is presented in Fig.6 for
better readability.

2) BLOCKCHAIN INFRASTRUCTURE & SMART CONTRACT
Ready end-user DApps have their smart contracts deployed
on the main Ethereum network (Mainnet). Mainnet is
the open-sourced functional blockchain where actual

53792 VOLUME 9, 2021

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 5. Cloud services subsystem architecture hosted on Azure.

FIGURE 6. Data flow in the Azure cloud server.

transactions take place in the publicly verifiable distributed
ledger. The cryptocurrencies found in the Mainnet hold real
monetary value. Miners are incentivized to validate transac-
tions as they are rewarded with native coins, as well as the
transaction fees paid by the participants [32].

Test Networks (Testnets) are blockchain environments that
exist to offermore convenient development and testing oppor-
tunities for smart contracts and DApps while avoiding the
disruption of the main Ethereum Network. The cryptocur-
rencies in Testnets do not possess any real economic value.
Testnets use the same technology and software as those found
in the Mainnet Ethereum blockchain; hence, simulating a
real-world Ethereum network and EVMs environment that
would exist on the Mainnet, but without real tokens and
Ether. Testnet Ethereumwallets can be filled for free from the

available pool of Ethereum faucets. Besides the free transac-
tion costs and lower transaction frequency rates, miners on
the Testnets do not receive any economic benefits [32], [33].
From the available Testnets, Ropsten most closely resembles
Ethereum’sMainnet as it runs similar protocols. For instance,
it uses the same consensus algorithm as the Mainnet, which
is Proof of Work. It allows developers to upload and interact
with smart contracts without paying the cost of gas, as well
as simulate our protocol just as it would work on the Mainnet
itself. Once the development is complete, we can then easily
deploy and run our smart contract and DApps on Ethereum’s
mainnet.

An alternative to locally deploying a full Ethereum node is
to remotely connect to a hosted Ethereum node. Infura, which
is operated by the EthereumDevelopment Studio, Consensys,
hosts full Ethereum nodes and opens up interfaces to allow
access to their full nodes. Its microservice-driven architecture
offers a world-class decentralized architecture that promotes
JSON-RPC over HTTPS and WebSocket [4]. It also supports
Web3.0 apps, which can be used as a JS library to integrate
with the DApp’s front-end. In 2018, Infura’s Ethereum full
nodes accounted for around 10% of the total 11,803 Ethereum
full nodes available worldwide. Infura relies on cloud servers
hosted by Amazon, which can indirectly explain how its high
reliability is achieved. It also powers several other tools used
in DApps such as Metamask and Truffle and offers access to
Ethereum Mainnet, as well as Testnets [34].

The use of Infura can shift the focus of developers towards
solely focusing on the development of DApps, while Infura
can simultaneously ensure high availability, 99.9% uptime
guarantee of its nodes, as well as respond to maintenance
concerns. Consequently, consumers achieve better energy and
power consolidation and hence endure fewer costs. Besides,
Infura makes a wide variety of development tools, APIs, and
documentation available to the end-user. It also provides users
with a dashboard that may help them gain better insights
regarding statistics of their DApps and network performance
metrics. Choosing to use Infura rather than deploying a
full Ethereum Node helps us accelerate the development of
our DApps while ensuring higher availability and scalability

VOLUME 9, 2021 53793

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 7. Blockchain logical flow of data from function inputs to
triggering events.

prospects. The privacy challenges that accompany it remain
under control, as Infura does not deal with the private keys of
the Ethereum wallet, Metamask in our case. Privacy leakage
concerns are limited to the wallet address and the IP address.

The recordings of violations in our IoT container are cru-
cial for our system, and they need to be essentially accessed
by both DApps and smart contracts. Therefore, we designed
our smart contract to store such violations as part of contract
storage. Additionally, they are recorded inside event logs.
However, the purpose of using events is to provide a means
of continuously watching violations and notify users dur-
ing their occurrence, as discussed in the following sections.
Events, a cheaper form of storage, allow the convenient usage
of the EVM logging facilities. The passed arguments in an
event are treated as logs instead of data and are stored in the
transaction’s logs in addition to the blockchain. Transaction
logs, a special data structure in the blockchain, are associ-
ated with the contract’s address and are incorporated within
the blockchain. Since they are not part of the blockchain
itself, they do not directly undergo the applied consensus
protocols. However, they are verified by the blockchain since
the transaction receipt hashes are stored inside the blocks.
Events can be useful in DApps since they allow the DApps to
subscribe to them. However, they are not readable by smart
contracts [35].

The violations are split into five categories; temperature,
opening/closing of the container, luminosity levels, humidity
levels, and the location breach. Each of the five violations
has a separate function to record its occurrence. The function
takes as a parameter an integer that would be sent from the
microcontroller in an encoded form. Within the function,
an event associated with each violation type will be emitted.
The design of our smart contract is shown using the UML
diagram in Fig. 8.

Using the Infura endpoints, connections to the deployed
smart contract can be established given the API and the con-
tract address. Web3, an Ethereum JavaScript API, provides
us with a collection of libraries that allow the interaction
with the remote node using an HTTP or IPC connection.
Web3 also provides means to have DApps subscribe to events
since they provide an event filtering functionality that can

FIGURE 8. UML diagram of the Ethereum smart contract.

keep watching for the occurrence of an event. Accordingly,
designing the smart contract to emit certain events pertaining
to their respective violations allow the development of an
event listener app using Web3. In case the event listener
detects an event, notifications are triggered to inform the
respective stakeholders of the occurrence of a violation. The
event listener and trigger can then be converted to Azure
functions.

After live measurements about the well-being of the con-
tainer and its integrity are collected on the microcontroller
(Arduino), they are processed to check if they are within
the accepted values. If violations are detected, a transaction
should immediately be broadcasted from the Arduino to the
blockchain, in order to document the occurrence of the rele-
vant violation. Pre-defined raw transactions pertaining to the
different types of violations can be prepared and signed. Once
the violation occurs, the associated raw transaction can then
be sent to the blockchain network to be mined. Similarly, col-
lected data is sent and stored in the cloud. This guarantees that
the occurrence of a violation has been immediately sent to the
blockchain, without the possibility of having any tampering
made to it when the data resides in the edge node. In addition,
the nature of our system, which functions during the different
stages of cargo transportation, makes it inapplicable to rely on
hosting edge nodes. They may be transported over different
regions, including remote areas, by land, sea, as well as air,
which all together present obstacles that hinder our ability
to have enough edge nodes throughout. The flow of data,
shown in Fig.7, in blockchain smart contracts starts by calling
the Ethereum functions and processing the request and could
end up with triggering relevant events. On the DApp level,
the violations are pulled from smart contract events, as seen
in the flow shown in Fig.9

V. IMPLEMENTATION
This section shows the implementation of the aforementioned
smart shipping container. The design choices are presented
regarding the master device, slave device, cloud services, and
the blockchain platform. The laser-cut shipment container

53794 VOLUME 9, 2021

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 9. Pulling violations from Ethereum events.

FIGURE 10. CryptoCargo shipment container prototype.

is shown in Fig. 10, which is the transportation box that
encompasses all the physical components that are going to be
discussed in greater detail. All microcontrollers, sensors, and
evidently, the shipment itself are available in the shipment
box, that is connected to the cloud servers, as well as the
blockchain network. As a matter of fact, these sensors and
microcontrollers can be embedded into any shipping con-
tainer in order to be used for this purpose. The rest of the
system components, including the blockchain smart contracts
and cloud services can be slightly adjusted for the entity that
is implementing this approach.

A. MASTER DEVICE
The Arduino MKR GSM 1400 with an Arduino MKR GPS
Shieldwas utilized to be themaster device. In order to connect
to the cloud, the device first connects to the MQTT broker
using the username and password defined on the cloud. The
device is verified by using a self-signed certificate. The con-
nection is made through the Arduino MQTT Library. Fig. 11
shows a part of the code used to set up the connection in order
to connect and send messages to the cloud.

To send a transaction to the blockchain, the master device
formats and then sends a string to the slave device. The string
contains the function name, which determines the violation
type, as well as all the sensor readings at the time of the
violation. A violation is only sent once every minute to avoid
overwhelming the slave device. The same violation type will
only be sent once every ten minutes to avoid repeating trans-
actions. A snippet of the code used to send sensor readings to
the cloud is shown Fig. 12.

The sensor readings are read frequently to detect any viola-
tions instantly, and all the values are stored in global variables
so that they can be easily read by the different functions. The
stored sensor readings are then compared to the normal values

FIGURE 11. MQTT setup by connecting to the MQTT broker.

FIGURE 12. Publishing messages comprising sensor readings to the cloud.

to determine if a violation is present. In case a violation is
found, the transaction is sent to the blockchain. The sensors
are connected as shown in Fig. 13. Additionally, the GPS
Shield is connected through the I2C bus and does not have
any pin connections.

VOLUME 9, 2021 53795

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 13. Connection scheme for the sensors with the master device.

FIGURE 14. Physical connection between master and slave devices.

B. SLAVE DEVICE
Our choice of slave device was based on library compatibility,
in addition to its size and capabilities. The master and slave
devices are connected together as shown in Fig. 14. The
devices share a common ground, as well as the 5V power
source. Additionally, in order to have a serial connection we
have two wires, RX/TX to transfer the required information.
On the slave device, the device continuously listens for mes-
sages. It checks the string tomake sure it is suitable and passes
it to the function. The function prepares all the transaction
parameters, signs the transaction, and sends it to the smart
contract. All this is done using the modified Web3 of the
Arduino library, as shown in Fig. 15.
In addition to improving the Arduino library to fix major

compilation and run-time errors, we changed the way the
function works because the data parameters were previously
formatted by functions in the library. This presented numer-
ous difficulties and logical errors. Finally, the gas price for
each transaction was stored and passed from an integer vari-
able. This limited the gas price to the maximum value that can
be stored in an integer variable. To fix this, we changed the
library to read the value from a string. To summarize, the flow
of data in both master and slave IoT devices is presented
in Fig. 16. This flow encompasses the flow of data as from

FIGURE 15. Formulating the transaction parameters and sending it to the
smart contract.

FIGURE 16. Flow of data in master and slave IoT devices.

sensor readings to preparation of transactions to be published
to the Ethereum smart contract.

C. CLOUD SERVICE
A resource group was created on Azure to hold all the Cloud
services and resources for this project. The web application,
IoT Hub, Azure Storage Account, and server-less functions
were deployed and configured successfully. The IoT Hub
was given the namespace SmartShippingContainerHub, and
the storage to hold the device data was called sscontain-
errecords. The CryptoCargo app service is the platform to
host, configure, andmanage the web application.When creat-
ing this service, PHP was chosen as the code stack to be used.
The app service comes with an ‘‘App Service Plan,’’ which
basically acts as an abstraction of the infrastructure the web
app would run on. The app service plan can be used to scale
the web app resources and monitor their health. An ‘‘Appli-
cation Insights’’ service is also provided with app service.

53796 VOLUME 9, 2021

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

This can be used to monitor the application through ana-
lytics dashboards. The sscmessageroute Azure function sim-
ilarly has an App Service Plan and Application Insights.
The MySQL database cannot be seen as a service as a
MySQL server was not created. However, MySQL was
deployed within the web app service with Azure’s new fea-
ture that allows this for PHP applications. When deployed,
the MySQL database would share the same hardware
resources as the web application, and the required creden-
tials would be found in an environment variable that can
be accessed with web app code. This configuration model
is great for developmental and testing purposes; however,
an independent MySQL server should be deployed for a
high-scale production environment.

The Azure IoT Hub was created through the Azure Market
Place on the Azure Portal. A free pricing plan was selected
for the purpose of this implementation. The hub was given
the name SmartShippingContainer Hub and was hosted on
the closest region (EU-West) for the best performance. After
the service was successfully created and deployed, it was
managed through a dashboard or by using Azure’s CLI. For
testing purposes, a simulated device is run to send teleme-
try to the hub. The device simulation program is written
in the C language and uses the Azure IoT Hub C SDK
libraries, which would be used for Arduino devices. However,
the simulated device is authenticated with the symmetric key
method, where the device and hub would share the same key
generated byAzure. The simulated devicewas registeredwith
MyCDevice as its ID. An Azure Function was developed and
deployed to process incoming messages to the Azure IoT
Hub.

The messages arrive from a source with a device ID and
have a time-stamp showing the arrival time. The Azure func-
tion is triggered by the arrival of messages. The function
simply takes the device ID and finds the associated shipment
the device is currently on. The message data is then stored
on an Azure storage account. Thus, that file will contain all
sensor measurement data sent to the cloud by that particular
device when it was on that particular shipment. This way,
when retrieving the data by the web app using only the
shipment ID and device ID, all the data for that shipment
and device will be retrieved. In addition, the function appends
the time-stamp of the message arrival to the message content
itself. This is to keep a record of the time the measurements
were taken. This is because the originally recorded message
time-stamp refers to the arrival time to the cloud, which is
slightly different (in milliseconds) compared to the time it is
recorded on the device. To be able to develop this function,
the Azure Storage Client SDK package was needed to be
added to the source code of the function [36].

The shipment ID can be found in a blob that will be stored
on the storage account beforehand called the IDreference.
The file, or blob, will basically hold all the device IDs along
with the corresponding shipment ID that is linked to it as
a device can only be on a single shipment at a time. This
file is constantly updated when a device is launched on a

shipment and when a shipment is completed. After finding
the shipment ID from the IDreference file and appending
the time-stamp to the message data, a BlobClient is created
with the path format specified previously. If no blob exists
with that path and name, then one is created with just the
message data that was received. The data is stored as a JSON
array of data objects. If a blob does exist, then the content is
downloaded, the new data is appended to the existing array,
and the new content is uploaded to overwrite the existing file.
For testing purposes, a simulated device program is run to
send random temperature and humidity data to the hub. The
simulated device is given the ID MyCDevice and is linked to
the shipment ID sim1. As messages arrive at the IoT Hub,
the function gets triggered and executes. Using the Azure
portal’s storage explorer for Storage Accounts, the saved
messages can be found in their appropriate blob. The Azure
Function was published to Azure using the publishing profile
available in the Azure Functions Service. The function is
triggered whenever a message is received by the IoT Hub.

D. BLOCKCHAIN & SMART CONTRACTS
To gain access to a full Ethereum node, an account was
set up with Infura. Infura presents an interface to access
such Ethereum nodes on both Ethereum mainnet and test-
nets. Based on the API keys, endpoints to the different
Ethereum networks are provided through HTTP. Infura does
not hold any private keys and hence does not generate
Ethereum wallets. Metamask was used to generate our
Ethereum wallet. Once a Metamask account was set up,
we set it to use the Ropsten Testnet. The wallet was filled
with funds (Ethers) using free online (Ether Faucets), such
as from https://faucet.metamask.io/. As with every Ethereum
wallet, Metamask provides our account with a unique account
address and a private key. Details about our account and
its transactions can be found on Etherscan, the leading
BlockExplorer for the Ethereum blockchain. A BlockEx-
plorer is a search engine that allows users to look up,
confirm, and validate transactions being carried out on the
Ethereum blockchain. The smart contract is written in Solid-
ity language. Solidity is an object-oriented, high-level lan-
guage, designed to target the EVM and for implementing
smart contracts. The smart contract was then deployed on
a test blockchain network using Remix. Remix is a web
browser-based IDE that allows writing to Solidity smart
contracts, deploying, and running them. Having Metamask
installed and logged in on our browser allows us to make
use of its injected Web3 environment to deploy the smart
contract. Another possible alternative is to use an endpoint to
aWeb3 provider, throughHTTP or IPC. For testing and devel-
opment purposes, Remix also promotes a sandbox blockchain
in the browser to execute transactions on, called JavaScript
VM environment.

Once the smart contract is deployed, it can be found
on Etherscan using its uniquely assigned contract address.
Since it was deployed using our Metamask Ethereum wal-
let account, our wallet account address can be seen in the

VOLUME 9, 2021 53797

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 17. Live status page on the web app displaying sensor readings
in real-time.

contract creator field. To call functions and retrieve data
from the smart contract in our DApps, Web3 is needed.
A Web3 library named ‘Web3.min.js’ is downloaded and is
imported into our code. In addition, inside our DApps code,
the Web3 provider is defined through an HTTP link to our
Infura endpoint. Using Metamask’s injected Web3 is also
possible. To create a Web3 contract instance, two arguments
need to be passed to the Web3.eth.Contract: the contract’s
unique address and the contract’s ABI. The smart contract
is then converted from the high-level Solidity language to
bytecode to run on the Ethereum Virtual Machine (EVM)
when compiled. ABI comprises a list of the contract’s func-
tions, variables, constants, and arguments in JSON format.
It is intended for encoding and decoding data into and out of
transactions. ABI also indicates the functions’ signatures and
variables’ declarations that are needed to achieve understand-
able calls to the contract’s bytecode in the EVM.

E. DECENTRALIZED APPLICATION
A PHP web application was fully implemented according
to our design to provide users with monitoring and track-
ing capabilities. The user experience can be seen in the
figure below, showcasing the user perspective flow of the
application. The application has a home page, live status
page, monitoring, and tracking page, and a violations view
page. The bootstrap framework was used to help building the
GUI of the application, which was built from scratch. The
application starts with the home page after the user has been
authenticated. This page simply queries the user shipments
and displays them along with their details. This information
is pulled from the MySQL database. The user can select a
shipment from here to be redirected to its live status page.

The live status page, shown Fig. 17, displays to the
user the latest readings received on the cloud from the IoT
device. The temperature, humidity, luminosity, and the lid
status of the container are displayed. A Google map iframe is
also presented with the latest location of the container pinned.
The map is generated with Google maps API for JavaScript.
This page also has a pie chart that breaks down the recorded
violations on the blockchain by type. The Web3 JavaScript
library is used to pull the number of transactions for each

FIGURE 18. tracking the shipment journey while monitoring all vitals and
location.

type of violation. When loading the page, the latest data
entry is pulled from the Azure Blob Storage using the Azure
Blob Storage SDK for PHP, which helps us to manipulate a
storage account service along with its containers and blobs.
The connection string to the storage account is used to create
the storage client on PHP. To retrieve the data, a blob client
is created with the connection string, and then the client is
used to retrieve a blob by passing its container and path. The
content stream of the blob is then retrieved. These values
are passed to the front-end to display. To have the page
dynamically update the data, a recursive function was written
in the JavaScript code to call a built Rest API for the latest
readings. The function then updates the displayed data and
the Google Map location. Rather than having the JavaScript
connect directly to the storage, the PHP API was built to
keep the connection to the storage secure by obscuring it from
the user by applying it on the server side. The API pulls the
latest data, similarly to what was explained before, and sends
it as a reply. The shipment and device IDs are expected as
input. From the live status page, the user can navigate to the
monitoring and tracking, or the violations pages using buttons
at the bottom of the page.

To monitor and track the shipment journey, the entire
shipment data is pulled from the Azure Blob Storage, using
a similar approach to the one explained earlier. On this page,
however, the entire record is taken rather than just the latest
readings, as shown in Fig. 18. The data is split into arrays that
hold each metric independently (temperature array, humidity
array, etc.). These arrays are then passed to the front-end
for visualization. An open-source JavaScript library called
chart.js was used to graph this data. The data arrays are passed
to the Chart.js function to create charts. The monitoring page
provides the generated charts by having them in Bootstrap
tabs that can be navigated through. The page also displays
a map with the route taken by the shipment plotted. The
route was plotted using polylines defined in the Google Maps
API. In the front-end DApp, users are given the feature of
viewing violations’ information directly retrieved from the
blockchain. As shown in Fig. 19, on the left side of the page,
a scrollable pane exists that displays headings of all violations
currently recorded. Filters can also be applied to restrict the
search to a certain type of violation type only. Once a heading
is clicked on, all violation information is retrieved from the

53798 VOLUME 9, 2021

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 19. Frontend page retrieving blockchain-stored data.

smart contract and is displayed to the user. Again, methods
of Web3.js are used to interact with the smart contract, and
Google Maps APIs from a Google Cloud Platform account
are utilized to employ the maps. Bootstrap is used to improve
the CSS and JavaScript-based user interface design of the
page.

Infura and Web3 provide two types of Ethereum APIs:
‘‘Call,’’ which does not cost any gas value, and ‘‘Transac-
tion,’’ which requires gas to be sent. ‘‘Call’’ can be used to
access the functions defined in the smart contract and hence
ABI. Since reading data from the blockchain requires no
transactions to be carried out, there is no need for mining nor
for paying gas. Thus, the Ethereum account address and its
private key are not included in the front-end code, as opposed
to including it in the Arduino where the transactions are
sent and generated. Consequently, such function calls to read
state can be made directly from the Ethereum node we are
connected to, which is the Infura node in our case. When
the page loads, the ‘‘allEvents’’ filter is applied by default to
display all the available recorded violations. A different filter
pertaining to a different violation type can be applied. Based
on the chosen filter, the event name of the violation type is
passed as an input to the displayViolations function.

Inside the displayViolations function, the Web3 method
getPastEvents followed by the event name retrieves an array
of event objects, with all their details. To search for all events,
the ‘‘allEvents’’ keyword can be used. Variables and methods
such as block number, event name, and the return value of
the event object can then also be individually called. Row
handlers are then initiated from within the displayViolations
function and the associated event elements like the block
number and transaction hash are called and displayed when
the violation is clicked on.

Based on the way our violation details were generated
and sent from the Arduino, the violation details are stored
on the blockchain in an encoded decimal form stored in a
pre-defined format. As a result, the returnValues returned by
the event object are passed as inputs to our getBlockchain-
Info function to be decoded. The getBlockchainInfo func-
tion decodes the blockchain-stored violation by first convert-
ing the long decimal to hexadecimal. The message is long

FIGURE 20. Transaction details displayed on the testnet Ropsten
blockchain explorer.

enough that the built-in JavaScript decimal to hex converters
fail to convert them correctly. As a result, an open-source
function decToHex is used instead. Once the data is con-
verted to a 33 digits Hex output, they are parsed and split
into separate variables representing the GPS longitude and
latitude positions, temperature, humidity, luminosity, and
container open/close. All results are then displayed on the
output, whereas the GPS longitude and latitude coordinates
are passed to Google Map’s initMap function. In the initMap
function, the GPS longitude, and latitude coordinates are used
to display a marker at the position of the shipment, with other
possible options like a marker title. The coordinates of the
allowable geographic boundaries that do not cause a GPS
violation are also set and are highlighted on the map with a
green color. The map is then used with all features provided
by Google’s APIs. The pie chart shown in Fig. 17 visualizing
the violations transactions recorded on the blockchain, uses
Canvas.js library for the chart along with Web3.js to inter-
act with the smart contract. The getPastEvents function of
Web3.js is used to retrieve an array of all the events stored
on the blockchain for each of the five different types of
violations. Because of its asynchronous callback nature, all
five functions are called successively, with every call being
encapsulated in the previous one. The chart is then populated
with the respective violation data by accessing the length of
violations stored in each array of particular events, and their
respective labels are given following which chart is rendered
and displayed.

The entire process described above is presented visually for
a better grasp of the process flow. Figs. 21 and 22 present the
entire flow of data between the different DAppfiles, including
the usage of different APIs throughout. These compromise
all the features offered by the DApp including monitoring,
shipment tracking, and violation reporting.

VI. TESTING AND VALIDATION
To test the master and slave devices, we tested the Arduino
in a local environment where the output could be seen on a
computer. Additionally, to verify the functionality, we tested

VOLUME 9, 2021 53799

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 21. Transaction details displayed on the testnet Ropsten
blockchain explorer.

to see if a transaction was successfully posted, as shown
in Fig. 20. In this figure, we can see that the board publishes a
message roughly every 25 seconds, meaning that it is meeting
the time requirements. Also, we notice that when a violation
occurred, it sent out the formatted string correctly. To verify
the transaction, we looked at the smart contract on Etherscan,
as shown in Fig. 20. By looking at this page, we notice that
the transaction was posted a few seconds after the device sent
it. Furthermore, we also noted that the input data field was
identical to the string sent from the device. This tells us that
the system is functioning as expected.

Various tests were conducted to verify and evaluate the
functionality of the system. The solution objectives were val-
idated as messages successfully reached the user application
from the IoT device, by going through the IoT Hub, the Azure
Function, and the Azure Storage. The performance of the

FIGURE 22. Transaction details displayed on the testnet Ropsten
blockchain explorer.

Cloud back-end can be evaluated using Azure’s built-in ana-
lytics for the services deployed for this project as they follow
the PaaS and FaaS models. The Azure function analytics are
shown in Fig. 23 for the final testing period of the system.
It can be seen that 359 IoT messages were processed with
0 failures. It can also be seen that the average server response
time is 1.37 seconds. This takes into account the firing delay
of the function (as it is server-less), the processing time,
and the delay of uploading the data to the storage. Thus,
an average delay of 1.37 seconds is due to storing the IoT
Hub messages on the Blob Storage.

The performance of the Azure Storage Account can be
seen in Fig. 24 for the duration of the testing period. It can
be seen that the storage had an availability score of 100%,
so there was no downtime faced. The average latency can
be seen to be 43.36ms. Over the 4,206 recorded transactions,
only 16 authorization errors were encountered. These could
be due to accessing attempts from outside the project scope,
as the functionality of the project was fully validated. Further
investigation is needed to specifically identify the causes of
these errors. Regardless, the success rate of transactions was
over 99.6%.

The server response time for the web app can be seen
in Fig. 25. No failures were encountered for the testing dura-
tion, and the server averaged a response time of 13.65ms.
The tier used does not provide the ‘‘on all the time’’ fea-
ture. Instead, the server is started up when URL access
is attempted. This causes a small delay when first loading

53800 VOLUME 9, 2021

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

FIGURE 23. Azure Function Analytics for the testing period.

up the website. However, browsing is seamless afterward.
By combining all the service delays, we expect an average
response time for the entire cloud subsystem to be around
1.43 seconds. Such delays are considered as the IoT device
sends messages every 25 seconds rather than 30 seconds.
Thus, with these delays, the user should still receive the
live updates within 30 seconds, which was the soft real-time
requirement of the project.

VII. CHALLENGES AND FUTURE WORK
The blockchain and its underlying infrastructure are still
considered emerging technologies. In addition, many of the
available tools, such as the Web3 Arduino libraries, are not
yet mature, or do not receive consistent patches or improve-
ments. These issues hinder the adoption of such applications
in the industry at the current time as most companies are not
ready yet to transfer their work flows and substitute themwith
other technologies, such as the blockchain, regardless of the
added benefit gained. As future improvements to our product,
our solution can have its services adapt more effectively to a
larger scale of shipments by having the smart contract and

FIGURE 24. Azure storage analytics and insights.

FIGURE 25. Server response time for the duration of testing derived from
the web app analytics.

their linked shipment pages generate automatically, rather
than manually. Improvements can also be done on the fron-
tend DApps to enhance the user experience of the website.
For instance, additional features can be added to allow users
to zoom in into the available charts and receive more detailed
visualizations of the time period they are interested in. The
responsiveness of the DApp can be further enhanced to allow
better handling of different types of devices, including phones
and tablets. Native apps can also be configured as an alter-
native to the browser-based apps. On the hardware level,
a customized single chip can be used instead of the 2 boards
we are currently using as a proof of work. Additional local

VOLUME 9, 2021 53801

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

storage capabilities to support cases of overseas shipments
that pass through phases of no cellular coverage can also be
utilized.

VIII. CONCLUSION
In this paper, we introduced a fully functional, blockchain-
powered solution (CryptoCargo) that comprises a smart con-
tainer system to track shipments and identifies any threats to
the health of the package. CryptoCargo utilises blockchain’s
cryptographic foundations and smart contracts to achieve
a trustworthy log of violations reported by the container.
Additionally, CryptoCargo uses cloud-based services such as
Azure IoT Hub to achieve real-time communication with the
smart container facilitating accurate reporting and analytics.
In order to achieve a usable solution, CrypoCargo implements
a secure web-based dashboard application for end-users to
query shipment information, visualise shipment location, and
perform analytics. CryptoCargo has been evaluated to val-
idate its function as well as performance efficiency which
demonstrated its effectiveness in achieving a secure end-
to-end shipment tracking in a trustworthy manner.

REFERENCES
[1] J. Hoffmann, R. Asariotis, M. Assaf, and H. Benamara. (2018). Unctad

Review of Maritime Transport 2018. Accessed: Sep. 13, 2020. [Online].
Available: https://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf

[2] L. Doe. (2017). Top Four Dangerous Shipping Statistics. Accessed:
Sep. 13, 2020. [Online]. Available: https://www.porttechnology.
org/news/top_four_dangerous_shipping_statistics/

[3] H. Manaadiar. (2019). Cargo Theft Statistics and Trends. Accessed:
Oct. 6, 2019. [Online]. Available: https://shippingandfreightresource.
com/cargo-theft-statistics-and-trends/

[4] T. Groenfeldt. (2017). IBM and MAERSK Apply Blockchain to
Container Shipping. Accessed: Oct. 6, 2019. [Online]. Available:
https://www.forbes.com/sites/tomgroenfeldt/2017/03/05/ibm-and-
maersk-apply-Blockchain-to-container-shipping

[5] (2019). 8 Ways Blockchain is Revolutionizing Transportation and Logis-
tics. Accessed: Oct. 6, 2019. [Online]. Available: https://www.winnesota.
com/blockchain

[6] P. Mell and T. Grance. (2011). The NIST Definition of Cloud Com-
puting. Accessed: Jan. 20, 2020. [Online]. Available: https://csrc.
nist.gov/publications/detail/sp/800-145/final

[7] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ Manubot,
Tech. Rep., 2019. [Online]. Available: https://git.dhimmel.com/bitcoin-
whitepaper/

[8] S. Underwood, ‘‘Blockchain beyond bitcoin,’’ Commun. ACM, vol. 59,
no. 11, p. 15–17, Oct. 2016, doi: 10.1145/2994581.

[9] I. Bentov, A. Gabizon, and A.Mizrahi, ‘‘Cryptocurrencies without proof of
work,’’ in Proc. Int. Conf. Financial Cryptography Data Secur. (ICCSA),
in Lecture Notes in Computer Science. St. Petersburg, Russia: Springer,
2019.

[10] C. Maldonado. (2018). Introduction to Blockchain and Ethereum.
Accessed: Jan. 22, 2020. [Online]. Available: https://www.packtpub.
com/product/introduction-to-blockchain-and-ethereum/9781788835251

[11] R. Tas and O. O. Tanriover, ‘‘Building a decentralized application on the
Ethereum blockchain,’’ in Proc. 3rd Int. Symp. Multidisciplinary Stud.
Innov. Technol. (ISMSIT), Oct. 2019, pp. 1–4.

[12] Ethereum Api | Ipfs Api Gateway | Eth Nodes As A Service | Infura.
Accessed: Jan. 20, 2020. [Online]. Available: https://Infura.io

[13] G. McCubbin. (2020). Intro to web3.js Ethereum Blockchain Devel-
oper Crash Course. Accessed: Jan. 21, 2020. [Online]. Available:
https://www.dappuniversity.com/articles/web3-js-intro

[14] (2016).Web3.eth.subscribe. Accessed: Jan. 21, 2020. [Online]. Available:
https://Web3js.readthedocs.io/en/v1.2.0/Web3-eth-subscribe.html

[15] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, ‘‘Blockchain technology
and its relationships to sustainable supply chain management,’’ Int. J. Prod.
Res., vol. 57, no. 7, pp. 2117–2135, Apr. 2019.

[16] K. Francisco and D. Swanson, ‘‘The supply chain has no clothes: Tech-
nology adoption of blockchain for supply chain transparency,’’ Logistics,
vol. 2, no. 1, p. 2, Jan. 2018.

[17] A. Rejeb, J. G. Keogh, and H. Treiblmaier, ‘‘Leveraging the Internet of
Things and blockchain technology in supply chain management,’’ Future
Internet, vol. 11, no. 7, p. 161, Jul. 2019.

[18] C.-S. Yang, ‘‘Maritime shipping digitalization: Blockchain-based
technology applications, future improvements, and intention to use,’’
Transp. Res. E, Logistics Transp. Rev., vol. 131, pp. 108–117, Nov. 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1366554519307045

[19] R. D. Gregorio, S. S. Nustad, and I. Constantiou, ‘‘Blockchain adop-
tion in the shipping industry,’’ in A Study of Adoption Likelihood and
Scenario-BasedOpportunities and Risks for IT Service Providers, vol. 272.
Frederiksberg, Denmark: Copenhagen Business School, 2017.

[20] M. Jović, M. Filipović, E. Tijan, and M. Jardas, ‘‘A review of blockchain
technology implementation in shipping industry,’’ Pomorstvo, vol. 33,
no. 2, pp. 140–148, Dec. 2019.

[21] L. Li and H. Zhou, ‘‘A survey of blockchain with applications in maritime
and shipping industry,’’ Inf. Syst. E-Bus. Manage., pp. 1–19, Sep. 2020,
doi: 10.1007/s10257-020-00480-6.

[22] S. Tsiulin, K. H. Reinau, O.-P. Hilmola, N. Goryaev, and A. Karam,
‘‘Blockchain-based applications in shipping and port management: A liter-
ature review towards defining key conceptual frameworks,’’ Rev. Int. Bus.
Strategy, vol. 30, no. 2, pp. 201–224, Jun. 2020.

[23] G. Bavassano, C. Ferrari, and A. Tei, ‘‘Blockchain: How shipping
industry is dealing with the ultimate technological leap,’’ Res. Transp.
Bus. Manage., vol. 34, Mar. 2020, Art. no. 100428. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210539519301646

[24] O. Iakushkin, D. Selivanov, E. Pavlova, and V. Korkhov, ‘‘Architecture of a
smart container using blockchain technology,’’ in Proc. Int. Conf. Comput.
Sci. Appl. (ICCSA), in Lecture Notes in Computer Science. St. Petersburg,
Russia: Springer, 2019.

[25] C. Li. (2019). Maersk–Reinventing the Shipping Industry Using IoT
and Blockchain. Harvard Business School Digital Initiative. Accessed:
Oct. 6, 2019. [Online]. Available: https://digital.hbs.edu/industry-4-
0/maersk-reinventing-shipping-industry-using-iot-Blockchain/

[26] (2018). Maersk and IBM Introduce Tradelens Blockchain Shipping Solu-
tion. Accessed: Oct. 6, 2019. [Online]. Available: https://newsroom.ibm.
com/2018-08-09-Maersk-and-IBM-Introduce-TradeLens-Blockchain-
Shipping-Solution

[27] (2018). This Swiss Based IoT Company Did a Double ICO and Raised
More Than 15 CHF MIO. [Online]. Available: https://fintechnews.
ch/blockchain_bitcoin/smart-containers-ico-15-mio/21779/

[28] R. Shahan. (2018). Azure IoT Hub Communication Protocols and
Ports | Microsoft Docs. Accessed: Jan. 21, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/Azure/iot-hub/iot-hub-devguide-
protocols

[29] (2020). Azure IoT Hub Pricing. Accessed: Jan. 22, 2020. [Online]. Avail-
able: https://Azure.microsoft.com/en-us/pricing/details/iot-hub

[30] (2020). Azure Storage Blobs Pricing | Microsoft Azure. Accessed:
Jan. 22, 2020. [Online]. Available: https://Azure.microsoft.com/en-
us/pricing/details/storage/blobs

[31] (2020). Azure SQL Database Pricing. Accessed: Jan. 22, 2020. [Online].
Available: https://Azure.microsoft.com/en-us/pricing/details/sql-database/
managed

[32] Aziz. (2020). Crypto Mainnet vs Testnet: What is the Difference?
Accessed: Jan. 22, 2020. [Online]. Available: https://masterthecrypto.
com/mainnet-vs-testnet-whats-the-difference

[33] G. Hayes. (2018). The Beginners Guide to Using an Ethereum
Test Network. Accessed: Jan. 22, 2020. [Online]. Available:
https://medium.com/compound-finance/the-beginners-guide-to-using-an-
Ethereum-test-network-95bbbc85fc1d

[34] R. O’Leary. (2018). The Race is on to Replace Ethereum’s Most
Centralized Layer. Accessed: Jan. 22, 2020. [Online]. Available:
https://www.coindesk.com/the-race-is-on-to-replace-Ethereums-most-
centralized-layer

[35] (2018). Solidity 0.4.24 Documentation. Accessed: Jan. 22, 2020. [Online].
Available: https://solidity.readthedocs.io/en/v0.4.24/index.html

[36] M. Hopkins, T. Myers, G. Wallace, C. Casey, B. Harvey, D. Patil,
R. Shahan, and N. Estabrook. (2019). Quickstart: Azure Blob Stor-
age Client Library v12 for.Net. Accessed: Jan. 23, 2020. [Online].
Available: https://docs.microsoft.com/en-us/azure/storage/blobs/storage-
quickstart-blobs-dotnet

53802 VOLUME 9, 2021

http://dx.doi.org/10.1145/2994581
http://dx.doi.org/10.1007/s10257-020-00480-6

O. Alkhoori et al.: Design and Implementation of CryptoCargo: Blockchain-Powered Smart Shipping Container

OMAR ALKHOORI received the bachelor’s degree (Hons.) in computer
engineering from the Khalifa University of Science and Technology,
Abu Dhabi, United Arab Emirates, in 2020. He is currently work-
ing with Digital14, United Arab Emirates, as an Associate Professor.
His research interests include blockchain technology, the Internet of
Things (IoT), and cloud computing.

ABDURAOUF HASSAN received the bachelor’s degree (Hons.) in com-
puter engineering from the Khalifa University of Science and Technol-
ogy, Abu Dhabi, United Arab Emirates, in 2020. He is currently working
with GamaLearn, United Arab Emirates, as a Web Applications Devel-
oper. His research interests include blockchain technology, the Internet of
Things (IoT), and cloud computing.

OMAR ALMANSOORI received the bachelor’s degree (Hons.) in computer
engineering from the Khalifa University of Science and Technology, Abu
Dhabi, United Arab Emirates, in 2020. He is currently working with Beacon
Red, United Arab Emirates, as a Cyber Security Consultant. His research
interests include blockchain technology, the Internet of Things (IoT), and
reverse engineering.

MAZIN DEBE received the B.Sc. degree in
computer engineering and the M.Sc. degree in
electrical and computer engineering from the
Khalifa University of Science and Technology,
Abu Dhabi, United Arab Emirates. He is cur-
rently working with the Center for Cyber-Physical
Systems, Khalifa University of Science and Tech-
nology, as a Research Associate. He has pub-
lished four research articles in highly ranked IEEE
conferences and journals. His research interests

include blockchain technology, the Internet of Things (IoT), fog computing,
and supply chain applications.

KHALED SALAH (Senior Member, IEEE)
received the B.S. degree in computer engineering
with a minor in computer science from Iowa State
University, Ames, IA, USA, in 1990, and the
M.S. degree in computer systems engineering and
the Ph.D. degree in computer science from the
Illinois Institute of Technology, Chicago, IL, USA,
in 1994 and 2000, respectively. In August 2010,
he joined Khalifa University, where he is teaching
graduate and undergraduate courses in the areas

of cloud computing, computer and network security, computer networks,
operating systems, and performance modeling and analysis. Prior to join-
ing Khalifa University, he worked for ten years with the Department of
Information and Computer Science, King Fahd University of Petroleum and
Minerals (KFUPM), Saudi Arabia. He is currently a Full Professor with
the Department of Electrical and Computer Engineering, Khalifa University,
United Arab Emirates. He has over 190 publications and three patents. He is
a member of IEEE Blockchain Education Committee. He was a recipient of
the Khalifa University Outstanding Research Award 2014/2015, the KFUPM
University Excellence in Research Award of 2008/2009, the KFUPM Best
Research Project Award of 2009/2010, and the Departmental Awards for
Distinguished Research and Teaching in prior years. He has been giving
a number of international keynote speeches, invited talks, tutorials, and
research seminars on the subjects of Blockchain, the IoT, Fog and Cloud
Computing, and Cybersecurity. He serves on the Editorial Boards for many
WOS-listed journals, including IET Communications, IET Networks, JNCA
(Elsevier), SCN (Wiley), IJNM (Wiley), J.UCS, and AJSE. He is the Track
Chair of IEEE Globecom 2018 on Cloud Computing. He is an Associate
Editor of IEEE Blockchain Newsletter.

RAJA JAYARAMAN received the bachelor’s and
master’s degrees in mathematics from India,
the M.Sc. degree in industrial engineering from
New Mexico State University, and the Ph.D.
degree in industrial engineering from Texas Tech
University. His postdoctoral research focused on
technology adoption and implementation of inno-
vative practices in the healthcare supply chain
logistics and service delivery. He is currently an
Associate Professor with the Department of Indus-

trial and Systems Engineering, Khalifa University, Abu Dhabi, United Arab
Emirates. He has led several successful research projects and pilot implemen-
tations in the area of supply chain data standards adoption in the US health-
care system. His primary research interests include blockchain technology,
the Internet of Things (IoT), systems engineering, and process optimization.

JUNAID ARSHAD received the Ph.D. degree in
computer security from the University of Leeds,
U.K., in 2011. He is currently an Associate Pro-
fessor with the School of Computing and Dig-
ital Technology, Birmingham City University,
U.K. He has been actively involved in publish-
ing high quality research within cybersecurity.
He has successfully published at high quality
venues, including journals, book chapters, con-
ferences, and workshops. His research interests

include investigating security challenges for diverse computing paradigms,
such as distributed computing, cloud computing, the IoT, and distributed
ledger technologies. He is an Associate Editor of the Cluster Computing
and IEEE ACCESS journals. He regularly serves on program and review
committees for several journals and conferences.

MUHAMMAD HABIB UR REHMAN (Senior
Member, IEEE) received the bachelor’s and
master’s degrees from COMSATS University
Islamabad, Pakistan, and the Ph.D. degree from
the Faculty of Computer Science and Informa-
tion Technology, University of Malaya, Malaysia.
He is currently working with the Center for
Cyber-Physical Systems, Khalifa University,
United Arab Emirates, as a Postdoctoral Research
Fellow. He is also working on trustworthy

blockchain technologies for intelligent cyber-physical systems. He has
authored or coauthored 40 international publications, including journal
articles, conference proceedings, book chapters, and magazine articles,
whereby his four articles are categorized as highly cited publications byWeb-
of-Science. His main research activities include research and development
of trust models for decentralized and trustworthy artificial intelligence appli-
cations for cyber-physical systems. His research interests include blockchain
technologies, cyber-physical systems, secure key management, big data,
edge computing, and the industrial IoT. He is a Bright Spark Fellow. He has
been an alumnae of DAAD’s Postdoctoral Network, since September 2019.
He received goldmedals and 100% fee-waiver scholarships fromCOMSATS
University Islamabad.

VOLUME 9, 2021 53803

