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Abstract—Detailed information on tree species constitutes
an essential factor to support forest health monitoring and
biodiversity conservation. Current deep learning-based mobile
applications for tree and plant identification require excessive
computation. They largely depend on a network connection to
perform computing tasks on powerful remote servers in the
Cloud. Many forestry areas are remote with limited or no
cellular coverage, which is an obstacle for these applications to
recognize trees and plants in these areas in real-time. This paper
investigates existing CNN-based machine learning applications
for plant identification tailored for handheld device usages.
Driven by network independence, reduced computation, size
and time requirements, we propose the use of MobileNet (a
mobile computer vision architecture) transfer learning to improve
the accuracy of offline leaf-based plant recognition. We then
carry out experimental validation of state-of-the-art MobileNet.
Our findings reveal that using MobileNetV3 transfer learning,
accuracy up to 90% can be achieved within fewer iterations
than end-to-end CNN-based models for plant identification. The
lightweight model comes with reduced computation that runs
independently within a smartphone application without internet
access, ideal for tree species identification in rural forests.

Index Terms—MobileNet, CNN, plant identification, mobile
devices, transfer learning

I. INTRODUCTION

According to a report in [[1]], forests cover around one-third
of the world’s land, providing a range of ecosystem services,
including energy, building materials, and climate regulation.
Tree species identification is an important aspect of forest
ecological research to support forest health monitoring and
biodiversity conservation [2]]. Many tasks, such as endan-
gered species monitoring, assessment of the impact of climate
change on species distribution, and analysis of weed control
actions, depend on accurate tree species recognition [3]]. For
experts with domain knowledge, manual identification may
be a resource-intensive task, and for non-experts, it will be
error-prone and time-consuming [4]. The results from manual
observation are less accurate due to the unavailability of
expert knowledge in many cases [35]]. Accelerating this task
and making it possible for non-experts is beneficial in less
effort and low cost. To complement the manual identification,
DNA barcoding has received growing research interests. How-
ever, it requires DNA extractions from harvested tissue and
lacks recorded data and reference databases in most coun-
tries [|6]. Most recently, image recognition technologies have

gained momentum to determine tree species. Compared to
DNA technologies, computer vision methods are non-intrusive,
which mainly use machine learning algorithms. Many machine
learning methods for tree species classification, such as deep
learning models, e.g. Convolutional Neural Networks (CNN),
have been applied to different datasets. The primary advantage
of CNN for image classification is that the entire system is
trained completely automatically from raw pixels of images to
eventual categories. These images are acquired using remote
sensing or handheld devices and processed by powerful Cloud-
based machine learning algorithms. We aim at tree species
identification using a CNN-based lightweight model, which
could embed within a handheld device resolving computation,
battery and network constraints.

CNN comes with the disadvantages of a huge number
of labelled training samples requirement for weighting pa-
rameters and powerful GPUs for a faster learning process.
With limited training samples, learning too many parameters
directly will result in overfitting even after using over-fitting
prevention techniques such as Dropout [7]]. Overfitting of a
machine learning model includes more terms and uses more
complicated approaches than necessary [8]. To make deep
CNN fit for small datasets while keeping high accuracy is
a challenge. To overcome this challenge, transfer learning [9]]
offers the solution, which implies reusing previously attained
knowledge in similar tasks. Some studies analyzed the use
of transfer learning for many deep learning algorithms. These
evaluations [10] concluded that transfer learning improves the
accuracy of deep learning models, which apply deep features
and fine-tuning.

Various research studies, reviewed in the next section, aimed
at deep learning methods for plant species identification. How-
ever, these studies focused on utilizing complex deep models,
such as InceptionV3, AlexNet, and VGG-16, which require a
considerable number of iterations and computation power to
train the network. Moreover, the existing plant identification
applications such as PictureThis [11] and Pl@ntNet [12] de-
pend upon the network connection to evaluate the captured im-
age by analyzing trained models on servers. These applications
fail in remote forestry areas where mobile networks provide
limited/no patchy connection [13]. Due to low power and
computation capabilities, a model with reduced computation



and size is required for smartphones, which is offered by
CNN-based MobileNets [[14]]. To the best of our knowledge,
MobileNet in general and MobileNetV3, in particular, has not
emerged in any study for tree species identification using hand-
held devices in rural forests. Therefore, in this paper, we focus
on measuring MobileNetV3 transfer learning performance
compared to MobileNetV2 on images captured via smartphone
in real-time for tree classification. The lightweight model will
be embedded in the mobile application to perform the tree
classification tasks in rural areas where internet infrastructure
is sparse. Our work contributes to the following:

« Integrating state-of-the-art MobileNet with transfer learn-
ing for efficient and timely offline plant and tree species
identification.

o Feature extraction and fine-tuning of pre-trained Mo-
bileNet architecture models, i.e. MobileNetV3 releases
and MobileNetV2 on leaf dataset via transfer learning.
The last layers of pre-trained models were removed and
replaced with layers suitable for the leaf dataset with
learning parameters.

o Training of new models on a new dataset containing
leaves. Conversion of the newly trained network into
handheld devices compatible versions for offline leaf
species identification using a mobile app in rural areas.

o Comparison of the performance of the new models in
terms of accuracy, loss, training time and size.

II. LITERATURE REVIEW

The use of machine learning algorithms for tree species
identification is relatively new. In this regard, variations of
leaf characteristics are utilized mainly by computer vision
techniques for automated tree identification. Leaves are easy
to access, observe and describe as compared to other parts
of a tree. Many surveys have been performed on automated
plant identification, such as those given by Ahmed, Khan and
Asif in [15] and Thyagharajan and Raji in [[16]. However, still
plant identification is a challenging task because all classical
computer vision techniques use handcrafted features for plant’s
leaf images. For example, an approach presented by [17] used
the image binarisation technique to separate the leaf from its
background, detect contours and geometrical derivations of
leaf tooth features. Using this approach, the accuracy of leaf
classification was between 72.8% and 79.3%. The handcrafted
features for the leaf’s images can be categorized into shape,
texture, and venation. In this regard, a mobile app LeafSnap
[18], was proposed to identify trees by analyzing leaves.
Similarly, the Pl@ntNet app [[19] was introduced by Goéau et
al. to use citizen science to collect and integrate leaf imagery
data. Both applications depend on chosen handcrafted features
to measure similarities between the novel and stored images of
known species. The top-1 accuracy rate of recognizing plant
species for both applications lies between 69% and 73%.

To complement these mobile applications’ handcrafted fea-
ture selection approach, deep learning CNN is applied in
many studies, especially for image classification [20]. The
main advantage of CNN is the automatic learning of input

data which replaced the traditional feature-based methods. A
CNN approach for plant classification was given by [21[] with
an accuracy of 99.7% on a dataset of 44 species. Similarly,
[22] and [23]] used CNN for Flavia [24] dataset classification
and reported 94.69% - 99% accuracy with 12,000 and 50,000.
LeafNet [25]] presented the usage of CNN on LeafSnap, Flavia,
and Foliage [26] datasets and acquired accuracy of 79.66%,
98.69% and 98.75% with iterations of 200,000, 30,000 and
100,000, respectively. For automatic detection and recognition
of plant diseases through mobile devices, a comparison of
different CNN architectures was performed by [27]. The
result of this comparison was that AlexNet achieves higher
accuracy of 99.1% with 12,000 iterations; however, regarding
complexity, MobileNet gave the best performance under the
same epochs. A comparison of neural networks was performed
by [28] for the mobile phone-based image classification of
citrus leaf diseases. The MobileNetV2 transfer learning was
implemented in a GPU environment for the disease recognition
with a validation accuracy of 92% at epoch 10, which is
comparatively faster than traditional CNN architectures with
good accuracy. To demonstrate the efficiency and accuracy of
MobileNetV3 for mobile devices, [29] compared the image
classification performance of MobileNetV3 with other pre-
trained CNN models on various image datasets such as fruits
with 99.9% accuracy within 10 iterations and birds with up
to 80% accuracy within 25 epochs. The use of MobileNetV3
based on the You Only Looked Once v3 (YOLOv3) [30] model
has appeared in other domains, such as pedestrian detection
[31] on Unmanned Arial Vehicles (UAV) imagery.

Comparing all the above studies, we deduce that the
applications used end-to-end CNN architecture trained the
network with thousands of iterations to achieve a high range
of accuracy. In contrast, the approaches that used MobileNet
transfer learning achieved similar accuracy within few epochs
under considerably less time, which makes them cost and
time-efficient. Therefore, in this study, we focus on exploring
MobileNetV3 releases and MobileNetV2 transfer learning per-
formance compared to previous CNN-based leaf classification
models. Our experience shows MobileNet models take a con-
siderably fewer number of iterations to train through transfer
learning with a good percentage of accuracy. Furthermore,
the reduced models’ size allows it to immerse in the mobile
application to recognize plant species offline in remote forest
sites.

III. METHODOLOGIES
A. Transfer Learning from Pre-trained Models

When data used to train deep learning networks is not
enough, and it is expensive to create labelled data, transfer
learning, a promising paradigm, is applied to acquire the
knowledge learned in previous settings. The most common
strategies of transfer learning are feature extraction and fine-
tuning. For feature extraction, input data is provided to the
pre-trained model, and activation values of many layers are
stored to use as features. For fine-tuning, the initial layers
of the model are fixed, and the final layers of the model



MobileNet Parameters of

Source Data

Input
Source
ImageNet
Data Data

Internet

3»%»

Input
Target Data

LeafSnap
Data

> NG

Classifier

Classification
Results

Fig. 1. Transfer Learning of MobileNet-based Model for Leaf Classification.

learn the characteristics of the new dataset. This way, the
deep learning model is trained for a new similar task. The
weights of the model are updated according to the new
dataset. Transfer learning is faster than training a new network
because all the parameters are not estimated from scratch.
In an analysis of transfer learning methods [[10]], the authors
compared deep learning models such as CNN, AlexNet, VGG-
16, RNN for plant classification and concluded that transfer
learning improves the efficiency of deep learning models, in
particular those that apply deep features and fine-tuning as
compared to other transfer learning techniques such as those
based on feature spaces and domain given by [32].

B. Feature Extraction Model

MobileNet: MobileNet is the most popular CNN-based model
for smartphone applications and embedded devices. It was
introduced as a mobile-first computer vision model by the
Google Research team [[14]]. The core idea is to use depthwise
separable convolution to build a lightweight model with less
computational complexity. The reason for high computation in
traditional CNN architecture is the point to point convolution
is performed between the image and filter. The MobileNet’s
depthwise convolution uses a single filter per input channel,
and pointwise convolution applies 1 x 1 convolution to create
a linear combination of the output of the depthwise layer. The
factorized convolutions allow a substantial reduction in the
computation and model size. This makes the model ideal for
mobile and embedded devices.

MobileNet Versions: MobileNetV2 introduced the inverted
residual structure and linear bottleneck to make an efficient
layer structure. MobileNetV3 [33] is the latest and most
efficient combination of its predecessors, i.e. MobileNetV1
and MobileNetV2. MobileNetV3 is tuned to mobile CPU
by fusing two technologies: MNasNet to select the opti-
mal configuration and NetAdapt to discover and optimize
network architecture. MobileNetV3 model has two releases:
MobileNetV3-Large and MobileNetV3-Small. It is claimed
that compared to V2, MobileNetV3-Large is 3.2% more

accurate on ImageNet classification with latency reduced by
20%, whereas MobileNetV3-Small is 6.6% more accurate with
similar latency. The overall architecture of transfer learning
using a version of the MobileNet-based model for leaf classi-
fication is shown in Fig. [I] In this study, we have compared
MobileNetV3 releases with MobileNetV?2 transfer learning on
the LeafSnap dataset. The resultant model is downloaded into
the smartphone for efficient tree species identification without
an internet connection.

C. Dataset

For test and trial purposes in the lab experiments, we
explored datasets available online in different data repositories
such as Kaggle [34], Tensorflow [35] and Google [36]]. For
the plant identification use case, we accessed the LeafSnap
dataset from Kaggle. The dataset consists of 184 tree species,
showing two subsets, (1) 23,915 lab images of pressed leaves
with dimensions of 800 x 700 pixels (2) 7,719 field images
with 800 x 600 dimensions taken outdoors by different users
using handheld devices. The field images contain varying
amounts of noise, blur, shadows, and illumination patterns.
Each plant category contains 20-30 RGB images of leaves.
We downscaled all the images to 224 x 224 to achieve faster
learning of the deep learning models. For this paper, only field
images are used because of their similarity to real images taken
from mobile phones.

D. Model Training

Feature Extraction: The hardware to train the model included
a Lenovo laptop equipped with an 8265U CPU at 1.80 GHz
of Intel Core i5, 8 GB of RAM running on a Windows 10 64-
bit system. The software tools included Annaconda3 Jupyter
Notebook with Python 3.8, where the Tensorflow, OpenCV-
python3 [37]] and Keras [38] libraries were used. The dataset
was divided in a ratio of 75:25 into a training set of 5789
images and a test set of 1930 images. To obtain the pre-
trained weight parameters, we built the base models from the
MobileNetV2, MobileNetV3-Large and MobileNetV3-Small



models, pre-trained on 1.4M images from 1000 classes. First,
the intermediate layer of all the models was selected to use
for feature extraction. For this purpose, the output of the last
layer (bottleneck layer) is commonly used prior to the flatten
operation. The reason is that all the fully connected layers
are specialized to the task network was trained on; thus, the
features learned by these layers will not be useful for the new
task. The bottleneck features are more generic. Therefore, the
base models were frozen, loaded with weights trained on the
ImageNet dataset and used as a feature extractor. We added
a dropout layer with a dropout rate of 0.2 to reduce the
overfitting of the model. Finally, the top classifier softmax
layer was added for predicting the class for an input image.
The model with the base model of MobileNetV2 was compiled
and optimized with Adam optimizer. The other with the base
model of MobileNetV3 were optimized with Gradient descent
optimizer (SGD) with a learning rate of 0.5 and momentum
of 0.9. All models were trained on a training set within 10
and 100 epochs (iterations).

Fine-Tuning: We un-froze the base models and trained the
weights of the top layers of these models along with the
classifier layer added in the previous step. The models were
trained in 10 iterations to force the weights to be tuned from
generic feature maps to feature associated with the leaf dataset.
For a fair comparison, both V2 and V3 models were trained
with the same dataset and training parameters, i.e. 235,704.
The models were fine-tuned and re-evaluated. The models
were saved in the machine with all the class labels.

IV. RESULTS AND DISCUSSION

Model Validation: The performance of the models is greatly
influenced by the number of times it goes under training.
Using sparse categorical cross-entropy loss, the models were
validated with a test dataset. The performances of the models
were evaluated by calculating accuracies and losses of training
samples in each epoch. The model based on MobileNetV2
showed (Fig. [2) the training accuracy up to 97% and validation
accuracy up to 84%. The model based on MobileNetV3-Large
exhibit a training accuracy of 94% and validation accuracy up
to 87%.

Fine-Tuning Results: After fine-tuning, the training accuracy
of the MobileNetV2-based model was improved to 97%,
and validation accuracy remained at 86% at each epoch.
The training accuracy of the MobileNetV3-based model was
improved to up to 96% (Fig. [3), and validation accuracy up
to 89% after 10 epochs. Note the gap between training and
validation curves for the MobileNetV3-based model is less
than the MobileNetV2-based model.

Discussion: We managed to increase the validation accuracy
of the MobileNetV3-Large based model to 91% after 100
epochs, whereas the MobileNetV2-based model could show
only 1% improvement, i.e. 87%. The MobileNetV2 and Mo-
bileNetV3 took the almost same time to train the network;
however, it is notable that MobileNetV3 contains 5.3M param-
eters, whereas MobileNetV2 contains 3.4M parameters. On se-
lecting MobileNetV3-Small as a base model, the training time

of the model was reduced to 60%, trainable parameters were
declined to 188,600 and training, and validation accuracies
were between 92%-94% and 82%-86%, respectively.
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Our results show that the performance of MobileNetV3 is
better than MobileNetV2. The MobileNetV3-Small is time and
cost-efficient with 3% less accuracy. The accuracy of all the
MobileNetV3 models can be increased with the data augmen-
tation techniques as in [28]] and training iterations. The training
time of MobileNetV3-Large can be reduced with the use of
a GPU. In Table [Il we compare the results obtained from our
trained models based on MobileNetV3-Large, MobileNetV3-
Small, and MobileNetV?2 with the previously mentioned CNN-
based models for leaf classification. It can be seen that we
achieved a good accuracy using our trained models with fewer
iterations and significantly less time, which makes our models
time and cost-effective. Moreover, the size of the models is



TABLE I
COMPARISON OF TRAINED MNV3/MNV2 MODELS WITH OTHER CNN-BASED APPROACHES

Training Time

Model Dataset Overall Iterations Accuracy % Loss % . ) Size
(minutes)
[22] CNN Flavia 12,000 94.69 0.7-2.5 - -
[23] CNN Flavia 50,000 98.69 - 252 -
[25] CNN LeafSnap 200,000 79.96 - 1920 -
[25] CNN Flavia 30,000 98.69 - - -
Our work
MobileNetV2 LeafSnap 20 86 0.4 40 9.86 MB
Our work
MobileNetV3-Large LeafSnap 20 89 0.3-0.4 40 4.88 MB
Our work LeafSnap 20 86 0.5-0.6 16 1.99 MB

MobileNetV3-Small

much reduced, which makes them ideal to be inserted in
handheld devices for offline plant and tree species recognition.

V. MOBILE APP IMPLEMENTATION

App Development: For tree species identification in a remote
area, an end-user app is essential. For the app development,
Android Studio [39] was used. The saved models were
converted into the TensorFlow Lite [40] version using the
TensorFlow Lite converter. TensorFlow Lite is a set of tools
to perform deep learning on smartphone and IoT devices. The
architecture of the mobile app is shown in Fig. i The squares
marked with dotted red will be included in future iterations.
The size of the models based on MobileNetV3-Large and
MobileNetV3-Small was 4.88 MB and 1.99 MB, respectively,
which are lightweight compared to AlexNet (227.5 MB) [27].
The app is developed using the Java programming language.
The leaf detection module in the app contains a Tensorflow
Lite interpreter for the TensorFlow Lite model.

App Testing: For testing the application, Android studio
comes with built-in phone emulators, or the app could be
deployed to an actual device. From an online search, we
downloaded leaf images belonging to the categories on which
the model was trained. These downloaded images were not
included in the training dataset. The functionality was tested
with the WiFi and data connections being turned off (flight
mode). This was to ensure that the app is not using any online
computation resources to run the machine learning algorithm
for classifying the images. This way the app can be used in
remote areas with no/limited network.

VI. CONCLUSIONS

This paper analyzed CNN-based mobile apps for plant
identification and compared the performance of MobileNet
versions for their suitability for tree species recognition using
smartphones in remote forests. The MobileNetV3 releases and
MobileNetV2-based models were trained and tested on the
LeafSnap dataset to detect tree species. We evaluated the
performances of the models using the accuracy and loss of
the training and test sets. The best validation accuracy of
MobileNetV3 was 89% and 91% at 10 and 100 epochs, respec-
tively, whereas MobileNetV2 had 86%. The MobileNetV3-

Small took 60% less time to train the model as compared to
the MobileNetV3-Large and MobileNetV2. We believe that the
accuracy of our models can be improved with data augmenta-
tion methods within 20 epochs. Our evaluation indicates that
MobileNetV3-based transfer learned models are lightweight,
cost and time-efficient, making them perfect candidates to be
embedded in smartphone apps and IoT devices to perform
deep learning tasks in rural areas without mobile networks.

VII. FUTURE WORK

As an extension of this work, we plan to investigate the
accuracy of these models on images taken at different heights.
This will involve applying data augmentation techniques to
increase the dataset with rescaled images specified through
the zoom range. The mobile app will be updated in subsequent
iterations with a camera option to obtain images, percentage of
accuracy, detailed view of the identified species with images
of other parts of the tree, and permission to upload tree health-
related data along with pictures into the Cloud.
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