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Abstract—Breast histology image classification is a crucial step
in the early diagnosis of breast cancer. In breast pathological
diagnosis, Convolutional Neural Networks (CNNs) have demon-
strated great success using digitized histology slides. However,
tissue classification is still challenging due to the high visual
variability of the large-sized digitized samples and the lack
of contextual information. In this paper, we propose a novel
CNN, called Multi-level Context and Uncertainty aware (MCUa)
dynamic deep learning ensemble model. MCUa model consists
of several multi-level context-aware models to learn the spatial
dependency between image patches in a layer-wise fashion. It ex-
ploits the high sensitivity to the multi-level contextual information
using an uncertainty quantification component to accomplish a
novel dynamic ensemble model. MCUa model has achieved a
high accuracy of 98.11% on a breast cancer histology image
dataset. Experimental results show the superior effectiveness of
the proposed solution compared to the state-of-the-art histology
classification models.

Index Terms—breast cancer, histology images, convolutional
neural networks, context-awareness, uncertainty quantification.

I. INTRODUCTION

BREAST cancer is the driving sort of cancer in women,
coming about in 1.68 million modern cases and 522,000

passings in 2012 around the world. It has been accounted for
25.16% of all cancer cases and 14.71% of cancer-related pass-
ing [1]. Precise determination of breast cancer is pivotal for
suitable treatment and prevention of further progression. A few
symptomatic tests have been utilized, counting physical exam-
ination, mammography, magnetic resonance imaging (MRI),
ultrasound, and biopsy. Histology image examination resulted
from biopsy considered as a crucial step for breast cancer
diagnosis. In the diagnosis process, pathologists evaluate the
cellular areas of hematoxylin-eosin (H&E) stained histology
images to decide the predominant type of breast tissues,
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including normal tissue, benign lesion, in situ carcinoma, and
invasive carcinoma. Histology images are large in size with a
complex morphological structure. Therefore, identifying car-
cinoma regions based on the manual investigation conducted
by medical professionals is a challenging and time-consuming
process.

Traditionally, histology imaging in clinical practice is fo-
cused primarily on pathologists’ manual qualitative analysis.
However, there are three main issues with such practice. One,
there is shortage of pathologists around the world, especially
in developing countries and small hospitals. This scarcity of
resources and unequal allocation is a pressing issue which need
to be addressed. Second, the pathologist’s extensive scien-
tific expertise and long-term diagnostic experience determine
whether the histopathological diagnosis is accurate or not.
This subjectivity may cause in a slew of diagnostic errors.
Finally, pathologists are vulnerable to fatigue and inattention
while reading the complex histology images. In order to
address these issues, it is crucial to establish automated and
precise histological image classification tasks. Thanks to the
advancement of computer aid diagnosis (CAD) frameworks
that have made the difference in reducing the workload and
improved the detection accuracy [2].

There are two challenging perspectives in the classification
of H&E stained breast histology images. First, there are
colossal intra-class fluctuations and inter-class likenesses in
microscopy images, e.g., the difficult mimics from benign
which has a comparative morphological appearance with car-
cinoma. Fig. 1(a) shows benign and carcinoma microscopy
images with a similar morphological structure, in terms of
the nuclei distribution. Second, in histology image analysis,
structural and contextual information is usually lost due to
the high resolution of the images. This is due to the fact that
histological image is divided into sections and dealing with
only local representation of image patches makes it difficult to
preserve the spatial dependencies of different image patches.
Therefore, learning contextual information is crucial by in-
tegrating important information from different image parts
and hence improving the classification performance. Fig. 1(b)
depicts the shape of image patches used as an input to patch-
based deep convolutional neural network (DCNN) models.
Several different feature engineering [3], [4] and feature learn-
ing [5]–[7] models have been previously developed to classify
digitized breast histology tissues. Feature Learning showed
great success in addressing numerous issues within the field of
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digital pathology, including the above-mentioned challenging
problems. As of lately, deep convolutional neural networks
(DCNNs) have been broadly recognized as one of the foremost
capable tools for histology tissue classification. In spite of
their predominance, a single DCNN model has constrained
capacity to extract discriminative features and results in lower
classification accuracy [5], [8]. Hence, an ensemble of DCNN
models has been developed to memorize the representation
of histology images from distinctive view-points for more
precise classification [9]. However, accommodating contextual
information in the architecture of CNNs is a requirement
to cope with the huge size of histology images [8], [10].
Consequently, ensemble CNNs should allow for the contextual
representation to be learned. Moreover, despite the prevalence
of DCNN models in providing high classification performance
and alleviating the workload encountered by pathologists,
a number of histological images might need assistance in
diagnosis by professional medical expertise due to their com-
plexity. Such images have to be excluded from automated
image classification and to be presented for pathologists for
manual investigation. Consequently, we introduce an uncer-
tainty quantification method which measures the level of image
prediction’s randomness using DCNN models. This approach
aids in the identification of various ambiguous regions which
can be clinically useful. It also helps pathologists and medical
practitioners to prioritize images for annotations.

Fig. 1. (a) An example of similar morphological structures between benign
and carcinoma sections. (b) Patches of a high section, which are used by
DCNN models to learn the spatial dependencies information.

In this paper, we propose a novel dynamic ensemble
CNN with terming Multi-level Context and Uncertainty aware
(MCUa) model1 for the automated classification of H&E
stained breast histology images. First, we resize input images
into two different scales to capture multi-scale local infor-
mation. Then we designed patch feature extractor networks
by extracting patches and feed them to pre-trained fine-tuned
DCNNs (i.e., DenseNet-161 and ResNet-152). Unlike the work
conducted in [9], the extracted feature maps are then used by
our context-aware networks to extract multi-level contextual

1The code is available at https://github.com/zakariaSenousy/MCUa-Model.

information from different pattern levels. Finally, a novel
uncertainty-aware model ensembling stage is developed to
dynamically select the most certain context-aware models for
the final prediction. To the best of our knowledge, MCUa is the
first attempt to employ uncertainty quantification for ensemble
modeling for histology image classification. We evaluated the
performance of our model on BreAst Cancer Histology Images
(BACH) challenge dataset [11], which consists of 400 high-
resolution H&E stained breast histology images and divided
into four categories, namely normal, benign, in situ carcinoma,
and invasive carcinoma. MCUa model alleviates the bias that
might be caused during the traditional workload of histological
image analysis by introducing an automated image classifica-
tion model which captures the spatial dependencies among
patches of high resolution images. Additionally, it presents
a measure of uncertainty which helps in providing a more
robust predictions using a dynamic ensemble mechanism that
improves the diversity of the model by coping with different
network architectures and multi-level contextual information.
This can be achieved by (1) introducing effective pre-trained
and fine-tuned DCNN models which learn to explore hierarchi-
cal discriminative features and differentiate between different
class categories and (2) learn spatial dependencies among
image patches to preserve contextual information between
feature maps.

The contributions of this paper are summarized below:
• introduced a multi-scale input and multi-architecture

stage for feature extraction which exploits the granu-
larity in encoding multi-level features and increase the
diversity of the extracted features. Multi-scale and multi-
architecture mechanism helps in capturing different sizes
and scales for nuclei and tissue structures;

• proposed a novel context-aware model to learn multi-
scale and multi-level contextual information by encoding
the spatial dependencies among patches in histology
images;

• developed a novel dynamic ensemble strategy by select-
ing the most certain models for each particular image
based on an uncertainty-aware mechanism. The proposed
mechanism has been designed by measuring the level of
randomness of all models in the ensemble architecture,
and consequently a dynamic number of accurate models
is chosen and combined to obtain the final prediction; and

• conducted a thorough experimental study on the BACH
image dataset, and obtained better performance than state-
of-the-art computational pathology models.

The paper is organized as follows. In Section II, we review
the related context-aware methods applied to large-scale and
medical image classification problems, and uncertainty quan-
tification in digital pathology. Section III discusses in details
the architecture of our proposed model. Section IV describes
our experimental results obtained. Finally, Section V discusses
our findings by presenting the summary of our work and
introducing few potential future research directions.

II. RELATED WORK

In this section, we review the related context-aware clas-
sification models which have been previously developed to
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cope with large-scale, histology, and other medical images. It
also provides a brief overview of uncertainty quantification in
digital pathology.

A. Context-aware models for large-scale image classification

A few studies have been conducted on building context-
aware classification models for large-scale images [12]–[17].
For instance, Dangwei et al. [12] proposed a multi-scale
context-aware network for person re-identification (reID) to
learn salient features over the full body and body parts.
The model has the capability to capture the local contextual
information by stacking multi-scale convolutions in each layer
of their architecture. In [13], an integration-aggregation-update
(IAU) block has been proposed for improving person reID
performance. It introduces a spatial-temporal IAU by combin-
ing two different types of contextual information into a CNN
model for target feature learning: a) spatial interactions, to
capture contextual dependencies between different body parts
in a single frame, and b) temporal interactions, to capture
contextual dependencies between the same body parts across
all frames. Xingjian et al. [18] proposed a convolutional long
short-term memory (LSTM) for spatial-temporal sequence
forecasting to anticipate long run precipitation escalated in
a local region over a moderately brief period of time. Their
model is utilized to construct an end-to-end trainable model
for the precipitation now-casting problem.

A model inspired by Geo-statistics [14] to model spatial
uncertainties has been introduced in a way to compute the
labels of mosaic images with context label agreement using a
transition probability model to enforce spatial properties such
as class size and proportions. Zheng et al. [16] introduced a
depth representation for RGB-Depth scene classification based
on CNN. Their CNN framework has dilated convolutions to
extend the receptive field and a spatial pooling to aggregate
multi-scale contextual information. A diverse region-based
CNN model [15] has been introduced for hyperspectral im-
age classification which encoded context-aware representation.
This is by merging the diverse set of special feature repre-
sentations which led to the CNN framework yielding spatial-
spectral context sensitivity for pixel classification. Makantasis
et al. [19] introduced a CNN framework based on randomized
principal component analysis (PCA) to capture spectral and
spatial information. A contextual deep CNN [20] has been pro-
posed to explore the contextual interactions by mutually taking
advantage of local spatial-spectral relationships of neighboring
pixel vectors within a square window.

B. Context-aware models for histology image classification

In histology image analysis, the importance of learning
contextual information using CNNs has been recently intro-
duced in [8], [10] for the classification of histology images.
These architectures are based on two stacked CNNs. The first
CNN extracts salient features from patches of high-resolution
images. The second CNN, which is stacked on top of the first
one extends the context of a single patch to cover a large tissue
region. The results shown from these studies indicate that

contextual information plays a vital part in reducing anomalies
in heterogeneous tissue structures.

Likewise, Huang et al. [21] used a deep fusion network to
capture the spatial relationship among high-resolution histol-
ogy image patches. This is by adopting a residual network
to learn visual features from cellular-level to large tissue
organization. Consequently, a deep fusion network has been
developed to model the inconsistent construction of distinc-
tive features over patches and rectify the predictions of the
residual network. Also, several context-aware models [22]–
[24] have adopted an image down-sampling mechanism for
capturing context information from larger histology images.
Other models used adaptive patch sampling [25] and special
patch picking [26] to incorporate sparse spatial information.
However, these strategies are not competent to capture small
regions in high resolution such as tumor cells and their nearby
relevant context. A few researches [27], [28] utilized multi-
resolution approach and developed multi-resolution based clas-
sifiers to extract contextual information. The only problem in
these multi-resolution methods is that they focused on small
regions of high-resolution histology image while the remaining
regions are at low resolution to produce the final inference. In
this manner, these methods limit the contextual information of
cellular architecture at a high-resolution level in a histology
image. Yan et al. [29] proposed a hybrid model by integrating
convolutional and recurrent deep neural networks for breast
cancer histology image classification. It considers the short-
term and long-term spatial correlations between image patches
using a Bidirectional LSTM network. This is by extracting
the feature representations from image patches of histology
image, then feeding the extracted features into the bidirectional
LSTM to preserve the spatial correlations among feature
representations.

C. Context-aware models for other medical images

Fang et al. [30] introduced a lesion-aware CNN for optical
coherence tomography (OCT) image classification by develop-
ing a lesion detection network to produce a delicate attention
map. The attention map is then fed to a classification network
to utilize the information from local lesion-related regions
to attain more productive and accurate OCT classification In
[31], a deep learning method has been proposed to detect
the intracranial aneurysm in 3D Rotational Angiography (3D-
RA) based on a spatial information fusion. They used 2D
image sequences and relied on the morphological differences
between image frames and concatenated consecutive frames
of every imaging time series in a way so as to preserve
spatial contextual information. Haarburger et al. [32] proposed
a 3D CNN and a multi-scale curriculum learning technique to
classify malignancy globally using MRI images by generating
feature maps that represent the whole spatial context of the
breast.

D. Uncertainty quantification for histology images

As an important initial step to explainable classification
and segmentation models, it is required to measure the un-
certainty of the predictions obtained by machine learning and
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deep learning methods [33]. A few recently proposed im-
age segmentation and classification approaches have adopted
an uncertainty quantification component for histology image
analysis. For instance, Simon et al. [34] used a measure of
uncertainty in a CNN-based model using an instability map to
highlight zones of equivocalness. Fraz et al. [35] proposed a
framework for micro-vessel segmentation with an uncertainty
quantification component for H&E stained histology images.
A calibration approach [36] has been designed in a way to pre-
serve the overall classification accuracy as well as improving
model calibration. It provides an Expected Calibration Error
(ECE), which is a common metric for quantifying miscalibra-
tion. Their approach can be easily attached to any classification
task and showed the ability to reduce calibration error across
different neural network architectures and datasets.

Mobiny and Singh [37] proposed a Bayesian DenseNet-
169 model, which can activate dropout layers during the
testing phase to generate a measure of uncertainty for skin-
lesion images. They investigated how Bayesian deep learning
can help the machine–physician partnership perform better in
skin lesion classification. In another research, Raczkowski et
al. [38] proposed an accurate, reliable and active Bayesian
network (ARA-CNN) image classification framework for clas-
sifying histopathological images of colorectal cancer. The net-
work was designed based on residual network and variational
dropout. More recently, an entropy-based elastic ensemble
of DCNN (3E-Net) [39] has been proposed by introducing
an ensemble of image-wise models along with Shannon en-
tropy as an uncertainty quantification component. Unlike 3E-
Net, MCUa has the ability to (1) capture different size/scale
variations of nuclei objects in histopathological images by
introducing multi-scale input and multi-architecture usage for
feature extraction, (2) provide an uncertainty-aware component
based on Monte-Carlo (MC) dropout [40], which generates a
predictive probability distributions instead of a single scalar.
This is to integrate learned information from different versions
of a single context-aware model based on activating dropout
layers during multiple forward test passes, which consequently
produces multiple probability distributions of a single input
image. The set of distributions is then used to calculate a high
level of uncertainty measure.

III. MCUa MODEL

In this section, we describe our proposed Multi-level Con-
text and uncertainty aware (MCUa) dynamic deep learning
ensemble model in details. As illustrated in Fig. 2, the MCUa
model consists of an arbitrary number of multi-level context-
aware models, where each model consists of two components:
a) a patch-wise feature extractor component, to extract the
most prominent features from image patches; and b) a context-
aware component, aims at capturing the spatial dependencies
among the extracted patches. MCUa starts by taking the
original image and then resizing the image to m scales to get
various and integral visual features from the multi-scale image
feature. A number of patches are extracted from each image
scale to be inserted into a pre-trained feature extractor. Several
salient feature maps are extracted from the pre-trained feature

extractor, which are then inserted to multi-level context-aware
models. Each context-aware model has a certain contextual
information level that can be learned from a group of feature
maps. As a final stage, MC-dropout is applied to each context-
aware model to produce a measure of uncertainty. This is done
by applying a number of test passes for each input image
through the context-aware network. Each test pass produces
a class probability for the image, using this information, we
calculate the mean and standard deviation to provide image
class label and uncertainty measure, respectively. A dynamic
process of model selection, based on an uncertainty measure
value and a pre-defined threshold, is utilized to pick up the
most certain models and then produce the final class label.

A. Multi-scale feature extraction

Multi-scale image feature extraction is pivotal for having
diverse and complementary visual features in H&E stained
breast histopathological microscopy. To extract multi-scale
features, we first resize the original image to different scales.
Then, image patches are extracted from each scale using a
sliding window of size pw × ph and a stride s. Therefore, the
total number of patches extracted from the resized image can
be represented by

a =

(
1 +

⌊
IW − pw

s

⌋)
×
(

1 +

⌊
IH − ph

s

⌋)
, (1)

where IW and IH are width and height dimensions of the
resized image, respectively.

The images at the different scales are then divided into
partially overlapped patches using different stride values for
training and testing data extraction. This increases the level
of locality information and the number of training patches.
Moreover, to increase the diversity of training data and, at
the same time, alleviate the overfitting of DCNN models,
several data augmentation methods have been applied. For
instance, each patch has been transformed using a rotation
operation and with/without vertical reflections. Also, random
color perturbations recommended by [28] has been applied
to each patch to alleviate the high visual variability of the
patches. The data augmentation process makes our model learn
rotation invariant, reflection invariant, color invariant features
and make pre-processing color normalization [41].

B. Fine-tuning the backbone networks

The pre-trained DCNN models (namely, ResNet-152 [42]
and DenseNet-161 [43]) are fine-tuned to be used as the back-
bone feature extractors of MCUa model. We adapted the pre-
trained DCNN models to a four-category image classification
problem, by modifying the number of neurons in the last fully-
connected layer from 1000 neurons (where ResNet-152 and
DenseNet-161 are pre-trained models on ImageNet [44]) to
only 4 neurons. Consequently, the fine-tuned DCNN models
can take input of microscopy image patches (i.e., augmented
versions of the patches extracted from resized versions of
microscopy images) and produce an output of softmax prob-
abilities belonging to the 4 cases (Normal, Benign, In situ
carcinoma, and Invasive carcinoma) of the BACH dataset.
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During the fine-tuning process, we use Adam optimizer [45]
to minimize the categorical cross-entropy loss function, which
is defined as

CE(y, ŷ) = −
C∑
i

yilog(ŷi), (2)

where yi represents the ground-truth class labels, while ŷi
represents the softmax probability for each class i in C (the
total number of classes). Softmax activation is applied to the
DCNN model’s predictions of the last fully connected layer.
The activation function f applied to prediction qi is defined
as

f(qi) =
eqi∑C
j e

qj
, (3)

where f(qi) is the ŷi.
Once the training of the pre-trained DCNN models is

accomplished, the last convolutional layer is used to construct
our feature space or to extract a number of feature maps
(equivalent to the number of patches in each image).

C. Multi-level context-aware models

To capture the spatial dependencies among image patches,
MCUa has been designed in a context-aware fashion to learn
different possible multi-level contextual information. Here,
we used the output of feature extractor of each pre-trained
DCNN model and fed it into several multi-level context-
aware models. The level of contextual information learned by
MCUa is determined by a pattern of neighborhood criteria.
More precisely, we encode the spatial relationship information
among patches based on the neighborhood of patches that form
some random shape. In other words, our context-aware models
have been designed based on a pattern tuple Pg,Si

= (g, Si),
where g is the number of patches used in the context-aware
process and Si is the set of shape indices (where each index
i is associated to a unique set of shape indices). To identify a
shape index, the starting patch and g− 1 directions should be
specified. Fig. 3 clarifies an example of how different pattern
levels work to extract contextual information. For instance,
P2,S1

has a value of g = 2 and two shapes. Moreover, P4,S2

has a value of g = 4 and a set of shapes where the shapes are
built using a number of feature maps (e.g., 3, 6, 5, and 4). More
precisely, the process of building contextual information for
the shape index represented in P4,S2

works by identifying the
starting feature map location (i.e., feature map number 3), then
all the possible directions in the matrix of the feature maps
has to be defined, where direction 1 is for the down direction
to pick feature map number 6, then directions 2 and 3 are for
the left directions to pick feature maps 5 and 4, respectively,
(Please see Fig. 3). Each feature map utilizes the pattern tuple
mechanism to bring the spatial dependencies information with
other neighboring feature maps.

The feature patterns have been designed by taking into
account the image-level labels for the final classification during
the minimization of loss function. Context-aware networks are
mainly image-wise networks which take concatenated feature

maps generated from the original neighbor feature maps
(extracted from the input image). These concatenated feature
maps are fed into context-aware networks to classify the
images based on local and contextual features extracted from
images. Context-aware networks are trained against image-
level labels. More precisely, we minimize the loss function
of different patterns of feature maps inserted as an input to
the final class label associated to the image as an output.

Each Context-aware CNN consists of a sequence of 3 ×
3 convolutional layers followed by a 2 × 2 convolution
with stride of 2 for down-sampling. Batch normalization and
ReLU activation function were used at the end of each layer.
To obtain the spatial average of feature maps, a 1 × 1
convolutional layer is used before the classifier. The network
ends with 3 fully connected layers and a log softmax classifier.

During the training of MCUa, a partly overlapped patches
are extracted from the image by using different stride values.
The stride value for each scale is chosen to increase the num-
ber of patches and hence improve the contextual representation
of MCUa. We found in our experiments that using high stride
decreases the accuracy for a single context-aware model on a
validation set.

The context-aware CNN has been trained using categorical
cross-entropy loss and learns to classify images based on
the local features of image patches and spatial dependencies
among the different patches. Like pre-trained DCNN, data
augmentation has been applied.

In algorithm 1, we describe the implementation flow of a
single context-aware model. We start by resizing the image
to multiple scales to extract smaller patches. We then pass
the extracted patches to a pre-trained DCNN model to extract
feature maps. After that, we iterate over each feature map
and get the indices of all possible feature maps that can build
possible pattern of neighborhood relationships. The related
feature maps are then concatenated and inserted in a set which
holds all the concatenated feature maps. Finally, we pass the
concatenated feature maps set to the context-aware CNN. This
is to learn spatial dependencies among the related feature maps
and produce the network output. As a consequence, the feature
maps will be fed into the log softmax function to produce the
probability distribution of the image.

D. Dynamic model selection and combination
The final stage of MCUa model is to dynamically ensemble

the most certain models for each image. To this end, we
adapted an ensemble-based uncertainty quantification compo-
nent to allow for a dynamic selection of context-aware models
to produce the final prediction for an input image. To measure
the uncertainty of the individual context-aware models in
MCUa, we adopted MC dropout [40] for each model, in the
test phase, to produce a list of probability predictions for each
class of the input image. Then, we calculated the mean and
standard deviation for each class. The mean is used to produce
the final class label (ŷ) of the image, while standard deviation
is considered as a measure of uncertainty for the context-
aware model. Based on such uncertainty measures, a dynamic
number of context-aware models will be selected (based on
uncertainty threshold value (δ)) for each particular image.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 6

Fig. 2. Overview of MCUa model. Our model takes the original image and resizes it into multiple scales. For each scale, several patches are extracted
which are then inserted into patch-wise networks (i.e., pre-trained DCNNs) to extract salient features. The extracted features are then inserted into multi-level
context-aware models to learn spatial dependencies between image feature maps. Context-aware models work on extracting contextual information between
feature maps based on different levels (L1 to Ln). L1 is considered as low level context which builds contextual information among two original feature
maps, while Ln is considered as high level context which builds contextual information among all the original feature maps extracted from the image. Finally,
a dynamic model selection is applied to select the most certain models based on uncertainty quantification and a combination of selected models is applied
to produce the final prediction. For each image, a number of test passes is applied using MC-dropout to produce a list of probability distributions which are
then used to generate mean and standard deviation. The mean is used for identifying the class label of a single model, while standard deviation is utilized for
measuring the level of randomness and uncertainty. In a dynamic way, each image in the dataset has a number of accurate models which are chosen based
on low value of uncertainty determined using a pre-defined threshold. These selected models’ mean predictions are aggregated for final class prediction.

Fig. 3. The extraction process of the contextual information (i.e., context
modeling) with different pattern levels using six feature maps. The original
feature maps (highlighted in orange) are used to encode different levels
of contextual information. For instance, P2,S1

represents the contextual
information of a pattern that is composed of 2 neighbor feature maps, while
P4,S1 and P4,S2 represent the process of building contextual information
for four neighbor feature maps with different set of shapes, respectively. The
blue highlighted feature maps represent the maps chosen to build contextual
information.

Algorithm 1: Single context-aware model
Input: Original image X to be classified
Output: class label ŷ
X

′
← X // resize original image to m scales

// extractPatches is a function which takes image and patch dimensions as an
input and outputs n patches {x(1), x(2), ..., x(n)}
{x(1), x(2), ..., x(n)} ← extractPatches(X

′
, pw , ph)

// featureExtractor network takes n patches as an input and outputs n feature
maps {fm(1), fm(2), ..., fm(n)}
{fm(1), fm(2), ..., fm(n)} ← featureExtractor({x(1), x(2), ..., x(n)})
F ← {fm(1), fm(2), ..., fm(n)} // store all the extracted feature maps to

set F
T , Y ← {} // define and initialize two empty sets
for fm ∈ F do

// getPatternIndices is a function which takes a feature map fm and
returns the indices of all possible neighbor feature maps which form a
pattern
{i1, i2, ..., in} ← getPatternIndices(fm)
// concatenate fm with possible neighbor feature maps which form a

pattern
Y ← fm ‖ ki1 ‖ ki2 ‖ ... ‖ kin ; where
ki1 , ki2 , ..., kin ∈ F ∧ ki1 , ki2 , ..., kin 6= fm

// append the newly concatenated feature maps Y to T
T ← T ‖ Y

end
// contextAwareCNN is the network responsible for learning the spatial

dependencies of all feature maps and their formed patterns
O ← contextAwareCNN(T )
// logSoftmax function is used to map the output of contextAwareCNN O to

probability distribution V
V ← logSoftmax(O)
ŷ ← argmaxV
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More precisely, each input image will be sensitive to a
certain number of context-aware models to form the final
model ensemble. A context-aware model will be selected if
its uncertainty measure value is less than a pre-defined δ, as
described in our experimental study. More importantly, images
with zero chosen models during this dynamic selection process
can be provided to medical professionals (pathologists) for
reviewing and annotating. Once the context-aware models are
selected, the mean class predictions is aggregated to produce
the final class prediction distribution. Here, we formulate the
mean prediction and standard deviation as

µ =
1

z

z∑
i=1

β (Φi(X);W ) , (4)

σ =
1

z

z∑
i=1

(β (Φi(X);W ) − µ)
2
, (5)

where µ represents the mean prediction, σ defines the uncer-
tainty and z defines the number of MC dropout test passes.
The function β represents the context-aware CNN with input
X and W denotes the network weights, while Φi defines a
MC dropout test pass i to the input image X .

Algorithm 2 provides a detailed description of the en-
semble process of MCUa model. Each model produces a
single probability distribution. We applied some MC dropout
test passes to generate a list of probability distributions for
each model. Then, to get the final class prediction and the
measure of uncertainty for each model, we computed the mean
and standard deviation of the generated list of probability
distributions, respectively. Finally, using a δ value, we include
only the most certain models and we aggregate the mean of
probability distributions for these models to produce ŷ.

Algorithm 2: MCUa Model
Input: Original image X to be classified
Output: Class label ŷ
Xscale1, Xscale2, ..., Xscalem ← X // resize original image to m scales
{x(1)

m , x(2)
m , ..., x(n)

m } ← extractPatches(Xscalem, pw , ph)
FFeatureExtractorm ← FeatureExtractor({x(1)

m , x(2)
m , ..., x(n)

m })
for fm ∈ FFeatureExtractorm do

i1, i2, ..., in ← getPatternIndices(fm)
Y ← fm ‖ ki1 ‖ ki2 ‖ ... ‖ kin
T ← T ‖ Y

end
Tall ← {TM1, TM2, ..., TMn} // output Tall of context-aware stage from
n context-aware models {M1,M2, ...,Mn}

for j ∈ MCdropoutTestPasses do
{OM1, OM2, ..., OMn} ←

contextAwareCNN({TM1, TM2, ..., TMn})
// probability distribution V from n context-aware models
{VM1, VM2, ..., VMn} ← logSoftmax({OM1, OM2, ..., OMn})
Vtotal.append({VM1, VM2, ..., VMn})

end
// get model-wise mean and uncertainty of probability distributions
{µ1, µ2, ..., µn} ← mean(Vtotal)
{σ1, σ2, ..., σn} ← standardDeviation(Vtotal)
chosenModels ← {}
for j ∈ contextAwareModels do

if σj < δ then
chosenModels.append(µj )

end
end
// aggregate the mean probability distributions of chosen models
B ← aggregate(chosenModels)
ŷ ← argmaxB

IV. EXPERIMENTAL STUDY

A. Dataset

In this experimental study, we used BACH dataset which is
part of ICIAR 2018 challenge for classification of H&E stained
breast cancer histology images. The dataset is composed of
two parts (namely Part A and Part B). Part A of the dataset
is composed of 400 sections of microscopy images that are
equally distributed among four classes (normal, benign, in situ,
and invasive). On the other hand, Part B is composed of 10
high resolution whole slide images, where the annotations are
provided for a semantic segmentation task. In this work, we
focused on Part A of the dataset to evaluate the performance
of the classification models. The dataset was annotated by
two medical experts and all microscopy images are relevant
to different patients. The total number of patients involved
in the production of the dataset was 39. The anonymization
process of the dataset does not allow to retrieve the origin of
all images. All the microscopy images have the same size of
2048 × 1536 pixels at 20X magnification level (where, the
pixel resolution of the images is 0.42 µm).

We evaluated the performance of MCUa model using 400
training images with stratified five-fold cross validation. To
train and fine-tune patch-wise networks (i.e., pre-trained DC-
NNs), we used microscopy patches extracted from training
images which are augmented using different rotations and
reflections. We evaluated the performance of the ensemble of
patch-wise networks using the validation set before stacking
context-aware networks on the top of patch-wise networks.
Likewise, for context-aware models, which are stacked on the
top of patch-wise networks, we followed the same training
process conducted in patch-wise networks.

B. Hyperparameter Settings

For multi-scale image features, we managed to try different
images scales including the scale of the original image. Based
on a comprehensive experimentation as well as the recommen-
dation of the work conducted in [9], we decided to resize the
original image (of the size 2048 x 1536) to 448 x 336 (scale
1), and 296 x 224 (scale 2). To extract image patches from
the multi-scale resized images, we utilized sliding window
technique of size pw = ph = 224. Also, we set the stride (at
scale 1) to 28 and 56 for training data extraction and testing
data extraction, respectively. For scale 2, we set the stride to 9
and 18 for training data extraction and testing data extraction,
respectively. In this work, for a fair comparison, we followed
the same hyperparameter settings as pointed out in [9], where
the same backbone networks were used.

The overlapped extracted patches are then fed into the pre-
trained DCNN models. We used DenseNet-161 for scale 1
and 2, while ResNet-152 is utilized for scale 1 only. This
gives three ensemble pre-trained feature extractors. The choice
of these three pre-trained DCNNs with the associated image
scales was aligned with the conclusion that has been drawn
from the work conducted in [9]. An ablation study was
conducted in [9] using several different ImageNet pre-trained
networks. The study has included different image scales (2048
x 1536, 1024 x 768, 448 x 336, and 296 x 224) for the
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BACH dataset and different pre-trained networks (DenseNet-
161, ResNet-101, and ResNet-152). They also considered
different combinations of the fine-tuned DCNN models (with
different image scales) for the ensemble modeling. Our work
utilized the optimal combination recommended by their study,
which is using DenseNet-161 for scale 1 and 2, while using
ResNet-152 for scale 1. In the training process, we applied data
augmentation for each patch by applying rotation operation of
90 degrees with/without vertical rotation. This results in eight
versions of a single patch. We set the learning rate to 0.0001
for 5 training epochs with a batch size of 32.

The feature maps extracted from each pre-trained DCNN
are then inserted into multi-level context-aware models which
present different levels of contextual information. We utilized
six multi-level context-aware models for each pre-trained
DCNN giving us a total number of 18 context-aware models.
Based on initial experimentation, we designed our MCUa
model in a constructive way by experimenting a group of
3 context-aware models until reaching the total number of
context-aware models represented in this work. In our exper-
iments, we considered the amount of GPU memory available
and, at the same time, covering different prominent levels
of spatial dependencies, different pre-trained DCNN models,
and different image scales when choosing the total number of
context-aware models.

For context-aware networks, we utilized stride s = 112 for
scale 1 and s = 9 for scale 2. The stride values are chosen
after comprehensive experimentation to pick up the suitable
values which give higher accuracy as well as improving the
contextual assumption for MCUa model. The settings for a
context-aware network are exactly like the pre-trained DCNN
settings except that we used 10 training epochs and batch size
equals to 8. For data augmentation, we used same transforma-
tions applied for pre-trained DCNN models, but using rotation
operation of 180 degrees. Moreover, as overfitting is a major
problem in this network, dropout was used with 0.7 rate.

As a final stage, for each image, the most certain models
have been selected and combined, in a dynamic way. To
implement this, we utilize MC-dropout with a total number
of 50 test passes (which is sufficient to generate a statistically
valid distribution) for each image. Based on the mean and
standard deviation of the 50 distributions, we used the mean
to produce the final prediction, while standard deviation was
used as a measure of uncertainty. The dynamic picking of
context-aware models is performed using δ threshold which
ranges from 0.001 to 1.75.

C. Performance Evaluation

We adopt accuracy, precision, recall and F1-score. Precision
is intuitively the ability of the classifier not to label as positive
a sample that is negative, recall is the ability of the classifier to
find all the positive samples and F1-score can be interpreted as
a weighted average of the precision and recall. We computed
the accuracy, precision, recall and F1-score:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 − score = 2 · Precision×Recall

Precision+Recall
, (9)

where TP and TN represent correct predictions by our
ensemble architecture for the occurrence of certain class or
not, respectively. FP and FN are the incorrect architecture
predictions for all cases.

1) Performance of a single context-aware model: Table I
presents the classification accuracy for our individual context-
aware models that have been designed on the top of three
pre-trained DCNNs (e.g., DenseNet-161 using two image
scales 448 × 336 (scale 1) and 296 × 224 (scale 2) and
ResNet-152 using image scale 1). The context-aware models
are implemented based on different pattern levels and shape
indices (P2,S1 , P3,S1 , P4,S1 , P4,S2 , P5,S1 , P6,S1 and P8,S1 ).
Based on trial and error experiments, we excluded P7,S1 as
it gives lower accuracy compared to the other pattern levels.
Also, to demonstrate the idea of using different shapes within
the same pattern level, we experimented P4,S1

and P4,S2
,

where each one of them has a unique set of shape indices. As
illustrated by Table I, the highest classification accuracies are
obtained by P2,S1

, P4,S2
and P5,S1

with the three pre-trained
DCNNs. Moreover, most of the context-aware models for
image scale 1 achieved a classification accuracy which varied
between 93% and 94.75%, while the context-aware models for
image scale 2 achieved less accuracy ranging between 88.75%
and 90.25%.

2) Static MCUa Model: We have presented the accuracy,
precision, recall, and AUC of the proposed static ensemble
context-aware architecture (i.e., ensemble of the total 18
models) to distinguish each category of images and overall
classification accuracy in Table II. As illustrated by the table,
invasive carcinoma tissues and benign tissues can be differ-
entiated clearly from other classes. We achieved an average
precision of 95.90% ± 2.40% and an overall classification
accuracy of 95.75% ± 2.44%, which illustrates the viability
of our proposed architecture in classifying breast histology
images.

3) Static vs. Dynamic MCUa Model: To demonstrate the
sensitivity of MCUa to the uncertainty quantification com-
ponent, we studied the performance of the static ensemble
of context-aware models and our dynamic ensemble mecha-
nism. For a fair comparison, we utilized two other metrics:
(1) Weighted Average Accuracy (WAACC), which computes
accuracy for each fold of the 5 folds weighted by the number
of included images in that fold and after that it averages
the weighted accuracies of 5 folds over the total number of
included images all over the dataset; and (2) abstain percentage
(Abs), which calculates the percentage of excluded images in
the dataset through different δ values. We formulated WA-
ACC and Abs as:
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TABLE I
CLASSIFICATION ACCURACY FOR CONTEXT-AWARE MODELS BASED ON

DIFFERENT PATTERN LEVELS USING STRATIFIED FIVE-FOLD CROSS
VALIDATION ON BACH DATASET (%).

Pre-trained
DCNN

(Image Scale)

Context-aware Pattern Levels - Accuracy

P2,S1 P3,S1 P4,S1 P4,S2 P5,S1 P6,S1 P8,S1

DenseNet-161
(Scale 1)

93.75 93.00 93.50 93.25 93.50 93.25 –

DenseNet-161
(Scale 2)

89.00 89.75 – 90.25 89.75 88.75 90.25

ResNet-152
(Scale 1)

94.00 93.25 93.50 94.75 94.75 93.75 –

WAACC =
1∑r
i=1 wi

r∑
i=1

Accuracyi × wi, (10)

Abs =

(∑r
i=1

∑h
j=1X

′′

ij

Dall

)
× 100, (11)

where Accuracyi represents classification accuracy i over r
folds, wi is the weight of the included images in fold i, X

′′

ij

represents excluded image j over h excluded images in fold
i, and Dall is the total number of images in BACH dataset.

Table III illustrates the effectiveness of MCUa by improving
the classification accuracy obtained by static ensemble mech-
anism. As demonstrated by Table III, MCUa has achieved
WAACC of 98.11% with δ of 0.001 and around 97.70% with
δ values of 0.002, 0.003, 0.006 and 0.02.

Fig. 4(a), 4(b), and 4(c) depict WAACC curve for included
images, Abs, and WAACC curve for excluded images on
BACH dataset, respectively, over δ ranges from 0.001 to 1.75.
The WAACC curve for the included images shows that the
best WAACC is achieved when the δ value is low and the
accuracy starts to decrease with increasing δ values until it
reaches 0.1. Moreover, as shown by the same figure, the accu-
racy increases until settling at 95% with δ value of 0.5 to 1.75.
On the other hand, Abs curve shows that the percentage of
abstained images decreases when we use higher δ values, and
starting from 0.25, the number of excluded images dropped to
zero. Finally, the WAACC curve for excluded images shows
the performance of MCUa model using static ensemble, where
the accuracy was around 80% for small δ and then the accuracy
starts to drop until reaching 50% at δ of 0.1. The accuracy
is zero when the number of excluded images equals to zero.
This demonstrates that excluded images are typically harder to
classify, and may well require a pathologist to make an expert
judgment.

4) Comparison with Recent Methods: In Table IV, we
compare the performance of our proposed model with the
following state-of-the-art recent methods: (1) a two-stage CNN
proposed by Nazeri et al. [5], which consists of patch-wise
network for feature extraction and image-wise network for
image level classification, (2) a context-aware learning strategy
using transferable features, which is based on a pre-trained
DCNN and SVM for classification [8], (3) Bayesian DenseNet-
169 proposed by Mobiny and Singh [37], which generates

TABLE II
PERFORMANCE (MEAN ± STANDARD DEVIATION) OF MCUa (STATIC
ENSEMBLE) ON BACH DATASET WITH STRATIFIED FIVE-FOLD CROSS

VALIDATION (%).

Category Precision Recall F1-score Accuracy

Normal 93.32 ± 5.34 95.00 ± 5 94.07 ± 4.10 97.00 ± 2.09
Benign 96.00 ± 4 95.00 ± 5 95.45 ± 4.15 97.75 ± 2.05
InSitu 95.28 ± 4.68 96 ± 2.24 95.56 ± 1.98 97.75 ± 1.04
Invasive 99.00 ± 1 97 ± 2.74 97.97 ± 2.10 99.00 ± 1

Total 95.90 ± 2.40 95.75 ± 2.44 95.77 ± 2.42 95.75 ± 2.44

TABLE III
ACCURACY (%) OF MCUa MODEL WITH BOTH STATIC AND DYNAMIC

ENSEMBLE ON BACH DATASET.

Method δ Accuracy

MCUa (Static Ensemble) NA 95.75

MCUa (Dynamic Ensemble)

0.001 98.11
0.002 97.93
0.003 97.60
0.006 97.65
0.01 97.53

uncertainty measure for input images, (4) deep spatial fusion
CNN introduced by Huang and Chung [21], which uses patch-
wise residual network for feature extraction and deep spatial
fusion network that has been designed to capture the spatial
relationship among image patches using the spatial feature
maps, (5) ARA-CNN introduced by Raczkowski et al. [38],
which uses variational dropout during the testing phase to
measure the uncertainty of input images, (6) ScanNet with
feature aggregation method of [26], which applies feature
extraction and concatenation towards the final classification,
(7) Hybrid DNN introduced by Yan et al. [29] which uses
inception network for feature extraction of image patches
along with bi-directional LSTM network which learns con-
textual information among feature maps generated from in-
ception network, (8) EMS-Net proposed by Zhanbo et al.
[9], which applies an ensemble of pre-trained DCNNs, and
(9) 3E-Net [39] which builds an ensemble of image-wise
networks with a measure of uncertainty using Shannon entropy
to pick the most certain image-wise models for the final
image classification. As demonstrated by Table IV, our model
outperformed other models when both static and dynamic
ensemble mechanisms are used. Moreover, Fig. 4(f) illustrates
ROC curves for our proposed MCUa (with both dynamic and
static ensemble) to confirm the superiority of our proposed
solution. Consequently, the importance of integrating multi-
level contextual information into DCNNs, to alleviating the
high visual variability in breast histology images, has been
emphasized and experimentally proofed.

5) Performance of MCUa on BreakHis Dataset: To con-
firm the effectiveness of our solution, we applied MCUa model
on the Breast Cancer Histopathological Database (BreakHis)
[46]. BreakHis has 7909 breast cancer histology images col-
lected from 82 patients, obtained with different magnification
levels (40X, 100X, 200X, and 400X). The dataset consists
of 2480 benign and 5429 malignant microscopic images with
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TABLE IV
PERFORMANCE (MEAN ± STANDARD DEVIATION) COMPARISON OF THE PROPOSED MCUa MODEL AND RECENT METHODS ON BACH DATASET (%).

Method Precision Recall F1-score Accuracy

Two-Stage CNN [5] 86.35 ± 2.70 85.50 ± 3.38 85.49 ± 3.25 85.50 ± 3.38
DCNN + SVM [8] 86.88 ± 1.52 85.75 ± 1.90 85.58 ± 1.92 85.75 ± 1.90
Bayesian DenseNet-169 [37] 89.28 ± 4.71 88.50 ± 5.03 88.45 ± 5.05 88.50 ± 5.03
Deep Spatial Fusion CNN [21] 89.93 ± 4.11 89.00 ± 3.89 88.93 ± 4.02 89.00 ± 3.89
Variational Dropout ARA-CNN [38] 90.25 ± 2.87 89.50 ± 3.14 89.48 ± 3.13 89.50 ± 3.14
ScanNet + Feature Aggregation [26] 90.90 ± 3.87 90.50 ± 3.81 90.46 ± 3.86 90.50 ± 3.81
Hybrid DNN [29] 91.79 ± 3.50 91.00 ± 3.46 90.98 ± 3.45 91.00 ± 3.46
EMS-Net [9] 95.23 ± 2.13 95.00 ± 2.17 94.98 ± 2.13 95.00 ± 2.17
3E-Net [39] 95.68 ± 3.15 95.46 ± 3.22 95.45 ± 3.24 95.46 ± 3.22

MCUa (Static Ensemble) 95.90 ± 2.40 95.75 ± 2.44 95.77 ± 2.42 95.75 ± 2.44
MCUa (Dynamic Ensemble (δ = 0.001)) 98.25 ± 1.58 98.11 ± 1.77 98.10 ± 1.78 98.11 ± 1.77

resolution of 700 × 460 pixels each. We used images with a
magnification level of 40X, which included 625 benign and
1370 malignant samples (1995 microscopic samples in total).

In this study, we used the same hyperparameter settings
that we used for the BACH dataset. For example, we down-
sampled the original input image (700 × 460) to two image
scales (scale 1: 448 × 336 and scale 2: 296 × 224). These
image scales are fed as input to the pre-trained DCNN models
(DenseNet-161 and ResNet-152) for extraction of features
from image patches. The extracted features are then inserted
into 18 context-aware models to learn the spatial relationships
among the image patches. We used the same patch stride
and data augmentation settings (that has been applied to
the BACH dataset) for both feature extraction and context-
aware modeling networks. As BreakHis dataset has 2 classes
(Benign and Malignant), we fine-tuned the pre-trained DCNN
models by modifying the number of neurons of the last fully
connected layer to only two neurons. As shown in Table V,
MCUa demonstrated to be effective in both static and dynamic
techniques. Using 5-fold cross validation, we achieved a
classification accuracy of 99.80% using the static ensemble
technique. The model has achieved exceptional classification
accuracies of 100%, 99.95%, and 99.90% using dynamic
ensemble on δ values of 0.001, 0.003, and 0.03, respectively.
Fig. 4(d) and 4(e) depict the WAA and Abs curves for MCUa
using BreakHis dataset.

6) Ablation Study: In this work, we describe the ablation
study that we conducted to reach the final version of the
building components of our MCUa model. All the conducted
experiments in this ablation study are validated with BACH
dataset. As an initial step towards our final version of MCUa,
we implemented a single DCNN with a target to learn multi-
scale and multi-level feature patterns. This is accomplished
by using multiple patch scales (224 x 224, 112 x 112, 56 x
56, and 28 x 28) to identify different nuclei sizes in histology
images. Then, we utilized all the feature maps extracted from
the aforementioned patch scales by applying fusion for the
multi-scale, multi-level feature maps for final classification.
The single DCNN was built using a sequence of 3 x 3 filters
in the convolutional layers, followed by a pooling layer, with
the number of channels doubled after each down-sampling.

TABLE V
ACCURACY (%) OF MCUa MODEL WITH BOTH STATIC AND DYNAMIC

ENSEMBLE ON BREAKHIS DATASET.

Method δ Accuracy

MCUa (Static Ensemble) NA 99.80

MCUa (Dynamic Ensemble)

0.001 100
0.003 99.95
0.03 99.90
0.04 99.85

We used 2 x 2 filters in the convolutional layers with stride
of 2 for down-sampling the feature maps. Batch normalization
and ReLU activation were used after all convolutional layers.
Finally, a fully connected layer followed by softmax layer are
used to produce the final image classification. We applied
stratified 5-fold cross validation and achieved classification
accuracy of 87.50%.

In another trial, we implemented single DCNNs to extract
feature maps from image patches, learn spatial dependencies
among image patches arranged in a certain pattern, and
generated the final image classification. We used DenseNet-
161 with image scales (scale 1: 448 × 336 and scale 2: 296
× 224) and ResNet-152 with image scale (scale 1: 448 × 336)
as the single DCNNs in this study. We applied stratified 5-fold
cross validation, and we achieved a classification accuracy of
93.00% and 88.50% for DenseNet-161 with scales 1 and 2,
respectively, while, ResNet-152 using scale 1 yielded a clas-
sification accuracy of 94.50%. Although the aforementioned
methods are straightforward and easy to implement, we argue
that single DCNNs lack diversity in generating discriminative
features which is vital in the usage of ensemble strategy.
This helps to generate features from multi-scale and multi-
architecture perspectives to help in representing multi-level
haematological objects (such as nuclei and glands) within the
histology images.

Consequently, we applied an ensemble of three pre-trained
single DCNNs with two image scales and achieved a clas-
sification accuracy of 95.00%. Furthermore, instead of using
the pre-trained DCNNs for classification task, we used them
for feature extraction of image patches, then we stacked
18 context-aware models over the three pre-trained DCNNs.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) Weighted average accuracy (WAACC ) for the included images on BACH dataset, (b) abstain percentage (Abs) of BACH dataset, (c) WAACC

for the excluded images on BACH dataset, (d) WAACC for BreakHis’ included images, (e) abstain percentage (Abs) for BreakHis’ excluded images, and
(f) Receiver Operating Characteristic (ROC) curves for the static and dynamic methods of MCUa Model using 5-fold cross validation on BACH dataset.

The ensemble process of 18 context-ware models yielded a
classification accuracy of 95.75% (MCUa static ensemble).

In the final stage of MCUa, we evaluated the contribution
of uncertainty-aware component, which is stacked over 18
context-aware models. This strategy introduces the machine-
confidence in the automated prediction of histology images.
The full version of MCUa (based on the uncertainty-aware
component) yielded a classification accuracy of 98.11%. This
justifies the effectiveness of using multi-scale input, multi-
architecture feature extraction, multi-level context-aware mod-
eling, and uncertainty quantification for the dynamic ensemble
mechanism.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel dynamic ensemble
of context-aware models, we called Multi-level Context and
Uncertainty aware (MCUa) model, to classify H&E stained
breast histology images into four classes including normal
tissue, benign lesion, in situ carcinoma, and invasive carci-
noma. MCUa model has been designed in a way to learn
the spatial dependencies among the patches in a histology
image by integrating multi-level contextual information into
the learning framework of deep convolutional neural networks.
Capturing the spatial relationships among the patches has been
accomplished using a pattern of neighborhood criteria through
multiple context-aware models. MCUa model has also an
uncertainty quantification component that allows for a dynamic
ensemble of the context-aware model to not only improve
the performance (by improving the learning diversity of the
model) but also quantify the difficulties in classifying images.
MCUa has achieved high accuracy of 95.75% and 98.11%

with both static ensemble and dynamic ensemble mechanisms,
respectively, on the BACH dataset, and outperformed other
related state-of-the-art models. In the future, we aim to extend
our MCUa to cope with semantic segmentation problem of
whole-slide images and study the effect of multi-level contex-
tual information on the robustness of the segmentation. An-
other research direction is to add an explainability component
to the MCUa model to understand the decision and internal
working mechanism of the model. Moreover, one can extend
MCUa by using Bayesian-based dynamic ensemble method
and compare the performance with current settings.
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