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Abstract The nuclear pore complex (NPC) is the principal gateway between nucleus and

cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30

different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which

individually license passage of specific cargo classes. Here we show that two Nups of the inner

channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA

(piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results

in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of

other NPC subunits have widespread consequences. This provides evidence that some Nups can

acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC

has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange as genomic loci

subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.

Introduction
The main gateway between the nucleus and the cytoplasm is the nuclear pore complex (NPC), a

large multi-protein assembly spanning the nuclear envelope. The NPC is composed of multiple cop-

ies of ~30 proteins, termed nucleoporins (Nups), arranged into an eightfold symmetric ring

(Beck and Hurt, 2017; Hampoelz et al., 2019; Kim et al., 2018). Small molecules can freely diffuse

across the NPC, whilst particles larger than 40 kDa or 5 nm require active transport. Transcripts that

have passed nuclear quality control steps are actively trafficked across the NPC towards their target

sites (Tutucci and Stutz, 2011) and dedicated protein networks ensure that transcripts going

through the NPC reach their correct cytoplasmic destinations (Köhler and Hurt, 2007; Tutucci and

Stutz, 2011). The NPC has been implicated as more than a simple gateway, serving also as an active

player in gene regulation (Köhler and Hurt, 2010; Strambio-De-Castillia et al., 2010). Some Nups

associate with chromatin, displaying preferences for certain epigenetic modifications

(Capelson et al., 2010; Gozalo et al., 2020; Iglesias et al., 2020; Kalverda et al., 2010;

Vaquerizas et al., 2010), inducible genes sometimes re-locate proximally to the NPC upon activa-

tion (Blobel, 1985; Dieppois et al., 2006; Luthra et al., 2007; Rohner et al., 2013; Strambio-De-

Castillia et al., 2010), and other Nups contribute to heterochromatin organisation and epigenetic

inheritance (Holla et al., 2020; Iglesias et al., 2020). Notably, altered expression or mutation of
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certain Nups can cause human diseases that only affect specific tissues, despite the NPC being ubiq-

uitous (Beck and Hurt, 2017). This suggests that some Nups might have evolved tissue-specific func-

tions, though the nature of these remains elusive.

Transposable element (TE) silencing in animal gonads is accomplished primarily through the

action of piRNAs (Czech et al., 2018; Ozata et al., 2019). These 23- to 30-nt small RNAs guide

PIWI-clade Argonaute proteins to recognise and silence active TEs. piRNAs originate from discrete

genomic loci, termed piRNA clusters, largely composed of TE remnants (Aravin et al., 2006;

Brennecke et al., 2007; Mohn et al., 2014). In Drosophila melanogaster, dual-strand clusters pro-

duce RNAs from both genomic strands in the nurse cells of the ovary (Figure 1—figure supplement

1A) and rely on non-canonical transcription and export mechanisms (Andersen et al., 2017;

ElMaghraby et al., 2019; Kneuss et al., 2019; Mohn et al., 2014; Zhang et al., 2014). Specification

of these transcripts for piRNA production takes place in perinuclear structures, namely nuage

(Lim and Kai, 2007; Malone et al., 2009; Senti et al., 2015). Uni-strand clusters instead are tran-

scribed from only one genomic strand and appear to be conventional RNA polymerase II transcripts

(Brennecke et al., 2007; Dennis et al., 2016; Goriaux et al., 2014; Mohn et al., 2014). Of the two

Drosophila uni-strand clusters, flamenco (flam) is the principal source of piRNAs in the somatic folli-

cle cells that enclose egg chambers (Figure 1—figure supplement 1A; Brennecke et al., 2007;

Malone et al., 2009) and was originally identified as a master regulator of gypsy retrotransposons

(Mével-Ninio et al., 2007; Pélisson et al., 1994; Prud’homme et al., 1995). Being an unusually

large transcriptional unit, flam covers up to ~650 kb of pericentromeric heterochromatin of chromo-

some X and depends on conventional RNA export mechanisms, centred on the nuclear export factor

heterodimer Nxf1/Nxt1 (Dennis et al., 2016; Herold et al., 2001; Tutucci and Stutz, 2011). Upon

export, flam transcripts localise to perinuclear Yb-bodies, where they are thought to be licensed for

piRNA biogenesis (Hirakata et al., 2019; Murano et al., 2019; Qi et al., 2011; Saito et al., 2010),

though the underlying molecular mechanisms are not fully understood.

eLife digest Transposons are genetic sequences, which, when active, can move around the

genome and insert themselves into new locations. This can potentially disrupt the information

required for cells to work properly: in reproductive organs, for example, transposon activity can lead

to infertility. Many organisms therefore have cellular systems that keep transposons in check.

Animal cells comprise two main compartments: the nucleus, which contains the genetic

information, and the cytosol, where most chemical reactions necessary for life take place. Molecules

continually move between nucleus and cytosol, much as people go in and out of a busy train station.

The connecting ‘doors’ between the two compartments are called Nuclear Pore Complexes (NPCs),

and their job is to ensure that each molecule passing through reaches its correct destination.

Recent research shows that the individual proteins making up NPCs (called nucleoporins) may

play other roles within the cell. In particular, genetic studies in fruit flies suggested that some

nucleoporins help to control transposon activity within the ovary – but how they did this was still

unclear. Munafò et al. therefore set out to determine if the nucleoporins were indeed actively

silencing the transposons, or if this was just a side effect of altered nuclear-cytosolic transport.

Experiments using cells grown from fruit fly ovaries revealed that depleting two specific

nucleoporins, Nup54 and Nup58, re-activated transposons with minimal effects on most genes or

the overall health of the cells. This suggests that Nup54 and Nup58 play a direct role in transposon

silencing.

Further, detailed analysis of gene expression in Nup54- and Nup58-lacking cells revealed that the

product of one gene, flamenco, was indeed affected. Normally, flamenco acts as a ‘master switch’ to

turn off transposons. Without Nup54 and Nup58, the molecule encoded by flamenco could not

reach its dedicated location in the cytosol, and thus could not carry out its task.

These results show that, far from being mere ‘doorkeepers’ for the nucleus, nucleoporins play

important roles adapted to individual tissues in the body. Further research will help determine if the

same is true for other organisms, and if these mechanisms can help understand human diseases.

Munafo�et al. eLife 2021;10:e66321. DOI: https://doi.org/10.7554/eLife.66321 2 of 27

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.66321


Yb-bodies are cytoplasmic, perinuclear condensates of the DEAD-box RNA helicase Yb, encoded

by the fs(1)Yb gene, which is exclusively expressed in somatic follicle cells (Figure 1—figure supple-

ment 1A; Hirakata et al., 2019; Olivieri et al., 2010; Qi et al., 2011; Saito et al., 2010;

Szakmary et al., 2009). Yb is essential for somatic piRNA production, and its assembly into Yb-bod-

ies does not depend on any known piRNA biogenesis factor, and therefore is at the apex of the

piRNA biogenesis protein network (Hirakata et al., 2019; Ishizu et al., 2015; Ishizu et al., 2019;

Murota et al., 2014; Olivieri et al., 2010; Saito et al., 2010). Yb-bodies have been reported to pos-

sess biophysical properties typical of phase-separated condensates, which likely facilitate the bio-

chemical processes happening in these foci (Hirakata et al., 2019). Given that flam is the major

piRNA source locus in somatic follicle cells, we and others have found that the formation of Yb-bod-

ies depends on flam RNA (Figure 1—figure supplement 1; Dennis et al., 2016; Hirakata et al.,

2019; Sokolova et al., 2019). Two previously described flam mutant alleles (Brennecke et al.,

2007; Malone et al., 2009; Mével-Ninio et al., 2007) disrupt piRNA cluster transcription via P-ele-

ment insertions near the 50 end: flamBG, carrying an insertion in the putative promoter, and flamKG,

carrying an insertion immediately downstream of the TSS (Figure 1—figure supplement 1B). The

strongest effect on flam expression is observed in trans-heterozygous flies (flamBG/KG), obtained

through crosses between the two alleles. These mutants show strong de-repression of somatic,

gypsy-family TEs (Brennecke et al., 2007; Malone et al., 2009; Mével-Ninio et al., 2007; Figure 1—

figure supplement 1C, D), which is accompanied by a disassembly of Yb-bodies, despite some of

the protein still being present (Figure 1—figure supplement 1E–G). Notably, the production of

other classes of piRNAs, such as those derived from the 30 UTR of coding genes, is unchanged in

these mutants (Hirakata et al., 2019; Sokolova et al., 2019), further underscoring a link between

flam and Yb-bodies. Knockdowns of nxf1/nxt1 in ovarian somatic cells (OSCs), a cell line derived

from the somatic compartment of the ovary that expresses a functional piRNA pathway (Saito et al.,

2009), also compromise Yb-bodies formation (Figure 1—figure supplement 1A, H), with similar

results reported in soma-specific knockdowns in ovaries (Dennis et al., 2016; Sokolova et al.,

2019). These results, together with previous findings (Dennis et al., 2016; Hirakata et al., 2019;

Sokolova et al., 2019), suggest that the production and localisation of flam transcripts to Yb-bodies

and the assembly of those structures are interdependent. Nonetheless, it is still unknown how the

transcript is specifically directed to Yb-bodies and, from there, licensed for processing.

Here, by investigating the export and licensing of flam, we uncover a requirement of specific

channel Nups for TE silencing in the somatic cells of the Drosophila ovary. We find that depletion of

some NPC subunits compromises the assembly of Yb-bodies and that loss of Nup54 and Nup58 spe-

cifically impacts flam export, but not that of bulk mRNAs. We show that Nup54 and Nup58 physically

associate with Nxf1/Nxt1 as well as Yb, implying the existence of an export-coupled localisation

mechanism specifying flam as a piRNA precursor. Considered together, our results suggest that

genomic loci under strong selective pressure can co-opt NPC subunits to facilitate expression, thus

expanding the repertoire of processes in which Nups play a role.

Results

FG nucleoporins Nup54 and Nup58 function specifically in transposon
control
Various Nups have been ascribed gene regulatory functions, often via chromatin binding (Strambio-

De-Castillia et al., 2010), and a subset of NPC subunits has been genetically implicated in transpo-

son control in Drosophila ovaries (Czech et al., 2013; Handler et al., 2013; Muerdter et al.,

2013; Figure 1A). To understand whether any of these Nups play a specific role in piRNA-guided

TE silencing, we systematically assessed the effect of their depletion on cell viability, TE expression,

and Yb-body formation in OSCs (Figure 1A, B). Knockdown of most Nups resulted in pronounced

cell death and disassembled Yb-bodies, with little to no effect on TEs (Figure 1B, Figure 1—figure

supplement 2A–F, Figure 1—figure supplement 3). Instead, loss of subunits of the Nup62 sub-

complex (Nup54-Nup58-Nup62) and their scaffold Nup93-1 (Chug et al., 2015; Stuwe et al., 2015;

Ulrich et al., 2014) caused strong TE de-repression (Figure 1B, Figure 1—figure supplement 2A–

F). Among these, only the depletion of Nup54 and Nup58 resulted in TE up-regulation without

severely affecting cell viability (Figure 1B, Figure 1—figure supplement 2A), potentially hinting to
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Figure 1. Requirement of Nuclear Pore Complex (NPC) subunits for gene regulation and transposon control. (A) Heatmap summarising literature data

for selected Nups and export factors and (B) effects of each knockdown (kd) on cell viability, transposon expression levels with respect to siGFP and Yb-

body assembly after 96 hr of siRNA treatment (n = 3; see also Figure 1—figure supplement 2A–E and Figure 1—figure supplement 3). Asterisks

denote samples imaged after 48 hr of siRNA treatment because of lethality at later timepoints. (C) Confocal images of Yb and Piwi proteins in ovarian

somatic cells (OSCs) upon the indicated kd. Dotted red lines denote nuclear envelope (see also Figure 1—figure supplement 2F). (D–H) MA plots

showing mean expression levels (reads per million mapped reads, rpm) against fold-changes of genes and transposable elements (TEs) in RNA-seq

from the indicated kd with respect to siGFP control (n = 4). Yellow: genes de-regulated more than fourfold with adjusted p value < 0.05; blue: TEs; blue

outlines: genes de-regulated more than fourfold carrying a nearby TE (gypsy, mdg1, 412, or blood) insertion in OSCs; magenta: uni-strand piRNA

clusters (20A and flam). (I) Fold-changes in transcript levels upon the indicated kd with respect to siGFP.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Yb-body formation is dependent on flam.

Figure supplement 2. Effects of Nuclear Pore Complex subunits on transposable element (TE) silencing and Yb-body assembly in ovarian somatic cells
(OSCs).

Figure supplement 3. Effects of Nuclear Pore Complex subunits on Yb-body assembly in ovarian somatic cells (OSCs).

Munafo�et al. eLife 2021;10:e66321. DOI: https://doi.org/10.7554/eLife.66321 4 of 27

Research article Cell Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.66321


an effect distinct from general nuclear transport. Yb-bodies were also dispersed in siNup54 and

siNup58 and residual Yb was visible only at increased laser power, despite an overall minor effect on

Yb protein levels (Figure 1B, C, Figure 1—figure supplement 2C–G). Of note, TE de-repression

caused by knockdown of nup54 and nup58 was comparable to that observed upon depletion of

Nxt1 (Figure 1B, Figure 1—figure supplement 2A), reported to also function in the co-transcrip-

tional gene silencing branch of the piRNA pathway (Batki et al., 2019; Fabry et al., 2019;

Murano et al., 2019; Zhao et al., 2019). These data indicate that loss of TE silencing upon deple-

tion of most Nups is likely a result of the general NPC function in gene expression, whereas Nup54

and Nup58 seem to have more specific roles in transposon control.

To test this hypothesis, we carried out RNA-seq from OSCs depleted of the Nup62 complex sub-

units (Nup62-Nup54-Nup58), the scaffold protein Nup93-1 or the piRNA biogenesis factor Yb

(Olivieri et al., 2010; Saito et al., 2010; Szakmary et al., 2009). Cells depleted of Nup54 or Nup58

showed a strong increase in the expression of gypsy-family TEs, which are known to be expressed in

the somatic compartment of the ovary and regulated by flam (Figure 1D–F, Figure 1—figure sup-

plement 1C–D; Lécher et al., 1997; Pélisson et al., 1994; Prud’homme et al., 1995). Both the

spectrum of TEs affected and the magnitude of de-repression were very similar to those observed in

yb knockdowns. In contrast, we observed only a moderate impact on protein-coding genes, with

130 genes de-regulated in siYb (more than fourfold and adjusted p value < 0.05), 42 in siNup54, and

42 in siNup58 (Figure 1D–F, Figure 2—figure supplement 1A). A substantial fraction of those

genes up-regulated by more than fourfold is found nearby transposon insertions that become de-

silenced when the piRNA pathway is compromised (49/126 or 39% in siYb, 16/39 or 41% in siNup54,

13/40 or 33% in siNup58) (Figure 1D–F). One such example is the expanded (ex) gene on chromo-

some 2L (Figure 1D–F). This strongly suggests that most of the gene expression changes observed

upon these knockdowns are in fact a consequence of TE re-activation.

Although knockdown of nup62 and nup93-1 also caused de-repression of some flam-regulated

TEs, we found much more pronounced mis-expression of protein-coding genes, with 207 genes de-

regulated in siNup62 and 417 in siNup93-1 (more than fourfold and adjusted p value < 0.05)

(Figure 1G, H), which could not be explained by proximity to nearby TE insertions. Furthermore, this

was accompanied by de-repression of TEs that are not normally subject to piRNA-mediated silencing

in somatic cells, for example, R2-element (Figure 1G, H). Of note, siNup62 and siNup93-1 resulted

in expression changes of other Nups, RNA export factors, and Yb, presumably via indirect effects on

nuclear transport and/or gene expression (Figure 1I). Considered together, our results indicate that,

in somatic follicle cells, Nup54 and Nup58 play specialised roles dedicated to transposon silencing,

distinct from Nup62 and Nup93-1. This functional specialisation of the two proteins, especially from

their closest binding partners in the NPC, is highly surprising, particularly considering that Nup54

and Nup58 are integral components of an essential and ubiquitous protein complex and so pre-

sumed to have general functions across the animal.

Nup54 and Nup58 disruption specifically affects flam transcript stability
Nup54 and Nup58 belong to the highly conserved class of ‘FG-Nups’ (Beck and Hurt,

2017; Figure 2A) and constitute the heterotrimeric Nup62 complex (Nup54-Nup58-Nup62)

(Chug et al., 2015; Stuwe et al., 2015; Ulrich et al., 2014) that lines the inner channel of the NPC

(Beck and Hurt, 2017; Grandi et al., 1995; Kim et al., 2018). The phenylalanine-glycine (FG)

repeats of the Nup62 complex subunits contribute to the selective permeability barrier of the NPC

and interact with nuclear transport receptors, such as Nxf1 (Köhler and Hurt, 2007). Our RNA-seq

showed a reduction in steady-state levels of flam transcript upon nup54, nup58, nup62, nup93-1,

and yb knockdowns in OSCs (Figure 1D-H, Figure 2B, Figure 2—figure supplement 1B). This was

both specific to flam as other somatic piRNA source loci (e.g. the protein-coding gene tj or the

piRNA cluster 20A) were unaffected (Figure 2—figure supplement 1C, D), and unexpected since

prior studies had shown accumulation of flam transcripts in cases where its conversion into piRNAs

was disrupted, for example, by knockdown of the ribonuclease zuc (Murota et al., 2014). To probe

the underlying mechanism, we first asked whether the impact was uniform throughout the locus. To

address this question, we divided the flam genomic region into non-overlapping 1 kb bins and

extracted those reads that could be mapped with high confidence (see Materials and methods).

Plotting fold-changes in these 1 kb bins following zuc knockdown, which prevents flam processing

into piRNAs, showed an increased precursor abundance that was uniform across the entire locus
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Figure 2. Phenylalanine-glycine (FG) nucleoporins Nup54 and Nup58 function specifically in transposable element (TE) silencing. (A) Cartoon showing

the Nuclear Pore Complex (NPC) structure with nuclear and cytosolic factors involved in flam export; inset shows the domain structure of the Nup62

complex subunits and of Nup93-1. Green boxes: FG-repeats; purple box: Nup54-family domain; grey box: Nic96-family domain. (B) Box plots showing

changes in flam RNA levels in the indicated knockdowns (kd) or genotypes. Each datapoint corresponds to a 1 kb bin. Fold-changes were calculated for

each bin with respect to the siGFP control. (C) Heatmaps showing changes in flam RNA levels in the indicated kd. Each datapoint corresponds to a 1 kb

bin, ordered from 50 to 30. Fold-changes were calculated for each bin with respect to the relative siGFP control. (D, E) Coverage plots of piRNAs and

RNA-seq reads uniquely mapped to the flam locus or to the protein-coding gene tj upon the indicated kd. The mappability for 25 bp reads is shown at

the bottom. (F, G) Scatter plots showing expression levels of PIWI-interacting RNAs (piRNAs) upon the indicated kd. (H) Heatmaps showing changes in

flam-derived piRNA levels upon the indicated kd. Each datapoint corresponds to a 1 kb bin, ordered from 50 to 30. Fold-changes were calculated for

each bin with respect to the siGFP control. (I) Quantification of nuclear and cytoplasmic flam RNA-FISH foci is shown. Nnuc = total number of nuclei

analysed; ndots = total number of flam foci counted. (L) Confocal images of flam RNA and polyA-tail containing transcripts (oligo-dT) in ovarian somatic

cells (OSCs) upon the indicated kd (full panel in Figure 2—figure supplement 3A). Arrowheads indicate cytosolic flam foci. Dotted line denotes the

nuclear envelope based on anti-lamin staining. (M) Confocal images of polyA-tailed transcripts (oligo-dT) in OSCs upon the indicated kd (full panel in

Figure 1—figure supplement 2C and Figure 1—figure supplement 3).

Figure 2 continued on next page
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(Figure 2B, C). In contrast, depletion of Yb, Nup54, and Nup58 revealed a reduction that was more

pronounced towards the 30 end of flam (Figure 2B, C). In nup62 and nup93-1 knockdowns, reduced

RNA levels were uniform, again highlighting a different role for these Nups (Figure 2B, C). As

expected, we observed uniformly reduced RNA levels in flamBG/KG trans-heterozygous mutants that

impair transcription of the entire locus (Figure 2B, Figure 2—figure supplement

1E; Brennecke et al., 2007; Goriaux et al., 2014; Malone et al., 2009). All these analyses showed

similar patterns using 100 kb sliding windows (Figure 2—figure supplement 1F), thus our results

were consistent regardless of the window size.

Next, to determine whether the observed reduction stems from decreased transcription initiation,

we examined nascent RNA at the flam locus via PRO-seq. PRO-seq in control cells (siGFP) revealed

one major transcription initiation peak, as expected (Brennecke et al., 2007; Goriaux et al., 2014),

and detected a second, previously unidentified, minor peak ~1 kb further downstream (Figure 2—

figure supplement 1G). Knockdown of nup54, nup58, or yb had little to no effect on either signal

around the transcription initiation site or within the first 10 kb and 40 kb of flam, whereas a more

pronounced decrease in siYb cells was observed upon inspection of the entire locus (Figure 2—fig-

ure supplement 1G, H). In contrast, global PRO-seq signal from protein-coding genes and cluster

20A was unchanged (Figure 2—figure supplement 1I). Overall, these observations are consistent

with a hypothesis that loss of Nup54 or Nup58 reduces the stability of flam transcripts, with larger

effects on regions distal from the transcription initiation sites.

Nup54 and Nup58 are specifically required for flam export and
processing into piRNAs
To analyse the effects of Nup54 and Nup58 depletion on piRNA populations, we sequenced small

RNAs from OSC knockdowns. As previously reported (Hirakata et al., 2019), depletion of Yb caused

a collapse in the antisense, TE-targeting piRNA population, but leaving 21-nt siRNAs unaffected

(Figure 2—figure supplement 2A, B). Knockdown of nup54 and nup58 resulted in

a approximately threefold decrease in antisense piRNAs, but this impact was highly specific to those

derived from flam (Figure 2D, Figure 2—figure supplement 2A, B). In contrast, piRNAs derived

from tj and cluster 20A were unaffected or slightly more abundant (Figure 2E, Figure 2—figure sup-

plement 2C). Whilst siYb had a general impact on piRNA production, in line with its role as key bio-

genesis factor (Hirakata et al., 2019; Ishizu et al., 2015; Ishizu et al., 2019; Murota et al., 2014;

Olivieri et al., 2010; Saito et al., 2010), siNup54 and siNup58 only showed a reduction of flam-

derived piRNAs (Figure 2F, G, Figure 2—figure supplement 2D). Binning analysis of the flam locus

showed that piRNAs were lost homogenously along the entire cluster in siYb (Figure 2H, Figure 2—

figure supplement 2E), unlike the precursor transcript levels measured by RNA-seq, indicating that

no processing can occur in the absence of Yb. In contrast, piRNA loss upon nup54 and nup58 knock-

down was more pronounced towards the 30 region (Figure 2H, Figure 2—figure supplement 2E),

mirroring the precursor transcript reduction observed by RNA-seq. These data are in agreement

with a defect in precursor specification upon siYb and suggest that Nup54 and Nup58 play a role in

flam piRNA biogenesis that is distinct from that of Yb.

RNA-FISH for flam in OSCs typically shows discrete foci on the nuclear rim and in the cytosol

(Dennis et al., 2016; Murota et al., 2014; Figure 2L, Figure 2—figure supplement 3A). Depletion

of Nup54 and Nup58 resulted in clustering of the signal in one predominant focus within the nuclear

envelope (Figure 2I–L, Figure 2—figure supplement 3A). Since the flam DNA locus is located at

the nuclear periphery (Figure 2—figure supplement 3B, C), this RNA nuclear focus likely corre-

sponds to flam RNPs stalled prior to nuclear export (Dennis et al., 2016; Dennis et al., 2013).

Nonetheless, this positions the flam locus in close proximity to the NPC, possibly underscoring the

need of a specialised transcription-coupled export machinery linked directly to piRNA production.

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Effects of Nup54 and Nup58 knockdown (kd) on flam expression.

Figure supplement 2. Nup54 and Nup58 are required for PIWI-interacting RNA (piRNA) production from flam.

Figure supplement 3. Nup54 and Nup58 are required for flam export.
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Of note, neither nup54 nor nup58 knockdown affected the distribution of bulk polyadenylated

mRNAs (Figure 1—figure supplement 2C, Figure 1—figure supplement 3, Figure 2L, Figure 2—

figure supplement 3A), unlike depletion of Nxf1 or Nxt1, which instead resulted in nuclear retention

of newly synthesised mRNA (Figure 1—figure supplement 2C, Figure 1—figure supplement 3,

Figure 2M), as reported (Herold et al., 2001).

Considered together, these results indicate that transposon silencing defects resulting from loss

of Nup54 or Nup58 arise from their role in facilitating flam export from the nucleus. In OSCs and fol-

licle cells of the ovary, this activity dominates any general function in NPC biology since cells are via-

ble and distributions of bulk mRNAs are largely unaffected upon their depletion. Given that the

effect is most prominent on the 30 end of the transcript, we hypothesise that Nup54 and Nup58

might be required to ensure processivity of nuclear export of this, otherwise unstable, long tran-

script. In this scenario, residual flam molecules (likely corresponding to the 50 portion of the cluster)

that reach the cytosol upon siNup54 and siNup58 might still be processed by Yb, although with

lower efficiency than within properly formed Yb-bodies. This role of Nup54 and Nup58 could also,

directly or indirectly, affect transcriptional elongation and termination of the piRNA cluster; however,

further work will be required to test this hypothesis.

Characterisation of Nup54 and Nup58 domains required for TE
silencing
The FG-repeats of Nup54 and Nup58 protrude into the inner channel to form the NPC permeability

barrier and interact with nuclear transport receptors, such as Nxf1, making these regions obvious

candidates for regulating flam export. We therefore designed deletion mutants targeting Nup54

and Nup58 domains and assayed their ability to interact with other Nups and to rescue TE de-

repression in OSCs (Figure 3A). These constructs lack either the amino-terminal region, which in

both Nups carries the FG-repeats, or the carboxy-terminal part, which mediates the interaction of

these proteins with each other and with the rest of the pore (Figure 3A, B; Chug et al., 2015;

Stuwe et al., 2015). We depleted Nup54 or Nup58 individually in OSCs and then re-introduced

either an siRNA-resistant full-length (FL) or deletion construct of Nup54/Nup58, or a negative control

(mCherry), and assayed their ability to restore transposon repression. As expected, FL Nup54 and

Nup58 rescued mdg1 up-regulation to levels comparable to siGFP (Figure 3C). Likewise, deleting

the FG-repeats in Nup54 and Nup58 (DFG) had little effect on their TE silencing capability compared

to FL Nups. In contrast, Nup54 and Nup58 lacking the C-terminal domain (DC) failed to rescue trans-

poson de-repression (Figure 3C, Figure 3—figure supplement 1A). These results suggest that the

ability to interact with the other Nups is required to ensure TE silencing, and thus that Nup54 and

Nup58 carry out this function from within the NPC.

With very few exceptions, Nup null mutants are generally not viable in Drosophila. One such

exception, the nup54MB003363 (nup54MB) allele, produces a truncated protein lacking the carboxy-ter-

minal region due to a Mi{ET1} transposon insertion (Nallasivan et al., 2020). This shortened Nup54

protein lacks the Nup54-family domain (Figure 3A, D, Figure 3—figure supplement 1B) and fails to

co-precipitate with Nup58 (Figure 3E), as expected from earlier reports (Chug et al., 2015). Thus, it

resembles the carboxy-terminal truncation (Nup54DC) that is unable to sustain transposon repression

in OSCs (Figure 3A–C). We sought to determine if this hypomorphic allele phenocopies the molecu-

lar phenotype of the nup54 knockdown in OSCs. Trans-heterozygous flies (nup54MB/9B4) carrying the

nup54MB allele over the nup549B4 deficiency spanning the entire nup54 locus (Nallasivan et al.,

2020) were viable, although at reduced Mendelian ratios, and had smaller, but not rudimentary, ova-

ries (Figure 3—figure supplement 1C). To minimise differences in TE content between fly strains,

we crossed the nup54MB allele to w1118 flies and compared nup54MB/9B4 trans-heterozygote mutants

to nup54MB/w1118 heterozygotes and to w1118 controls. RNA-seq from ovaries of trans-heterozygous

nup54MB/9B4 flies showed TE de-repression and reduced flam RNA levels (Figure 3F, G, Figure 3—

figure supplement 1D). Expression levels of major dual-strand piRNA clusters (42AB, 38C, and 80F),

which rely on different, specialised transcription and export pathways, were unchanged, if not

slightly higher, in the case of 80F (Figure 3F). Of note, the increased expression of flam-regulated

transposons (e.g. gypsy) was already evident in nupMB/w1118 heterozygous flies

(Figure 3G, Figure 3—figure supplement 1D). In this in vivo setting, we observed a broader impact

on the expression of protein-coding genes than for knockdowns in cell culture (Figure 3—figure

supplement 1D, E), likely reflecting a more general function of Nup54 in the germline tissue of the
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ovary. In this regard, also germline TEs were up-regulated in nup54 mutants (Figure 3G, Figure 3—

figure supplement 1D), confirming an earlier genetic link to TE silencing in germ cells (Czech et al.,

2013). Close inspection of the levels of flam RNAs using the previously described binning strategy

showed that the down-regulation was more prominent towards promoter-distal regions of the clus-

ter (Figure 3—figure supplement 1F), thus recapitulating our results from knockdowns in OSCs.

Lastly, Yb-bodies were reduced in nup54MB/9B4 trans-heterozygous flies (Figure 3H, Figure 3—fig-

ure supplement 2). The yb transcript is mildly up-regulated in nup54MB/9B4 (Figure 3—figure sup-

plement 1E), thus loss of Yb-bodies likely arises as a result of compromised flam export.

Overall, these data confirm a requirement of Nup54 and Nup58 for the expression and TE silenc-

ing activity of flam in both OSCs and in vivo. We find that the ability of Nup54 and Nup58 to form a

complex is critical for their function but the integrity of the FG-repeat regions of each protein
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Figure 3. Nup54 and Nup58 are specifically required for flam export and processing into PIWI-interacting RNAs (piRNAs). (A) Schematic of the Nup54

and Nup58 domain structure and the deletion constructs used in rescue experiments and co-immunoprecipitation assays. Green box: phenylalanine-

glycine (FG)-repeats; purple box: Nup54-family domain. (B) Western blots of FLAG-tag co-immunoprecipitates from lysates of S2 cells transfected with

the indicated constructs. IN: input; UB: unbound; IP: immunoprecipitate. (C) Fold-changes in steady-state RNA levels of the mdg1 transposon in ovarian

somatic cells (OSCs) nucleofected with the indicated siRNAs and rescue constructs. Values are relative to siGFP and normalised to rp49. Error bars

indicate standard deviation (n = 4). p values indicated next to each bar were calculated with respect to the relative mCherry control (unpaired t-test). (D)

Schematic of the nup54MB allele. The dashed box indicates the portion that is absent in the mutant (purple box: Nup54 family domain). (E) Western

blots of FLAG-tag co-immunoprecipitates from lysates of S2 cells transfected with the indicated constructs. (F) Box plots showing changes in piRNA

cluster transcript levels in the indicated genotypes. Each datapoint corresponds to a 1 kb bin. (G) Steady-state levels of transposable element (TE)

transcripts in the indicated genotypes. (H) Confocal images of Yb protein in follicle cells of the indicated genotypes (full panel in Figure 3—figure

supplement 2).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Effect of nup54MB mutants on gene expression.

Figure supplement 2. Effect of nup54MB mutants on Yb-body assembly.
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individually is not. Of note, the FG-repeats of their yeast homologs Nup49 and Nup57 are also dis-

pensable for cell survival, leading to the suggestion that not all FG-Nups are equivalent and some

can facilitate distinct translocation pathways (Iovine et al., 1995; Strawn et al., 2004).

Nup54/Nup58 coordinate nuclear export and cytosolic licensing of flam
via Nxf1 and Yb
To understand the molecular basis of this specificity, we explored three avenues: (1) physical proxim-

ity of the flam genomic locus to cytosolic Yb-bodies, (2) direct binding of Nup54 and/or Nup58 to

flam RNA, or (3) an interaction between Nup54/Nup58 and flam RNP export complexes. Although

the flam locus is at the nuclear periphery, we failed to detect any consistent correlation with the

position of Yb-bodies on the opposite side of the nuclear envelope in both OSCs and ovaries (Fig-

ure 2—figure supplement 3C; Figure 2—figure supplement 3D ) thus the first hypothesis seems

unlikely. To test the second possibility, we carried out CLIP-seq for Nup54, Nup58, and the mRNA

exportin Nxf1, which was previously implicated in flam export (Dennis et al., 2016). Nxf1 was shown

to be loaded onto nascent mRNAs upon splicing, to interact with FG-Nups and to function itself as a

mobile Nup (Ben-Yishay et al., 2019; Derrer et al., 2019; Köhler and Hurt, 2007), therefore repre-

senting the most probable link between the nascent flam transcript and the NPC. CLIP-seq experi-

ments with HALO-tagged Nup54 and Nup58 failed to enrich for flam RNA, whereas independent

experiments with amino- and carboxy-terminally HALO-tagged Nxf1 showed an interaction towards

the 50 end of the flam transcript (Figure 4—figure supplement 1A), which was reported to undergo

splicing (Goriaux et al., 2014). Since the association of Nxf1 with a cargo transcript is believed to

follow a splicing event, this may implicate its co-transcriptional loading onto the 50 spliced region of

flam as the initial signal for export. So far, no splicing has been reported in the downstream regions

of flam.

Next, we sought to determine whether the so far identified factors participating in flam export

(i.e. Nxf1, Nup54, Nup58, and Yb) physically interact with each other. We first searched for protein

interactions between Yb and the NPC via BASU-mediated proximity labelling, followed by mass

spectrometry (PL-MS) in OSCs (Kim et al., 2014; Munafò et al., 2019; Ramanathan et al., 2018;

Roux et al., 2012). In this experiment, the protein of interest is fused to a biotin ligase (BASU) and

expressed in OSCs. Upon biotin supplementation, the fusion protein produces activated biotin-AMP

intermediates that covalently attach to accessible lysine residues of proteins in close spatial proxim-

ity (Roux et al., 2012). Biotinylated proteins are subsequently recovered by streptavidin pulldown

and identified by quantitative mass spectrometry. Yb PL-MS enriched, among others, for the known

Yb interactors Armi and Piwi (Hirakata et al., 2019; Saito et al., 2010) but not for mitochondrial

piRNA pathway proteins (Figure 4—figure supplement 1B, Figure 4—figure supplement 1—

source data 1), in line with the current model for piRNA biogenesis that postulates shuttling of Armi

between Yb-bodies and mitochondria but not that of Yb itself (Ge et al., 2019; Munafò et al.,

2019; Yamashiro et al., 2020). Only one Nup, Nup214, which localises to the cytoplasmic filaments

and whose yeast homolog (Nup159) cooperates with the DEAD-box helicase Dbp5 in disassembling

export complexes, was detected as significantly enriched. This result indicates that Yb is not an inte-

gral NPC component but may nonetheless localise proximally to the cytosolic filaments of the pore.

Instead, PL-MS for Nup54 and Nup58 (Figure 4A, B, Figure 4—source data 1, Figure 4—source

data 2) enriched for various subunits of the NPC, including all the components of the Nup62 sub-

complex and the scaffold Nup93-1. We detected a modest enrichment of Nxf1, which is known to

interact with FG-Nups and to export flam RNA (Dennis et al., 2016; Segref et al., 1997). Notably,

Yb was among the most highly enriched proteins in PL-MS for both Nups (Figure 4A, B), thus indi-

cating that Yb contacts the (cytoplasmic side of the) NPC in OSCs. No other known piRNA pathway

factor was detected in proximity to Nup54 and Nup58 with this approach.

Since neither of the Nups was detected by Yb PL-MS, we sought to probe a putative interaction

between Yb and the NPC via alternative methods. Using immunofluorescence, we could often

observe overlapping and/or adjacent signals between Yb and Nup54/Nup58 (Figure 4C), as approx-

imated by biotinylation staining from TurboID fusion proteins (Branon et al., 2018); however, the

Nup signal was found along the entire nuclear envelope and not exclusively in association with Yb-

bodies (Figure 4C). Conversely, Yb-bodies were often distinct from Nup foci, thus indicating that Yb

is not stably anchored to the NPC but rather dynamic and possibly explaining why only the cytosolic

Nup214 was detected by Yb PL-MS. These data were not an artefact due to protein over-expression
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as we observed similar staining patterns using an antibody specific for FG-Nups (Figure 4D, Fig-

ure 4—figure supplement 1C). This suggests that physical associations between Yb and Nup54/

Nup58 within the NPCs are likely transient and that Nup54/Nup58 are not confined only to a dis-

crete site on the nuclear envelope. With Nup54 and Nup58 expected to being present in every
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Figure 4. Nup54 and Nup58 coordinate export and licensing of flam via Nxf1 and Yb. (A, B) Volcano plots

showing enrichment and corresponding significance of biotinylated proteins identified via proximity labelling,

followed by mass spectrometry (PL-MS) from ovarian somatic cells (OSCs) expressing the indicated constructs

against control (n = 3). NPC subunits: green; Yb: magenta; Nxf1: blue; bait protein: yellow. (C, D) Confocal images

of Yb protein and TurboID-Nup54/Nup58 or phenylalanine-glycine nucleoporins (FG-Nups) in OSCs. Arrowheads

indicate Yb-bodies juxtaposed to Nup foci. (E, F) Western blots of FLAG-tagged co-immunoprecipitates from cells

transfected with the indicated constructs and siRNAs. (G) Proposed model of flam export-coupled licensing in

OSCs.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for volcano plot shown in Figure 4A.

Source data 2. Source data for volcano plot shown in Figure 4B.

Figure supplement 1. Nup54/Nup58 coordinate flam export and licensing by bridging Nxf1 and Yb.

Figure supplement 1—source data 1. Source data for volcano plot shown in Figure 4—figure supplement 1B.
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pore, flam export might only be initiated where they contact Yb, and this in turn would nucleate Yb-

body assembly. We cannot formally exclude the hypothesis that a pool of Nup54 and Nup58 is also

present within Yb-bodies and carries out its function independently of the NPC, although in this case

one might have expected them to be detected in Yb PL-MS experiments.

To test whether Yb binds directly to Nup54 and Nup58, we carried out co-immunoprecipitation

experiments in Drosophila Schneider 2 (S2) cells, which do not express a functional piRNA pathway

and represent a convenient system to investigate protein-protein interactions that are not bridged

by other piRNA pathway components. We used 3xFLAG-tagged Yb, Nup54, or Nup58 as baits and

probed for the corresponding HA-tagged versions. As expected, Nup54 and Nup58 recovered a

substantial amount of their respective partner Nup (Figure 4E). We also detected interactions with

Yb and, to a lesser extent, with Nxt1 and Nxf1 (Figure 4E). Co-immunoprecipitation of Nup54/

Nup58 and Yb in OSCs was insensitive to RNase I treatment (Figure 4—figure supplement 1D),

thus indicating that their interaction is not mediated by flam RNA, and to knockdown of endogenous

Yb, thus ruling out over-expression artefacts (Figure 4F, Figure 4—figure supplement 1F). Recipro-

cal pull-down experiments in OSCs confirmed these findings, with 3xFLAG-Yb recovering HA-tagged

Nup54 and Nup58 and only modest amounts of Nxt1, but not Nxf1 (Figure 4—figure supplement

1E). The amino-terminal region of Yb contains a HelC domain, which is required exclusively for flam

piRNA production as opposed to piRNA biogenesis in general (Hirakata et al., 2019). Its deletion in

OSCs recapitulates the biogenesis phenotype caused by nup54 and nup58 knockdown. We

observed that this deletion weakened, though did not completely abolish, the interaction between

Yb and the Nups (Figure 4F, Figure 4—figure supplement 1F), thus indicating that it is at least par-

tially responsible for anchoring Yb to the NPC. Co-immunoprecipitation of HA-tagged FL Nup54/

Nup58 or versions carrying the FG or carboxy-terminus domain deletions showed that Yb interacts

with the FG-Nups only when they are able to assemble into the NPC as deletion of either Nup car-

boxy-terminus, which ablates interaction between the two Nups (Figure 3B), reduced the interaction

(Figure 4—figure supplement 1G).

Although we cannot exclude the involvement of additional adaptor proteins that remained unde-

tected by our approach, these data suggest that Yb associates with the cytoplasmic side of the NPC

and binds to exiting flam transcripts. Because binding to RNA triggers the aggregation of flam-Yb

RNPs into phase-separated Yb-bodies (Hirakata et al., 2019), we hypothesise that this provides the

directionality to flam transport.

Discussion
Here, we find that Nup54 and Nup58 are specifically required for TE regulation in the follicle cells of

Drosophila ovaries by enabling export and subsequent piRNA production from flam transcripts. This

functional requirement is distinct from the general role of the NPC as other Nups, even those most

proximal to Nup54 and Nup58 within the pore, are broadly required for gene expression and cell

survival. These findings consolidate our view of Nups as dynamic players in various cellular processes

and expand the variety of roles ascribed to the Nups.

Though flam bears canonical features common to other mRNAs, it is nonetheless specifically rec-

ognised and processed into piRNAs. A dedicated export-coupled licensing, involving Nup54 and

Nup58, may allow this long transcript to be escorted directly from its genomic origin to the Yb-bod-

ies to facilitate piRNA production. If this machinery is disrupted, for example, by loss of Nup54 and

Nup58, flam transcripts are confined to the nucleus and destabilised, thus underscoring the need for

a unified process from transcription to licensing. It is interesting to note that siYb caused a slight

decrease of PRO-seq signal across the entire piRNA cluster locus, possibly indicating that disruption

of flam export-coupled licensing negatively affects its transcription via a yet-unknown feedback

mechanism. We find that Nup54 and Nup58 interact with both the nuclear (Nxf1/Nxt1) and cytosolic

(Yb) components of flam expression and thus suggest that these factors bridge nuclear export to

cytosolic fate specification. Although several aspects of the molecular mechanism remain to be eluci-

dated (i.e. how this links to upstream transcription and whether additional factors are involved in the

nucleus or in the cytosol), we propose a tentative model whereby this Nxf1-NPC-Yb axis coordinates

initiation, processivity, and directionality of flam export (Figure 4G), directly feeding the transcript

into the piRNA biogenesis route via Yb-bodies. Our rescue experiments and protein-protein interac-

tion studies argue for this TE silencing function of Nup54 and Nup58 to be carried out from within
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the pore, especially since neither Nup is among the most dynamic components of the NPC

(Rabut et al., 2004). However, we cannot completely exclude a function for Nup54 and Nup58 in

the cytosol, possibly as components of Yb-bodies. We find that Nup54 and Nup58 interact directly

with both Yb and Nxf1; however, it is presently unclear how the transcript is released from the Nxf1/

Nxt1 export complexes and handed over to Yb, especially since we did not detect physical interac-

tions between Yb and Nxf1. It cannot be excluded that such interaction exists and remained unde-

tected in our over-expression experiments or that additional adaptor proteins take part in this

process. Alternatively, Nup54/58 may form independent complexes with Yb and Nxf1; however, our

lack of enrichment for flam transcripts associated with Nup54/58 makes this seem unlikely. Super-

resolution imaging of the NPC will be required to clarify the relative position of each component of

this export route and to understand whether Nup54 and Nup58 function also outside the NPC. Of

note, cytosolic Nup358 has been shown to be required for piRNA production from the dual-strand

cluster 42AB in nurse cells (Parikh et al., 2018). Its depletion leads to prominent de-localisation of

Piwi, which we did not observe upon loss of Nup54/Nup58, thus suggesting a different mode of

action. Nonetheless, this further underscores that different NPC subunits can be co-opted for TE

silencing in tissue-specific contexts.

The proposed mechanism for flam export-coupled licensing relies on a tissue-specific effector

(Yb) and could represent a broader paradigm for co-option of FG-Nups for specific transcript traf-

ficking routes. We envision that in principle any transcript subject to strong selective pressure could

evolve a dedicated export machinery via adapting FG-Nup functions in a cell-type-specific manner.

Such mechanisms may have gone unnoticed previously because of the general role of the NPC.

Interestingly, several Nup genes in Drosophila show signs of rapid adaptive evolution that result in

hybrid incompatibilities (Presgraves et al., 2003; Tang and Presgraves, 2009), which is often a hall-

mark of genes involved in genetic conflicts, such as transposon control. We further speculate that a

tissue-specific control of export routes might contribute to explain the molecular mechanisms under-

lying so-called ‘nucleoporopathies’, human syndromes caused by mutated Nups (Beck and Hurt,

2017; Braun et al., 2018; Miyake et al., 2015). In these diseases, mutation or expression changes

of a Nup present in all cells of the organism leads to tissue-specific phenotypes. We hypothesise

that this might stem from specific roles of those Nups in regulating genes that are essential for the

functionality of that particular tissue, which would in turn make the said tissue especially susceptible

to the loss of the Nup. Future investigation will shed light on how widespread these mechanisms

might be.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(Drosophila melanogaster)

fs(1)Yb FlyBase FBgn0000928

Gene
(Drosophila melanogaster)

flamenco FlyBase FBgn0267704

Gene
(Drosophila melanogaster)

Nup54 FlyBase FBgn0033737

Gene
(Drosophila melanogaster)

Nup58 FlyBase FBgn0038722

Gene
(Drosophila melanogaster)

Elys FlyBase FBgn0031052

Gene
(Drosophila melanogaster)

Nup43 FlyBase FBgn0038609

Gene
(Drosophila melanogaster)

Nup214 FlyBase FBgn0010660

Gene
(Drosophila melanogaster)

Nup62 FlyBase FBgn0034118

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Gene
(Drosophila melanogaster)

Nup93-1 FlyBase FBgn0027537

Gene
(Drosophila melanogaster)

Nup98-96 FlyBase FBgn0039120

Gene
(Drosophila melanogaster)

Nxf1/Sbr FlyBase FBgn0003321

Gene
(Drosophila melanogaster)

Nxt1 FlyBase FBgn0028411

Gene
(Drosophila melanogaster)

lamin FlyBase FBgn0002525

Gene
(Drosophila melanogaster)

Nup107 FlyBase FBgn0027868

Gene
(Drosophila melanogaster)

Nup154 FlyBase FBgn0021761

Gene
(Drosophila melanogaster)

Zuc FlyBase FBgn0261266

Gene
(Drosophila melanogaster)

tj FlyBase FBgn0000964

Antibody Anti-Piwi
(Rabbit polyclonal)

DOI:10.1016/j.cell.2007.01.043 IF(1:500)
WB(1:5000)

Antibody Anti-Yb (
Mouse monoclonal)

DOI:10.1101/gad.1989510 IF(1:500)
WB(1:1000)

Antibody Anti-Yb
(Rabbit polyclonal)

DOI:10.1038/emboj.2011.308 WB(1:1000)

Antibody Anti-tubulin
(Rabbit polyclonal)

Abcam Cat# ab18251,
RRID:AB_2210057

WB(1:5000)

Antibody Anti-HA
(Rabbit monoclonal)

Cell Signaling Technology Cat# 3724,
RRID:AB_1549585

WB(1:1000)

Antibody Anti-HA
(Rabbit polyclonal)

Abcam Cat# ab9110,
RRID:AB_307019

WB(1:1000)

Antibody Anti-FLAG
(Mouse monoclonal)

Sigma Cat# F1804,
RRID:AB_262044

WB(1:1000)

Antibody Anti-lamin
(Mouse monoclonal)

Developmental
Studies Hybridoma Bank

Cat# adl67.10,
RRID:AB_528336

IF(1:200)

Antibody Anti-Nuclear Pore Complex
Proteins (Mouse monoclonal)

Biolegend Cat# 902907,
RRID:AB_2565026

IF(1:500)

Antibody Anti-Mouse IgG Alexa
Fluor-488 (Goat polyclonal)

Thermo Fisher Scientific Cat# A-11029,
RRID:AB_2534088

IF(1:500)

Antibody Anti-Rabbit IgG Alexa
Fluor-647 (Goat polyclonal)

Thermo Fisher Scientific Cat# A-21245,
RRID:AB_2535813

IF(1:500)

Antibody GFP-Booster Atto-488
(Alpaca monoclonal)

Chromotek Cat# gba488-100,
RRID:AB_2631386

IF(1:500)

Commercial
assay or kit

IRDye 800CW Streptavidin LI-COR Cat# 926-32230 WB(1:4000)

Commercial
assay or kit

Streptavidin, Alexa Fluor
555 Conjugate

Thermo Fisher Scientific Cat# S-21381 IF(1:500)

Commercial
assay or kit

Mouse monoclonal
anti-FLAG M2
magnetic beads

Sigma-Aldrich Cat# CatM8823,
RRID:AB_2637089

Commercial
assay or kit

Dynabeads MyOne
Streptavidin C1

Thermo Fisher Scientific Cat# 65001

Commercial
assay or kit

Pierce IP Lysis
Buffer-100 ml

Thermo Fisher Scientific Cat# 87787

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

RIPA Lysis and
Extraction Buffer

Thermo Fisher Scientific Cat# 89901

Commercial
assay or kit

Thermo Scientific Pierce
anti-HA magnetic beads

Thermo Fisher Scientific Cat# 88836

Commercial
assay or kit

cOmplete, Mini,
EDTA-free Protease
Inhibitor Cocktail

Sigma-Aldrich Cat# 11836170001

Commercial
assay or kit

RNasin Plus RNase Inhibitor Promega Cat# N2615

Commercial
assay or kit

Effectene Transfection
Reagent

Qiagen Cat# 301427

Commercial
assay or kit

Nucleofector Kit V Lonza Cat# VVCA-1003

Commercial
assay or kit

DNase I, Amplification Grade Thermo Fisher Scientific Cat# 18068015

Commercial
assay or kit

RNaseOUT Recombinant
Ribonuclease Inhibitor

Thermo Fisher Scientific Cat# 10777019

Commercial
assay or kit

Magne HaloTag Beads,
20% Slurry

Promega Cat# G7282

Commercial
assay or kit

Deoxynucleotide Solution
Set (100 mM; 25 mmol each)

New England Biolabs Cat# N0446S

Commercial
assay or kit

SuperScript III
Reverse Transcriptase

Thermo Fisher Scientific Cat# 18080085

Commercial
assay or kit

Chloroform anhydrous 99+% Sigma-Aldrich Cat# 288306

Commercial
assay or kit

TRIzol Reagent Thermo Fisher Scientific Cat# 15596026

Commercial
assay or kit

Insulin solution human Sigma-Aldrich Cat# I9278

Commercial
assay or kit

Fibronectin from
human plasma 0.1% solution

Sigma-Aldrich Cat# F0895

Commercial
assay or kit

ProLong Diamond
Antifade Mountant

Thermo Fisher Scientific Cat# P36961

Commercial
assay or kit

Fly Extract Drosophila
Genomics Resource Center

Cat# 1645670

Commercial
assay or kit

SMARTer RNA Unique
Dual Index Kit – 24U

Clontech Cat# 634451

Commercial
assay or kit

RiboPOOL 10 nM for
Drosophila

Cambridge Bioscience

Commercial
assay or kit

D-Biotin solution Thermo Fisher Scientific Cat# B20656

Commercial
assay or kit

Shields and Sang M3
Insect Medium

Sigma Cat# S3652

Commercial
assay or kit

Library Quantification Kit Kapa Biosystems Cat# KK4873

Commercial
assay or kit

ProTEV Plus Promega Cat# V6101

Commercial
assay or kit

Paraformaldehyde, 16% w/v
aq. soln., methanol free

Alfa Aesar Cat# 043368.9M

Commercial
assay or kit

RNase A (affinity purified)
1 mg/ml

Thermo Fisher Scientific Cat# AM2271

Commercial
assay or kit

NuPAGE 4–12%, Bis-Tris,
1.5 mm, Mini Protein Gel, 10-well

Thermo Fisher Scientific Cat# NP0335BOX

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

Xfect Transfection Reagent Takara Bio Cat# 631318

Commercial
assay or kit

Pierce Protein A/G Magnetic
Beads

Thermo Fisher Scientific Cat# 88802

Commercial
assay or kit

Agencourt RNAClean XP beads Beckman Coulter Cat# A63987

Commercial
assay or kit

NEBNext Ultra Directional
RNA Library Prep
Kit for Illumina

New England Biolabs Cat# E7420L

Commercial
assay or kit

SMARTer Stranded
RNA-Seq Kit

Takara Bio Cat# 634839

Commercial
assay or kit

RNeasy Mini Kit Qiagen Cat# 74104

Commercial
assay or kit

Cell Line Nucleofector kit V Lonza Cat# VVCA-1003

Commercial
assay or kit

Nucleofector II device Lonza Cat# AAB-1001

Cell line
(Drosophila melanogaster)

S2 cells Thermo Fisher Scientific Cat# R69007,
RRID:CVCL_Z232

Cell line
(Drosophila melanogaster)

Ovarian somatic cells
(OSCs)

DOI:10.1038/nature08501 RRID:CVCL_IY73

Software, algorithm Fiji ImageJ RRID:SCR_002285

Software, algorithm Proteome Discoverer 2.1 Thermo Fisher Scientific RRID:SCR_014477

Software, algorithm STAR DOI:10.1093/bioinformatics/
bts635

RRID:SCR_015899

Software, algorithm DEseq2 DOI:10.1186/s13059-014-0550-8 RRID:SCR_015687

Software, algorithm Image Studio Lite LI-COR RRID:SCR_013715

Cell lines
OSCs were a gift from Mikiko Siomi and were cultured as described (Niki et al., 2006; Saito, 2014;

Saito et al., 2009). Drosophila S2 cells were purchased from Thermo Fisher Scientific and were

grown at 26˚C in Schneider media supplemented with 10% FBS. Cells were routinely tested for

mycoplasma infection by an in-house facility.

Fly stocks and handling
All flies were kept at 25˚C on standard cornmeal or propionic food. Control w1118 flies were a gift

from the University of Cambridge Department of Genetics Fly Facility. Nup54 mutant lines were pro-

vided by M. Soller (Nallasivan et al., 2020). A full list of fly stocks used in this study is provided in

Supplementary file 1.

Cell culture
Knockdowns and nucleofections in OSCs were carried out as previously described (Saito, 2014)

using the Cell Line Nucleofector Kit V (Lonza VVCA-1003) on a Nucleofector II device (program

T-029). OSC transfections were carried out using Xfect transfection reagent (Takara Bio 631317), as

previously described (Saito, 2014). All constructs used in cells were expressed from the Drosophila

act5c promoter. A full list of siRNAs used in this study is provided in Supplementary file 1. S2 cells

were transfected using Effectene (Qiagen), according to the manufacturer’s instructions.

BASU proximity labelling and mass spectrometry
PL-MS experiments in OSCs were performed as previously described (Munafò et al., 2019). Briefly,

4 � 106 OSCs were transfected with 20 mg of plasmid expressing an HA-BASU fusion or HA-

ZsGreen. 48 hr after transfection, the media was supplemented with 200 mM biotin for 1 hr. Cell
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pellets were lysed in 1.8 ml lysis buffer (50 mM Tris, pH 7.4, 500 mM NaCl, 0.4% SDS, 1 mM DTT,

2% TritonX-100 with cOmplete protease inhibitors) and sonicated using a Bioruptor Pico (Diage-

node, 3� cycles 30 s on/30 s off). Sonicated lysates were diluted 2� in 50 mM Tris, pH 7.4, and

cleared for 10 min at 16,500 g. Lysates were pre-cleared for 1 hr at 4˚C with 100 ml of Protein A/G

Dynabeads (Thermo Fisher Scientific 10015D) and the supernatant collected to a fresh tube. Biotiny-

lated proteins were isolated by incubation with 200 ml of Dynabeads (MyOne Streptavidin C1; Life

Technologies) overnight at 4˚C. Beads were washed 2� in 2% SDS, 2� in Wash Buffer 1 (0.1% deoxy-

cholate, 1% Triton X-100, 500 mM NaCl, 1 mM EDTA, and 50 mM 4-(2-hydroxyethyl)�1-piperazinee-

thanesulfonic acid, pH 7.5), 2� with Wash Buffer 2 (250 mM LiCl, 0.5% NP-40, 0.5% deoxycholate, 1

mM EDTA, and 10 mM Tris, pH 8), and 2� with 50 mM Tris. Beads were rinsed twice with 100 mM

ammonium bicarbonate. BASU-Nup54, BASU-Nup58, and BASU-Yb pulldowns were subjected to

TMT-labelling followed by quantitative mass spectrometry on a nano-ESI Fusion Lumos mass spec-

trometer (Thermo Fisher Scientific). On-bead Trypsin digestion, TMT chemical isobaric labelling and

data analysis were performed by the CRUK-CI proteomics core as previously described

(Papachristou et al., 2018).

Proteomics data analysis
Spectral raw files from PL-MS of BASU-Yb, Nup54, and Nup58 were processed with the SequestHT

search engine on Thermo Scientific Proteome Discoverer 2.1. Data was searched against a custom

FlyBase database (‘dmel-all-translation-r6.24’) at 1% spectrum-level FDR (False Discovery Rate) crite-

ria using Percolator (University of Washington). MS1 mass tolerance was constrained to 20 ppm, and

the fragment ion mass tolerance was set to 0.5 Da. TMT tags on lysine residues and peptide N ter-

mini (+229.163 Da) were set as static modifications. Oxidation of methionine residues (+15.995 Da),

deamidation (+0.984) of asparagine and glutamine residues, and biotinylation of lysines and protein

N-terminus (+226.078) were included as dynamic modifications. For TMT-based reporter ion quanti-

tation, we extracted the signal-to-noise ratio for each TMT channel. Parsimony principle was applied

for protein grouping, and the level of confidence for peptide identifications was estimated using the

Percolator node with decoy database search. Strict FDR was set at q-value <0.01. Downstream data

analysis was performed on R using the qPLEXanalyzer package (https://doi.org/10.5281/zenodo.

1237825) as described (Papachristou et al., 2018). Only proteins with more than one unique pep-

tide were plotted.

Co-immunoprecipitation from cell lysates
S2 cells or OSCs were transfected with 3xFLAG- and HA-tagged constructs. After 48 hr, cells were

lysed in 250 ml of Pierce IP lysis buffer supplemented with cOmplete protease inhibitors (Roche).

Equal amounts of lysate for each sample were diluted to 1 ml with IP lysis buffer and incubated with

30 ml of anti-FLAG M2 magnetic beads (Sigma M8823) overnight at 4˚C. For anti-HA pulldowns,

lysates were incubated with 30 ml of anti-HA (Thermo Fisher Scientific 88836) beads overnight at 4˚C.

Beads were washed 3 � 15 min in 1� Tris-buffered Saline (TBS) with protease inhibitors, then resus-

pended in 2xNuPAGE LDS Sample Buffer (Thermo Fisher Scientific) and boiled for 3 min at 90˚C to

elute immunoprecipitated proteins.

Western blot
Western blots were carried out using standard protocols. Protein lysates were run on NuPAGE 4–

12% pre-cast gels and transferred to nitrocellulose membranes using a dry blotting system (iBlot2.0).

Membranes were blocked for 1 hr at RT with 1� LiCor blocking buffer diluted in Phosphate Buffered

Saline (PBS) and primary antibodies incubated overnight at 4˚C. Following 3� washes in PBS + 0.1%

Tween, secondary antibodies conjugated to infrared dyes (and/or streptavidin; LiCor925-32230)

were incubated for 45 min at room temperature (RT). Images were acquired on an Odyssey CLx

scanner (LiCor). The following primary antibodies were used: anti-HA (C29F4; Cell Signaling Technol-

ogy), anti-FLAG (Sigma #F1804), anti-Piwi (Brennecke et al., 2007), anti-Yb (Saito et al., 2010),

anti-Yb (Handler et al., 2011) (used on ovary lysates), and anti-tubulin (ab18251).
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OSCs immunostaining
Cells were plated 1 day in advance on fibronectin-coated coverslips, fixed for 15 min in 4%

Paraformaldehyde (PFA), permeabilised for 10 min in PBS, 0.2% Triton X-100, and blocked for 30

min in PBS, 0.1% Tween-20 (PBST), and 1% BSA. Primary antibodies were diluted 1:500 in PBST and

0.1%BSA) and incubated overnight at 4˚C. After 3 � 5 min washes in PBST, secondary antibodies

were incubated for 1 hr at RT. After 3 � 5 min washes in PBST, DAPI was incubated for 10 min at RT

and washed twice in PBST. Coverslips were mounted with ProLong Diamond Antifade Mountant

(Thermo Fisher Scientific #P36961) and imaged on a Leica SP8 confocal microscope (100� oil objec-

tive). For TurboID labelling, cell culture media was supplemented with 500 mM biotin for 1 hr. Detec-

tion was carried out using streptavidin conjugated to AlexaFluor-555 (Thermo Fisher Scientific). The

following antibodies were used: anti-Piwi (Brennecke et al., 2007), anti-FLAG tag (Sigma #F1804),

anti-HA tag (ab9110), anti-Yb (Saito et al., 2010), anti-lamin (DSHB, ADL67.10), and anti-FG-Nups

(Biolegend mAb414).

RNA-FISH in OSCs
RNA-FISH was performed with hybridisation chain reaction (HCR), similar as reported (Ang and

Yung, 2016; Choi et al., 2014). OSCs were seeded on fibronectin-coated coverslips, fixed for 15

min in 4% PFA, washed 2 � 5 min with PBS, and permeabilised for at least 24 hr in 70% ethanol at

�20˚C. Ethanol was removed and slides were washed 2 � 5 min in 2� saline-sodium citrate buffer

(SSC). Samples were incubated for 10 min in 15% formamide in 2� SSC. HCR probes were diluted

to 1 nM each in hybridisation buffer (15% formamide, 10% dextran sulfate in 2� SSC) and incubated

overnight at 37˚C in a humidified chamber. Samples were washed twice in 2� SSC and 10 min in

30% formamide at 37˚C. HCR hairpins conjugated to AlexaFluor-647 or oligo-dT probes conjugated

to AlexaFluor-488 were heat-denatured and diluted to 120 nM in 5� SSC and 0.1% Tween-20

(SSCT). HCR amplification was carried out for 2 hr at RT in the dark and washed 3 � 10 min with 5�

SSCT. Nuclei were stained with DAPI (1:10,000 in SSCT) for 10 min, followed by 3 � 10 min washes

in 5� SSC. Slides were mounted with ProLong Diamond Antifade Mountant (Thermo Fisher Scien-

tific) and imaged on a Leica SP8 confocal microscope (100� oil objective). Probes were purchased

from IDT, and all sequences are provided in Supplementary file 1.

RNA isolation and qPCR analysis
Ovary samples or cell pellets were lysed in 1 ml TRIzol, and RNA was extracted according to

the manufacturer’s instruction. 1 mg of total RNA was treated with DNAseI (Thermo Fisher Scientific),

and reverse transcribed with the Superscript III First Strand Synthesis Kit (Thermo Fisher Scientific),

using oligo-dT20 primers. Real-time PCR (qPCR) experiments were performed with a QuantStudio

Real-Time PCR Light Cycler (Thermo Fisher Scientific). Transposon levels were quantified using the

DDCT method (Livak and Schmittgen, 2001), normalised to rp49, and fold-changes were calculated

relative to the indicated controls. All primer sequences are listed in Supplementary file 1.

Ovary immunostaining
Fly ovaries were dissected in ice-cold PBS, fixed for 15 min in 4% PFA at RT, and permeabilised with

3 � 10 min washes in PBS with 0.3% Triton X-100 (PBS-Tr). Samples were blocked in PBS-Tr with 1%

BSA for 2 hr at RT and incubated overnight at 4˚C with primary antibodies in PBS-Tr and 1% BSA.

After 3 � 10 min washes at RT in PBS-Tr, secondary antibodies were incubated overnight at 4˚C in

PBS-Tr and 1% BSA. After 4 � 10 min washes in PBS-Tr at RT (DAPI was added during the third

wash) and 2 � 5 min washes in PBS, samples were mounted with ProLong Diamond Antifade Mount-

ant (Thermo Fisher Scientific #P36961) and imaged on a Leica SP8 confocal microscope. Images

were deconvoluted using Huygens Professional. The following antibodies were used: anti-Piwi

(Brennecke et al., 2007), anti-Yb (Saito et al., 2010), and anti-FG Nups (Biolegend mAb414).

Image analysis on Fiji
Acquired images were analysed on Fiji using custom scripts (Source code 1 and 2). Briefly, for Yb-

body area measurements we extracted the relative channel, applied a threshold, and analysed parti-

cle number and size. A similar number of images was processed for all samples. For flam RNA-FISH

analysis, we identified nuclei from the lamin staining applying a difference of Gaussian filter. We
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then isolated the RNA-FISH spots and counted the number present inside the nuclear envelope ver-

sus the total amount. Cytoplasm was identified via oligo-dT staining. A similar number of images

was processed for all samples.

RNA-seq
Ribosomal RNAs were depleted using riboPOOLs against D. melanogaster rRNAs (siTOOLs Biotech),

according to the manufacturer’s instructions. Fly riboPOOLs were hybridised to 1 mg of RNA by add-

ing 1 ml of resuspended riboPOOLs (100 mM), 5 ml of hybridisation buffer (10 mM Tris-HCl pH 7.5, 1

mM EDTA, 2 M NaCl), and 1 ml of RNAse Inhibitor Plus (Promega), incubating for 10 min at 68˚C and

cooling down slowly to 37˚C. 80 ml of MyOne Streptavidin C1 beads (Thermo Fisher) for each sample

were washed twice in 100 ml of Beads Resuspension Buffer (0.1 M NaOH, 0.05 M NaCl) and twice in

100 ml of Beads Wash Buffer (0.1 M NaCl). The beads were resuspended in 160 ml of Depletion

buffer (5 mM Tris-HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl) and divided into two 80 ml aliquots. Hybri-

dised riboPOOLs were added to 80 ml of washed beads, mixed well, and incubated for 15 min at 37˚

C, followed by 5 min at 50˚C. The supernatant was transferred to the second tube with 80 ml of

washed beads and incubated for 15 min at 37˚C, followed by 5 min at 50˚C. rRNA-depleted samples

were transferred to a fresh tube and purified using Agencourt RNAClean XP beads (Beckman Coul-

ter A63987). RNA-seq libraries were prepared using the NEBNext Ultra Directional Library Prep Kit

for Illumina (NEB #E7760), according to the manufacturer’s instructions for ribosome-depleted RNA.

DNA libraries were quantified with KAPA Library Quantification Kit for Illumina (Kapa Biosystems)

and sequenced on an Illumina HiSeq 4000 instrument.

sRNA-seq library preparation
Small RNA libraries from OSCs were generated as described previously with slight modifications

(McGinn and Czech, 2014). Briefly, 19- to 28-nt small RNAs were purified by PAGE from 15 mg of

total RNA from OSCs. Next, the 3’ adapter (containing four random nucleotides at the 5’ end) was

ligated using T4 RNA ligase 2, truncated KQ (NEB). Following recovery of the products by PAGE

purification, the 5’ adapter (containing four random nucleotides at the 3’ end) was ligated to the

samples using T4 RNA ligase (Ambion). Small RNAs containing both adapters were recovered by

PAGE purification, reverse transcribed, and PCR amplified. Libraries were sequenced on an Illumina

HiSeq 4000 instrument.

PRO-seq
PRO-seq was performed as described previously (Mahat et al., 2016). 4 � 106 OSCs treated with

siRNAs for 96 hr were used for nuclei isolation. Isolated nuclei were resuspended in storage buffer

and stored at �80˚C until further processing. Nuclear run-on reactions were performed with biotin-

11-CTP and biotin-11-UTP and unlabelled ATP and GTP. Purified RNA samples were fragmented for

10 min on ice in 0.2 N NaOH and purified using Bio-Spin P30 columns (Bio-Rad). Biotin-labelled RNA

was purified using MyOne Streptavidin C1 Dynabeads (Thermo Fisher Scientific), decapped using

the RppH enzyme (NEB), and purified by phenol/chloroform extraction. 30 linkers and then 50 linkers

(same as for small RNA cloning) were ligated and biotinylated ligation products purified after each

ligation using MyOne Streptavidin C1 Dynabeads. Reverse transcription was carried out using Super-

Script III (Thermo Fisher Scientific), and libraries were amplified using HS Phusion Flex polymerase.

The libraries were sequenced on an Illumina HiSeq 4000.

DNA-FISH
DNA-FISH was carried out as described in Kishi et al., 2019. DNA-FISH probes were designed

against a 10 kb region spanning the DIP1 and flamenco genomic loci (chrX:21624796–21634619)

using Oligominer (Beliveau et al., 2018). The final set of 74 probes were completed with the addi-

tion of the SABER primer sequences at their 30 ends (tttCAACTTAAC) and purchased from IDT. PER

amplification was carried out as described by Kishi and colleagues (Kishi et al., 2019) and used

directly for DNA-FISH. OSCs were plated on fibronectin-coated slides and fixed for 10 min in 4%

PFA, permeabilised for 10 min in PBS, 0.5% TritonX-100, and washed twice in PBS with 0.1% Tween-

20 (PBST). If necessary, DNase treatment was carried out at this stage by incubation with 4 ml of

Turbo DNase in 100 ml of 1� Turbo DNase buffer for 30 min at 37˚C. Cells were incubated 5 min in
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0.1 N HCl, washed twice in PBST, and incubated in 2� SSCT (2� SSC with 0.1% Tween-20) with 50%

formamide for 2 hr at 60˚C. Cells were hybridised in 80 ml of ISH solution consisting of 2� SSCT,

50% formamide, 10% dextran sulfate, 400 ng/ml RNase A, and each PER extension at a final concen-

tration of ~67 nM (1:15 dilution from 1 mM PER). After denaturation for 3 min at 80˚C, cells were

incubated overnight at 44˚C in a humidified incubator. Hybridised samples were washed 4 � 5 min

in prewarmed 2� SSCT at 60˚C and then twice at RT. 80 ml of fluorescent hybridisation solution con-

sisting of 1� PBS and 1 mM fluorescent imager strands were added to the samples and incubated

for 1 hr at 37˚C. Cells were washed 3 � 5 min in prewarmed PBS at 37˚C, stained for 10 min at RT

with DAPI (1:1000 dilution in PBS), and mounted using ProLong Diamond Antifade Mountant

(Thermo Fisher Scientific #P36961). Samples were imaged on a Leica SP8 confocal microscope

(100� oil objective).

CLIP-seq
1 � 107 OSCs were nucleofected with 5 mg of the desired plasmid (HALO-tagged Nup54, Nup58,

Nxt1, or a HALO-MCS control) and crosslinked on ice with 400 mJ/cm2 at 254 nm. HALO-tag CLIP-

seq was performed as previously described (Munafò et al., 2019). Briefly, cell pellets were lysed in

300 ml of lLysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.1% deoxycholate,

Protease Inhibitor [1:50 Promega], and RNasin Plus [1:500, Promega]), for 30 min at 4˚C. DNase

digestion was performed by adding 2 ml (4U) of Turbo DNase to the cell lysate and immediately

placing the samples at 37˚C for 3 min, shaking at 1100 rpm. Samples were transferred to and kept

on ice for >3 min, then cleared by centrifugation at top speed for 20 min at 4˚C. Cell lysates were

diluted up to 1 ml with 100 mM Tris-HCl pH 7.5, 150 mM NaCl, and incubated with 200 ml of

Magne-HaloTag (Promega G7282) beads overnight at 4˚C. Beads were washed 2� in Wash Buffer A

(100 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% IGEPAL CA-630), 3� in Wash Buffer B (PBS, 500 mM

NaCl, 0.1% Triton X-100, RNasin Plus 1:2000), 3� in PBS, 0.1% Triton X-100, and rinsed in Wash

Buffer A. For release of the bait protein from the tag, beads were resuspended in 100 ml of 1X Pro-

TEV Buffer, 1 mM DTT, and RNasin Plus (1:50) and 25 units of ProTEV Plus Protease (Promega

V6101) and incubated 2 hr at 30˚C, shaking at 1300 rpm. The supernatant containing the eluted pro-

tein and the crosslinked RNA was transferred to a fresh tube, and 15 ml Proteinase K in 300 ml PK/

SDS buffer (100 mM Tris, pH 7.5; 50 mM NaCl; 1 mM EDTA; 0.2% SDS) were added to the eluate

and incubated 1 hr at 50˚C. RNA was isolated via phenol/chloroform extraction, resuspended in 8 ml

of nuclease-free water, and used for library preparation. Library preparation for CLIP-seq samples

was carried out with the SMARTer Stranded RNAseq kit (Takara Bio 634839), according to

the manufacturer’s instructions.

Sequencing data analysis
For small RNA-seq, adapters were clipped from raw fastq files with fastx_clipper (adapter sequence

AGATCGGAAGAGCACACGTCTGAACTCCAGTCA) keeping only reads with at least 23 bp length.

The first and last four bases were trimmed using seqtk (https://github.com/lh3/seqtk; Ramı́rez et al.,

2016). After removal of cloning markers and reads mapping to rRNAs and tRNAs (list downloaded

from FlyBase), high-quality reads were aligned to the D. melanogaster genome release 6 (dm6;

downloaded from FlyBase) (Hoskins et al., 2015) using STAR (Dobin et al., 2013). For transposon-

wide analysis, genome multi-mapping reads were randomly assigned to one location using option

’--outFilterMultimapNmax 1000 --outSAMmultNmax 1 --outMultimapperOrder Random’

and non-mapping reads were removed. Small RNA-seq reads were normalised to miRNA reads in

the control library (set to rpm). Only high-quality small RNA reads with a length between 23 and 29

bp were used for the piRNA genome browser shots. piRNA distribution was calculated and plotted

in R.

For RNA-seq, raw fastq files generated by Illumina sequencing were analysed by a pipeline devel-

oped in-house. In short, the first five bases of each 50 bp read were removed using fastx trimmer

(http://hannonlab.cshl.edu/fastx_toolkit/). After removal of reads mapping to Drosophila rRNA using

STAR, high-quality reads were aligned to the D. melanogaster genome release 6 (dm6; downloaded

from FlyBase) (Hoskins et al., 2015) using STAR (Dobin et al., 2013). For transposon-wide analysis,

genome multi-mapping reads were randomly assigned to one location using option ’--outFilter-

MultimapNmax 1000 --outSAMmultNmax 1 --outMultimapperOrder Random’ and non-
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mapping reads were removed. For genome-wide analyses, multi-mapping reads were removed to

ensure unique locations of reads. Normalisation was achieved by calculating rpm using the

deepTools2 (Ramı́rez et al., 2016) bamCoverage. Differential expression analysis was performed

using DESeq2 (Love et al., 2014) and plotting was done in R using ggplot2 (https://ggplot2.tidy-

verse.org). For genes carrying ‘nearby transposon insertions’, we considered only gene promoters

within �10 kb to +15 kb of a TE insertion on the same genomic strand. Coordinates used for the

uni-strand piRNA clusters are chrX:21631891–22282863 (flam) and chrX:21520428–21556793 (20A).

Coordinates used for the dual-strand piRNA clusters were from Andersen et al., 2017.

For piRNA clusters 1 kb bin analysis, each cluster was divided into non-overlapping 1 kb bins and

only those with a mappability score above 0.8 were retained. Uniquely mapped reads were counted

using HTSeq (Anders et al., 2015), normalised to the total number of genome-mapped reads, and

the per-window log2 fold-change between each knockdown and its control was calculated and plot-

ted in R. The mappability was calculated as described in Derrien et al., 2012. For OSC RNA-seq,

bins with 0 rpm in more than one sample were discarded. For ovary RNA-seq analysis, a pseudo-

count of 0.01 was added to each bin and the bins with 0 rpm only in the control were discarded. For

flam 100 kb bins analysis, the dm6 genome was divided into 100 kb sliding windows using 1 kb

steps. Mappability for a window was defined as the fraction of all possible 50-mers derived from the

window that aligned uniquely to it using STAR. Windows with mappability >0.05 and located fully

within flam (n = 285) were kept for the analysis. For each sample, reads aligning uniquely to the

sense strand and at least 50% within a window were counted and subsequently normalised to reads

per 1 million uniquely aligned reads. The per-window log2 fold-change between each knockdown

and its control was calculated using a pseudo-count of 1. Results from four individual replicates per

knockdown were highly consistent with the results shown from the pooled analysis.

Quantification and statistical analysis
Data visualisation and analyses were done using R and the following packages: ggplot2, DEseq2,

qPLEXanalyzer. The UCSC genome browser was used to display high-throughput sequencing data

and to prepare coverage plots shown in the article. n indicated in the figure legends refers to the

number of independent biological replicates. Bar graphs display average of n biological replicates

and standard deviation (SD), and p values were calculated with an unpaired t-test using GraphPad.

Box plots display median, first, and third quartiles (box) and highest/lowest value within 1.5 inter-

quartile range (whiskers); dots represent potential outliers beyond 1.5 * interquartile range.

Acknowledgements
We thank Vera Manelli and Federica A Falconio for help with cloning. We thank the Cancer Research

UK Cambridge Institute Bioinformatics, Genomics, Microscopy, RICS, and Proteomics Core Facilities

for support, particularly Kamal Kishore and Fadwa Joud. We thank the Life Science Editors, espe-

cially Marie Bao, and members of the Hannon lab for feedback and comments on the manuscript.

We thank the University of Cambridge Department of Genetics Fly Facility for microinjection services

and fly stock generation. We thank the Vienna Drosophila Resource Center and the Bloomington

Stock Center for fly stocks. We thank Mikiko Siomi for OSCs and anti-Yb antibody, and Julius Bren-

necke for anti-Yb antibodies. MM was supported by a Boehringer Ingelheim Fonds PhD fellowship.

MS acknowledges funding from the BBSRC. GJH is a Royal Society Wolfson Research Professor

(RP130039). Research in the Hannon laboratory is supported by Cancer Research UK and a Well-

come Trust Investigator award (110161/Z/15/Z).

Additional information

Funding

Funder Grant reference number Author

Cancer Research UK Core funding (A21143) Gregory J Hannon

Wellcome Trust Investigator award (110161/
Z/15/Z)

Gregory J Hannon

Munafo�et al. eLife 2021;10:e66321. DOI: https://doi.org/10.7554/eLife.66321 21 of 27

Research article Cell Biology Chromosomes and Gene Expression

https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://doi.org/10.7554/eLife.66321


Royal Society Wolfson Research Professor
(RP130039)

Gregory J Hannon

Boehringer Ingelheim Fonds PhD fellowship Marzia Munafo�

Biotechnology and Biological
Sciences Research Council

Matthias Soller

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Marzia Munafo�, Conceptualization, Data curation, Software, Formal analysis, Supervision, Funding

acquisition, Validation, Investigation, Visualization, Methodology, Writing - original draft, Writing -

review and editing; Victoria R Lawless, Alessandro Passera, Serena MacMillan, Validation, Investiga-

tion, Writing - review and editing; Susanne Bornelöv, Data curation, Software, Formal analysis, Vali-
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Munafò M, Lawless
RV, Passera A,
MacMillan S,
Bornelöv S,
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