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Abstract: Water Distribution System (WDS) threats have significantly grown following the Maroochy
shire incident, as evidenced by proofed attacks on water premises. As a result, in addition to
traditional solutions (e.g., data encryption and authentication), attack detection is being proposed in
WDS to reduce disruption cases. The attack detection system must meet two critical requirements:
high accuracy and near real-time detection. This drives us to propose a two-stage detection system
that uses self-supervised and unsupervised algorithms to detect Cyber-Physical (CP) attacks. Stage 1
uses heuristic adaptive self-supervised algorithms to achieve near real-time decision-making and
detection sensitivity of 66% utilizing Boss. Stage 2 attempts to validate the detection of attacks
using an unsupervised algorithm to maintain a detection accuracy of 94% utilizing Isolation Forest.
Both stages are examined against time granularity and are empirically analyzed against a variety of
performance evaluation indicators. Our findings demonstrate that the algorithms in stage 1 are less
favored than those in the literature, but their existence enables near real-time decision-making and
detection reliability. In stage 2, the isolation Forest algorithm, in contrast, gives excellent accuracy. As
a result, both stages can collaborate to maximize accuracy in a near real-time attack detection system.

Keywords: attack detection; self-supervised learning; water distribution system; data intelligence;
industrial cyber-physical systems

1. Introduction

The significant increase of reported attacks on the Water Distribution Systems (WDS)
in the last two decades, has increased the need for further advancements in technologies
that can leverage security to the water systems. Maroochy Shire council’s sewage control
system was attacked in 2000 by a contractor that wanted to be hired. 150 pump stations
have been accessed causing a loss of approximately $200,000 for cleaning 150 million liters
of untreated water that was released into commercial and industrial areas such as parks
and hotels within three months [1]. The water systems have witnessed more than 15 major
attacks in the last two decades, from Maroochy water treatment to Riviera beach water
utility in the US in 2019 [1]. Moreover, it was reported to be within the top four of the most
targeted industries [2,3]. The consequences of a successful attack on the water industry
will have a long-lasting severe effect on the financial and social status. Due to the poor
preventive security mechanisms in the Maroochy shire water treatment facility, the attacker
was capable of bypassing them with sufficient information about the facility. This reveals
that the conventional preventive mechanisms are not sufficient to avoid the disruption of
the networks.

Nevertheless, applying an attack detection system along with data encryption and
system authentication will improve the security of the network, more complex attacks may
be able to fool the water network with adequate knowledge about the system. An example
of a man-in-the-middle attack was not detected on WDS using a similar attack detection
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due to the sufficient knowledge the attacker had [4]. A robust attack detection system still
needs further developments to avoid unnoticed attacks especially with the nonexistence
data of previous attacks. Additionally, the integration of cyber and physical systems added
to the vulnerability of water systems to not only physical but also cyber-attacks.

Some of the typical Cyber-Physical (CP) attacks on WDS can be summarised as (1)
manipulation of the physical systems such as sensors, actuators, and other WDS assets [5].
(2) compromising the links between the physical systems, and (3) direct attacks on the
Supervisory Control and Data Acquisition (SCADA) system. In particular, the attacks on
the SCADA system (as previously occurred in the Maroochy shire attack) are most difficult
to detect wherein they can be detected using a traffic analysis system. The movement of the
Cyber-Physical Systems (CPS) involves incorporating both cyber and physical technologies
altogether, which can include an attack detection system on the security policies to analyze
the whole network traffic and not only store data (in the cyber layer). Hence, a robust attack
detection along with conventional mechanisms (e.g., efficient logging system) is essential,
when an attack occurs. Therefore, once the attack detection system identifies an existence
of a breach, the efficient logging system will be able to trace the root of the problem [6].

The introduced functionality of smart water management by CPS corresponds along
with the expansion of the vulnerability of cyber-attacks from malicious intruders. This could
lead to a disastrous impact due to the heavy dependence of water systems on computer
networks. This means an attacker can use traditional techniques to take over the water
network that can provide unauthorized access on Programmable Logic Controllers (PLCs)
or the SCADA systems [1]. Appropriately securing critical water infrastructures using
adequate preventive mechanisms is essential to become a reality in the next generation of
WDS. Lots of data analytic progression are still underdeveloped on SCADA data to detect
pipeline bursts, leakages, backflows, and contamination events [7]. Hence, data analytic
techniques with near real-time data monitoring are proposed for preventing intrusions
and malicious activities in the water networks. In practice, some CP attacks might fool the
operator with the status of the network. For example, a CP attack can manipulate the water
level sensors to turn on the pumps when the water level is high, which causes a flood, and
vice versa. A typical WDS is a network wherein the system nodes are its assets/devices
(e.g., sensors and pumps), and the edges are the physical links (e.g., pipelines). However,
the effect of the edges (pipelines) in the water network and the detection of attacks can be
solely dependent on measuring the network nodes.

Therefore, a robust attack detection system using machine-learning technologies that
operate in the absence of labeled data is of paramount importance in water systems. In
general, there are four types of methods in the machine-learning field: supervised, semi-
supervised, self-supervised, and unsupervised learning. Supervised learning requires
prior knowledge about the system (training data). Semi-supervised learning is a method
that produces prior knowledge (training data) with the result of combing small labeled
data with large unlabelled data. Self-supervised learning is a method that generates prior
knowledge (training data) from normal attributes and without any provided labeled data,
and unsupervised learning is a method that can do the processing without the knowledge
of the prior attacks [8–11]. Hence, the usage of self-supervised and unsupervised learning
are adequate with the unlabelled data especially in water systems as it lacks the availability
of data that demonstrates all potential CP attacks. The dataset in a self-supervised method
does not require a manual labeling mechanism by a human, but the labeling can be done
by contrasting among the sensor readings. This recognition of normality makes it possible
to identify abnormal sensor readings which are pointed out as an attack [12].

A self-supervised system is proposed to contrast the measurement readings to provide
learning features via pseudo labeling (explained in Section 3). This is followed by novel
heuristic systems that use the learned features to identify outliers ’attacks’. The novel
heuristic systems incorporate well-known supervised algorithms as tools for evaluation
with similar ones in the literature. The considered algorithms in the attack detection systems
include K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Random Forest
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(RForest), Extreme Gradient Boosting (XGBoost), and Bag-of-SFA (BOSS). Nevertheless,
these heuristic algorithms can provide near real-time decision-making and reliable detection
of CP attacks, but incorporating a second stage of the unsupervised algorithm (Isolation
Forest ’iForest’) will sufficiently incorporate high accuracy in detecting attacks. To the best
of our knowledge, no work in the literature has considered two stages detection system
that relies on self and unsupervised algorithms.

Since the BATADAL dataset is relatively small in size (365 days × 24 h × 7 sen-
sors = 61,000 measurements), it is adequate to encounter shallow machine learning algo-
rithms over deep learning in terms of power consumption as stated in [13]. The contribu-
tions of this paper are as follows:

• Developing a two-stage detection architecture for alarming and confirming CP attacks
using self-supervised and unsupervised algorithms:

• Adapting self-supervised learning method for WDS using the pseudo labeling ap-
proach for Stage 1 in which heuristic attack alarming system works:

• Applying novel heuristic algorithms in stage 1 (inspired by concept drift) using the
learned features from the self-supervised system;

• Applying an unsupervised algorithm (iForest) for stage 2 to maintain high accuracy
of attack detection;

• Combining both algorithms of self-supervised and unsupervised algorithms for form-
ing two-stage alarming and confirming CP attacks; and

• Experimentally studying the versatility of different time granularity and discussing
the performance of these different algorithms.

Since our approach requires only access to raw time-series data from sensors, it can be
used on any existing system with the logging of sensory time-series data. A comparative
study of novel heuristic algorithms is studied along with comparing the performance of
state-of-the-art unsupervised algorithms.

Favorable results are reported and evidencing the efficacy of the proposed system. The
results are evaluated based on many performance metrics such as accuracy, time-to-detect,
sensitivity, precision, F1score, Geometric Mean (gmean), and Specificity.

This paper is organized as follows: Section 2 reviews the related works, and critically
analyses the used algorithms in attack detection. Section 3 proposes the system architec-
ture, discusses the methodology, and presents the dataset. Section 4 presents the results,
highlights the findings that come from the results, and evaluates the performances of these
algorithms. Section 5 concludes the work.

2. Related Works

To protect WDS, not only preventive mechanisms that reduce the possibility of pene-
tration of the network have to be implemented such as traffic authentication, encryption,
and access control. But also, systems that can process the network traffic are crucial to main-
taining the availability of the service. Attack detection is a system that can analyze users,
network, and services information to find an abnormal behavior from traffic promptly.
Such an abnormality may not necessarily be the reason for a breach, but it may be a result
of a faulty device that can be used to bring down the network. These abnormalities may
endanger the entire network of water systems, in addition to CP attacks or intruders, and
both should be detected.

The algorithms used in the literature can be categorized into parametric (also known
as statistical) and non-parametric models. Parametric methods usually operate on statistical
distribution and require prior knowledge, which can have multivariate. Non-parametric
methods are used when the density distribution of the underlying data is not known in
advance, and they can be used in dynamic environments. It usually works based on labeled
training data, but it can also work without prior knowledge.

In parametric methods, the work in [14] implemented an anomaly detection scheme
based on the Kullback-Leibler (KL) divergence algorithm that can detect Distributed Denial
of Service (DDoS) attacks and other anomalies that cannot be detected using traditional
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schemes. The work in [15] has developed a scheme that can detect and recover the data
loss problem using partial least squares and Principal Component Analysis (PCA). KL
divergence, least squares, and PCA have been shown to have high detection accuracy, but
they require prior knowledge and cannot predict the source of the attack.

Non-parametric models are considered as the ideal solution for WDS as the devices
might suffer from the limitation of resources in a dynamic environment. Many algorithms
are investigated in the literature such as KNN, SVM, Artificial Neural Network (ANN), an
algorithm based on Genetic Algorithm (GA), and other hybrid systems. KNN is discussed
in detecting outliers such as presented in [16]. SVM discussed several works to include
detection of abnormalities like data tampering and generic attacks [17]. ANN considered
detecting DDoS, generic attacks, and data tampering [18]. The work in [19] implemented a
scheme based on an unsupervised approach using practical consideration. For the GA and
hybrid schemes, most of them require prior knowledge to detect faulty nodes, DDoS, and
other generic attacks [20].

In 2017, Riccardo Taormina, Stefano Galili, and others announced a competition named
(The BATtle of the Attack Detection Algorithms ’BATADAL’) on the implementation of an
attack detection algorithm using the SCADA data extracted from C-Town water distribution
via EPANET2. Attack scenarios are used to generate the attacked data measurements
through EpanetCPA [13]. Seven participants have been evaluated in this competition
based on several coefficients: ranking score (S), time-to-detection score (STTD), accuracy
(Sacc), true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN)
(see Table 1) [21]. Covariance and mean are the key extracted features in the approaches
at the BATADAL using either PCA or convex optimization as in Aghashahi et al. [22],
Giacomoni et al. [23] and Abokida et al. [24].

Most of the algorithms check for the consistency and violation of the SCADA data
based on a set of rules and it can raise a flag in case of violation for further investigation
as in Pasha et al. [25], Abokida et al. [24] and Housh & Ohar [26]. The detailed evaluation
of BATADAL algorithms and competition information is discussed in [27]. Generally,
all the algorithms used in the competition are based on supervised learning except for
Chandy et al. work [28]. Ramotsoela et al. [6] further evaluated several algorithms on the
BATADAL dataset (see Table 1). These algorithms are Quadratic Discriminant Analysis
(QDA), Mahalanobis Distance (MD), Local Outlier Factor (LOF), Subspace Outlier Degree
(SOD), Naive Bayes (NB), Once-Class Support Vector Machine (OSVM), Linear Discrim-
inant Analysis (LDA) and Ensemble model of parametric & Non-parametric algorithms.
Brentan et al. in [29] also utilized a two-step framework of attack detection in which fast
Independent Component Analysis (fastICA) algorithm is applied followed by a statistical
control algorithm. Moreover, Young et al. [30] constructed an attack detection model on
the same dataset using 5NN, ANN, and an extreme learning machine. Finally, Mehdi and
Bruno in [31] developed a detection system to avoid Prevented Actuation Attack, where
the attacker target the communication between the PLCS and Pumps/Valves. it utilizes the
probabilistic approach in detecting this attack, but they did not consider simulating their
data on the BATADAL dataset.

Nevertheless, there are several models of attack detection on WDS as discussed, they
still require further development to support high accuracy and near real-time decision-
making. Moreover, the lack of the previously encountered CP attacks of this domain
motivates us to bring many recent machine-learning concepts to the water industry such
as self-supervised and concept drift in two-stage attack detection systems which have not
been explored in the literature.
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Table 1. Comparison of algorithms that used on BATADAL dataset.

Comp.
Rank Authors Technique Attacks

Detected TP FP TN FN

1 Housh and Ohar [26] Mixed Integer Linear Program (MILP) 7 388 5 1677 19

2 Abokifa et al. [24] Artificial Neural Networks (ANN) 7 375 69 1613 32

3 Giacomoni et al. [23] PCA or convex optimization routine 7 341 5 1677 66

4 Brentan et al. [32] Recurrent neural networks (RNN) 6 362 45 1637 45

5 Chandy et al. [28] Convolutional variational auto-encoder 7 349 541 1141 58

6 Pasha et al. [25] Statistical analysis 7 134 14 1668 273

7 Aghashahi et al. [22] Random Forest (RF) 3 161 195 1487 246

- Ramotsoela et al. [6] Quadratic Discriminant Analysis (QDA) 7 370 47 1635 37

- Ramotsoela et al. [6] Mahalanobis Distance (MD) 7 355 34 1648 52

- Ramotsoela et al. [6] Ensemble of Parametric and Non-parametric 7 360 46 1636 47

- Ramotsoela et al. [6] Local Outlier Factor (LOF) 7 333 38 1644 74

- Ramotsoela et al. [6] Subspace Outlier Degree (SOD) 7 337 86 1596 70

- Ramotsoela et al. [6] Naive Bayes 7 407 1682 0 0

- Ramotsoela et al. [6] One-class Support Vector Machine (OSVM) 7 189 1 1681 218

- Ramotsoela et al. [6] Linear Discriminant Analysis (LDA) 5 163 1 1681 244

- Brentan et al. [29] Statistical Approach 4 1667 34 373 13

- Young et al. [30] 5NN N.A. 10 0 1682 397

- Young et al. [30] ANN N.A. 189 81 1601 218

- Young et al. [30] SVM N.A. 246 56 1626 161

- Young et al. [30] Extreme learning machine 7 294 69 1613 113

3. Architecture, Methodology and Dataset
3.1. Proposed Architecture

The proposed architecture consists of two parallel detection stages for alarming and
confirming CP attacks where each stage features a unique detection method with a distinct
benefit, such as fast detection in stage 1 and accuracy and precision in stage 2 (see Figure 1).
The two stages begin concurrently, however one stage may take longer than the other in
order to confirm the attack. Stage 1 aims to detect attacks near real-time decision-making
and provide reliable attacks through a self-supervised and heuristic attack alarming system.
It collects data from all WDS devices (e.g., tank pressure, pump flow, pipeline flow, pipeline
status, and so on) in order to understand the pattern of the network’s average readings.
This work focuses on classifying the water tank into one of the groups assigned to each
water tank. The sensor labels have been used as the pseudo label making the problem
a supervised/self-supervised one. The pseudo labeling is conducted through learning
objective functions of pretext tasks. The output data is a classification of the WDS devices’
assignment to one of the groups based on the learned data.

Various pretext tasks are proposed in the literature for different applications such as
computer vision, data measurements, and video processing. For computer vision process-
ing, examples of these tasks are colorizing grayscale images [33], image inpainting [34] and
image jigsaw puzzles [35]. The available tasks for data measurement tasks are Contrastive
Predictive Coding (CPC) [36], momentum contrast [37]. For video processing, tracking
movements of objects [38], validation of frame order [39], video colourisation [40] are the
commonly used tasks. Hence, this work emphasizes contrasting sensor readings as pretext
tasks for pseudo labeling in self-supervised algorithms. Two common properties of the
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pretext tasks are shared: (a) learned features through pretext tasks, and (b) automatically
generated pseudo labeling the pretext tasks based on the attributes.

Figure 1. Proposed two-stage detection architecture for alarming and confirming CP attacks.

Then novel heuristic detection algorithms are performed on the learned features and
generate pseudo labels. The heuristic detection algorithms are inspired by the concept
drift where it takes learning features (and not previously encountered attacks) with the
input data (WDS data) for attack detection. Concept drift is a phenomenon wherein the
data distribution (input data) changes over time [41]. This can make the outlier detection
inaccurate or hard to identify. With the concept of self-supervision, the input learned
features of the attack detection change and cause the typical attack detection systems to not
get any accurate results. Hence, adapting the novel attack detection systems to be able to
use the learned features as input is paramount.

Stage 2 aims to confirm CP attacks using an accurate detection unsupervised algo-
rithm which is iForest. This stage uses the same input as stage 1, but it does not rely on
the previously learned facts. It discovers the underlying structure between WDS device
measurements and reading patterns over time in order to classify the provided data into
the allocated groups that represent water tanks. However, the accurate detection of the
unsupervised algorithm, especially iForest, the combination of the self-supervised and
unsupervised algorithms will provide reliable and accurate detection in near real-time
decision-making.

Both stages take input data from all network devices, such as tank pressure, pump
flow, pipeline flow, pipeline status, and pump status (see two examples of attacked data in
Figure 2). Some of the attacks may have consequences on other network assets based on
the correlation between the devices (see Table 1). These data are utilized in the processing
to analyze the behavior of the water flow and detect any abnormalities.

Attacks on WDS are typically hard to characterize. First, these systems varied greatly
according to the geographic location they are based at. Second, the type of attack and its
consequences depend on the network topology of the system. Finally, the scarcity of such
attacks is evident, as they are yet to be deeply studied, similar to other Cyber Security
attacks. Providing such challenges, in this work, a novel method for attack detection in
WDS is proposed inspired by the currently successful self-supervised machine learning
approach. The proposed approach takes the data originating sensor or device in a WDS
as a pseudo label, characterizing the typical data generation process of each device, in a
supervised learning process (pretext task in the self-supervised learning terminology). This
addresses the first challenge by making the proposed method agnostic to the geographic
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location where the WDS is deployed. By characterizing the data originating from each
device in a WDS, the second challenge is addressed, as the network topology does not affect
the effectiveness of the system, and as such, it is considered topology-invariant. As self-
supervised learning naturally addresses the limited availability of data in the target domain,
the last challenge is addressed, as labeled attacks are not needed, because the proposed
method relies on misclassification of pseudo labels for attack detection. This is unlike the
typical self-supervised learning, where the pretext task is only used for representation
learning. In this work, however, we used the pretext task to characterize any unseen attack.

Figure 2. Two examples of attacked data in the dataset.

3.2. Methodology

The algorithms implemented in the two-stage detection architecture are SVM, KNN,
RForest, XGBoost, and BOSS for stage 1, and iForest for stage 2. The objective for selecting
these algorithms is to achieve high accuracy in near real-time decision making through
simplicity and rapid assessment time. Stage 1 intended to quickly notify a possible warning
using self-supervised learning, followed by an accurate confirmation of the attack using
unsupervised learning.

Although several attack detection models using WDS have been examined, they still
require additional refinement to support high accuracy and near real-time decision-making.
Furthermore, the scarcity of previously known CP attacks in this domain pushes us to apply
various recent machine-learning techniques to the water industry, such as self-supervised
and concept drift in two-stage attack detection architecture, which have not been examined
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in the literature. However, two stages detection architecture is more complex than the
typical one-stage detection in the literature review, this did not degrade the detection
performance. The following are the descriptions of these Algorithms:

3.2.1. Support Vector Machine (SVM)

SVM is one of the powerful and widely used learning algorithms in classifying or con-
structing a separable hyper-plane where the prediction is made according to the calculation
of the distance between the hyperplane and the testing data in a quadratic optimization
problem [42]. It draws the boundaries based on the extreme points in the dataset through
the optimization problem to maximize the margins for high confident detection [42]. It is
considered the best algorithm in segregating two classes as mentioned in [43].

In general, It operates on the linearly separated data, but it can still transform the
non-linear data separately into a higher dimensional space. Such a transformation requires
a qualified kernel to avoid lots of computation using a trick known as the Kernel trick [43].
The kernel uses a dot product between every two vectors in all points for mapping purposes.
It calculates confidence parameters on each training instance, the classifier revisits the
lowest confidence data which means the worst of the misclassified data to guarantee a
well-established convergence.

Consequently, it has fewer data points to carry mislabelling penalties. In addition,
such a technique improves based on re-training and re-labeling the worst misclassified
vectors till it converges. Thus, it is effective and memory-efficient in high dimensional data
space (in different words for non-linear data and non-separable data). On the other hand, it
does not estimate the probability of the classification directly such as other techniques such
as RForest [42].

3.2.2. K-Nearest Neighbour (KNN)

KNN is a non-parametric technique for classification based on the plurality vote of the
neighbours [44]. It is one of the simplest machine learning algorithms for classifications
where weight is assigned to the contributions of the neighbors so that the nearer neighbors
contribute more to the average than the more distant ones [44]. In contrast to other learning
algorithms that allow discarding the training data after the model is assembled, KNN keeps
all training examples in memory.

Once new, previously unseen data come in, the KNN algorithm finds k training
examples closest to x and returns the majority of the label [45]. It assigns random k feature
extraction, called centroids, to be classified into one of the k clusters based on the Euclidean
distance technique. Then, the computation/classifications of the centroids are recomputed
through the process while their locations do not change [45]. In particular, if K = 1 then
the classifier only classifies to one distant neighbor, and for K = 5 means that the classifier
classifies to five distant neighbors. Hence, when the value of K increases, the probability to
make the right classification increases, but with the worst accuracy of false positive.

3.2.3. Random Forest (RForest)

Random forest is an acyclic graph that is used to make decisions because of its features
of being a flexible and easy-to-use algorithm [42]. In each branching of the graph, a specific
feature is examined and used to make decisions [45]. The name refers to a random bunch
of trees wherein each ensemble decision tree is made with an individual classifier. The
final decision of the RForest is based on the voting system of the attributes at each tree
given in the regression of the classification process. Since there are a large number of
relatively uncorrelated classifiers ‘trees’, this can contribute to making the most convenient
classification [46].

As more decision trees engage in the process, the accuracy of the result can be im-
proved once the prediction system is combined. It is known to have high accuracy of the
classification even if the hyper-plane parameters did not change [47]. Moreover, the fact
that it can be used in classification and regression makes it very attractive to be used [42]. In
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addition, RForest does not over-fit the data which is used to happen to a single tree. On the
other hand, it is considered a complex and time-consuming learning algorithm compared
to other machine learning algorithms such as SVM and KNN.

3.2.4. Extreme Gradient Boosting (XGBoost)

XGBoost is short for an extreme gradient Boosting algorithm. It is an efficient form of
gradient boosting with a linear model solver and tree-based learning algorithm. Multiple
Additive Regression Trees (MART), Gradient Boosted Regression Trees (GBRT), or Gradient
Boosting Machine (GBM) are considered as special cases of the boosting algorithms for
multiple trees.

It is considered as a new tree boosting method, which is similar to the MART method.
It consists of several tree ensemble models with each set correlating to the Classification
and Regression Trees (CART) for classification purposes. The instances receive a score on
the corresponding cluster enrolled. The score is not only associated individually with the
cluster as in the decision trees but also among all the clusters which make the interpretations
richer [48].

3.2.5. Bag-of-SFA-Symbols (BOSS)

This is a technique that applies noise reduction to the raw time-series data. It filters
and quantizes (through a sliding window) the extracted patterns for a string matching
algorithm or symbolic representation, called SFA. Then a Sequence of Symbols (SFA word)
for each sliding window is generated, leading to the generation of a histogram of these SFA
words for indicating similarities [49].

This technique has several advantages such as quick responsivity (as it is using
the hashing function), noise reduction capabilities, invariance to phase shifts, offsets,
amplitudes, and occlusions. The BOSS algorithm has similar stages to Bag-of-Pattern (BOP),
the algorithm has to filter slide windows to form a sequence of SFA words through discrete
Fourier Transform (DFT) and discretization by quantization technique called Multiple
Coefficient Binning (MCB). K-nearest neighbor classification algorithm based on a non-
symmetrical function called bespoke distance is used. This algorithm concerns calculating
the distance between the frequencies of SFA words, which occurred in the first histogram.

3.2.6. Isolation Forest (iForest)

Isolation forest is a technique inspired by RForest in terms of having ensemble decision
trees. But, the classification in iForest identifies the anomalies instead of profiling them. It is
an extension of the decision trees using a mechanism called isolation which is a procedure
that involves iterative portioning of the input for separating attributes [50]. These trees
are created by a random selection of attributes. Each node in the network has two divided
parts: attributes and their value that leads to the optimal split.

During an attack, the affected instances have different attributes than the normal ones.
Detection of those affected instances is even easier in the isolation process as they are closer
to the root and easily distinguished from the normal ones. It calculates the average depth
of all instances calculated by the ensemble individual tress. Since the outliers are less
frequently occurring than normal observations, it is more accurate for classification since it
is closer to the root of the trees with fewer splits needed. The partitioning process is first
created based on a certain feature, and then a classification occurs (tree split) for this feature
and so on [50].

3.3. Dataset

The data used in this work is the BATADAL competition dataset as discussed in [13].
The dataset has an hourly time interval from 4 July 2016 to 25 December 2016, and testing
data that characterizes seven attacks from 4 January 2017 to 1 April 2017. This data was
generated via the EPANETCPA toolbox that assesses several types of attacks (see Figure 3).
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This dataset is chosen to evaluate the self-supervised and unsupervised models with
competitive state-of-the-art algorithms in the water industry [27].

Figure 3. C-Town water distribution [27] (Reproduced with permission from the data availability
statement).

The C-Town water distribution system consists of 429 pipes, 388 Junctions, 7 water
levels sensors in tanks (shorted to T), 9 PLCs, 11 pumps (distributed across five pumping
stations and shorted to PU), 4 valves (shorted to v), and 1 reservoir. For instance, PLC1 is
responsible for pumps (PU1 and PU2) based on the control signal which comes from the
tank sensor (T1) through PLC2. PLCs control the pumps and valves through ON/OFF and
OPEN/CLOSED commands. The whole process is monitored, supervised, and stored by
the SCADA system, where only the water level sensors in the water tanks are presented in
the forms of assigned groups to which all data processing is assigned. The data collected
from the C-town water distribution has a value every timestamp for almost all the devices
(e.g., pumps, tank sensors, junctions) concerning its function. For instance, the level sensors
in the water tank represent the values of the water level tanks, pumps have the control
signals, and the sensors in the pipelines and junctions have calculated values of the water
flow and pressure. The attack detection processing considers the classification of the 7
water tanks sensors and also considers other WDS devices’ data (e.g., pumps, pipelines)
that still take place in the classification process. The water consumption’s/readings of the
WDS are assumed to be fairly regular all over the year [27]. The used dataset was generated
from EPANETCPA through several attack scenarios. The seven attacks are briefly described
as follows (see Table 2):
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• Attacks #1 and #2 deal with channel manipulation of the transmitted signal from
sensor T7 to the SCADA system. The signal is manipulated to have a wrong control
signal (It shows HIGH while it is LOW) which can cause a drought.

• Attacks #3 and #4 show the same effect in the previous attacks, yet it shows an incorrect
water level leading to the wrong operational action by keeping the pump working
and causing flooding.

• Attacks #5, #6, and #7 manipulated the control signals that can cause the pumps to
change their speed, which can cause flooding or drought.

Table 2. Attack Scenarios [27]. (Reproduced with permission from the data availability statement).

ID Start Date
[mm-dd-hh]

End Date
[mm-dd-hh] Description

1 09-13-23 09-16-00 Low level in T7 due to SCADA sending incorrect control settings to PLC9.
Alteration of T7 water levels reaching SCADA with replay attack.

2 09-26-11 09-27-10 Like Attack #1, but with SCADA concealment extended to pumps PU10/PU11
Flow and STATUS readings.

3 10-09-09 10-11-20
False low levels readings sent from T1 to PLC2. This triggers PLC1 to keep
pumps PU1/PU2 ON, driving T1 to overflow. Concealment of T1 water level
increase via progressive offsetting.

4 10-29-19 11-02-16 Like Attack #3, but with SCADA concealment performed using replay attack for
T1 water levels, PU1/PU2

5 11-26-17 11-29-04 FLOW and SETTING readings, and PRESSURE at pumps outlet. Working speed
of PU7 reduced to 0.9 of nominal speed causes lower water levels in T4.

6 12-06-07 12-10-04 Like Attack #5, but speed reduced to 0.7 and water level drop in T4 concealed
from SCADA with replay attack.

7 12-14-15 12-09-04 Like Attack #6, but concealment extended to pumps PU6/PU7 FLOW and
STATUS readings.

4. Results, Discussion and Performance Evaluation

A proposal of a two-stage attack detection architecture is developed based on self-
supervised and unsupervised algorithms. To apply self-supervised algorithms, a pseudo
labeling algorithm is developed (through pretext tasks) using sensor labels only. It learns
the WDS device’s reading, correlation, and structure while generating the classification
groups that are referred to as labels by the water level sensors. In the contrast, the self-
supervised algorithms are adaptable changed accordingly wherein learned features of
the classification groups are used as input of stage 1 detection algorithms. Then, the
iForest algorithm in stage 2 is developed to provide accurate confirmation of the attacks
in comparison with other detection algorithms as stated in [51]. As shown, the dataset
comprising the attacks affects some WDS device values based on the type of attack executed;
moreover, some of them may influence other WDS devices (see Figure 2 and Table 2). Our
proposals in both stages are compared with the ones in the literature and evaluated on
several times-granularity of 6, 12, 24, 48 h (see Table 3). The system specification used for
the simulation is i5-6200U, CPU 2.4 GHz, and 8192 MB Ram.

In general, the overall performance improves with smaller time granularity at the
expense of FP & FN, which highlights a trade-off between detection of attacks and reliability
of detection which is visible through the number of FP & FN. Apart from that, different
granularity provides insights on what best algorithm can be used considering near real-time
decision-making.
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Table 3. Performance Evaluation of our results for both stages at different granularity.

Algorithm Granularity Attacks Detected TP FP TN FN

SVM 2-Days 3 2 102 501 12
1-Day 4 6 56 1169 22
12-h 6 24 466 1931 29
6-h 7 57 928 3883 32

1NN 2-Days 3 3 108 491 14
1-Day 1 2 8 1217 27
12-h 4 12 40 2361 37
6-h 6 25 479 4421 64

3NN 2-Days 4 5 111 488 12
1-Day 1 2 4 1221 27
12-h 3 9 31 2371 39
6-h 7 31 509 4391 59

5NN 2-Days 3 3 117 482 14
1-Day 1 2 7 1218 27
12-h 3 10 33 2368 39
6-h 7 29 523 4341 61

7NN 2-Days 3 3 119 480 14
1-Day 1 2 8 1217 27
12-h 4 12 43 2358 37
6-h 7 27 520 4290 63

RForest 2-Days 1 2 81 518 15
1-Day 2 5 9 1194 22
12-h 6 16 211 2189 34
6-h 7 42 581 4228 49

BOSS 2-Days 3 3 101 498 13
1-Day 4 5 75 1151 20
12-h 6 15 303 2086 33
6-h 7 59 809 4001 31

XGBoost 2-Days 3 4 100 499 13
1-Day 3 7 19 1207 21
12-h 5 11 64 2325 37
6-h 7 26 430 4380 64

iForest 2-Days 5 5 18 581 12
1-Day 6 9 48 1178 17
12-h 5 13 70 2329 38
6-h 7 17 180 4630 73

It is observed in stage 1, Boss, XGboost, and RForest are the most accurate among our
self-supervised proposals, and they performed well in a similar dataset [52]. Nevertheless,
these algorithms have less favorable performance than the ones in the literature, but our
proposal is more versatile, reliable, and can adapt with different WDS data because of the
concept drift and their ability in processing unstructured data as stated in [53] (see Table 4).
In stage 2, the iForest outperforms Convolutional variational auto-encoder and OSVM
ones with 180 FP in 6-hour granularity. The number of FP of the iForest algorithm can
get less than 70 at the 12 h granularity, but the detector misses two attacks (see Table 3).
The iForest outperforms the similar ones in the literature because the detection is based on
the voting mechanism of several ensemble trees, wherein individual decision trees do the
detection (See Table 5). However the iForest has a more favorable performance than our
self-supervised algorithms, it is less reliable when detecting near real-time data. Hence,
combining both algorithms is paramount to providing high normalized accuracy and a
reliable detection system.
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Table 4. SACC, TTD, and S in the stage 1 using 6 h granularity.

Algorithm SACC STTD S

SVM 0.80 0.84 0.82
1NN 0.90 0.572 0.73
3NN 0.90 0.75 0.82
5NN 0.89 0.643 0.76
7NN 0.88 0.6345 0.75

RForest 0.87 0.78 0.82
XGBoost 0.9 0.75 0.82

BOSS 0.83 0.71 0.82
MILP [26] 0.98 0.96 0.97
ANN [24] 0.95 0.95 0.94
PCA [23] 0.96 0.93 0.92
RNN [32] 0.98 0.85 0.89

Statistical analysis [25] 0.86 0.88 0.77
RForest [22] 0.78 0.42 0.53

QDA [6] 0.94 0.95 0.94
MD [6] 0.92 0.90 0.91

Ensemble [6] 0.92 0.89 0.91
LOF [6] 0.89 0.85 0.87
SOD [6] 0.88 0.83 0.86

Naive Bayes [6] 0.50 1 0.75
LDA [6] 0.69 0.65 0.67

Statistical analysis [29] 0.973 0.19 0.973
ANN and PCA [54] 0.953 0.984 0.966

5NN [30] 0.512 0.323 0.418
ANN [30] 0.708 0.759 0.749
SVM [30] 0.756 0.722 0.754
ELM [30] 0.841 0.941 0.591

Table 5. SACC, TTD, and S in stage 2 of using 6 h granularity.

Algorithm SACC STTD S

iForest 0.94 0.86 0.90
OSVM [6] 0.73 0.69 0.71

Convolutional variational auto-encoder [28] 0.71 0.83 0.80

At 6 h granularity, only 1NN could not detect all attacks due to the nearest neighbor
coefficient. 5NN and 7NN detected all attacks and it started to diverge with a higher
number of FP. It can be observed that it is optimal to use 3NN since it detected all attacks
with the least number of FP. We emphasized the 6 h because, at the large time granularity
in this dataset, the attack may be masked by normal data, and thus may go undetected. In
addition, the other time granularities are monotonically the same.

τ =

[
Processing time

Attack time× Granular time

]
(1)

Our considered algorithms in both stages are evaluated using many performance
metrics which are time assessment per time granular (τ), normalised accuracy (Sacc), time-
to-detect (TTD), weighted score function (s), F1score, gmean, precision, sensitivity, and
specificity. The time assessment per time granular is the time taken to assess the algo-
rithm regardless of the time granularity. The time assessment per time granular (τ) of
all algorithms varies from 16.7 to 165 ms based on the complexity of the algorithm (see
Table 6). iForest and RForest have the fastest assessment time. The time assessment per time
granular is calculated for the algorithm processing time and attack time (see Equation (1)).
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Table 6. Assessment time of our proposals in both stages.

Algorithm Assessment Time Per Time Granular (ms)

SVM 165.3
1NN 100.5
3NN 100.6
5NN 103.4
7NN 101.8

RForest 22.6
XGBoost 24.2

BOSS 26.1
iForest 16.7

Moreover, the normalised accuracy (Sacc) is evaluated in the proposed algorithms.
iForest has an accuracy of 94.86% for Stage 1 (see Table 6). Sacc is derived from the True
Positives Ratio (TPR) and True Negatives Ratio (TNR) (see Equations (2)–(4)).

SAcc =
TPR + TNR

2
(2)

TPR =
TP

TP + FN
(3)

TNR =
TN

FP + TN
(4)

TTD is considered in the evaluation, which refers to the time taken by the algorithm
to detect attacks. A score of TTD is considered to facilitate the evaluation of the work and
to be used in the weighted optimisation problem (see Equation (5)).

STTD = 1− 1
na

na

∑
i

td − to

∆ti
(5)

where na is the number of attacks, td is the detected attack time, to is the attack started time,
and ∆ti is the total attack duration. The results of the STTD show that overall performance
is less favourable than the supervised-based algorithms in BATADAL competition, except
RForest [22] (see Table 4). A scoring metric of a weighted function of both factors is
evaluated as:

S = γSTTD + (1− γ)SAcc (6)

where γ is a weight provided for the two factors (0 ≤ γ < 1). The results of the scoring
metrics are compared to the BATADAL algorithms (see Tables 5 and 6). The simulation is
assumed to have equal requirements of high normalized accuracy and fast time-to-detect
(equally weights). The weights in the function can be varied based on the need of the WDS,
which means the operators may adjust more weight in the accuracy for having accurate
attacks instead of quick detection of the attack, and vice versa. TPR or Sensitivity and FPR
or Specificity are calculated for further evaluation of the performance with the relation
between positive detection data, which are correctly considered as positive, and negative
detected data (see Figure 4). These are mistakenly considered as positive, concerning all
positive and negative detection of CP attacks, respectively (see Equations (3) and (4)).

Precision, F1 score, and gmean are additional performance metrics in our work and not
considered in the BATADAL competition participants. Precision is the fraction of detecting
data instances among the retrieved instances (see Equation (7)). recall metric shows the
percentage of the true positives that were recalled (see Equation (8)). F1 score is used to
measure the accuracy of the test data, it corresponds to how many instances were classified
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correctly and how many instances did not miss (see Equation (9)). The Geometric Mean
(gmean) is a metric that indicates how good the detector is (see Equation (10)).

Precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

F1score = 2 ∗ (precision ∗ recall)
(precision + recall)

(9)

gmean =
√

TPR + TNR (10)

The performance metrics are applied for 6 h of time granularity (see Figure 4). The
variation of the performance of different KNN algorithms is almost the same. Our proposed
algorithms in stage 1 are less favoured than the ones in the literature, such as MILP [55],
ANN [24], QDA [6] and PCA [23]. But, they are more reliable and sensitive in detecting
attacks (see Table 7). It is observed that our self-supervised algorithms such as SVM, BOSS,
RForest in stage 1 outperformed the iForest algorithm in stage 2 in terms of sensitivity
(see Table 7). In addition, Because Boss, XGboost, and RF have the highest normalized
sensitivity of 65%, 46%, and 64%, respectively, Stage 1 intends to deliver alerts in near
real-time decision-making utilizing heuristic self-supervised approaches. This is followed
by a second stage of verifying attacks using iForest as an unsupervised technique which
outperformed the others in terms of accuracy with 94%. Hence, a combination of the two
algorithms in two-stage detection architecture provides reliable detection in near real-time
decision-making.

Figure 4. Performance Evaluation for several metrics for 6 h granularity, (a) accuracy, (b) F1score,
(c) gmean, (d) precision, (e) sensitivity, and (f) specificity.
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Table 7. Sensitivity metric of our proposed algorithms at different granularity.

Granularity 1NN 3NN 5NN 7NN SVM RForest XGBoost Boss iForest

2-Days 0.13 0.26 0.26 0.26 0.13 0.06 0.26 0.20 0.33
1-Day 0.06 0.06 0.06 0.06 0.24 0.13 0.20 0.20 0.31
12-h 0.24 0.18 0.20 0.24 0.48 0.30 0.22 0.32 0.24
6-h 0.30 0.34 0.32 0.28 0.64 0.46 0.28 0.65 0.19

Although this research focuses on detecting CP attacks in WDS, this methodology
can also apply in other smart industries such as energy, oil and gas, transportation, and
telecommunications with considering the application specifications and types of attacks.
Additionally, different Machine learning internal adjustments may be required for the
algorithms to perform effectively in different industries.

5. Conclusions

This paper proposes a two-stage detection architecture using self-supervised and
unsupervised algorithms to provide CP attacks alarming and confirming systems. Stage 1
aims to provide alarms in near real-time decision-making using heuristic self-supervised
methods since it has the highest sensitivity percentage for 65%, 46%, and 64% for Boss,
XGboost, and RF, respectively. This is followed by stage 2 of confirming attacks using
iForest as an unsupervised method which has a normalized accuracy of 94%. Both stages
can work together to realize the full potential of the attack detection system.

The evaluation of all algorithms using several time-granularity is performed to show
that they support the near real-time decision-making and incorporate both methods to
help maintain a reliable attack detection system. The proposed architecture is arguably
effective in maintaining reliable detection of attacks without previously unseen attacks and
it proved to be practical due to its reliance on normal hydraulic data only.

However, the calculated weight of the system has been recommended that the water
operators use an equal weight of accuracy and TTD. The water operators may need to
adjust these weights in some cases, especially when they suspect the existence of the attack
to have more weight of accuracy.
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