
electronics

Review

Android Mobile Malware Detection Using Machine Learning:
A Systematic Review

Janaka Senanayake 1,* , Harsha Kalutarage 1 and Mhd Omar Al-Kadri 2

����������
�������

Citation: Senanayake, J.; Kalutarage,

H.; Al-Kadri, M.O. Android Mobile

Malware Detection Using Machine

Learning: A Systematic Review.

Electronics 2021, 10, 1606. https://

doi.org/10.3390/electronics10131606

Academic Editor: Rui Pedro Lopes

Received: 29 May 2021

Accepted: 29 June 2021

Published: 5 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computing, Robert Gordon University, Aberdeen AB10 7QB, UK; h.kalutarage@rgu.ac.uk
2 School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK;

omar.alkadri@bcu.ac.uk
* Correspondence: j.senanayake@rgu.ac.uk

Abstract: With the increasing use of mobile devices, malware attacks are rising, especially on Android
phones, which account for 72.2% of the total market share. Hackers try to attack smartphones with
various methods such as credential theft, surveillance, and malicious advertising. Among numerous
countermeasures, machine learning (ML)-based methods have proven to be an effective means of
detecting these attacks, as they are able to derive a classifier from a set of training examples, thus
eliminating the need for an explicit definition of the signatures when developing malware detectors.
This paper provides a systematic review of ML-based Android malware detection techniques. It
critically evaluates 106 carefully selected articles and highlights their strengths and weaknesses as well
as potential improvements. Finally, the ML-based methods for detecting source code vulnerabilities
are discussed, because it might be more difficult to add security after the app is deployed. Therefore,
this paper aims to enable researchers to acquire in-depth knowledge in the field and to identify
potential future research and development directions.

Keywords: Android security; malware detection; code vulnerability; machine learning

1. Introduction

In this technological era, smartphone usage and its associated applications are rapidly
increasing [1] due to the convenience and efficiency in various applications and the growing
improvement in the hardware and software on smart devices. It is predicted that there
will be 4.3 billion smartphone users by 2023 [1]. Android is the most widely used mobile
operating system (OS). As of May 2021, its market share was 72.2% [2]. The second highest
market share of 26.99% is owned by Apple iOS, while the rest of the 0.81% is shared
among Samsung, KaiOS, and other small vendors [2]. Google Play is the official app store
for Android-based devices. The number of apps published on it was over 2.9 million as
of May 2021. Of these, more than 2.5 million apps are classified as regular apps, while
0.4 million apps are classified as low-quality apps by AppBrain [3]. Android’s worldwide
popularity makes it a more attractive target for cybercriminals and is more at risk from
malware and viruses. Studies have proposed various methods of detecting these attacks,
and ML is one of the most prominent techniques among them [4]. This is because ML
techniques are able to derive a classifier from a (limited) set of training examples. The use
of examples thus avoids the need to explicitly define signatures in developing malware
detectors. Defining signatures requires expertise and tedious human involvement and for
some attack scenarios explicit rules (signatures) do not exist, but examples can be obtained
easily. Numerous industrial and academic research has been carried out on ML-based
malware detection on Android, which is the focus of this review paper.

The taxinomical classification of the review is presented in Figure 1. Android users
and developers are known to make mistakes that expose them to unnecessary dangers and
risks of infecting their devices with malware. Therefore, in addition to malware detection
techniques, methods to identify these mistakes are important and covered in this paper

Electronics 2021, 10, 1606. https://doi.org/10.3390/electronics10131606 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2278-8671
https://orcid.org/0000-0001-6430-9558
https://orcid.org/0000-0002-1146-1860
https://doi.org/10.3390/electronics10131606
https://doi.org/10.3390/electronics10131606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10131606
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10131606?type=check_update&version=1


Electronics 2021, 10, 1606 2 of 34

(see Figure 1). Detecting malware with ML involves two main phases, which are analyzing
Android Application Packages (APKs) to derive a suitable set of features and then training
machine and deep learning (DL) methods on derived features to recognize malicious
APKs. Hence, a review of the methods available for APK analysis is included, which
consists of static, dynamic, and hybrid analysis. Similar to malware detection, vulnerability
detection in software code involves two main phases, namely feature generation through
code analysis and training ML on derived features to detect vulnerable code segments.
Hence, these two aspects are included in the review’s taxonomy.

Figure 1. Taxonomy of the review.

The rest of this paper is organised as follows: Section 2 lays out the background to this
study. Section 3 provides a detailed description of the review methodology, while Section 4
discusses related previous reviews on the topic. Section 5 discusses static, dynamic, and
hybrid analysis techniques for Android malware detection and the application of ML
and DL methods as well as a comparison of the methods used in the individual studies.
Section 6 discusses ML methods to identify code vulnerabilities, with Section 7 exploring
the results and discussions thereof. Finally, Section 8 concludes the paper.

2. Background

This section provides a high-level overview of the Android architecture and its built-in
security as well as potential threat vectors for Android. It also provides an introduction to
the ML process as it would be useful for non-ML background readers to understand the
contents of this paper.

2.1. Android Architecture

Android is built on top of the Linux Kernel. Linux is chosen because it is open
source, verifies the pathway evidence, provides drivers and mechanisms for networking,
and manages virtual memory, device power, and security [5]. Android has a layered
architecture [6]. The layers are arranged from bottom to top. On top of the Linux Kernal



Electronics 2021, 10, 1606 3 of 34

Layer, the Hardware Abstraction Layer, Native C/C++ Libraries and Android Runtime,
Java Application Programming Interface (API) Framework, and System Apps are stacked
on top of each. Each layer is responsible for a particular task. For example, the Java API
Framework provides Java libraries to perform a location awareness application-related
activity such as identifying the latitude and the longitude.

Android-based applications and some system services use the Android Runtime
(ART). Dalvik was the runtime environment used before the ART. Both ART and Dalvik
were created for the Android applications-related projects. The ART executes the Dalvik
Executable (DEX) format and the bytecode specification [7]. The other aspects are mem-
ory management and power management since the Android-based applications run on
battery-powered devices with limited memory. Therefore, the Android operating system is
designed in a way that any resource can be well managed [5]. For instance, the Android
OS will automatically suspend the application in memory if an application is not in use
at the moment. This state is known as the running state of the application life cycle. By
doing this, it can preserve the power that can be utilised when the application reopens.
Otherwise, the applications are kept idle until they are closed [8].

Built-In Security

Android comes with security already built in. It is a privileged separated operating
system [9]. Sandboxing technique and the permission system in Android reduce some
risks and bugs in the application. Sandboxing technique in Android isolates the running
applications using unique identifiers which are based on the Linux environment [10].
Without having permissions granted from the user at the time of app installation or
reconfiguration, apps cannot access system resources. If some of the permissions are not
granted, then the application itself will not be usable. When a system update or upgrade
happens, several improvements happen in terms of security and privacy. For example,
Android 11, the latest stable Android version contains some changes related to security and
privacy such as scoped storage enforcement, one-time permissions, permissions auto-reset,
background location access, package visibility, and foreground services [11].

However, there are possibilities of malware attacks to exploit some vulnerabilities
in the applications developed by various users, because the Google Play Store will not
detect some vulnerabilities when publishing applications in the Play Store as in Apple App
Store [12].

2.2. Threats to Android

While Android has good built-in security measures, there are several design weak-
nesses and security flaws that have become threats to its users. Awareness about those
threats is also important to perform a proper malware detection and vulnerability anal-
ysis. Many research and technical reports have been published related to the Android
threats [13] and classified Android threats based on the attack methodology. Social engi-
neering attacks, physical access retrieving attacks, and network attacks are described under
the ways of gaining access to the device. For the vulnerabilities and exploitation methods,
man in the middle attacks, return to libc attacks, JIT-Spraying attacks, third-party library
vulnerabilities, Dalvik vulnerabilities, network architecture vulnerabilities, virtualization
vulnerabilities, and Android debug bridges and kernel vulnerabilities are considered.

The survey in [14] identified four types of attacks to Android; hardware-based attacks,
kernel-based attacks, Hardware Abstraction Layer (HAL) based attacks, and application-
based attacks. Hardware-based attacks such as Rowhammer, Glitch, and Drammer are
related to sensors, touch screens, communication media, and DRAM. Kernel-based attacks
such as Gooligan, DroidKungfu, Return-oriented Programming are related to Root Priv-
ilege, Memory, Boot Loader, and Device Driver. HAL-based attacks such as Return to
User and TocTou are related to interfaces for cameras, Bluetooth, Wi-Fi, Global Positioning
System (GPS), and Radio. Application-based attacks such as AdDetect, WuKong, and
LibSift are related to third-party libraries, Intra-Library collusion, and privilege escalations.



Electronics 2021, 10, 1606 4 of 34

Android applications are easily penetrable with proper knowledge of Android pro-
gramming if suitable security mechanisms are not in place. In addition, Android mar-
ketplaces such as Google Play are not following extensive security protocols when new
apps are published. For example, the Android game known as Angry Bird was hacked
and the hacker managed to get into its APK file and embed a malicious code that sent text
messages unknowingly by the user. The cost was 15 GPB to the user per message. More
than a thousand users were affected [15].

2.2.1. Malware Attacks on Android

Malware attacks are the most common case that can be identified as a threat to Android.
There are various definitions for malware given by many researchers depending on the
harm they cause. The ultimate meaning of the malware is any of the malicious application
with a piece of malicious code [16] which has an evil intent [17] to obtain unauthorised
access and to perform neither legal nor ethical activities while violating the three main
principles in security: confidentiality, integrity, and availability.

Malware related to smart devices can be classified into three perspectives as attack
goals and behaviour, distribution and infection routes, and privilege acquisition modes [18].
Frauds, spam emails, data theft, and misuse of resources can be mentioned as the attack
goals and behaviour perspective. Software markets, browsers, networks, and devices can
be identified as the distribution and infection routes. Technical exploitation and user manip-
ulation such as social engineering can be listed under the privilege and acquisition modes.
Malware specifically related to the Android operating system is identified as Android
malware [19] which harms or steals data from an Android-based mobile device. These are
categorised as Trojans, Spyware, adware, ransomware, worms, botnet, and backdoors [20].
Google describes malware as potentially harmful applications. They classified malware
as commercial and noncommercial spyware, backdoors, privilege escalation, phishing,
types of frauds such as click fraud, toll fraud, Short Message Service (SMS) fraud, and
Trojans [21].

App collusion also should be considered when studying malware. App collusion is
two or more apps working together to achieve a malicious goal [22]. However, if those
apps perform individually, there is no possibility of a malicious activity happening. It is a
must to detect malicious inter-app communication and app permissions for app collusion
detection [23,24].

2.2.2. Users and App Developers’ Mistakes

The mistakes can happen knowingly or unknowingly from the developers as well as
users. These mistakes may lead to threats arising to Android OS and its applications.

It has been identified that users are responsible for most security issues [25]. Some
common mistakes done by the users will lead to serious threats in an Android applica-
tion. At the time of installing Android applications, users will be asked to allow some
permissions. However, all the users may not understand the purpose of each permis-
sion. They allow permission to run the application without considering the severity of
it. Fraudulent applications might steal data and perform unintended tasks after getting
the required permissions. It is possible to arise threats to the Android systems due to the
mistakes performed by the app developers at the time of developing applications. In the
publishing stage of the Android apps, Google Play will have only limited control over the
code vulnerabilities in the applications. Sometimes developers are specifying unwanted
permissions in the Android manifest file mistakenly, which encourages the user to grant the
permissions if the permissions were categorised as not simple permissions [26]. Though
the app development companies and some of the app stores are advising about following
the security guidelines implemented at the time of development, many developers still fail
to write secure codes to build secured mobile applications [27].



Electronics 2021, 10, 1606 5 of 34

2.3. Machine Learning Process

ML is a branch of artificial intelligence that focuses on developing applications by
learning from data without explicitly programming how the learned tasks are performed.
The traditional ML methods make predictions based on past data. ML process lifecycle
consists of multiple sequential steps. They are data extraction, data preprocessing, feature
selection, model training, model evaluation, and model deployment [9]. Supervised
learning, unsupervised learning, semisupervised learning, reinforcement learning, and
deep learning are the different subcategories of ML [28]. The supervised learning approach
uses a labelled dataset to train the model to solve classification and regression problems
depend on the output variable type (continuous or discreet). Unsupervised learning is used
to identify the internal structures (clusters), the characteristics of a dataset, and a labelled
dataset is not required to train the model. A mix of both supervised and unsupervised
learning techniques are applied in semisupervised learning and used in a case of limited
labelled data in the used dataset [29]. The learning model and the data used for training
are inferred. The model parameters are updated with the received feedback from the
environment in reinforcement learning where no training data is involved. This ML
method proceeds as prediction and evaluation cycles [30]. DL is defined as learning and
improving by analysing algorithms on their own. It works with models such as artificial
neural networks (ANN) and consists of a higher or deeper number of processing layers [31].

3. Methodology

Android was first released in 2008. A few years later, the security concerns were
discussed with the increasing popularity of Android applications [2]. More attention
was received towards applying ML for software security in the last five years because
many researchers continuously identify and propose novel ML-based methods [9]. This
review was conducted according to the Preferred Reporting Items for Systematic reviews
and Meta-Analysis (PRISMA) model [32]. Based on the objective of this study, first we
formulated several research questions (see Section 3.1). Next, a search strategy was defined
to identify the conducted studies which can be used to answer our research questions.
The database usage and inclusion and exclusion criteria were also defined at this stage.
The study selection criteria were defined to identify the studies aiming to answer the
formulated research questions as the third stage. The fourth stage is defined as data
extraction and synthesis, which describes the usage of the collected studies to analyse for
providing answers to the research questions. We reviewed threats to the validity of the
review and the mechanism to reduce the bias and other factors that could have influenced
the outcomes of this study as the last step of the review process.

3.1. Research Questions

This systematic review aims to answer the following research questions.

RQ1: What are the existing reviews conducted in ML/DL based models to detect Android
malware and source code vulnerabilities?

RQ2: What are code/APK analysing methods that can be used in malware analysis?
RQ3: What are the ML/DL based methods that can be used to detect malware in Android?
RQ4: What are the accuracy, strengths, and limitations of the proposed models related to

Android malware detection?
RQ5: Which techniques can be used to analyse Android source code to detect vulnerabilities?

3.2. Search Strategy

The search strategy involves the outline of the most relevant bibliographic sources
and search terms. In this review, we have used several top research repositories as main
sources to identify studies. They were ACM Digital Libraries, IEEEXplore Digital Library,
Science Direct, Web of Science and Springer Link. Google Scholar, and Research Gate
were also used to identify research studies published in some quality venues. The search
string that we used to browse through research repositories contained the following search



Electronics 2021, 10, 1606 6 of 34

terms: (“android malware”) OR (“malware detection”) OR (“machine learning”) OR
(“deep learning”) OR (“static analysis”) OR (“dynamic analysis”) OR (“hybrid analysis”)
OR (“malware analysis”) OR (“android vulnerability analysis”) OR (“ML based malware
detection”) OR (“DL based malware detection”).

3.3. Study Selection Criteria

Since mobile malware detection using ML techniques related trends increased from
2016, we limit our review to study related work from 2016 to May 2021. Initially through
the research database search in the top research repositories, 109 research papers and from
another sources 11 research papers were identified. From these 120 papers, 5 were excluded
because of duplicate entries and another 5 were excluded because they were not available
in public from those 110 articles. Due to data analysis issues and experiment issues in the
given context, 4 articles were excluded though the full text is available. The remaining
106 articles were reviewed in this study. We performed the snowballing process [33],
considering all the references presented in the retrieved papers and evaluating all the
papers referencing the retrieved ones, which resulted in two additional relevant paper.
We applied the same process as for the retrieved papers. The snowballing search was
conducted in March 2021. Figure 2 shows a summary of the paper selection method for
this systematic review.

Figure 2. PRISMA method: collection of papers for the review.



Electronics 2021, 10, 1606 7 of 34

3.4. Data Extraction and Synthesis

We extracted data from 9 studies to answer the RQ1, which is about the existing
literature reviews related to Android malware detection using ML/DL models and Android
vulnerability analysis. To map with RQ2, related studies were identified related to Android
code/APK analysing techniques that can be used to analyse malware. The count for those
studies was 22. To answer the RQ3 about ML/DL based techniques which can be used
to detect malware, we extracted data from 18 different studies. Data from 36 research
studies were extracted to find answers for the RQ4, which is about detection model
accuracy, strengths, and weaknesses. The remaining 21 papers about Android source code
vulnerability analysis and detection methods were used to answer the RQ5.

3.5. Threats to Validity of the Review

This review was conducted in a systematic approach explained above. We tried
to minimise the bias and the other factors affecting the review study. Though we have
conducted our review comprehensively, still there can be good papers which were not
reviewed in this study since they are not available in the research repositories that we used.
The period we were considering for the paper selection is from 2016 to May 2021, as the
use of ML techniques for malware detection has increased significantly during this period
due to recent advances in artificial intelligence. Therefore, if comprehensive studies were
conducted before that, those studies were not captured in our work. When searching for
the papers we considered the research papers written in the English language. Because
of this limitation, our work may have overlooked some important works written in other
languages such as Chinese, German, and Spanish.

4. Related Work

Previous reviews in [9,13,17,34–37] discussed various ML-based Android malware
detection techniques and ways to improve Android security.

The review in [34] systematically reviewed the studies conducted in static analysis
techniques used for Android applications from 2011 to 2015. The tools that can be used
to perform Android code analysis using static analysis techniques were also summarised.
Abstract representation, taint analysis, symbolic execution, program slicing, code instru-
mentation, and type/model checking were identified as fundamental analysis methods.
Though this review correctly identified the most widely used approach to detect privacy
and security related issues, the applicability of static analysis techniques for malware
detection was not discussed. Apart from that, it did not take into account the recent re-
search where novel analysis methods and malware detection methods were suggested. The
study conducted in [35] provided a good systematic review mainly about static analysis
techniques that can be used in Android malware detection. Four methods were identified
as characteristic-based, opcode-based, program graph-based and symbolic execution-based.
After that, it evaluated the capabilities of static analysis based Android malware detection
methods on those four methods using the existing literature. The paper has identified ML
and statistical models as possible methods by which Android malware can be identified.
However, ML-based machine learning methods have not been thoroughly reviewed as the
main focus is only on the static analysis techniques.

In [13], a survey was carried out using existing literature up to 2017 to identify malware
detection techniques together with their advantages and disadvantages. Under static and
dynamic analysis, they have grouped several approaches that can be used to identify
Android malware. However, the analysis of this survey was not comprehensive as it
focused on a limited number of studies. Based on the previous studies, a systematic review
was conducted in [17]. According to it, there are five types of Android malware detection
techniques. They are static detection, dynamic detection, hybrid detection, permission-
based detection, and emulation based detection. They also summarised the reviewed work
with the model accuracy of malware detection, but the approach of those studies was not
discussed. The review conducted in [9] analysed several studies conducted until 2019



Electronics 2021, 10, 1606 8 of 34

related to ML models which can be used to detect Android malware. The malware and APK
analysis methods were not discussed in detail since the focus on identifying different ML
models was the priority in this review. It is better to analyse the accuracies of the identified
ML models. The novel ML/DL and other models which can be used to detect Android
malware were also not in the focus of this review. The review in [36] provides a good
analysis of static, dynamic, and hybrid detection techniques used in the existing research
studies for Android malware detection. Along with that possibility of using machine
learning models, several deep learning models are also discussed. However, this study
did not comprehensively analyse the model accuracy of the machine learning methods for
Android malware detection since this study focused more on discussing different malware
detection approaches instead of considering the accuracy of those approaches. Hence,
these works differ from our study.

In [37], a systematic review on DL-based methods for Android malware defence was
discussed. Malware detection, malware family detection, repackaged/fake app detection,
adversarial learning attacks and protections, and malicious behaviour analysis were identi-
fied as the malware defines objectives in this review together with the usage of DL models.
Though they have identified the possible DL models, it is still better to analyse the accuracy
and compare it with traditional ML methods and other hybrid approaches.

Apart from Android malware detection techniques, source code vulnerability analysis
is also important to address security concerns in Android. The survey in [38] analysed
several studies on ML-based and data mining approaches which can be used to identify
software vulnerabilities until 2017. Though this survey provides a good analysis, they
considered most of the research work in general software security. Therefore, the vulnera-
bility analysis in Android code was not discussed. However, findings such as ML models’
usage for vulnerability analysis are still beneficial for specific programming languages’
related analysis.

However, several limitations have been identified in the above works, such as not
covering recent proposals on ML methods to detect malware, narrow scopes, and lack
of critical appraisals of suggested detection methods. The lack of a thorough analysis of
ML/DL-based methods was also identified as a limitation of existing works. Android
malware detection and Android code vulnerability analysis have a lot in common. ML
methods used in one task can be customised for use in the other task. However, as
per our understanding, there are no reviews that cover these two areas together. These
shortcomings have been addressed in this work and therefore our work is unique.

5. Machine Learning to Detect Android Malware

Malware detection in Android can be performed in two ways; signature-based detec-
tion methods and behaviour-based detection methods [39]. The signature-based detection
method is simple, efficient, and produces low false positives. The binary code of the appli-
cation is compared with the signatures using a known malware database. However, there
is no possibility to detect unknown malware using this method. Therefore, the behaviour-
based/anomaly-based detection method is the most commonly used way. This method
usually borrows techniques from machine learning and data science. Many research studies
have been conducted to detect Android malware using traditional ML-based methods such
as Decision Trees (DT) and Support Vector Machines (SVM) and novel DL-based models
such as Deep Convolutional Neural Network (Deep-CNN) [40] and Generative adversarial
networks [41]. These studies have shown that ML can be effectively utilised for malware
detection in Android [9]. Most of these studies used datasets such as Drebin [42], Google
Play [43], AndroZoo [44], AppChina [45], Tencent [46], YingYongBao [47], Contagio [48],
Genome/MalGenome [49], VirusShare [50], IntelSecurity/MacAfee [51], MassVet [52],
Android Malware Dataset (AMD) [53], APKPure [54], Anrdoid Permission Dataset [55],
Andrototal [56], Wandoujia [57], Kaggle [58], CICMaldroid [59], AZ [60], and Github [61]
to perform experiments and model training in their studies.



Electronics 2021, 10, 1606 9 of 34

5.1. Static, Dynamic, and Hybrid Analysis

As mentioned earlier, analysing APKs to extract features is required to use some of
the proposed ML techniques in the literature. To this end, three analysis techniques are
identified as static, dynamic, and hybrid analysis method [62–64]. Static analysis can be
performed by analysing the bytecode and source code (or re-engineered APK) instead
of running it on a mobile device. Dynamic analysis detects malware by analysing the
application while it is running in a simulated or real environment. However, there is a
high chance of exposing the risks to a certain extent to the runtime environment in the
dynamic analysis since malicious codes will be executed which can harm the environment.
The hybrid analysis involves methods in both static and dynamic analysis.

Under the static analysis, four aspects were proposed [28] which are analysis tech-
niques, sensitivity analysis, data structure, and code representation. Under the analysis
techniques, Symbolic execution, taint analysis, program slicing, abstract interpretation,
type checking, and code instrumentation were identified. For the sensitivity analysis,
object, context, field, path, and flow were identified. For the data structure aspect, it is
possible to list call graph (CG), Control Flow Graph (CFG), and Inter-Procedural Control
Flow Graph (ICFG). Smali, Jimple, Wala-IR, Dex-Assembler, Java Byte code, or class were
listed under the code representation aspect. Kernel, application, and emulator can be taken
under inspection level aspect. Taint analysis and anomaly-based can be taken under the
dynamic analysis approaches.

The feature extraction methods available in the static analysis consist of two types:
Manifest Analysis and Code Analysis [65]. Features such as package name, permissions,
intents, activities, services, and providers can be identified in Manifest Analysis. In the code
analysis, features such as API calls, information flow, taint tracking, opcodes, native code,
and cleartext analysis can be identified as possible features to extract. For the dynamic
analysis, five feature extraction methods were identified. They were (1) Network traffic
analysis for features like Uniform Resource Locators (URL), Internet Protocol (IP), Network
protocols, certificates, and nonencrypted data, (2) Code instrumentation for features such
as Java classes, intents, and network traffic, (3) System calls analysis, (4) System resources
analysis for features such as processor, memory and battery usage, process reports, net-
work usage, and (5) User interaction analysis for features such as buttons, icons, and
actions/events. The study in [66] has explored the security of ML for Android malware
detection techniques using a learning-based classifier with API calls extracted from con-
verted smali files. Then a sophisticated secure learning method is proposed, which showed
that it is possible to enhance the security of the system against a wide range of evasion
attacks. This model is also applicable to anti-spam and fraud detection areas. This study
can be further improved by exploring the possibilities of identifying attacks that can alter
the training process.

5.2. Static Analysis with Machine Learning

Static analysis is the widely used mechanism for detecting Android malware. This is
because malicious apps do not need to be installed on the device as this approach does not
use the runtime environment [67].

5.2.1. Manifest Based Static Analysis with ML

Manifest based static analysis is a widely used static analysis technique. The model
proposed in SigPID [68] discussed an Android permission-based malware detection mech-
anism. This model has identified only 22 permissions out of all the permissions listed
in sample APKs that are significant by developing a three-level data purring method:
permission ranking with negative rate, support based permission ranking, and permission
mining with association rules. After that, the ML algorithms were employed to detect the
malware. To this process, a binary format dataset of permissions, which was created using
a database of malware and benign apps from Google Play was used. The support-vector
machine (SVM) outperformed the other studied ML algorithms (Naïve Bayes (NB) and



Electronics 2021, 10, 1606 10 of 34

(DT)) with over 90% accuracy. For the permission-based static analysis, this work was
conducted comprehensively. However, it is better to check the other variables which are
affecting the malware apart from permissions.

A malware detection method using Android manifest permission analysing was
proposed in [69] with the use of static analyser and decompilation support of APKTool
for the APK to code level extraction. AndroZoo repository was used as the dataset to
train four different ML algorithms. Random Forest (RF), SVM, NB, and K-Means were
used to perform the model validity process, and RF produced the highest accuracy for
this model with 82.5% precision and 81.5% recall. However, the accuracy of this model is
comparatively low with the other studies conducted in the same area. The close reason for
that would be that this approach compares the permissions only.

The proposed work in [70] checked the possibility of using reduced dimension vector
generating for malware detection. Based on that, malware detection using ML models
with permission-based static analysis was performed. In the feature selection stage of this
approach, the model removed the unnecessary features using a linear regression-based
feature selection approach. Therefore, the classification model can run in real-time since
the training time was decreased, with an accuracy of over 96%. The Multi-Layer Perception
Model (MLP) algorithm outperformed NB, Linear Regression, k-nearest neighbors (KNN),
C4.5, RF and Sequential Minimal Optimization (SMO). It is better to focus on hypermeter
selections to also increase the performance of the classification. The model proposed in [71]
performed a static analysis on Android apps. Android permissions and intents were used
as the basic static features of malware classification while URLs, Emails, and IPs were used
as the basic dynamic features. Initially, the APK files were decompiled using ApkTool. The
extractor module of this extracted different types of information related to malware. After
extracting the data through disassembling the dex files, the data were kept in a text files
and they were used to create the feature vector. Then the ML algorithms RF, NB, Gradient
Boosting (GB), and Ada Boosting (AB) were used to train and test the malware detection
model with the usage of Drebin dataset and Google Play Store. After performing ML
training and testing part for each of permission, intent, and network features individually it
has identified that the above ML algorithms were performing with different accuracies. For
permissions RF performed well with 0.98 precision and recall, for intents NB performed
well with 0.92 precision and 0.93 recall, and for network both RF and AB performed
similarly well with 0.97 precision and recall. Though this research concluded with such
accuracies for malware detection it is still lacking the study of some other features like API
calls, etc.

Android malware detection technique using feature weighting with join optimisation
of weight mapping and classifier parameters model is proposed in JOWMDroid Framework
in [72]. This model is a static analysis-based technique that selected a certain number of
features out of the extracted features from the app which were related to malware detection.
This process was done by decompiling the APK to manifest and class.dex files and prepared
a binary feature matrix. Initial weight was calculated using Random Forest, SVM, Logistic
regression (LR), and KNN ML models. Weight machine functions were designed to map
the initial weight with final weights. As the last step, classifiers and weight mapping
function parameters were jointly optimised by the Differential Evolutional algorithm.
Drebin, AMD, Google Play, and APKPure datasets were used to train the model. Finally,
it is identified that among weight unaware classifiers, RF performed better with 95.25%
accuracy and for weight-aware classifiers, KNN and MLP performed better. However, with
the integration of this JOWM-IO method, SVM and LR beat the RF with over 96% accuracy.
If the correlation between features is also considered, the model accuracy for detecting
malware will increase.

Table 1 comparatively summarises the above research studies related to manifest
analysis based methods.



Electronics 2021, 10, 1606 11 of 34

Table 1. Manifest based static Analysis with ML.

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2018 [68] Developing 3 level data
purring method and ap-
plying ML models with
SigPID

Manifest Analysis
for Permissions

Google
Play

NB,
DT,
SVM

SVM 90% High effectiveness
and accuracy

Considered only the per-
mission analysis which
may lead to omit other im-
portant analysis aspects

2021 [69] Analysing permission and
training the model with
identified ML algorithm

Manifest Analysis
for Permissions

Google
Play,
AndroZoo,
AppChina

RF,
SVM,
Gaussian
NB,
K-Means,

RF 81.5% The model was
trained with com-
paratively different
datasets

Did not consider other
static analysis features
such as OpCode, API
calls, etc.

2021 [70] Reducing dimension vec-
tor generation and based
on that perform malware
detection using ML mod-
els

Manifest Analysis
for permissions

AMD,
APKPure

MLP,
NB,
Linear
Regression,
KNN,
C.4.5,
RF,
SMO

MLP 96% Efficiency, applicabil-
ity and understand-
ability are ensured

Hyper-parameter selec-
tions are not made in the
use

2021 [71] Selecting feature using
dimensionality reduc-
tion algorithms and
using Info Gain method

Manifest Analysis
for permissions
and intents

Drebin,
Google
Play

RF,
NB,
GB,
AB

RF,
NB,
AB

RF-98%,
NB-92%,
AB-97%

Analysed the fea-
tures as individual
components and not
as a whole

Did not consider about
other features such as API
calls, Opcode etc.

2021 [72] Feature weighting with
join optimisation of
weight mapping with
proposed JOWMDroid
framework

Manifest Analysis
for permission,
Intents, Activities
and Services

Drebin,
AMD,
Google
Play
APKPure

RF,
SVM,
LR,
KNN

JOWM-IO
method with
SVM and LR

96% Improved accuracy
and efficiency

Correlation between fea-
tures were not considered

5.2.2. Code Based Static Analysis with ML

Code based analysis is the other way of performing the static analysis to detect An-
droid malware with ML. The model proposed in TinyDroid [39] analysed the latest malware
listed in the Drebin dataset. Instruction simplification and ML are used in the model. Using
the decompiled DEX files by converting APK to smali codes, the opcode sequence was
abstracted. Then using that, features were extracted through N-gram and integrated with
the exemplar selection method. In the exemplar selection method, for intrusion detection,
a good representative of data was generated through a clustering algorithm, Affinity Prop-
agation (AP). This is because in AP, the number of clusters determination or estimation is
not required before running the application. Then the generated 2,3, and 4-gram sequences
were fed into SVM, KNN, RF, and NB ML classifiers. RF algorithm was identified as the
optimal algorithm for this scenario with 0.915 True Positive Rate, 0.106 False Positive Rate,
0.876 Precision, and 0.915 Recall for 2-gram sequence. High accuracy rates for the other
3 and 4-grams were also achieved compared to the studied ML algorithms. However,
the proposed method still has issues such as using the malware samples taken only from
few research studies and some organisation and lack of metamorphic malware samples.
Therefore, some malware could remain undetected.

The approach proposed in [73] used the Drebin dataset with 5560 malware samples
along with 361 malware from the Contagio dataset and 5900 benign apps from Google Play
to propose another approach to detect malware by analysing API calls used in operand
sequences. For the malware prediction model, the package level details were extracted
from the API calls. The package n-grams were extracted from the package sequence, which
represents application behaviour. Then they were combined with DT, RF, KNN, and NB ML
algorithms to build a predictive model in this study and concluded that the RF algorithm
performed with an accuracy of 86.89% after training the model on 2415 package n-grams. It
is better to consider other information which contains in operands since it might affect the
overall model. The relationship of system functions, sensitive permissions, and sensitive
APIs were analysed initially in Anrdoidect [74]. A combination of system functions was
used to describe the application behaviours and construct eigenvectors using the dynamic
analysis technique. Based on the eigenvectors, effective methodologies of malware de-
tection were compared along with the NB, J48 DT, and application functions decision



Electronics 2021, 10, 1606 12 of 34

algorithm and identified that the application functions’ decision algorithm outperformed
the others. There are still some improvements to be performed to this approach.

In MaMaDroid [75] model, API calls performed by apps were abstracted using static
analysis techniques to classes, packages, or families. Then to determine the call graph of
apps as Markov chain, the sequence of API calls was obtained. Then using ML algorithms,
classification was performed using RF, KNN, and SVM and it was identified that RF had
the highest accuracy among these three. However, in this method, dynamic analysis was
not considered. The dynamic analysis is useful for an API calls analysis in a runtime
environment to detect malicious applications.

Android malware detection approach using the method-level correlation relationship
of application’s abstracted API calls was discussed in [76]. Initially, the source codes
of Android applications were split into methods, and abstracted API calls were kept.
After that, the confidence of association rules between those calls was calculated. This
approach provided behavioural semantic of the application. Then SVM, KNN, and RF
algorithms were used to identify the behavioural patterns of the apps towards classifying
as benign or malicious. Drebin and AMD datasets were used for this, and 96% accuracy
was received with the RF algorithm. This method does not address the problems such
as dynamic loading, native codes, encryptions, etc. though it has such high accuracy. If
the dynamic analysis methods are also used, the accuracy of this model will increase to a
further high level.

The model named SMART in [77] proposed a semantic model of Android malware
based on Deterministic Symbolic Automation (DSA) to comprehend, detect, and classify
malware. This approach identified 4583 malware that were not identified by leading anti-
malware tools. Two main stages were included in this approach; malicious behaviour
learning and malware detection and classification. In Stage 1, the model identified semantic
clones among malware, and semantic models were constructed based on that. Then mali-
cious features were extracted from DSA, and ML techniques were used to detect malware
in Stage 2 after performing static analysing activities with bytecode analysis. Random
Forest achieved the best classification results of 97% accuracy, and AB, C45, NB, and Linear
SVM provided lower accuracy. Therefore, this work identified that DSA is possible to use
for malware detection. DroidChain [78] proposed a static analysis model with behaviour
chain model. The malware detection problem was transformed to a matrix model using
the Wxshal algorithm to further analyse this approach. Privacy leakage, SMS financial
charges, malware installation, and privilege escalation were proposed as malware models
in this study using the behaviour chain model. In the static analysis part, using APKTool
and DroidChain, Smali codes were extracted. Then the API call graph was generated using
the Androguard [79] tool. After that, the incidence matrix was built, and the accessibility
of the matrix to detect malware was calculated. The average accuracy of this model was
83%. This method can be improved to detect malware more accurately and efficiently by
considering other static analysis features such as code analysis, permission analysis, etc.

The study conducted in [80] discussed testing malware detection techniques based on
opcode sequence and API call sequence. The Hidden Markov Model (HMM) was trained in
this and detection rates for models based on static, dynamic, and hybrid approaches were
identified and it was concluded that the hybrid approaches are highly effective without
performing static or dynamic analysis alone.

Tables 2 and 3 comparatively summarise the above research studies related to code
analysis based methods, while Table 2 listed studies with model accuracy below 90% and
Table 3 listed studies with model accuracy above 90%.



Electronics 2021, 10, 1606 13 of 34

Table 2. Code based static Analysis with ML (Model Accuracy is below 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2016 [78] Transforming malware
detection problem to
matrix model using
Wxshall algo and ex-
tracting Smali codes
and generated the
API call graph using
Androguard

Code analysis for
API Calls and code
instrumentation
for network traffic

MalGenome Custom build
ML based
Wxshall algo-
rithm, Wxshall
extended algo-
rithm

Wxshall
extended
algorithm

87.75% Few false alarms Required to expand the
behaviour model and im-
prove the efficiency

2017 [74] Using the combination
of system functions to
describe the applica-
tion behaviours and
constructing eigenvec-
tors and then using
Androidetect

Code analysis for
API calls and Op-
codes

Google
Play

NB,
J48 DT,
Application
functions deci-
sion algorithm

Application
functions
decision
algorithm

90% Can identify the in-
stantaneous attacks.
Can judge the source
of the detected ab-
normal behaviour

High performance in
model execution

Did not consider some
important static analysis
features such as OpCode,
API calls, etc.

2018 [39] Using TinyDroid frame-
work, n-Gram methods
after getting the Opcode
sequence from .smali af-
ter decompiling .dex

Code Analysis for
Opcode

Drebin NLP,
SVM,
KNN,
NB,
RF,
AP

RF and
AP with
TinyDroid

87.6% Lightweight static
detection system

High performance
in classification and
detection

Malware samples were
taken only from few re-
search studies and some
organisations which lack
metamorphic malware
samples

2018 [73] Analysing Package level
information extracted
from API calls using
decompiled Smali files

Code Analysis for
API calls and Infor-
mation flow

Drebin,
Contagio,
Google
Play

DT,
RF,
KNN,
NB

RF 86.89% Model performs
well even when
the length of the
sequence is short

Other information con-
tained in operands were
not considered which af-
fect to the overall model

Table 3. Code based static Analysis with ML (Model Accuracy is above 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2016 [77] Using Deterministic
Symbolic Automaton
and Semantic Modelling
of Android Attack

Code Analysis for
Opcode/Byte code

Drebin AB,
C4.5,
NB,
LinearSVM, RF

RF 97% Use a combined ap-
proach of ML and
DSA inclusion

Unable to detect new mal-
ware patterns since this
will not perform complete
static analysis

2017 [80] Training Hidden
Markov Models and
comparing detection
rates for models based
on static data, dynamic
data, and hybrid ap-
proaches

Code analysis for
API calls and Op-
code in static analy-
sis and System call
analysis

Harebot,
Security
Shield,
Smart
HDD,
Win-
websec,
Zbot,
ZeroAccess

HMM HMM 90.51% Check the difference
approaches available
to detect ML

Did not consider other
ML algorithms or other
important features

2019 [75] Determining the apps
call graphs as Markov
chain Then obtaining
API call sequences and
using ML models with
MaMaDroid

Code Analysis for
API calls

Drebin,
oldbenign

RF,
KNN,
SVM

RF 94% the system is trained
on older samples
and evaluated over
newer ones

Requires a high memory
to perform classification

2019 [76] Calculating confidence
of association rules be-
tween abstracted API
calls which provides
behavioural semantic of
the app

Code Analysis for
API calls

Drebin,
AMD

SVM,
KNN,
RF

RF 96% Efficient feature ex-
traction process

Better stability of
the system

Did not address the cases
such as dynamic loading,
native codes, encryption,
etc.

5.2.3. Both Manifest and Code Based Static Analysis with ML

Some studies used both manifest and code based static analysis approaches to detect
Android malware with ML. The implemented model in WaffleDetector [81], a static analysis
approach to detect malware, was proposed by using a set of Android program features,
sensitive permissions, and API calls with the utilization of Extreme Learning Machine
(ELM). Tencent, YingYongBao, and Contagio datasets were used to train the algorithms.
This method outperformed traditional binary classifiers (DT, Neural Network, SVM, and
NB) with 97.06% accuracy. This approach still needs a few improvements, such as refining
the combination of permissions and API calls.

The study conducted in [82] studied repackaged apps. The malware was identified
from these repackaged apps with code-heterogeneity features. The codes of the apps



Electronics 2021, 10, 1606 14 of 34

were partitioned into subsets. Then the subsets were classified based on their behavioural
features with Smalicode. Compared to the other nonpartitioning methods, this approach
provides high accuracy with a False Negative Rate (FNR) of 0.35% and a False Positive
Rate (FPR) of 2.97%. This method also used some Ensemble Learning mechanisms. It is
better if the method improves the code heterogeneity mechanisms by using context and
flow sensitivity.

Using the Drebin dataset, a method to detect Android malware using static analysis is
discussed in [83]. Using this method with high accuracy of 98.7%, it was possible to detect
malware using a sample of 10,865 applications. In this method, initially, the APK file was
downloaded using the extracted download link from the APKPure website by using web
mining techniques. Then the APK content was extracted using Apktool and generated
the AndroidManifest.xml and classes.dex files. The application features were extracted
from AndroidManifest.xml using the AAPT utility while decompiling classes.dex into a
jar file using the dex2jar tool. Then the number of lines of code feature was extracted after
extracting the java source files from the jar file using the jd-cmd tool. This static analysis
approach was evaluated using ten different ML algorithms; KNN, SVM, Bayes Net, NB, LR,
J48, RT, RF, AB, and BA. Out of them RF with 1000 decision trees outperformed the others
with 0.987 precision, recall, and F-measure [83]. Though the model has high accuracy, it is
better to study behavioural analysis of app behaviour by performing dynamic analysis.

In RanDroid [84] model, already classified malicious and benign apps were used to
train the SVM, DT, RF, and NB ML algorithms. Initially, the APK files were decompiled
using Androguard (a python-ased tool) [79]. Then the required features of permission, API
calls, is_crypto_code, is_dynamic_code, is_native_code, is_reflection_code, is_database
were extracted and transformed into binary vectors. Then it was trained using ML algo-
rithm and identified that the DT was the most suitable algorithm for this static analysis
approach with 97.7% accuracy. However, in this study, broadcast receivers, filtered intend,
Control Flow Graph analysis, deep native code analysis, and dynamic analysis are not
considered; they are identified as drawbacks.

In [85] a model named TFDroid has been proposed, which is a ML based malware
detection by topics and sensitive data flow analysis using SVM with an accuracy of 93.7%.
FlowDroid is a static analysis tool that was used in this approach to extract data flow in
benign and malicious apps. The permission granularity was transformed using the data
flow features. After that, a classifier was implemented for each category and performed
the validation process. Google Play and Drebin datasets were used to train the model in
this study. It is better to check the other possible ML algorithms’ performance also. Since
this study is related to data flow, it is better to perform dynamic analysis and introduce a
hybrid model to increase the accuracy of detecting Android malware.

The DroidEnsemble [86] analyses the static behaviours of Android apps and builds a
model to detect Android malware. In this approach, static features such as permissions,
hardware features, filter intents, API calls, code patterns, and structural features of function
call graphs of the application were extracted. Then after creating the binary vector, SVM,
KNN, RF, and ML algorithms were performed to evaluate the performance of the features
and their ensemble. The proposed methodology achieved detection accuracy of 95.8% and
90.68%, respectively, for static features and structural features. For ensemble of both types,
the accuracy was increased to 98.4% with SVM. Sting features like API calls and structural
features like function call graphs can be checked with dynamic analysis. Therefore, in this
model, the malware detection accuracy would be increased when both static and dynamic
analysis were integrated.

Table 4 comparatively summarised the above research studies related to both manifest
and code based static analysis methods with ML.



Electronics 2021, 10, 1606 15 of 34

Table 4. Both Manifest and Code based Static Analysis with ML.
.

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms
/Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [81] Using customized
method named Waffle
Director

Manifest Analysis
for Sensitive per-
missions and API
calls

Tencent,
YingY-
ongBao,
Contagio

DT,
Neural
Network,
SVM,
NB, ELM

ELM 97.06% Fast Learning speed
and Minimal human
intervention

Combination of permis-
sions and API calls are
not refined

2017 [82] Using a code-
heterogeneity-analysis
framework to classify
Android repackaged
malware by Smali code
intermediate representa-
tion

Manifest Analysis
for Intents, Permis-
sions and API calls

Genome,
Virus-
Share,
Benign
App

RF,
KNN,
DT,
SVM

RF with cus-
tom model
proposed

FNR-
0.35%,
FPR-
2.96%

Provide in-depth
and fine-grained
behavioural analysis
and classification on
programs

Detection issues can hap-
pen when the malware
use coding techniques
like reflection and cannot
handle if the encryption
techniques used in DEX

2018 [84] Extracting features and
transforming into binary
vectors and training us-
ing ML with RanDroid
Framework

Manifest Analysis
for Permissions

Code Analysis
for API calls, op-
code and native
calls

Drebin SVM,
DT,
RF
NBs

DT 97.7% Highly accurate to
analyse permission,
API calls, opcode an
native calls toward
malware detection

Broadcast receivers, fil-
tered intend, Control
Flow Graph analysis,
deep native code analysis
were not considered

2018 [86] Creating the binary vec-
tor, apply ML models,
evaluate performance
of the features and
their ensemble using
DroidEnsemble

Manifest analysis
for permissions,
code analysis for
API calls and sys-
tem calls analysis

Google
Play,
AnZhi,
LenovoMM,
Wandoujia

SVM,
KNN,
RF

SVM 98.4% Characterises the
static behaviours of
apps with ensem-
ble of string and
structural features.

Mechanism will fail if the
malware contains encryp-
tion, anti-disassembly, or
kernel-level features to
evade the detection

2019 [83] Extracting applications
features from mani-
fest while decompiling
classes.dex into jar
file and applying ML
models

Manifest Analysis
for permissions,
activities and
Code Analysis for
Opcode

Drebin,
playstore,
Genome

KNN, SVM,
BayesNet,
NB, LR, J48,
RT,
RF, AB

RF with
1000 deci-
sion trees

98.7% High efficiency,
Lightweight analysis
and fully automated
approach

Did not consider about
the API calls and other
important features when
analysing the DEX.

2019 [85] Using FlowDroid for
static analysis and
proposing TFDroid
framework to detect
malware using sensitive
data flow analysis

Manifest Analysis
for permission and
Code Analysis for
information flow

Drebin,
Google
Play

SVM SVM 93.7% Analysed the func-
tions of applications
by their descriptions
to check the data
flow.

Did not consider the im-
proving clustering tech-
niques and applicability
of other ML models

5.3. Dynamic Analysis with Machine Learning

The second analysis approach is dynamic analysis. Using this approach it is possible
to detect malware with ML after running the application in a runtime environment. An-
droid Malware detection using a network-based approach was introduced in [87]. In this
approach, a detection application was developed. It contained three modules: network
traces collection, network feature extraction, and detection. In the traces collection module,
network activities of running applications were monitored and recorded the network traces
periodically. The features extraction module extracted features of the network used by
the applications. Those features were Domain Name System (DNS) based features, Hy-
perText Transfer Protocol (HTTP) based features, Origin destination based features, and
Transmission Control Protocol (TCP) based features. DT, LR, KNN, Bayes Network, and
RF algorithm were used in the detection module. The RF algorithm provided the highest
accuracy (98.7%) among them. However, this approach used network-based analysis. If
the malware apps were using encrypted transfers, the malware detection accuracy would
decrease. Therefore, the model also should consider such factors.

The proposed model in 6th Sense [88], using Markov Chain, NB, Logistic Model
Tree (LMT) to detect malware using dynamic analysis is based on sensors available in a
mobile device. A context-aware intrusion detection system is studied in this approach by
collecting and observing changes in sensor data. This step happened when the applications
were performing activities that enhanced security. This model distinguishes malware and
benign applications. Three types of malware activities (triggering, leaking information, and
stealing data) were identified using this approach via sensors available in the device. The
collected data was divided as 75% for training and 25% for testing. For the Markov Chain-
based detection technique, a training dataset was used to compute the state transitions and
build a transition matrix. A training dataset was used with NB to determine the sensor
condition changing frequency. For the other ML algorithms, all the data were defined as



Electronics 2021, 10, 1606 16 of 34

benign and malware. In this study, LMT outperformed others with 99.3% precision and
99.98% recall. Though this study is a comprehensive one, it is better if the tradeoffs such as
frequency accuracy, battery frequency, etc. are considered.

The proposed method in [89] discussed dynamic analysis-based techniques which
extract a set of dynamic permissions from APKs in different sources and run them in an
emulator. Then it evaluates the model using NB, RF, Simple Logistic, DT, and K-Star ML
models. After that, it is identified that Simple Logistic performs well with 0.997 precision
and 0.996 recall. Some issues were in the dataset used in this model. For example, some
benign and malicious apps were using the same permissions, and some apps crashed when
running the application in an emulator. Therefore, if the dataset is fine-tuned more before
use, this model provides even more accuracy.

In [90], a framework called Service Monitor was proposed, which is a lightweight
host-based detection system that can detect malware on devices. This framework was
built using dynamic analysis. Service Monitor monitored the way of requesting system
services to create the Markov Chain Model. The Markov Chain is used as a feature vector
to perform the classification tasks with ML algorithms: RF, KNN, and SVM. The RF method
performed well with an accuracy of 96.7% after training the model with AndroZoo, Drebin,
and Malware Genome datasets. Some benign apps also requested the system services in a
similar way to malware. Therefore, this could lead to some misclassification of this model.
To avoid that and enhance the classification accuracy, signature-based verification to the
Service Monitor can be applied.

A mechanism named DATDroid was proposed in [91] which is a dynamic analysis
based malware detection technique with an overall accuracy of 91.7% with 0.931 precision
and 0.9 recall values with RF ML algorithm. As the initial stage, feature extraction was
performed by collecting system calls, recording CPU and memory usage, and recording
network packet transferring. Then in the feature selection stage, Gain Ratio Attribute
Evaluator was applied. After that, the model training and validation were performed as
the next stage to identify malicious and benign applications using APKPure and Genome
Project datasets. In addition to the features studied in this, there can be an impact from
features like HTTP, DNS, TCP/IP, and memory usage patterns towards identifying malware
which should be discussed.

In [92], a framework which is named as MEGDroid, using the dynamic analysis was
proposed to improve the event generation process in Android malware detection. In this
method, it automatically extracted and represented information related to malware as a
domain-specific model. Decompilation, model discovery, integration and transformation,
analysis and transformation, and event production were the steps included in this model.
The model was then used to analyse malware after training with the AMD dataset. This
model extracted every possible event source from malware code and was developed as
an Eclipse plugin. Based on the results, MEGDroid provides better coverage in malware
detection through generating UI, whereas system events and monitoring the system calls
are lacking in this approach.

Table 5 comparatively summarises the above research studies related to dynamic
analysis based methods.



Electronics 2021, 10, 1606 17 of 34

Table 5. Dynamic analysis based malware detection approaches.

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [87] Extracting the DNS,
HTTP, TCP, Origin based
features of the network
used by apps

Network traf-
fic analysis for
network protocols

Genome DT,LR,
KNN,
Bayes Network,
RF

RF 98.7% Work with different
OS versions, Detect
unknown malware,
and infected apps

If the malware apps using
encrypted, not possible to
detect malware properly

2017 [88] Using Markov Chain-
based detection tech-
nique, to compute the
state transitions and to
build transition matrix
with 6thSense

System resources
analysis for pro-
cess reports and
sensors

Google
Play

Markov Chain,
NB,
LMT

LMT 95% Highly effective and
efficient at detecting
sensor-based attacks
while yielding mini-
mal overhead

Tradeoffs such as fre-
quency accuracy, battery
frequency are not dis-
cussed which can affect
the malware detection
accuracy

2017 [89] Using Dynamic based
permission analysis us-
ing a run-time and detect
malware using ML calcu-
late the accuracy

Code instrumenta-
tion analysis Java
classes and dy-
namic permissions

Pvsingh,
Android
Botnet,
DroidKin

NB,
RF,
Simple Logistic,
DT
K-Star

Simple
Logistic

99.7% High Accuracy Need to address the app
crashing issue in the se-
lected emulators in dy-
namic analysis

2019 [90] Using dynamically
tracks execution be-
haviours of applications
and using ServiceMoni-
tor framework

System call analy-
sis

AndroZoo,
Drebin
and Mal-
ware
Genome

RF,
KNN,
SVM

RF 96.7% High accuracy and
high efficiency

Not detecting difference
in some system calls of
malware and benign apps
since signature based ver-
ification was not applied

2020 [91] Extracting the features
and permissions from
Android app. Perform-
ing feature selection and
proceed to classification
with DATDroid

System call anal-
ysis, Code instru-
mentation for net-
work traffic analy-
sis and System re-
sources analysis

APKPure,
Genome

RF,
SVM

RF 91.7% High efficiency Impact from features like
HTTP, DNS, TCP/IP pat-
terns are not considered

2021 [92] Using decompilation,
model discovery, integra-
tion and transformation,
analysis and transforma-
tion, event production

Code instrumenta-
tion for java classes,
intents

AMD ML algorithms
used in MEG-
Droid, Monkey,
Droidbot

MEGDroid 91.6% Considerably in-
creases the number
of triggered ma-
licious payloads
and execution code
coverage

System calls are not moni-
tored

5.4. Hybrid Analysis with Machine Learning

Hybrid analysis is the third approach which can be used in ML-based Android
malware detection. The review in [93] identified three approaches of malware detection,
which are the signature-based, anomaly-based, and topic modelling based approaches.
ML algorithms such as DT, J48, RF, KNN, KMeans, and SVM can be applied to all these
approaches. Signature-based malware was detected using ML algorithms after the feature
extraction process. After the feature extraction, sensitive API calls were also analysed before
applying ML algorithms. Documents were collected such as reviews, user documents,
and app descriptions before following a similar approach as the signature-based method,
initially in the topic modelling approach. It was identified that the behavioural based
approach is better than the signature-based approach. If the topic modelling is combined
with that approach, it was possible to achieve good results. The hybrid analysis method is
created when the dynamic analysis method is integrated with the static analysis method.
According to this study, the SVM classifier with the hybrid analysis method performed
better than the other ML algorithms.

The model proposed in [94] discussed a methodology of using ML algorithms with
static analysis and dynamic analysis. In the static analysis approach, malicious and be-
nign applications’ manifest data were taken as JSON files from MalGenome and Kaggale
datasets to train the ML model. The trending apps were taken from well-known app stores.
Androguard [79] was used to extract information from the APK files. After reverse engi-
neering, decompiling, testing, and training with SVM, LR, KNN based ML models, a JSON
file was prepared. According to this model, LR was identified as the most suitable ML
algorithm, which has 81.03% accuracy. Many improvements are required to the proposed
static analysis model since comparatively this has a low accuracy. However, the proposed
dynamic analysis approach outperformed the static analysis approach with high accuracy
of 93% of both precision and recall over the RF. In this approach, Droidbox was used to
run APKs obtained from MalGenome and Android Wave Lock in a sandbox environment.
Then a CSV file is obtained after converting the JSON file obtained by analysing the APK
and after that the key features are extracted. As the last step, DT, RF, SVM, KNN, and LR



Electronics 2021, 10, 1606 18 of 34

ML algorithms were used with extracted key features. Then accuracy and results were
checked and the particular app was labelled as malware or benign. It would be better if
this study explored the possibilities of using other ML algorithms also.

In [95], authors conducted an experiment using various ML technologies to analyse the
relative effectiveness of the static and dynamic analysis method towards detecting malware.
This study used the Drebin dataset and a custom dataset to train the ML algorithm to
classify malware and benign apps. Altogether the whole dataset contains 103 malware
and 97 benign apps. For the static analysis, the APK files were reverse-engineered by
a tool available in Virustotal and extracted the permissions using a custom XML parser.
Then binary feature vectors and permission vectors were created, and ML algorithms were
applied. For dynamic analysis, applications were executed on separated Android Virtual
Devices (AVDs). System calls and their frequencies were traced using the MonkeyRunner
tool since the frequency representation of system calls contained behavioural information
on apps. Usually, malware has higher frequencies compared to benign apps. After that, a
feature vector of system calls was created, and ML algorithms were applied. The RF, J.48,
Naïve Bayes, Simple Logistic, BayesNet Augmented Naïve Bayes (TAN), BayesNet K2,
Instance Based Learner (IBk), SMO PolyKernel, and SMO NPolyKernel algorithms were
used for both static and dynamic analysis. The best results of 0.96 for static analysis and
0.88 for dynamic analysis were achieved when RF with 100 trees was used. Permissions
extracted from the AndroidManifest.xml file were considered for static analysis, and system
calls extracted from the runtime were considered in the dynamic analysis.

The model proposed in [96] explained a hybrid analysis process to detect malware
using ML algorithms with the accuracy of 80% when using the permissions analysis in
static analysis approach and 60% accuracy when analysing by system calls. Malware
samples were collected using a honeypot and search repositories such as Androditotal to
train the model. However, this study lacks the consideration of other features’ which affect
malware detection that should also be considered to achieve a high accuracy model.

In [97], the model proposed a hybrid analysis-based efficient mechanism for Android
malware detection, which used the malware genome dataset and the Drebin dataset to
train the ML and DL models in the static analysis approach. CICMalDroid dataset for
the dynamic analysis approach and 261 combined features were extracted for the hybrid
analysis. To increase the performance, this model used dimension reduction using Principal
Component Analysis (PCA). SVM, KNN, RF, DT, NB, MLP, and GB were used to train and
test the model. Out of these ML/DL algorithms, GB outperformed the others in terms of
accuracy (96.35%), but it took a comparatively long training time. Forty-six features from
dynamic analysis results were also analysed. After performing combined hybrid analysis,
GB again performed well with an accuracy of 99.36% and efficiency compared to the
Random Forest and MLP. It is better to study the runtime environment and configuration
more because this does not cover some areas.

The model described in [98] proposed a Tree TAN based hybrid malware detection
mechanism by considering both static and dynamic features such as API calls, permissions,
and system calls. LR algorithms were trained for these three features. Drebin, AMD, AZ,
Github, and GP datasets were used in this and modelled the output relationships as a
TAN to detect if the given app is malicious or benign with an accuracy of 0.97. There is a
possibility of some malware remaining undetected from the model, which can be reduced
using Reinforcement Learning techniques.

Tables 6 and 7 comparatively summarise the above research studies related to hybrid
analysis based methods, where Table 6 listed studies with model accuracy below 90% and
Table 7 listed studies with model accuracy above 90%.



Electronics 2021, 10, 1606 19 of 34

Table 6. Hybrid analysis based malware detection approaches (model accuracy is below 90% or overall accuracy is not
available).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML algorithms/
Models

Selected ML
algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [96] Using a set of Python
and Bash scripts which
automated the analysis
of the Android data.

Manifest analysis
for permissions
and System call
analysis for dy-
namic analysis

Andrototal NB, DT DT 80% Model execution is
efficient

Consider system call ap-
pearance rather than fre-
quency and Lower num-
ber of samples used to
train

2018 [95] Using Binary feature vec-
tor and permission vec-
tor datasets were created
using the analysis tech-
niques and was used
with the ML algorithms

Manifest analysis
for permissions
and system call
analysis

Drebin RF, J.48, NB,
Simple Logistic,
BayesNet TAN,
BayesNet K2,
SMO PolyKer-
nel, IBK, SMO
NPolyKernel

RF Static-
96%,
Dynamic-
88%

Compared with sev-
eral ML algorithms

Accuracy depends on the
3rd party tool (Monkey
runner) used to collect
features.

2019 [94] Preparing a JSON file
after reverse engineer-
ing, decompiling, and
analysing the APK by
running in a sandbox en-
vironment and then ex-
tracting the key features
and applied ML

Manifest analysis
for permissions,
code analysis for
API calls and Sys-
tem call analysis

MalGenome,
Kaggle,
Andro-
guard
[79]

SVM,
LR,
KNN,
RF

LR for static
analysis
and RF for
dynamic
analysis

Static-
81.03%,
Dynamic-
93%

Dynamic analysis
performed was bet-
ter than the static
analysis approach in
terms of detection
accuracy

Did not perform a proper
hybrid analysis approach
to increase the overall ac-
curacy

Table 7. Hybrid analysis based malware detection approaches (model accuracy is above 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML Algorithms/
Models

Selected ML
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [99] Using import term ex-
traction, clustering and
applying genetic algo-
rithm with MOCODroid

Code analysis for
API calls and in-
formation flow and
system call analy-
sis

Virus-total,
Google
Play

Genatic algo-
rithm, Mul-
tiobjective
evolutionary
algorithm

Multiobjective
evolutionary
classifier

95.15% Possible to avoid the
effects of the conceal-
ment strategies

Did not consider about
other clustering methods.

2020 [97] Extracted 261 combined
features of the hybrid
analysis with using the
support of datasets and
performed the ML/DL
models

Manifest analysis
for permissions
and system call
analysis

MalGenome,
Drebin,
CICMal-
Droid

SVM,
KNN,
RF,
DT,
NB,
MLP,
GB

GB 99.36% Hybrid analysis is
having higher accu-
racy comparing to
static analysis and
dynamic analysis
individually

Runtime environment
and configuration is not
considered

2020 [98] Using Conditional
dependencies among
relevant static and dy-
namic features. Then
trained ridge regu-
larised LR classifiers and
modelled their output
relationships as a TAN

Manifest analysis
for permissions,
code analysis for
API calls and sys-
tem call analysis

Drebin,
AMD,
AZ,
Github,
GP

TAN TAN 97% Highly accurate Possibility of some mal-
wares remain undetected

2021 [100] Using exploit static, dy-
namic, and visual fea-
tures of apps to predict
the malicious apps using
information fusion and
applied Case Based Rea-
soning (CBR)

Manifest analysis
for permissions
and System call
analysis

Drebin CBR,
SVM,
DT

CBR 95% Require limited
memory and process-
ing capabilities

Require to present the
knowledge representa-
tion to address some
limitations

5.5. Use of Deep Learning Based Methods

It is possible to use deep learning techniques also for detecting Android malware.
In MLDroid, a web-based Android malware detection framework [101] was proposed by
performing dynamic analysis. In this work, ML and DL methods were used with an overall
98.8% malware detection rate.

The model proposed in [102] disused a method to detect malware using a semantic-
based DL approach and implemented a tool called DeepRefiner. This approach used
the Long Short Term Memory (LSTM) on the semantic structure of Android bytecode
with two layers of detection and validation. This method used the LSTM over Recurrent
Neural Network (RNN) since RNN contains gradient vanish problem. Using this approach
with an accuracy of 97.4% and a false positive rate of 2.54%, it was possible to detect
malware. It was efficient and accurate compared with the traditional approaches. Since this
approach uses the static analysis approach, some limitations can arise based on the runtime
environment, which can be identified if this model uses the hybrid analysis approach.



Electronics 2021, 10, 1606 20 of 34

MOCDroid [99] model discussed a multiobjective evolutionary classifier to detect
malware in Android. It combined multiobjective optimisation with clustering to generate
a classifier using third-party call group behaviours. This method produced an accuracy
of 95.15%. Import term extraction, clustering, and applying a genetic algorithm were the
three steps included in this process. Initially, the DEX files were uncompressed from the
APK after using the decompression tool, and Java codes were obtained using the JADX
tool [103]. Then the document term matrix was transformed. As the next step, K-Means
clustering was applied since it was identified as the highest accuracy model for this, and
the genetic algorithm was also applied. The results were compared with a random set of
10,000 benign and malicious apps with different antivirus engines. It is possible to consider
other clustering methods to improve the accuracy of this method.

The work proposed in [104] discussed a method to detect Android malware using
a deep convolutional neural network (CNN). Raw opcode sequence from disassembled
Smali program was analysed using static analysers to classify the malware. The advantage
of this method is automatically learning the feature indicative of malware. This work was
inspired by n-gram based methods. To train the models Android Malware Genome project
dataset [49] and Intel Security/MacAfee Lab dataset were used. The classification system
of this provides 0.87 precision and recall accuracies. The accuracy of the malware detection
can be increased when the dynamic analysis is also performed.

A deep learning-based static analysis approach was experimented with an accuracy
of 99.9% and with an F1-score of 0.996 in [105]. This approach used a dataset of over
1.8 million Android apps. The attributes of malware were detected through vectorised
opcode extracted from the bytecode of the APKs with one-hot encoding. After performing
experiments on Recurrent Neural Networks, Long Short Term Memory Networks, Neural
Networks, Deep Convents, and Diabolo Network models, it was identified that Bidirec-
tional Long Short-Term Memory (BiLSTMs) is the best model for this approach. It is better
to analyse the complete byte code using static analysis and check the app behaviour with
dynamic analysis to build a more comprehensive malware detection tool based on deep
learning techniques.

The DL-Droid framework based on deep learning techniques [106] proposed a new
way of detecting Android malware with dynamic analysis techniques. This approach
was having a detection rate of 97.8% by only including dynamic features. When the
static features were also included in that, the detection rate would increase to 99.6%. The
experiments were performed on real devices in which the application can run exactly the
way the user experiences it. Further to this, some comparisons of detection performance
and code coverage were also included in this work. Traditional ML classifier performances
were also compared. This novel method outperformed the ML-based methods such as
NB, SL, SVM, J48, Pruning Rule-Based Classification Tree (PART), RF, and DL. In addition
to this work, seeking the possibilities to include intrusion detection mechanism in the
DL-Droid would be a valuable addition.

The AdMat model proposed in [107] discussed a CNN on Matrix-based approach
to detect Android malware. This model characterised apps and treated them as images.
Then the adjacency matrix was constructed for apps, and it was simplified with the size of
219 × 219 to enhance the efficiency in data processing after transferring decompiled source
code into call-graph of Graph Modelling Language (GML) format. Those matrices were
the input images to the CNN, and the model was trained to identify and classify malware
and benign apps. This model has an accuracy of 98.2%. Even though the model is highly
accurate, there are limitations to this work, such as performing static analysis only, and the
performance depends on the number of used features.

The model proposed in [108] discussed a DL-based method that uses CNN approach
to analyse API sequence call, opcode, and permissions to detect Android malware in a
zero-day scenario. The model achieved a weighted average detection rate of 91% and 81%
on two datasets Drebin and AMD after the model was trained. The model can further
improve if the dynamic analysis techniques are also considered.



Electronics 2021, 10, 1606 21 of 34

With an accuracy of 95%, a multimodal analysis of malware apps using information
fusion was presented in [100] which used hybrid analysis techniques. The study used CBR
for training and validation purposes. SVM and DT were compared with the proposed
model validation, but the classic ML algorithms were outperformed by the CBR-based
method. If the work can represent the knowledge representation, some of the limitations
can be addressed.

Tables 8 and 9 comparatively summarise the above research studies related to deep
learning based malware detection methods, where Table 8 listed studies with model
accuracy below 90% and Table 9 listed studies with model accuracy above 90%.

Table 8. Deep learning based Malware Detection Approaches (Model Accuracy is below 90% or overall accuracy is not
available).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML/DL Al-
gorithms/
Models

Selected DL
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2017 [104] Using n-Gram methods
after getting the Opcode
sequence from .smali af-
ter dissembling .apk

Code Analysis for
Opcodes

Genome,
IntelSecurity,
MacAfee,
Google
Play

CNN,
NLP

Deep CNN 87% Automatically learn
the feature indicative
of malware without
hand engineering

Assumption of all APKs
are benign in Google Play
dataset while all are mali-
cious in malware dataset

2021 [108] Using DL based method
which uses Convolution
Neural Network based
approach to analyse fea-
tures

Code Analysis for
API calls, Opcode
and Manifest Anal-
ysis for Permission

Drebin,
AMD

CNN CNN 91%
and 81%
on two
datasets

Reduce over fitting
and possible to
train to detect new
malware just by col-
lecting more sample
apps

Did not compared with
other ML/DL methods

Table 9. Deep learning based malware detection approaches (model accuracy is above 90%).

Year Study Detection Approach Feature Extraction
Method

Used
Datasets

ML/DL Al-
gorithms/
Models

Selected DL
Algorithms/
Models

Model
Accuracy

Strengths Limitations/Drawbacks

2018 [102] Applying LSTM on se-
mantic structure of byte-
code with 2 layers of
detection and validating
with DeepRefiner

Code Analysis for
Opcode/bytecode

Google
Play,
VirusShare,
MassVet

RNN,
LSTM

LSTM 97.4% High efficiency with
average of 0.22 s to
the 1st layer and 2.42
s to the 2nd layer de-
tection

Need to train the model
regularly to update the
training model on new
malware

2020 [105] Detecting Malware at-
tributes by vectorised op-
code extracted from the
bytecode of the APKs
with one-hot encoding
before apply DL Tech-
niques

Code Analysis for
Opcode

Drebin,
AMD,
VirusShare

BiLSTM,
RNN,
LSTM,
Neural
Networks,
Deep Convents,
Diabolo Net-
work model

BiLSTMs 99.9% Very high accuracy,

Able to achieve
zero day malware
family without over-
head of previous
training

Did not analyse complete
byte code

2020 [106] Using DynaLog to select
and extract features from
Log files and using DL-
Droid to perform feature
ranking and apply DL

Code instrumen-
tation analysis for
java classes, in-
tents, and systems
calls

Intel Secu-
rity

NB,
SL,
SVM,
J48,
PART,
RF,
DL

DL 99.6% Experiments
were performed
on real devices

High accuracy

Could have implemented
the intrusion detection
part also to make it more
comprehensive malware
detection tool

2021 [101] Selecting features gained
by feature selection
approaches. Applying
ML/DL models to detect
malware

Code instrumenta-
tion for java classes,
permissions, and
API calls at the
runtime

Android
Permis-
sions
Dataset,
Computer
and se-
curity
dataset

farthest first
clustering, Y-
MLP, nonlinear
ensemble deci-
sion tree forest,
DL

DL with
methods in
MLDroid

98.8% High accuracy and
easy to retrain the
model to identify
new malware

Human interac-
tion would be re-
quired in some cases.

Can contain issues in
the datasets

2021 [107] Characterising apps
and treating as im-
ages. Then constructing
the adjacency matrix.
Then applying CNN to
identify malware with
AdMat framework

Code Analysis for
API calls, Informa-
tion flow, and Op-
code

Drebin
AMD

CNN CNN 98.2% High Accuracy and
efficiency

Performance is depend-
ing on number of used
features

6. Machine Learning Methods to Detect Code Vulnerabilities

Hackers do not just create malware. They also try to find loopholes in existing appli-
cations and perform malicious activities. Therefore, it is necessary to find vulnerabilities
in Android source code. A code vulnerability of a program can happen due to a mistake
at the designing, development, or configuration time which can be misused to infringe



Electronics 2021, 10, 1606 22 of 34

on the security [38]. Detection of code vulnerability can be performed in two ways. The
first method is reverse-engineering the APK files using a similar approach discussed in
Section 3. The second method is identifying the security flaws at the time of designing and
developing the application [109]. The study conducted in [110] has identified five main
categories of security approaches. They were secure requirements modelling, extended
Unified Modeling Language (UML) based secure modelling profiles, non-UML-based
secure modelling notations, vulnerability identification, adaption and mitigation, and
software security-focused process. Under these categories, 52 security approaches were
identified. All these approaches are used to identify software vulnerabilities at the time
of designing and developing the applications. Based on the findings of the surveys and
interviews conducted in [111] related to intervention for long-term software security, the
importance of having an automated code analysis tool to identify vulnerabilities of the
written codes has been identified. The empirical analysis conducted in [112] identified the
static software metrics’ correlation and the most informative metrics which can be used to
find code vulnerability related to Android source codes.

6.1. Static, Dynamic, and Hybrid Source Code Analysis

Similar to analysing APKs for malware detection, there are three ways of analysing
source codes. They are static analysis, dynamic analysis, and hybrid analysis. In static
analysis, without executing the source code, a program is analysed to identify properties by
converting the source to a generalised abstraction such as Abstract Syntax Tree (AST) [113].
The number of reported false vulnerabilities depends on the accuracy of the generalisation
mechanism. The runtime behaviour of the application is monitored while using specific
input parameters in dynamic analysis. The behaviour depends on the selection of input
parameters. However, there are possibilities of undetected vulnerabilities [114].

In hybrid analysis, it provides the characteristics of both static analysis and dynamic
analysis, which can analyse the source code and run the application to identify vulnerabili-
ties while employing detection techniques [115].

The study conducted in [116] performed an online experiment where Android devel-
opers were the participants. Vulnerable code samples containing hard-coded credentials,
encryptions, Structured Query Language (SQL) injections, and logging with sensitive data
were given to the participants together with the guidance of static analysis tools and asked
to indicate the appropriate fix. After analysing the experiment results, it has been identified
that automated code vulnerability detection support is required for the developers to
perform better when developing secure applications.

To analyse Android source code, Android Linters can be applied. Linters have been
proposed to detect and fix these bad practices and they perform a static analysis based
on AST or Universal AST (UAST) generation through written source codes [117]. The
study in [118] discussed several Linters such as PMD, CheckStyle, Infer, and FindBugs,
Detekt, Ktlint, and Android Lint discussed the usage of them. Android studio adopts
the Android Lint, which identifies 339 issues related to correctness, security, performance,
usability, accessibility, and internationalisation. In the proposed model in FixDroid [27],
security-oriented suggestions along with their fixes were provided to the developer once
the Android Lint identified security flaws. The FixDroid method can further be improved
by employing ML techniques to produce highly accurate security suggestions.

However, just warning the developer about security issues in the code is not sufficient.
There should be a mechanism to inform the developer about the severity level of the
security issue also. By using app user reviews, OASSIS [119] proposed a method to
prioritise static analysis warnings generated from Android Lint. Based on the review
analysis using sentiment analysis, it was possible to identify the issues in Android apps.
After receiving prioritised lint warnings, developers will able to take prompt actions. The
study in [120] proposed a mechanism named as MagpieBridge to integrate static analysis
into Integrated Development Environments (IDEs) and code editors such as Eclipse, IntelliJ,



Electronics 2021, 10, 1606 23 of 34

Jupyter, Sublime Text, and PyCharm. However, the possibility of extending this to the
Android platform should be discussed further.

In [121], using static and dynamic analysis, a vulnerability identification of Secure
Sockets Layer (SSL)/Transport Layer Security (TLS) certificate verification in Android
application was described. This experiment found that out of the analysed 2213 Android
apps, 360 apps contain vulnerable codes using the proposed framework of DCDroid.
Therefore, through SSL/TLS certificates, it is possible to identify some vulnerabilities.

6.2. Applying ML to Detect Source Code Vulnerabilities

It has been proven that ML methods can be applied on a generalised architecture such
as AST to detect Android code vulnerabilities [38]. Most of the research was conducted
using static analysis techniques to analyse the source code.

With the use of ML, vulnerability detection rules were extracted with static metrics
as discussed in [122]. Thirty-two supervised ML algorithms were considered for most
common vulnerabilities and identified that when the model used the J48 ML algorithm,
96% accuracy could be obtained in vulnerability detection. The model proposed in [123]
discussed an automated mechanism to classify well-written and malicious code using a
portable executable (PE) structure through static analysis and ML with an accuracy of
98.77%. The proposed methodology used RF, GB, DT, and CNN as ML models.

The study in [124] built a model to predict software vulnerabilities of codes using
ML before releasing the code. After developing a source code representation using AST
and intelligently analysing it, the ML models were applied. Popular datasets such as
NIST SAMATE, Draper VDISC, and SATE IV Juliet Test Suite, which contain C, C++, Java,
and Python source codes, were used to train the model. However, using this model, it
was not possible to locate a specific place of vulnerability. It is identified as a drawback,
and it has not proven that the same approach is possible to apply to other programming
languages and frameworks. However, there is a possibility of using this approach for
Android applications, which were developed using Java.

In [125], using C and C++ source codes, a vulnerability detection system was proposed
using ML and deep feature representation learning. Apart from using the existing datasets,
the Drapper dataset was compiled using Drebin and Github repositories with millions of
open-source functions and labelled with carefully selected findings. The findings of the
research were compared with Bag of Words (BOW), RF, RNN, and CNN models.

The study conducted in [126] developed a mechanism to classify subroutines as vul-
nerable or not vulnerable in C language using ML methods. The National Vulnerability
Dataset (NVD) was used to collect C programming code blocks and their known vulnera-
bilities. After preparing the AST and preprocessing the data, feature extraction, feature
selection, and classification tasks were performed and ML algorithms were applied.

The applicability of deep learning to detect code vulnerabilities was discussed in [127].
Comparison of using three DL algorithms CNN, LSTM, and CNN-LSTM were discussed
in this study. The proposed model has an accuracy of 83.6% when applying the DL models.
Using Deep Neural Networks, it was possible to predict vulnerable code components. The
model in [128] evaluated it using some Java-based Android applications. In this mechanism,
N-gram analysis and statistical feature selection for constructing features were performed.
This model can classify vulnerable classes with high precision, accuracy, and recall.

In [129], a model was proposed to detect zero-day Android malware using a distinctive
parallel classifier and a mechanism to identify oncoming highly elusive vulnerabilities in
the source code with an accuracy of 98.27% with the use of Ml algorithms; PART, Ripple
Down Rule Learner (RIDOR), SVM, and MLP.

ML-Based Vulnerability Detection Specifically for Android

There is less research conducted relating to Android vulnerability detection with
ML. The methodology of the studies, which were conducted on general programming



Electronics 2021, 10, 1606 24 of 34

languages, could apply to the Android code vulnerability detection after training the model
using specific code datasets and adjusting the generalisation mechanism.

The work conducted in [130] prepared a manually curated dataset that can be used
to fix vulnerabilities of open-source software. The possibility of automatically identifying
security-related commits in the relevant code repository has been proven since it has been
successfully used to train classifiers.

In [131] repository of Android security vulnerabilities was created named AndroVul,
which includes dangerous permissions, security code smells, and high-risk shell command
vulnerabilities. In [132], a study was conducted to predicatively analyse the vulnerabilities
in Internet of Things (IoT) related Android applications using statistical codes and applying
ML. In this study, 1406 Android apps were taken with various risk levels, and six ML
models (KNN, LR, RF, DT, SVM, and GB) were administered to examine security risk
prediction. It is identified that RF performs well in the intermediate risk level. GB performs
well at a very high-risk level compared to the other ML model-based approaches. The
study conducted in [133] proposed an ML-based vulnerabilities detection mechanism to
identify security flaws of Android Intents using hybrid analysis. Adaboost algorithm was
used to perform the ML based analysis.

Tables 10 and 11 summarise selected studies from above which are related to Android
vulnerability analysis. Table 10 lists the studies which have model accuracy below 90% and
Table 11 lists the studies which have model accuracy above 90%.

Table 10. Android vulnerability detection mechanisms (Model accuracy is below 90%).

Year Study Code Analysis Method Approach Used ML/DL Methods/
Frameworks

Accuracy of the
Model

2017 [127] Dynamic Analysis Collected 9872 sequences of function calls as features.
Performed dynamic analysis with DL methods

CNN-LSTM 83.6%

2017 [133] Hybrid Analysis Decompiled the apk file. Performed static analysis of the
manifest file to obtain the components/permissions.
Dynamic analysis and fuzzy testing were conducted and
obtained system status.

AB and DT 77%

2019 [115] Hybrid Analysis Reverse engineered the APK, Decoded the manifest files & codes
and extracted meta data from it. Performed dynamic analysis
to identify intent crashing and insecure network connections for
API calls. Generated the report.

AndroShield 84%

2020 [124] Hybrid Analysis Performed intelligent analysis of generated AST. Checked ML
can differentiate vulnerable and nonvulnerable.

MLP and a customised
model

70.1%

Table 11. Android vulnerability detection mechanisms (model accuracy is above 90%).

Year Study Code Analysis Method Approach Used ML/DL Methods/
Frameworks

Accuracy of the
Model

2017 [113] Static Analysis Generated the AST, navigated it, and computed detection rules.
Identified smells when training with manually created dataset.

ADOCTOR framework 98%

2017 [128] Static Analysis Combined N-gram analysis and statistical feature selection
for constructing features. Evaluated the performance
of the proposed technique based on a number of
Java Android programs.

Deep Neural Network 92.87%

2019 [129] Hybrid Analysis Decompiled the APK and selected the features and
executed the APK and generated log files with system calls.
Generated the vector space and trained with ML algorithms
as parallel classifiers.

MLP, SVM, PART, RIDOR,
MaxProb, ProdProb

98.37%

2020 [121] Hybrid Analysis In static analysis, vulnerabilities of SSL/TLS certification were
identified. Results from static analysis about user interfaces were
analysed to confirm SSL/TLS misuse in dynamic analysis.

DCDroid 99.39%

2021 [122] Static Analysis 32 supervised ML algorithms were considered for 3 common
vulnerabilities: Lawofdemeter, BeanMemberShouldSerialize,
and LocalVariablecouldBeFinal

J48 96%

2021 [123] Static Analysis Classified malicious code using a PE structure and a method for
classifying it using a PE structure

CNN 98.77%



Electronics 2021, 10, 1606 25 of 34

7. Results and Discussion

Based on the reviewed studies in ML/DL based methods to detect malware, it is
identified that 65% of studies related to malware detection techniques used static analysis,
15% used dynamic analysis, and the remaining 20% followed the hybrid analysis technique.
This is illustrated in Figure 3. This high attractiveness of static analysis may be due to the
various advantages associated with it over dynamic analysis, such as ability to detect more
vulnerabilities, localising vulnerabilities, and offering cost benefits.

Static Analysis

65%

Dynamic Analysis

15%

Hybrid Analysis

20%

Figure 3. Malware analysis techniques used in the reviewed studies.

Many ML/DL based malware detection studies used the code analysis method as
the feature extraction method. Apart from that, manifest analysis and system call analysis
methods are the other widely used methods. Figure 4 illustrates those feature extraction
methods used in the reviewed studies. It is possible to detect a substantial amount of mal-
ware after analysing decompiled source codes rather than analysing permissions or other
features. That may be the reason for the high usage of code analysis in malware detection.

By using the feature extraction methods, permissions, API calls, system calls, and
opcodes are the most widely extracted features. This is illustrated in Figure 5 along with the
other extracted features in the reviewed studies. Many hybrid analysis methods extracted
permissions as the feature to perform static analysis. It is easy to analyse permissions
when comparing with the other features too. These could be reasons for the high usage
of permissions as the extracted feature. Services and network protocols have low usage
in feature extractions. The reason for this may be it is comparatively not easy to analyse
those features.

The datasets used in ML/DL based Android malware detection studies to train the
algorithms are illustrated in Figure 6. Drebin was the most widely used dataset in Android
Malware Detection, and it was used in 18 reviewed studies. Google Play, MalGenome,
and AMD datasets are the other widely used datasets. The reason for the highest usage
of the Drebin dataset may be because it provides a comprehensive labelled dataset. Since
Google Play is the official app store of Android, it may be a reason to have high usage for
the dataset from Google.



Electronics 2021, 10, 1606 26 of 34

It is identified that the RF, SVM, and NB are at the top of widely studied ML models to
detect Android malware. The reason may be that the resource cost to run RF, SVM, or NB
based models is low. Models like CNN, LSTM, and AB have less usage because to run such
advanced models, good computing power is required, and the trend for DL-based models
was also boosted in recent years. Table 12 summarises widely used ML/DL algorithms
with their advantages and disadvantages. Figure 7 illustrates all of the studied ML/DL
models with their usage in the reviewed studies.

The majority of the studies used hybrid analysis and static analysis as the source code
analysis techniques in vulnerability detection in Android, as illustrated in Figure 8. To
perform a highly accurate vulnerability analysis, the source code should be analysed and
executed too. Therefore, this may be the reason to have hybrid analysis and static analysis
as the widely used source code analysis methods to detect vulnerabilities.

0 5 10 15 20 25

Manifest Analysis

Code Analysis

Network Analysis

Code Instrumentation

System Call Analysis

System Resources Analysis

Number of Studies

F
ea

tu
re

 E
xt

ra
ct

io
n

 M
et

h
o

d

Figure 4. Feature extraction methods used in the reviewed studies.

0

2

4

6

8

10

12

14

16

18

20

N
o

 o
f 

S
tu

d
ie

s

Feature

Figure 5. Extracted features in the reviewed studies.



Electronics 2021, 10, 1606 27 of 34

0

2

4

6

8

10

12

14

16

18

20

N
u

m
b

er
 o

f 
S

tu
d

ie
s

Dataset Name

Figure 6. Usage of datasets.

Table 12. Commonly used ML/DL algorithms for Android malware detection.

Algorithm Advantages Disadvantages

DT • Possible handle samples with missing values
• Easy to understand

• Might cause the overfitting problem

NB • Easily and quickly trainable • Need to calculate prior probability
• Not applicable if the feature variables are corelated

Regression Models • Widely used in statistics based studies
• Direct and Fast

• Not possible to deal well with high dimensional features

KNN • Suitable to solve multiclassification problems • Computation overhead is relatively high
• Issues with the skewness of data

SVM • Possible to solve high dimensional nonlinear small
scale problems

• High overhead in data processing
• Might face some issues when there are missing values

in the sample
K-Means • Easy to implement

• Fast and simple
• Sensitive to outliers

RF • Reduces overfitting
• Normalising of data is not required

• Requires much time to train
• Requires high computational power

Neural Networks • Highly accurate
• Strong fault tolerance

• Requires much time to train
• Require a large number of data to train the model

LSTM • Capable to remember facts for lengthy interval • Requires high computational resources

CNN • Reduce unimportant parameters by weight sharing
and downsampling

• High computational cost

Ensemble Learning • Accuracy is high • Overhead on model training and maintenance



Electronics 2021, 10, 1606 28 of 34

0 2 4 6 8 10 12 14 16 18 20

No of Studies

M
L

/D
L

 M
o

d
el

/T
ec

h
n

iq
u

e

Figure 7. ML/DL models used in the reviewed studies.



Electronics 2021, 10, 1606 29 of 34

Static Analysis

40%

Dynamic Analysis

10%

Hybrid Analysis

50%

Figure 8. Android source code vulnerability analysis methods.

8. Conclusions and Future Work

Any smartphone is potentially vulnerable to security breaches, but Android devices
are more lucrative for attackers. This is due to its open-source nature and the larger market
share compared to other operating systems for mobile devices. This paper discussed the
Android architecture and its security model, as well as potential threat vectors for the
Android operating system. Based upon the available literature, a systematic review of the
state-of-the-art ML-based Android malware detection techniques was carried out, covering
the latest research from 2016 to 2021. It discussed the available ML and DL models and
their performance in Android malware detection, code and APK analysis methods, feature
analysis and extraction methods, and strengths and limitations of the proposed methods.
Malware aside, if a developer makes a mistake, it is easier for a hacker to find and exploit
these vulnerabilities. Therefore, methods for the detection of source code vulnerabilities
using ML were discussed. The work identified the potential gaps in previous research and
possible future research directions to enhance the security of Android OS.

Both Android malware and its detection techniques are evolving. Therefore, we
believe that similar future reviews are necessary to cover these emerging threats and their
detection methods. As per our findings in this paper, since DL methods have proven to be
more accurate than traditional ML models, it will be beneficial to the research community
if more comprehensive systematic reviews can be performed by focusing only on DL-based
malware detection on Android. The possibility of using reinforcement learning to identify
source code vulnerabilities is another area of interest in which systematic reviews and
studies can be carried out.

Author Contributions: Conceptualization, J.S., H.K. and M.O.A.-K.; methodology, J.S., H.K. and
M.O.A.-K.; validation, J.S., H.K. and M.O.A.-K.; investigation, J.S.; Project administration, H.K.;
writing—original draft preparation, J.S.; writing—review and editing, J.S., H.K. and M.O.A.-K.;
visualization, J.S.; supervision, H.K. and M.O.A.-K.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.



Electronics 2021, 10, 1606 30 of 34

Acknowledgments: We thank the Accelerating Higher Education Expansion and Development
(AHEAD) grant of Sri Lanka, University of Kelaniya—Sri Lanka and Robert Gordon University—
United Kingdom for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Number of Mobile Phone Users Worldwide from 2016 to 2023 (In Billions). Available online: https://www.statista.com/statistics/

330695/number-of-smartphone-users-worldwide/ (accessed on 19 May 2021).
2. Mobile Operating System Market Share Worldwide. Available online: https://gs.statcounter.com/os-market-share/mobile/

worldwide/ (accessed on 19 May 2021).
3. Number of Android Applications on the Google Play Store. Available online: https://www.appbrain.com/stats/number-of-

android-apps/ (accessed on 19 May 2021).
4. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments,

trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [CrossRef]
5. Khan, J.; Shahzad, S. Android Architecture and Related Security Risks. Asian J. Technol. Manag. Res. [ISSN: 2249–0892] 2015, 5,

14–18. Available online: http://www.ajtmr.com/papers/Vol5Issue2/Vol5Iss2_P4.pdf (accessed on 19 May 2021).
6. Platform Architecture. Available online: https://developer.android.com/guide/platform (accessed on 19 May 2021).
7. Android Runtime (ART) and Dalvik. Available online: https://source.android.com/devices/tech/dalvik (accessed on 19

May 2021).
8. Cai, H.; Ryder, B.G. Understanding Android application programming and security: A dynamic study. In Proceedings of the

2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), Shanghai, China, 17–22 September 2017;
pp. 364–375. [CrossRef]

9. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A Review of Android Malware Detection Approaches Based on Machine
Learning. IEEE Access 2020, 8, 124579–124607. [CrossRef]

10. Gilski, P.; Stefanski, J. Android os: A review. Tem J. 2015, 4, 116. Available online: https://www.temjournal.com/content/41/14/
temjournal4114.pdf (accessed on 19 May 2021).

11. Privacy in Android 11 | Android Developers. Available online: https://developer.android.com/about/versions/11/privacy
(accessed on 19 May 2021).

12. Garg, S.; Baliyan, N. Comparative analysis of Android and iOS from security viewpoint. Comput. Sci. Rev. 2021, 40, 100372.
[CrossRef]

13. Odusami, M.; Abayomi-Alli, O.; Misra, S.; Shobayo, O.; Damasevicius, R.; Maskeliunas, R. Android malware detection: A survey.
In International Conference on Applied Informatics; Springer: Cham, Switzerland, 2018; pp. 255–266. [CrossRef]

14. Bhat, P.; Dutta, K. A survey on various threats and current state of security in android platform. ACM Comput. Surv. (CSUR)
2019, 52, 1–35. [CrossRef]

15. Tam, K.; Feizollah, A.; Anuar, N.B.; Salleh, R.; Cavallaro, L. The evolution of android malware and android analysis techniques.
ACM Comput. Surv. (CSUR) 2017, 49, 1–41. [CrossRef]

16. Li, L.; Li, D.; Bissyandé, T.F.; Klein, J.; Le Traon, Y.; Lo, D.; Cavallaro, L. Understanding android app piggybacking: A systematic
study of malicious code grafting. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1269–1284. [CrossRef]

17. Ashawa, M.A.; Morris, S. Analysis of Android malware detection techniques: A systematic review. Int. J. Cyber-Secur. Digit.
Forensics 2019, 8, 177–187. [CrossRef]

18. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Ribagorda, A. Evolution, detection and analysis of malware for smart devices.
IEEE Commun. Surv. Tutor. 2013, 16, 961–987. [CrossRef]

19. Mos, A.; Chowdhury, M.M. Mobile Security: A Look into Android. In Proceedings of the 2020 IEEE International Conference on
Electro Information Technology (EIT), Chicago, IL, USA, 31 July–1 August 2020; pp. 638–642. [CrossRef]

20. Faruki, P.; Bharmal, A.; Laxmi, V.; Ganmoor, V.; Gaur, M.S.; Conti, M.; Rajarajan, M. Android security: A survey of issues,
malware penetration, and defenses. IEEE Commun. Surv. Tutor. 2014, 17, 998–1022. [CrossRef]

21. Android Security & Privacy 2018 Year in Review. Available online: https://source.android.com/security/reports/Google_
Android_Security_2018_Report_Final.pdf (accessed on 19 May 2021).

22. Kalutarage, H.K.; Nguyen, H.N.; Shaikh, S.A. Towards a threat assessment framework for apps collusion. Telecommun. Syst. 2017,
66, 417–430. [CrossRef]

23. Asavoae, I.M.; Blasco, J.; Chen, T.M.; Kalutarage, H.K.; Muttik, I.; Nguyen, H.N.; Roggenbach, M.; Shaikh, S.A. Towards
automated android app collusion detection. arXiv 2016, arXiv:1603.02308.

24. Asăvoae, I.M.; Blasco, J.; Chen, T.M.; Kalutarage, H.K.; Muttik, I.; Nguyen, H.N.; Roggenbach, M.; Shaikh, S.A. Detecting malicious
collusion between mobile software applications: The Android case. In Data Analytics and Decision Support for Cybersecurity;
Springer: Cham, Switzerland, 2017; pp. 55–97. [CrossRef]

25. Malik, J. Making sense of human threats and errors. Comput. Fraud Secur. 2020, 2020, 6–10. [CrossRef]
26. Calciati, P.; Kuznetsov, K.; Gorla, A.; Zeller, A. Automatically Granted Permissions in Android apps: An Empirical Study on their

Prevalence and on the Potential Threats for Privacy. In Proceedings of the 17th International Conference on Mining Software
Repositories, Seoul, Korea, 29–30 June 2020; pp. 114–124. [CrossRef]

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://www.appbrain.com/stats/number-of-android-apps/
https://www.appbrain.com/stats/number-of-android-apps/
http://doi.org/10.1016/j.jnca.2019.102526
http://www.ajtmr.com/papers/Vol5Issue2/Vol5Iss2_P4.pdf
https://developer.android.com/guide/platform
https://source.android.com/devices/tech/dalvik
http://dx.doi.org/10.1109/ICSME.2017.31
http://dx.doi.org/10.1109/ACCESS.2020.3006143
https://www.temjournal.com/content/41/14/temjournal4114.pdf
https://www.temjournal.com/content/41/14/temjournal4114.pdf
https://developer.android.com/about/versions/11/privacy
http://dx.doi.org/10.1016/j.cosrev.2021.100372
http://dx.doi.org/10.1007/978-3-030-01535-0_19
http://dx.doi.org/10.1145/3301285
http://dx.doi.org/10.1145/3017427
http://dx.doi.org/10.1109/TIFS.2017.2656460
http://dx.doi.org/10.17781/P002605
http://dx.doi.org/10.1109/SURV.2013.101613.00077
http://dx.doi.org/10.1109/EIT48999.2020.9208339
http://dx.doi.org/10.1109/COMST.2014.2386139
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
http://dx.doi.org/10.1007/s11235-017-0296-1
http://dx.doi.org/10.1007/978-3-319-59439-2_3
http://dx.doi.org/10.1016/S1361-3723(20)30028-2
http://dx.doi.org/10.1145/3379597.3387469


Electronics 2021, 10, 1606 31 of 34

27. Nguyen, D.C.; Wermke, D.; Acar, Y.; Backes, M.; Weir, C.; Fahl, S. A stitch in time: Supporting android developers in writing
secure code. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA,
30 October–3 November 2017; pp. 1065–1077. [CrossRef]

28. Garg, S.; Baliyan, N. Android Security Assessment: A Review, Taxonomy and Research Gap Study. Comput. Secur. 2020,
100, 102087. [CrossRef]

29. Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]
30. Alauthman, M.; Aslam, N.; Al-Kasassbeh, M.; Khan, S.; Al-Qerem, A.; Choo, K.K.R. An efficient reinforcement learning-based

Botnet detection approach. J. Netw. Comput. Appl. 2020, 150, 102479. [CrossRef]
31. Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065. [CrossRef]
32. Page, M.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.;

et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2020, 372. [CrossRef]
33. Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings

of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014;
pp. 1–10. [CrossRef]

34. Li, L.; Bissyandé, T.F.; Papadakis, M.; Rasthofer, S.; Bartel, A.; Octeau, D.; Klein, J.; Traon, L. Static analysis of android apps: A
systematic literature review. Inf. Softw. Technol. 2017, 88, 67–95. [CrossRef]

35. Pan, Y.; Ge, X.; Fang, C.; Fan, Y. A Systematic Literature Review of Android Malware Detection Using Static Analysis. IEEE
Access 2020, 8, 116363–116379. [CrossRef]

36. Sharma, T.; Rattan, D. Malicious application detection in android—A systematic literature review. Comput. Sci. Rev. 2021,
40, 100373. [CrossRef]

37. Liu, Y.; Tantithamthavorn, C.; Li, L.; Liu, Y. Deep Learning for Android Malware Defenses: A Systematic Literature Review. arXiv
2021, arXiv:2103.05292.

38. Ghaffarian, S.M.; Shahriari, H.R. Software vulnerability analysis and discovery using machine-learning and data-mining
techniques: A survey. ACM Comput. Surv. (CSUR) 2017, 50, 1–36. [CrossRef]

39. Chen, T.; Mao, Q.; Yang, Y.; Lv, M.; Zhu, J. TinyDroid: A lightweight and efficient model for Android malware detection and
classification. Mob. Inf. Syst. 2018, 2018. [CrossRef]

40. Nisa, M.; Shah, J.H.; Kanwal, S.; Raza, M.; Khan, M.A.; Damaševičius, R.; Blažauskas, T. Hybrid malware classification method
using segmentation-based fractal texture analysis and deep convolution neural network features. Appl. Sci. 2020, 10, 4966.
[CrossRef]

41. Amin, M.; Shah, B.; Sharif, A.; Ali, T.; Kim, K.l.; Anwar, S. Android malware detection through generative adversarial networks.
Trans. Emerg. Telecommun. Technol. 2019, e3675. [CrossRef]

42. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of the 2014 Network and Distributed System Security Symposium, San Diego, CA, USA,
23–26 February 2014; doi:10.14722/ndss.2014.23247 [CrossRef]

43. Google Play. Available online: https://play.google.com/ (accessed on 19 May 2021).
44. AndroZoo. Available online: https://androzoo.uni.lu/ (accessed on 19 May 2021).
45. AppChina. Available online: https://tracxn.com/d/companies/appchina.com (accessed on 19 May 2021).
46. Tencent. Available online: https://www.pcmgr-global.com/ (accessed on 19 May 2021).
47. YingYongBao. Available online: https://android.myapp.com/ (accessed on 19 May 2021).
48. Contagio. Available online: https://www.impactcybertrust.org/dataset_view?idDataset=1273/ (accessed on 19 May 2021).
49. Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 2012 IEEE Symposium on

Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 95–109. [CrossRef]
50. VirusShare. Available online: https://virusshare.com/ (accessed on 19 May 2021).
51. Intel Security/MacAfee. Available online: https://steppa.ca/portfolio-view/malware-threat-intel-datasets/ (accessed on 19

May 2021).
52. Chen, K.; Wang, P.; Lee, Y.; Wang, X.; Zhang, N.; Huang, H.; Zou, W.; Liu, P. Finding unknown malice in 10 s: Mass vetting for

new threats at the google-play scale. In Proceedings of the 24th USENIXSecurity Symposium (USENIX Security 15), Redmond,
WA, USA, 7–8 May 2015; pp. 659–674.

53. Android Malware Dataset. Available online: http://amd.arguslab.org/ (accessed on 19 May 2021).
54. APKPure. Available online: https://m.apkpure.com/ (accessed on 19 May 2021).
55. Anrdoid Permission Dataset. Available online: https://data.mendeley.com/datasets/b4mxg7ydb7/3 (accessed on 19 May 2021).
56. Maggi, F.; Valdi, A.; Zanero, S. Andrototal: A flexible, scalable toolbox and service for testing mobile malware detectors. In

Proceedings of the Third ACM Workshop on Security and Privacy in Smartphones & Mobile Devices,
Berlin, Germany, 8 November 2013; pp. 49–54. [CrossRef]

57. Wandoujia App Market. Available online: https://www.wandoujia.com/apps (accessed on 19 May 2021).
58. Google Playstore Appsin Kaggle. Available online: https://www.kaggle.com/gauthamp10/google-playstore-apps (accessed on

19 May 2021).
59. CICMaldroid Dataset. Available online: https://www.unb.ca/cic/datasets/maldroid-2020.html (accessed on 19 May 2021).
60. AZ Dataset. Available online: https://www.azsecure-data.org/other-data.html/ (accessed on 19 May 2021).

http://dx.doi.org/10.1145/3133956.3133977
http://dx.doi.org/10.1016/j.cose.2020.102087
http://dx.doi.org/10.1007/s10994-019-05855-6
http://dx.doi.org/10.1016/j.jnca.2019.102479
http://dx.doi.org/10.1109/ACCESS.2019.2912200
http://dx.doi.org/10.1136/bmj.n71
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1016/j.infsof.2017.04.001
http://dx.doi.org/10.1109/ACCESS.2020.3002842
http://dx.doi.org/10.1016/j.cosrev.2021.100373
http://dx.doi.org/10.1145/3092566
http://dx.doi.org/10.1155/2018/4157156
http://dx.doi.org/10.3390/app10144966
http://dx.doi.org/10.1002/ett.3675
http://dx.doi.org/10.14722/ndss.2014.23247
https://play.google.com/
https://androzoo.uni.lu/
https://tracxn.com/d/companies/appchina.com
https://www.pcmgr-global.com/
https://android.myapp.com/
https://www.impactcybertrust.org/dataset_view?idDataset=1273/
http://dx.doi.org/10.1109/SP.2012.16
https://virusshare.com/
https://steppa.ca/portfolio-view/malware-threat-intel-datasets/
http://amd.arguslab.org/
https://m.apkpure.com/
https://data.mendeley.com/datasets/b4mxg7ydb7/3
http://dx.doi.org/10.1145/2516760.2516768
https://www.wandoujia.com/apps
https://www.kaggle.com/gauthamp10/google-playstore-apps
https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.azsecure-data.org/other-data.html/


Electronics 2021, 10, 1606 32 of 34

61. Github Malware Dataset. Available online: https://github.com/topics/malware-dataset (accessed on 19 May 2021).
62. Alqahtani, E.J.; Zagrouba, R.; Almuhaideb, A. A Survey on Android Malware Detection Techniques Using Machine Learning

Algorithms. In Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), Rome, Italy, 10–13
June 2019; pp. 110–117. [CrossRef]

63. Lopes, J.; Serrão, C.; Nunes, L.; Almeida, A.; Oliveira, J. Overview of machine learning methods for Android malware
identification. In Proceedings of the 2019 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos,
Portugal, 10–12 June 2019; pp. 1–6. [CrossRef]

64. Choudhary, M.; Kishore, B. HAAMD: Hybrid analysis for Android malware detection. In Proceedings of the 2018 International
Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 4–6 January 2018; pp. 1–4. [CrossRef]

65. Kouliaridis, V.; Kambourakis, G. A Comprehensive Survey on Machine Learning Techniques for Android Malware Detection.
Information 2021, 12, 185. [CrossRef]

66. Chen, L.; Hou, S.; Ye, Y.; Chen, L. An adversarial machine learning model against android malware evasion attacks. In Asia-Pacific
Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data; Springer: Cham, Switzerland,
2017; pp. 43–55. [CrossRef]

67. Lubuva, H.; Huang, Q.; Msonde, G.C. A review of static malware detection for Android apps permission based on deep learning.
Int. J. Comput. Netw. Appl. 2019, 6, 80–91. [CrossRef]

68. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant permission identification for machine-learning-based android
malware detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]

69. Mcdonald, J.; Herron, N.; Glisson, W.; Benton, R. Machine Learning-Based Android Malware Detection Using Manifest
Permissions. In Proceedings of the 54th Hawaii International Conference on System Sciences, Maui, HI, USA, 5–8 January 2021;
p. 6976. [CrossRef]

70. Şahin, D.Ö.; Kural, O.E.; Akleylek, S.; Kılıç, E. A novel permission-based Android malware detection system using feature
selection based on linear regression. Neural Comput. Appl. 2021, 1–16. [CrossRef]

71. Nawaz, A. Feature Engineering based on Hybrid Features for Malware Detection over Android Framework. Turk. J. Comput.
Math. Educ. (TURCOMAT) 2021, 12, 2856–2864.

72. Cai, L.; Li, Y.; Xiong, Z. JOWMDroid: Android malware detection based on feature weighting with joint optimization of
weight-mapping and classifier parameters. Comput. Secur. 2021, 100, 102086. [CrossRef]

73. Zhang, P.; Cheng, S.; Lou, S.; Jiang, F. A novel Android malware detection approach using operand sequences. In Proceedings
of the 2018 Third International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC),
Shanghai, China, 18–19 October 2018; pp. 1–5. [CrossRef]

74. Wei, L.; Luo, W.; Weng, J.; Zhong, Y.; Zhang, X.; Yan, Z. Machine learning-based malicious application detection of android. IEEE
Access 2017, 5, 25591–25601. [CrossRef]

75. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; Cristofaro, E.D.; Ross, G.; Stringhini, G. MaMaDroid: Detecting Android malware by
building Markov chains of behavioral models (extended version). ACM Trans. Priv. Secur. (TOPS) 2019, 22, 1–34. [CrossRef]

76. Zhang, H.; Luo, S.; Zhang, Y.; Pan, L. An efficient Android malware detection system based on method-level behavioral semantic
analysis. IEEE Access 2019, 7, 69246–69256. [CrossRef]

77. Meng, G.; Xue, Y.; Xu, Z.; Liu, Y.; Zhang, J.; Narayanan, A. Semantic modelling of android malware for effective malware
comprehension, detection, and classification. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, Saarbrücken, Germany, 18–20 July 2016; pp. 306–317. [CrossRef]

78. Wang, Z.; Li, C.; Yuan, Z.; Guan, Y.; Xue, Y. DroidChain: A novel Android malware detection method based on behavior chains.
Pervasive Mob. Comput. 2016, 32, 3–14. [CrossRef]

79. Androguard. Available online: https://pypi.org/project/androguard/ (accessed on 19 May 2021).
80. Damodaran, A.; Di Troia, F.; Visaggio, C.A.; Austin, T.H.; Stamp, M. A comparison of static, dynamic, and hybrid analysis for

malware detection. J. Comput. Virol. Hacking Tech. 2017, 13, 1–12. [CrossRef]
81. Sun, Y.; Xie, Y.; Qiu, Z.; Pan, Y.; Weng, J.; Guo, S. Detecting Android malware based on extreme learning machine. In Proceedings

of the 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference
on Pervasive Intelligence and Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber
Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Orlando, FL, USA, 6–10 November 2017; pp. 47–53.
[CrossRef]

82. Tian, K.; Yao, D.; Ryder, B.G.; Tan, G.; Peng, G. Detection of repackaged android malware with code-heterogeneity features. IEEE
Trans. Dependable Secur. Comput. 2017, 17, 64–77. [CrossRef]

83. Kabakus, A.T. What static analysis can utmost offer for Android malware detection. Inf. Technol. Control 2019, 48, 235–249.
[CrossRef]

84. Koli, J. RanDroid: Android malware detection using random machine learning classifiers. In Proceedings of the 2018 Technologies
for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, India, 28–30 March 2018; pp. 1–6. [CrossRef]

85. Lou, S.; Cheng, S.; Huang, J.; Jiang, F. TFDroid: Android malware detection by topics and sensitive data flows using machine
learning techniques. In Proceedings of the 2019 IEEE 2nd International Conference on Information and Computer Technologies
(ICICT), Kahului, HI, USA, 14–17 March 2019; pp. 30–36. [CrossRef]

https://github.com/topics/malware-dataset
http://dx.doi.org/10.1109/SDS.2019.8768729
http://dx.doi.org/10.1109/ISDFS.2019.8757523
http://dx.doi.org/10.1109/ICCCI.2018.8441295
http://dx.doi.org/10.3390/info12050185
http://dx.doi.org/10.1007/978-3-319-69781-9_5
http://dx.doi.org/10.22247/ijcna/2019/187292
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.24251/HICSS.2021.839
http://dx.doi.org/10.1007/s00521-021-05875-1
http://dx.doi.org/10.1016/j.cose.2020.102086
http://dx.doi.org/10.1109/SSIC.2018.8556755
http://dx.doi.org/10.1109/ACCESS.2017.2771470
http://dx.doi.org/10.1145/3313391
http://dx.doi.org/10.1109/ACCESS.2019.2919796
http://dx.doi.org/10.1145/2931037.2931043
http://dx.doi.org/10.1016/j.pmcj.2016.06.018
https://pypi.org/project/androguard/
http://dx.doi.org/10.1007/s11416-015-0261-z
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.24
http://dx.doi.org/10.1109/TDSC.2017.2745575
http://dx.doi.org/10.5755/j01.itc.48.2.21457
http://dx.doi.org/10.1109/ICSESP.2018.8376705
http://dx.doi.org/10.1109/INFOCT.2019.8711179


Electronics 2021, 10, 1606 33 of 34

86. Wang, W.; Gao, Z.; Zhao, M.; Li, Y.; Liu, J.; Zhang, X. DroidEnsemble: Detecting Android malicious applications with ensemble of
string and structural static features. IEEE Access 2018, 6, 31798–31807. [CrossRef]

87. Garg, S.; Peddoju, S.K.; Sarje, A.K. Network-based detection of Android malicious apps. Int. J. Inf. Secur. 2017, 16, 385–400.
[CrossRef]

88. Sikder, A.K.; Aksu, H.; Uluagac, A.S. 6thsense: A context-aware sensor-based attack detector for smart devices. In Proceedings of
the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 397–414. [CrossRef]

89. Mahindru, A.; Singh, P. Dynamic permissions based android malware detection using machine learning techniques. In
Proceedings of the 10th Innovations in Software Engineering Conference, Jaipur, India, 5–7 February 2017; pp. 202–210. [CrossRef]

90. Salehi, M.; Amini, M.; Crispo, B. Detecting malicious applications using system services request behavior. In Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Houston, TX, USA,
12–14 November 2019; pp. 200–209. [CrossRef]

91. Thangavelooa, R.; Jinga, W.W.; Lenga, C.K.; Abdullaha, J. DATDroid: Dynamic Analysis Technique in Android Malware
Detection. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 536–541. [CrossRef]

92. Hasan, H.; Ladani, B.T.; Zamani, B. MEGDroid: A model-driven event generation framework for dynamic android malware
analysis. Inf. Softw. Technol. 2021, 135, 106569. [CrossRef]

93. Raphael, R.; Mathiyalagan, P. An Exploration of Changes Addressed in the Android Malware Detection Walkways. In Proceedings
of the International Conference on Computational Intelligence, Cyber Security, and Computational Models, Coimbatore, India,
19–21 December 2019; Springer: Singapore, 2019; pp. 61–84. [CrossRef]

94. Jannat, U.S.; Hasnayeen, S.M.; Shuhan, M.K.B.; Ferdous, M.S. Analysis and detection of malware in Android applications using
machine learning. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering
(ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019; pp. 1–7. [CrossRef]

95. Kapratwar, A.; Di Troia, F.; Stamp, M. Static and Dynamic Analysis of Android Malware; ICISSP: Porto, Portugal, 2017; pp. 653–662.
[CrossRef]

96. Leeds, M.; Keffeler, M.; Atkison, T. A comparison of features for android malware detection. In Proceedings of the SouthEast
Conference, Kennesaw, GA, USA, 13–15 April 2017; pp. 63–68. [CrossRef]

97. Hadiprakoso, R.B.; Kabetta, H.; Buana, I.K.S. Hybrid-Based Malware Analysis for Effective and Efficiency Android Malware
Detection. In Proceedings of the 2020 International Conference on Informatics, Multimedia, Cyber and Information System
(ICIMCIS), Jakarta, Indonesia, 19–20 November 2020; pp. 8–12. [CrossRef]

98. Surendran, R.; Thomas, T.; Emmanuel, S. A TAN based hybrid model for android malware detection. J. Inf. Secur. Appl. 2020,
54, 102483. [CrossRef]

99. Martín, A.; Menéndez, H.D.; Camacho, D. MOCDroid: Multi-objective evolutionary classifier for Android malware detection.
Soft Comput. 2017, 21, 7405–7415. 10.1007/s00500-016-2283-y. [CrossRef]

100. Qaisar, Z.H.; Li, R. Multimodal information fusion for android malware detection using lazy learning. Multimed. Tools Appl. 2021,
1–15. [CrossRef]

101. Mahindru, A.; Sangal, A. MLDroid—Framework for Android malware detection using machine learning techniques. Neural
Comput. Appl. 2021, 33, 5183–5240. [CrossRef]

102. Xu, K.; Li, Y.; Deng, R.H.; Chen, K. Deeprefiner: Multi-layer android malware detection system applying deep neural networks.
In Proceedings of the 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April 2018;
pp. 473–487. [CrossRef]

103. JADX. Available online: https://github.com/skylot/jadx/ (accessed on 19 May 2021).
104. McLaughlin, N.; Martinez del Rincon, J.; Kang, B.; Yerima, S.; Miller, P.; Sezer, S.; Safaei, Y.; Trickel, E.; Zhao, Z.; Doupé, A.; et al.

Deep android malware detection. In Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy, Scottsdale, AZ, USA, 22–24 March 2017; pp. 301–308. [CrossRef]

105. Amin, M.; Tanveer, T.A.; Tehseen, M.; Khan, M.; Khan, F.A.; Anwar, S. Static malware detection and attribution in android
byte-code through an end-to-end deep system. Future Gener. Comput. Syst. 2020, 102, 112–126. [CrossRef]

106. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. DL-Droid: Deep learning based android malware detection using real devices. Comput.
Secur. 2020, 89, 101663. [CrossRef]

107. Vu, L.N.; Jung, S. AdMat: A CNN-on-Matrix Approach to Android Malware Detection and Classification. IEEE Access 2021,
9, 39680–39694. [CrossRef]

108. Millar, S.; McLaughlin, N.; del Rincon, J.M.; Miller, P. Multi-view deep learning for zero-day Android malware detection. J. Inf.
Secur. Appl. 2021, 58, 102718. [CrossRef]

109. Acar, Y.; Stransky, C.; Wermke, D.; Weir, C.; Mazurek, M.L.; Fahl, S. Developers need support, too: A survey of security advice
for software developers. In Proceedings of the 2017 IEEE Cybersecurity Development (SecDev), Cambridge, MA, USA, 24–26
September 2017; pp. 22–26. [CrossRef]

110. Mohammed, N.M.; Niazi, M.; Alshayeb, M.; Mahmood, S. Exploring software security approaches in software development
lifecycle: A systematic mapping study. Comput. Stand. Interfaces 2017, 50, 107–115. [CrossRef]

111. Weir, C.; Becker, I.; Noble, J.; Blair, L.; Sasse, M.A.; Rashid, A. Interventions for long-term software security: Creating a lightweight
program of assurance techniques for developers. Softw. Pract. Exp. 2020, 50, 275–298. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2835654
http://dx.doi.org/10.1007/s10207-016-0343-z
http://dx.doi.org/10.5555/3241189.3241221
http://dx.doi.org/10.1145/3021460.3021485
http://dx.doi.org/10.1145/3360774.3360805
http://dx.doi.org/10.18517/ijaseit.10.2.10238
http://dx.doi.org/10.1016/j.infsof.2021.106569
http://dx.doi.org/10.1007/978-981-15-9700-8_6
http://dx.doi.org/10.1109/ECACE.2019.8679493
http://dx.doi.org/10.1016/10.5220/0006256706530662
http://dx.doi.org/10.1145/3077286.3077288
http://dx.doi.org/10.1109/ICIMCIS51567.2020.9354315
http://dx.doi.org/10.1016/j.jisa.2020.102483
http://dx.doi.org/10.1007/s00500-016-2283-y
http://dx.doi.org/10.1007/s11042-021-10749-8
http://dx.doi.org/10.1007/s00521-020-05309-4
http://dx.doi.org/10.1109/EuroSP.2018.00040
https://github.com/skylot/jadx/
http://dx.doi.org/10.1145/3029806.3029823
http://dx.doi.org/10.1016/j.future.2019.07.070
http://dx.doi.org/10.1016/j.cose.2019.101663
http://dx.doi.org/10.1109/ACCESS.2021.3063748
http://dx.doi.org/10.1016/j.jisa.2020.102718
http://dx.doi.org/10.1109/SecDev.2017.17
http://dx.doi.org/10.1016/j.csi.2016.10.001
http://dx.doi.org/10.1002/spe.2774


Electronics 2021, 10, 1606 34 of 34

112. Alenezi, M.; Almomani, I. Empirical analysis of static code metrics for predicting risk scores in android applications. In
Proceedings of the 5th International Symposium on Data Mining Applications, Cham, Switzerland, 29 March 2018; Springer:
Cham, Switzerland, 2018; pp. 84–94. [CrossRef]

113. Palomba, F.; Di Nucci, D.; Panichella, A.; Zaidman, A.; De Lucia, A. Lightweight detection of android-specific code smells:
The adoctor project. In Proceedings of the 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Klagenfurt, Austria, 20–24 February 2017; pp. 487–491. [CrossRef]

114. Pustogarov, I.; Wu, Q.; Lie, D. Ex-vivo dynamic analysis framework for Android device drivers. In Proceedings of the 2020 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020; pp. 1088–1105. [CrossRef]

115. Amin, A.; Eldessouki, A.; Magdy, M.T.; Abdeen, N.; Hindy, H.; Hegazy, I. AndroShield: Automated android applications
vulnerability detection, a hybrid static and dynamic analysis approach. Information 2019, 10, 326. [CrossRef]

116. Tahaei, M.; Vaniea, K.; Beznosov, K.; Wolters, M.K. Security Notifications in Static Analysis Tools: Developers’ Attitudes,
Comprehension, and Ability to Act on Them. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–17. [CrossRef]

117. Goaër, O.L. Enforcing green code with Android lint. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering Workshops, Melbourne, VIC, Australia, 21–25 September 2020; pp. 85–90. [CrossRef]

118. Habchi, S.; Blanc, X.; Rouvoy, R. On adopting linters to deal with performance concerns in android apps. In Proceedings of the
2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), Montpellier, France, 3–7 September
2018; pp. 6–16. [CrossRef]

119. Wei, L.; Liu, Y.; Cheung, S.C. OASIS: Prioritizing static analysis warnings for Android apps based on app user reviews. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany, 4–8 September 2017;
pp. 672–682. [CrossRef]

120. Luo, L.; Dolby, J.; Bodden, E. MagpieBridge: A General Approach to Integrating Static Analyses into IDEs and Editors (Tool
Insights Paper). In Proceedings of the 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 15–19 July 2019. [CrossRef]

121. Wang, Y.; Xu, G.; Liu, X.; Mao, W.; Si, C.; Pedrycz, W.; Wang, W. Identifying vulnerabilities of SSL/TLS certificate verification in
Android apps with static and dynamic analysis. J. Syst. Softw. 2020, 167, 110609. [CrossRef]

122. Gupta, A.; Suri, B.; Kumar, V.; Jain, P. Extracting rules for vulnerabilities detection with static metrics using machine learning. Int.
J. Syst. Assur. Eng. Manag. 2021, 12, 65–76. [CrossRef]

123. Kim, S.; Yeom, S.; Oh, H.; Shin, D.; Shin, D. Automatic Malicious Code Classification System through Static Analysis Using
Machine Learning. Symmetry 2021, 13, 35. [CrossRef]

124. Bilgin, Z.; Ersoy, M.A.; Soykan, E.U.; Tomur, E.; Çomak, P.; Karaçay, L. Vulnerability Prediction From Source Code Using Machine
Learning. IEEE Access 2020, 8, 150672–150684. [CrossRef]

125. Russell, R.; Kim, L.; Hamilton, L.; Lazovich, T.; Harer, J.; Ozdemir, O.; Ellingwood, P.; McConley, M. Automated vulnerability
detection in source code using deep representation learning. In Proceedings of the 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 757–762. [CrossRef]

126. Chernis, B.; Verma, R. Machine learning methods for software vulnerability detection. In Proceedings of the Fourth ACM
International Workshop on Security and Privacy Analytics, Tempe, AZ, USA, 21 March 2018; pp. 31–39. [CrossRef]

127. Wu, F.; Wang, J.; Liu, J.; Wang, W. Vulnerability detection with deep learning. In Proceedings of the 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 1298–1302. [CrossRef]

128. Pang, Y.; Xue, X.; Wang, H. Predicting vulnerable software components through deep neural network. In Proceedings of the 2017
International Conference on Deep Learning Technologies, Chengdu, China, 2–4 June 2017; pp. 6–10. [CrossRef]

129. Garg, S.; Baliyan, N. A novel parallel classifier scheme for vulnerability detection in android. Comput. Electr. Eng. 2019, 77, 12–26.
[CrossRef]

130. Ponta, S.E.; Plate, H.; Sabetta, A.; Bezzi, M.; Dangremont, C. A manually-curated dataset of fixes to vulnerabilities of open-source
software. In Proceedings of the 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), Montreal,
QC, Canada, 26–27 May 2019; pp. 383–387. [CrossRef]

131. Namrud, Z.; Kpodjedo, S.; Talhi, C. AndroVul: A repository for Android security vulnerabilities. In Proceedings of the 29th
Annual International Conference on Computer Science and Software Engineering, Toronto, ON, Canada, 4–6 November 2019;
pp. 64–71.

132. Cui, J.; Wang, L.; Zhao, X.; Zhang, H. Towards predictive analysis of android vulnerability using statistical codes and machine
learning for IoT applications. Comput. Commun. 2020, 155, 125–131. [CrossRef]

133. Zhuo, L.; Zhimin, G.; Cen, C. Research on Android intent security detection based on machine learning. In Proceedings of the
2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017;
pp. 569–574. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-78753-4_8
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1109/SP40000.2020.00094
http://dx.doi.org/10.3390/info10100326
http://dx.doi.org/10.1145/3411764.3445616
http://dx.doi.org/10.1145/3417113.3422188
http://dx.doi.org/10.1145/3238147.3238197
http://dx.doi.org/10.1145/3106237.3106294
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.21
http://dx.doi.org/10.1016/j.jss.2020.110609
http://dx.doi.org/10.1007/s13198-020-01036-0
http://dx.doi.org/10.3390/sym13010035
http://dx.doi.org/10.1109/ACCESS.2020.3016774
http://dx.doi.org/10.1109/ICMLA.2018.00120
http://dx.doi.org/10.1145/3180445.3180453
http://dx.doi.org/10.1109/CompComm.2017.8322752
http://dx.doi.org/10.1145/3094243.3094245
http://dx.doi.org/10.1016/j.compeleceng.2019.04.019
http://dx.doi.org/10.1109/MSR.2019.00064
http://dx.doi.org/10.1016/j.comcom.2020.02.078
http://dx.doi.org/10.1109/ICISCE.2017.124

	Introduction
	Background
	Android Architecture
	Threats to Android
	Malware Attacks on Android
	Users and App Developers' Mistakes

	Machine Learning Process

	Methodology
	Research Questions
	Search Strategy
	Study Selection Criteria
	Data Extraction and Synthesis
	Threats to Validity of the Review

	Related Work
	Machine Learning to Detect Android Malware
	Static, Dynamic, and Hybrid Analysis
	Static Analysis with Machine Learning
	Manifest Based Static Analysis with ML
	Code Based Static Analysis with ML
	Both Manifest and Code Based Static Analysis with ML

	Dynamic Analysis with Machine Learning
	Hybrid Analysis with Machine Learning
	Use of Deep Learning Based Methods

	Machine Learning Methods to Detect Code Vulnerabilities
	Static, Dynamic, and Hybrid Source Code Analysis
	Applying ML to Detect Source Code Vulnerabilities

	Results and Discussion
	Conclusions and Future Work
	References

