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Abstract 

This paper demonstrates a non-Fourier prediction methodology of triple-layer human skin tissue for determining skin 

burn injury with non-ideal properties of tissue, metabolism and blood perfusion. The dual-phase lag (DPL) bioheat 

model is employed and solved using joint integral transform (JIT) through Laplace and Fourier transform method. 

Parametric studies on the effects of skin tissue properties, initial temperature, blood perfusion rate and heat transfer 

parameters for the thermal response and exposure time of the layers of the skin tissue are carried out. The study 

demonstrates that the initial tissue temperature, the thermal conductivity of the epidermis and dermis, relaxation time, 

thermalisation time and convective heat transfer coefficient are critical parameters to examine skin burn injury 

threshold. The study also shows that thermal conductivity and the blood perfusion rate exhibits negligible effects on 

the burn injury threshold. The objective of the present study is to support the accurate quantification and assessment 

of skin burn injury for reliable experimentation, design and optimisation of thermal therapy delivery. 
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1. Introduction 

urn is a critical cause of mortality and morbidity globally. Burns from thermal, electrical, and chemical 

mechanisms occur mainly in the home, industrial environments, and extreme situations such as in military 

combat. Globally, an average of 180,000 burn-related deaths is reported yearly, with burns treatment been a 

budget concern and among the leading causes of disability-adjusted life years [1, 2]. For example, an estimated 

250,000 individuals each year experience burn-related injuries in the UK, where about 175,000 individual visits the 

A&E Departments with burn injuries and 13,000 of these individuals are admitted to the hospital where 6,400 are 

children with scald being the prevalent burn injury. Consequently, the economic cost of burns treatment and its 

associated damage is huge. In a recent report, the cost of burn treatments and services by the NHS is calculated at 

more than £20 million per annum [3]. Burn victims often require long periods of rehabilitation and could receive 

multiple skin grafts and painful physical treatment, often resulting in lifelong psychological and physical scars [4]. 

Therefore, to support the timely clinical and appropriate management of burns, different studies have been carried in 

the literature to model heat transfer processes in the living tissues.  

Heat transport in living tissue is a complex process and developing its thermal models is often a challenging task due 

to several biological ad thermal processes including conductive heat transfer, convective heat transfer, radiative heat 

transfer, metabolism, evaporation and phase change. Heat transport in the skin is achieved through conductive heat 

transfer processes including metabolic heat generation, blood circulation, sweating, and sometimes heat dissipation 

through the air above the skin surface. The subject of heat transport in living tissue was first experimentally 

investigated by Pennes [5].  The Pennes bioheat model presents a suitable modification of the standard heat equation 

by introducing a blood perfusion term. Moreover, the Pennes bioheat model is widely employed due to its simplicity 

and validity in different biomedical simulations including ablation of tissues using lasers, laser surgical processes, 

thermal diagnostics, and thermal parameter estimation. However, the Pennes bioheat model is based on the classical 

Fourier's law on the assumption that thermal propagation is infinite which in physical reality is impractical. Also, 

living tissues are highly non-homogeneous and require relaxation time to accumulate enough energy to transfer to the 

nearest element. The limitations of the Pennes bioheat model were independently addressed by Cattaneo [6] and 

Vernotte [7] using the non-Fourier model to consider the finite propagation speed of heat. The resulting hyperbolic or 

thermal wave model due to the wave-like characteristics of heat transport constitutes the Cattaneo and Vernotte 

constitutive relationship. To this end, several studies on heat transfer in skin tissue employ the thermal wave bioheat 

model due to its established experimental validations and ability to produce a more accurate prediction than the 
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classical Fourier model [8-10]. The thermal wave model only treats micro-scale response in time and not the micro-

scale response in space [11-13]. However, in [11], Tzou proposed a new model that considered the micro-scale 

response in space using phase lag in heat flux and temperature gradient. The phase lag model is effective for freezing 

and thawing processes with phase change and is effective in various biomedical applications such as cryosurgery and 

cryopreservation to prevent biological materials including cells, tissues, organs [14-16]. To examine the effects of 

microstructural interactions in the fast transient process of heat transport without phase change, the DPL bioheat model 

has been widely used to study different thermal therapeutic treatments including hyperthermia treatment, thermal 

diagnostic and comfort analysis and burn injury evaluation of skin tissue [17-23]. The DPL model is based on the 

first-order Taylor series expansion. However, for accurate prediction of temperature distribution in biological tissues, 

which is critical in various therapeutic burn treatments, a rational predictive model becomes requisite. Additionally, 

in biological tissues phase change occurs over a wide range and there exist moving boundaries between two phases 

which result in nonlinear mathematical models. Further, due to difference in biological and thermal properties of the 

skin, the computation of boundary conditions at the interface between two adjacent layers is often a complex task. 

Consequently, different studies in the literature employ the use of multi-dimensional bioheat models for single, double 

and triple layer thermal assessments [24-29]. Therefore, the present study focus on the modified DPL bioheat transfer 

model based on second-order Taylor expansion to demonstrate the non-Fourier thermal modelling of triple-layer 

cutaneous tissue for prediction of skin burn with non-ideal properties of tissue, metabolism and blood perfusion. The 

developed DPL bioheat models are solved analytically using JIT through Laplace and Fourier transform methods. 

Parametric studies are carried out and the obtained results are presented. The obtained results have been convincingly 

validated with other methods of the published literature. The results obtained from the present analysis using JIT are 

proposed to help in the quantification of skin burns, which will assist to develop novel treatments and pain relief. 

 

 
2. Model of Human Skin Exposed to Burn  
The human skin helps protect the body from microbes and the elements as well as support regulating body temperature 

under various thermal conditions. The human skin is constructed of two distinct layers: epidermis and dermis, with 

the hypodermis or subcutaneous layer, which is not part of the skin, but included in the skin structure, since it attaches 

to the dermis by collagen and elastic fibres as illustrated in Fig. 1. 

 

Fig. 1. Morphology of human skin 

 

The thickness of each layer depends on the skin position on the human body. The epidermis consists of living and 

dead cells and comprises of 95% keratinocytes and 5% non-keratinocytes, respectively. The dermis made up of little 

reticulin, collagen, elastin, and group substances which are fibrin proteins play the vital role of thermoregulation and 

support the vascular network to supply the non-vascularised epidermis with nutrients. Moreover, the subcutaneous 

layer contains the loose fatty connective tissues and carries blood vessels and nerves to the overlying skin [30]. To the 

deal with the paradox of the classical Fourier’s model and account for the limitations in the thermal wave model, the 

effect of microstructural interactions in the fast-transient process of heat transport is considered. The consideration is 

based on the fact that the gradient of temperature at a point in the material at time t + τT corresponds to the heat flux 

vector at the same point at time t + τq, which can be written mathematically as: 

   , ,q Tq x t k T x t                                                                                                                                        (1) 



where τq and τT are non-zero times and accounts for the effects of thermal inertia and microstructural interactions. τq 

is the phase-lag to establish heat flux and its associated conduction through a medium, τT accounts for the diffusion of 

induced heat by τq, and represents the phase-lag to establish the temperature gradient across the medium when 

conduction occurs through the small-scale structures.  

Using the second-order Taylor expansions, the DPL model can be expressed as: 
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The above model covers a wide range of space and time for physical observations.   

From Eq. (2), we write 
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From the local energy balance, the equation for conservation of energy can be written as:  
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Eq. (4) can be re-arranged as:  
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by substituting Eq. (5) in Eq. (3) we arrived at 
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The expansion of Eq. (6) produces 
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From the above DPL model in Eq. (7), if τq and τT are set to zero, then the Pennes’ model is recovered. 
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However, if τT is set to zero and the first-order Taylor expansion is used only in time, then the thermal wave or 

hyperbolic model is recovered as:  
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Further, if τT is set to zero and the first-order Taylor expansion is used both in time and space, then Tzou’ model in 

[11] is recovered as:  
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The three-dimensional DPL model in the Cartesian coordinates gives 
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by taking the thermal conductivity as constant, the three-dimensional DPL model in the Cartesian coordinate gives 
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The two-dimensional DPL model in the Cartesian coordinates gives 
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Taking the thermal conductivity as constant, the three-dimensional DPL model in the Cartesians co-ordinates produces 
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The one-dimensional DPL model with varying thermal conductivity is expressed as 
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Then the one-dimensional DPL model with constant thermal conductivity is expressed as: 
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2.1. Modelling Evaporation during the High Heating   

During heating of tissues to high temperature, the skin tissue moisture, normally around 70-75% evaporates, absorbing 

latent heat. This is because at 100°C, during ablation, water vaporisation in the tissues occurs leading to dehydration 

of the tissues. As the temperature increases (>100°C), the continuous vaporisation and dehydration of the tissue initiate 

the carbonisation process of the tissues [31-33]. These biological processes are fundamental in the analysis of skin 

burn at high temperature and without due consideration of these processes, the results from the models would differ 

significantly from experimental results. To this end, the vaporization terms are included in the above models to 

accommodate the phase change due to evaporation.  Under such condition, the enthalpy-based model can be adopted 

[34]. In such a model, the enthalpy contains a three-part description. The first part corresponds to temperature change 

in the liquid-containing tissue, the second part accounts for the latent heat of evaporation and the third part deals with 

the temperature change in the post-phase-change tissue. Therefore, without loss of generality, in this work, a simple 

method to incorporate the simple water-related processes into the thermal models is employed to improve the ablation 

models at high temperatures. In the simple model, the rate of heat of vaporisation is modelled as established in [35] 

as 

w
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 and 
w represents the latent heat of vaporisation for water (2260kJ/Kg) and tissue water density respectively. 

The tissue water density is a function of temperature and Eq. (17) can be written using Chain rule as: 
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3. Two-dimensional DPL Model for the Triple Layer Skin Tissue 

Consider the triple-layer skin tissue in Fig. 2, the two-dimensional triple-layer DPL thermal model can be written as 

 
 

Fig. 2. Physical model of skin tissue with direct contact with the heat source 

 

The two-dimensional, three-layer DPL thermal model can be written as: 
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which can be written as 
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 is the effective heat capacity 

The present study considers a skin insult scenario which consists of direct contact to the with a heat disk of 1cm 

diameter that is maintained at a defined constant temperature for a specified time. The surface area peripheral to the 

disc was assumed to experience convective heat transfer with an ambient air temperature of 25oC during the burn 

process. After completion of the insult, the disc was removed and the entire skin surface was cooled by natural 

convection of the surrounding air [31, 32].  For the present scenario, the initial, boundary and interlayer conditions 

are stated as: 

3.1.1.  Initial conditions 

At the initial condition, the temperature of the skin tissue is equal to the blood. Therefore,  
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3.1.2. The boundary conditions, 
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where l=1, 2  
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3.1.3. Interlayer conditions 

For the interlayers, the temperature and the heat flux in the respective layers must be equal at each point in between 

the layers as: 
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where l=1, 2 

  

For accurate analysis, the DPL model for each layer of the skin tissue as illustrated in Fig. 2 is developed as:  

                                                     

3.2.1 Layer 1: Epidermis Layer 
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3.2.3 Layer 2: Dermis Layer 

2

2

2 22 3 2
,2 ,22 2 2 2 2

2 ,2 ,2 2 ,2 2 ,2 ,22 3 2

22 2 2 2 2 22

2 2 2 2 2 2
2 2 2 2 2 2 2 2

2 2

               
2

q q

p q p p b b q b b

T

T

b b b

T T T T T
c c c c c

t t t t t

T T T T T T
k

x z t x z t x z

c T T

 
      






    
     

    

            
                         

  
2 22 2
,2 ,2

2 ,2 ,22 22 2

q qm m ext ext
m q ext q

q q q q
q q

t t t t

 
 

   
     

   

                                                                     (25) 

3.2.3 Layer 3: Subcutaneous Layer 
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3.3.1.  Initial conditions 

At the initial condition, the temperature of the skin tissue is equal to the blood and is expressed as: 
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3.3.2. The boundary conditions, 
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At the surface of the skin, the heat conducted to the surface is taken as the heat lost to ambient air through convection 
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where the effective convective heat transfer coefficient is given as 

  2 1

1eff a a ah h T T T T                                                                                                                                  (28h) 

However, at the bottom of the subcutaneous layer, the local temperature is equal to the arterial temperature  
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3.3.3. Interlayer conditions 

In the interlayers, temperature and heat flux is assumed continuous across the interface. Therefore, the temperature 

and the heat flux in the respective layers is equal at each point amongst the layers. 
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4. Joint Integral Transform solutions of the DPL thermal model of the triple layer 

The interlayer conditions make the analytical solution of the thermal models to be convoluted. Consequently, recourse 

is made to the hybrid Laplace-Fourier transform method is employed to solve the equation.  

 

4.1.1. Laplace transform method 

The Laplace transform method is applied over time in the transient DPL models. The Laplace transform of a real 

function  f t  and its inversion formulas are defined as:  
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where s=a+ib  ,a b R   is a complex number 

 

4.1.2. Generalised Finite Fourier transform method 

The generalised finite Fourier transform of a real function f(x) and its inversion formulas are defined as:  
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where  mN   is the norm. The kernel  ,mK x equals the eigenfunctions of the following equations based on the 

homogeneous analogue of the original partial differential equation (PDE) subject to the prescribed boundary 

conditions of the governing equation. 
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For two-dimensional problem, the generalised finite Fourier transform of a real function f(x,y) and its inversion 

formulas are defined as  
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The kernels  ,mK x and  ,pK y equals the eigenfunctions of the following equations based on the homogeneous 

analogue of the original PDE subject to the prescribed boundary conditions of the governing equation. 
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To apply the integral transform, the thermal model is expressed as: 
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4.2.2. Layer 2: Dermis Layer 
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4.2.3. Layer 3: Subcutaneous Layer 

 
3

2 22 3 2
,3 ,33 3 3 3 3

3 ,3 ,3 3 ,3 3 ,3 ,32 3 2

22 2 3 3 4 4

3 3 3 3 3 3
3 32 2 2 2 2 2 2 2

2 2

               
2

q q

p q p p b b q b b

T

T

b b b

T T T T T
c c c c c

t t t t t

T T T T T T
k

x z t x t z t x t z

c T

 
      






    
     

    

           
                           

  
2 22 2
,3 ,3

3 ,3 ,32 22 2

q qm m ext ext
m q ext q

q q q q
T q q

t t t t

 
 

   
      

   

                                                                          (41) 

 Applying Laplace Transform to Eqs. (39) – (41) 
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                                                                         (42) 

 

     

   

2

2

2

,22 3 2

2 ,2 2 ,2 2 ,2 2 2 ,2 2

2

,2 2

,2 2 2

22 2 2 2 2
2 2 2 2 2 2

2 2 2 2 2 2

0

2
2 2 2

2 22

2 2

2

2

2

q

p b q p b p b

q

b b q b b b b

T

t

T

c sT T c s T sT c s T s T

c sT T c s T sT

TT T T T T
s

x z x z x z
k

T T
s

x z


   


  







      

   

          
          

            


  
 

 

     

   

2 2 2 2

2 2 2 2

2 2 2 2

0 0

2

,2 2
2 ,2 ,0 ,0 ,0

2

,2 2

,2 ,0 ,0 ,0

              

2

2

t t

q

b b b q b b bm m m

q

q ext ext extext ext ext

T T T T
s

x z x z

c T T q sq q s q sq q

q sq q s q sq q


 




 

 
 
 
 

        
                   

       

     

                                                              (43)              
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                                                              (44) 

 

Collecting like terms in Eqs. (42) – (44) gives 
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It should be noted that initially, there is no temperature gradient and heat gradient at any point in the skin tissue. 

Therefore, the above equation reduces to 
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rearranging Eqs. (48) – (50) gives  

                                                                   (51)  
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Further rearranging Eqs. (51) – (52) for the simplification of Laplace inversion produces 
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4.3.1. The boundary conditions in the Laplace domain are: 
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4.3.2. Interlayer conditions in Laplace domain are: 
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Further rearranging Eqs. (54) – (56) for the simplification of Laplace inversion produces 
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Rearranging the above models  
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4.4.1. The boundary conditions in Laplace and Fourier domains are 
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4.4.2. Interlayer conditions in Laplace domain are: 
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The above Eqs. (62) - (64) can be written as  
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The solution of the above Eqs. (67) – (69) are  
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The above Eqs. (73a) - (73f) can be written in matrix form as: 
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Applying Crammer’s rule to find A1, B1, A2, B2, A3 and B3, we have  
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The solution in eqs. (75) – (80) is substituted in Eqs. (70) – (72) and then the inverse Fourier transforms are found as: 
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Since the analytical inversion of the included Laplace transforms in the solutions are very complex. The developed 

solutions are numerically evaluated using Simon et al. [36] given as 
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                                                                     (86)                                                          

As stated before, the optimal value is given as 

4.7va t                                                                                                                                                                       (87) 

 

6. Thermal Damage Model and Classification of Degree of Burns 

Skin thermal damage starts when the basal epidermis temperature reaches 44oC. To evaluate the quantity and the rate 

of thermal damage to the skin tissues, the following rate model is developed. 

 

                                                                                                                         (88) 

where  represents the thermal damage in tissue, time, frequency factor, the activation energy for 

skin, universal gas constant and temperature of layer, l.  

 

On integrating the above, we have 

 

                                                                                                                     (89) 

The above skin burn model predicts the thermal damage, which is the most important parameter to be predicted to 

determine the degree of burn for clinical decision to be taken for therapeutic treatment of the burnt skin [37]. The 

value of the thermal damage is used to classify the burn injuries as first-degree, second-degree and third-degree 

according to their depth as presented in Table 1.  

 
Table 1. Burn degree and its associated biological features 

Burn    Biological features 

First-degree 
(Superficial or epidermal burns) 

0.53 affects epidermis with vasodilatation of the sub-capillary vessels, redness of affected area with 
no permanent scars or discolouration, mild pain and healing is rapid 

Second-degree 

(Partial-thickness burns) 

1.0 Both epidermis and dermis are slightly affected. Burn can be superficial or deep. Superficial burn 

results in moist blisters, whilst deep burn affects the capillaries or blood vessels causing tissue 
edema and blisters on the skin 

Third-degree 

(Full Thickness) 

10000 Both epidermis and dermis are thermally damaged, causing blood flow to stop. The cells around 

the burn region start to die leading to leathery skin. Recovery from burn degree requires special 

treatment 

 

It is worth noting that based on a thorough understanding of the burn degree classification the developed skin burns 

model is used to determine the required time to generate the different degree of burns on the human body.  

 

 

7. Discussion 

The above-developed solutions are simulated and the effects of various thermal and flow parameters on the 

temperature and the assessment of burn injury are investigated. The simulations of the burn injury are carried at the 

epidermis–dermis interface at a depth of 7.5mm from the skin surface and 2.0 mm from the symmetry line i.e. (x, y) 

= (7.5 mm, 2.0 mm). The effects of thermal conductivity of the triple layer of the skin for prediction of burn injury 

threshold are presented in Figs. 3, 4 and 5. In Fig. 3, as the thermal conductivity of the epidermis increases by a factor 

of 2, the injury threshold shifts towards the left-hand side of the base value (0.210 W/mK). This is because, as the 

thermal conductivity of the epidermis increases under continuous temperature exposure, the thermal resistance reduces 

resulting in increased heat penetration of the tissue. Under this condition, the time required to reach a second-degree 

burn injury situation becomes minimal, which implies that the higher the thermal conductivity of the skin layer tissue, 

the lower the degree of burn injury. 
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Fig. 3. Effects of thermal conductivity of the epidermis on the prediction of burn injury threshold 

Conversely, an opposite trend is observed for decrease thermal conductivity by a factor of 2, resulting in the injury 

threshold to shift towards the right-hand side of the base value (0.210 W/mK). This is because as thermal conductivity 

reduces, the thermal resistance increases resulting in reduced heat penetration of the tissue. Consequently, under such 

burn condition, more time would be required to reach a second-degree burn injury. 

 

 

Fig. 4. Effects of dermis thermal conductivity on the prediction of burn injury threshold 

In Fig. 4, it is shown that as the thermal conductivity of the dermis increases by a factor of 2, the injury threshold 

shifts towards the right-hand side of the base value (i.e. 0.370 W/mK). This phenomenon occurs, as an increase in the 

dermis thermal conductivity causes heat at the epidermis-dermis interface to be readily transferred to the deeper tissue 

and consequently resulting in more time required to reach the injury threshold. However, an opposite trend is observed 

when the thermal conductivity of the dermis is decreased by a factor of 2, resulting in the injury threshold to shift 

towards the left-hand side of the base value (0.370 W/mK). Moreover, the above finding implies that the thermal 

conductivity of the dermis reduces as the temperature of exposure heat decreases. From Fig. 5, the thermal 

conductivity of the hypodermis exhibits no significant effect on the prediction of the injury threshold.   

 
Fig. 5. Effects of hypodermis thermal conductivity on the prediction of burn injury threshold 
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Fig. 6. Effects of blood perfusion rate on the prediction of burn injury threshold 

 

Fig. 6 shows the effect of blood perfusion rate on the prediction threshold. Under constant volumetric capacity of the 

blood, the effects of no perfusion (0ml/100g/min), half of the maximum dilatation (75ml/100g/min) and maximum 

blood flow (150ml/100g/min) of the skin vessels. From Fig. 6, it is shown that the blood perfusion rate exhibits no 

significant effect on the dermis and invariably does not affect the burn injury prediction in the dermis layer. The effects 

of initial skin tissue temperature on the burn injury threshold prediction are presented in Fig. 7. From Fig. 7, the initial 

skin tissue temperature exhibits significant effects on skin exposed to burn injury. This is because the warmth of the 

skin tissue increases as the temperature experienced throughout the heating and cooling periods increases resulting in 

an increased degree of burn injury. 

 

 
 

Fig. 7. Effects of initial skin tissue temperature on the prediction of burn injury threshold 

 
 

Fig. 8. Effects of convective heat transfer coefficient on the prediction of burn injury threshold 
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The effect of convective heat transfer coefficient for prediction of burn injury threshold is illustrated in Fig. 8. Fig. 8 

shows that the heat transfer coefficient exhibits significant effects on the burn injury threshold for minimal exposure 

time. However, the effect of the convective heat transfer coefficient becomes negligible, with prolonged exposure 

time. This is because, under prolonged exposure of the skin layers to burn, the burn injury is dominated by conductive 

heat transfer in the tissue rather than the convective heat transfer at the surface of the skin. Moreover, as the convective 

heat transfer coefficient increases by a factor of 2, the injury threshold shifts towards the left-hand side of the base 

value (1250 W/m2K). Under this condition, minimal time is needed for the burn to reach the second-degree injury 

threshold. However, when the convective heat transfer coefficient is decreased by a factor of 2, the injury threshold 

shifts towards the right-hand side of the base value (1250 W/m2K), which shows that as convective heat transfer 

coefficient decreases, more time is needed for the skin burn to reach a second-degree burn injury. 

 

 
 

Fig. 9. Initial tissue temperature profiles for three-layer skin tissue 

 

 
 

Fig. 10. Injury threshold using a uniform tissue temperature of 34°C and initial temperature profile for two-layer and three-layer slab 

 

 

Fig. 9 shows the initial tissue temperature profiles for the three-layer skin tissue whilst the injury thresholds using a 

uniform tissue temperature of 34°C and the initial temperature profile of the two-layer and three-layer slab is presented 

in Fig. 10. From Figs 9 and 10, the selection of initial temperature of 34°C for all the three layers is highly reasonable. 

This implies that for accurate analysis of skin tissue burn injury, it is convenient to use a uniform initial temperature 

for all three layers. In addition, the skin injury layer threshold range for different values of thermal properties is 

presented in Fig. 11. In Fig. 11, the effect of a worst-case combination of parameters is considered where the upper 

limit represents a combination of low thermal properties of skin components, low heat transfer coefficient and low 

initial tissue temperature. Conversely, the lower limit represents a combination of high values for these parameters. 
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Fig. 11. Skin injury layer threshold range of combinations of different values of thermal properties 

 

 
 

Fig. 12. Effects of relaxation time and thermalisation time on the skin temperature 

 

 

 
 

Fig. 13. Temperature distribution of the skin tissue  

 

 

The effects of relaxation time and thermalisation time on the skin temperature during the cooling process is presented 

in Fig. 12. The simulation shows that the peak temperature predicted by the classical bioheat equation is higher than 

the DPL during the heating process. However, the temperatures from all considered cases converge during the cooling 

process. This is because the finite speed of wave propagation and the peak temperature predicted by the DPL occurs 

with time lags. The time lag causes longer thermal dissipation, i.e., cooling by the heat conduction of tissue and by 

the blood perfusion period of peak temperature. The predicted higher temperature by the classical bioheat model than 

the DPL model implies that the accumulation of the thermal damage is overestimated since the level of the 
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accumulative thermal damage depends primarily on the peak temperature. Moreover, as seen in Fig. 12, the relaxation 

time and thermalisation time enhances the heat diffusion and reduces the thermal damage in the skin tissues. This 

effect is noticeable as the heat transfer process approaches the peak temperature during heating. However, the curves 

are close and almost similar values are predicted during cooling for the relaxation time and thermalisation time 

considered. The temperature distribution in the skin tissue at depth 0.006m and length 0.024m for a period of 8sec is 

presented in Fig. 13. Fig. 13 is presented of the dimensionless length and depth and the negative values in the 

dimensionless depth indicate depth zero i.e., below the skin surface. The dimensional length ranges from –1 to +1 to 

depict symmetry as stated in the boundary conditions. Further, the results of the present study are compared with the 

different established works in the literature including Henriques [38], Fugitt et al. [39], Stoll and Greene [40], Takata 

[41] and Wu [42] as presented in Figs. 14-19. Fig. 14 demonstrates the comparison of the various results for the effects 

of surface temperature on burn injury. Also, Figs. 15 - 17 demonstrates the required time to reach the first, second and 

third-degree burn injuries when the skin tissue temperature is maintained at 50°C, 70°C, and 90°C respectively. The 

effects of tissue depth and surface temperature on the degree of burn and burn injury are illustrated in Figs. 18 and 19. 

It is shown that the thermal damage value or the value of the burn injury is minimal for low tissue temperature but 

increases rapidly with temperature above 50°C. 

 

 
 

Fig. 14. Comparison of present work with existing studies on the effect of surface temperature on burn injury  
 

 

 
 

Fig. 15. Comparison of present work with existing studies on the degree of burn and burn injury time (log) at a fixed surface temperature of 50oC 

 

 
 

 



 
 

Fig. 16. Comparison of present work with existing studies on the degree of burn and burn injury time (log) at a fixed surface temperature of 70oC 

 

 

 
Fig. 17. Comparison of present work with existing studies on the degree of burn and burn injury time (log) at a fixed surface temperature of 90oC 

 

 

 
 

Fig. 18. Comparison of present work with existing studies on the degree of burn injury for various tissue depth at 80oC for 5s  
 

 

 



 
 

Fig. 19. Comparison of results for the effects of temperature on the degree of burn and its associated level of injury  

 

 

Figs. 14-19 show that the present study quantitatively agrees with previous studies for low-level damage at 

temperatures below 50oC.  However, there is significant variation among the skin burn damage models results for high 

exposure temperatures. In fact, for temperature above 50oC, only Henriques [38] and Takata [41] corresponds 

reasonably for all temperatures evaluated and in agreement with the results of the present study. Fig. 20 presents the 

validation of the present study with the experimental work of Takata [41]. From the comparison, the present study 

shows significant agreements with the experimental work of Takata [41], which demonstrates the reliability of the 

obtained results of the study. 

 

 
 

Fig. 20. Comparison of the present study on burn injury with established experimental results   

 

8. Conclusion 

In the present work, a non-Fourier prediction methodology of triple-layer human skin tissue for determining skin burn 

injury with non-ideal properties of tissue, metabolism, and blood perfusion. The DPL bioheat model of the triple-layer 

cutaneous tissue is solved analytically using Laplace and Fourier transform methods. From the detailed study, the 

following concluding remarks are drawn: 

 An increase in the thermal conductivity of the epidermis decreases the thermal resistance, which readily 

causes increased heat penetration of the tissue, which implies that the higher the thermal conductivity of the 

tissue, the lower the degree of burn injury  

 The study shows that an increase in dermis thermal conductivity results in a prolonged time to reach the 

injury threshold and the blood perfusion rate exhibits no net effect on the prediction of burn injury in the 

dermis layer. However, the initial skin tissue temperature exhibit significant effects on burn injury exposure  



 The relaxation time and thermalisation time plays fundamental roles in the analysis of burn injury. The 

relaxation time and thermalisation time enhances the heat diffusion and reduces the thermal damage in the 

skin tissues 

 The heat transfer coefficient plays significant effects on burn injury for small exposure time. The effect of 

the convective heat transfer coefficient becomes minimal for prolonged exposure time.  

 For accurate analysis of the skin tissue burn injury, it is convenient to use uniform initial temperature for the 

triple-layer cutaneous layers  

 The most dominating factors in the burn injury follow the order: relaxation time and thermalisation time, 

initial tissue temperature followed by the epidermis layer thermal conductivity, dermis layer thermal 

conductivity and convective heat transfer coefficient 

The present work would help in the quantification of skin burn, and for clinicians and biomedical engineers to 

experiment, design, characterise and optimise strategies for delivering thermal therapies. 

 

 

Nomenclature 

c  Specific heat of tissue, 1 1JKg K   

bc  Specific heat of blood, 1 1JKg K   

C  Thermal wave speed, 1ms  

aE  Activation energy of denaturation reaction, 1Jmol  

k  Tissue thermal conductivity, 1 1Wm K   

l  Bromwich contour integration line 

L  Tissue slab length, m   

P  Frequency factor, 1s  
q  Heat flux density, 2Wm   

mQ  Metabolic heat generation, 3Wm   

R  Universal gas constant, 1 1Jmol K    

s  Laplace domain parameter 
t  Time variable, s   

T  Tissue temperature,  o C  

0T  Initial tissue temperature,  o C  

bT  Blood temperature,  o C   

b  Blood perfusion rate, 1s  

,x z  Coordinate variable, m  

Greek symbols 

  Thermal damage parameter 

T  Delay times for phase lag of microstructural interaction 

q  Delay times for phase lag of the heat flux  

 

References 

1. World_Health_Organization, Burns Fact Sheet. 2018, https://www.who.int/news-room/fact-

sheets/detail/burns: Geneva, Switzerland. 

2. Brewster, C.T., B. Coyle, and S. Varma, Trends in hospital admissions for burns in England, 1991–2010: A 

descriptive population-based study. Burns, 2013. 39(8): p. 1526-1534. 

3. National_Fire_Chiefs_Council. Burn accidents costing the NHS £20 million per annum. 2018; Available 

from: https://www.nationalfirechiefs.org.uk/News/burn-accidents-costing-the-nhs-20-million-per-annum. 

4. Duke, J.M., et al., Burn induced nervous system morbidity among burn and non-burn trauma patients 

compared with non-injured people. Burns, 2019. 45(5): p. 1041-1050. 

5. Pennes, H.H., Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal 

of Applied Physiology, 1948. 1(2): p. 93-122. 

https://www.who.int/news-room/fact-sheets/detail/burns
https://www.who.int/news-room/fact-sheets/detail/burns
https://www.nationalfirechiefs.org.uk/News/burn-accidents-costing-the-nhs-20-million-per-annum


6. Cattaneo, C., J. Kampé de Fériet, and s. Académie des, Sur une forme de l'équation de la chaleur éliminant 

le paradoxe d'une propagation instantanée. 1958, [Paris]: [Gauthier-Villars]. 

7. Vernotte, P., Les paradoxes de la theorie continue de l'equation de la chaleur. Compt. Rendu, 1958. 246: p. 

3154-3155. 

8. Kundu, B. and D. Dewanjee, A new method for non-Fourier thermal response in a single layer skin tissue. 

Case Studies in Thermal Engineering, 2015. 5: p. 79-88. 

9. Deng, Z.-S. and J. Liu, Non-Fourier Heat Conduction Effect on Prediction of Temperature Transients and 

Thermal Stress in Skin Cryopreservation. Journal of Thermal Stresses, 2003. 26: p. 779 - 798. 

10. Lin, S.-M., Analytical Solutions of Bio-Heat Conduction on Skin in Fourier and Non-Fourier Models. Journal 

of Mechanics in Medicine and Biology, 2013. 13(04): p. 1350063. 

11. Tzou, D.Y., Macro- to Microscale Heat Transfer: The Lagging Behavior. 2nd ed. 2015, Chichester, West 

Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons. 

12. Tzou, D.Y., M.N. Ozisik, and R.J. Chiffelle, The Lattice Temperature in the Microscopic Two-Step Model. 

Journal of Heat Transfer, 1994. 116(4): p. 1034-1038. 

13. Ozisik, M.N. and D.Y. Tzou, On the Wave Theory in Heat Conduction. Journal of Heat Transfer, 1994. 

116(3): p. 526-535. 

14. Cooper, S.M. and R.P.R. Dawber, The History of Cryosurgery. Journal of the Royal Society of Medicine, 

2001. 94(4): p. 196-201. 

15. Chua, K.J., S.K. Chou, and J.C. Ho, An analytical study on the thermal effects of cryosurgery on selective 

cell destruction. J Biomech, 2007. 40(1): p. 100-16. 

16. McLean, D.A., The use of cold and superficial heat in the treatment of soft tissue injuries. British journal of 

sports medicine, 1989. 23(1): p. 53-54. 

17. Zhou, J., J.K. Chen, and Y. Zhang, Dual-phase lag effects on thermal damage to biological tissues caused 

by laser irradiation. Comput Biol Med, 2009. 39(3): p. 286-93. 

18. Liu, K.-C. and H.-T. Chen, Analysis for the dual-phase-lag bio-heat transfer during magnetic hyperthermia 

treatment. International Journal of Heat and Mass Transfer, 2009. 52(5): p. 1185-1192. 

19. Zhang, Y., Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living 

biological tissues. International Journal of Heat and Mass Transfer, 2009. 52(21): p. 4829-4834. 

20. Majchrzak, E., Numerical Solution of Dual-phase Lag Model of Bioheat Transfer using the General 

Boundary Element Method. Computer Modeling in Engineering & Sciences, 2010. 69(1): p. 43--60. 

21. Afrin, N., Y. Zhang, and J.K. Chen, Thermal lagging in living biological tissue based on nonequilibrium heat 

transfer between tissue, arterial and venous bloods. International Journal of Heat and Mass Transfer, 2011. 

54(11): p. 2419-2426. 

22. Liu, K.-C., P.-J. Cheng, and Y.-N. Wang, Analysis of Non-Fourier Thermal Behaviour for Multi-Layer Skin 

Model. Thermal Science, 2011. 15: p. 61-67. 

23. Zhou, J., Y. Zhang, and J.K. Chen, An axisymmetric dual-phase-lag bioheat model for laser heating of living 

tissues. International Journal of Thermal Sciences, 2009. 48(8): p. 1477-1485. 

24. Deng, Z. and J. Liu. Analytical Solutions to 3-D Bioheat Transfer Problems with or without Phase Change. 

2012. 

25. Rodrigues, D.B., et al., Study of the one dimensional and transient bioheat transfer equation: Multi-layer 

solution development and applications. International Journal of Heat and Mass Transfer, 2013. 62: p. 153-

162. 

26. Kundu, B., Exact analysis for propagation of heat in a biological tissue subject to different surface conditions 

for therapeutic applications. Applied Mathematics and Computation, 2016. 285: p. 204-216. 

27. Dutta, J. and B. Kundu, Two-dimensional closed-form model for temperature in living tissues for 

hyperthermia treatments. Journal of Thermal Biology, 2018. 71: p. 41-51. 

28. Dutta, J., B. Kundu, and S.-J. Yook, Three-dimensional thermal assessment in cancerous tumors based on 

local thermal non-equilibrium approach for hyperthermia treatment. International Journal of Thermal 

Sciences, 2021. 159: p. 106591. 

29. Askarizadeh, H. and H. Ahmadikia, Analytical study on the transient heating of a two-dimensional skin tissue 

using parabolic and hyperbolic bioheat transfer equations. Applied Mathematical Modelling, 2015. 39(13): 

p. 3704-3720. 

30. Xu, F. and T. Lu, Skin Structure and Skin Blood Flow, in Introduction to Skin Biothermomechanics and 

Thermal Pain. 2011, Science Press Beijing and Springer-Verlag Berlin Heidelberg Dordrecht London, New 

York. p. 8. 



31. Tuchin, V.V., Tissue Optics and Photonics: Light-Tissue Interaction II. Journal of Biomedical Photonics 

&amp; Engineering, 2016. 2(3). 

32. Ansari, M.A., M. Erfanzadeh, and E. Mohajerani, Mechanisms of Laser-Tissue Interaction: II. Tissue 

Thermal Properties. Journal of Lasers in Medical Sciences, 2013. 4(3): p. 99-106. 

33. Ai, H., et al., Temperature distribution analysis of tissue water vaporization during microwave ablation: 

Experiments and simulations. International Journal of Hyperthermia, 2012. 28(7): p. 674-685. 

34. Abraham, J.P. and E.M. Sparrow, A thermal-ablation bioheat model including liquid-to-vapor phase change, 

pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of 

Heat and Mass Transfer, 2007. 50(13): p. 2537-2544. 

35. Yang, D., et al., Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During 

Heating. IEEE Transactions on Biomedical Engineering, 2007. 54(8): p. 1382-1388. 

36. Simon, R.M., M.T. Stroot, and G.H. Weiss, Numerical inversion of Laplace transforms with application to 

percentage labeled mitoses experiments. Computers and Biomedical Research, 1972. 5(6): p. 596-607. 

37. Orgill, D.P., et al., A finite-element model predicts thermal damage in cutaneous contact burns. J Burn Care 

Rehabil, 1998. 19(3): p. 203-9. 

38. Henriques, F.C., Jr., Studies of thermal injury; the predictability and the significance of thermally induced 

rate processes leading to irreversible epidermal injury. Arch Pathol (Chic), 1947. 43(5): p. 489-502. 

39. Fugitt, C.E., A rate process of thermal injury. 1955. 

40. Stoll, A.M. and L.C. Greene, Relationship between pain and tissue damage due to thermal radiation. Journal 

of Applied Physiology, 1959. 14(3): p. 373-382. 

41. Takata, A., Development of Criterion for Skin Burns. Aerosp. Med, 1974. 45: p. 634-637. 

42. Wu, Y.C., A Modified Criterion for Predicting Thermal Injury. 1980, National Bureau of Standards: USA. 

 

 


