
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Dynamic Evaluation of Microservice Granularity Adaptation

SARA HASSAN, Birmingham City University, UK

RAMI BAHSOON and LEANDRO MINKU, University of Birmingham, UK

NOUR ALI, Brunel University London, UK

Microservices have gained acceptance in software industries as an emerging architectural style for autonomic, scalable, and more

reliable computing. Among the critical microservice architecture design decisions is when to adapt the granularity of a microservice

architecture by merging/decomposing microservices. No existing work investigates the following question: how can we reason about

the trade-off between predicted benefits and cost of pursuing microservice granularity adaptation under uncertainty? To address

this question, we provide a novel formulation of the decision problem to pursue granularity adaptation as a real options problem.

We propose a novel evaluation process for dynamically evaluating granularity adaptation design decisions under uncertainty. Our

process is based on a novel combination of real options and the concept of Bayesian surprises. We show the benefits of our evaluation

process by comparing it to four representative industrial microservice runtime monitoring tools which can be used for retrospective

evaluation for granularity adaptation decisions. Our comparison shows that our process can supersede and/or complement these tools.

We implement a microservice application — Filmflix — using Amazon Web Service (AWS) Lambda and use this implementation as a

case study to show the unique benefit of our process compared to traditional application of real options analysis.

CCS Concepts: • Computer systems organization → Heterogeneous (hybrid) systems; • Software and its engineering → Extra-
functional properties; • General and reference → Design; Evaluation.

Additional Key Words and Phrases: microservices, granularity, decisions, runtime, software economics

1 INTRODUCTION

Several industries have been leveraging microservices [14] — a more fine-grained and autonomic form of services — to

introduce added value to the software architecture. The added value can come in the form of the architecture’s ability

to cope with operation, maintenance, and evolution uncertainties aiming for cost-effective quality of service (QoS)

provision to end users.

One of the critical challenges related to the transition to a microservice architecture design is reasoning about its

suitable granularity level. A granularity level determines "the service size and the scope of functionality a service

exposes [36, p.426]." Granularity adaptation entails merging or decomposing functionalities across microservices;

thereby, moving to a finer or more coarse grained granularity. This problem is critical as software architects may not be

able to justify the value added of splitting decisions and its consequences on qualities. Architects may learn about the

suitable granularity levels, along the architecture’s lifetime, rather than at the beginning of transiting to microservices

[14].

The common industrial practice is to reason about microservice granularity adaptation through retrospective analysis,

using metrics and operations logs recorded at runtime by microservice monitoring tools [28, 40, 67]. Retrospective

reasoning can lead to cases where by time the decision to adapt granularity is made, the architecture may have already

suffered the negative consequences of an unsuitable granularity adaptation. We address the general lack of evaluation

processes which can aid architects in quantifying the potential added value of granularity adaptation and the fluctuation

Authors’ addresses: Sara Hassan, Birmingham City University, Millennium Point, Birmingham, UK, B4 7XG, Sara.Hassan@bcu.ac.uk; Rami Bahsoon,

r.bahsoon@cs.bham.ac.uk; Leandro Minku, l.l.Minku@cs.bham.ac.uk, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT; Nour Ali, Brunel

University London, Kingston Lane, London, UK, UB8 3PH, nour.ali@brunel.ac.uk.

1

HTTPS://ORCID.ORG/0000-0001-7481-0434
HTTPS://ORCID.ORG/0000-0002-1139-5795
HTTPS://ORCID.ORG/0000-0002-2639-0671
HTTPS://ORCID.ORG/0000-0002-0161-5600
https://orcid.org/0000-0001-7481-0434
https://orcid.org/0000-0002-1139-5795
https://orcid.org/0000-0002-2639-0671
https://orcid.org/0000-0002-0161-5600

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Hassan, et al.

of that added value over time; adaptation decisions can be then made as soon as the potential added value of the current

granularity level becomes inadequate.

Consider a running microservice application with a functionality and scale of Netflix — called NetWatch. It receives

around one billion streaming requests everyday [27]. Consider that NetWatch’s performance is being monitored at

runtime using AWS Cloudwatch indicating a deterioration in NetWatch performance. One possible resolution is for the

architect to pursue granularity adaptation assuming that it can improve NetWatch’s performance. However, it might

be the case that keeping the current granularity level may add more value to NetWatch than the value of immediate

performance improvement resulting from pursuing granularity adaptation. The added value is uncertain and can

fluctuate with changes in requirements and the environments ; the architect needs to factor uncertainty and its sources

is her/his predictions when valuing the decisions to pursue granularity adaptation (or not). Sources of uncertainty

include fluctuations in the number of end users, messages exchanged across microservices etc.

Granularity adaptation at runtime can be viewed as an exercise that can introduce an added value under uncertainty.

Examples of added value include improvement in load balancing and preventing bottlenecks on microservices that may

experience high loads. A counter argument may make a case for keeping the current granularity level unchanged if it

proves to have more added value compared to the value which can be introduced by granularity adaptation. This paper

aims at answering the following question: “how can the potential added value of granularity adaptation be evaluated

dynamically to determine when is it worth pursuing adaptation?” The central theme of this paper is that granularity

adaptation is only worthwhile if it will introduce added value to the architecture. The added value which can be enabled

by granularity adaptation is dynamic. It varies depending on usage scenarios and context, fluctuations in workload and

level of QoS provision. Henceforth, the potential added value of granularity adaptation is dynamic and can be best

tracked and analysed at runtime based on the observed runtime behaviour of the microservice architecture.

The novel contribution of this paper is two-fold. First, we provide a novel formulation of the decision problem

to pursue granularity adaptation as a real options problem. Second, we contribute to a novel evaluation process for

dynamically evaluating the granularity adaptation design decisions under uncertainty at runtime. Our process evaluates

potential added value through a novel hybrid combination of binomial real options theory [66] and the concept of

Bayesian surprises [9]; it is customised for the context of microservice granularity adaptation. Our process dynamically

determines at runtime if it would be worth adapting granularity from the perspective of introducing added value

[10]. Unlike classical design time of binomial options analysis in software architecture [48, 64], and [63], we apply the

analysis at runtime and we extend the formulation to cater for runtime changes in the potential added value. Bayesian

surprises quantify the divergence between uncertain beliefs (claims [9]) about a system’s runtime behaviour prior and

posterior to observing runtime evidence [9]. Our evaluation process uses Bayesian surprises [9] to enable binomial real

options analysis to do real time updates of added value in response to runtime evidence variable values (e.g., workload

variations).

On the methodological level, we use our AWS Lambda implementation of an online movie review microservice

application — called Filmflix — to demonstrate how our evaluation process goes beyond traditional application of real

options. Initially, we compare the usage of our novel evaluation process to the usage of four industrial microservice

monitoring tools in retrospective reasoning about granularity adaptation decisions. The comparison takes two forms:

(1) comparing the output of our process against that of AWS Cloudwatch and, (2) discussing the differences between

the features available in three other microservice monitoring tools and those provided by our process. This shows the

unique benefit of our process: linking microservice granularity adaptation to its potential added value under uncertainty.

Then we use our demonstration to show how our contribution is unique in revealing dynamic trends related to potential

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Dynamic Evaluation of Microservice Granularity Adaptation 3

added value of granularity adaptation at runtime in response to variations in workload. Finally, we discuss the ability of

our process to accommodate additional input to it.

Section 2 discusses related work. Section 3 presents our novel formulation of the granularity adaptation decision

problem as a real options problem. Section 4 describes traditional binomial real options analysis [66], Bayesian surprises

[9] then our novel evaluation process. Section 5 reports on the evaluation of the approach using Filmflix. Section 6

discusses threats to validity and Section 7 concludes with short- and long-term research directions.

2 RELATEDWORK

In Section 2.1, we describe representative approaches for reasoning about microservice granularity adaptation decisions

and how they compare to our work. In Section 2.2, we compare value-driven decision-making approaches in software

engineering to our novel usage of real options analysis. We focus particularly on value-driven approaches since they

are the closest to the central theme of this paper. In Section 2.3, we summarise previous usages of real options analysis

the field of software engineering to highlight the novelty of applying real options analysis in the microservices context.

In Section 2.4, we compare our evaluation process to relevant state-of-the-art runtime adaptation decision support

techniques to highlight the novelty of our contribution’s role.

2.1 Reasoning about Microservice Granularity Adaptation

The common industrial practice is to reason about microservice granularity adaptation through retrospective analysis,

using metrics and operations logs recorded at runtime by microservice monitoring tools (e.g., Amazon Web Service

(AWS) Cloudwatch [67], X-Pack [40], IBM Bluemix [28], and Riemann). For example, the architect could retrospectively

analyse the network latency and fault rate logs using fault monitoring and diagnostic tools then determine which

problems can be resolved by adapting microservice granularity levels. As an example, if the logs indicate latency across

the microservices, the architects might reason that this latency can limit the architecture’s ability to scale and/or to

meet its performance requirements. They can then decide to adapt the granularity. Retrospective reasoning does not

quantify the potential added value of granularity adaptation decisions (e.g., [21] [38]) and/or consider the uncertainty

related to the suitability of these decisions (e.g., [56]). Both aforementioned gaps are targeted and addressed by our

contributions in this paper.

The common practice in developing microservices is to use design patterns; the practice can implicitly or explicitly

inform reasoning about granularity. Examples of documented guidelines to support this reasoning include [21, 38, 44, 52]).

Moreover, microservice-specific design patterns and best practices that can influencemicroservice granularity adaptation

decisions have been proposed (e.g., [26, 35, 46, 47, 65, 68], and [50]). Our search yielded around 30 microservice-specific

approaches, some of which have been applied in industry. Among the factors considered when reasoning about

granularity: performance, reliability, scalability, maintainability, and complexity. The use of guidelines, patterns, and

best practices could help achieve a reasonable granularity, but they do not objectively evaluate for the added value of

adopting any of these patterns. Our process can complement these guidelines by dynamically evaluating the added

value related to each candidate patterns along its objective performance.

2.2 Value-Driven Decision-Making Approaches

Perhaps the closest to our formulation of the granularity adaptation problem are the approaches presented in [48, 63, 64]

where refactoring the architecture is regarded a value-bearing investment. However, these approaches are only applied

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Hassan, et al.

statically at design time. In our work, we go beyond static evaluation at design time and apply it in a runtime context to

track the added value of granularity adaptation in dynamic microservice environment.

Similar to our approach, net present value captures the notion of enabled opportunities in terms of direct cash flow

generated [61]. However, net present value does not capture uncertainty when evaluating opportunity cost/options [16].

In this paper, we tailor traditional real options analysis to make it a dynamic rather than static value-driven approach.

Our approach captures dynamics in the operating environments and in QoS fluctuations and how these dynamics can

impact real option values.

In [4], a cost benefit analysis method (CBAM) is proposed as a generic architecture evaluation method which utilises

techniques in decision analysis, optimisation, and statistics to evaluate architectural design decisions. However, CBAM

does not dynamically track and update the added value of architectural decisions.

2.3 Previous Usages of Real Options Analysis

Real options theory has been used in many fields including but not limited to: systems design and engineering

[8], software refactoring [63] and COTS-centric development [18], Extreme Programming [17], cloud computing

and technical debt [2]. Our work however is the first to apply real options analysis in the context of microservice

architectures.

2.4 Runtime Adaptation Support for Service-oriented and/or Microservice Architectures

In terms of functionality, the closest we have encountered to our evaluation process is the ASTRO-CAptEvo orchestration

framework [33]. It is a runtime framework that allows partial definition of business processes for service-based systems

at design-time and their subsequent refinement at runtime. Similar to our contribution, the framework takes a runtime

approach to decision-making. However, the decision problem targeted by ASTRO-CAptEvo is service composition

rather than microservice granularity and value-driven decision-making.

More specific to microservices is the MicroADS approach in [34]. This work takes an automated approach to optimise

the performance and scalability of the microservice architecture based on a given runtime workload. Using workload

to inform decision-making is similar to our use of runtime variables to justify granularity adaptation. However, the

MicroADS does not analyse the value-driven ramifications of optimising performance and scalability. In fact, we envision

MicroADs can benefit from enriching its reasoning with our proposed evaluation process.

Looking at experiences from microservice adopters, [39] promotes the use of service choreography rather than

orchestration for Java microservice applications. In particular, choreography is where each system understands how to

react to changes in the environment rather than employing the traditional business process of following orders. Even

though this approach takes a runtime approach just like our contribution, our contribution is proactive rather than

reactive. In particular, our use of real option values is a more cautious approach that promotes granularity adaptation

to enable added value that can be exploited in the future once an opportunity appears. We envision that [39] can be

leveraged with insights from our evaluation process to allow for proactive value-driven choreography of microservices.

An example of orchestration for large microservice adopters is the Netflix application programming interface (API)

[51, 54] which exposes coarse grained APIs by composing fine-grained functionality provided by the microservices.

However, Netflix API reasons about service composition in a technical rather than value-driven manner. Similar to the

above approaches, the Netflix API experience can be enhanced with a value-driven dimension by utilising the output of

our evaluation process as a trigger for adapting the granularity of the exposed APIs.

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Dynamic Evaluation of Microservice Granularity Adaptation 5

3 PROBLEM FORMULATION

In this section, we formulate the problem of evaluating the worth of pursuing granularity adaptation as a real options

problem. A real option is an investment decision that can be taken under uncertainty as a right but not with no obligation

to [45]. In the context of software architecture, different types of real options have been utilised including the option to

switch, defer, explore, expand or stage investments [48] and [63]. In our case, the real option is enabled by microservice

granularity adaptation and hence granularity adaptation can be mapped to a real option problem as follows:

(1) Granularity adaptation can be viewed as an architectural decision, that if made, may enable real options that

enhance the system utility. (e.g., MovieReview performance). The real options enabled by granularity adaptation

give architects the right without a symmetric obligation to reap their benefit(s).

(2) The value of the real options enabled by granularity adaptation is uncertain due to fluctuations in the microser-

vice runtime environment (e.g., in workload volumes).

(3) Uncertainty regarding the value of architectural potentials can be updated given runtime observations of the

microservice architecture and its runtime environment.

Answering the question of when is it worth pursuing granularity adaptation, we probe for an answer for:

• RQ1:What is the potential added value of pursuing granularity adaptation (related to the first point above)?

• RQ2: How can uncertainty regarding this potential added value be captured (related to the second point above)?

• RQ3: How can this uncertainty be updated in the face of runtime observation of the microservice architecture

and its running environment (related to the third point above)?

4 DYNAMIC EVALUATION OF MICROSERVICE GRANULARITY ADAPTATION

In this section, we explain how our process dynamically evaluates at runtime the added value of pursuing granularity

adaptation versus keeping the current granularity level unchanged. Our process is iterative as it evaluates the added

values then suggests pursuing granularity adaptation or not at the end of each iteration. Section 4.1 describes the Filmflix

architecture, our running example used in the following subsections. Sections 4.2 and 4.3 explain our utilisation of

traditional binomial real options analysis [66] and Bayesian surprises [9]. Section 4.4 describes our proposed evaluation

process which is a novel combination of the aforementioned theories customised for the context of microservice

granularity adaptation.

4.1 Filmflix: A Running Example and Evaluation Case

Filmflix is a hypothetical online movie review microservice application inspired by the functionality and scale of Netflix-

amongst the largest microservice adopters. Its initial architecture contains three microservices: (1) ReviewRegulation,

implementing the regulation of movie reviews, (2) ReviewUpload, managing the user input requirements when uploading

a review and, (3) MovieReview, capturing input from the user through a user interface. We consider that the move to

microservices is driven by enhancing the performance of Filmflix where the expected runtime workload (number of

reviews sent to Filmflix) is high. We consider the invocation duration and the length of each review received (measured

by number of sentences per review) as the runtime variables that the Filmflix’s utility is sensitive to. Our contribution

utilises these variables to inform runtime decisions about whether the Filmflix architecture should be adapted or not.

It is worth noting that choosing the specific granularity adaptation strategy (e.g., merging ReviewRegulation and

ReviewUpload or decomposing ReviewRegulation into two microservices) is beyond the scope of our contribution.

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Hassan, et al.

4.2 Utilising Binomial Real Options Analysis

There are several models for evaluating real options (e.g., Black and Scholes [13], Monte-Carlo methods [23], and finite

difference methods [60]). Among the examples of real options is that of Baldwin and Clark’s theory [8]; it studies the

real options embedded with a modular software architecture design. The theory defines a model for reasoning about the

value added to a base system by modularising it. The theory originated from studying the impact of modularised design

on structure of a computing industry. The study revealed that "modularity in computer designs caused the industry

to evolve from its initial concentrated structure to a highly dispersed structure. Modularity allows design tasks to be

divided among groups that can work independently and do not have to be part of the same firm." Consequently, this

theory aims to study how modularity can be attained in software architectures, how this can enable modular design

evolution (i.e., create real options) and how economic incentives in each module can be exercised autonomously (i.e.,

exercising the real options). A particularly relevant type of real options to our case is the call option — it is related to

buying a stock, bond, commodity or other instrument at an exercise price at any point within a specific time period

before the option expires (according to the American view of options). Baldwin and Clark’s theory aims to map and

quantify the option value of modular software architecture designs. This theory has been applied in multiple complex

system contexts (e.g., [57, 59, 62, 69], and [41]).

In the context of Baldwin and Clark’s theory, modularising a design entails using operators to change the design of

an architecture into modules to embed real options. Microservices granularity adaptation can be seen as a generalisation

of the modularisation exercise. Granularity adaptation has been specifically used in the context of microservices to

mean merging or splitting functionalities into microservices according to a systematic granularity adaptation strategy

[26].

Though granularity adaptation and modularisation exhibit resemblance, there is fundamental differences between

the two because of : 1) granularity adaptation takes place in a relatively more dynamic environment compared to

modularisation and, 2) modularisation is driven by modularity enhancement and maintainability, while granularity

adaptation is often driven by enhancing other microservitization utilities (e.g., autonomy, replaceability, and/or QoS

provision measured in terms of performance). However, they both agree on the notion of encapsulating functionalities

within boundaries according to a particular driver. We use inspiration from the theory of Baldwin and Clark along two

dimensions: 1) we formulate the granularity adaptation decision problem as a real option problem and, 2) we evaluate

the added value of real options related to pursuing granularity adaptation. However, our approach to evaluation is

different from Baldwin and Clark: firstly, our work is the first to transit binomial real options analysis to runtime

(addressing question 3 in Section 3) as opposed to static design-time traditional usage of this theory. Bayesian surprises

[9] enable binomial real options analysis to update added value predictions at runtime in response to runtime evidence

variable values (e.g., workload variations). Secondly, granularity adaptation can be evaluated relative to the drivers of the

exercise and to the added value of the architectural utility; the traditional usage of Baldwin and Clark’s theory focuses

on modularity as the architectural utility of concern. Additionally, our choice of binomial real options analysis is due to

the flexibility it provides in using the architects’ estimates for potential rises or falls in the value of the architectural

utility over time given a certain granularity level. Traditional use of binomial real options in software engineering (e.g.,

[48]) relies on the architects’ expectations or publicly available cross-company data to inform real option evaluation.

These sources can provide insights regarding potential improvement of architectural utilities due to an investment

in the architecture. Our initial value capture is consistent with classical work where we use utility trees. Unlike the

classics, we update these values at runtime as explained in Section 4.4.

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Dynamic Evaluation of Microservice Granularity Adaptation 7

Suppose that the architect is interested in valuing two real options related to adapting and not adapting the granularity

of the initial Filmflix architecture. In our work, we use two binomial trees. One binomial tree is used to evaluate the Real

Option Value (ROV) of real options that can be enabled if the decision is made to pursue granularity adaptation. An

example is the real option to improve the performance of Filmflix by minimising invocation duration. Similarly, another

binomial tree is used to evaluate the ROV retained by not adapting granularity. In the following three paragraphs, we

use Figures 1 and 2 to explain different parts of constructing binomial trees.

Fig. 1. Example traditional binomial real options analysis tree calculating the Architectural Values (AVs) (e.g., the overall value of a
microservice architecture where the granularity is adapted by merging microservices together to improve the application’s invocation
duration) and real option values (ROVs) for a single real option embedded in the architecture and it is exercised at timestamp 1. The
ROV rises at rate RROV with probability P(RiseROV0) or falls at rate FROV with probability P(FallROV0), an example of a binomial tree

Fig. 2. Example utility tree of an architecture; cells A,B, and C have utility values (VTree) (e.g., the utility resulting from improving the
invocation duration of an architecture by merging microservices together) used to calculate AVs of the respective cells A,B, and C in
Figure 1

The bottom parts of the cells (ROVs) in Figure 1 show the real option values at different timestamps. The timestamp

t=0 is when the decision of adapting the granularity or not needs to be taken. They represent the value of embedded

opportunity alone (e.g., to improve Filmflix performance). The numbers in the bottom cells of Figure 1 represent

examples of ROVs calculated for real options embedded in Filmflix. On the other hand, the top parts of the cells represent

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Hassan, et al.

the overall architectural value including the real option values in the corresponding timestamp. The numbers in the top

cells of Figure 1 represents examples of AVs calculated if a decision to pursue granularity or not is made focused on QoS

improvements in Filmflix. These AVs are calculated using utility trees such as the one shown in Figure 2.

Figure 2 shows the likely improvement to the overall architecture’s utility upon investing in a design decision

(either adapting or not adapting granularity) at different points in time with the aim of delivering on architectural QoS

improvement. For example, the utility tree numbers in Figure 2 quantify the improvement in architectural value of

Filmflix if the decision to pursue granularity adaptation or not is made focused on QoS improvement.

The output of a binomial real options analysis tree is the value in the bottom part of cell A in Figure 1. ROV0
represents the present real option value if it were to be exercised once at the final timestamp of a single binomial

tree — Ft. This output is produced at the end of 2 stages in Figure 1: 1) the forward pass, which involves calculating

the AVs starting from cell A then, 2) the backward pass, which involves calculating ROVs starting from cells B and C

then moving backward. In the context of Filmflix, ROV0 can mean the present value of improving the performance the

architecture if granularity adaptation (or not) was pursued at timestamp Ft .

We interchangeably refer to the timestamp in which an option is exercised as the last timestamp of a binomial tree

(Ft) or the option exercising timestamp (et). In the following paragraphs, we explain each component of the binomial

trees in more detail. We use the values in Figures 2 and 1 as running examples to clarify each component.

Architectural value (AV): traditionally architectural value is likened to a financial stock’s value. Architectural value

quantifies the potential value of the overall architecture [48] when an improvement in an architectural utility (e.g.,

performance provision) would be obtained by granularity adaptation or retained by keeping the current level of

granularity. Each AV quantifies the potential value of the overall architecture including utility in the corresponding

utility tree cell. Values in the utility tree cells are elicited from architects’ expectations, publicly available cross-company

data, and/or architects’ previous experiences with similar architectures. Each architectural value (AVt) in each timestamp

t is calculated using Eq. (1) in the first stage — the forward pass in Figure 1 — of constructing the tree.

𝐴𝑉𝑡 = 𝑉𝑎𝑙𝑢𝑒0 +𝑉𝑇𝑟𝑒𝑒 (1)

where Value0 is the assumed value of themicroservice architecture before we apply the options analysis.We acknowledge

that Value0 can represent architectural value whenever architects decide to utilise binomial real options analysis. Our

assessment of it is consistent with the classical work of [48], where that value is used based on cost-benefit analysis of

the satisfaction of the architecture to concerns of interests, where the valuation is elicited through the involvement of

experts judgements and/or though the review of system operational logs (if available). This is certainly domain and

case specific; it also depends on the scenarios used for valuation. For our work, we assume that the baseline value

is provided, either systematically (e.g., through the use of widely used architecture evaluation methods for cost and

benefits - e.g., ATAM [30]) or by using back-of-the-envelope expert judgement on the initial value potentials. Similar to

the classical work of [48], we consider that expert judgements, publicly available data benchmarks, and/or previous

experiences of microservice adopters are used to elicit Value0.

VTree is the value V of the cell in utility tree Tree corresponding to binomial tree cell for which AVt is calculated

following traditional approaches in software engineering. In Figure 1, we consider the Value0 to be 1750 by using AWS

pricing tariffs for estimations. Consequently, the AV in cell A for example in the result of adding 1750 to 239.4. (the

value in cell A of Figure 2)

Real option value rise rate (RROV) or fall rate (FROV): this refers to the expected rate of real option value rise or fall at

timestamp t with respect to timestamp t-1 [3, 48]. In the context of Filmflix for example, this refers to the rate at which

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Dynamic Evaluation of Microservice Granularity Adaptation 9

the value of scaling Filmflix — the example real option embedded in Filmflix — would rise or fall across timestamps. It

corresponds to the improvement/deterioration in the architectural value at timestamp t with respect to timestamp t-1,

calculated as follows:

𝑅𝑅𝑂𝑉 = 𝐴𝑉𝑟𝑎𝑖𝑠𝑒𝑑𝑡 /𝐴𝑉𝑡−1 (2)

𝐹𝑅𝑂𝑉 = 𝐴𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑡 /𝐴𝑉𝑡−1 (3)

where AVraisedt is the raised architectural value AV for current timestamp t. AVt-1 is the architectural value at the

previous timestamp t-1. AVreducedt is the reduced architectural value AV for current timestamp t. In our work, we use

the same definition and formulas for real option value rise/fall rates as traditionally used in [3, 48]. RROV and FROV
values in Figure 1 are calculated using Equations (2) and (3). For example, 1.03 is the result of dividing 2052.5 by 1989.4

as per (2).

Probability of real option value rise P(RiseROV) / P(FallROV): this is a risk-neutral probability of real option value

rise/fall, calculated based on Equations (4) and (5), respectively. The calculation includes a pre-defined risk-free interest

rate IR representing the expected fluctuations in demand for the system [48]. The value of IR can be elicited from

architects’ expectations or publicly available cross-company data.

𝑃 (𝑅𝑖𝑠𝑒𝑅𝑂𝑉) =
(1 + 𝐼𝑅)

(𝑅𝑅𝑂𝑉 − 𝐹𝑅𝑂𝑉) ∗ (100 − 𝐹𝑅𝑂𝑉)
(4)

𝑃 (𝐹𝑎𝑙𝑙𝑅𝑂𝑉) = 1 − 𝑃 (𝑅𝑖𝑠𝑒𝑅𝑂𝑉) (5)

The P(RiseROV) and P(FallROV) values in Figure 1 are calculated using Equations (4) and (5). We consider the IR to be

0.01 in Figure 1. 0.51 in this Figure is the result of applying Eq. (4).

Real option value (ROV): the real option value quantifies the potential added value if the option is exercised. In the

context of Filmflix this could be the value of exercising the option to scale Filmflix. The real option values in a single

binomial analysis tree are calculated using the equations below in the second stage — backward pass in Figure 1 — of

constructing the tree. The real option value (ROVet) in the final timestamp/option exercising timestamp et of a tree is

calculated using Eq. (6). All ROVt where t≠et are calculated using Eq. (7).

𝑅𝑂𝑉𝑒𝑡 = 𝑀𝐴𝑋 (0, 𝐴𝑉𝐹𝑡 −𝑀𝐶) (6)

𝑅𝑂𝑉𝑡 =
𝑅𝑂𝑉𝑟𝑎𝑖𝑠𝑒𝑑𝑡+1 ∗ 𝑃 (𝑅𝑖𝑠𝑒𝑅𝑂𝑉𝑡)

100

+
𝑅𝑂𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑡+1 ∗ 𝑃 (𝐹𝑎𝑙𝑙𝑅𝑂𝑉𝑡)

100

∗ (1 + 𝐼𝑅)
100

(7)

where AVFt is the architectural value at Ft and MC is the estimated maintenance cost of the architecture. ROVraisedt+1 is

the raised and ROVreducedt+1 is the reduced real option value at the following option exercising timestamp t+1 of the

backward pass. In Figure 1, ROVs are calculated using AVs in the corresponding cells. We consider the MC for these

calculations to be 500.

We assume the maintenance cost to include the activities required for the health of a running architecture[12, 48]

(i.e., the adapted or un-adapted one) rather than those required for adapting its granularity. These include development,

configuration, securing communication links, and implementing data translation layers. Our process is flexible, making

it possible to integrate coarse-grained cost models (e.g., CostHat [37]) or finer-grained ones, if historical data is available

(e.g., expert judgements, cross-company data, what-if analysis using a simulated ambient environment) to calculate the

maintenance cost. The maintenance cost estimation is assumed to be constant, unless further data becomes available.

At the end of the backward pass, the bottom part of the base cell in the tree (cell A in Figure 1) shows the present

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Hassan, et al.

real option value if the option were to be exercised only at the last timestamp Ft. However, as the potential value of

exercising an option is time sensitive, we have assumed the American view of options (i.e., option can be exercised at

any point before it expires [3]). Exercising an option can enable multiple options (i.e., compound options[29]). Total

real options ROVtotal is calculated using Eq. (8):

𝑅𝑂𝑉𝑡𝑜𝑡𝑎𝑙 = (
𝑖=𝐹𝑡∑︁
𝑖=0

𝑅𝑂𝑉𝑡=0𝑖) − 𝑅𝐶 (8)

where i is a counter for the intermediate binomial trees, ranging from 0 to the final timestamp Ft and RC is the

re-structuring cost — the cost of pursuing granularity adaptation. This cost may include taking the microservices of

concern offline, then encoding and enforcing a chosen granularity adaptation strategy and finally re-deploying the

adapted architecture. Similar to maintenance cost, several fine- or coarse-grained cost models can be used to elicit the

re-structuring cost for all of these activities related to pursuing granularity adaptation. Eq. (8) adds the real option value

in the base cells (ROVt=0i) of multiple binomial trees (each capturing a different range of timestamps) then deducts the

re-structuring cost. Our process is flexible, allowing using cost model to estimate the re-structuring cost (e.g., expert

judgement and/or cross-company-data) when calculating the re-structuring cost. The upper bound of the maximum

range covered by intermediate trees (i.e., Ft in Eq. 8) corresponds to the real option’s expiry date, after which the real

option (e.g., scaling the architecture by replication across rented application servers) becomes unavailable to exercise

(due to the application server’s lease end for example). ROVt=0i is the real option value in the base cell t=0 of the ith

intermediate binomial tree.

To take a decision of adapting the granularity or not, the architect can compare ROVtotal of the real options in the

adapted and un-adapted architectures at runtime. If adapting has larger ROVtotal, it is worth adapting the granularity.

Section 4.4 shows how to combine real options analysis with Bayesian surprises, so that ROVtotal can be adapted at real

time in response to runtime evidence.

4.3 Utilising Bayesian Surprises

Fluctuations in QoS provision at runtime tend to affect the utility of the system which can impact added value. For

example, fluctuations in Filmflix’s performance can impact end users’ rate of uploading reviews, thereby impacting

the added value embedded in Filmflix’s architecture. Therefore, estimates of rise/fall probabilities in real option values

based on expert judgements or cross-company data for example can suffer from under- or over-estimation due to the

dynamic behaviour of architecture and/or the architects’ imperfect knowledge of the highly dynamic microservice

environment.

Therefore, instead of taking a fixed estimation for the probability of rise/fall in real option values, we continuously

update these probabilities at runtime making use of runtime observations of QoS provision and fluctuations of workload.

For example, consider a situation where runtime observations of Filmflix invocation duration and incoming movie

reviews show that a high volume of reviews can negatively impact Filmflix’s invocation duration. This in turn can raise

the probability of real option value rise associated with pursuing granularity adaptation aiming to improve Filmflix

invocation duration. This rise is effective provided that a high volume of requests is expected to continue.

Bayesian surprises quantify the divergence between beliefs (claims [9]) about the system’s behaviour prior and

posterior to observing runtime evidence [9]. No divergence means the belief is verified leading to zero Bayesian

surprise. The larger the magnitude of the surprise the more evidence there is regarding the belief violation. The

concept of Bayesian surprises has been applied in the context of self-adaptive systems (e.g.,[49] and [25]). In these

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Dynamic Evaluation of Microservice Granularity Adaptation 11

applications, Bayesian surprises are used to "identify new situations (regarding the software architecture’s behaviour

or the environment in which it operates) where the current preferences may need to be re-evaluated to improve the

levels of satisfaction of non-functional requirements [49]". Bayesian surprises have not been applied in the context of

microservices nor have they been combined with real option analysis previously. We use Bayesian surprises to quantify

the significance of runtime evidence in updating beliefs about the system’s likely runtime behaviour. We then use

Bayesian surprises to update the probabilities of rise/fall in real option values. Our work is the first to combine Bayesian

surprises with real options analysis and the first to apply it in the context of microservice granularity adaptation.

In this work, we consider a claim that articulates uncertain beliefs in the context of end user workloads. Assume the

scenario where Netflix receives around one billion streaming requests everyday [27]. In this context, the end users are

Netflix subscribers, the workload is the amount of streaming requests and the claim articulates the architects’ belief

about how much the QoS provision of the overall architecture is affected by fluctuations in the streaming workload. A

claim capturing this can be articulated as follows:

• if end user workloads are greater than a pre-defined workload threshold then the QoS provision always becomes

worse than a QoS threshold and,

• if QoS provision is worse than a QoS threshold, this is always caused by the end user workload exceeding the

pre-defined workload threshold.

Other claims can be articulated assessing the impact of other contexts (e.g., organisational changes) on QoS.

When the binomial trees are initially constructed in our process, they are constructed assuming a claim holds true.

However, this claim can be assessed at runtime; if it is violated this calls for updating the trees at runtime since behaviour

of the architecture is not as initially expected. Thereby the values which can be enabled by adapting granularity or

not (which are captured in the binomial trees) are not as initially believed. We acknowledge that this route could be

supplemented in future research with updating the claim thresholds to reflect the runtime evidence on the architects’

beliefs. Below, we explain several concepts necessary to understand how Bayesian surprises work.

Runtime evidence variables (REV): these are variables monitored at runtime; their values indicate violation or

verification of claims. Runtime evidence variables are pairs of each end user workload and corresponding QoS attribute

value recorded at runtime. These pairs are chosen to observe whether the architecture meets the pre-defined thresholds

articulated in the claim or not at runtime.

Claim prior probability P(Claim): this is the probability of a claim to hold true before observing runtime evidence

variables [9]. For example, there is no means of ensuring at design time whether QoS provision will indeed be within the

pre-defined threshold and the workload will be as articulated in the claim. Therefore before a microservice architecture

is deployed, the claim prior probability holding true is assumed to be 0.5. Since there is no runtime evidence observed,

there is an equal likelihood of the claim holding true or being violated at runtime. Thereafter, the prior probability of

the claim is carried over at runtime before observing new runtime evidence variable values. At a high level therefore

the P(Claim) value depends on the availability of evidence related to the architecture’s behaviour prior to assessing the

claim.

Claim posterior probability P(Claim | REV): this is the probability of the claim to hold true assessed in the light

of observing relevant evidence (REV). In our process, the claim posterior probability is only different from the prior

probability if the runtime evidence violates the claim. Our process is flexible regarding the method used to estimate the

posterior probability. Crucially though, this method has to capture the dependence between runtime end user workload

and QoS recorded values (e.g., by using Bayesian networks [55]) rather than assuming independence between them

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Hassan, et al.

(e.g., Naive Bayes [55]). In context of the example claim above, QoS provision depends on the workload and the claim

holding true in turn depends on both.

Bayesian surprise (Sclaim): this is the divergence between the claim prior and posterior probabilities, calculated using

Eq. 9 [9]:

𝑆𝑐𝑙𝑎𝑖𝑚 = 𝑃 (𝐶𝑙𝑎𝑖𝑚 |𝑅𝐸𝑉) ∗ log 𝑃 (𝐶𝑙𝑎𝑖𝑚 |𝑅𝐸𝑉)
𝑃 (𝐶𝑙𝑎𝑖𝑚) (9)

Bayesian surprises only measure the magnitude of the divergence given runtime evidence variable values (REV in Eq. 9)

regardless of the direction (good or nasty surprise). The larger the magnitude of Sclaim, the larger the update regarding

beliefs (articulated in the form of claims) about the system behaviour. Sclaim can take continuous values starting from

zero.

In this paper, we elicit this direction by comparing the trends of QoS attribute values against end user workload

values. A good surprise occurs if the QoS attribute values improve over time even though the end user workload is

above the pre-defined workload threshold. A good surprise promotes keeping the current microservice granularity level.

For example, if the QoS provision is within the QoS threshold articulated in the claim when the workload is beyond the

respective threshold in the same claim, this is a good surprise. In other words, the microservice(s) is behaving better

than expected, calling for not adapting. Therefore if Sclaim is good, it is used to update the binomial tree of not adapting.

A nasty surprise occurs if the QoS attribute values deteriorate over time even though the end user workload is below

the pre-defined workload threshold. Intuitively, a nasty surprise promotes granularity adaptation. For example, if the

QoS provision is beyond the QoS threshold articulated in the claim when the workload is within the respective threshold

of the same claim, this is a nasty surprise. In other words, the microservice(s) is behaving worse than expected, calling

for granularity adaptation. Therefore if Sclaim is nasty, it is used to update the binomial tree of adapting.

Bayesian surprise tolerance threshold — in percentage (TS), in corresponding exact value (T𝑒𝑥𝑎𝑐𝑡𝑠): in[25], a surprise

tolerance threshold is pre-defined for every claim to indicate the criticality of the QoS attributes captured in it to the

software architects. Only if the Bayesian surprise triggered on the claim exceeds this threshold will action be taken.

In our context, this action is updating the probability of option rise for granularity adaptation or for keeping the

current architecture at runtime. For every claim, this tolerance threshold is defined at design-time as a percentage by

the software architect (TS in Eq. 10). The higher this percentage the less critical the QoS attribute is to the software

architects. The exact value (T𝑒𝑥𝑎𝑐𝑡𝑠 in Eq. 10) to which this percentage corresponds is calculated during every runtime

iteration of our process given a record of the Bayesian surprises triggered in the previous runtime iterations using Eq.

10.

𝑇 𝑒𝑥𝑎𝑐𝑡
𝑆 = 𝑇𝑆 ∗ (𝑆𝑐𝑙𝑎𝑖𝑚𝑚𝑎𝑥

− 𝑆𝑐𝑙𝑎𝑖𝑚𝑚𝑖𝑛
) (10)

where Sclaimmax is the maximum triggered Bayesian surprise on the claim so far and Sclaimmin is the minimum triggered

Bayesian surprise on the claim so far. TSexact always gets tighter as more runtime evidence is acquired. The larger the

range of triggered surprises, the larger the difference between one T𝑒𝑥𝑎𝑐𝑡𝑠 and the next.

4.4 Proposed Dynamic Evaluation Process

Our novel process determines whether or not it is worth pursuing adaptation at each runtime iteration of our process.

We contribute to a novel evaluation process for dynamically evaluating the worth of pursuing granularity adaptation.

It uses the runtime evidence to update at real time the potential added value of pursuing granularity adaptation. It

extends traditional real options analysis, thereby being the first contribution which enables using real options analysis

at runtime. Bayesian surprises are used to update the probabilities of real option rise or fall in traditional binomial trees.

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Dynamic Evaluation of Microservice Granularity Adaptation 13

This enriches traditional binomial real option analysis with the impact of runtime evidence on the real option values. In

our process, the added value calculation continuously calibrates evidence variables observed over runtime iterations.

In this section we explain the inputs, process, and outputs of our process. We complement this explanation with

Appendix A which includes a more concrete example of applying our process. It uses the same setting which we use in

our evaluation. Appendix A shows which values are plugged into which equations in order, and how the equations lead

our process’s output in a single iteration.

4.4.1 Inputs. We formulate the inputs of our process benefiting from the concepts described in Sections 4.2 and 4.3. Our

inputs capture the potential likely cost and benefit as well as runtime dynamics related to adapting and not adapting

granularity. Software architects can follow these steps when providing input to our process.

(1) Within the microservice monitoring tool of interest, software architects need to determine which microservices

are going to be monitored at runtime using this tool and reasoned about using our process. Our process is flexible

regarding the scope of microservices input to it; the input could be a single microservice or multiple interdependent

microservices. It is worth noting that all inputs in the following steps will be concerning the scope determined

in this step. For example, maintenance and re-structuring costs are estimated for the overall pre-defined scope of

concern. The same reasoning applies to the inputs related to calculating Bayesian surprises. The pre-defined scope

is monitored at runtime for QoSs of concern. Where the scope entails multiple microservices the overall QoS is

monitored at runtime rather than the individual microservices.

(2) Within a tool support for our process, the software architect needs to provide the following inputs for claim

articulation (see Section 4.3):

(a) Runtime evidence variables: the QoS attribute indicated by the architects to be monitored at runtime to assess

the validity of the claim. Without loss of generality, we assume that larger values indicate worse QoS. We

consider the end user workload to be the other runtime evidence variable to be recorded at runtime along with

the indicated QoS attribute. End user workload will measure the runtime end user interest in the QoS attribute

indicated by the software architect;

(b) QoS attribute threshold: the QoS value above/below which QoS of the monitored microservice(s) is considered

by software architects to be unacceptable. A single QoS threshold is required for each claim to be assessed by

our evaluation process. The exact threshold value depends on criticality of the QoS attribute to the software

architect; the more critical a QoS attribute, the tighter the value of QoS attribute threshold would be.

(c) End user workload threshold: the end user workload value below/above software architects expect the monitored

microservice(s) to miss a QoS attribute threshold. A single end user workload threshold is needed for each

articulated claim. The exact end user workload threshold for each claim can be determined by software

architects’ experience regarding the microservice environment, expert judgements, publicly available data

benchmarks, and/or previous experiences of microservice adopters.

(3) Within a tool support for our process, the software architect needs to provide inputs for Bayesian surprise calculation

(see Section 4.3):

(a) Claim prior probability, and, b) Bayesian surprise tolerance threshold.

(4) Within a tool support for our process, the software architect needs to provide inputs for binomial tree construction

(see Section 4.2):

(a) Re-structuring cost, b)Maintenance costs for the adapted and un-adapted architectures, c) Initial architectural

value of the adapted and un-adapted architecture, d) Utility trees for adapting and not adapting, and, e) Option

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Hassan, et al.

expiry date: the predicted number of binomial tree timestamps (in unit days, months or years) corresponding

to the option expiry date. The same numeric value is used for the un-adapted/adapted architectures for fair

comparison of the total real option values.

In Section 5.4, we report on a tool support which can be used to follow the above.

4.4.2 Process. We contribute to a novel evaluation process for dynamically evaluating the worth of pursuing granularity

adaptation. In every runtime iteration of our process, it solicits and monitors runtime evidence then feeds it into

calculating and updating added value. Pseudocode (shown in Alg. 1) — AddedValueUpdate — presents our proposed

evaluation process and Table 1 defines the acronyms used in the pseudocode. Initially, AddedValueUpdate assumes

Algorithm 1 The pseudocode presenting our proposed process; Table 1 defines the acronyms used in the pseudocode

1: procedure AddedValueUpdate
2: Input: RC, MCs Value0,Trees,Ft, Qri name, Tw, Tq, Pclaim, Ts
3: Claim: [Wri > Tw ↔ Qri > Tq]

4: for each ri do
5: if ri=0 then
6: Construct Binomial Real Options Trees for Adapting and Not Adapting using Value0, Trees, Ft, MCs

7: else
8: Carry Binomial Real Options Trees for Adapting and Not Adapting from ri-1

9: end if
10: Solicit and Monitor Q and W

11: Calculate S
claim

and Ts exact

12: if S
claim

=0 OR (S
claim

< Ts exact) then
13: Go to next iteration

14: else if (Qri > Qri-1) AND W < Tw) then ⊲ nasty surprise
15: P(RiseROV

adapting
) * S

claim
/T

𝑒𝑥𝑎𝑐𝑡
𝑠

16: else if (Qri < Qri-1) AND W > Tw) then ⊲ good surprise
17: P(RiseROV

not adapting
) * S

claim
/T

𝑒𝑥𝑎𝑐𝑡
𝑠

18: end if
19: Re-calculate ROV

total

adapting
and ROV

total

not adapting

20: if ROV
total

adapting > ROV
total

not adapting then
21: Suggestionri=Yes

22: else
23: Suggestionri=No

24: end if
25: Output: ROV𝑎𝑑𝑎𝑝𝑡𝑖𝑛𝑔

𝑡𝑜𝑡𝑎𝑙
, ROV

𝑛𝑜𝑡𝑎𝑑𝑎𝑝𝑡𝑖𝑛𝑔

𝑡𝑜𝑡𝑎𝑙
, Suggestionri

26: end for
27: end procedure

the software architects formulate their belief about the system’s runtime behaviour in the form of a claim articulated

as Line 3. A claim is articulated using an input end user workload threshold (Tq) and a corresponding input QoS

attribute threshold (Tq). For example, consider the following claim: “workload > 100 requests ↔ Invocation duration >

1 millisecond". This claim is read in two ways:

• if a microservice(s) receives more than 100 parallel requests, then the invocation duration will always be more

than 1 millisecond and,

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Dynamic Evaluation of Microservice Granularity Adaptation 15

Table 1. AddedValueUpdate acronym definitions

Acronym Term

RC Re-structuring cost of granularity adaptation

MCs Maintenance costs for the adapted and un-adapted architectures

Value0 Initial architectural value

Trees Utility trees for adapting and not adapting

Ft Final timestamp of a single tree (or overall option expiry date)

Qri name QoS attribute name at runtime iteration ri

Tw Workload threshold

Tq QoS attribute threshold

P
claim

Claim prior probability

Ts Bayesian surprise tolerance threshold

t Binomial tree timestamp counter

ri Runtime iteration counter

Qri The value of Qri name

Wri End user workload value at runtime iteration ri

ROV
total

adapting
The total real option value for adapting

ROV
total

not adapting
The total real option value for not adapting

Suggestionri Final verdict of the pseudocode for pursuing granularity adaptation in ri

• if the invocation duration of the microservice(s) is more than 1 millisecond, this is always due to the number of

parallel requests exceeding 100.

The claim is assessed and subsequent analysis is carried out in each runtime iteration (Line 4). The length of time

between runtime iterations determines the rate of soliciting runtime evidence, the rate of updating added values, when

adaptation is pursued. This length depends on the criticality of the application and/or runtime scenario. For example,

when Filmflix is operating during holiday seasons under high workloads then even a short time with poor QoS could

lead to serious consequences.

Therefore, the rate at which this QoS needs to be monitored is high and thereby the length of time between runtime

iterations needs to be in the order of milliseconds. It is worth noting that the length between runtime iterations is

different from the option exercising timestamp. The option exercising timestamp is a point in time (not duration) when

the option is exercised. For example, consider a real option which enable adding a new functionality in Filmflix. The

point in time when this new functionality is added (i.e., the real option is exercised) is the option exercising timestamp.

In each runtime iteration, binomial real options analysis trees are first constructed to calculate the total potential real

option value which can be enabled adapting and retained by not adapting granularity using the inputs and equations

explained in Section 4.2. For the first iteration, the calculation is done using traditional binomial real options analysis

(Line 6). For each following iterations, no manual construction is required. Instead, the most-up-to-date binomial trees

are carried over from the end of previous iteration (Line 8). Then the quality Qri and workload Wri values are recorded

(Line 10) and analysed to update probabilities of option rise in the binomial trees if need be (Lines 14 to 18).

The analysis is done by calculating Bayesian surprise Sclaim regarding the claim and the exact Bayesian surprise

tolerance threshold T𝑒𝑥𝑎𝑐𝑡𝑠 (Line 11). No probability update is required if the Bayesian surprise is zero (the claim is

verified) or below T𝑒𝑥𝑎𝑐𝑡𝑠 (Line 12). Otherwise, option value rise probability updates will be performed. Using the same

claim example above, if the invocation duration is 1.05 milliseconds when there are 101 parallel requests, the claim

is violated. Therefore, Sclaim is greater than zero in this iteration. However, if T𝑒𝑥𝑎𝑐𝑡𝑠 is greater than Sclaim, then this

violation of the claim is not significant enough to have an impact on the adaptation decision.

Intuitively, a nasty surprise promotes granularity adaptation. For example, if the invocation duration is 2.5milliseconds

when there are only 75 parallel requests, this is a nasty surprise. In other words, the microservice(s) is behaving worse

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Hassan, et al.

than expected, calling for granularity adaptation. Therefore, the probability of option rise in adapting granularity is

increased if a nasty surprise is encountered (Line 15). The factor by which the probability is increased depends on the

significance of the Bayesian surprise. A more significant Bayesian surprise is further away from the surprise tolerance

threshold than a less significant surprise. For example, if the invocation duration is 10 milliseconds for 50 parallel

requests, this is a more major claim violation than if the invocation duration is 1.75 milliseconds for 95 parallel requests.

We reflect this significance as a fraction of the calculated Bayesian surprise over the exact surprise tolerance threshold

(Sclaim / T𝑒𝑥𝑎𝑐𝑡𝑠).

Conversely, good surprise promotes keeping the current microservice granularity level. For example, if the invocation

duration is 0.8 milliseconds when there are 110 requests, this is a good surprise. In other words, the microservice(s)

is behaving better than expected, calling for not adapting. Therefore, the probability of option rise in not adapting

granularity is increased by the (Sclaim / T𝑒𝑥𝑎𝑐𝑡𝑠) factor if a good surprise is encountered. Once the probabilities of option

rise and fall are updated according to the direction of the Bayesian surprise, the updated total real option values are

calculated which correspond to adapting and not adapting (Line 19).

4.4.3 Outputs. At the end of each runtime iteration, the pseudocode suggests adapting granularity (Line 21) or keeping

the current architecture (Line 23). The output is presented as a final verdict regarding pursuing granularity adaptation

(Suggestionri) and the total real option values used to arrive at this verdict (Line 25). Following the process’s suggestion

in this case is a cautious approach to avoid unjustified adaptation that will not introduce added value to the architecture

but rather incur unnecessary re-structuring and maintenance costs. In this case, all the inputs to the current runtime

iteration are carried over to the next one.

On the other hand, if the total real option values corresponding to adapting are greater than not adapting (Line 20),

the pseudocode outputs a suggestion to pursue adaptation in runtime iteration ri (Line 21) along with the total real

option values used to arrive at this verdict (Line 25). Following the process’s suggestion to pursue adaptation in this

case is a cautious approach to introduce the added value in the real options rather than taking a reactive route which

could result in missing opportunities for economic gains.

The output real option values represent the potential added value of pursuing (or refraining from) granularity

adaptation (thereby answering RQ1). Our process captures uncertainty regarding this potential added value — due to

workload fluctuations or unexpected microservice behaviour for example — by utilising binomial real options analysis.

By definition, binomial trees incorporate the probability of real option values rising and falling over time (thereby

answering RQ2). Our process updates uncertainty regarding potential added value by carrying out Lines 12-19 of Alg. 1

(thereby answering RQ3).

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Dynamic Evaluation of Microservice Granularity Adaptation 17

5 EVALUATION

We evaluate the extent to which our contribution addresses the problem formulated in Section 3. We leverage goal-

question-metric (GQM) approach [11] to provide systematic guidance for identifying the metrics that can drive the

evaluation relative to goals of interest:

(1) Goal: The goals of our evaluation are to reveal (1) the unique benefit of our evaluation process over state-of-

the-practice in reasoning about microservice granularity and, (2) the expressiveness of our evaluation process

compared to traditional binomial analysis in terms of capturing runtime dynamism of microservice architectures

and reflecting that dynamism on added value calculations.

(2) Question: Related to the first goal above the questions of concern are: Q1: What inputs are required and what

outputs are available in our evaluation process but not in other tools? and Q2: Why are the unique inputs and/or

outputs of our process beneficial for reasoning about microservice granularity? Related to the second goal above

the question of concern is: Q3: How does runtime evidence change the output of our process and that of traditional

binomial analysis? Sub-questions include:

• When is a surprise triggered in our approach?

• Does triggering surprises lead to a more informed verdict than that of traditional binomial analysis?

(3) Metric: To answer Q1, we have defined the following metrics: M1: The number of inputs of our process. M2: The

number of inputs of the industrial tool of concern. M3: The number of outputs of our process. M4: The number

of outputs of other tools compared to our process. In other words, we measure whether there are more inputs

and/or outputs in our process compared to other tools to highlight which inputs/outputs are unique to our

evaluation process. To answer Q2 above, these metrics can be used to compare and to discuss the implications

of these input/output differences thereby highlighting why these unique features are beneficial for addressing

the target problem of this paper. Related to Q3 above the metrics of concern are: M5: trends in ROV in response

to trends in runtime evidence and, M6: point-wise changes in ROV compared to traditional binomial analysis.

M5 shows how runtime evidence changes the output of our process (addressing the first part of Q3). M6 shows

how runtime evidence changes the output of traditional binomial analysis (addressing the second part of Q3).

We facilitate investigating the metrics by setting up a controlled experiment on a Filmflix case study. We consider

controlled experiment on Filmflix to be the most appropriate evaluation means for investigating metrics of concern; it

provides significant scale for answering them. In particular, looking at microservice-related literature (e.g., [1, 19, 22, 24,

31, 32, 42, 43, 58], and [15]), we observed that microservice-specific proposed architectural design support processes

can be evaluated on case studies of comparable scale and scope of functionality to Filmflix.

We implement the initial Filmflix architecture using AWS Lambda. AWS Lambda “is a computing service that lets

you run code (which fits different templates — including a microservice template) without provisioning or managing

servers [7]." AWS Lambda wraps the source code as a Lambda function. We inject three different trends of end user

workload (stepwise, single spike and multiple spikes) into the Lambda function at runtime. This variation in trends

allows us to show clearly how the process reflects runtime dynamics on the calculation of added value of granularity

adaptation. We thereafter record the QoS attribute values using AWS CloudWatch [6] for each workload trend and use

the records for our evaluation.

In Section 5.1 we describe a controlled experiment setting. Using the same setting, we apply our process and

traditional binomial analysis separately when injected with each workload trend described above.

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Hassan, et al.

In Section 5.2 we compare our process’s output against the output of AWS Cloudwatch — a representative state-

of-the-art microservice runtime monitoring tool — in the controlled experiment setting. The comparison shows

tangible evidence of our process’s benefits in linking the technical decision of granularity adaptation to its potential

added value (thereby addressing the first goal above). Additionally, we discuss the features provided by three other

state-of-the-practice tools — Rieman, X-Pack, and IBM Bluemix — versus the features provided by our process.

In Section 5.3, we use the setting from Section 5.1 to compare our evaluation process with traditional binomial real

options analysis. Our comparison shows that our process goes beyond traditional real options analysis by successfully

performing real time updates of added value in response to runtime evidence variable values (e.g., workload variations).

Successfully reflecting runtime dynamics means our process can track and update at runtime the potential added value

of microservice granularity adaptation.

In Section 5.4, we report on a Java implementation of our process to show its feasibility as a tool support after having

discussed how our contribution meets the evaluation goals.

5.1 Experimental Setup

We consider the following setting of parameters for a controlled experiment that applies our process’s calculations

on Filmflix’s initial architecture. The parameters described below map partially to the inputs listed in Section 4.4.1. In

particular, there are some additional points here to give context to the way we set up the experiment (e.g., runtime

iteration duration, monitored microservices). Since we are applying our process in a controlled experiment setting,

we consider tighter than typical values for the claim thresholds on invocation duration and review string lengths

provided to our process as input. These tight values give an insight into how our process operates on both significant

and non-significant Bayesian surprises given different workload trends. These insights can also be transferable to cases

where the claim thresholds are typical rather than tight.

• Microservice: Since MovieReview encapsulates other microservices in the initial architecture, we choose to monitor

MovieReview at runtime to get a comprehensive view of the system’s behaviour given different workload trends.

However, we do acknowledge that monitoring larger or smaller parts of the architecture can serve other rationales

(e.g., pinpointing the cause of a malfunctioning system).

• QoS attribute (a runtime evidence variable): We assume microservitization is driven by enhancing high performance

provision. We measure performance using the invocation duration of MovieReview, monitored at every runtime

iteration of our evaluation process.

• Workload (a runtime evidence variable): Each review string corresponds to a separate call to the MovieReview AWS

Lambda function. Since MovieReview encapsulates two other microservices, each review string corresponds to

two internal invocations to ReviewUpload and ReviewRegulation. To show how our process reflects the workload

fluctuations on the calculation of added value at runtime, we consider workload as the written review string submitted

by the end user. Furthermore, we control this workload at runtime by varying each review string length. We separately

inject three different trends of review string lengths (step-wise increase in lengths, single spike, multiple spikes with

complying and non-complying review strings). Step-wise increase means every couple of injections the length of

the string is increased by a fixed number of sentences. Single spike workload means that most string lengths vary

by a fixed small number of sentences. Only one string in this workload is much longer than the others creating a

spike. Multiple spikes follows a similar trend to the single spike except there are two injections where the injected

string is much longer than the rest of the workload. In the real world, the workload will be monitored rather than

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Dynamic Evaluation of Microservice Granularity Adaptation 19

controlled. However, controlling one of the runtime evidence variables by injecting different trends of end user

workload allows evaluating the effectiveness of our process in capturing the primitive cases of runtime dynamics

and reflecting them on the added value calculations. In an industrial setting, we envision that workload fluctuations

would be permutations of these cases.

• QoS attribute threshold: To ensure that significant Bayesian surprises are triggered at runtime, we assume a tight

invocation duration threshold of 1 millisecond when articulating the claim to be assessed at runtime.

• End user workload threshold: To ensure that a range of significant and un-significant Bayesian surprises are triggered

at runtime, we use 100 sentences as the workload threshold when articulating the claim. We infer this threshold by

testing our implementation of the initial architecture. The testing shows that for reviews more than 100 sentences

long, MovieReview calls for extra regulatory reviews from ReviewRegulation.

• Claim: Given the thresholds above, we consider the claim to be assessed at runtime as a claim using if and only if

(↔): “review string length > 100 sentences ↔ Invocation Duration > 1 millisecond". We acknowledge that these

claims can be set in the future as alarms within in AWS CloudWatch to alert our evaluation process whenever a

claim is violated. In that case, our evaluation process would become more event-based rather than iterative.

• Bayesian surprise tolerance threshold: To stress test our process, we assume that improving performance is critical to

the software architects, calling for a tight Bayesian surprise tolerance threshold (15%).

• Claim posterior probability:We use Bayesian networks [55] to calculate the claim posterior in each iteration. Bayesian

networks allow us to capture the dependency between review string length, invocation duration, and the truth of

the claim. The posterior probability of the claim holding true (P(Claim | REV) in Eq. (5.1)) is derived from frequency

tables. Each record in the table has a combination of invocation duration, review string length (the REV) ranges

and the corresponding number of times the claim held true (𝑡
𝑆𝑡𝑟𝑖𝑛𝑔𝐿𝑒𝑛𝑔𝑡ℎ,𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑙𝑎𝑖𝑚
), and/or was violated

(𝑓
𝑆𝑡𝑟𝑖𝑛𝑔𝐿𝑒𝑛𝑔𝑡ℎ,𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑙𝑎𝑖𝑚
) within that range. The posterior probability is derived from the correct record of

the frequency table as:

𝑃 (𝐶𝑙𝑎𝑖𝑚 |𝑅𝐸𝑉) =
𝑡
𝑆𝑡𝑟𝑖𝑛𝑔𝐿𝑒𝑛𝑔𝑡ℎ,𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑙𝑎𝑖𝑚

𝑡
𝑆𝑡𝑟𝑖𝑛𝑔𝐿𝑒𝑛𝑔𝑡ℎ,𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑙𝑎𝑖𝑚
+ 𝑓

𝑆𝑡𝑟𝑖𝑛𝑔𝐿𝑒𝑛𝑔𝑡ℎ,𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑙𝑎𝑖𝑚

(11)

• Runtime iteration duration: Assuming that improving the performance is critical to software architects and given that

the QoS attribute threshold is in the order of milliseconds, the length of each runtime iteration of our process needs

to be in the order of milliseconds as well. Therefore, we assume the runtime iteration is 5 milliseconds long. We

inject a single review string in each runtime iteration.

• Option expiry date: The option expiry date dictates the number and depth of constructed binomial trees. Therefore,

we consider three timestamps as the option expiry date to avoid prohibitive computational costs in each iteration of

our process. In other words, an option enabled by adapting or retained by not adapting will be available for three

runtime iterations after pursuing adaptation.

• Maintenance cost of the adapted architecture:we use CostHat [37] (explained in Section 4.2) to estimate themaintenance

cost if granularity is adapted. We define the service call graph for a sample adapted architecture —where MovieReview

and ReviewRegulation are merged into a single microservice — and calculate the maintenance cost for this sample.

In particular, there would be calls cascaded from MovieReview to and from ReviewUpload for each request from

the end user to the application. Cascading calls in each direction cost an average of £150 when all four parameters

of CostHat are considered. Therefore, the overall maintenance cost of the adapted architecture would be £300. We

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Hassan, et al.

acknowledge that this value can be further elaborated if the specific manner of adapting granularity is known and/or

other more fine-grained cost models are used.

• Maintenance cost of the un-adapted architecture: we use CostHat to estimate the maintenance cost of keeping the

initial architecture. For our case, this is the maintenance cost given that the MovieReview microservice cascades calls

to both the ReviewUpload and ReviewRegulation microservices in the initial architecture and then ReviewUpload

cascades a call back to MovieReview. Each cascaded call costs on average £170 using CostHat, totalling to an average

of £500. We acknowledge other cost models can be used to estimate this cost.

• Re-structuring cost: we assume architect judgement is used to estimate re-structuring cost in our evaluation. There

are three microservices in the initial architecture: ReviewUpload, ReviewRegulations, and MovieReview. Amending

each microservice can require an average £500, totalling to £1500 for re-structuring the initial architecture. This cost

can alternatively be elicited more accurately from publicly available cross-company data. However, this experiment

is more concerned about illustrating the impact of runtime dynamics in our evaluation rather than soundness of the

underlying cost estimations.

This setting covers situations where we expect to see nasty surprises, good surprises, and the claim being assessed.

5.2 Results: Capturing Added Value Under Uncertainty (Addressing First Evaluation Goal)

We highlight the unique benefits of our evaluation process thereby addressing the first goal of concern. Figure 3 shows

the invocation durations of MovieReview when monitored using AWS CloudWatch for 14 runtime iterations in the case

of stepwise workload increase. In Figure 3, every two increments on the x-axis corresponds to increasing the length of

the review string by 30 sentences. After 20:00:00.25, the invocation duration decreases despite continuing to increase

the workload stepwise. It is worth noting that the output of AWS CloudWatch is produced in milliseconds rather than

in monetary terms (as is the case in our process). AWS Cloudwatch does not show the ramification on added value

when answering the question of when to adapt microservice granularity (or not) at runtime.

Figure 4 presents the output of utilising our process; it shows the total potential real option values which can be

enabled by adapting and by not adapting the granularity in the same runtime iterations given the invocation durations

in Figure 3. Figure 4 provides a value-driven basis to reasoning about granularity adaptation decisions. For example,

runtime iteration 5 shows the total potential real option value which would be enabled by adapting and the value

retained by not adapting. As the option value is higher when adapting than when it is retained, therefore adapting is

suggested at the end of iteration 5. The ability to take added value into account is a unique benefit of our approach.

Comparing Figures 3 and 4, only the latter provides value-driven justification for pursuing adaptation by presenting

its ramifications related to added value. If Figure 3 is used alone to answer the question of whether to pursue adaptation

or not in iteration 13, intuitively the architects would decide to pursue granularity adaptation to reduce the invocation

duration which had increased over the previous two iterations. On the other hand, Figure 4 suggests keeping the current

granularity level in iteration 13 despite the increase in invocation duration. Therefore, relying on AWS Cloudwatch

alone gives less informative insight compared to our contribution’s insights regarding the ramifications of granularity

adaptation decisions.

In Figure 3 there is no spike in invocation duration at 20:00:00.40. However, the corresponding iteration 8 in Figure 4

promotes adapting since the maintenance cost of the un-adapted architecture is higher in this runtime iteration. If only

AWS Cloudwatch is used to answer the question of whether to adapt or not in iteration 8, the intuitive answer would

be not to adapt since there is no apparent technical benefit. The technical decision ignores the potential option value,

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Dynamic Evaluation of Microservice Granularity Adaptation 21

Fig. 3. AWS CloudWatch output for stepwise workload increase (i.e., increasing the review string by 30 sentences) injected to Filmflix
in Section 5.1

Fig. 4. Corresponding output of our process over same time period as in Figure 3; 1 runtime iteration = 5 milliseconds; the blue line
refers to the real option values of adapting granularity while the orange line refers to the real option values of keeping the granularity
level unchanged

that if factored in, would change the adaptation decision. Factoring cost factors in value-driven assessment means our

contribution provides a more effective means to reason about granularity adaptation leading to a different decision

altogether. Therefore, the output of our process is more informed compared to that of AWS Cloudwatch when used to

reason about pursuing granularity adaptation. On the other hand, we acknowledge that the input to our process is

more complex than that to AWS Cloudwatch. Looking at the metrics of concern, using our process creates a trade-off

between complex input and beneficial output. On the other hand, using AWS Cloudwatch does not require complex

input but does not provide as beneficial output as our process.

Further delving into Figure 4, we observe two iterations where adaptation was suggested: 5 and 8. Depending on

the specific granularity adaptation strategy pursued, these consecutive suggestions can represent situations where a

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Hassan, et al.

strategy and its reverse are conducted. For example, consider a case where two microservices are merged in iteration

5 then the same ones are decomposed back as they were in iteration 8. Such cases can raise a point against merging

these two microservices in the first place. However, had they have been left un-merged for iterations 6 and 7, these

microservices could have led to potential reductions in added value for the overall architecture. Such reduction, for

example, could be of high significance in safety-critical microservice architectures. Therefore, our process strives for

introducing added value to the microservice architecture whenever possible even if for a small number of runtime

iterations. It is worth noting that the length of each runtime iteration also has a high impact on the effectiveness of our

process in suggesting adaptation at appropriate runtime iterations.

Looking at other industrial runtime monitoring tools, the X-Pack plug-in provides the most flexibility for monitoring

the health of microservice applications at runtime [40] to our knowledge. In particular, this plug-in is compatible

with cloud container providers (e.g., Elastic Search, Docker), logging tools (e.g., Logstash), and visualisation tools (e.g.,

Kibana) popular among microservice adopters. Depending on the logging and visualisation settings, different forms of

data analytics can be carried on recorded values of these metrics (e.g., aggregation). Riemann [53] and IBM Bluemix

[28] take an event-driven approach to monitoring by setting alerts on specific events or diagnosing event streams.

Overall, to answer Q1 related to the first evaluation goal, most of the inputs listed in Section 4.4 are unique compared

to the tools discussed above. Regarding output, the examined tools do not explicitly perform any value-driven analysis

or output value of granularity adaptation decisions on the recorded raw data like we do in our process. To answer Q2

related to the first evaluation goal, the output of our process is more informed despite being less user-friendly than

other tools in some cases. On the other hand, the input to our process can be comparable in complexity relative to other

tools.

Nevertheless, these tools are complementary rather than alternative to our process. They are all very suitable

candidates to flexibly record a plethora of runtime evidence variables which can be used in our process. Other state-of-

the-practice microservice orchestration platforms which can benefit from our value-driven analysis include Kubernetes

[20] and Istio [5].

5.3 Results: Capturing Microservice Runtime Dynamics (Addressing Second Evaluation Goal)

To address the second evaluation goal as formulated using the GQM framework, we compare applying our process

in the controlled experiment setting to applying traditional binomial real options analysis in the same setting. We

calculate the total real option values which can be enabled by adapting and or retained by not adapting over 14 runtime

iterations for each workload trend. We assume that the cost estimations are constant across the runtime iterations

except for two cases where we manually update them. In this setting, we expect to see the following surprise trends:

• We expect the stepwise increase in workload to trigger a nasty surprise if the invocation duration is greater

than 1 millisecond for strings less than 100 sentences long.

• We expect a good surprise if the invocation duration is less than 1 millisecond for strings larger than 100

sentences long.

• In the single spike workload, we expect to see the claim verified (i.e., invocation duration greater than 1

millisecond) when the review string is exceptionally long. Following that claim verification, we expect a good

surprise to be triggered as the QoS improves (i.e., becomes less than 1 millisecond) after that spike. We expect

to see a similar trend of claim verification followed by good surprises in the multiple spikes workload.

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Dynamic Evaluation of Microservice Granularity Adaptation 23

Table 2. Red cells = a nasty surprise is triggered; green cells = a good surprise; yellow cells = a surprise below the Bayesian surprise
tolerance threshold T_s; grey cells = claim held true

Monitoring Timeslot

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Review String Length/sentences 20 20 50 50 80 80 110 110 140 140 170 170 200 200

Invocation Duration/milliseconds 0.41 0.31 0.29 0.32 2.94 2.93 0.34 0.28 0.35 0.29 0.32 0.33 0.42 0.3

Bayesian surprise 0.194 0.06 0.147 0.07 0.246 0.147 0.07 0.66 0.07 0.07 0.07 0.07 0.07 0.194

Review String Length/sentences 20 20 50 50 80 80 110 110 140 140 1000 170 170 200

Invocation Duration/milliseconds 0.45 0.33 0.36 0.33 0.45 0.33 0.36 0.42 0.4 0.56 1.55 0.35 0.46 0.36

Bayesian surprise 0.195 0.08 0.147 0.08 0.246 0.147 0.06 0.06 0.07 0.66 0 0.195 0.06 0.05

Review String Length/sentences 20 20 50 50 80 80 110 1000 110 170 170 170 1120 170

Invocation Duration/milliseconds 0.53 0.38 0.41 0.46 0.51 0.4 0.43 1.55 0.35 0.46 0.35 0.28 2.9 0.35

Bayesian surprise 0.195 0.09 0.166 0.06 0.05 0.799 0.33 0 0.66 0.07 0.05 0.29 0 0.19

Fig. 5. Comparing real option values to be enabled by adapting and retained by not adapting granularity in the scenario with stepwise
workload increase using our process against traditional analysis

Table 2 shows the data used to generate our contribution’s outputs (Figures 5, 6, and 7). In Figures 5, 6, and 7, a

point-wise comparison of our process against traditional binomial analysis reports fluctuation in the total real option

values due to the real time calibration of the value enabled by adapting (or not). In contrast, traditional binomial analysis

reports constant results for the total real option values. In the remainder of this subsection, we discuss the trends in

ROV relative to those in REV for Figures 5, 6, and 7.

In Figure 5, runtime iteration 5 corresponds to a nasty surprise (0.246 in Table 2). The claim is violated since the

invocation duration was greater than 1 millisecond for a review string less than 100 sentences long. It indicates that the

system is behaving worse than initially believed. The triggered Bayesian surprise is nasty as per our first expectation

regarding our contribution’s behaviour. Therefore it increases the total real option value to be enabled by adapting,

triggering a suggestion to adapt in this runtime iteration. It is up to the architect to take or to leave this suggestion.

Our contribution provides the suggestion along with the objective justification for it in terms of potential added value.

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Hassan, et al.

Fig. 6. Comparing real option values to be enabled by adapting and retained by not adapting granularity in the scenario with single
spike workload using our process against traditional analysis

Fig. 7. Comparing real option values to be enabled by adapting and retained by not adapting granularity in the scenario with multiple
outliers in workload using our process against traditional analysis

Therefore, our contribution provides a more informative suggestion regarding granularity adaptation compared to

traditional binomial real options analysis. From iteration 9 to 13, the stepwise increase in workload does not trigger a

significant surprise since shifts in the observed invocation duration are insignificant given the shifts in review string

lengths.

In Figure 6, between iterations 9 and 10, the invocation duration has fluctuated even though the review string length

has not changed. This combination gives significant information about the system’s runtime behaviour triggering a

nasty surprise above the tolerance threshold in runtime iteration 10. In iteration 11, a string 1000 sentences long is

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Dynamic Evaluation of Microservice Granularity Adaptation 25

injected and the invocation duration is greater than 1 millisecond. Therefore, the claim was verified in iteration 11

leading to zero Bayesian surprise, so the total real option values in our process and the traditional analysis were the

same. The claim is then violated in iteration 12 triggering a good surprise (0.195) since the invocation duration was less

than 1 millisecond for a review string longer than 100 sentences. This aligns with our second expectation regarding our

evaluation process’s behaviour. The Bayesian surprise in runtime iteration 12 therefore indicates that the situation

in iteration 11 was a single spike and thereby our process calls for not adapting at iteration 12. This trend of claim

verification followed by a good surprise aligns with our third expectation regarding our contribution’s behaviour. Even

though the traditional binomial real options analysis leads to the same verdict for that iteration, the total real option

value corresponding to not adapting is higher in our process. This shows our process can more confidently argue for

the verdict in terms of a higher total real option value corresponding to not adapting due to the runtime evidence

records for iterations 11 and 12.

In Figure 7, between iterations 11 and 12 in the multiple spikes workload, the fluctuation of invocation duration

triggered a good surprise at iteration 12. Runtime iterations 9 and 14 show good surprises (0.66 and 0.19, respectively).

In iterations 9 and 14 the claim is violated since the invocation duration is less than 1 millisecond after exceptionally

long strings are injected in iteration 8 and 13, respectively. Similar to Figure 6 and as per our expectation, there claim

verification is followed by a good surprise in the multiple spikes workload as well.

However, the total real option value corresponding to not adapting in runtime iteration 14 is less than in iteration

9. This indicates that the smaller surprise in iteration 14 is due to less confidence about the behaviour of the system

when long strings ("spikes") are injected frequently. This shows that our process can explicitly capture changes in the

confidence as runtime evidence accumulates. The software architect can find this accumulated information useful in

possible updates of the claim threshold. This can be done by calculating the mean review string length and invocation

durations observed after a window of runtime iterations then mapping that to more relaxed claim thresholds.

Iteration 8 in Figure 5 and iteration 6 in Figure 7 show the impact of manual cost updates on the output of our

process. Here we increase the maintenance cost of the un-adapted architecture when performing calculations using

our process. The maintenance cost is kept constant when performing calculations using traditional binomial analysis.

Despite the good surprises (0.66 in iteration 8 for stepwise workload increase and 0.799 for multiple spikes workload),

our process promotes adapting for these iterations due to the high maintenance costs for the un-adapted architecture.

This shows that our process can capture the runtime dynamics of cost as well. Traditional real options analysis might

be able to only capture runtime dynamics if it is applied every time the costs are manually updated.

Overall, to answer Q3 related to the second evaluation goal, surprises in our approach are triggered when the

monitored microservice(s) behave worse than expected within the end user workload threshold or when they behave

better than expected beyond the end user workload threshold in each controlled experiment setting. Whenever surprises

are triggered, the output of our process fluctuates, sometimes leading to a different verdict. The fluctuation in output

incorporates rather than discards runtime evidence coming from the triggered surprises. Traditional binomial analysis

is therefore less informed because it discards runtime evidence coming from the triggered surprises.

5.4 Proving Feasibility for Tool Support

We implement the AddedValueUpdate pseudocode into a Java tool to prove the feasibility of providing an interactive

runtime decision support for microservice granularity adaptation grounded on our novel evaluation process. The tool

first takes the inputs related to calculating Bayesian surprises (Figure 8), including location of the files where the

runtime evidence variables values will be streamed. The tool then takes the inputs related to construct the binomial

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Hassan, et al.

Fig. 8. Capturing inputs for calculating Bayesian surprises for the first iteration of our evaluation process used in the experiment in
Section 5.3

Fig. 9. Capturing the utility tree of adapting for the first iteration of our evaluation process used in the experiment in Section 5.3

trees for adapting (Figure 9) and not adapting the architecture (Figure 10) for the first runtime iteration. At the end of

each iteration, the tool outputs a suggestion to adapt or not along with the real option value on which the suggestion is

grounded (Figure 11).

Figures 8 to 11 also illustrate how even a primitive implementation of our process can abstract away internal

calculations of AddedValueUpdate from the software architect. In particular, software architects do not need to have

extensive knowledge of Bayesian surprises or binomial real option analysis to use our process. Nevertheless, they need

to have sufficient knowledge of the sources from which they will obtain inputs to our process and to understand which

source corresponds to which input field in the tool support. This knowledge can be provided to the architects either

through help guides within the tool or by training them before using the tool. Regardless of the means of delivering

the knowledge, its simplicity is more important. For example, the architect has to provide Bayesian surprise tolerance

thresholds as input. Instead of explaining the intricate Bayesian surprise formulas, the architect can be asked to rank

the claims in terms of relative importance. At the back-end of the tool then this can be translated to tolerance threshold

percentages such that the higher the ranking of the claim the lower the corresponding tolerance threshold percentage.

Another example is obtaining the maintenance cost estimates from the architect. To obtain these values it is important

to show the architect the definitions of the terms corresponding to these values. Presenting term definitions will then

help the architects decide on the suitable cost model to use for obtaining these values.

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Dynamic Evaluation of Microservice Granularity Adaptation 27

Fig. 10. Capturing the utility tree of not adapting for the first iteration of our evaluation process used in the experiment in Section 5.3

Fig. 11. Suggesting keeping the current architecture after the first iteration of our evaluation process

6 THREATS TO VALIDITY

We reflect on threats to validity of our evaluation results: internal, external, conclusion, and construct threats.

Internal: We acknowledge that the underlying techniques used in providing inputs to our process and setting up

its usage greatly affect the extent to which our process is beneficial to microservice adopters. In our evaluation, we

try to mitigate this issue by: 1) attempting to use suitable techniques for obtaining input values (e.g., CostHat and

frequency tables) and, 2) varying the input values to stress test our process (e.g., injecting different workload trends to

the monitored microservice).

External: Despite the evaluation being in a controlled Filmflix setting, we envision that our results are transferable to

any microservice application domain for the following reasons: 1) the input values can hold different values depending

on context, 2) our process is flexible regarding the input estimation techniques used, and 3) the rigour of our process can

be changed depending on the context. To mitigate the bias of a controlled experiment setting, we stress test and varying

inputs to our evaluation process. However, a plethora of industrial experiments is certainly desirable for independent

evaluation and subject to future research due to space limitations.

Conclusion: Our monitoring has focused on chosen variables. The controlled experiment nature has stipulated

controlling other inputs to our process apart from the monitored ones (i.e., workload and QoS attributes) or manually

updated ones (i.e., maintenance cost) ensures that changes in the output are caused by changes in independent inputs.

Though control may suffer bias, it is necessary to understand how our models are sensitive under various inputs that

can be experienced in untypical usage scenarios.

In Section 5, we argue that Filmflix is of comparable size and scope to case studies used in relevant literature.

Nevertheless, we acknowledge the threats to evaluation due to the controlled nature of the experiments. Though an

effort was taken to analyse tighter than normal input parameters, we can see the need for further experimentation to

cover systems from various microservice domains, scopes and scales. Such a wide range of uncontrolled experiments

will factor into the evaluation observations, dynamism and uncertainties that may have been missed in our controlled

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Hassan, et al.

experiment. A larger experiment setting will provide us with more data points to further reflect on the strengths and

weaknesses of the approach. Evaluation in a uncontrolled environment would expect to factor in more goals, questions

and metrics that go beyond the controlled setups; these can be application dependent, domain- and case-specific. Our use

of the GQM framework provides us with the flexibility to extend the evaluation, by considering more goals, questions

and metrics.

Experimenting with larger case studies can pose manual overhead challenges when collating the input parameters

required for the experiment. To reduce this overhead, our approach can be initially applied to a high-level model

that mirrors the scale of the microservice architecture under investigation. The evaluation can then be conducted on

sub-system within the microservice architecture of interest to the architect, while considering dependencies with other

parts of the system.

Construct:We acknowledge that the suitability of binomial real options analysis for our contribution can be questioned

due to the existence of other well-established architectural design decision evaluation processes in the literature. Section

3 argues that the target problem of this paper is best formulated as a real options problem. Hence, we found binomial real

options analysis to be a suitable fit for evaluating the worth of pursuing granularity adaptation. We further acknowledge

that the suitability of Bayesian surprises as a means to transit this analysis to runtime can be questioned due to

limited application of this concept in the literature. However, our choice was motivated by striving for consistency in

calculations and utilising runtime evidence. Binomial real options heavily utilise probabilities and Bayesian surprises

also takes probabilities as input for calculation. Bayesian surprises relies on runtime evidence for assessing claims

and our target problem requires runtime value updates. An interesting future research direction would be to update

binomial trees at runtime using quantifications other than Bayesian surprises.

7 CONCLUSION AND FUTUREWORK

We reported on a novel formulation of the decision to pursue granularity adaptation as a real options problem, inspired

by the theory of Baldwin and Clark [8]. We proposed a novel dynamic evaluation process that combines binomial real

options analysis with Bayesian surprises to assess the added value of adapting granularity (or not) in microservices.

Our work is the first to:

• Dynamically evaluate the potential added value under uncertainty related to pursuing microservice granularity

adaptation.

• Enable dynamic application of binomial real options analysis with run-time update for its parameters; this is

contracted to the traditional/ static design time usage.

• Apply the concept of Bayesian surprises in the context of binomial real options analysis and in microservice

granularity adaptation.

We compared the output of a representative industrial microservice runtime monitoring tool — AWS Cloudwatch —

against the output of our evaluation process. We further discussed the differences between the features provided by

three other state-of-the-practice microservice monitoring tools — X-Pack, IBM Bluemix, and Riemann — versus those

provided by our evaluation process. The results provide tangible evidence on the benefits of linking runtime granularity

adaptation decisions to their added value under uncertainty. We also use a controlled experiment to show how our

process goes beyond traditional application of real options by revealing the impact of runtime variations in workload

on the added value.

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Dynamic Evaluation of Microservice Granularity Adaptation 29

In the short term future, our evaluation can be further strengthened. For example, we intend to experiment with: (1)

observing rather than controlling workload and, (2) using alarms within AWS Cloudwatch to alert when claims are

violated.

In the long term future, our proposed evaluation process opens up the path to answering another crucial related

question: which granularity adaptation strategy (e.g., decomposing a microservice with unrelated features) is suitable

at a certain point at runtime? To study this question, we will investigate how machine learning techniques can help in

pruning the candidate space of granularity adaptation strategies. Pruning candidate strategies is particularly crucial to

ensure practical use of granularity adaptation decision-making support for large-scale microservice case studies.

REFERENCES
[1] M. Ahmadvand and A. Ibrahim. 2016. Requirements Reconciliation for Scalable and Secure Microservice (De)composition. In 24th IEEE International

Requirements Engineering Conference Workshops (REW). 68–73.
[2] Esra Alzaghoul and Rami Bahsoon. 2013. CloudMTD: Using real options to manage technical debt in cloud-based service selection. In 2013 4th

International Workshop on Managing Technical Debt (MTD). 55–62. https://doi.org/10.1109/MTD.2013.6608680

[3] Martha Amram and Nalin Kulatilaka. 1999. Real Options: Managing Strategic Investment in an Uncertain World. Harvard Business School Press.

[4] Jayatirtha Asundi, Rick Kazman, and Mark Klein. 2001. Using Economic Considerations to Choose Among Architecture Design Alternatives. Technical
Report CMU/SEI-2001-TR-035. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA. http://resources.sei.cmu.edu/library/

asset-view.cfm?AssetID=5785

[5] Istio Authors. [n.d.]. Istio. https://istio.io/

[6] AWS. 2017. AWS Lambda Metrics.
[7] AWS. 2017. What is AWS Lambda?
[8] Carliss Y. Baldwin and Kim B. Clark. 2000. Design Rules, Volume 1 The Power of Modularity. The MIT Press.

[9] Nelly Bencomo and Amel Belaggoun. 2014. A World Full of Surprises: Bayesian Theory of Surprise to Quantify Degrees of Uncertainty. In 36th
Companion Proceedings of the International Conference on Software Engineering. 460–463.

[10] Barry W. Boehm and Kevin J. Sullivan. 2000. Software Economics: A Roadmap. In Proceedings of the Conference on The Future of Software Engineering.
319–343.

[11] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. 1994. The goal question metric approach. Encyclopedia of software engineering (1994),

528–532.

[12] Shawn Butler Mary Shaw Chris Scaffidi, Ashish Arora. 2005. A Value-Based Approach to Predicting System Properties from Design. In ACM
SIGSOFT Software Engineering Notes. 1–5.

[13] Neil A. Chriss. 1997. The Black-Scholes and Beyond and the Black-Scholes and Beyond Interactive Toolkit: A Step-By-Step Guide to In-Depth Option
Pricing Models. McGraw-Hill Trade.

[14] Zhamak Dehghani. 2015. Zhamak Dehghani Real World Microservices: Lessons from the Frontline. https://youtu.be/hsoovFbpAoE.

[15] Sergio del Amo Caballero. 2018. Micronaut Tutorial: How to Build Microservices with this JVM-based Framework.

https://www.infoq.com/articles/micronaut-tutorial-microservices-jvm.

[16] Hakan Erdogmus. 2001. Management Of License Cost Uncertainty In Software Development: A Real Options Approach. In 5th Annual Conference
on Real Options: Theory Meets Practice.

[17] Hakan Erdogmus and John Favaro. 2002. Keep Your Options Open: Extreme Programming and Economics of Flexibility. In In. Addison Wesley,

503–552.

[18] H. Erdogmus and J. Vandergraaf. 1999. Quantitative approaches for assessing the value of COTS-centric development. In Proceedings Sixth
International Software Metrics Symposium (Cat. No.PR00403). 279–290. https://doi.org/10.1109/METRIC.1999.809749

[19] L. Florio and E. D. Nitto. 2016. Gru: An Approach to Introduce Decentralized Autonomic Behavior in Microservices Architectures. In IEEE
International Conference on Autonomic Computing (ICAC). 357–362.

[20] The Linux Foundation. [n.d.]. Production-Grade Container Orchestration. https://kubernetes.io/

[21] Martin Fowler. 2004. Strangler Application. https://www.martinfowler.com/bliki/StranglerApplication.html.

[22] Jonas Fritzsch. 2018. From Monolithic Applications to Microservices Guidance on Refactoring Techniques and Result Evaluation. Master’s thesis.

Reutlingen University.

[23] Andrea Gamba. 2003. Real options valuation: A Monte Carlo approach. (2003).

[24] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino, and A. D. Salle. 2017. Towards Recovering the Software Architecture of

Microservice-Based Systems. In IEEE International Conference on Software Architecture Workshops (ICSAW). 46–53.
[25] Sara Hassan, Rami Bahsoon, and Nelly Bencomo. 2015. Minimizing Nasty Surprises with Better Informed Decision-Making in Self-Adaptive Systems.

In 10th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems. 134–145.

https://doi.org/10.1109/MTD.2013.6608680
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5785
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5785
https://istio.io/
https://doi.org/10.1109/METRIC.1999.809749
https://kubernetes.io/

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Hassan, et al.

[26] N. Herzberg, C. Hochreiner, O. Kopp, and J. Lenhard. 2018. Challenges of Microservices Architecture: A Survey on the State of the Practice. In 10th
ZEUS Workshop (ZEUS).

[27] Tom Huston. [n.d.]. What is Microservices Architecture? https://smartbear.com/learn/api-design/what-are-microservices/

[28] IBM. 2017. IBM BlueMix Container Service- Monitoring and Logging.
[29] Investopedia. [n.d.]. Compound Option. https://www.investopedia.com/terms/c/compoundoption.asp.

[30] Rick Kazman, Mark Klein, and Paul Clements. 2000. ATAM: Method for Architecture Evaluation. Technical Report. Software Engineering Institute,

Carnegie Mellon University.

[31] Gabor Kecskemeti, Attila Kertesz, and Attila Csaba Marosi. 2017. Towards a Methodology to Form Microservices from Monolithic Ones. In Euro-Par
2016: Parallel Processing Workshops. 284–295.

[32] G. Kecskemeti, A. C. Marosi, and A. Kertesz. 2016. The ENTICE approach to decompose monolithic services into microservices. In International
Conference on High Performance Computing Simulation (HPCS). 591–596.

[33] Fondazione Brundo Kessler. 2014. ASTRO-CAptEvo. Online. Retrieved 5 August 2017 from http://das.fbk.eu/astro-captevo

[34] Sander Klock, Jan Martijn E. M. Van Der Werf, Jan Pieter Guelen, and Slinger Jansen. 2017. Workload-Based Clustering of Coherent Feature Sets in

Microservice Architectures. In 2017 IEEE International Conference on Software Architecture (ICSA). 11–20. https://doi.org/10.1109/ICSA.2017.38

[35] L. Krause. 2015. Microservices: Patterns and Applications: Designing Fine-Grained Services by Applying Patterns. Lucas Krause.
[36] N. Kulkarni and V. Dwivedi. 2008. The Role of Service Granularity in a Successful SOA Realization A Case Study. In IEEE Congress on Services - Part

I. 423–430.
[37] P. Leitner, J. Cito, and E. Stöckli. 2016. Modelling and Managing Deployment Costs of Microservice-Based Cloud Applications. In 9th IEEE/ACM

International Conference on Utility and Cloud Computing (UCC). 165–174.
[38] Alessandra Levcovitz, Ricardo Terra, and Marco Tulio Valente. 2016. Towards a Technique for Extracting Microservices from Monolithic Enterprise

Systems. CoRR abs/1605.03175 (2016). arXiv:1605.03175 http://arxiv.org/abs/1605.03175

[39] James Lewis. 2013. Micro Services: Java, the Unix Way. http://www.infoq.com/presentations/Micro-Services.

[40] Logstash. 2017. Monitoring Logstash.
[41] John D. McGregor, David P. Gluch, and Peter H. Feiler. 2017. Analysis and Design of Safety-critical, Cyber-Physical Systems. Ada Lett. 36, 2 (2017),

31–38.

[42] Karl Meinke and Peter Nycander. 2015. Learning-Based Testing of Distributed Microservice Architectures: Correctness and Fault Injection. In

Software Engineering and Formal Methods. 3–10.
[43] Ola Mustafa, Jorge Marx Gómez, Mohamad Hamed, and Hergen Pargmann. 2018. GranMicro: A Black-Box Based Approach for Optimizing

Microservices Based Applications. In From Science to Society. 283–294.
[44] Ola Mustafa and Jorge Marx Gómez. 2017. Sustainable approach for improving microservices based web application. In Sustainability Dialogue:

International Conference on Sustainability and Environmental Management.
[45] S.C. Myers. 1976. Modern Developments in Financial Management. Praeger.
[46] Sam Newman. 2015. Building Microservices. O’Reilly Media.

[47] Michael Nygard. 2007. Release It! Design and Deploy Production-Ready Software. Pragmatic Bookshelf.

[48] Ipek Ozkaya, Rick Kazman, and Mark Klein. 2007. Quality-Attribute-Based Economic Valuation of Architectural Patterns. Technical Report. Software
Engineering Institute, Carnegie Mellon University.

[49] L. H. G. Paucar and N. Bencomo. 2016. The Reassessment of Preferences of Non-functional Requirements for Better Informed Decision-Making in

Self-Adaptation. In 24th IEEE International Requirements Engineering Conference Workshops (REW). 32–38.
[50] Christian Posta. 2017. The Hardest Part of Microservices: Calling Your Services. http://blog.christianposta.com/microservices/the-hardest-part-of-

microservices-calling-your-services/.

[51] Katharina Probst and Justin Becker. 2016. Engineering Trade-Offs and The Netflix API Re-Architecture.

http://techblog.netflix.com/2016/08/engineering-trade-offs-and-netflix-api.html.

[52] C. Richardson. 2018. Microservice Patterns. Manning Publications Company.

[53] Riemann. 2017. Riemann - Concepts.
[54] Casey Rosenthal. 2016. GOTO 2016—Chaos & Intuition Engineering at Netflix—Casey Rosenthal. https://www.youtube.com/watch?v=Q4nniyAarbs.

[55] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach. Pearson Education Limited.

[56] J. P. Guelen S. Klock, J. M. E. M. van der Werf and S. Jansen. 2017. Workload-Based Clustering of Coherent Feature Sets in Microservice Architectures.

In IEEE International Conference on Software Architecture (ICSA). 11–20.
[57] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. 2005. Using Dependency Models to Manage Complex Software Architecture. In 20th

Annual Proceedings of the ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications. 167–176.
[58] D. I. Savchenko, G. I. Radchenko, and O. Taipale. 2015. Microservices validation: Mjolnirr platform case study. In 38th International Convention on

Information and Communication Technology, Electronics and Microelectronics (MIPRO). 235–240.
[59] Vibha Sazawal and Nikita Sudan. 2009. Modeling Software Evolution with Game Theory. In Proceedings of the International Conference on Software

Process: Trustworthy Software Development Processes. 354–365.
[60] Eduardo S. Schwartz. 1977. The valuation of warrants: Implementing a new approach. Journal of Financial Economics 4, 1 (1977), 79 – 93.

[61] M. Schwartz. 2016. The Art of Business Value:. IT Revolution Press. https://books.google.co.uk/books?id=gykhDgAAQBAJ

https://smartbear.com/learn/api-design/what-are-microservices/
http://das.fbk.eu/astro-captevo
https://doi.org/10.1109/ICSA.2017.38
https://arxiv.org/abs/1605.03175
http://arxiv.org/abs/1605.03175
https://books.google.co.uk/books?id=gykhDgAAQBAJ

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Dynamic Evaluation of Microservice Granularity Adaptation 31

[62] Yuanyuan Song. 2007. Adaptation Hiding Modularity for Self-Adaptive Systems. In Companion to the Proceedings of the 29th International Conference
on Software Engineering. 87–88.

[63] Kevin J Sullivan, Prasad Chalasani, Somesh Jha, and Vibha Sazawal. 1999. Software Design as an Investment Activity: A Real Options Perspective.

Real options and business strategy: Applications to decision making 10 (1999), 215–262.

[64] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen. 2001. The Structure and Value of Modularity in Software Design. In 8th
Proceedings of the European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 99–108.

[65] D. Taibi and V. Lenarduzzi. 2018. On the Definition of Microservice Bad Smells. IEEE Software 35, 3 (2018), 56–62.
[66] L. Trigeorgis and P.F.L. Trigeorgis. 1996. Real Options: Managerial Flexibility and Strategy in Resource Allocation. PAPERBACKSHOP UK IMPORT.

[67] Tim Wagner. 2015. Microservices without the Servers. https://aws.amazon.com/blogs/compute/microservices-without-the-servers/

[68] E. Wolff. 2016. Microservices: Flexible Software Architecture. Pearson Education.

[69] Liguo Yu and Srini Ramaswamy. 2008. Improving Modularity by Refactoring Code Clones: A Feasibility Study on Linux. SIGSOFT Softw. Eng. Notes
33, 2 (2008), 1–5.

https://aws.amazon.com/blogs/compute/microservices-without-the-servers/

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Hassan, et al.

Appendix A STEP-BY-STEP EXAMPLE OF PROPOSED DYNAMIC EVALUATION PROCESS

In this section, we show a step-by-step application for a single iteration of Alg. 1) — AddedValueUpdate — to Filmflix’s

initial architecture. We list input values to the pseudocode (expanding on Section 4.1), specify how they are calculated

where necessary, plug the input values into Alg. 1, and show how the pseudocode leads to the process’s output.

A.1 Inputs

• Microservice: MovieReview

• QoS attribute (a runtime evidence variable): invocation duration of MovieReview

• Workload (a runtime evidence variable): review string submitted by the end user

• QoS attribute threshold: 1 millisecond

• End user workload threshold: 100 sentences long

• Bayesian surprise tolerance threshold: 15%.

• Claim posterior probability: The posterior probability of the claim holding true (P(Claim | REV) in Eq. (5.1)) is

derived from frequency tables.

• RC: £1500

• MC adapted architecture: £300

• MC un-adapted architecture: £500

• Value0: £1750

• Trees:

Table 3. Utility tree showing the likely utility value of improving the invocation duration over the following three runtime iterations
when granularity level of MovieReview is adapted

0 1 2 3

G

D 600

B 487.5 H

A 381.25 E 375

290.625 C 275 I

200 F 175

125 J

75

• Ft: three iterations

• Qri name: invocation duration

• Tw: 100 sentences

• Tq: 1 millisecond

• Pclaim: 0.5

• Ts:15%

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Dynamic Evaluation of Microservice Granularity Adaptation 33

Table 4. Utility tree showing the likely utility value of improving the invocation duration over the following three runtime iterations
when granularity level of MovieReview is kept unchanged

0 1 2 3

G

D 400

B 362.5 H

A 302.5 E 325

239.375 C 242.5 I

176.25 F 160

110 J

60

A.2 Process

(1) Claim: [Wri > 100 sentences ↔ Qri > 1 millisecond

(2) ri=0

(3) Construct Real Options Trees for Adapting (Figure 12)

(4) Construct Real Options Trees for not Adapting (Figure 13)

(5) Solicit and Monitor Q=0.41 milliseconds and W=20 sentences

(6) Calculate S
claim

(using Eq. 9) and Ts exact using (Eq. 10). 𝑃 (𝐶𝑙𝑎𝑖𝑚 |𝑅𝐸𝑉) needs to calculated before calculating

S
claim

.

𝑆
claim

= 𝑃 (𝐶𝑙𝑎𝑖𝑚 |𝑅𝐸𝑉) ∗ log 𝑃 (𝐶𝑙𝑎𝑖𝑚 |𝑅𝐸𝑉)
0.5

= 0.194 (12)

𝑇 𝑒𝑥𝑎𝑐𝑡
𝑆 = 0.15 ∗ (0.847 − 0.194) = 0.098 (13)

(7) Execute conditional: (Qri < Qri-1) AND (W > Tw)

𝑃 (𝑅𝑖𝑠𝑒ROVnot adapting) ∗ 0.194/0.098
(8) Re-calculate ROV

total

adapting
and ROV

total

not adapting
using updated probabilities

(9) Execute Else clause: Suggestionri=No

A.3 Output

ROV
𝑎𝑑𝑎𝑝𝑡𝑖𝑛𝑔

𝑡𝑜𝑡𝑎𝑙
, ROV

𝑛𝑜𝑡𝑎𝑑𝑎𝑝𝑡𝑖𝑛𝑔

𝑡𝑜𝑡𝑎𝑙
, Suggestionri

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Hassan, et al.

(a) Intermediate binomial real option tree for adapting if the real option is exercised after the first timestamp
before the option expires

(b) Intermediate binomial real option tree for adapting if the real option is exercised after the second
timestamp before the option expires

(c) Intermediate binomial real option tree for adapting if the real option is exercised after the third timestamp
just before the option expires

Fig. 12. Creating binomial real options analysis tree for adapting granularity of MovieReview after the first runtime iteration of our
evaluation process

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Dynamic Evaluation of Microservice Granularity Adaptation 35

(a) Intermediate binomial real option tree for not adapting MovieReview if an embedded real option is
exercised after the first timestamp before the option expires

(b) Intermediate binomial real option tree for not adapting MovieReview if an embedded real option is
exercised after the second timestamp before the option expires

(c) Intermediate binomial real option tree for not adapting MovieReview if an embedded real option is
exercised after the third timestamp before the option expires

Fig. 13. Creating binomial real options analysis tree for not adapting granularity of MovieReview after the first runtime iteration of
our evaluation process

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reasoning about Microservice Granularity Adaptation
	2.2 Value-Driven Decision-Making Approaches
	2.3 Previous Usages of Real Options Analysis
	2.4 Runtime Adaptation Support for Service-oriented and/or Microservice Architectures

	3 Problem Formulation
	4 Dynamic Evaluation of Microservice Granularity Adaptation
	4.1 Filmflix: A Running Example and Evaluation Case
	4.2 Utilising Binomial Real Options Analysis
	4.3 Utilising Bayesian Surprises
	4.4 Proposed Dynamic Evaluation Process

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results: Capturing Added Value Under Uncertainty (Addressing First Evaluation Goal)
	5.3 Results: Capturing Microservice Runtime Dynamics (Addressing Second Evaluation Goal)
	5.4 Proving Feasibility for Tool Support

	6 Threats to Validity
	7 Conclusion and Future Work
	References
	A Step-by-step Example of Proposed Dynamic Evaluation Process
	A.1 Inputs
	A.2 Process
	A.3 Output

