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ABSTRACT  

For many piezoelectric actuators and their areas of operating, charge is proportional to the position of the 

actuator. Thus, for such actuators, estimation of charge is largely considered as an equivalent to position 

estimation. That is, a charge estimator may replace a costly and troublesome position sensor. Nevertheless, 

a significant portion of the excitation voltage is wasted for charge estimation. This squandered voltage, not 

used to deform the actuator, is called voltage drop. A class of charge estimators of piezoelectric actuators 

have a resistor in series with the actuator and can only work together with a digital processor. These are 

called digital charge estimators and have been shown to witness the smallest voltage drop compared to 

other charge estimators. This chapter first proposes a design guide for digital charge estimators of 

piezoelectric actuators to maximise the accuracy with the smallest possible voltage drop. The chapter then 

details the use of five different artificial intelligence (AI) techniques to tackle this design problem and assess 

their effectiveness through even-handed comparison.   

Keywords: Piezoelectric Actuator, Charge, Voltage Drop, Precision, Artificial Neural Network, Fuzzy, 

Radial Basis Function, Fully Connected Cascade Network. 

 

INTRODUCTION  

Piezoelectricity, the inter-convertibility of mechanical and electrical quantities in so-called piezoelectric 

materials was discovered in 19th century by Curie brothers (Jayesh Minase et al., 2010). Currently, quartz 

and other crystals, ferroelectric polycrystalline ceramics, piezoceramics (e.g. barium titanate), and most 

commonly lead zirconate titanate (PZT) are used to produce piezoelectric materials (Aggrey et al., 2020; 

Izyumskaya et al., 2007; Jayesh Minase et al., 2010; Yang et al., 2020).  



In piezoelectric materials, electrons are distributed asymmetrically in ions (Sabek et al., 2015). 

Therefore, mechanical force, which moves ions, provides energy to electrons, and this results in electrical 

voltage. In addition, electrical voltage, through pushing electrons, moves ions and generates deformation. 

The latter case is known as inverse piezoelectricity (Chopra, 2002). Devices, made of piezoelectric 

materials and deliberately produced to employ inverse piezoelectricity, are called piezoelectric 

actuators(Rios & Fleming, 2014). Piezoelectric actuators have applications in energy harvesting (Hou et 

al., 2021) ,  vibration control (Singh et al., 2021) and precise positioning (Flores & Rakotondrabe, 2021) 
including micro/nanopositioning.  

Piezoelectric actuators are both the most compact and the most precise actuators in 

micro/nanopositioning (Mohammadzaheri & AlQallaf, 2017). Micro/nanopositioning aims at precise 

position control of matter at micro/nanometre scale (Mortezaa Mohammadzaheri et al., 2021), which is not 

necessarily equivalent to the development of micrometric scale actuators or sensors, e.g. in (Versaci et al., 

2021; Xu et al., 2019). Fine machining (Hu et al., 2021), manipulation of biological cells (Deng et al., 

2021), scanning probe microscopy (Szeremeta et al., 2021) and precise robotic surgery (Meinhold et al., 

2020) are among applications of micro/nanopositioning with piezoelectric actuators or piezo-actuated 

micro/ nanopositioning .  

The key task in piezo-actuated micro/nanopositioning is precise position control of (an unfixed 

point/surface of) the actuator (Miri et al., 2015). The origin of the position of (a point/surface on) a 

piezoelectric actuator is its position at relaxed state, when the actuator has not been subject to any electrical 

or mechanical excitation for a considerably long period of time (e.g. some minutes). That is, position of a 

piezoelectric actuator is its displacement from the relaxed state. Experiments have indicated that charge of 

a piezoelectric actuator is proportional to its position for a wide area of operating (Bazghaleh et al., 2010; 

M Bazghaleh et al., 2013; J. Minase et al., 2010; Yi & Veillette, 2005). Consequently, a charge estimator 

can replace a costly and demanding position/displacement sensor. This has been a prominent motivation 

for design and built of charge estimators for piezoelectric actuators (Liu et al., 2018; Mohammadzaheri & 

AlQallaf, 2017; Yang et al., 2017).  

All existing charge estimators need electrical element(s) (e.g. resistor(s) or capacitor(s)) in series with 

the piezoelectric actuator. Such elements take/waste a portion of the excitation voltage (Bazghaleh et al., 

2018) . This squandered voltage does not deform the actuator, and is commonly known as “voltage drop”(J. 

Minase et al., 2010). It has been reported that , among existing charge estimators of piezoelectric actuators, 

estimators with a sensing resistor witness the smallest voltage drop (M Bazghaleh et al., 2013). These 

estimators, unlike others, cannot be implemented without digital processors. Hence, they are broadly named 

“digital charge estimators” (Mohammadzaheri, Emadi, et al., 2019).Such digital charge estimators are the 

focus of this book chapter. 

The sensing resistor of digital charge estimators often either has a fixed resistance, e.g. in (Mohsen 

Bazghaleh, Steven Grainger, et al., 2013; M Bazghaleh et al., 2013; Mohsen Bazghaleh, Morteza 

Mohammadzaheri, et al., 2013) or a few intuitively selected resistances (M Bazghaleh et al., 2013). This 

book chapter shows that such estimators lead to either a considerable voltage drop or a noticeable 

impreciseness in wide operating areas. The chapter shows that the aforementioned dilemma can be 

appropriately resolved, if a varying resistance is employed and the resistance is correctly found for different 

operating areas. Analytical approach to find the apt resistance has been shown to suffer from inherent 

defects (Mohammadzaheri, Emadi, et al., 2019). This book chapter, instead, employs artificial intelligence 

(AI) techniques to find the apt resistance for the sensing resistor. 

As detailed in “Problem Statement”, the chapter particularly requires AI techniques to identify a 

mathematical function out of experimental input-output data. Data-driven system modelling (or regression) 

methods based on supervised learning suit such a purpose (Sen et al., 2020).  To the best of authors’ 

knowledge, only five existing AI methods in this category are universal approximators, with verified ability 

for data-driven modelling: radial basis function networks, RBFNs (both exact and efficient types), 

neurofuzzy networks, multi-layer perceptions (MLPs), and fully connected cascade, FFC, networks.  (Chen 

& Chen, 1995; Morteza Mohammadzaheri, Lei Chen, et al., 2012; Mohammadzaheri, Ghodsi, et al., 2018; 



Park & Sandberg, 1993; Ying, 1998).   All these methods are examined in this chapter to tackle the stated 

problem, and their performance is compared.  

The parameters of employed AI models are normally identified with one of the following general 

approaches or a combination of them:  (i) transformation of the parameter identification problem to a matrix 

equation and solving the matrix equation, widely used in linear modelling and support vector machines e.g. 

(Azimi-Pour et al., 2020) and (ii) defining an error function and minimising/optimising this function 

iteratively through a derivative-based optimisation method. RBFNs are often (and in this research) 

identified with approach (i) and MLP and FFC networks with approach (ii). A hybrid approach is commonly 

used to identify the parameters of neuro-fuzzy networks. Antecedent parameters are iteratively tuned with 

a gradient method (approach i), but at each iteration, the parameters of the consequent are identified through 

the method of least square of errors, based on matrix calculations, (approach ii). Detailed information on 

the employed AI models in this research and their parameter identification methods is presented in section 

“Artificial Intelligence Approach to Approximate the Sensing Resistor” 

 

DIGITAL CHARGE ESTIMATORS OF PIEZOELECTRIC ACTUATORS  

Figure 1 depicts a schematic of a digital charge estimator. Ve is the ‘excitation voltage’. VS is the voltage 

across the sensing resistor, RS, or the ‘sensing voltage’, and fc is the cut-off frequency of the high-pass filter 

in Hz. The estimator is composed of  (i) the digital part, inside the computer, (ii) an analogue to digital 

(A/D) converter, and (iii) an analogue part including a piezoelectric actuator and a sensing resistor.  

The sensing resistor, RS, is grounded; thus, almost all the current passing through the actuator, iP, moves 

along RS. Therefore, iP is nearly equal to the current passing RS , i.e. iR. In addition, as to Kirchhoff voltage 

law, VS = iR RS. Hence,  
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Figure1. A schematic of digital charge estimator. The estimator includes integral and high pass filter in a 

computer software or program (digital part), a grounded sensing resistance and the actuator (analogue 

part) and an A/D convertor to connect the analogue part to the digital part. 

Theoretically, integral of iP is the charge of the actuator. However, such an integration has 

complications. The reason is that the A/D converter, in practice, adds a miniscule offset voltage to electrons. 

This offset voltage besides dielectric voltage leakage of the piezoelectric actuator create a low frequency 

(nearly constant) tiny bias voltage, Vb. Therefore, the voltage of the current entering A/D is VS +Vb, in 



reality. Vb is integrated together with VS , as shown in (2),  and adversely affects estimation accuracy. In 

summary, the estimated charge,  𝑞̂𝑃, is not equal to the actual charge of the actuator, qp: 
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This discrepancy is known as drift  (Mohsen Bazghaleh, Morteza Mohammadzaheri, et al., 2013). A high-

pass filter, e.g. the one in Fig.1, can subdue low frequency voltage signals including Vb and accordingly 

prevent drift. This filter, however, suppresses low frequency components of VS either. Consequently, digital 

charge estimators do not suit low frequency applications.   

 

PROBLEM STATEMENT  

Considering Fig.1, with a known A/D convertor and actuator, the main task in design/optimisation of a 

digital charge estimator for a piezoelectric actuator is to choose the sensing resistance, RS. Dual rough 

design objectives of O1 and O2 are taken into account for this purpose: 

O1- high precision  

O2- low voltage drop  

The A/D converter plays a critical role in the selection of RS so as to meet the aforementioned design 

objectives, particularly O1. Each A/D unit has n bits resolution (e.g. 8 or 12 bits) and one or a number of 

range(s) for its input voltage (e.g. ±1 V, ±5 V and ±10 V). After discretisation, the input range of choice is 

presented by uniformly distributed 2n digital numbers (Gray, 2006). For any given input range of the A/D 

converter, a wider coverage of the range by the input voltage (e.g. VS in Fig.1) means that the input voltage 

is presented by more digital numbers (maximum 2n). For example, let us assume in two digital estimators, 

half and full of the input range is covered by VS. Then, VS is presented by 2n-1 and 2n digital numbers 

respectively. In the latter case (full coverage of the input range), each digital number refers to 50% smaller 

value of VS. This simply means a higher precision. Thus, for any given resolution/input range in digital 

charge estimators, maximum precision is attained, if an input range of the A/D is fully covered by VS. In 

other words, in order to achieve O1, RS should be selected so as the range of VS equals an input range of the 

A/D. 

Voltage drop, the portion of Ve not used for actuator deformation, equals VS. Therefore, VS can replace 

voltage drop in O2, and O2 can be re-expressed as  VS  should be as small as possible. 

In summary, for a digital estimator with a given A/D, design objectives of O1 and O2 may result in the 

following design recommendations: 

i- The range of VS should be equal to an input range of the A/D. 

ii- VS should be as small as possible.   

Both abovementioned recommendations, with prioritising the precision, can be merged as «Design 

Guide: the range of VS should be equal to the smallest input range of the A/D». 

This guide assures the maximum precision at the smallest possible voltage drop. The value(s) of RS, in 

Fig. 1, meeting the aforementioned design guide are called ‘apt’ in this chapter, R̃S.  

Figure 2 depicts VS for the digital estimator of Fig.1, where the actuator is a 5536 mm3 piezoelectric 

stack actuator (PiezoDrive, 2021) and RS =44 . The excitation voltage is a triangular function of time with 

the peaks 0 and 20 V and frequencies of 20 Hz and 60 Hz. The smallest input range of the A/D converter 

is ±0.625 V. Figure 2 shows that, with the excitation frequency of 60 Hz, the smallest input range of the 

A/D (±0.625 V) is almost fully covered by VS, and the design guide is satisfied. However, with the frequency 

of 20 Hz, more than half of the minimum input range of the A/D is not used; that is, the design guide is not 

satisfied.  



 

Figure 2. The range of the sensing voltage for the triangular excitation range of [0 20] V and different 

excitation frequencies of 20 and 60 Hz, with a 55 36 mm3 piezoelectric stack actuator and the sensing 

resistor of 44 . 

Figure 2 indicates that a digital charge estimator with a fixed RS cannot satisfy the design guide for an 

extensive area of operating. While, reported digital charge estimators of piezoelectric actuators mostly use 

one (Mohsen Bazghaleh, Steven Grainger, et al., 2013; Mohsen Bazghaleh, Morteza Mohammadzaheri, et 

al., 2013) or a few intuitively selected values of RS (M Bazghaleh et al., 2013). This chapter, alternatively, 

proposes an adaptive digital charge estimator with a varying RS so as to satisfy the design guide for different 

operating areas. Such a digital charge estimator needs a formula (F in (3)) to approximate R̃S at various 

values of operating factors:  

R̂S =F(operating factors): range of VS =smallest input range of the A/D                                                                   (3)                                                                                       

where operating factors are amplitude (in V), waveform and frequency (in Hz) of the excitation voltage (Ve 

in Fig.1). R̂S denotes an approximated value of R̃S.  

This chapter addresses operating areas with either sinusoidal or triangular excitation voltages, in which 

their use have been frequently reported in micro/nanopositioning (Morteza Mohammadzaheri, Steven 

Grainger, et al., 2012b; Mohammadzaheri et al., 2013; M. Mohammadzaheri et al., 2012). For either 

sinusoidal or triangular excitation voltage functions, operating factors are range, r, and frequency, f, of the 

excitation voltage: 
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where FS, R̂SS , FT and R̂ST are the equivalents of F and R̂S in (3) for sinusoidal or triangular excitation 

voltages respectively. This chapter focuses on identification of FS and FT, in order to approximate R̃S. 

Identification of FS and FT, with a physics-based analytical approach has been tried and shown to be 

inaccurate (Mohammadzaheri, Emadi, et al., 2020; Mohammadzaheri, Emadi, et al., 2019) 

(Mohammadzaheri; et al., 2019).  This chapter employs five different artificial intelligence methods to 

identify FS and FT, compares them and interprets the findings. 

 

 



EXPERIMENTAL DATA COLLECTION 

Figure 3 depicts the excitation voltages used in experiments. The values of r were set to 10, 15, 20, 25, 30 

and 35 V for sinusoidal excitations, and 10, 20, 30, 40 and 50 V for triangular excitations.  In both cases, 

the values of  f were 20, 30, 40, 50, 60, 70 and 80 Hz . As a result, 35 and 42 experiments were conducted 

for triangular and sinusoidal excitations, respectively.  

 The utilised piezoelectric actuator is a 5536 mm3, detailed in (PiezoDrive, 2021) . An Aetechron 

7114 voltage amplifier and an Advantech PCI-1710U input/output (I/O) card were also used in experiments.  

The aforementioned card has A/D units with the resolution of 12 bits and five input ranges: ±10, ±5, ±2.5, 

±1.25 and ±0.625 V. Moreover, MATLAB 8. 6  /Simulink 8.6 software including Simulink Real-Time 

Desktop Toolbox 5.1 were used to generate excitation signals and observe the sensing voltages.  

In each experiment, partly depicted in Fig.4, for any given excitation voltage, the sensing resistor was 

tuned so that the sensing voltage range became as close as possible to ±0.625 V, the smallest input range 

of the A/D. Such a resistance is apt (R̃S ) or satisfies the design guide presented in section Problem 

Statement. Thus, the outputs of FS or FT in (4) should ideally match these values of experimental R̃S. 

             

Figure 3. A cycle of excitation voltage                                       Figure 4. Parts of the experimental setup 

Figure 5 shows the trend of the apt sensing resistors with change of frequency (f ) for three ranges of 

voltage (r). It is evident that for the same f and r , triangular excitation demands a higher R̃S. 

 

Figure 5. voltage range (r) versus frequency (f) versus the apt sensing resistance (R̃S) for some of 

experimental data for sinusoidal and triangular excitations 

 



ARTIFICIAL INTELLIGENCE APPROACH TO APPROXIMATE THE SENSING 

RESISTOR 

This section reports the development of artificial intelligence models to approximate FT and FS in (4) with 

use of the collected experimental data. The employed types of models are RBFNs (both exact and efficient 

types), neurofuzzy networks, MLPs and FFC networks. All these models are universal approximators with 

proven capability to model any system when adequate data are accessible (Chen & Chen, 1995; Morteza 

Mohammadzaheri, Lei Chen, et al., 2012; Mohammadzaheri, Ghodsi, et al., 2018; Park & Sandberg, 1993; 

Ying, 1998).   The models were developed through programming in MATLAB 9.4 with occasional use of 

commands from Neural Network Toolbox Version 11.1 and Fuzzy Logic Toolbox Version 2.3.1 of the 

software package.  

Three series of data were employed for model developments: modelling, validation and tests data.  

Modelling data were used to identify the mathematical structure of the model and/or to identify the model 

parameters. Validation data were used to avoid overfitting. Overfitting refers to excessive focus on 

matching the model to the modelling data, which lessens the generality of the model (Cawley & Talbot, 

2010; Mohammadzaheri et al., 2007). The test data were merely used to cross-validate the model in the 

end. In this chapter, hold-out or one round cross-validation was used, which simply requires the accuracy 

of the model with the test data to be acceptable  (Lendasse et al., 2003). In this research, for each excitation 

function and r, seven different values of R̃S  are available, one per excitation frequency (f ). Amongst these 

seven pieces of data, five were randomly assigned to the modelling data, one to the validation data and one 

to the test data, as depicted in Figs.6 and 7. As to these figures,  the collected experimental data are dense 

(Mohammadzaheri, Ziaeifar, et al., 2019; Zhang & Wang, 2016). 

In all modelling methods, presented in this chapter, the aim is to minimise an error function, E, 

representing the discrepancy between the experimental and the approximated apt sensing resistors, R̃S and 

R̂S (Mohammadzaheri, Emadi, et al., 2020). Mean of squared errors, defined in (5), was used as the error 

function in this research, as a popular option for similar problems (Mohammadzaheri, Akbarifar, et al., 

2020; Mohammadzaheri, Firoozfar, et al., 2019): 

 

 

 

Figure 6. Voltage range (r) and frequency (f) information of modelling, validation and tests data for 

triangular excitation 



 

 

Figure 7. Voltage range (r) and frequency (f) information of modelling, validation and tests data 

for sinusoidal excitation 
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where nd is the number of samples in a data series, e.g. modelling, validation or test data. The 

following subsections detail different artificial intelligence techniques used in this research. 
 

Radial Basis Function Networks (RBFNs)  

An RBFN is a combination of (6) and (7). A vector of inputs, U, with m pairs of r and f is fed into an RBFN, 

and the model estimates an output vector Ŷ, with up to m values of R̂S. Maximum value of m is the number 

of data sets within the modelling data, nm (25 for triangular and 30 for sinusoidal excitation); which is also 

the maximum value of i and k in (6).  
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 Ŷ1m = B1m Omm +C1m.                                                                                                                           (7)                                                                                                                                                                                  

where all elements of C are same. As to (6),  the range of O elements is [0 1], and the condition of Aij=Ujk 

maximises Oik.  

In RBFN modelling, arrays of A, B and C and the scalar of S namely ‘spread’ should be defined or 

identified. At model development stage, UM and YM, arrays of inputs/outputs of the modelling data were 

used instead of U and Ŷ. In addition, nm was used instead of m. Then, it was considered that A=UM
T  (8), 

where T refers to transpose. Thus, all O elements equalled to 1.  Moreover, (9) was replaced with (7) during 

model development:   
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B and C, as the only unknowns of (9), were calculated. Afterwards, S was selected so as to minimise E (as 

defined in (5)) calculated with the validation data, also known as the validation error, VE. The values of 23 

and 141 was opted for S in exact RBFNs approximating FS and FT of (4), respectively.  Here is the utilised 

pseudo-algorithm of exact RBFN modelling to find A, B, C and S using UM and YM : 

Step 1: Set A= UM
T 

Step 2: Set  O nm nm =ones(nm nm)  

Step 3: Form and solve (9) with YM and O to find B and C 

Step 4: Find S, with trial and error, so as to minimise the validation error of the developed RBFN 

The developed exact RBFN model has 3nm+2 paraments (scalers or the elements of arrays) to be identified. 

An alternative with fewer parameters is an efficient RBFN model. In development of these models, a 

number of (p) columns of UM were chosen and transposed to form A(Mohammadzaheri, Ghodsi, et al., 

2018). Therefore, the number of A rows is p ≤nm , and (10) was replaced with (9): 
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RBFN modelling was started with picking a spread, S, and a target error, Et. For each pair of S and Et, every 

single column of UM was transposed and considered as a single-row A. Then, B and C were calculated from 

(10), where p=1. The column of UM resulting in the smallest modelling error, ME, was transposed and set 

as the first row of A. ME was calculated with (5) and the modelling data. Subsequently, other columns of 

U were examined to detect the column in which addition of its transpose to A resulted in the largest decrease 

of ME. Such a column was then transposed and appended to A. This procedure continued until ME reached 

Et. The whole procedure to identify A was repeated for different pairs of S and Et. The pair resulted in  the 

lowest VE was opted. Based on similar research, the search space for S and Et were all integers between 50 

and 100 and the numbers between 1 and 10 Ω2 with an increment of 0.1, respectively. Here is the pseudo-

algorithm of efficient RBFN modelling: 

Step 1: A=null, Urem= UM, Uopt=null, p=1, EX=VEX=10000 (a large number), TA=null (temporary weight 

matrix) 

Step 2: Loop 1, for  all values of Et , from 0 to 10 with the increment of 0.1 

Step 3: Loop 2, for all values of S, from 50 to 100 with the increment of 1 

Step 4: Loop 3, while EX>Et and p<nm, p=p+1 

Step 5: Loop 4 for all values of k, from 1 to nm-p with the increment of 1 

Step 6: Add transpose of kth column of Urem to A to form  TA 

Step 7: Calculate O from (6) with Urem , TApn  and S  

Step 8: Solve (10) to find B and C (YM and O are available from the modelling data and step 7) 

Step 9: Find the modelling error, ME(the model should be run more than once if p< nm).  

Step 10: If ME<EX, then EX=ME and Uopt=Uk 

Step 11: End of Loop 4 

Step 12: Remove Uopt from Urem and add it to A 

Step 13: End Loop 3 



Step 14: Find the validation error , VE 

Step 15: If VE<VEX then VEX=VE, SX=S , EtX=Et, and store A, B and C 

Step 16: End of Loop 2 

Step 17: End of Loop 1 

 

Neurofuzzy Networks 

Neurofuzzy networks, fairly similar to the ones used in (Ahmadpour Khanghashlaghi et al., 2009; Angiulli & 

Versaci, 2002; Lin & Chen, 2005; Mohammadzaheri, AlQallaf, et al., 2018; Morteza Mohammadzaheri, 

Amirhosein Amouzadeh, Mojtaba Doustmohammadi, Mohammadreza Emadi, Ehsan Jamshidi, Mojtaba 

Ghodsi, et al., 2021)were employed in this research. Such a neurofuzzy network, unlike RBFNs, receive single 

sets of inputs, i.e. a pair of r and f , and produces its associate R̂S. These neurofuzzy networks have nr rules, 

each with two membership functions, one for r and one for f. Each input to the model, ui, (either r of f ), in jth 

rule, goes through a Gaussian membership function of (11), which results in a membership grade,ij (Mehrabi 

et al., 2017): 
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The product of dual membership grades of a rule is considered as the weight of the rule, a real number 

between zero and one.  The output of a rule is a linear combination of its inputs, as presented in the numerator 

of (12).The output of the neurofuzzy network is the weighted sum of rule outputs, similar to the model in 

(Mehrabi et al., 2017): 
 

 

                                         

 

        (12) 

 

 

 

The number of rules of the neurofuzzy model, nr in (12) and 7 in Fig.8, as well as an initial version of 

the model were estimated with the modelling data through subtractive clustering algorithm. The employed 

subtractive algorithm is similar to the one explained in subsection 2-3 of (Morteza Mohammadzaheri, 

Steven Grainger, et al., 2012a). In both neurofuzzy models, for sinusoidal and triangular excitation voltages, 

the following parameters were used in subtractive clustering, influence range=0.5, squash factor =1.25, 

accept ratio=0.5 and reject ratio=0.15.  

After finding nr, the elements of D, E, F and G, as the parameters of the model, in (12), were tuned with 

the modelling data through an iterative algorithm. At each iteration, elements of D and E were adjusted 

with gradient descent error back propagation method, and the elements of F and G were found with least 

square of errors (LSE) method (Jang et al., 2006; Mohammadzaheri, AlQallaf, et al., 2018). The 

aforementioned algorithm normally leads to a continuously decreasing modelling error, ME. At every 

iteration. The validation error, VE, was calculated too at each iteration. Rise of VE, while ME keeps 

decreasing, was perceived as a sign of overfitting. In the case of such an event, aforesaid iterative algorithm 

was stopped. 
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Figure 8. Rules of the neurofuzzy network for sinusoidal excitation, an approximation of FS in (4). The 

values of 22.5, 50 and 37.5 show an example of pair of inputs and the estimated output. 

Multi-layer Perceptrons (MLPs) 

The employed MLPs, (13), receive a set of inputs, ui |i=1 and 2 (r and f ) . The MLP models of this research 

have one hidden layer of neurons with the activation function , presented in (14), to fit to the conditions 

of a universal approximator (Sifaoui et al., 2008). Kolmogorov’s theorem suggests that, in MLPs with a 

single hidden layer, the number of neurons of the hidden layer is 2(number of inputs)+1 (Hecht-Nielsen, 

1987; Morteza Mohammadzaheri, Amirhosein Amouzadeh, Mojtaba Doustmohammadi, Mohammadreza 

Emadi, Ehsan Jamshidi, Mojataba Ghodsi, et al., 2021; Morteza Mohammadzaheri, Lei Chen, et al., 2012). 

Thus, the number of hidden layer neurons is 2×2+1=5.  
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The activation function of (14) is nearly a hyperbolic tangent function. This activation function has been 

shown to outperform  other renowned activation functions such as uni-polar and bi-polar sigmoid, radial 

basis function (RBF) and conic section in terms of providing the MLP with a higher recognition accuracy 

(Karlik & Olgac, 2011; Morteza Mohammadzaheri, Amirhosein Amouzadeh, Mojtaba Doustmohammadi, 

Mohammadreza Emadi, Ehsan Jamshidi, Mojataba Ghodsi, et al., 2021).  

Nguyen-Widrow algorithm was employed to find initial values for model parameters, H, I and J 

elements; more details of this algorithm can be found in (Mohammadzaheri et al., 2016; Nguyen & Widrow, 

1990). Then, error back propagation with Levenberg-Marquardt algorithm  was utilised to minimise the 

modelling error iteratively and to identify MLP parameters; this algorithm has been explained in 

(Mohammadzaheri & Chen, 2010). Parameter identification was stopped with the same procedure used for 

neurofuzzy networks to avoid overfitting.  

As a drawback, with some initial values of MLP parameters, the employed parameter identification 

algorithm is trapped in so called local minima of the modelling error. This results in lack of model accuracy. 

Accordingly, for approximation of any model of (4) with an MLP, parameter initialisation identification 

was 10 times replicated with different initial parameters. The model with the smallest validation error was 

opted as the MLP of choice. 
 



Fully Connected Cascade (FCC) Networks 

The utilised FCC networks, in terms of mathematical structure, are MLPs with extra parameters (N 

elements) which directly connect the inputs to the output, as presented in (15) and Fig.9:  
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Figure 9. The schematic of an FCC used in this research. An MLP is similar to an FCC without connections 

which directly link the inputs to the summation function (). 

FCC networks use the same inputs, number of layers/neurons and activation functions as the MLPs, as well 

as same parameter initialisation and parameter identification algorithms. The capability of FCC networks 

in tackling  some non-engineering benchmarks has been presented (Hunter et al., 2012), so that they have 

been claimed to have  the most powerful architecture for system identification (Hunter et al., 2012). 

RESULTS AND DISCUSSION 

Figures 9 and 10 exhibit the test results, including the values of experimental R̃S and R̂S approximated by 

different models for the tests data, never been involved in model developments reported in the previous 

section. For sinusoidal excitation, exact RBFN and the neurofuzzy network, each, result in an R̂SS obviously 

distant from R̃SS ,shown with ; the second S in the index refers to sinusoidal, as mentioned in (4).  In 

addition, the neurofuzzy network, both RBFNs and the FCC network produce one approximated R̂SS 

recognisably distant from R̃SS. For triangular excitations, Fig.10, all model outputs are fairly close to R̃ST, 

shown with ; the second T in the index refers to triangular. However, the neurofuzzy network and both 

RBFNs have two values of R̂ST detectably distant from R̃ST; the FCC network has such an R̂ST too.  

Prior to further analysis of test results of the models, the serious risk associated with overestimation of 

the apt sensing resistor, R̃S, needs to be clarified. From figure 1, the relationship between the excitation and 

the sensing voltages can be found as (16) (Mortezaa Mohammadzaheri et al., 2021): 

( )
.

( ) 1
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+
                                                                                                                                        (16)                                                                                  

As a result, (17) demonstrates the relationship between the magnitudes of the two voltages: 
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Figure 10. Test results for sinusoidal excitation 

 

Figure 11. Test results for triangular excitation 

where ω is the excitation frequency in rad/s. For a given ω, CP and |Ve|, the greater the RS, the higher |VS| . 

Therefore, if a RS larger than R̃S is used, |VS| exceeds its pre-defined value, i.e. 0.625 V in this research. 

That is, at occasions, VS lays outside the selected input range of  the A/D converter. Thus, VS is not correctly 

transferred to the digital processor, or VS is saturated. Hence, there is a great risk in overestimation of  R̃S , 

while underestimation of R̃S (i.e. too small R̂S) only reduces the precision, as detailed in Problem Statement 

section. 

Let us assume error, e, and error bias, b, as 
1
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where nt is the number of data sets in the test data. With use of test data and considering a Gaussian 

distribution for e, it can be concluded that by the chance of 97%, -3σ ≤ e-b ≤ 3σ, (19), where σ is the 

standard deviation of e (Montgomery & Runger, 2017).     

As a result of (19),   
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Thus, by the chance of 97%, ˆ 3S SR R b − − .                                                                                                                (20) 

In order to avoid saturation of VS, a sensing resistance of R̂S-3σ-b is recommended to be used, rather than 

R̂S. Therefore, a large σ results in too small values of RS and sacrifice of precision in A/D conversion of VS. 

Hence, the models with lower error standard deviation are particularly preferred.  

Tables 1 and 2 provide more detailed insight into the performance of the AI models. As to both tables, 

MLPs clearly outperform other models and provide better results in all criteria except for the error bias. 

The MLPs have the smallest number of parameters amongst the models, 21, while they still fully meet the 

requirements of Kolmogorov’s theorem. Relatively low number of parameters can play a major role in their 

performance, considering the fact that the modelling data could be as small as 25 data sets.  For sinusoidal 

excitations, efficient RBFN is the second-best model with a noticeably low standard deviation. Although, 

disadvantageously, the number of parameters of this model is more than two times greater than the number 

of MLP or FCC parameters. For triangular excitations, detailed in Table 2, in terms of commonly accepted 

criteria of mean of squared errors and mean of absolute errors, the FCC is the second-best model after the 

MLP. However, the efficient RBFN is the second-best in terms of error standard deviation and maximum 

absolute error. In general, this research shows the claims about superiority of FCC networks, e.g. in (Hunter 

et al., 2012), are not valid for the problem proposed and tackled in this chapter. 

Table1. Assessment of different models to estimate the apt sensing resistance with different 

criteria, for sinusoidal excitations 

Sinusoidal Excitation  RBFN  

Exact 

RBFN 

Efficient  

Neurofuzzy MLP FCC 

Mean of Absolute Errors (Ω) 8.278156 1.884255 8.516957 1.292185 2.808868 

Max Absolute Error (Ω) 29.38565 7.889629 33.40893 5.845352 12.33573 

Mean of Squared Errors (Ω2) 170.7362 11.10937 207.4555 5.979151 26.31438 

Error Standard Deviation (Ω) 11.98713 2.869653 12.58472 2.100265 4.292393 

Error Variance (Ω2) 143.6913 8.234907 158.3751 4.411114 18.42464 

Error Bias (Ω) -5.20048 -1.69542 7.005739 -1.25221 -2.80887 

Number of Parameters 92 50 49 21 23 

Table2. Assessment of different models to estimate the apt sensing resistance with different 

criteria, for triangular excitations 

Triangular Excitation RBFN  

Exact 

RBFN 

Efficient  

Neurofuzzy MLP FCC 

Mean of Absolute Errors (Ω) 3.350581 4.498346 3.467672 2.038999 2.710431 

Max Absolute Error (Ω) 9.381276 8.511782 9.401186 4.619328 9.02141 

Mean of Squared Errors (Ω2) 26.61291 31.34458 23.0949 6.44773 17.58085 

Error Standard Deviation (Ω) 5.139481 3.333085 4.540334 2.326708 4.095632 

Error Variance (Ω2) 26.41427 11.10946 20.61463 5.413569 16.7742 

Error Bias (Ω) 0.44569 4.498346 -1.57489 -1.01694 0.898133 

Number of Parameters 78 50 49 21 23 

 

CONCLUSION 

This chapter first briefly introduced digital charge estimators of piezoelectric actuators. With given A/D 

converter and processor, the only adjustable element of these estimators is the resistance of their so called 

sensing resistor. A design guide was proposed to adjust the aforementioned resistance to maximise charge 



estimation accuracy with the smallest possible voltage drop. Reported experimental results showed the 

sensing resistance should adapt itself to the operating condition to meet the design guide.  

In order to adapt the sensing resistance, a formula is needed to relate the sensing resistance to the 

operating conditions. The operating conditions include the relationship of excitation voltage and time (e.g. 

voltage is a sinusoidal and triangular function of time in this research) as well as the range and the frequency 

of excitation voltage. It was also shown that overestimation of the sensing resistance is seriously risky, and 

a method was presented to avoid it, even at the cost of some accuracy loss in charge estimation.  

 Accurate identification of the formula, mentioned in the previous paragraph, leads to development of 

highly charge/position estimators with slight voltage drop. Such estimators can replace bulky and expensive 

position sensors and open new horizons to nanopositioning. Analytical models have already failed to 

accurately identify the aforementioned formula. Alternatively, five different artificial intelligence methods 

were utilised to identify the aforementioned formulae: exact and efficient radial basis functions (RBFNs), 

neurofuzzy networks, multi-layer perceptions (MLPs) and fully connected cascade (FCC) networks. All 

these methods were employed even-handedly and with appropriate use of randomly chosen modelling, 

validation and test data, identical for all methods. MLPs show highly accurate estimation and absolute 

superiority over other methods. Efficient RBFN and FCC are the second-best models for different 

excitations/criteria. Neurofuzzy network and exact RBFN show occasional significant inaccuracy (>20Ω) 

in test. In summary, the results support that the MLP is a reliable option to estimate the sensing resistance 

and to design/optimise digital charge estimators. 
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Response to Comments and Revision Report 
The authors wish to thank the editor and reviewers for their and effort spent on our chapter and 

their role on improvement of the work. The modifications made in the chapter to address the 

comments of reviewer 1, 2 and 3 are highlighted in yellow, green and cyan, respectively.  

 

Response to Reviewer 1 Comments 
Comment 1-The design of sensors and / or actuators on a micrometric scale is, nowadays, very 

topical, especially considering the fact that physical-mathematical models are needed that allow 

real-time recovering of moving parts by means of numerical techniques that can be easily 

transcribed into hardware. So, I recommend inserting a sentence in the text that highlights this 

need by putting the following relevant works in the bibliography: doi: 10.3390/s21155237 doi: 

10.3390/s19132908 *)  

Response: In order to address this comment, a sentence was added to the third paragraph of the 

introduction including both suggested references.  

 

Comment 2-The caption of Figure 1 deserves a particular study. So I ask that it be made self-

explanatory.  

Response: The caption of Figure 1 has been expanded to be self-explanatory and to satisfy the 

reviewer’s comment. 

 

Comment 3-After the Introduction the following sentence is reported: "Theoretically, integral of 

iP is the charge of the actuator. However, such an integration has complications". Please state the 

reasons. 

Response: In fact, the text immediately following the sentence, mentioned by the expert reviewer, 

aims to explain the reason of integration complications. However, admittedly, there was no clear 

connection between the sentence and the presented reasons. Therefore, a phrase “The reason is 

that the” (alongside with a few other amendments) was added to clarify the connection of the 

aforementioned sentence and its reasons and to address the raised comment.  

 

Comment 4- In the section "PROBLEM STATEMENT" it would be interesting to insert some 

mathematical details of the modeling to better understand the intrinsic links between the various 

variables.  

Response: Both equations (3) and (4) have been revised and supplied with more details to further 

clarify their meaning and satisfy the raised comment. 

 

Comment 5- In the Section "ARTIFICIAL INTELLIGENCE APPROACH TO APPROXIMATE 

THE SENSING RESISTOR" neurofuzzy networks are mentioned as function approximators. It 

would be interesting to highlight the versatility of these approaches by inserting works transversal 

to the proposed methodology in the bibliography. In particular, I recommend inserting: doi: 

10.1023/A:1020333704205 doi: 10.1016/j.fss.2004.07.001 which represents a family stone in the 

sizing of microstrip antennas through the use of neurofuzzy techniques. 



Response: Both valuable references, recommended by the reviewer, have been used and cited to 

enrich the subsection of “Neurofuzzy Networks” of the chapter.  

 

Comment 6-In the Tables, please highlight the most relevant numerical results in bold. 

Response: Done 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer 2 Comments 

Comment 1- In title, “an Artificial Intelligence Approach” is written. Please clearly indicate the 

Artificial Intelligence Approach.  

Response: As mentioned in the last sentence of the abstract, the last sentence of the sixth paragraph 

of the introduction and the first paragraph of a section entitled “Artificial Intelligence Approach 

to Approximate the Sensing Resistor”. This book chapter employs five different artificial 

intelligence techniques to solve the design problem, detailed in “Problem Statement”, instead of 

analytical modelling. That is, “an Artificial Intelligence Approach” has been used to tackle the 

stated problem. 

 

Comment 2-  “The employed types of models are radial basis function networks, RBfNs (both 

exact and efficient types), neurofuzzy networks, multi-layer perceptions, MLPs, and fully 

connected cascade, FFC, networks.” is written. What is the difference of multi-layer perceptions 

and MLPs?  

Response: MLP is the acronym for multi-layer perceptron, as mentioned in the title of a subsection 

“Multi-layer Perceptrons (MLPs)”. The introduction and the first paragraph of “Artificial 

Intelligence Approach to Approximate the Sensing Resistor” section  have been modified to clarify 

this matter and to address this comment.  

 

Comment 3-  The reviewer wonders that why the authors did not use some suitable, relevant 

sensors to measure the charge for piezoelectric actuators. How is the charge amplifier or 

oscilloscope? 

Response: In fact, no oscilloscope can measure charge. Furthermore, charge amplifiers (or charge 

drives) of piezoelectric actuators are actually a combination of a charge estimator and a feedback 

control system; thus, a charge estimator is needed first to have a charge amplifier. A digital charge 

estimator with an intuitively chosen sensing resistance, as reported in the literature and discussed 

in the chapter, may lead to low precision or high voltage drop or very commonly both. An 

appropriate design of charge estimators for piezoelectric actuators as detailed in sections “Digital 

Charge Estimators of Piezoelectric Actuators” and “Problem Statement” should maximise the 

precision, keep the voltage drop low and minimise the effect of drift, a multi-objective complicated 

design problem investigated for decades by many research groups. This chapter successfully 

tackles this design problem with use of artificial intelligence techniques. 

 

Comment 4- Suspicious fonts are seen in equations.  

Response: The reason of the mentioned fonts was the PDF maker used to prepare in the original 

version. The PDF maker has now been changed, and the problem is fixed.  

 Comment 5- The overall contents sounds far from “Handbook of Research on New Investigations 

in Artificial Life, AI, and Machine Learning”. Detailed description and figures of AI are not included 

in this manuscript. 

Response: In order to address the comment, the authors added Fig.9 to the chapter to depict FFC 

networks and MLPs . All AI models have been described mathematically in full in the chapter, 



and Fig.8 depicts the rules of a neurofuzzy network. The chapter demonstrates the use of Artificial 

Intelligence (AI) techniques to solve a complex engineering design problem, and shows the 

superiority of AI over analytical approach; such a topic seems to fit well into the handbook,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer 3 Comments 

Comment 1- The author(s) provide enough numbers of references in the chapter. However, the 

chapter does not provide sufficient background information and literature review for artificial 

intelligence in the introduction part. The chapter's main topic is artificial intelligence; therefore, 

the author(s) must enhance the introduction part for artificial intelligence. Also, there are no 

allied studies about parameter estimation methods using artificial intelligence. The author(s) 

should review the parameter estimation method using artificial intelligence in the introduction 

part. 

Response: Two paragraphs have been added to the end of the introduction concerning with the 

employed AI methods to address the reviewer’s comment. Only two new references were cited in 

these paragraphs (along with some existing references) to avoid having excessive number of 

references for the chapter. 

 

Comment 2- There is no explanation for why the author(s) hired the specific five artificial 

intelligence. 

Response: a paragraph, newly added to the introduction, provides the explanation mentioned by 

the reviewer: “As detailed in “Problem Statement”, the chapter particularly requires AI techniques 

to identify a mathematical function out of experimental input-output data. Data-driven system 

modelling (or regression) methods based on supervised learning suit such a purpose (Sen et al., 

2020).  To the best of authors’ knowledge, only five AI methods in this category are universal 

approximators, with verified ability for data-driven modelling (Chen & Chen, 1995; 

Mohammadzaheri et al., 2012; Mohammadzaheri et al., 2018; Park & Sandberg, 1993; Ying, 

1998).   All these methods are examined in this chapter to tackle the stated problem, and their 

performance is compared. 

 

Comment 3-  Also, there is no description of how the author(s) implements artificial intelligence 

to approximate the sensing resistor. Does the author(s) use C language or MATLAB?  

Response: The description, mentioned by the reviewer, has been added to the end of the first 

paragraph of “Artificial Intelligence Approach to Approximate the Sensing Resistor” section to 

address this comment: “The models were developed through programming in MATLAB 9.4 with 

occasional use of commands from Neural Network Toolbox Version 11.1 and Fuzzy Logic 

Toolbox Version 2.3.1 of the software package”. 

 

 

Comment 4-  It isn't easy to follow each artificial intelligence only by reading the sections. Would 

you please enhance each section so that the reader can do follow-up experiments using this 

chapter?  

Response: All subsections of “Artificial Intelligence Approach to Approximate the Sensing 

Resistor” section have been revised to improve their readability and to address this comment. 

However, the reviewer is requested to kindly consider that full coverage of all these methods in a 



section of a book chapter is almost impossible. The authors have tried to present the techniques as 

concise as they could.  However, the authors had to refer the readers to other publication in topics 

such as MLP’s parameter initialisation and  identification .All these techniques perhaps need a full 

textbook to provide the reader with full understanding and ability to develop the models. By the 

way, all parameters that one needs to re-develop the models have been provided to the readers. 

These include the range and the increment of spread and target error in RBFNs, influence range, 

squash factor, accept ratio and reject ratio used in subtractive clustering to find initial fuzzy 

models, number of layers/neurons and their activation functions in MLPs and FFCs, as well as 

details or at least the title of parameter initialisation and identification algorithms with references. 

Therefore, a reader with adequate familiarity with the models can repeat the process with some 

efforts. The authors are willing to share their raw data with the publisher or  alternatively, make 

them freely available on researchgate for interested researchers. 

 

Comment 5-  The reviewer could not understand the novelty and usefulness of this chapter. 

Commentary on the novelty and usefulness of this chapter should be added. 

Response: In order to address the comment, extra explanations were added to the chapter. As an 

instance, the following explanations were added to the conclusion: “Accurate identification of the 

formula, mentioned in the previous paragraph, leads to development of highly charge/position 

estimators with slight voltage drop. Such estimators can replace bulky and expensive position 

sensors and open new horizons to nanopositioning. Analytical models have already failed to 

accurately identify the aforementioned formula”. 

      Generally speaking, useful sensors in piezo actuated (and other types of) nanopositioning are 

expensive and rather difficult to run/calibrate, More importantly, they need considerable space that 

may not be available at all, e.g. in highly accurate surgeries.  Charge/position estimation methods 

can replace these sensors, but they may take a large portion of the voltage applied to the actuators. 

Finding an accurate charge/position estimator, which takes a small voltage, can be a breakthrough 

and opens the door to new applications of nanopositioning. Formulation of charge/position design 

problem clarifies the need for identification of functions in equation 4 of the chapter to design 

appropriate charge estimators. Analytical methods have failed to serve this purpose. This chapter 

shows AI techniques can handle this task very well, and MLP is the best of them to tackle the task.   

 

 

Comment 6-  There is no discussion about why the MLP is suitable to solve the approximate 

sensing resistor. Also, why the other artificial intelligence is not good to solve the problems? 

Response: The following discussion was added to the section “Results and Discussions” to justify 

superior performance of the MLPs: “The MLPs have the smallest number of parameters amongst 

the models, 21, while they still fully meet the requirements of Kolmogorov’s theorem. Relatively 

low number of parameters can play a major role in their performance, considering the fact that the 

modelling data could be as small as 25 data sets”.  It should be noted that other presented AI 

techniques are  fairly good in charge estimation, e.g. if their results are compared with the results 

of analytical model ,e.g. in (Mohammadzaheri et al., 2019). They are just not as good as the MLP.  
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