
Blockchain-enabled Real-time SLA Monitoring for Cloud-hosted Services

Kashif Mehboob Khana, Junaid Arshadb, Waheed Iqbalc, Sidrah Abdullaha, Hassan Zaibc

aDepartment of Software Engineering, NED University of Engineering & Technology, Karachi, Pakistan
bSchool of Computing and Digital Technology, Birmingham City University, Birmingham, UK

cPunjab University College of Information Technology, University of the Punjab, Lahore, Pakistan

Abstract

Cloud computing is an important technology for businesses and individual users to obtain computing resources over the
Internet on-demand and flexibly. Although cloud computing has been adopted across diverse applications, the owners
of time-and-performance critical applications require cloud service providers’ guarantees about their services, such as
availability and response times. Service Level Agreements (SLAs) are a mechanism to communicate and enforce such
guarantees typically represented as service level objectives (SLOs), and financial penalties are imposed on SLO violations.
Due to delays and inaccuracies caused by manual processing, an automatic method to periodically verify SLA terms in a
transparent and trustworthy manner is fundamental to effective SLA monitoring, leading to the acceptance and credibility
of such service to the customers of cloud services. This paper presents a blockchain-based distributed infrastructure that
leverages fundamental blockchain properties to achieve immutable and trustworthy SLA monitoring within cloud services.
The paper carries out an in-depth empirical investigation for the scalability of the proposed system in order to address the
challenge of transparently enforcing real-time monitoring of cloud-hosted services leveraging blockchain technology. This
will enable all the stakeholders to enforce accurate execution of SLA without any imprecisions and delays by maintaining
an immutable ledger publicly across blockchain network. The experimentation takes into consideration several attributes
of blockchain which are critical in achieving optimum performance. The paper also investigates key characteristics of
these factors and their impact to the behaviour of the system for further scaling it up under various cases for increased
service utilization.

Keywords: Permissioned Blockchain, SLO Monitoring, Smart Contract, Scalability, Web Service Monitoring

Preprint submitted to Cluster Computing Journal September 9, 2021

1. Introduction

Cloud computing has emerged as an important tech-
nology for businesses and individual users to obtain com-
puting resources over the Internet. The main features
of cloud computing, including pay-as-you-go, dynamic re-
source provisioning, high availability, and scalability, at-
tracted the customers to migrate their services from tra-
ditional in-house data centers and computing facilities to
remote cloud data centers. However, the owners of time-
and-performance critical applications require some guar-
antees from cloud service providers about their services.
To address customer concerns, cloud providers offer ser-
vice level agreements (SLAs).

A typical SLA documents a set of service level objec-
tives (SLOs) in terms of different quality of service (QoS)
metrics and mentions financial penalties on SLO violations
for the cloud provider. Nowadays, a typical SLA offered by
the cloud providers guarantees their services’ availability
and performance [1]. For example, Amazon Web Services
(AWS), a leading cloud service provider, offers 99.5% up-
time guarantees for its Relational Database Service (RDS)
and reduces 10% services charges in the customer bill in
case of violations as a penalty. However, RDS customers
still have to submit compensation requests manually. Most
customers hosting services and solutions on the cloud plat-
forms ensure the QoS for their end-users by relying on
the cloud provider guarantees. Therefore, it is important
for customers to automatically and periodically verify the
SLA terms in a transparent and trustworthy method. An
independent third party can help to enforce the agreed
SLA terms. However, the third party requires to ensure
transparency and trustworthiness for both parties.

Automatic SLA monitoring, verification, and enforce-
ment are challenging for both parties (cloud providers and
customers) to avoid trust deficits. Therein, blockchain
brings new opportunities to address the challenges involved
in automating SLA monitoring and enforcement. A Blockchain
system exemplifies distributed ledger technologies, enabling
a digital transaction’s data to be stored in a chained block
where each participant stores transaction records in these
connected blocks. The transactions are included with the
consensus of verifying nodes, also known as miners. A
blockchain-based system has inherent decentralization prop-
erties, transparency, trustless-trust, immutability, and trace-
ability since it allows each participating node to have equal
opportunity to influence the ledger. The transparency and
immutability are enforced by enabling the nodes to view
and maintain the ledger, which can only be altered with
other mining nodes’ consensus. Some initial work has been
done in the blockchain for SLAs, such as a blockchain-
based framework for the negotiation of cloud services [2],
implementation of SLAs in supply chain management sys-
tem [3], validation of SLA violations [4], payment of the
penalties in case of SLA violations [5, 6], the integrity of
SLA [7] and secure monitoring of SLA [8]. However, fur-
ther work is required to investigate challenges to achieve

end to end SLA monitoring and enforcement in a trust-
worthy manner. In this respect, this paper aims to ad-
dress this challenge through the design and development
of a blockchain-based system to monitor and enforce SLA
terms.

Specifically, we propose and evaluate an independent
third party service for automatic monitoring and enforce-
ment of SLA terms, precisely web application response
time, agreed between application owners and cloud providers
for ensuring transparency and trustworthiness for both
parties. Our proposed solution is based on a private blockchain
system that creates an immutable history of records that
monitors and evaluates the level of SLA enforcement be-
tween customers and service providers. The proposed so-
lution is evaluated for multiple SLA settings with a vary-
ing number of web application endpoints required to en-
sure specific response time SLO requirements. Our exper-
imental evaluation investigates the effects of blockchain’s
different parameter settings, including block size, trans-
action throughput, and block generation rate, for opti-
mizing the available infrastructure for running the pro-
posed solution and avoid any wastage of computing re-
sources. The proposed solution can monitor web applica-
tions’ response time running on the cloud to ensure trans-
parency and trustworthiness for application owners and
cloud providers. The main contributions of this paper in-
clude:

i. Propose a blockchain-based automatic SLA monitor-
ing system for ensuring transparency and trustwor-
thiness between cloud providers and consumers. We
leverage decentralised characteristics of blockchain
technology to achieve fault tolerance and therefore
achieve a resilient SLA monitoring infrastructure.

ii. A verifiable approach to SLA monitoring which can
facilitate trustworthy SLA enforcement. We lever-
age blockchain’s inherent capabilities to achieve an
immutable record of web service monitoring which
can be helpful for complete audit data trial and log
violations against SLA in the future.

iii. Evaluate the proposed system for satisfying SLA,
specifically for web application response time, for a
varying number of endpoints.

iv. Analyse the impact of different blockchain system pa-
rameters to avoid wastage of computing resources to
monitor and enforce SLA requirements.

The rest of the paper is organized as follows. Back-
ground about SLA and blockchain is presented in Section
2. We discuss the related work in Section3, highlighting
state of the art within SLA monitoring. The proposed
blockchain-based SLA monitoring system is explained in
Section 4 along with its implementation details. Exper-
imental setup and performance analysis of the proposed
system are provided in Section 5 and Section 6, respec-
tively. Finally, the conclusion and future work are pre-
sented in Section 7.

2

2. Background

2.1. SLA/WS monitoring

A Service Level Agreement (SLA) is a contract between
a service consumer and a service provider that identifies
what services will be provided, the goals that will be met,
and penalties if expected QoS metrics are not met by the
service provider [9]. It also defines the expected level of
services that service providers must provide the customer.
Every SLA between the SP and customer has a list of Ser-
vice Level Objectives (SLOs) containing definitions and
measurable values of QoS metrics. SLO guarantees that
an SLA parameter will be provided in a specified time, and
it will adhere to QoS metrics [10]. Every SLA has a life-
cycle that it must adhere to. However, the terminologies
may vary across different SLAs [11]. There are typically 6
stages in the lifecycle, which are described below:

1. Discover service provider: The customer iden-
tifies a service provider that provides the required
services.

2. Define SLA: Both parties negotiate and try to reach
acceptable definitions regarding the service level ob-
jectives.

3. Establish agreement: The terms and services are
defined and deployed in this phase. The customer is
able to access and utilize the deployed services.

4. Monitor SLA violation: The provided services
are monitored by both the parties independently to
assess compliance with the agreed SLA and potential
violations.

5. Terminate SLA: The SLA is terminated in case
no violation of service level agreement has been de-
tected.

6. Enforce penalties for SLA violation: If the spec-
ified requirements are not met by service provider,
penalties for SLA violation are enforced Such poli-
cies are envisaged to have been negotiated prior to
service provision.

The general working of service level agreement man-
agement process is depicted in Figure 1. This flow chart
demonstrates the SLA management process emphasizing
the SLA monitoring phase which is the focus of this pa-
per. There are several technical requirements in an SLA,
which include the responsibilities of customer and service
providers, procedures, pricing and discount policies, ser-
vice description and description of QoS metrics, and re-
porting.

2.2. Blockchain and underpinning concepts

Blockchain is a distributed ledger technology that aids
decentralized, distributed computing in a trustless envi-
ronment. Blockchain has witnessed adoption across di-
verse domains including finance, e-voting [12], and public
sector [13]. The attention attracted by blockchain is pri-
marily due to its most popular application, i.e., Bitcoin

[14], which effectively seeks to conduct financial transac-
tions in a peer-to-peer manner without the support of the
conventional banking system. Although Bitcoin was estab-
lished in 2009, the concepts and technologies which under-
pin blockchain in general and Bitcoin, in particular, have
evolved over the last few decades. For instance, the con-
cept of anonymous transactions that can be traced back to
the sender was introduced by David Chaum in 1983 [15]
and today serves as one of the elementary concepts within
Bitcoin.

With respect to the ledger, a transaction represents the
fundamental concept within the blockchain. A transac-
tion in the blockchain is a piece of information that moves
something of value (a digital token which may represent a
unit of currency, a vote, etc.) from one public address (be-
longing to the sender) to the receiver’s address. Therefore,
a transaction saves and tracks the state of the blockchain
over a period of time. These transactions become part of
a blockchain forever through blocks that move them into
the chain. A block is primarily a collection of transactions
that are integrated and organized in such a way that each
block computes and keeps its own blockhash (using the
individual hashes of all the transactions as its source) in
the block along with the blockhash of its preceding block.
In this way, a chain of blocks is generated, which grows
with time. Since these blocks are connected through their
hashes (computed through the transactions within that
particular block), this data structure makes the records
of blockchain immutable where a slight change in a single
transaction would produce an entirely new hash resulting
in a mismatch of this hash with the neighboring block.
This prevents any suspicious block from being accepted
by the blockchain network and therefore mitigates against
illegitimate tampering of blockchain state. Fig 2 demon-
strates this linkage between different blocks to achieve a
tamper-resistant ledger.

All the nodes of a typical blockchain network store an
identical copy of blockchain locally, which is frequently
synchronized with the main blockchain (also known as con-
sensus blockchain). Each new block of a blockchain is ac-
cepted and added by its peers through a process known
as mining. The process of mining is essential in develop-
ing consensus among participating nodes and can take up
different forms depending upon the type of application.
Proof of work is the most common consensus algorithm
in blockchain applications owever, other variants such as
Proof of Stake have also emerged. Proof of Work algo-
rithm relies heavily on the computational capabilities of
the mining hardware to solve a non-trivial mathematical
problem.

2.2.1. Public vs. private blockchain

From the perspective of nodes’ participation, a blockchain
can be divided into two broad categories; public and pri-
vate blockchains. Public blockchain [16] adopts a pub-
lic model for participation and, therefore, may be joined
by any node without any restriction. Such networks of

3

Figure 1: Service Level Agreement Management

blockchain do not require any permission for a user to join
or participate in the network. As mentioned earlier, it is
a permissionless open-ended blockchain, and that is why
the network size is usually bigger than the permissioned
blockchain. Private blockchain, also called permissioned
blockchain, on the other hand, is a more controlled form
of blockchain which is not publicly accessible. In a pri-
vate blockchain [17], nodes must seek permission to join
the network. Such networks usually require an authenti-
cated node to perform according to a predefined role in
the system.

3. Related Work

Recently, blockchain is used in the cloud, edge, fog,
and IoT services and solutions [18]. For example, Zhang
et al. [19] proposed a solution to use blockchain to im-
prove computation ability for edge computing facilities.
Rehman et al. [20] proposed a secure mechanism for IoT
devices connected over the cloud through edge nodes us-
ing blockchain. Cao et al. [21] proposed a reliable system
for the eHealth system to protect electronic health records
for authorized and illegal access and modifications using
Ethereum blockchain. Savi et al. [22] present initial inves-
tigations of using a blockchain-based decentralized system
for resource allocation for fog computing infrastructure.

Blockchain is also used for automated processes in differ-
ent domains. For example, in [2], the authors presented
a blockchain-based solution for the negotiation process for
the provisioning of the cloud resources being provided by
any cloud service provider. The proposed solution offers
tamper-proof automated negotiation terms dynamically.
Blockchain-enabled e-voting systems automatically ensure
the security and reliability of the system [23, 12].

There have been several efforts to use blockchain to
ensure SLA in different applications as studied by Gai et
al. [24]. For example, [3] et al. proposed and evaluated a
blockchain integrated logistics and supply chain manage-
ment using IoT devices. Their proposed system provides a
trustful and transparent solution to track deliveries of high
value across different organizations. It ensures SLAs for
different objectives, including on-time deliveries, appropri-
ate packaging, and asset damages during the transition.
Zhou et al. [25] proposed a solution to satisfy SLA using
game theory and smart contracts. The authors proposed a
witness model to ensure the credibility of the information
to record on a public blockchain to detect and report SLA
violations. Neidhardt et al. [26] presented SLA monitoring
using blockchain to ensure customer trust in provider ser-
vices. Taha et al. [27] presented an approach to validate
the compliance of SLA offered by cloud providers and au-
tomatically compensate the customers for SLA violations

4

Hash of block i-1

Timestamp Nonce

Merkle Root

Tx1 Tx3Tx2 Txn…

Hash of block i

Timestamp Nonce

Merkle Root

Tx1 Tx3Tx2 Txn…

Block iBlock i+1

Merkle Root

hash(Tx1,Tx2) hash(Txn-1,Txn)

hash(Tx1) hash(Tx2) hash(Txn)…

…

Tx1 Tx2 Txn…

Block iBlock i+1

……

Block 1Genesis
block

Block x

Figure 2: An in-depth view of conventional blockchain

using smart contracts and the Ethereum blockchain sys-
tem.

Another recent work by Scheid et al. [6, 5] proposed an
automated solution based on blockchain and smart con-
tracts to dynamically pay the cost of the penalties to the
customers due to SLA violations observed in the services
offered by the providers. The authors experimented and
showed the SLA violations and penalties payment for a
web server response time objectives. The solution is built
on the Ethereum blockchain system and does not address
the performance impact of hosting multiple smart con-
tracts and monitoring overhead for multiple customers.
Nguyen et al. [28] explored the implementation of SLA
based blockchain which aims to address the issue of se-
curity of the agreements between a user and a service
provider in the domain of tourism. The services are de-
fined in detail in SLAs which are executed to enhance the
reliability of the system. For this purpose, these SLAs run
on architecture based on blockchain that not only monitors
the entire process, but also minimizes the interaction be-
tween people The SLAs are monitored on the parameters
of satisfaction, rule-abiding rates and cost.

There has been some work that uses oracle [29] to
use off-chain services for enforcement of SLA. For exam-
ple, a recent work by Taghavi et al. [30] presented multi-
agent monitoring for cloud service SLA for the Ethereum
blockchain system using a single oracle for monitoring the
SLA constraints and objectives. Uriarte et al. [31] pro-
posed SLA monitoring and penalty enforcement using the
public blockchain platform Ethereum. For imposing penal-
ties, the solution used smart contracts and exploited or-
acles to use off-chain services and data. Scheid et al. [6]
also use oracle as a monitoring service to ensure SLA com-
pliance. Ma et al. [32] provide a decentralized solution for

verification and disputation for consumers and providers
using oracles. Their proposed solution ensures the reliabil-
ity of oracle for avoiding adding any malicious information
to the blockchain.

In addition to using blockchain as a ledger, smart con-
tracts are increasingly used to develop autonomous appli-
cations as highlighted by [33]. The authors in [34] explored
the use of smart contracts in the field of blockchain for the
purpose of implementing effectiveness in service-oriented
computing. Further, This study emphasizes on reuse and
increase in cost-effectiveness. Daniel and Guida [34] pre-
sented a study on the use of smart contracts from an SLA
perspective in the paradigm of blockchain. They have also
presented with the challenges that might arise in using
smart contracts, such as cost awareness, interoperability
and standardization, and cost awareness [34]. Smart Con-
tracts in blockchain can also be used as a trusted compo-
nent to maintaining the integrity of SLA provided by the
service provider, as proposed by Wonjiga et al. [7]. SLA
verification approach in cloud-based on blockchain tech-
nology is made possible to ensure trust between the in-
volved parties. The authors stated that data integrity is a
common issue in storage systems, and there have been sev-
eral data integrity failures. So, this research has enabled
tenants to verify the integrity of the data, and providers
need to verify the claim [7]. Wonjiga et al. [8, 35] has
proposed detailed infrastructure for the monitoring of the
security of service level agreements in IaaS clouds [8, 35].

There has been an introduction of SLA in the complex
Internet of Things (IoT) domain. Alzubaidi et al. [36, 37]
presented the implementation of blockchain SLA in the en-
vironment of IoT. IoT devices continuously exchange data
in the environment. SLA plays a vital role in the context of
IoT applications as it enables concerned parties to conform

5

to the agreed QoS. Traditional SLA techniques are found
to be inefficient for the complex IoT domain and applica-
tions. The presented conceptual framework focuses on the
awareness of the IoT ecosystem, transparency, auditabil-
ity and minimum human intervention [36]. Hang and Kim
[38] proposed and evaluated an SLA based economy shar-
ing service using Hyperledger Fabric. The system focuses
more on the breach of the contract between the concerned
parties. In case there is a breach of contract, the mon-
etary compensation is applied automatically, and all the
concerned entities are aware of this breach. The frame-
work has been designed in a way to transform business
solutions, improve efficiency, and bring automation in dif-
ferent economic situations [38].

Efficient resource provisioning is another significant chal-
lenge in cloud computing as it is critical to maximising util-
isation and an lead to under or over provisioning. In this
context, Ghobaei-Arani et al. [39, 40, 41] and [?] have
presented recent efforts to achieve effective methods for ef-
ficient resource provisioning for cloud-based environments
whilst minimising SLA violations. As with SLA monitor-
ing discussed earlier, research community has investigated
leveraging blockchain technology to aid resource provision-
ing in cloud environments. Xing [42] presents one of the
most recent efforts in this respect, focusing on complexity
due to the use of IoT systems.

The state of the art uses blockchain for various rea-
sons, including SLA monitoring and compliance, but none
of the work focused on building a service to enable con-
sumers and providers to monitor web application response
time requirements in a transparent and trustful environ-
ment. In this work, we have presented and evaluated the
third party service using blockchain to address this issue.
We also perform performance analysis for using different
blockchain parameters to optimize computing resources re-
quired to run the proposed solution. Table 1 summarizes
the exiting state of the art uses Blockchain for SLA.

4. A Blockchain-based SLA Monitoring System

In this section, we present details of the proposed
blockchain-based SLA monitoring system, including the
system architecture and our implementation testbed using
the Multichain blockchain.

4.1. System architecture

Figure 4 presents the overall architecture of our pro-
posed system. The overall monitoring architecture consists
of a customer(s), a cloud service provider, and a moni-
toring authority. A customer is a user who requires the
service provider’s service and can be an automated ser-
vice/program acting on behalf of a human user. The mon-
itoring authority is a trusted third party that runs one
or more instances of the monitoring service, each tasked
with monitoring compliance of SLA for individual objec-
tives. As presented in Figure 4, an SLA is generated

through initial interaction between a customer and the ser-
vice provider, which is envisaged to include specific SLOs
such as availability, response time, and Round Trip Time
(RTT). Upon the SLA generation, the monitoring author-
ity monitors the compliance of service endpoints with the
agreed SLOs reporting any violations using specific inter-
faces.

Within our system, a private blockchain is used to cre-
ate an immutable history of records that monitors and
evaluates the level of SLA enforcement between customers
and service providers. Every endpoint has its own wallet
address in the blockchain network, including monitoring
service. Transactions are sent in real-time from the wal-
let address of the monitoring service to the end point’s
wallet addresses. All these transactions are encrypted
using the OpenSSL library (through https) and authen-
ticated by digital signatures generated in the coin base
transaction. Blockchain network raises the system’s over-
all performance by making it scalable through its decen-
tralized network, where the mined transaction upon be-
coming the part of the consensus blockchain cannot be
tampered. While logging the response time of endpoints,
the monitoring service also checks the internet quality ev-
ery time. Any degradation in the quality of the internet
may not impact the observed response time of endpoints.
If the internet is in an unresponsive state, its throughput
is not recorded and compared with its SLO.

Figure 3 describes the interaction of entities through
a sequence diagram. Here, the customer process activates
upon receiving endpoints’ data and registering their ac-
counts on blockchain through their respective wallet ad-
dresses. Upon successful registration, SLOs (Service Level
Objectives) are defined between customer and its service
provider to formally develop a mutually decided service
level agreement. This SLO based SLA is then provided
to monitoring service to evaluate endpoints’ performance
benchmarks in accordance with the agreement between
customer and service provider and maintain its immutable
copies of records on blockchain based distributed ledger
through its decentralized private network. The data log-
ging for endpoints evaluation is frequently synchronized to
continuously monitor the performance and enforcement of
SLA.

This approach is envisaged to be very useful for a trans-
parent evaluation and ranking of a service provider for
business gain. In order to ensure the integrity of results,
all the data becomes part of the records in real time, pow-
ered by blockchain technology. The system also takes into
account the stability of the Internet and does not grade
a service provider against any endpoints if the internet
connection is not stable. Nowadays, most of the cloud ser-
vice providers (such as Microsoft Azure and others) offer
and get engaged with the customer through a minimum
level of service agreement which is promised to fulfil by
the vendor. Our system does have the tendency to build a
strong platform for tracking and monitoring such kind of
business model where the independent and instantaneous

6

Table 1: Comparison of related work uses Blockchain for SLA

References
Blockchain
type / Plat-
form

Utilized Techniques
Performance
Metrics

Data set or
type

Advantages Disadvantages

Scheid et al. [5] Permissionless
Network Function Virtu-
alization

Not in-
cluded/addressed

Not in-
cluded/addressed

Automatic enforcement
of the payments

No evaluation
of the proposed
work

Scheid et al. [6] Permissionless
Blockchain-based SLA
and Resource Descrip-
tion Framework

response time
Public
Ethereum
addresses

Dependency of billing
handling removed

Monitoring so-
lution only re-
ports SC viola-
tions

Zhou et al. [25] Permissionless
Nash equilibrium prin-
ciple and unbiased ran-
dom sortition algorithm

Complexity of
the interface

Not in-
cluded/addressed

Performs well in terms of
feasibility

Unautonomous
SLA

Neidhardt et al.
[26]

Permissionless Blockchain based SLA
Not ad-
dressed/included

Not in-
cluded/addressed

Transparency of the
billing process

No evaluation
has been carried
out

Nguyen et al.
[28]

Permissioned Blockchain based SLA
Satisfaction,
rule abiding
rates and cost

Data from
Tourist Man-
agement Agency

Tracking of SLA viola-
tions

Security of the
tracked data
is not consid-
ered and no
evaluation has
been carried out
for the select
performance
metrics

Alzubaidi et al.
[43]

Permissioned Accuracy Diagnostics
Latency and
Success/Fail
rates

e database pro-
vided by HLF

Performs well in terms of
latency

Interoperability
issue between
Hyperledger
Fabric and
MVCC

Wonjiga et al.
[7]

Permissioned Blockchain Ledger
Time, verifica-
tion and over-
head

Users’ data Independent verification

No verification
if the generated
proof is lost by
the user

Hang et al. [38] Permissioned
Asymmetric cryptogra-
phy

Throughput and
latency

Wallet API
Multi-user collaboration
and process automation

Security and
privacy issues
not addressed

Taghavi et al.
[30]

Permissionless
Stackelberg differential
game

Quality, price
and capacity

Users’ data
Less computing re-
sources are reserved

Assumptions of
perfect knowl-
edge on players
part

Taha et al. [27] Permissionless
Decentralized monitor-
ing over Ethereum

Availability,
percentage
of processed
requests and
secure-cookies

Customer data
Customer compensa-
tion in case of security
breaches

Not focused on
authentication
management

Urirate et al.
[31]

Permissioned
and permission-
less

Dynamic SLA manage-
ment

Not ad-
dressed/included

Automates the
SLA lifecycle
and brings
transparency

Reduced latency and low
overhead

No evaluation of
the framework
was carried out

enforcement of agreement through independent evaluation
of secured and immutable data is of utmost importance.

4.2. Implementation

Figure 5 presents the blockchain-based testbed imple-
mentation of the system described in Figure 4 to achieve
a rigorous empirical evaluation of the proposed monitor-
ing system. The testbed consists of three units working
in coordination under their roles, i.e., Monitoring Server
Unit (MSU), Administration Unit, and Monitoring Ser-
vice Node. Monitoring Server Unit is responsible for host-
ing and running the monitoring service, which periodically
checks, captures, and monitors the data related to SLO
against each endpoint. SLO related information is shared
with the monitoring server unit through the administra-
tion unit, which is composed of an administrator server
and a file server. The administration unit’s role includes
registration of accounts for endpoints and monitoring ser-
vice with the blockchain network (to facilitate transaction

processing through respective wallet addresses). Admin
server also co-ordinates with the file server (containing
SLO and endpoints’ data) and updates the records against
each endpoint in accordance with their wallet addresses on
the blockchain. This updated record is used by the moni-
toring service to process the captured data in accordance
with SLO. Monitoring service then pushes the endpoint’s
observed data onto the SLA monitoring blockchain net-
work via JSON RPC API using the OpenSSL library for
secure communication.

Within our setup, the blockchain network contains one
seed node and two connected nodes. Seed node in blockchain
generates and registers all the addresses for endpoints and
monitoring service. This node is also responsible for man-
aging rights for endpoints and monitoring service along
with the creation and utilization of tokens that are moved
through transactions from monitoring service wallet ad-
dress to respective end point’s wallet address. The token
represents an acknowledgment of a successfully recorded

7

Figure 3: Sequence of events for the blockchain-based SLA monitoring process

Figure 4: Blockchain-based SLA monitoring process model

transaction that is moved from the monitoring service ac-
count to the end point’s wallet address. Connected nodes
empower the decentralization of the distributed decentral-

ized network by locally creating and maintaining their
respective copies of the blockchain. The mining pool is
shared among all the nodes to push the transaction data

8

into the blocks of consensus blockchain.

5. Experimental Setup

To evaluate the proposed system, we implemented the
testbed presented in Figure 5 using Multichain within a
private blockchain setup.

Here, monitoring service unit and blockchain network
maintain end to end communication through multichain
JSON based RPC API. These monitoring services have
been specifically written to send transactions over the net-
work using JSON based RPC APIs. They have support
for SSL connections to its JSON-RPC API using Mul-
tichain platform [44]. The motivation to choose private
blockchain is mainly due to our proposed model requiring
the trusted third party monitoring infrastructure to run on
a managed and controlled environment. The monitoring
infrastructure maintains the ledger containing web services
monitoring data, runs on a managed and controlled envi-
ronment. Private blockchain also enables a permissioned
model for accessing the data stored on the ledger, thereby
adding a layer of security to achieve resilience against data
tampering and leakage.

Our experimental blockchain network consists of three
nodes (a seed node and two client nodes) connected within
a local area network. The specifications of these nodes are
presented in Table 2. The blockchain network consists
of 10 miners with a blockchain generation rate of 15 sec-
onds and a maximum block size of 8 MB, as described
in Table 3. Monitoring service(s) checks the status of the
endpoints periodically (preset time interval) and stores the
result of each monitoring event for an endpoint in the form
of a transaction. As our setup is a private blockchain, we
have used round robin algorithm for consensus to ensure
the transactions are added to blocks based on their arrival
times. Figure 7 presents a typical transaction whereas Fig-
ure 6 presents a typical block within our blockchain.

For our experiments, we have used sixteen web-based
public resources to represent service endpoints. A descrip-
tion of these endpoints, along with their blockchain wallet
addresses, is presented in Table 4. To achieve a thorough
analysis of our proposed monitoring system, we have used
different scenarios with a varying number of monitoring
service instances (one, two, and three instances), each with
different service endpoints (1, 5, 10, 15). The time interval
to conduct periodic checks sets to five seconds across all
these settings.

6. Performance and scalability analysis of the pro-
posed approach

The experiments have been carried out using different
configuration settings with respect to parameters such as
number of active monitoring services, number of endpoints
(hosted services), and time interval for monitoring the re-
sponses of endpoints as shown in Table 5.

6.1. Average block size for varying endpoints

Here, the average size of the transaction is 578 bytes. In
order to determine the scalability limit of our system. Let’s
denote the size of the SLA transaction, which is being for-
warded from monitoring service to blockchain is Tsize, rate
of generating new blocks by backend blockchain by Brate,
the maximum volume of data that can be accommodated
by the block is Bdata−max. The average size of the block
under which the existing blockchain is currently being op-
erated, is represented by is Bdata−avg. We are interested
in determining the maximum count of transactions that a
block can carry with itself, represented as Tmax−count per
block and the current average number of transactions in a
block (Tavg−count), which may slightly vary with varying
number of monitoring services due to associated metadata
with each transaction. The size of the SLA-transaction in
our system is 578 bytes that is Tsize = 578 bytes. The
computation for the size has been performed as per the
method mentioned in the official documentation of Multi-
chain.

Within this experimentation, Case 1 referred to the
scenario when one monitoring service was operated to push
SLA transactions to the blockchain. Similarly, cases 2 and
3 make use of two and three parallel running monitoring
services, respectively. Table 5 shows the linear increase
in the average data size of blocks with the increase in the
number of endpoints along with monitoring services. It
can be seen in Table 5 that Brate is set to 15 seconds and
Bdata−max at 8MB while Bdata−avg is 2581 bytes (from
Figure 8.A). In order to obtain the maximum count of
transactions that a block can carry, Tmax−count/block, we
need to divide the maximum size of block, Bdata−max (that
may be utilized for allocating transactions) by Tsize (size
of SLA transaction);

Mathematically;

Tmax−count/block = Bdata−max/Tsize (1)

Substituting the values (in bytes), we get;

=⇒ Tmax−count/block = 8000000 / 578
=⇒ Tmax−count/block ∼= 13841 transactions / block

Computing the average number of SLA transactions in
a single block according to the case where Bdata−avg is
2581 bytes; We have;

Tavg−count/block = Bdata−avg/Tsize (2)

Placing values for block and transaction size (in bytes),
we get;

=⇒ Tavg−count/block = 2581/ 578
=⇒ Tavg−count/block ∼= 4 transactions / block

Figure 8.A confirms our above result, where some sample
blocks of case 1 with EPn=1 has been shown.

Analyzing the calculated values of Tmax−count/block and
Tavg−count/block, it may be inferred that our system may

9

Figure 5: Testbed to implement blockchain-based SLA monitoring

Table 2: Hardware and software specifications

S. No. Platform
Hardware Specification

Processor Memory Page File
01 Windows 10 Pro 64-bit Intel Core i3-

4005u CPU
@ 1.70GHz
(4CPUs)

4096MB RAM 5586MB Used
1887MB avail-
able

02 Windows 10 Home Sin-
gle Lang. 64-bit (10.0,
Build 17134)

Intel Core i7-
7500U CPU
@ 2.70GHz (4
CPUs) 2.9GHz

8076MB RAM 14346MB used
2836 available

Figure 6: Sample block within the blockchain

further be scaled up to facilitate approximately three thou-
sand four hundred and sixty times more transactions. One
more thing that should be mentioned here is that the ma-
chines’ computational strength (which are being operated
at the monitoring service unit) may vary the result due to
their processing strength.

6.2. Average transaction throughput

Now, considering the data from Table 5 whereBdata−avg
has been the highest against different cases for monitor-
ing services, we will perform the same computation for
Tavg−count/block for the data at row number 4,8 and 12 of
the table. This will show us the existing operational upper
limit of our proposed system under stress.

Therefore, using Eq. (2);

Tavg−count/block = Bdata−avg/Tsize (3)

At Bdata−avg = 7185 bytes, Brate = 15seconds,
Tsize = 578 bytes

Placing values for block and transaction size (in bytes),
we get;

=⇒ Tavg−count/block= 7185 / 578
=⇒ Tavg−count/block ∼= 12 transactions / block

10

Table 3: Blockchain Parameters

Platform
Blockchain Parameters

Mining Diversity No. of Miners Block Gen.
Rate

Max. Allowed
Blk Size (MB)

Mining
Turnover

Windows 0.3 10 15 8.3 0.5

Table 4: Web services monitored and their blockchain wallets

S.No Endpoint Service Name Endpoint Service Blockchain Wallet Address
01 Blockchain Research Group 182QwrqzWHmiBgjdC1pTQs1t1rdBGUHiQYm2F6
02 SLA Cloud service 14gtzt3XZVT3Mf61uAQoGEXxGgP6yc41awynzg
03 Yahoo 1UuPVjnTvewdSaw9Xe8XL1HzaTBYVi2yG8xZVD
04 Ebay 1VfSM1pC2qtFQaYHcYirGc8tMFUDLnJLjn5JPo
05 Google 17mY9QAim8i8XcQxVsUC6ficQTNYpKunmtwQQG
06 Example 1FjDokjwzYtT2mtWsk7irGY37hskaTtiXtjKWa
07 Paypal 1FX8jcXgN4dj36xvowFoo6ELkrv44rNS3k6AR9
08 Bing 1VTzdPGnDbX8e6L4W1iDn2uGryReC7LU5fKkWA
09 Techcrunch 1DYbGBPcrZYArYvyGhkrs1i2N59W8o1w2cENtn
10 Mashable 1JHcLQ4a8vtPb5UgVJkYyHrdAzX4KHimSaoEiQ
11 The next web 1K3A1qotfFo65HfSH8GARZLe8TK48eL8hj3Wbg
12 Wordpress.com 1T2QqCXp7o9GwixVbVnCQ8bm42pHUC5Sk4a7YH
13 Wordpress.org 1FkQApTwagEraRhzcTD3NEUfjyrVw96FeiSEKQ
14 NED University 1W5ZHwPvjbneXwJ3tC3g2UwHTotSB9LCZnLC84
15 Higher Education Comm. 1EBYDxDyvpJ8Au4Fnh9JUsGaGetdJqNMz9z4F7
16 Wikipedia 161r7RpfkYDraapBTibqnHXvBj5FGATuRo1SRY

Figure 7: Sample transaction within the blockchain

Table 5: Average Block size with varying EPn for Different Cases

S. No. Case Ep n Ddata avg (bytes)
1 1 1 2581
2 1 5 3499
3 1 10 4115
4 1 15 7185
5 2 1 3505
6 2 5 3933
7 2 10 9579
8 2 15 13009
9 3 1 6176
10 3 5 10399
11 3 10 15380
12 3 15 16108

At Bdata−avg = 13009 bytes, Brate = 15seconds,
Tsize = 578 bytes

Placing values for block and transaction size (in bytes),
we get;

=⇒ Tavg−count/block = 13009 / 578
=⇒ Tavg−count/block ∼= 23 transactions / block

At Bdata−avg = 16108 bytes, Brate = 15seconds,
Tsize = 578 bytes

Placing values for block and transaction size (in bytes),
we get;

=⇒ Tavg−count/block = 16198 / 578
=⇒ Tavg−count/block ∼= 28 transactions / block

Figure 8.B shows the linear increase towards average
transaction count per block due to an increase in better
utilization of the SLA-blockchain network. This also shows
that the system at this stage may easily be further scaled
up to meet further demands.
In this system, we have been pushing some metadata along

11

1 5 10 15
Number of Endpoints (EPs)

0

2500

5000

7500

10000

12500

15000

17500

20000

Bl
oc

ks
ize

s (
by

te
s)

Average block size vs. number of endpoints
Block data Versus EPs at MS=1
Block data Versus EPs at MS=2
Block data with Versus EPs at MS=3

(a) EPn vs. Bdata−avg with Brate=15

6000 8000 10000 12000 14000 16000
Average Blocksize in Operational Blockchain (Bytes)

0

5

10

15

20

25

30

35

Av
er

ag
e

Tr
an

sa
ct

io
n

Co
un

t p
er

 B
lo

ck

Highest average count of transactions across different number of MS
Maximum Processed Transactions Against Varying Blocksizes

(b) Tavg−count/block vs Bdata−avg Brate=15s

Figure 8: Experimentation to assess scalability of proposed system.

with each transaction through monitoring services. This
metadata (which includes endpoint’s URL, availability of
hosted services, length of time it takes to respond, the
number of times the service has been queried since its
start, and the current timestamp) may cause some de-
lays in transaction formation, which may ultimately affect
the arrival time of the transaction to the blockchain but
it does not impact the mining time of transaction. On
the contrary, this situation can certainly affect the over-
all transaction throughput of the system and may lead to
the under-utilization of backend Blockchain’s capabilities
and resources. Therefore, it is also equally important to
investigate the scalability of our system by examining the
maximum upper limit for the number of SLA-processed
transactions per second.

6.3. Sensitivity analysis of transaction throughput vs. block-
size

Lets TTp represents the transaction throughput of our
proposed system. Hence, TTp can be mathematically ex-
pressed as;

TTp = Bdata−max / Tsize / Brate

Here we are keeping Brate= 15seconds to determine
the direct impact of block size on throughput. Applying
values in Eq. (3), we get;

At Bdata−max = 8MB
=⇒ TTp = 8000000 / 578 / 15
=⇒ TTp = 922.722
=⇒ TTp

∼= 923 transactions per second.

Using the same mathematical relationship between TTp

and Bdata−max; we can make a projected visualization
for TTp based upon the experimental data of our sys-
tem. Hence, determining scalability in context of TTp

when available memory for block is increased to 80MB,
we get;

At Bdata−max = 80MB
=⇒ TTp = 80000000 / 578 / 15
=⇒ TTp = 9227.220
=⇒ TTp

∼= 9227 transactions per second.

Similarly, for 800 MB and 8000MB;

At Bdata−max = 800MB
=⇒ TTp = 800000000 / 578 / 15
=⇒ TTp = 92272.20
=⇒ TTp

∼= 92272 transactions per second.

At Bdata−max = 8000MB
=⇒ TTp = 8000000000 / 578 / 15
=⇒ TTp = 9227220
=⇒ TTp

∼= 922722 transactions per second.

This shows that the system bears the tendency to pro-
cess 923 transactions at every second provided the nodes
hardware/software configuration settings remains the same
as shown in Table 5 along with the network connectivity
strength (refer to Table 5) in accordance with existing set-
tings while under same settings but by allocating more
space for the block (at Bdata−max = 8000 MB), the same
system may be scaled up to add as many as approximately
nine lacs SLA-transactions per second which is considered
adequate for a large scale global monitoring system. Fig-
ure 9 shows this relationship between TTp and Bdata−max.

Figure 9 shows a big increase in transaction throughput
when the block is allowed to accept more transactions to
carry to the blockchain with a constant rate of 15 seconds
for adding a new block. This assumes a continuous flow
of incoming transactions from clients across the network;
otherwise, the same situation may lead towards a disaster
blockchain state if the resource utilization and responses
are not properly analyzed due to frequent empty spaces
within a block throughout the blockchain.

12

8000000 80000000 800000000 8000000000
Blocksize (Bytes)

0

200000

400000

600000

800000

1000000

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut

Average block size vs. number of endpoints
Maximum Processed Transactions Against Varying Blocksizes

Figure 9: TT vs Bdata−max (Brate=15 seconds)

6.4. Sensitivity analysis of transaction throughput vs. block
generation rate

Although transaction throughput is a vital attribute
in assessing the scalability of the system, but there is an-
other key factor which may affect the performance of the
system by under or over-utilizing the available resources
and refrain it to achieve an optimum level of performance.
This key factor is the domain or application area, which
sets up the benchmark performance for the system to de-
liver. Technically, at the blockchain level, this requires
an optimum match of speed between the rate of incoming
transactions and the rate of generating new blocks by the
backend blockchain engine that is another area of investi-
gation is TTp versus Brate.

It is very important here to mention that the signifi-
cance of the impact of maintaining an optimum level be-
tween an incoming flux of transactions and their additions
through blocks to the blockchain. If this level is not main-
tained to meet the desired output, it may lead to a situ-
ation where monitoring service would likely to be able to
push data to the blockchain at a slower rate (if the block
size is configured to be more in size than the demand of
the SLA system). At this moment, more transactions may
likely to wait in the pool for their confirmations until the
block is ready to be added to the blockchain (depending
upon the block generation rate). This builds up a strong
foundation for carrying out scalability analysis in the con-
text of the number of incoming transactions versus its con-
firmation keeping the block memory size intact as it may
dramatically increase or decrease the scalability strength
of the system in terms of its performance for transaction
throughput. Therefore, in order to assess the potential of
our system in this context, we need to conduct a thorough
stress testing analysis on the theoretical limits of transac-
tion processing speed versus block generation rate.

Using Eq. (3), very exciting research findings may be
obtained to investigate various dimensions of our system
in the context of scalability. Figure 10 highlights the re-

sponses/behavior of our system when it is projected (using
the mathematical relationship of Eq. (3)) to be stressed
under the theoretical limits of one of the key scalability re-
lated attributes of our system, block generation rate. This
mathematical projection is based upon the actual data ob-
tained from the experimentation of the blockchain-enabled
SLA system presented in this paper.

Performing computation using Equ. (3), we have;

TT p = Bdata−max/Tsize/Brate (4)

Now, here again, we will first consider the data from
Table 5 where Bdata−avg has been the highest against
different cases for monitoring services, and therefore we
can use it for the maximum data consumed by the block
against a particular monitoring service, which in our case
is located at row number 4,8, and 12 of the table for mon-
itoring service 1,2 and 3 respectively (can also be seen in
Figure 8.B). The result will give us the existing operational
upper limit of our proposed system under stress at differ-
ent block generate rates. In the later part, we will carry
out the same computation using the maximum block size
allowed by our system for SLA blockchain to determine its
potential peak performance.

6.4.1. Case 1: 1 monitoring service

Applying values in Eq. (4) for system throughput TTp

against maximum average blocksize achieved at EPn=15,
with one monitoring service.

At Bdata−max = 7185 bytes, Brate = 15 seconds,
Tsize = 578 bytes, we get;
=⇒ TTp = 7185 / 578 / 15
=⇒ TTp = 0.82
=⇒ TTp

∼= 1 transaction per second.
At Bdata−max = 7185 bytes, Brate = 20 seconds,

Tsize = 578 bytes, we get;
=⇒ TTp = 7185 / 578 / 20
=⇒ TTp = 0.62
=⇒ TTp

∼= ¿1 transaction every two seconds.
At Bdata−max = 7185 bytes, Brate = 25 seconds,

Tsize = 578 bytes, we get;
=⇒ TTp = 7185 / 578 / 25
=⇒ TTp = 0.49
=⇒ TTp

∼= 1 transaction every two seconds.
Figure 10.A shows the impact of increasing block gen-

eration rate to the existing operational strength of our
system when 01 monitoring service is being used to ob-
serve 15 endpoints with block consumption of 7185 bytes.
The trend in the graph discourages any further increase in
the rate of generating new blocks as the system’s current
throughput is around 52 transactions per minute. There-
fore, for one monitoring service, the graph shows a sat-
isfactory and considerably stable status of the operation
following the system’s demand at the existing rate of the
addition of new blocks.

13

16 18 20 22 24
Block Generation Rate (Seconds)

0.4

0.5

0.6

0.7

0.8

0.9

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut

Transaction processing speed vs. maximum avg. block size against MS
Maximum Processed Transactions Against Max.
Average Blocksize = 7185 bytes at MS=1

(a) Avg. block size=7185B, MS=1

16 18 20 22 24
Block Generation Rate (Seconds)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut

Transaction processing speed vs. maximum average block size against MS
Maximum Processed Transactions Against Max.
Average Blocksize = 13009 bytes at MS=2

(b) Avg. block size=13009B, MS=2

16 18 20 22 24
Block Generation Rate (Seconds)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut

Maximum Processed Transactions Against Max.
Average Blocksize = 16198 bytes at MS=3

(c) Avg. block size=16198B, MS=3

Figure 10: TTP vs Bdata−max (consumed against each monitoring service) vs. Brate.

6.4.2. Case 2: 2 monitoring service

Applying values in Eq. (4) for system throughput TTp

against maximum average blocksize achieved at EPn=15,
with two monitoring services.

At Bdata−max = 13009 bytes, Brate = 15 seconds,
Tsize = 578 bytes, we get;
=⇒ TTp = 13009 / 578 / 15
=⇒ TTp = 1.50
=⇒ TTp is approximately 3 transactions after every two
seconds

At Bdata−max = 13009 bytes, Brate = 20 seconds,
Tsize = 578 bytes, we get;
=⇒ TTp = 13009 / 578 / 20
=⇒ TTp = 1.12
=⇒ TTp is just over one transaction per second.

At Bdata−max = 13009 bytes, Brate = 25 seconds,
Tsize = 578 bytes, we get;
=⇒ TTp = 13009 / 578 / 25
=⇒ TTp = 0.90
=⇒ TTp is closed to one transaction per second

Fig 10.B shows a slightly better utilization of blocks
with respect to the system’s existing throughput (90 trans-
actions per minute). The reason is, of course, an increase
in the number of parallel running monitoring services (in
contrast to one monitoring service, as shown in Fig 10.A)
and the availability of space in the block. Although space
utilization has been improved to 13009 bytes, the system
is still able to satisfy the demand of monitoring endpoints

at different intervals of time ranging from 05 to 15 seconds.
Another important point we need to keep during the analy-
sis of such graphs is that the throughput may also be varied
a bit in accordance with the response of the endpoints to
the monitoring service. The earlier it responds, the lesser
the time it takes to form and send a transaction to the
blockchain. One of the monitoring services pushes once
the transaction to the transaction mining pool, blockchain
internal processes start to work.

6.4.3. Case 2: 3 monitoring services

Applying values in Eq. (4) for system throughput TTp

against maximum average blocksize achieved at EPn=15,
with three monitoring services.

At Bdata−max = 16198 bytes, Brate = 15 seconds,
Tsize = 578 bytes, we get;
=⇒ TTp = 16198 / 578 / 15
=⇒ TTp = 1.86
=⇒ TTp is approximately 2 transactions per second

At Bdata−max = 16198 bytes, Brate = 20 seconds,
Tsize = 578 bytes, we get;
=⇒ TTp = 16198 / 578 / 20
=⇒ TTp = 1.40
=⇒ TTp is over one transaction per second.

At Bdata−max = 16198 bytes, Brate = 25 seconds,
Tsize = 578 bytes, we get;
=⇒ TTp = 16198 / 578 / 25
=⇒ TTp = 1.12

14

=⇒ TTp is just above one transaction per second
Fig 10.C highlights the extreme case of the existing

system where 15 endpoints are being monitored by three
parallel running monitoring services. The maximum uti-
lization of memory space increases to 16198 bytes on av-
erage per block. This shows that the system is still capa-
ble of handling more endpoints within the existing setup.
The existing block generation rate is working optimally
to maintain a maximum demand of 112 transactions per
minute. Increasing the rate of creating new blocks will lead
to a situation where transactions would be required to wait
more to be mined into the block, thereby decreasing the
system’s overall performance.

6.5. Sensitivity analysis of transaction throughput for max.
blocksize

Since the blockchain in our system has the potential
to carry almost 8MB of transactions in each block, there-
fore we also must need to find out how much boost in the
performance we may be able to obtain if the blockchain
is fully scaled up and we let the SLA-transactions occupy
the maximum possible and available block space. For this
purpose, we need to investigate the impact of transaction
throughput when the block generation rate is varied, and
the block memory size is wholly utilized.

Therefore, applying Eq. (4) for the above scenario,
system throughput TTp for maximum available blocksize
can be calculated as below.

At Bdata−max = 8000000 bytes, Brate = 15 sec-
onds, Tsize = 578 bytes, we get;
=⇒ TTp = 8000000 / 578 / 15
=⇒ TTp = 922.722
=⇒ TTp

∼= 923 transactions per second

Now, applying the projected values for Brate = 15 sec-
onds, 20 seconds, and 25 seconds to compute the con-
straints which may be observed while blockchain under
further stress.

At Bdata−max = 8000000 bytes, Brate = 20 sec-
onds, Tsize = 578 bytes, we get;
=⇒ TTp = 8000000 / 578 / 20
=⇒ TTp = 692.04
=⇒ TTp

∼= 692 transactions per second

At Bdata−max = 8000000 bytes, Brate = 25 sec-
onds, Tsize = 578 bytes, we get;
=⇒ TTp = 8000000 / 578 / 15
=⇒ TTp = 553.63
=⇒ TTp

∼= 553 transactions per second

Fig 11 shows that our investigation for keeping SLA
blockchain to operate optimally encourages the block gen-
eration rate to be kept at 15 seconds to maximize the
throughput. If we would further decrease this rate, the
chances are there that the blockchain may start to mine
empty blocks as it happened during experimentation when

16 18 20 22 24
Block Generation Rate (Seconds)

400

500

600

700

800

900

1000

Tr
an

sa
ct

io
n

Th
ro

ug
hp

ut

Transaction processing speed vs. maximum block size
Maximum Processed Transactions at Blocksize = 8MB
Against Block Generation Rate

Figure 11: TTP vs Bdata−max vs. Brate

the checking interval by monitoring service is set at 15
seconds to observe the endpoints’ responses. Fig 11 also
reflects the true state of our blockchain as it works upon
the actual transaction size of this system when the block is
hypothetically completely filled by such transactions. At
this stage, the system is capable of handling 923 transac-
tions per second when the block generation rate is set to
15 seconds.

6.6. Scalability analysis for increasing monitoring services

Figure 12 represents the relation between block size
with the variation of load through an increase in running
the number of monitoring services. If we start analyzing
the graph vertically with respect to different levels of in-
terval in seconds (set by monitoring service to periodically
check the status of the endpoints), we can see that over-
all; the trend is towards higher consumption of block size
across cases 1, 2, and 3. A relatively unusual point at
the graph can be found in cases 1 and 2 when monitoring
services were being operated at a checking interval of 5
seconds, where the utilization of memory space of block
is almost similar. This is most likely due to the fact the
blockchain is one and common across all the cases. Al-
though the monitoring services are running in parallel that
is causing to generate multiple transactions from these two
parallel running services, however, we must keep in mind
that the block generation process is sequential, and these
parallel running services, therefore, start to put pressure
on the size of the block to scale it up. Therefore, more
space is expected to be consumed as more transactions
start to come in a shorter interval of time. The point to
note here is that the difference in the average block size at
this stage (when the checking interval is 5 seconds) is very
little. This shows that the rate of incoming transactions
was very close at that point in time when one and two par-
allel monitoring services had been running, respectively.

Another factor that affects the average block size here
is the block generation rate (which is set to 15 seconds)

15

1 5 10 15
Checking Interval Frequency (seconds)

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er

ag
e

Bl
oc

k
siz

e
(B

yt
es

)

Case 1: One Monitoring Service
Case 2: Two Parallel Running Monitoring Services
Case 3: Three Parallel Running Monitoring Services

Figure 12: Block size variation with increasing load

1 5 10 15
Checking Interval Frequency (seconds)

0

2

4

6

8

10

12

14

16

Av
er

ag
e

Bl
oc

k
siz

e
(B

yt
es

)

Case 1: One Monitoring Service
Case 2: Two Parallel Running Monitoring Services
Case 3: Three Parallel Running Monitoring Services

Figure 13: Transaction mining time against monitoring services

of blockchain. This rate represents the average value; that
is, if a block takes more or less time than 15 seconds to
be added to the blockchain, then the next block will be
timed in such a way so that this average block generation
rate may be restored. Combining both of these reasons,
the graph may be understood at a point when case 2 and
3 when the interval is set to 10 seconds. However, the
overall impact illustrates that if the system is loaded with
more monitoring services keeping constant checking inter-
vals, the average block size will be increased. Case 3 at
an interval of 10 seconds shows a decline from its previous
position; this is because of the delay in response by some
of the endpoints when multiple (three to be exact) mon-
itoring services in parallel had been querying endpoints.
Trade-off lies between endpoints‘ responses and block gen-
eration rate to occupy memory space in the block.

As it can be observed in Figure 13, case 3 is relatively
on a higher side most of the time in terms of confirm-
ing transactions to the block than case 1 due to a higher
load on blockchain from case 1 to 3 through an increase
in the number of monitoring services. Some exceptions

may be ignored, such as for cases 1 and 2 against check-
ing interval of 15 seconds, due to the randomness in the
arrival time of transactions. For example, if a transac-
tion arrives (through one of the monitoring services to the
pool of unconfirmed transactions of the blockchain) im-
mediately after the addition of the latest block, then the
new transaction will have to wait to the addition of the
next block (approximately 15 seconds in our case). Due to
this reason, we have taken into account the average trans-
action mining time (out of nine total transactions every
time while running a fixed number of monitoring service(s)
and endpoints for every case such as case 1 was performed
with one monitoring service while recording nine individ-
ual transactions taken at a difference of every 500 trans-
actions for every varying number of monitored endpoints
which in our scenario are 1,5,10, and 15. This makes 36
transactions at various stages of blockchain operations for
each monitoring service. Hence, for all monitoring ser-
vices running in parallel, that is 1, 2, and 3, a total of
36*3, which is equal to 108 transactions, have been con-
sidered. These transactions have been recorded after every
500 transactions, so overall, to get the behavior of our sys-
tem, 500*108=54000 transactions were performed). Gen-
erally speaking, the transaction mining time will increase
with the increase in the rate of incoming transactions to
the blockchain system. This increase in time will not be
due to an increase in the time it takes to put an individ-
ual transaction to the block but may also be due to the
overutilization of memory space of a block once the rate of
incoming transactions becomes too high to accommodate
further transactions. In our case, the block size has not
been completely utilized in the full operational blockchain
(Figure 13), and the system throughput is also good (Fig-
ure for Transaction Mining Time), which may further be
increased due to the available space in the block (Figure
13 showing the maximum consumed memory of block is
well under our 8MB dedicated memory size of the block).
This is why it can be said that our system is highly scal-
able to meet the future demands of increased throughput.
Table 6, 7, 8 show the data that have been recorded for all
the cases of above graph. Here MT Avg represents the av-
erage mining time of a transaction while EP n represents
the number of observed endpoints.

6.7. Hypothesis Testing

We designed the two sets of hypotheses to determine
the statistical evidence for the obtained results for increas-
ing the number of endpoints and monitoring services on
the transaction delays. The first set of hypotheses is re-
lated to increasing the number of endpoints and delays in
transaction delays.
H0a : µ1 = µ2

H1a : µ1 < µ2

The second set of hypothesis is related to the increasing
number of monitoring services for fixed (10) number of
enddpoints.

16

Table 6: Avg. mining time for end points at
MS=1

S. No. MTavg EPn

1 7.2 1

2 9.7 5

3 5.8 10

4 9.2 15

Table 7: Avg. mining time for end points at
MS=2

S. No. MTavg EPn

1 10 1

2 12.1 5

3 6.7 10

4 7.6 15

Table 8: Avg. mining time for end points at
MS=3

S. No. MTavg EPn

1 9.2 1

2 12.3 5

3 10.7 10

4 10.7 15

H0b : µ3 = µ4

H1b : µ3 < µ4

1. µ1 : The population mean for the delays in transac-
tions pickup by miners using one monitoring service
against 1 endpoint.

2. µ2 : The population mean for the delays in transac-
tions pickup by miners using one monitoring service
against 10 endpoint.

3. µ3 : The population mean for the delays in transac-
tions pickup by miners using one monitoring service
against 10 endpoint.

4. µ4 : The population mean for the delays in transac-
tions pickup by miners using three monitoring ser-
vice against 10 endpoint.

The level of significance is set at α = 0.05. We rejected
the null hypothesis (H0 or H0b) when the p-value based on
the paired t-test is less than 0.05 for any specific feature.

The null hypothesis H0a for the first set of the hypoth-
esis is rejected for the average delay in the transaction for
miners as the p-value is less than 0.05. It means that the
average delay in transactions for an increasing number of
endpoints will increase.

We rejected the null hypothesis H0b for the second set
of the hypothesis for the feature Processed Requests as the
p-value is less than 0.05 and t-value is−6.54. It means that
increasing the number of endpoints increases the transac-
tion delays. For the increasing number of monitoring ser-
vices, the null hypothesis H0b is also rejected as we find
p-value ¡0.00001 and t-value is −30.59. It means that the
increasing number of monitoring services also contributes
to increasing the transaction delay.

6.8. Scalability analysis for increasing monitoring service
requests on transaction delays

We carried out approximately forty-eight thousand trans-
actions overall by assigning a different number of endpoints
(one, five, ten, and fifteen) against one, two, and three
parallel running monitoring services such that all of these
monitoring services were run in parallel for each case of
endpoints for four hundred transactions in every iteration.
The observation was made to record the latency between
transaction receiving and picking up by miner with the
gradual increase in the number of requests. The data was
evaluated against real endpoints, as shown in Table 4. Fig-
ure 14, Figure 15, and Figure 16 show the trend where la-
tency varies from 3 to 27 seconds covering all conditions for

0 500 1000 1500 2000 2500 3000 3500 4000
Tx Numbers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
lay

s i
n

Tx
 P

ick
up

 b
y

Mi
ne

r
(s

ec
on

ds
)

One monitoring service for one endpoints
One monitoring service for five endpoints
One monitoring service against ten endpoints
One monitoring service for fifteen endpoints

Figure 14: One MS with increasing load

number of monitoring services and endpoints. We can see
here in Figure 14 that increasing the number of endpoints
pushes more transactions in a block. This situation helps
better utilization of blocks but may sometimes result in
unexpected output. For instance, when a miner pickups
a transaction after “n” seconds and another transaction
after “n+2” seconds and both the transactions get their
place in the same block. In this situation, the first trans-
action waits for the block to confirm the chain, although
it came earlier than the rest of the incoming transactions
for the same block. In general, we observe a slight increase
in the delay when more transactions against requests are
pushed into the blockchain by monitoring services. How-
ever, the maximum amount of delay after 50 thousand
transactions was almost stable at 27 seconds. This does
not pose any scalability threat to our system as the trans-
actions were flooded at an equal interval of only five sec-
onds with a maximum load of fifteen endpoints by three
concurrent monitoring services, which is a higher rate even
in a private blockchain.

6.9. Formal scalability analysis

We carried out formal analysis of our system by consid-
ering the total number of monitoring requests confirmed
into the consensus blockchain by a single monitoring ser-
vice for a specific length of time. This will help determine
how scalable our system is with initially one monitoring
service as a functional unit of operation. This scheme may
be helpful to assess the scalability strength of the entire
system when put into operation as a whole. The entire

17

0 500 1000 1500 2000 2500 3000 3500 4000
Tx Numbers

0

5

10

15

20

25

30

De
la

ys
 in

 T
x

Pi
ck

up
 b

y
M

in
er

 (
se

co
nd

s)

Two monitoring service for one endpoints
Two monitoring service for five endpoints
Two monitoring service against ten endpoints
Two monitoring service for fifteen endpoints

Figure 15: Two MS with increasing load

0 500 1000 1500 2000 2500 3000 3500 4000
Tx Numbers

0

5

10

15

20

25

30

De
la

ys
 in

 T
x

Pi
ck

up
 b

y
M

in
er

 (
se

co
nd

s)

Three monitoring service for one endpoints
Three monitoring service for five endpoints
Three monitoring service against ten endpoints
Three monitoring service for fifteen endpoints

Figure 16: Three MS with increasing load

process of observing and recording data for cloud-hosted
services into blockchain by a monitoring service may be
modelled by using a queuing theory principle. Suppose
there are ‘k’ number of cloud-hosted services that are be-
ing monitored by a monitoring service Mi per unit time ‘t’.
In this scenario, this system follows a queue-like central-
ized service provider scheme, and therefore, its through-
put may be monitored using an approach as proposed by
Almeida et al. [45].

We assume that there is no restriction for monitor-
ing any number of cloud-hosted services. These services
will be monitored depending upon the monitoring service’s
current status, which is receiving the request to log the re-
sponse time of cloud-hosted services into the blockchain.
The rate of evaluating cloud-hosted services (number of
services monitored per unit time) does not depend upon
the overall number of services (size of the queue that forms
the entire list of services) and the time consumed by the
service under process. Suppose the process of monitoring
and confirming the number of hosted services to blockchain
per second is represented by Mt. We are interested in
investigating the amount of time Tk when the system is
dealing with the ’k’ number of hosted services by a mon-
itoring agent. The duration of time, taken by a single
cloud-hosted service may be determined as a little dura-
tion when the monitoring agent is engaged.

Tk = 1− Mi

Mt
(
Mi

Mt
)k (5)

Now, we may take into account the total amount of
time, ∝, when the whole system (under consideration) is
involved in monitoring the hosted services. ∝ may be com-
puted as;

∝=

k∑
k>0

Tk = 1− T0 =
Mi

Mt
(6)

Simplifying the above equation for Tk; using∝= Mi

Mt
inEqu.(5)

Tk = (1− ∝)(∝)k (7)

ifM represents an average number of hosted services which
are currently present in the system under consideration
and being monitored by a monitoring agent, it may be
calculated as;

M =

k∑
k>0

k.Tk

=⇒ M =
∑k

k>0 k.(1− ∝)(∝)k

=⇒ M = (1− ∝)
∑k

k>0 k.(∝)k = ((1−∝)∝
(1−∝)k

)

=⇒ M = (∝1−∝)
This formal analysis of scalability implements the con-

cepts behind queuing and derived results of Little’s for-
mula from the book entitled “Distributed Systems” (2017,
third edition, chapter No. 1) by Maarteen van Steen and

18

Andrew S. Tanenbaum, where they have shown the mod-
elling of service scalability for a single servicing agent. We
used the same principle to initially investigate the scala-
bility for one monitoring service to project the impact of
using multiple monitoring services. For a detailed investi-
gation regarding scalability for the given scenario, we also
need to factor into the equation the waiting time which is
experienced by a hosted service(in the queue) in order to
get its turn for evaluation along with the time consumed
by the monitoring agent to record its (hosted service) per-
formance attribute into the blockchain. The results of such
analysis will help assess the total response time Rt of the
unit of the system, we are modeling. The status of a mon-
itoring agent service may be marked as busy when it is
engaged in facilitating a hosted cloud service. This im-
plies that our proposed system will be conducting evalu-
ation against SLA with a throughput of Mt services per
unit time. Similarly, the system is not idle for this specific
length of activity (in terms of time) out of the whole time.

System’s throughput β may be calculated as;

β =∝ .Mt + (1− ∝).0 =
Mi

Mt
.Mt = Mi (8)

Using Little’s formula, Rt may be determined as;

Rt =
Kavg

∝
(9)

Solving the above equation using relations for Kavg,
∝ andMt, we get;

Rt

Sert
=

∝
(1− ∝)

(10)

Where Sert represents service time allocated to a hosted
service while Rt is the response time which is provided by
the monitoring service agent to facilitate the hosted ser-
vice. The value of ∝ is very critical here to maintain the
ratio between response and service time. If the value of
is very low, the system would be regarded as very scal-
able, and there will not be much waiting time in the queue
for the hosted service to get its turn. The situation may
change dramatically if the system is fully utilized and ∝
reaches 1. At this stage, the monitoring service may be-
come unresponsive for some cloud-hosted endpoints.

6.10. Discussion

The experimental data detailed in the above sections
assume a constant and frequent rate of incoming transac-
tions from blockchain clients (monitoring services) through
the entire experimentation work. Merely increasing block
generation rate and other seemingly good looking attributes
cannot alone guarantee for improved performance unless
their dependencies upon other quantities are not evalu-
ated properly. For example, in Figure 11, an increase
of 5 seconds is causing 231 transactions to wait for the
next block in a window of 1 to 20 seconds (average block
generation time for TTp = 692.04 case), although at the

same time it probably would have caused better utilization
of block memory (in rare cases where the rate of incom-
ing transactions may fall low). Fig. 10 and Fig 11 con-
clude that the operating attributes of blockchain should
be kept realistic in accordance with the demand and na-
ture of the application. Any miscalculation may result in
the wastage of resources in terms of block memory (adding
a block to blockchain containing a reasonable amount of
empty spaces), Computational strength by over-utilizing
resources (making block generation rate very high and
keep nodes on toes), and under-utilizing space for min-
ing pool of unconfirmed/waiting transactions. The paper
shows an exhaustive evaluation of sending bulk transac-
tions (approximately fifty thousand after every five sec-
onds upto a maximum of 3 concurrent running monitoring
services) in order to monitor its impact on the system in
terms of the latency and responses of endpoint services. A
detailed formal analysis of proposed model has also been
conducted in context of its scalability. The analysis re-
veals the factors which are critical in enhancing the per-
formance of the proposed system upon scaling by focusing
on the capacity of a single monitoring service in execution
for facilitating multiple services (as a unit of scalability)
to project the behaviour of entire system in this context.
This determines the overall scalability strength of the sys-
tem.

7. Conclusion and Future Work

Service Level Agreements (SLAs), typically represented
in the form of SLOs and financial penalties, are a mecha-
nism to communicate and enforce service guarantees within
cloud computing. An automatic method to periodically
verify SLA terms in a transparent and trustworthy method
is fundamental to effective SLA monitoring. Such a method
will help mitigate inaccuracies and delays due to man-
ual processes and can lead to widespread acceptance and
credibility among cloud service users. This paper has
presented a blockchain-based SLA monitoring infrastruc-
ture that leverages fundamental blockchain properties to
achieve immutable and trustworthy SLA monitoring within
cloud services. We have implemented the proposed system
using Multichain and have evaluated it in different scenar-
ios for a varying number of monitoring services and service
endpoints. In the future, we wish to strengthen the capa-
bility of the network by introducing smart nodes, which are
expected to make smart decisions on their own by learn-
ing historical network data to respond as per situation and
building consensus over it for maximizing the potential of
the network to address the challenges of scalability.

References

[1] Damián Serrano, Sara Bouchenak, Yousri Kouki, Frederico Al-
vares de Oliveira Jr, Thomas Ledoux, Jonathan Lejeune, Julien
Sopena, Luciana Arantes, and Pierre Sens. Sla guarantees for
cloud services. Future Generation Computer Systems, 54:233–
246, 2016.

19

[2] Benedikt Pittl, Werner Mach, and Erich Schikuta. Bazaar-
blockchain: A blockchain for bazaar-based cloud markets. In
2018 IEEE International Conference on Services Computing
(SCC), pages 89–96. IEEE, 2018.

[3] Marcel Müller, Sandro Rodriguez Garzon, Martin Westerkamp,
and Zoltan Andras Lux. Hidals: A hybrid iot-based decen-
tralized application for logistics and supply chain management.
In 2019 IEEE 10th Annual Information Technology, Electron-
ics and Mobile Communication Conference (IEMCON), pages
0802–0808. IEEE, 2019.

[4] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z. Zhao.
A blockchain based witness model for trustworthy cloud service
level agreement enforcement. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, April 2019.

[5] Eder John Scheid and Burkhard Stiller. Automatic sla compen-
sation based on smart contracts. Technical report, Technical Re-
port IFI-2018.02 https://files. ifi. uzh. ch/CSG/staff/scheid . . . ,
2018.

[6] Eder J Scheid, Bruno B Rodrigues, Lisandro Z Granville, and
Burkhard Stiller. Enabling dynamic sla compensation using
blockchain-based smart contracts. In 2019 IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM),
pages 53–61. IEEE, 2019.

[7] Amir Teshome Wonjiga, Sean Peisert, Louis Rilling, and Chris-
tine Morin. Blockchain as a trusted component in cloud sla
verification. In Proceedings of the 12th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing Companion,
UCC ’19 Companion, page 93–100, New York, NY, USA, 2019.
Association for Computing Machinery.

[8] Amir Teshome, Louis Rilling, and Christine Morin. Verification
for security monitoring slas in iaas clouds: The example of a
network ids. NOMS 2018 - 2018 IEEE/IFIP Network Opera-
tions and Management Symposium, pages 1–7, 2018.

[9] E. Marilly, O. Martinot, S. Betge-Brezetz, and G. Delegue. Re-
quirements for service level agreement management. In IEEE
Workshop on IP Operations and Management, pages 57–62,
2002.

[10] Carlos Schweizer. Slamer: a blockchain-based sla management
system. 2019.

[11] Adil Maarouf, Marzouk Abderrahim, and Abdelkrim Haqiq.
Practical modeling of the sla life cycle in cloud computing. pages
52–58, 12 2015.

[12] Kashif Mehboob Khan, Junaid Arshad, and Muham-
mad Mubashir Khan. Investigating performance constraints for
blockchain based secure e-voting system. Future Generation
Computer Systems, 105:13 – 26, 2020.

[13] Robert Karaszewski, Pawe l Modrzyński, and Joanna Mod-
rzyńska. The use of blockchain technology in public sector enti-
ties management: An example of security and energy efficiency
in cloud computing data processing. Energies, 14(7):1873, 2021.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. Cryptography Mailing list at https://metzdowd.com, 03
2009.

[15] David Chaum. Blind signatures for untraceable payments. In
Advances in cryptology, pages 199–203. Springer, 1983.

[16] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and
Huaimin Wang. An overview of blockchain technology: Archi-
tecture, consensus, and future trends. In 2017 IEEE interna-
tional congress on big data (BigData congress), pages 557–564.
IEEE, 2017.

[17] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Sut-
tipong Thajchayapong. Performance analysis of private
blockchain platforms in varying workloads. In 2017 26th In-
ternational Conference on Computer Communication and Net-
works (ICCCN), pages 1–6. IEEE, 2017.

[18] Keke Gai, Jinnan Guo, Liehuang Zhu, and Shui Yu. Blockchain
meets cloud computing: A survey. IEEE Communications Sur-
veys & Tutorials, 2020.

[19] Zhen Zhang, Zicong Hong, Wuhui Chen, Zibin Zheng, and
Xu Chen. Joint computation offloading and coin loaning for
blockchain-empowered mobile-edge computing. IEEE Internet

of Things Journal, 6(6):9934–9950, 2019.
[20] Mubariz Rehman, Nadeem Javaid, Muhammad Awais, Muham-

mad Imran, and Nidal Naseer. Cloud based secure service pro-
viding for iots using blockchain. In IEEE Global Communica-
tions Conference (GLOBCOM 2019), 2019.

[21] Sheng Cao, Gexiang Zhang, Pengfei Liu, Xiaosong Zhang,
and Ferrante Neri. Cloud-assisted secure ehealth systems for
tamper-proofing ehr via blockchain. Information Sciences,
485:427–440, 2019.

[22] Marco Savi, Daniele Santoro, Katarzyna Teresa Di Meo, Daniele
Pizzolli, Pincheira Miguel, Raffaele Giaffreda, Silvio Cretti,
Kum Seung-woo, and Domenico Siracusa. A blockchain-based
brokerage platform for fog computing resource federation. In
Conference on Innovation in Clouds, Internet and Networks,
2020.

[23] Nir Kshetri and Jeffrey Voas. Blockchain-enabled e-voting.
IEEE Software, 35(4):95–99, 2018.

[24] K. Gai, J. Guo, L. Zhu, and S. Yu. Blockchain meets cloud
computing: A survey. IEEE Communications Surveys Tutori-
als, 22(3):2009–2030, 2020.

[25] Huan Zhou, Xue Ouyang, Zhijie Ren, Jinshu Su, Cees de Laat,
and Zhiming Zhao. A blockchain based witness model for trust-
worthy cloud service level agreement enforcement. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communica-
tions, pages 1567–1575. IEEE, 2019.

[26] Nils Neidhardt, Carsten Köhler, and Markus Nüttgens. Cloud
service billing and service level agreement monitoring based on
blockchain. In EMISA, pages 65–69, 2018.

[27] Ahmed Taha, Ahmed Zakaria, Dongseong Kim, and Neeraj
Suri. Decentralized runtime monitoring approach relying on
the ethereum blockchain infrastructure. In 2020 IEEE Inter-
national Conference on Cloud Engineering (IC2E), pages 134–
143. IEEE, 2020.

[28] T. V. Nguyen, L. S. Lê, B. Dao, and K. Nguyen-An. Leveraging
blockchain in monitoring sla-oriented tourism service provision-
ing. In 2019 International Conference on Advanced Computing
and Applications (ACOMP), pages 42–50, 2019.

[29] Hamda Al-Breiki, Muhammad Habib Ur Rehman, Khaled
Salah, and Davor Svetinovic. Trustworthy blockchain oracles:
Review, comparison, and open research challenges. IEEE Ac-
cess, 8:85675–85685, 2020.

[30] Mona Taghavi, Jamal Bentahar, Hadi Otrok, and Kaveh
Bakhtiyari. A blockchain-based model for cloud service quality
monitoring. IEEE Transactions on Services Computing, 2019.

[31] Rafael Brundo Uriarte, Rocco De Nicola, and Kyriakos Kritikos.
Towards distributed SLA management with smart contracts and
blockchain. In 2018 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 266–
271. IEEE, 2018.

[32] Limao Ma, Kosuke Kaneko, Subodh Sharma, and Kouichi Saku-
rai. Reliable decentralized oracle with mechanisms for verifi-
cation and disputation. In 2019 Seventh International Sympo-
sium on Computing and Networking Workshops (CANDARW),
pages 346–352. IEEE, 2019.

[33] Shafaq Naheed Khan, Faiza Loukil, Chirine Ghedira-Guegan,
Elhadj Benkhelifa, and Anoud Bani-Hani. Blockchain smart
contracts: Applications, challenges, and future trends. Peer-to-
peer Networking and Applications, pages 1–25, 2021.

[34] F. Daniel and L. Guida. A service-oriented perspective
on blockchain smart contracts. IEEE Internet Computing,
23(1):46–53, 2019.

[35] Amir Teshome Wonjiga, Louis Rilling, and Christine Morin.
Defining Security Monitoring SLAs in IaaS Clouds: the Exam-
ple of a Network IDS. Research Report RR-9263, Inria Rennes
Bretagne Atlantique, March 2019.

[36] A. Alzubaidi, E. Solaiman, P. Patel, and K. Mitra. Blockchain-
based sla management in the context of iot. IT Professional,
21(4):33–40, 2019.

[37] A. Alzubaidi, K. Mitra, P. Patel, and E. Solaiman. A
blockchain-based approach for assessing compliance with sla-
guaranteed iot services. In 2020 IEEE International Confer-

20

ence on Smart Internet of Things (SmartIoT), pages 213–220,
2020.

[38] Lei Hang and Do-Hyeun Kim. Sla-based sharing economy ser-
vice with smart contract for resource integrity in the internet of
things. Applied Sciences, 9(17), 2019.

[39] Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali
Pourmina. An autonomic approach for resource provisioning of
cloud services. Cluster Computing, 19(3):1017–1036, 2016.

[40] Mostafa Ghobaei-Arani, Reihaneh Khorsand, and Moham-
madreza Ramezanpour. An autonomous resource provisioning
framework for massively multiplayer online games in cloud en-
vironment. Journal of Network and Computer Applications,
142:76–97, 2019.

[41] Mostafa Ghobaei-Arani and Alireza Souri. Lp-wsc: a linear pro-
gramming approach for web service composition in geographi-
cally distributed cloud environments. The Journal of Super-
computing, 75(5):2603–2628, 2019.

[42] Xing Liu. Towards blockchain-based resource allocation models
for cloud-edge computing in iot applications. Wireless Personal
Communications, pages 1–19, 2021.

[43] A. Alzubaidi, K. Mitra, P. Patel, and E. Solaiman. A
blockchain-based approach for assessing compliance with sla-
guaranteed iot services. 2020 IEEE International Conference
on Smart Internet of Things (SmartIoT), pages 213–220, 2020.

[44] Multichain. Open platform for blockchain applications.
[45] Virgilio AF Almeida and Daniel A Menasce. Capacity planning

an essential tool for managing web services. IT professional,
4(4):33–38, 2002.

21

