Bone mineral density in high-level endurance runners: part A-site-specific characteristics

Herbert, Adam J. and Williams, A. G. and Lockey, S. J. and Erskine, R. M. and Sale, C. and Hennis, P. J. and Day, S. H. and Stebbings, G. K. (2021) Bone mineral density in high-level endurance runners: part A-site-specific characteristics. European Journal of Applied Physiology. ISSN 1439-6327

[img]
Preview
Text
BMD in high level endurance runners Part A (Herbert et al., 2021).pdf - Published Version
Available under License Creative Commons Attribution.

Download (508kB)

Abstract

PURPOSE

Physical activity, particularly mechanical loading that results in high-peak force and is multi-directional in nature, increases bone mineral density (BMD). In athletes such as endurance runners, this association is more complex due to other factors such as low energy availability and menstrual dysfunction. Moreover, many studies of athletes have used small sample sizes and/or athletes of varying abilities, making it difficult to compare BMD phenotypes between studies.

METHOD

The primary aim of this study was to compare dual-energy X-ray absorptiometry (DXA) derived bone phenotypes of high-level endurance runners (58 women and 45 men) to non-athletes (60 women and 52 men). Our secondary aim was to examine the influence of menstrual irregularities and sporting activity completed during childhood on these bone phenotypes.

RESULTS

Female runners had higher leg (4%) but not total body or lumbar spine BMD than female non-athletes. Male runners had lower lumbar spine (9%) but similar total and leg BMD compared to male non-athletes, suggesting that high levels of site-specific mechanical loading was advantageous for BMD in females only and a potential presence of reduced energy availability in males. Menstrual status in females and the number of sports completed in childhood in males and females had no influence on bone phenotypes within the runners.

CONCLUSION

Given the large variability in BMD in runners and non-athletes, other factors such as variation in genetic make-up alongside mechanical loading probably influence BMD across the adult lifespan.

Item Type: Article
Identification Number: https://doi.org/10.1007/s00421-021-04793-3
Date: 12 September 2021
Uncontrolled Keywords: Bone mineral density · Elite · Marathon · Mechanical loading · Menstruation
Subjects: CAH02 - subjects allied to medicine > CAH02-05 - medical sciences > CAH02-05-04 - anatomy, physiology and pathology
CAH03 - biological and sport sciences > CAH03-02 - sport and exercise sciences > CAH03-02-01 - sport and exercise sciences
Divisions: Faculty of Health, Education and Life Sciences > School of Health Sciences
Depositing User: Adam Herbert
Date Deposited: 27 Sep 2021 08:52
Last Modified: 27 Sep 2021 08:52
URI: http://www.open-access.bcu.ac.uk/id/eprint/12204

Actions (login required)

View Item View Item

Research

In this section...