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Abstract 

Purpose: Genetic polymorphisms have been associated with the adaptation to training in 

maximal oxygen uptake (V̇O2max). However, the genotype distribution of selected 

polymorphisms in athletic cohorts is unknown, with their influence on performance 

characteristics also undetermined. This study investigated whether the genotype distributions 

of three polymorphisms previously associated with V̇O2max training adaptation are associated 

with elite athlete status and performance characteristics in runners and rugby athletes, 

competitors for whom aerobic metabolism is important.  

Methods: Genomic DNA was collected from 732 men, including 165 long-distance runners, 

212 elite rugby union athletes and 355 non-athletes. Genotype and allele frequencies of 

PRDM1 rs10499043 C/T, GRIN3A rs1535628 G/A and KCNH8 rs4973706 T/C were compared 

between athletes and non-athletes. Personal best marathon times in runners, as well as in-game 

performance variables and playing position of rugby athletes, were analysed according to 

genotype. 

Results: Runners with PRDM1 T alleles recorded marathon times ~3 min faster than CC 

homozygotes (02:27:55 ± 00:07:32 h vs. 02:31:03 ± 00:08:24 h, p = 0.023). Rugby athletes had 

1.57 times greater odds of possessing the KCNH8 TT genotype than non-athletes (65.5% vs. 

54.7%, χ2 = 6.494, p = 0.013). No other associations were identified. 

Conclusions: This study is the first to demonstrate that polymorphisms previously associated 

with V̇O2max training adaptations in non-athletes are also associated with marathon 

performance (PRDM1) and elite rugby union status (KCNH8). The genotypes and alleles 

previously associated with superior endurance training adaptation appear to be advantageous 

in long-distance running and achieving elite status in rugby union. 

 

Key words: genomics; exercise; heritability; endurance; polymorphism 
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Introduction 

Exercise-related phenotypes are determined by the interaction of genetics and the environment. 

1 For many phenotypes, individual differences remain when environmental factors are 

controlled, highlighting the important contribution of heritable factors.2 The discovery of genes 

and common genetic variants that are associated with quantifiable phenotypes can, therefore, 

help to elucidate the mechanisms that contribute to such individual differences.  

 Cardiorespiratory fitness is positively associated with health outcomes and can be 

improved by regular aerobic activity.3 The maximal rate of O2 uptake (V̇O2max) describes the 

maximal amount of O2 per unit of time that can be delivered to peripheral organs, such as 

skeletal muscle, and is the standard measurement of cardiorespiratory fitness.4 Findings from 

the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study estimate 

that the heritability of V̇O2max in the untrained state is approximately 50%.5 A subsequent 

report involving the same cohort estimated the heritability of the adaptation of V̇O2max 

following a 20-week endurance training program to be 47%.2 These data suggest that not only 

are some individuals predisposed to superior cardiovascular fitness in the absence of exercise 

stimuli, but that the magnitude to which an individual can adapt to aerobic exercise training is 

also genetically influenced.  

The benefit of cardiorespiratory fitness to athletic performance is reflected by superior 

V̇O2max amongst athletes compared to non-athletes and may be explained, in part, by the 

deliberate exposure of athletes to prolonged exercise training.4 It is also possible that 

individuals with genetic variants that predispose them to better training adaptation are more 

likely to reach the elite level, because they can improve their baseline cardiorespiratory fitness 

to a greater magnitude than those with less favourable genetics. The association of specific 

polymorphisms with athlete status, through the overrepresentation of a particular genotype 

compared to the general population, supports the notion that genetic variation can enhance an 
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individual’s chances of becoming an elite athlete.6 Indeed, there are specific genotypes that are 

more common amongst elite endurance athletes7 and elite athletes from team sports such as 

rugby8,9 and soccer10 than the general population. Nonetheless, the polygenic nature of 

physiological traits means that the discovery of additional variants remains key to 

understanding the genetic contribution to athletic performance. Once new associations are 

discovered between specific variants and traits of interest, it is important that researchers can 

independently replicate those findings. Reproducible data reduces the risk of false positive 

results based on single studies, and subsequently helps identify genes and/or variants for further 

mechanistic investigation regarding their functional consequences on physiological processes.  

After determining the heritability of V̇O2max training adaptations, Bouchard and 

colleagues performed a Genome Wide Association Study (GWAS) to identify genomic loci 

associated with the variance in training adaptation.11 Twenty-one single nucleotide 

polymorphisms (SNPs) were individually associated with the magnitude of V̇O2max 

improvement, and in combination explained 48.6% of the variance in adaptation between 

individuals. The three SNPs contributing the most to inter-individual differences in V̇O2max 

training adaptation were PR/SET domain 1 (PRDM1) rs10499043 C/T (7.0%), glutamate 

ionotropic receptor NMDA type subunit 3A (GRIN3A) rs1535628 G/A (5.2%), and potassium 

voltage-gated channel subfamily H member 8 (KCNH8) rs4973706 T/C (4.5%). However, to 

our knowledge, no study has sought to replicate these associations or investigate whether the 

distribution of those genotypes associated with V̇O2max training adaptation differs between the 

general population and groups where enhanced training adaptations may be advantageous, such 

as elite athletes. In addition, team sports such as rugby union include different playing positions 

with variable match demands12,13 and differences in aerobic performance between these 

positions.14 Some athletes may, therefore, have an inherited benefit of an enhanced capacity 

for cardiorespiratory adaptation. Furthermore, the relationship between estimated V̇O2max and 
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the effects of fatigue on tackling technique in rugby league15 suggests cardiorespiratory fitness 

could be an important contributor to match outcomes. However, it is not known whether in-

game performance variables are associated with genetic variability.  

Thus, the purpose of the present study was to determine whether three SNPs previously 

related to V̇O2max training adaptation are associated with elite athlete status amongst long-

distance runners and rugby union athletes, and whether genotypes of these SNPs are associated 

with long-distance running and elite rugby union performance. We hypothesised that the alleles 

associated with greater training adaptations of V̇O2max (PRDM1 T allele, GRIN3A A allele 

and KCNH8 T allele) would (i) be overrepresented in athletes compared to the general 

population, (ii) be associated with superior performance amongst long-distance runners and 

favourable in-game performance in rugby union athletes, and (iii) differ in frequency according 

to the playing position of elite rugby union athletes.   

 

 

Methods 

Subjects 

This study recruited 732 Caucasian male participants including 212 rugby athletes, 165 long-

distance runners and 355 healthy non-athletes. Rugby athletes all competed in rugby union and 

included 73.1% British, 14.2% South African and 10.4% Irish, with other nationalities each 

contributing 0.5%. All rugby athletes were considered elite having competed regularly (>5 

matches) since 1995 in the highest professional league in the UK, Ireland or South Africa, and 

were recruited as part of the RugbyGene Project (described in detail by Heffernan and 

colleagues16). Of these athletes, 53.8% had competed at international level, with 99.1% of those 

representing a “High Performance Union” (Regulation 16, www.worldrugby.org). Long-

distance runners were primarily recruited from the London Marathon Expo between 2012 and 

2014, in addition to national/regional athletic clubs and organisations in the UK. Runners 
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included 91.5% British and 1.2% Polish, with other nationalities each contributing 0.5%. The 

inclusion criterion for runners was a personal best (PB) marathon time of ≤ 3 hours verified 

using official online records (www.thepowerof10.info). Non-athlete participants were 355 

healthy, unrelated recreationally active males recruited through mail-outs, posters and word of 

mouth. Due to assay availability, KCNH8 rs4973706 genotype data was only available for 362 

participants, including 139 rugby athletes and 223 non-athletes. Participant characteristics are 

described in Table 1. This study was conducted in accordance with the Declaration of Helsinki 

and all participants gave written informed consent. Ethical approval was granted by Manchester 

Metropolitan University. 

 

Sample collection 

Blood (~68% of samples), buccal swab (~23%) or saliva (~9%) samples were obtained via the 

following protocols. Blood was drawn from a superficial forearm vein into an EDTA tube and 

stored in sterile tubes at -20°C until processed. Saliva samples were collected into Oragene 

DNA OG-500 collection tubes (DNA Genotek, Ottawa, Ontario, Canada) according to the 

manufacturer’s protocol and stored at room temperature until processed. Sterile buccal swabs 

(Omni swab; Whatman, Springfield, Mill, UK) were rubbed against the buccal mucosa of the 

cheek for ~30 s. Tips were ejected into sterile tubes and stored at -20°C until processed. 

 

DNA isolation 

DNA isolation was performed using a QIAamp DNA Blood Mini kit and standard spin column 

protocol according to manufacturer instructions (Qiagen, West Sussex, UK). Briefly, 200 µL 

of whole blood/saliva, or one buccal swab, was lysed and incubated, the DNA washed, and the 

eluate containing isolated DNA stored at 4°C.  

 

http://www.thepowerof10.info/
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Genotyping 

Samples were genotyped for the PRDM1 (rs10499043 C/T), GRIN3A (rs1535628 G/A) and 

KCNH8 (rs4973706 T/C) SNPs by combining 5 µL Genotyping Master Mix (Applied 

Biosystems, Paisley, UK), 4.3 µL H2O, 0.5 µL assay mix (Applied Biosystems), and 0.2 µL of 

purified DNA (~9 ng), for samples derived from blood and saliva. For DNA derived from 

buccal swabs, 5 µL Genotyping Master Mix was combined with 3.5 µL H2O, 0.5 µL assay mix, 

and 1 µL DNA solution (~9 ng DNA). Either a Chromo4 (Bio-Rad, Hertfordshire, UK) or a 

StepOnePlus real-time system (Applied Biosystems) was used. Briefly, denaturation began at 

95°C for 10 min, with 40 cycles of incubation at 92°C for 15 s before annealing and extension 

at 60°C for 1 min. Initial genotyping analysis was performed with Opticon Monitor software 

version 3.1 (Bio-Rad) or StepOnePlus software version 2.3 (Applied Biosystems). All samples 

were analysed in duplicate and were in 100% agreement.  

 

Rugby union positional groups 

To further assess genotype and allele frequencies in rugby union, athletes were allocated to 

subgroups: forwards (props, hookers, locks, flankers, number eights) and backs (scrum halves, 

fly halves, centres, wingers, full backs). Due to diverse physiological demands within rugby 

union, athletes were further divided into positional groups based on similarities in their 

movement patterns12 as front five (props, hookers, locks), back row (flankers, number eights), 

half backs (scrum halves, fly halves), centres, and back three (wings and full backs). The rugby 

athletes’ playing positions are shown in Table 2. 

 

Rugby union in-game performance variables 

In-game performance data for 112 of the 212 rugby athletes was obtained from Opta Sports 

(London, UK) for all matches during eight seasons (2012-13 to 2019-20) of rugby union 
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competition in the highest professional competitive leagues in England (Premiership) and 

Wales/Ireland/Scotland/Italy/South Africa (Celtic/PRO12/PRO14). Athletes were included for 

analysis where performance data were available for a minimum of 320 competitive minutes, 

equivalent to 39.9 ± 27.0 80-min matches per player. The analysed variables were: number of 

carries per 80 min; metres gained in possession per 80 min; number of penalties conceded per 

80 min; number of successful tackles per 80 min; percentage of successful tackles during all 

matches.  

 

Statistical analysis 

Statistical analyses were conducted using SPSS for Windows version 25.0 (IBM Statistics, 

Chicago, Illinois). Genotype distributions and allele frequencies of athletes versus non-athletes, 

athlete sub-groups, and of athlete sub-groups versus non-athletes, were compared by χ2 

goodness-of-fit test. Genotype distribution was analysed using additive (AA vs. Aa vs. aa) and 

recessive (AA vs. Aa+aa) models due to low minor allele frequencies. Odds ratios (OR) were 

calculated where genotype distribution differed between groups. Genotype distribution and 

allele frequencies according to rugby playing position were compared using the χ2 test of 

independence. The associations of PRDM1 and GRIN3A genotypes with long-distance runners’ 

PB marathon time were analysed in a recessive model only (due to low minor allele frequency) 

by independent samples t-test. Performance variables were compared between rugby union 

forwards and backs by independent samples t-test. The association between PRDM1 (n = 112), 

GRIN3A (n = 112) and KCNH8 (n = 95) genotype and rugby union in-game performance 

variables were analysed in a recessive model only (due to low minor allele frequency) by one-

way ANCOVA, with first rugby union subgroups (forwards and backs), then positional groups 

(front five, back row, half backs, centres and back three), as covariates. P values < 0.05 were 
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considered statistically significant, after Bonferroni adjustment for multiple comparisons. All 

data are presented as mean ± standard deviation. 

 

Results 

Hardy Weinberg Equilibrium (HWE) and Genotype distribution 

Genotype distributions across all groups for each SNP are described in Table 3. All were in 

HWE (χ2  0.773, p ≥ 0.379). Although not statistically significant (p = 0.056, OR = 1.27 (95% 

confidence intervals (CI) 0.89-1.79)), 24.7% of all athletes carried the PRDM1 T allele 

(CT/TT) compared to 20.6% of non-athletes. Similarly, although not statistically significant (p 

= 0.054, OR = 1.44 (95% CI 0.91-2.16), 26.7% of runners carried one or more T allele 

compared to 20.6% of non-athletes. KCNH8 TT genotype was overrepresented in rugby 

athletes compared to non-athletes (65.5% vs. 54.7%, χ2 = 6.494, p = 0.013, OR = 1.57 (95% CI 

1.01-2.43), Fig. 1). There were no other differences in genotype frequencies between groups 

(p ≥ 0.148). 

 

Runner PB marathon times 

Runners with the PRDM1 T allele (CT/TT) had ~3 min faster PB marathon times than those 

with the CC genotype (02:27:55 ± 00:07:31 h vs. 02:31:03 ± 00:08:24 h, p = 0.023; Fig. 2). 

There were four T allele carriers (CT/TT) amongst the 10 fastest runners, with a T allele 

frequency of 0.25 in those 10 compared to 0.13 in the remaining 155 runners. However, there 

was no overall association between PB marathon time and GRIN3A genotype. 

 

Rugby union positional groups 

No differences in genotype distribution were observed between forwards and backs for PRDM1 

(T allele carriers 22.0% vs. 24.5 respectively, p = 0.744), GRIN3A (A allele carriers 18.4% vs. 
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16.3%, p = 0.720) and KCNH8 (C allele carriers 29.1% vs. 41.7%, p = 0.150). Similarly, no 

differences in PRDM1, GRIN3A or KCNH8 genotype distribution were observed according to 

rugby athletes’ playing position (p ≥ 0.228). 

 

Rugby union in-game performance variables 

There was no association of genotype with in-game performance variables adjusted for playing 

position (p ≥ 0.131). Regardless of genotype, backs carried the ball forward for a greater 

distance per 80 min than forwards (32.2 ± 15.0 m vs 12.5 ± 11.0 m, p < 0.0005). Compared to 

backs, forwards completed more successful tackles per 80 min (9.8 ± 2.1 vs 5.9 ± 2.3, p < 

0.0005), had a higher percentage of successful tackles (89.7 ± 4.14 vs 82.9 ± 6.7, p < 0.0005) 

and conceded more penalties per 80 min (1.0 ± 0.5 vs 0.4 ± 0.2, p < 0.0005). Performance data 

are not presented. 

 

Discussion 

The aim of this study was to determine whether three SNPs previously linked to V̇O2max 

training adaptations were associated with athlete status and performance characteristics in elite 

rugby athletes and long-distance runners. The main findings were that in runners, the PRDM1 

T allele was associated with faster marathon running times and tended to be overrepresented 

compared to non-athletes, and that elite rugby athletes had 1.57 times greater odds of 

possessing the KCNH8 TT genotype than non-athletes. These findings confirm our primary 

hypothesis, that the alleles and genotypes associated with athlete status and athletic 

performance in the present study align with those previously associated with greater V̇O2max 

improvement.11 In contrast, the GRIN3A SNP was not associated with any of the variables 

investigated in this study, suggesting it does not affect elite status or performance in runners or 
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rugby athletes, whilst there was no relationship between any SNP and rugby union in-game 

performance variables. 

Runners with the PRDM1 CT/TT genotype recorded ~3 min (2.1%) faster personal best 

marathon times than CC homozygotes, suggesting that carrying at least one PRDM1 T allele is 

favourable to endurance running performance. The T allele also tended to be more common 

amongst runners than non-athletes. The rs10499043 SNP is a C>T substitution located 287 kb 

from PRDM1, previously known as BLIMP1, which encodes a protein that represses β-

interferon gene expression and may be involved in skeletal muscle fiber differentiation,17 

although that has not been shown in human tissue. PRDM1 may also be a target of epigenetic 

downregulation,18 though a functional link to cardiorespiratory fitness is unknown. Whilst 

V̇O2max was not measured in this study, our finding that runners with the PRDM1 T allele 

recorded faster personal best marathon times than CC homozygotes (02:27:55 h vs 02:31:03 h) 

suggests that a genetic predisposition to achieve greater training-induced improvements in 

V̇O2max might contribute to superior running performance. Indeed, the PRDM1 T allele and 

CT/TT genotype were more frequent in the 10 fastest runners than in the remaining runners 

(25.0% vs 13.2%, and 40.0% vs 25.8%, respectively). Nevertheless, 73.3% of runners in this 

study, all of whom recorded marathon times below 03:00:00 h, did not carry the PRDM1 T 

allele. These data reaffirm the notion that while high-level marathon performance is dependent 

on several factors including major and obvious environmental ones like training volume, some 

of the variation in marathon performance at high levels of the sport could be genetically 

influenced.19,20 When considered alongside the superior V̇O2max improvements in TT 

homozygotes and the proportion of V̇O2max improvement attributed to this SNP,11 our findings 

suggest further investigation of this SNP in human endurance performance is warranted. If 

replicated in independent populations, in vitro studies should seek to determine a functional 
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link between PRDM1 rs10499043 and relevant biology including aspects of muscle 

differentiation.  

In a sub-sample of the study cohort, the KCNH8 TT genotype was overrepresented in 

elite rugby athletes compared to non-athletes. The rs4973706 SNP is a T>C substitution located 

268kb from KCNH8, which is principally expressed within the human nervous system.21 

KCNH8 includes a potassium voltage-gated channel and is a member of the human Elk K+ 

channel gene family,22 which has diverse functions including regulating heart rate, insulin 

secretion, neurotransmitter release and epithelial electrolyte transport.22 Due to association of 

the TT genotype with greater V̇O2max adaptation,11 and the importance of aerobic fitness to 

repeated-effort performance of rugby league athletes,23 we hypothesised an overrepresentation 

of the TT genotype in rugby union athletes compared to non-athletes. Indeed, cardiorespiratory 

fitness contributes to elite rugby union performance,13,24 and endurance training is fundamental 

to elite clubs’ athlete preparation.25 Consequently, heritable factors predisposing a greater 

magnitude of V̇O2max improvement during training likely contribute to athletes’ ability to 

reach the highest level of competition in rugby union. The association described in the present 

study is the first association of this SNP with elite rugby status, and whilst rugby athletes had 

1.57 times greater odds of possessing the TT genotype than non-athletes, ~36% of rugby 

athletes in this study lack the TT genotype, demonstrating that other factors including other 

genetic variants8,9 contribute to elite rugby status. No studies have investigated the rs4973706 

variant since the association with V̇O2max improvement,11 so as far as we are aware, the 

functional role of this SNP is unknown. However, the exercise-induced rise in ATP-sensitive 

potassium channel expression, which promotes reduced cardiac energy consumption under 

escalating workloads as an adaptive response to exercise26 suggests genetic variations in 

KCNH8, a gene related to potassium channel pathways, might influence the inter-individual 

capacity for cardiorespiratory adaptation. The findings described here and the previous 



13 
 

association with V̇O2max adaptation demonstrate the need for replication in larger athletic and 

non-athletic cohorts and for mechanistic studies of the rs4973706 variant vis-à-vis cardiac 

function and V̇O2max. 

The GRIN3A rs1535628 variant was not associated with athlete status, running 

performance, rugby playing position or rugby performance variables. That SNP lies 516 kb 

upstream of GRIN3A, which is widely expressed in neural cells and involved in the 

development of synaptic elements.27 Other GRIN3A polymorphisms are associated with 

conditions such as Kawasaki disease28 and schizophrenia,29 yet the functional consequence of 

the rs1535628 SNP remains undescribed. Less than 1% of participants in the present study had 

the AA genotype previously associated with superior V̇O2max adaptation,11 with a low minor 

allele frequency across all groups potentially limiting the power to detect associations. 

Furthermore, the present study investigated runners and rugby athletes, and it is possible that 

the GRIN3A rs1535628 SNP is only associated with cardiorespiratory fitness improvement of 

non-athletes when they first begin training, as investigated in HERITAGE and the subsequent 

GWAS.11 While further studies are warranted to replicate the original association, the present 

study suggests this SNP is unlikely to influence athlete status and performance in runners or 

rugby athletes. 

No SNP was associated with rugby union playing position or in-game performance 

variables in the present study. We hypothesised that differences would exist because rugby 

athletes exhibit different movement patterns according to their playing position12 and because 

of reported differences in aerobic field test performance between playing positions.14 Previous 

associations of ACTN38 and FTO30 genotypes with playing position in similar populations, 

where the functional consequences of both SNPs are better understood, permits logical 

speculation regarding each association. However, lack of association of ACE and COL5A1 

SNPs with playing position8,9 demonstrates that although some SNPs may be advantageous to 
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certain positions, others may be more broadly associated with superior athletic ability in rugby 

players. Indeed, no genotypes were associated with rugby union performance variables in the 

present study, indicating that some SNPs are advantageous to general rugby union ability, but 

do not contribute to the number or success of key actions performed by individual athletes. In 

light of our finding that several in-game performance variables differ between forwards and 

backs (as expected), future studies should seek to determine whether other SNPs - including 

those previously associated with playing position in rugby8,30 - are associated with these or 

other performance variables relevant to that particular SNP. Despite the association of KCNH8 

with elite rugby status, the genotypes recorded in this study do not appear to differ between 

playing positions or relate to the frequency or success of specific playing actions. 

 

Practical Applications 

This study presents novel associations of the PRDM1 rs10499043 SNP with marathon 

performance and the KCNH8 rs4973706 SNP with the attainment of elite rugby union status, 

adding to a growing body of evidence surrounding the heritability of athletic traits and 

identifying polymorphisms that merit further examination. It is also important to note the 

limitations of this investigation. Firstly, assessing V̇O2max directly may have helped to 

determine whether the associations discovered in this study are linked to cardiorespiratory 

fitness, although from a practical perspective that is virtually impossible in large cohorts of 

high-level athletes. Secondly, only male Caucasians were investigated to control for the effects 

of sex and geographic ancestry. Accordingly, these findings should be replicated in women and 

participants with different ancestry. The present study included athletes from long-distance 

running and rugby union, meaning the influence of these SNPs in other sports remains 

unknown, and the lack of KCNH8 genotype data for all participants, particularly in runners, 

highlights the need for further investigation of this SNP in relation to athletic status and 
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performance. Most importantly, our results should be replicated in independent cohorts and 

different contexts before the investigated SNPs should be used in commercial genetic testing. 

 

Conclusions 

The present study is the first to demonstrate associations of the PRDM1 rs10499043 SNP with 

marathon running performance and the KCNH8 rs4973706 SNP with elite athlete status in 

rugby union. The alleles associated with superior performance and elite athlete status in the 

present study are the same as those previously associated with greater V̇O2max adaptation. 

This suggests that at least some SNPs, and thus physiological mechanisms that modulate the 

extent of training adaptations, are common to both untrained individuals and trained athletes. 

Further investigation is required to confirm whether the magnitude of cardiorespiratory training 

adaptation that occurs in elite runners and rugby athletes is genotype dependent.  

 

Acknowledgements: 

The authors thank all athletes and non-athletes for their time and willingness to participate. We 

also thank Hannah Dines for assistance during data collection and analysis.  

 

References 

1. Puthucheary Z, Skipworth JR, Rawal J, et al. Genetic influences in sport and physical 

performance. Sports Med. 2011;41(10):845-859. 

2. Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to 

exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985). 

1999;87(3):1003-1008. 

3. Erikssen G, Liestøl K, Bjørnholt J, et al. Changes in physical fitness and changes in 

mortality. Lancet. 1998;352(9130):759-762. 



16 
 

4. Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. 

Sports Med. 2000;29(6):373-386. 

5. Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary 

state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30(2):252-258. 

6. Ahmetov, II, Fedotovskaya ON. Current Progress in Sports Genomics. Adv Clin Chem. 

2015;70:247-314. 

7. Ahmetov I, Kulemin N, Popov D, et al. Genome-wide association study identifies three 

novel genetic markers associated with elite endurance performance. Biol Sport. 

2015;32(1):3-9. 

8. Heffernan SM, Kilduff LP, Erskine RM, et al. Association of ACTN3 R577X but not 

ACE I/D gene variants with elite rugby union player status and playing position. 

Physiol Genomics. 2016;48(3):196-201. 

9. Heffernan SM, Kilduff LP, Erskine RM, et al. COL5A1 gene variants previously 

associated with reduced soft tissue injury risk are associated with elite athlete status in 

rugby. BMC Genomics. 2017a;18(Suppl 8):820. 

10. Eynon N, Ruiz JR, Yvert T, et al. The C allele in NOS3 -786 T/C polymorphism is 

associated with elite soccer player's status. Int J Sports Med. 2012;33(7):521-524. 

11. Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O₂ 

uptake response to standardized exercise training programs. J Appl Physiol (1985). 

2011;110(5):1160-1170. 

12. Cahill N, Lamb K, Worsfold P, Headey R, Murray S. The movement characteristics of 

English Premiership rugby union players. J Sports Sci. 2013;31(3):229-237. 

13. Brazier J, Antrobus M, Stebbings GK, et al. Anthropometric and physiological 

characteristics of elite male rugby athletes. J Strength Cond Res. 2020;34(6):1790-

1801. 



17 
 

14. Quarrie KL, Handcock P, Toomey MJ, Waller AE. The New Zealand rugby injury and 

performance project. IV. Anthropometric and physical performance comparisons 

between positional categories of senior A rugby players. Br J Sports Med. 

1996;30(1):53-56. 

15. Gabbett TJ. Influence of fatigue on tackling technique in rugby league players. J 

Strength Cond Res. 2008;22(2):625-632. 

16. Heffernan SM, Kilduff LP, Day SH, Pitsiladis YP, Williams AG. Genomics in rugby 

union: A review and future prospects. Eur J Sport Sci. 2015;15(6):460-468. 

17. Beermann ML, Ardelt M, Girgenrath M, Miller JB. Prdm1 (Blimp-1) and the 

expression of fast and slow myosin heavy chain isoforms during avian myogenesis in 

vitro. PLoS One. 2010;5(4):e9951. 

18. Nie K, Zhang T, Allawi H, et al. Epigenetic down-regulation of the tumor suppressor 

gene PRDM1/Blimp-1 in diffuse large B cell lymphomas: a potential role of the 

microRNA let-7. Am J Pathol. 2010;177(3):1470-1479. 

19. Rivera MA, Fahey TD, López-Taylor JR, Martínez JL. The Association of Aquaporin-

1 Gene with Marathon Running Performance Level: a Confirmatory Study Conducted 

in Male Hispanic Marathon Runners. Sports Med Open. 2020;6(1):16. 

20. Stebbings GK, Williams AG, Herbert AJ, et al. TTN genotype is associated with 

fascicle length and marathon running performance. Scand J Med Sci Sports. 

2018;28(2):400-406. 

21. Zou A, Lin Z, Humble M, et al. Distribution and functional properties of human 

KCNH8 (Elk1) potassium channels. Am J Physiol Cell Physiol. 2003;285(6)C1356-

1366. 



18 
 

22. Ellinghaus E, Ellinghaus D, Krusche P, et al. Genome-wide association analysis for 

chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Sci Rep. 

2017;7:45652. 

23. Gabbett TJ, Stein JG, Kemp JG, Lorenzen C. Relationship between tests of physical 

qualities and physical match performance in elite rugby league players. J Strength Cond 

Res. 2013;27(6):1539-1545. 

24. Smart DJ, Hopkins WG, Gill ND. Differences and changes in the physical 

characteristics of professional and amateur rugby union players. J Strength Cond Res. 

2013;27(11):3033-3044. 

25. Jones TW, Smith A, Macnaughton LS, French DN. Strength and Conditioning and 

Concurrent Training Practices in Elite Rugby Union. J Strength Cond Res. 

2016;30(12):3354-3366. 

26. Zingman LV, Zhu Z, Sierra A, et al. Exercise-induced expression of cardiac ATP-

sensitive potassium channels promotes action potential shortening and energy 

conservation. J Mol Cell Cardio. 2011;51(1):72-81. 

27. Das S, Sasaki YF, Rothe T, et al. Increased NMDA current and spine density in mice 

lacking the NMDA receptor subunit NR3A. Nature. 1998;393(6683):377-381. 

28. Lin YJ, Chang JS, Liu X, et al. Association between GRIN3A gene polymorphism in 

Kawasaki disease and coronary artery aneurysms in Taiwanese children. PLoS One. 

2013;8(11):e81384. 

29. Takata A, Iwayama Y, Fukuo Y, et al. A population-specific uncommon variant in 

GRIN3A associated with schizophrenia. Biol Psychiatry. 2013;73(6):532-539. 

30. Heffernan SM, Stebbings GK, Kilduff LP, et al. Fat mass and obesity associated (FTO) 

gene influences skeletal muscle phenotypes in non-resistance trained males and elite 

rugby playing position. BMC Genet. 2017b;18(1):4. 



19 
 

Table 1. Characteristics of participants analysed for PRDM1, GRIN3A and sub-sample for KCNH8. 

Group n Age (y) Height (m) Mass (kg) BMI (kg/m2) 

Non-athletes      

PRDM1 & GRIN3A 355 27 (15) 1.79 (0.07) 78.0 (11.4)* 24.5 (3.5)* 

KCNH8 223 23 (7) 1.79 (0.06) 77.6 (11.8) 24.2 (3.3) 

Rugby Union      

PRDM1 & GRIN3A 212 28 (7) 1.86 (0.07)** 102.4 (11.4)** 29.7 (3.1)** 

KCNH8 139 26 (5) 1.86 (0.07)*** 102.8 (12.3)*** 29.7 (3.0)*** 

Runners      

PRDM1 & GRIN3A 165 36 (9) 1.76 (0.06) 66.9 (6.8) 21.0 (2.0) 

31. Data are mean (standard deviation) 

32. * greater than runners (p < 0.0005) 

33. ** greater than non-athletes and runners (p < 0.0005) 

34. *** greater than non-athletes (p < 0.0005) 
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Table 2. Distribution of rugby athletes according to playing position. Data are number of athletes (% of all 

athletes) 

 Analysis of 

PRDM1 and GRIN3A 

Analysis of 

KCNH8 

 n = 212 n = 139 

Forwards vs. Backs   

Forwards 114 (53.8) 79 (56.8) 

Backs 98 (46.2) 60 (43.2) 

Positional sub-groups   

Front Five 66 (31.1) 47 (33.8) 

Back Row 50 (23.6) 34 (25.5) 

Half Backs 41 (19.3) 22 (15.8) 

Centres 27 (12.7) 18 (12.9) 

Back Three 28 (13.2) 18 (12.9) 
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Table 3. Genotype distribution for PRDM1 and GRIN3A according to athlete group. Data are number of 

individuals (%) 

  Group  

SNP Genotype Non-athlete All athletes Rugby Runner Total MAF 

  n = 355 n = 377 n = 212 n = 165 n = 732 n = 732 

PRDM1 CC 282 (79.4) 284 (75.3) 163 (76.9) 121 (73.3) 566 (76.6) 0.12 

rs10499043 CT/TT 73 (20.6) 93 (24.7) 49 (23.1) 44 (26.7) 166 (23.4)  

        

GRIN3A GG 293 (82.5) 311 (82.5) 175 (82.6) 136 (82.4) 604 (82.5) 0.09 

rs1535628 GA/AA 62 (17.5) 66 (17.5) 37 (17.4) 29 (17.6) 128 (17.5)  
        

MAF, minor allele frequency 
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Figure 1. KCNH8 rs4973706 genotype distribution in non-athletes and rugby athletes. * greater 

than non-athletes (p = 0.013) 
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Figure 2. Runners’ PB marathon time according to PRDM1 rs10499043 genotype. * faster 

time than CC (p = 0.023). 

 


