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ABSTRACT Due to the instability of the characteristics of materials, fabrication processes and user handling,
newly designed and fabricated wireless passive surface acoustic wave (WP-SAW) sensor nodes have incon-
sistent sensing performance. Furthermore, ambient environmental interferences aggravate inconsistences
under complex working conditions. In this paper, a multi-iteration enhanced two-point simple moving
average (MI-2P-SMA) method is proposed for sensing error reduction of a WP-SAW reflective delay line
water temperature and pressure sensor. This method is improved from the traditional 2P-SMA method for
better performance on error reduction. The results show: the MI-2P-SMA method does not change the
original characteristics of experimental data; it can reduce relative errors of the WP-SAW reflective delay
line water temperature and pressure sensor and has better performance than a traditional 2P-SMA method;
it reduces the number of data points and the extent of this reduction is dependent on iteration time.

INDEX TERMS Multi-iteration, two-point simple moving average, error reduction, temperature, pressure,
surface acoustic wave, sensor.

I. INTRODUCTION
The demand of sensors is growing rapidly worldwide.

poultry management. Kamilaris and Pitsillides [5] reviewed
IoT in mobile phone computing. Liu et al. [6] reviewed

Besides the growth of the quantity, the technical requirements
for better performance of sensors and the demand of cus-
tomed sensing systems from industrials are increasing greatly
due to the development of Internet of Things (IoT) enabled
technologies [1]-[6]. Wang et al. [1] proposed an intelligent
trust evaluation scheme in sensor-cloud-enabled industrial
IoT. Qi et al. [2], [3] reviewed data fusion techniques for
IoT applications and IoT for healthcare systems, and did
researches on IoT enabled wearable sensors. Astill et al. [4]
reviewed smart sensors, big data, and IoT for smart
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spintronic sensors with Internet of Things for smart living.

Wireless passive surface acoustic wave (WP-SAW) sensors
have been increasingly investigated by worldwide researchers
nowadays. It is so attractive because of its passive character-
istics which makes batteries unnecessary in sensing systems,
outstanding stability and reliability in harsh environment,
small size making it easy to deploy for various applications,
and its investor-friendly low cost [7]-[14].

WP-SAW sensors have been developed for measuring dif-
ferent kinds of physical quantities such as temperature [15],
pressure [16], toque [17], strain [18], etc. and gas densities
such as NO; [19], CO» [20], etc. However, the sensing data
obtained and processed by newly designed and fabricated
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sensors are affected by errors due to various interferences,
e.g., characteristics of materials, vibration effect, chip inte-
gration orientation misalignment, heating issues, random
noise of operating environment, handling of world users,
etc. [21]-[25].

Researchers made efforts on reduction of sensing errors
caused by these interferences. Some algorithms were devel-
oped by previous researchers [26], such as least squares [27],
polynomial fitting [28], and interpolation [29], etc., but these
methods do not reflect real-time output data and cannot be
used for real-time monitoring tasks. This disadvantage limits
their usage scenarios. A traditional two-point simple moving
average has very limited effect on error reduction on sensing
errors if the variance is not close to 1 [30].

In order to resolve the aforementioned problem,
an improved multi-iterative two-point simple moving average
(MI-2P-SMA) method is proposed in this paper. For verifica-
tion of its characteristics and effectiveness, it is applied to
the original experimental sensing data of a newly designed
and fabricated WP-SAW reflective delay line temperature and
pressure sensor.

This research makes the following contributions.

1) The improved MI-2P-SMA is derived mathematically
from the traditional 2P-SMA and analyzed using a diagram.

2) The improved MI-2P-SMA is successfully utilized to
reduce relative errors on a WP-SAW reflective delay line
temperature and pressure sensor.

3) The limitations of the improved MI-2P-SMA are
summarized that the iteration time is limited to keep
the characteristics of original data and at least half data
points.

The rest paper is organized as follows. In Section II, the
mathematical derivation of the improved MI-2P-SMA is pre-
sented. It is derived from the fundamental SMA theory and
improved from the traditional 2P-SMA. It is described by a
mathematic equation and a diagram. An architecture of data
flow is proposed to explain how the MI-2P-SMA method
works. In Section III, the WP-SAW reflective delay line
temperature and pressure sensor is introduced. In Section IV,
the experiments for obtaining sensing data are presented.
In Section V, experimental data are compared with the data
after MI-2P-SMA is applied. Regression and relative error
analysis are utilized for data analysis. Finally, in Section VI,
the results are concluded.

Il. MULTI-ITERATION ENHANCED TWO-POINT SIMPLE
MOVING AVERAGE

A. MATHMATICAL DERIVATION

SMA can be utilized to reduce random noise and retain a
sharp step response. It operates by averaging a series of points
from input to produce each point in the output signal, which
can be described as (1).

1 M—1
v =70 Y x+)) )

j=0
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where x is the input signal; y is the output signal; M is the
number of points in average; i is the order of the data.
Therefore, a 2P-SMA is that the number of points in
average is 2, which is described as (2).
. x@O+xG+1D
yi ()= — (2)
If the output of this 2P-SMA is the input of another
2P-SMA process, this entire two-step process is defined as
a 2-iterative 2P-SMA, which can be described as (3).

VDAY G+ x(@)+2x G+ D) +x+2)
2 N 4

»n @ =
(3)
If this goes further, an n-iterative 2P-SMA process can be
concluded and described as (4).
COx (i) +Clx i+ 1)+ C2x (i+2)+. . .+C'x (i+n)
2}1

yu (@) =
1 &
= 50 2 Cixi+) @)
j=0

where 7 is a natural number; C,?, C,}, C,%, ..
nations, which are defined as (5).

., C)l are combi-

P n!

C,=—

k! (n-k)!

where k is a natural number and less or equal to n, and n!, k!,
and (n-k)! are factorials.

Equation (4), an n-iterative 2P-SMA, is defined as an

n-time MI-2P-SMA. Actually, the traditional 2P-SMA is a

one-time MI-2P-SMA.

&)

B. DIAGRAM AND ANALISIS

Figure 1 is the diagram of the MI-2P-SMA, which shows the
data flow and also some features of the MI-2P-SMA. The
feathers of MI-2P-SMA are summarized as follows. The first
row shows the i-th point and its subsequent points of original
data before MI-2P-SMA is applied, and the number of points
of this row is m + 1. y, is the (n + 1)-th row which is the i-th
point and its subsequent points of original data after n-time
MI-2P-SMA. The number of original data points reduces n
after n-time MI-2P-SMA.

C. ITERATION TIME

In order to improve the accuracy of sensing systems,
MI-2P-SMA is applied to the original experimental data.
However, the iteration time n should be limited to an appro-
priate range because of the feature of the reduction of data
points. In order to have effective number of data points to
keep characteristics of the original data, m + 1 must be much
larger than n. To select appropriate iteration time 7 is a key
issue for the best performance of MI-2P-SMA.

Figure 2 shows the flow chart to select appropriate iteration
time n. This flow chart proposes the methodology to obtain
the n. Firstly, the characteristic curve section of original data
Result (0) needs to be indicated. The characteristic curve
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FIGURE 1. The diagram of the MI-2P-SMA.
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FIGURE 2. The flow chart to select the iteration time.

section is the core section of the curve which represents
the characteristics of the data and cannot be omitted. Then
2-point SMA is applied to Result (0) to obtain the I-time
MI-2P-SMA result Result (1). Compare the curve of Result
(1) with the characteristic curve section and judge if the curve
of Result (1) keeps the characteristics of the characteristic
curve section. If the curve of Result (1) keeps the character-
istics, apply 2-point SMA to Result (1) and obtain Result (2)
and do the aforementioned check again. This loop works until
the curve of Result (n) does not keep the characteristics, make
the Result (n — 1) final result, where » is a natural number.
Result (n) is the result of n-time MI-2P-SMA.

Ill. WP-SAW WATER TEMPERATURE AND PRESSURE
SENSOR

The newly designed and fabricated WP-SAW sensor node
is a WP-SAW reflective delay line temperature and pressure
sensor node fabricated on a 0.5 mm thick Y-Z cut LiNbO3
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TABLE 1. Parameters of the WP-SAW reflective delay line temperature
and pressure sensor node.

Component name and unit Parameters
Centre frequency (MHz) 433
SAW wavelength 4 (um) 8

Bar width (um) 2

Bar interval (pum) 2
Bar length (um) 440
IDT diameter (um) 400
Thickness of metal Al (um) 0.2
Distance between IDT and R; (um) 7000
Distance between IDT and R, (um) 2400
Distance between IDT and R; (um) 4800

Y Antenna

Piezoelectric substrate

Bonding basis

Action point of pressure

FIGURE 3. The structure of WP-SAW reflective delay line temperature and
pressure sensor node [31]-[33].

piezoelectric crystal substrate, which has been presented in
our previous work [31]-[33]. Table 1 shows the parameters
of this WP-SAW sensor, and Figure 3 shows the structure of
this WP-SAW sensor node.

An IDT is fabricated in the center of the surface of the
substrate for converting received RF signals to the energy of
SAW, and also re-converting the reflected SAW energy back
to RF signals. The antenna is connected to the IDT for interro-
gation RF signal receiving and response signal transmission.
The SAW propagates on the surface of the substrate, which
is vertical to the IDT bars and to both opposite directions
from the IDT. Three reflectors are fabricated on the surface
of the substrate on the way of SAW propagation, which are
paralleled to the IDT. Sound absorption materials are applied
to the edges of the substrate for absorbing redundant SAW
energy to avoid interferences on the useful SAW reflections.
In Fig. 3, one reflector R; is on the left side of the IDT for
pressure sensing purpose, and two reflectors R, and Rj3 are
on the right side of the IDT for temperature sensing purpose.
On the left side of the IDT, the substrate acts as a cantilever on
which ambient pressure change acts on it to make deforma-
tion to the left side of the substrate. This leads to the change
of the distance between R; and the IDT, and subsequently
influences the SAW propagation to make time delay change
for sensing purpose. On the right side of the IDT, the substrate
is bonded to the package to sense the temperature change.
The temperature change can also make deformation of the
substrate to make SAW propagation change which further
causes the time delay change.

This WP-SAW reflective delay line temperature and pres-
sure sensor has the following regulations based on our pre-
vious work [30]. In time domain, phase differences of the
response signals reflected by the three reflectors from the
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FIGURE 4. The photo of the experimental framework and instruments for
testing the fabricated WP-SAW reflective delay line temperature and
pressure sensor node [31]-[33].

sensor node have linear relationships with testing temperature
and pressure changes, which can be shown in (6) and (7).

T —T; =A(p3 — ¢3i) (6)
P—P;=B(p1 —¢1;)) —C(T =T @)

where T; is the initial temperature and ¢3; is the corresponding
initial phase difference of the response signal reflected by
R3; T is the temperature and ¢3 is the corresponding phase
difference of the response signal reflected by R3; A is a
constant related to the wavelength of the SAW, the substrate
material and the distance between the IDT and R3. Similarly,
P; is the initial pressure and ¢y; is the corresponding initial
phase difference of the response signal reflected by Ry; P is
the Pressure and ¢ is the corresponding phase difference of
the response signal reflected by Ry; B is a constant related
to the wavelength of the SAW, the substrate material and the
distance between the IDT and R;; C is a constant related to
the substrate material.

IV. EXPERIMENTS

Figure 4 shows the photo of the experimental framework
for testing the fabricated WP-SAW reflective delay line tem-
perature and pressure sensor node. The instruments include
an Agilent 33220A Function/Arbitrary Waveform Generator
(20 MHz), an Agilent E4438C ESG Vector Signal Generator
(250 kHz — 6 GHz), an Agilent MSO 6104A Mixed Signal
Oscilloscope (1 GHz) and an Agilent E4440A PSA Series
Spectrum Analyzer (30 kHz — 26.5 GHz). The sensor node is
placed in the inner layer top of a double-layer glass pipe. The
inner layer of the pipe is strictly sealed by the steal substrate
and have access to the liquid pressure transfer platform for
pressure test purpose. The outer layer of the pipe is sealed
by a rubber plug and connected to the water bath temperature
controller by two rubber hoses for a water cycle to control the
temperature of the inner layer pipe. The sensor node receives
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FIGURE 5. The comparison of original experimental data, 5-, and 10-time
MI-2P-SMA processed data with linear regression analysis: blue -
original, orange - 5, grey - 10.

TABLE 2. The linear regression equations and variances of original
experimental data, 5-, and 10-time MI-2P-SMA processed data.

Iteration time Linear regression equation Variance
0 y =20.165x - 606.77 0.9991
5 y =19.982x - 546.55 0.9998
10 y =19.947x - 494.33 0.9999

the interrogation RF signal which is the wireless modulated
signal from the Agilent E4438C ESG Vector Signal Genera-
tor, and then reflect it to form response signals with sensing
information to the Agilent MSO 6104A Mixed Signal Oscil-
loscope and Agilent E4440A PSA Series Spectrum Analyzer
which are used to record and process both interrogation and
response RF signals.

V. RESULTS AND DISCUSSIONS

A. TEMPERATURE DATA

Figure 5 shows the comparison of original experimental tem-
perature data, 5-, and 10-time MI-2P-SMA processed data
with linear regression analysis: blue dots and line shows orig-
inal experimental data and their trend line; orange dots and
line shows 5-time MI-2P-SMA processed data and their trend
line; grey dots and line shows 10-time MI-2P-SMA processed
data and their trend line. Table 2 shows the linear regression
equations and variances of original experimental temperature
data, 5-, and 10-time MI-2P-SMA processed data, where x is
the temperature value and y is the phase difference value. The
linear regression equation represents the theoretical linear
relation between temperature and the phase difference of the
response signal reflected by R3. The variance values are close
to 1, which means the data are close to their linear regression
equations.

Relative error can be calculated by (8). Figure 6 shows
the comparison of relative errors of original experimental
temperature data, 5-, and 10-time MI-2P-SMA processed
data. Table 3 shows the range of relative errors of original
experimental temperature data, 5-, and 10-time MI-2P-SMA
processed data. The range of relative errors of the original
experimental temperature data is from —3.40% to 1.87%.
After 5-, and 10-time MI-2P-SMA, the range of relative errors
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FIGURE 6. The comparison of relative errors of original experimental
data, 5-, and 10-time MI-2P-SMA processed data: blue - original, orange
- 5, grey - 10.

TABLE 3. The range of relative errors of original experimental
temperature data, 5-, and 10-time MI-2P-SMA processed data.

FIGURE 7. The comparison of original experimental pressure data, 4-, 5-,
6-, and 10-time MI-2P-SMA processed data with linear regression
analysis: blue - original, orange - 4, grey - 5, yellow - 6, sky blue - 10.

TABLE 4. The linear regression equations and variances of original
experimental pressure data, 4-, 5-, 6-, and 10-time MI-2P-SMA processed

Iteration time Minimum Maximum
0 -3.3977% 1.8731%
5 -0.8777% 0.3530%
10 -0.1688% 0.1280%

is from —0.88% to 0.35%, and from —0.17% to 0.13%,
respectively.

Experimental value — Theoretical value

A
§=—x100% =
L

Theoretical value

*100%  (8)

In summary of temperature data analysis, the MI-2P-SMA
method does not change the original characteristics of
experimental temperature data. The more iterative times of
MI-2P-SMA applies, the range of relative errors is more
significantly reduced, and the variance values are closer to 1.
This indicates that the more iterative times of MI-2P-SMA
applies, the temperature data are closer to their linear regres-
sion equations. Figure 5 shows the obvious reduction of
the number of data points, which verified the regulation
of MI-2P-SMA presented in Section 2. In this temperature
data case, the characteristic curve of original experimental
temperature data is almost linear. After 10-time MI-2P-SMA,
the variance is extremely close to 1; the range of the relative
errors is significantly reduced; more than half data points
are kept. Therefore, 10 iteration times are selected for this
temperature data case.

B. PRESSURE DATA

Figure 7 shows the comparison of original experimental pres-
sure data, 4-, 5-, 6-, and 10-time MI-2P-SMA processed data
with linear regression analysis: blue dots and line shows orig-
inal experimental data and their trend line; orange dots and
line shows 4-time MI-2P-SMA processed data and their trend
line; grey dots and line shows 5-time MI-2P-SMA processed
data and their trend line; yellow dots and line shows 6-time
MI-2P-SMA processed data and their trend line; sky blue
dots and line shows 5-time MI-2P-SMA processed data and
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data.

Iteration time Linear regression equation Variance
0 y=0.4384x + 63.311 0.9896
4 y=0.4515x + 67.107 0.9946
5 y=0.4538x + 68.119 0.9947
6 y =0.4545x + 69.223 0.9945
10 y = 0.4396x + 74.483 0.993
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3.0000%

2.0000%

1.0000%

0.0000%

Relative Error

-1.0000%

-2.0000%

-3.0000%

-4.0000%
Pressure (kPa)

FIGURE 8. The comparison of relative errors of original experimental
pressure data, 4-, 5-, 6-, and 10-time MI-2P-SMA processed data: blue -
original, orange - 4, grey - 5, yellow - 6, sky blue - 10.

their trend line. Table 4 shows the linear regression equations
and variances of original experimental pressure data, 4-, 5-,
6-, and 10-time MI-2P-SMA processed data, where x is the
pressure value and y is the phase difference value. The linear
regression equation represents the theoretical linear relation
between pressure and the phase difference of the response
signal reflected by R;. The variance values are close to 1,
which means the data are close to their linear regression
equations.

Figure 8 shows the comparison of relative errors of orig-
inal experimental pressure data, 4-, 5-, 6-, and 10-time
MI-2P-SMA processed data. Table 5 shows the range of
relative errors of original experimental pressure data, 4-, 5-,
6-, and 10-time MI-2P-SMA processed data. The range of rel-
ative errors of the original experimental pressure data is from
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TABLE 5. The range of relative errors of original experimental pressure
data, 4-, 5-, 6-, and 10-time MI-2P-SMA processed data.

Iteration time Minimum Maximum
0 -3.3755% 2.9477%
4 -1.6194% 1.5162%
5 -1.4491% 1.4372%
6 -1.2177% 1.3802%
10 -1.2971% 0.9553%

—3.38% t0 2.95%. After 4-, 5-, 6-, and 10-time MI-2P-SMA,
the range of relative errors is from —1.62% to 1.52%, from
—1.45% 10 1.44%, from —1.22% to 1.38%, and from —1.30%
to 0.96%, respectively.

In summary of pressure data analysis, the MI-2P-SMA
method does not change the original characteristics of
experimental pressure data. The more iterative times of
MI-2P-SMA applies, the range of relative errors is more
significantly reduced, but in this pressure data case, the
variance value reaches highest after 5-time MI-2P-SMA,
and then it gradually drops. Figure 7 also shows the obvi-
ous reduction of the number of data points, which veri-
fied the regulation of MI-2P-SMA presented in Section 2.
In this pressure data case, the characteristic curve of original
experimental pressure data is almost linear. After 10-time
MI-2P-SMA, the range of relative errors is significantly
reduced, and more than half data points are kept. There-
fore, 10 iteration times are selected for this pressure data
case.

Compared with the temperature data, the original experi-
mental pressure data have larger error range than the original
experimental temperature data. This is due to the higher
relative resolution and accuracy of temperature sensing than
pressure by this WP-SAW reflective delay line temperature
and pressure sensor. The relative resolution and accuracy are
related to the sensor node design and the standard of the
fabrication processes.

VI. CONCLUSION

The improved MI-2P-SMA method is presented by
mathematic deviation from fundamental SMA and traditional
2P-SMA and diagram analysis. The method of selection of
the iterative time n is discussed. The WP-SAW reflective
delay line temperature and pressure sensor node is briefly
introduced. The experimental framework with instrumenta-
tion is introduced. The experimental temperature and pres-
sure data and their post-MI-2P-SMA results are compared
and discussed by regression and relative error analysis. The
results show: the MI-2P-SMA method does not change the
original characteristics of experimental data; the more itera-
tive time of MI-2P-SMA applies, the range of relative errors is
more significantly reduced; however, at least half data points
should be kept after MI-2P-SMA. Therefore, the iterative
time n should be less than the number of half data points.
The characteristics of original data should also be kept after
MI-2P-SMA.
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