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Abstract. Maintaining high water quality is the main goal for water
management planning and iterative evaluation of operating policies. For
effective water monitoring, it is crucial to test a vast number of drinking
water samples that is time-consuming and labour-intensive. The primary
objective of this study is to determine, with high accuracy, the quality of
drinking water samples by machine learning classification models while
keeping computation time low. This paper aims to investigate and evalu-
ate the performance of two supervised classification algorithms, including
artificial neural network (ANN) and support vector machine (SVM) for
multiclass water classification. The evaluation uses the confusion matrix
that includes all metrics ratios, such as true positive, true negative, false
positive, and false negative. Moreover, the overall accuracy and f1-score
of the models are evaluated. The results demonstrate that ANN outper-
formed the SVM with an overall accuracy of 94% in comparison to SVM,
which shows an overall accuracy of 89%.

Keywords: Water Distribution System · Water Quality · Classification
· SVM · ANN.

1 Introduction

Providing clean drinking water is a critical challenge for water supply compa-
nies worldwide due to events that are hard to predict or control, such as physical
disruption, biological contamination, and chemical contamination [1]. Water dis-
tribution systems (WDS) are vital to cities’ water supply, particularly given that
their safety directly affects public health. However, the water quality is hard to
maintain in WDS due to the effects of the distance and time taken during the
long process of delivery from the water source to the end-users [2]. Besides,
typically major parts of WDS exist in the open environment; thus, it is vulnera-
ble to external disturbances, such as sabotage. For these reasons, researchers in
industry and academia have been investigating the development of real-time con-
tamination warning systems [3]. The two fundamental parts in developing these
systems are sensor placement methods in the WDS, and the analysis of the big
volume of data generated from these sensors [4] [5]. Typically, sensors generate
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large amounts of data streams, which need to be analyzed in real-time to de-
tect abnormal events that cause significant water pollution in WDS [6]. A large
number of machine learning and statistical models for classification have been
proposed, such as regularized discriminant analysis (RDA) [7], linear discrim-
inant analysis (LDA) [8], quadratic discriminant analysis (QDA) [9], support
vector machines (SVM) [10], neural networks (NN) [11], and k-nearest neigh-
bour classifier (KNN) [12]. Nevertheless, the critical question remains: what is
the effectiveness of these methods when applied in detecting contamination in
the water supply network in terms of accuracy and performance? This paper
aims to investigate and evaluate the performance of two supervised classifica-
tion algorithms, including support vector machine (SVM) and artificial neural
network (ANN) for water multi-classification. The evaluation uses the confusion
matrix that includes all metrics ratio false positive, false negative, true positive,
and true negative. Moreover, the overall accuracy, f1-score of the models are
evaluated. The paper is organized as follows: section 2 reviews the most recent
selective related work, section 3 describes the dataset used in this study and the
contamination scenarios. Section 4 explains the methodology of the proposed
work in more detail. Section 5 presents how SVM and ANN models are applied
for water evaluation; section 6 shows the results, analysis, and performance of
the models. Finally, section 7 concludes the work.

2 Related Work

A few studies have focused on water quality measurements for contamination
detection events. For example, Chang et al. [13] proposed a water quality evalu-
ation method based on clustering analysis with a self-organizing map ( SOM) and
Fuzzy C-Mean. The results from this SOM classification showed higher efficiency
in comparison to the traditional clustering method. Hadi et al. [14] developed an
adaptive neuro-fuzzy model that classified the condition of drinking water into
two classes: safe and unsafe conditions. The authors used a time-series for the
real-time dataset, which contains four different water quality parameters: turbid-
ity, color, PH, and bacteria count. The results showed the ability of the proposed
model to detect contamination data with an accuracy of 92%. Oliker and Ostfeld
[15] generated a model using a support vector machine to improve the ability of
the proposed model to detect contamination and multi-dimensional data analy-
sis. The model was trained and evaluated with the randomly simulated events
superimposed on actual water distribution system data. The proposed model
was highly effective as it managed to draw conclusions based on a few measured
water quality parameters. Moreover, Arad et al. [16] developed a framework that
consists of online and offline Phases. A genetic algorithm (GA) is used during the
offline stage to change five decision variables: window size, positive and negative
dynamic thresholds, and positive and negative filters. During the online process,
a regular rule of Bayes is invoked for online event detection in real-time. The
proposed model outperformed benchmark models, and the results showed that
the detection capacity significantly improved. Yu et al. [2] proposed a method for
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detecting water pollution using multi-station spatial and temporal data. WDS
consists of multiple stations with large-scale characteristics and high complexity.
The proposed method is evaluated over two water networks, and its detection
efficiency is measured using the time analysis. The results showed high accuracy
when using a massive amount of data from spatial and temporal dimensions.
Despite the above-mentioned work, there is still a research gap in the prediction
of water contamination with high accuracy. Therefore, this work aims to address
this by applying deep learning for water quality multiclass classification.

2.1 Dataset

The dataset used in this study is provided by the US Environment Protection
Agency (EPA) [17]. This data was collected from three stations named B, C,
and F. These stations were selected to provide three distinctly different sets of
water quality data that can be used for training and testing. Time series were
collected for three months at two minutes interval. The data from each station
includes chlorine (CL), conductivity (COND), PH, total organic carbon (TOC),
temperature (TEMP), and pressure (PRES). In this study, we use the data
collected only from station B, and a size of 7201 time-steps.

2.2 Contamination Scenario

Since most real water contamination incidents are rare in WDS, we used the
known simulation tool EPANET to simulate water contamination [18]. Contam-
ination modeled while ensuring the water conditions and network structure are
identical to the WDS condition from which the dataset is generated. Since chlo-
rine is one of the most used water treatment disinfectants, and it is used as the
standard index for evaluation in this study. Chlorine is added as an indicator
of the selected station to simulate water quality events. The contamination can
be described by EPANET using a set of properties, for example, event time,
duration, concentration, and the station. Based on the Surface Water Treat-
ment Rule (SWTR) rules, the minimum and maximum residual rates can be set
for the consumer’s tap. Under the SWTR, water entering the distribution sys-
tem cannot fall less than a 0.2 mg/L disinfectant residual benchmark for more
than four hours without failure to comply. Low disinfectant residuals in the dis-
tributed system would increase opportunities for biological regeneration and lead
to complaints about taste and odor from consumers. On the other hand, high
disinfectant concentrations can lead to potentially harmful disinfection byprod-
ucts (DBPs). Hence, the maximum residual disinfectant concentrations cannot
exceed 4.0 mg/L in chlorine [19].

3 Methodology

Based on the studies reviewed in the literature section, two supervised algo-
rithms have been selected based on their performance while focusing on multi-
classification accuracy and computational performance. These algorithms are
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Fig. 1. Correlation coefficient among the water quality parameters (features)

ANN and SVM. These two algorithms used in this study to classify drinking wa-
ter quality. In order to be able to achieve this, we need to explore the dataset and
analyse the relationship between the water quality parameters/features. Then
data labeling is done based on what was explained in sub-section 2.2. Finally,
the selective models are implemented and applied for performance evaluation
and analysis. More details of these steps are described in the below sub-sections:
(3.1 and 3.2).

3.1 Data Exploration

Pearson Correlation Coefficient (PCC) PCC helps in determining the re-
lationship between two parameters/features in the dataset. It is a metric for
determining the degree to which two variables are related [20]. PCC has a range
of values from -1 to 1. Fig. 1 represents the correlation between the seven wa-
ter quality parameters used on our dataset. Generally, Authors notice a strong
correlation among all parameters in the positive and negative directions. Based
on the filtering method for feature selection, all features with medium and high
correlation will be used for building the model i.e., during the learning phase.
The pressure feature has been removed during the learning phase as it depicts
a low correlation among all other features.

Boxplot Distribution Box Plot is an excellent method for visualizing how
data features are distributed [21]. In our case, the dataset is represented using
this distribution, and the distribution of the seven water quality parameters
including in our dataset are shown in Fig. 2. From Fig. 2, authors notice the
lowest mean relative values appeared significantly in both chlorine and turbidity,
while the highest mean relative values appeared in the conductivity. We also see
high variability in the data in general, but this variability is almost small in
PH and turbidity, while the variability appeared more clearly in the pressure.
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Fig. 2. Statistical descriptive of water quality data using Boxplot

Temperature and conductivity seem highly skewed, and the outlier data can be
noticed from the distribution of PH, turbidity, and TOC.

3.2 Data Representation Concerning Water Conditions (Data
Labeling)

The dataset has been categorized into five classes: Dark Blue (DBlue), Purple,
Red, Orange, and Yellow. These five classes represented the level of water con-
tamination. The levels are distributed in the range 0-4, where the 0 level (DBlue)
represented the pure water (no contamination), while level 4 (Yellow) shows the
high contamination water. This has been conducted based on chlorine values in
which SWT is used to specify the minimum and maximum contamination rates.
Fig. 3 shows the 3-D scatter plot of the water samples, which depicts the rela-
tionship between the water quality parameters and the condition of the water
samples. As shown in Fig. 3 (a), the water quality is better if they have low tur-
bidity with high pressure. However, the water samples are more contaminated
when they have low TOC with low temperatures, as shown in Fig. 3 (b). PH
shows a marginal impact on the water condition, as the data is accumulated more
with the low value of PH (see Fig. 3 (c)). The temperature shows the impact
of the water quality among the pressure and the chlorine—the water quality
increases when the temperature is low, and the pressure is high. In contrast,
water is likely to be highly contaminated when the temperature is low and the
pressure is low. (see Fig. 3. (d))
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Fig. 3. The relation between the water quality parameters and contamination level

4 Modeling Implementation

4.1 Support Vector Machine (SVM)

SVM was implemented using the following parameters C=1, cache size= 200,
degree=3, gamma=aut, kernel=’rbf’. Moreover, the performance of SVM was
validated using K−Fold cross−validation which is described in the subsection
5.1.

4.2 Artificial Neural Network (ANN)

ANN was implemented using a sequential model that comprises three layers.
Input layer: this layer accepts the six water quality parameters used in our case.
The activation function used with this layer is rectified linear. This function
returns the standard ReLU activation max(x, 0), the maximum of 0, and the
input tensor. Hidden layers: two hidden layers have been used in this model; the
number of neurons in the first hidden layer was ten and in the second hidden
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Fig. 4. Confusion matrix of the SVM classifier

layer was eight; the rectified linear function was used as an activation function for
both hidden layers. Output layer: this layer produces the five different classes of
water samples. Softmax is an activation function used by this layer; this function
converts a real vector to a vector of unconditional probability. Other options used
with ANN implementation are optimizer, losses, and metrics. For the optimizer
that use to compile the model, we used the “Adam” optimizer. Losses functions
are intended to calculate the error a model should attempt to minimize during
training, and we used “categorical crossentropy.” The last thing, we have used
accuracy as a metric to evaluate the model.

5 Results

In this section, the performance of SVM and ANN are presented in more detail.
A confusion matrix was used to evaluate the performance of these models with
all metrics included with this matrix. A confusion matrix is an N x N matrix
used to assess a multiclass classification models’ results, where N is the target
class numbers. The matrix compares the actual target values to those that the
machine learning model predicts. This gives us a holistic view of how well our
classification model works and what types of mistakes.

5.1 SVM Performance

The confusion matrix is calculated for the SVM model and represented in Fig.
4 in which the x-axis represents the predicted features (labels). The y-axis indi-
cates the actual features (labels). For instance, in our case from Fig. 4, looking
to the top left box, it has a value of 434 (4.3e+02), and the three consecutive
values are zero while the last value is 56. This means that the SVM model cor-
rectly predicted 434 samples of DBlue class out of a total of 482 samples used in
the test dataset. On the other hand, looking at the second row of the confusion
matrix that refers to the Purple class, we notice that the model was able to
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Table 1. SVM performance (a)

FP FN TP TN

DBlue 1 56 434 949

Purple 1 7 8 1424

Red 1 1 1 1437

Orange 9 40 37 1354

Yellow 101 9 847 483

Table 2. SVM performance (b)

Precision Recall F1-score Support

DBlue 0.99 0.89 0.94 490

Purple 0.88 0.53 0.67 15

Red 0.50 0.50 0.50 2

Orange 0.80 0.48 0.60 77

Yellow 0.89 0.99 0.94 856

correctly classify eight samples out of the total of 15 samples and missed seven
samples that were predicted as Dblue, Red, and Yellow consecutively. Using the
same way for the rest of the classes, we can notice the correct and incorrect
predictions for the other classes (Red, Orange, and Yellow).
The overall effectiveness of the classification model can be described using the
resulting scores of True Positive (TP), True Negative (TN), False Positive (FP),
False Negative (FN). These performance metrics in Table 1. are usually under-
stood and calculated based on the confusion matrix described and presented in
Fig 4. Other performance metrics (precision, recall, and f1-score) used to eval-
uate the model are computed and presented in Table 2. The results in Table 2
shows that the precision for DBlue class is 0.99 which means that the model pro-
duce no or very low false positive. In other hand, the recall of the Orange is very
low that means that the model predicts high false positive for the same class.
Moreover, Table 2 shows the precision and the F1-score, where the precision
often indicates the models are correctly predicted, and the F1-score measures
the average of the true positive rate (recall) and precision. Finally, the accuracy
of SVM in the classification process is 89%.

K- Fold Cross-Validation k-fold cross-validation uses to evaluate the per-
formance of SVM. K-fold is less biased as it ensures that every observation in the
original dataset appears in the training and test set. Hence, the dataset sliced
into 10−folds. It was tested using a dataset with a size equal 20% from the size
of the training dataset that includes 80% from the original size of the dataset.
The score values of the 10fold crossvalidation are [0.90, 0.87, 0.90, 0.88, 0.88,
0.88, 0.90, 0.90, 0.90, and 0.88] with 10-Fold cross-validation Accuracy equal
0.89 (+/- 0.02).



Title Suppressed Due to Excessive Length 9

Fig. 5. ANN confusion matrix

Table 3. ANN Performance (a)

FP FN TP TN

DBlue 11 10 466 953

Purple 0 8 14 1418

Red 0 2 0 1438

Orange 7 58 28 1347

Yellow 71 11 843 515

5.2 ANN Performance

The confusion matrix of ANN is represented in Fig. 5, and as most of the values
are zero, this means that the ANN model shows a perfect classifier. From Fig 5.
looking to the top left that indicates the first class DBlue, we can see that the
model was correctly classified 469 samples out of a total of 475 that are available
in the test samples, and six sample were classified incorrectly as Yellow class.
In the second line the ANN classifier was able to correctly classified 9 samples
out of 11 samples as Purple. Using the same way, we can notice the correct and
incorrect prediction of all the classes. Based on the confusion matrix computed
in Fig. 5, all the mercies performance (TP, TN, FP, FN,) of the ANN classified
model are estimated and presented in Table 3. Furthermore, the precision and
the f1-score have been computed and summarized in Table 4. The results in
Table 4 shows precision for DBlue class is 0.98 which means that the model
produces very low false positive of DBlue in Table 3. In other hand, the recall of
the DBlue class is 0.99 that means that the model predicts very low false positive
for the same class in Table 3. Finally, Fig. 6 and Fig. 7 show the performance of
the ANN in terms of loss rate and accuracy. The loss rate summarizes the errors
made by the model for each sample in the training and validation dataset. The
accuracy made by the model is reported, compared to the actual values and the
percentage of misclassification is then determined. We notice that the loss rate
is reduced as the number of epochs increases while the accuracy increased till it
arrived at the steady-state for both at epochs=100. The overall accuracy for the
ANN model is 94%.

From the above analysis, it is clear that the ANN has achieved more accu-
racy than SVM and has outperformed most of the machine learning approaches
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Table 4. ANN Performance (b)

Precision Recall F1-Score Support

DBlue 0.98 0.99 0.98 475

Purple 0.90 0.82 0.86 11

Red 0.0 0 0 1

Orange 0.81 0.18 0.29 74

Yellow 0.93 0.99 0.96 879

Fig. 6. ANN model loss

that were reviewed in section 2. However, the downside of ANN is the computa-
tional power and time required during the learning phase for the construction of
deep neural network models. Despite this, once the ANN model is created, clas-
sification of water contamination can be achieved in real-time, similar to other
machine learning algorithms.

6 Conclusion

In this paper, we applied deep learning classification algorithms for water qual-
ity in a water distribution system. The performance of two supervised learning
techniques, namely SVM and ANN, has been investigated and evaluated. The
analysis used a real dataset of water quality from the US EPA institute. The
data consists of the following water quality features chlorine, temperatures, tur-
bidity, conductivity, total organic carbon, PH, and pressure. The contamination
scenarios were generated using the EPANET tool, the most known tool used in
the water domain. The results show that ANN achieved the best performance
when compared to the reviewed ML algorithms including SVM with an overall
accuracy of 94% for multiclass classification.

For future work, ANN models are applied at the edge for real-time water
contamination detection. Here, the learning is performed at the cloud to utilise its



Title Suppressed Due to Excessive Length 11

Fig. 7. ANN model accuracy

substantial computational power and stable power supply. Moreover, to improve
the classification, an ensemble-based system is applied at the cloud to combining
diverse models representing readings from various water stations.
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