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Abstract 

 

Attackers are increasingly using Fast Flux Service Networks (FFSNs), networks of compromised 

machines, to host phishing websites. In FFSNs, the machines rapidly change such that blacklisting them 

does not entirely stop the networks from operating the websites. This increases the longevity of the 

websites thus becoming more harmful. Existing solutions for detecting the websites are limited with 

relatively low or moderate prediction performances, high prediction time and use of less diversified 

features which increases their susceptibility to detection evasions. This paper proposes a Machine 

Learning (ML) based approach for detecting phishing websites hosted in FFSNs using a novel set of 56 

features. Compared with previous works, the approach achieves high accuracy, a low detection time 

and uses highly diversified features to enhance resilience to detection evasion. The effectiveness of the 

features for prediction was evaluated in the context of binary and multi-class classification tasks using 

multiple traditional and deep learning ML algorithms. The proposed approach achieves an accuracy of 

98.42% and 97.81% for binary and multi-class classification tasks respectively. Our results showed that 

temporal and DNS based features are the strongest predictors while network and host related features 

are the weakest. Our approach is a significant step towards tracking of core components of FFSNs with 

an aim of shutting down the entire phishing ecosystem. 

 

Keywords; phishing hostname, fast flux service network, machine learning, deep learning, flat 

classification, hierarchical classification.

1. Introduction 

 

Traditionally, phishing websites have been 

hosted in single machines, small networks or 

static botnets. Cybersecurity experts have 

become proficient at taking down the websites 

by tracking and blacklisting their hosts through 

their consistent IP addresses [1, 2]. In order to 

evade the blacklisting approach, thus increasing 

longevity of the websites, attackers have been 

increasingly using highly dynamic botnets, also 

known as Fast Flux Service Networks (FFSNs) 

to host the websites [3, 4]. In FFSNs, hostnames 

of the hosted websites are dynamically mapped 

to IP addresses of members of large, evolving 

pools of compromised machines, also known as 
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flux agents. The flux agents act as proxies 

relaying communications between users and a 

small number of actual content hosts (which 

often are also FFSN controllers) thus hiding 

visibility of the hosts and controllers from the 

public. Since the flux agents are the ones which 

are visible to the public, blacklisting them will 

not entirely stop the FFSN operations as the 

motherships tend to recruit new agents to 

replace the old ones, thus maintaining the 

running of the operations. Through this way, 

the blacklist approach always lags the evolving 

networks. Consequently, the use of FFSNs 

makes the shutting down of phishing websites 

difficult, allowing them to stay alive longer and 
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become more impactful. An effective and 

efficient approach to detect the websites hosted 

in these networks is critical in order to 

effectively address the phishing problem. 

 

Detecting these websites can be useful in 

complementing approaches such as that 

proposed by Nagunwa, et al. [5]. It can also be 

useful in building a blacklist of such websites. 

The database can be used by security 

stakeholders such as Internet Services 

Providers (ISPs) to investigate and monitor flux 

networks of the websites in order to identify the 

compromised legitimate networks hosting the 

flux agents.  This can help the informed owners 

of the compromised networks to clean their 

machines and take precautions to prevent their 

machines from being infected again. Also, 

solutions such as those proposed by Gu, et al. 

[6] and Khattak, et al. [7], which monitor data 

traffic between flux agents in the local networks 

and their external motherships, can be used at 

the network gateways to track the motherships 

in order to blacklist them, thus shutting down 

the entire infrastructures of the phishing 

attacks. 

 

This work focuses on phishing  specific FFSNs 

because: 1) Phishing attacks are the major 

source of global cybersecurity attacks, causing 

up to 91% of global data breaches [8]. 

Preventing users from visiting phishing 

websites will significantly reduce the number of 

data breach incidents across the globe. 2) 

FFSNs hosting different types of malicious web 

services such as spam, malware and phishing 

have different DNS, host and network related 

characteristics which are often used to derive 

features for detection [4]. Thus, solutions 

designed to detect all types of malicious web 

services hosted in generic FFSNs are likely to 

be less effective than the ones which detect 

specific services hosted in their dedicated 

FFSNs.  

 

The malicious web services hosted in FFSNs 

are often detected through their hostnames (we 

refer to them as Fast Flux (FF) hostnames). The 

most effective FF hostname detection 

techniques proposed to date have been based on 

the analysis of DNS related predictive features 

using a ML approach. Early techniques 

proposed by Passerini, et al. [9], Perdisci, et al. 

[10] and others monitored specific FF hostname 

characteristics over a period of several hours, 

days or weeks to identify the predictive 

patterns. However, during this monitoring 

period, the hostnames continue to operate thus 

causing more damage. To address the issue, 

some of the recent works including Hsu, et al. 

[11] and Jiang and Li [12] proposed faster 

techniques that take only a few seconds or 

minutes to detect the hostnames. However, they 

have the following limitations: 

▪ A number of techniques achieved 

relatively low or moderate prediction 

performances. For instance, Kumar and 

Xu [13] obtained an accuracy of 

88.03%, Stevanovic, et al. [14] 

achieved an F1 score of 0.85 and 

Almomani [1] attained 

misclassification rates of up to 16%. 

▪ They rely on a restricted set of 

predictive features mainly DNS, 

network or spatial based features. With 

little effort, attackers can discover the 

features used and develop simple 

techniques to evade detection. 

▪ With an exception of Chen, et al. [15], 

all the works have addressed the 

problem as a classification task by 

distinguishing FF hostnames from all 

legitimate hostnames only, ignoring 

non-FF malicious hostnames.  

However, according to our data 

(described in section 3.2), the majority 

of malicious websites are still hosted by 

non-FF malicious hostnames. By not 

considering such hostnames, their 

proposed solutions are deemed 

impractical as they do not reflect the 

real-world scenario in which non-FF 

malicious hostnames exist, thus they 

cannot be deployed directly to protect 

end users.  
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▪ IP geolocation databases do not have 

records of all public IP addresses. 

Some of the works including Stalmans, 

et al. [16] have based their detection 

features on this data. These techniques 

fail to detect websites whose hosts’ IP 

geolocation records are unknown. 

▪ The detection performances of the 

current techniques were not thoroughly 

validated using a wide range of reliable 

performance measures including 

precision, recall and false negative 

rates, limiting our understanding of all-

round effectiveness of the techniques. 

 

To address the above deficiencies, we propose 

a more robust ML-based approach to detect FF 

phishing hostnames. Our contributions in this 

paper are as follows; 

1. We design the approach using a novel 

set of highly diversified features that 

allows for a reliable detection of FF 

phishing hostnames. The set consists of 

56 features derived from DNS, host and 

network characteristics of the hosting 

networks. They are grouped into six 

different categories, of which 41 are 

newly-proposed features and the rest 

are adopted from existing works.  

2. The problem is formulated as both 

binary and multi-class classification 

tasks in which FF phishing hostnames 

are distinguished from CDN 

hostnames, and phishing and legitimate 

non-flux hostnames. In binary 

classification, the FF phishing 

hostnames are distinguished from the 

others combined as a single hostname 

class. On the other hand, in the multi-

class classification, which deemed as 

more difficult task from the ML 

perspective, all four hostnames are 

identified which allows for detecting 

the exact type of hostname and hence 

helps to take more informed decision.  

3. Using flat and hierarchical 

classification techniques, four 

implementation architectures of our 

prediction model are proposed based 

on binary and multi-class classification 

tasks with an aim of identifying the 

architecture that provides the best 

prediction performance.  

4. An approach to evaluation of the 

feature set was devised whereby the 

performance of the features was 

measured using a larger number of 

different ML algorithms than the 

number used in the related works. 

Comparing the performance results 

from such a large set of algorithms 

allows conclusions to be drawn 

regarding the general effectiveness of a 

feature set. A larger number of metrics 

were also used to measure and report 

the performances in order to inform us 

on the all-around effectiveness of the 

prediction model.  

 

To our knowledge, this is the first work that has 

addressed the problem as a four-class 

classification task, has used the hierarchical 

classification approach, has applied DL 

algorithms to address fast detection of FF 

hostnames, and has compared the performance 

of traditional ML and DL algorithms in this 

context. 

 

Our model has achieved a high prediction 

performance but with a prediction time that is 

currently higher than desirable for real-time 

applications. We have not yet attempted to 

optimise the prediction time, but this is on our 

work plan. Alternatively, the model, could be 

used to build a blacklist of FF phishing 

hostnames, which could be used in an effective 

real-time detection application and as a source 

of data for research purposes. We are not aware 

of any existing blacklist that is specific to FFSN 

hostnames. It is important to mention that we 

have not yet tried to distinguish between single-

flux FFSNs (i.e. those using only hostname IP 

fluxing) and double-flux networks (combining 

hostname IP fluxing with name server IP 

fluxing. This will be part of the future work. 
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This paper is arranged in six sections. The 

second section provides a background to non-

flux networks, CDNs, FFSNs, and flat and 

hierarchical classifications. Significant works 

related to our research are also reviewed. In 

section 3, we present the design of our 

prediction model and introduce the prediction 

features. In section 4 we describe various model 

architectures, the experiments for developing 

and evaluating the model and present the results 

of the experiments with their analysis. Section 

5 compares our work with other related works, 

and discusses applicability and limitations of 

our solution. Section 6 concludes the paper by 

re-visiting our results and contributions, and 

outlines our future work. 

 

 

2. Background and Related Work 

 

2.1. Non-flux Networks 

 

The majority of phishing and legitimate 

websites are still hosted in traditional (non-flux) 

networks. According to the data we collected, 

more than 71.4% of all the phishing websites 

are hosted in traditional networks whereas only 

25 million websites of the 1.78 billion 

legitimate websites are hosted in CDNs, the rest 

being hosted in traditional networks [17, 18]. In 

non-flux networks, the hostname of the website 

is resolved to IP address(es) of one or a small 

number of servers consistently. If multiple 

servers are used, they are often located in one 

or a few specific locations. Except for changes 

due to rare events such as maintenance or 

upgrading of the services, subsequent queries 

return the same set of addresses. Since DNS 

records rarely change, the time to live (TTL), 

which is the maximum time intermediate name 

servers can cache the queries, is set relatively 

high. The default TTL value is normally 

between one and three days [19, 20]. We refer 

to such behaviour as non-fluxing. 

 

To avoid being easily tracked, attackers 

increasingly host their web services in 

compromised legitimate servers. According to 

Aaron and Rasmussen [21], up to 51% of all 

phishing websites run on the compromised 

hosts. In order to optimize their limited 

resources, attackers usually host many of their 

malicious web services in one machine. 

Similarly, web hosting service providers co-

host a large number of legitimate web services 

of their various customers. In both cases, a large 

number of different hostnames will be resolved 

by DNS to the same IP address. 

 

Other attackers use proxies to hide the identities 

of their hosting machines [22]. Hostnames of 

their web services, when queried using DNS, 

resolve to the IP addresses of the proxies. When 

a proxy receives a request, it contacts the real 

phishing server to obtain the content and returns 

this to the user. Though there are legitimate 

uses of proxies, including protecting hosts from 

being probed by hackers, caching and traffic 

filtering [23], proxies are more likely to be 

deployed by attackers. 

 

2.2. Content Delivery Networks 

 

CDNs are networks of web server farms in 

dispersed locations. Their purpose is to deliver 

content efficiently to users scattered over a 

large geographical area. Copies of the content 

are cached in multiple farms and a user’s 

request is served from the farm that can provide 

a copy most efficiently. To decide the IP 

addresses to return in response to a DNS query, 

CDNs use sophisticated techniques based on 

factors such as geographical distance, network 

topology and link health [24, 25]. Short TTLs 

are set to ensure users are served with freshly 

computed IP addresses direct from authoritative 

name servers. 

 

The owners of CDNs use them to host their own 

services or lease the infrastructure as a service 

to others. For example, large organizations with 

complex web service ecosystems such as 

Google and Netflix own their specialized CDNs 

while others including Akamai and Limelight 

provide unspecialized CDNs as a service to 

mid-sized content providers [24]. Their server 
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farms are usually in locations distributed 

around the globe to serve local users. The 

number and identities of the servers in a farm 

changes occasionally due to, for instance, 

maintenance and scaling of services [26]. 

Content is accessed directly from the servers 

which are assigned with static IP addresses. 

Because they need to deliver large volumes of 

content to many users with high efficiency, high 

performance servers and web server software 

are used.  

 

2.3. Fast Flux Service Networks 

 

FFSNs are essentially networks of 

compromised machines (flux agents) that are 

managed by attackers for malicious purposes 

including hosting phishing websites, 

distributing spam or malware, and carrying out 

denial of service attacks [9]. Typically, an 

FFSN consists of a small number of content 

servers (in comparison with the number of 

proxies) and one or more command and control 

servers (motherships) that may double as 

content servers[1]. FFSNs recruit new flux 

agents by infecting vulnerable machines with 

malware that enables them to be controlled 

from the motherships [10, 19]. DNS servers 

map the malicious hostnames dynamically to 

the IP addresses of sets of flux agents, so that 

(as for CDNs) consecutive DNS queries return 

different IP addresses. To ensure updated A 

records (sets of IP address(es) mapped to 

hostnames) of active agents are returned for 

each DNS query, FF hostnames are set with 

short TTLs. By using flux agents as proxies, the 

motherships are invisible to users and attackers’ 

footprints are hidden from forensic 

investigators. Tracking and taking down the 

flux agents does not destroy the FFSN as 

motherships can continually recruit and use 

new flux agents, resulting in the prolonged 

existence of malicious campaigns [27].  

 

Most of the flux agents are the compromised 

standard computers and Internet of Things 

(IoT) devices in homes and small office 

networks [2, 11, 27], which are often less 

secured and have many security vulnerabilities 

[28]. There is an evidence showing that some 

FFSNs conceal identities of their flux agents by 

using proxy applications in the agents [29]. 

FFSN sizes may range up to hundreds of 

thousands of flux agents and their members 

vary continuously as new machines are infected 

and existing agents which are temporarily or 

permanently inactive are removed [1, 9, 30]. 

  

Due to a random process of malware infection, 

flux agents in an FFSN are typically from 

different IP networks [19, 31]. As many of the 

flux agents are owned by individual users and 

small businesses, their availability is likely to 

fluctuate as machines are turned off when not in 

use. Furthermore, agents may be lost from the 

FFSN when machines are cleansed of malware 

[10]. FFSNs may host the malicious services of 

their owners, be offered for hire, or a mixture of 

the two [32]. Figure 1 provides an overview of 

FFSN’s architecture. 

 

 
Figure 1. Architecture of FFSNs. 

 
2.4. Related Work 

 

Various studies have proposed techniques for 

detecting botnets or their members (i.e bots and 

command and control servers (C&C)) and 

domains/hostnames. For the former, signature 

based and anomaly behaviour-based techniques 

are the most common ones. Those based on 

signatures, including Intrusion Detection 

Systems (IDSs) such as Snort and Sagan, and 

the proposed techniques by Gu, et al. [6], 
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Kirubavathi and Anitha [33], Xie, et al. [34] and 

Khattak, et al. [7], use predefined patterns and 

signatures of network traffic and of malicious 

codes of previous known botnets to detect new 

botnets or the members [35, 36]. The main 

limitation of this approach is that it only detects 

known botnets, leaving unknown (zero-day) 

botnets undetected. The anomaly behaviour-

based techniques use heuristics or statistical 

algorithms to analyse host and network 

behaviours such as load processing overheads, 

changing system calls, network latency, 

network traffic volume and ports handling the 

traffic to detect abnormal activities related to 

bots [37-41]. These techniques, however, detect 

only the botnets that are associated with the 

networks which have implemented the 

solutions. 

 

The latter aim to detect botnets in the wider 

internet using various hostname and network 

characteristics. One approach in this category is 

to detect malicious domains from their 

linguistical properties. Yadav, et al. [42], 

Antonakakis, et al. [43], Kelley and Furey [44], 

Ravi, et al. [45] and Vinayakumar R. [46], for 

instance, aimed at detecting malicious domains 

generated by domain fluxing botnets using this 

approach. Domain fluxing botnets are the 

networks which generate large numbers of new 

domains algorithmically after every specific 

period or event. Consequently, their strings 

follow specific patterns set by their algorithms 

that are different to those typically chosen by 

people. Fu, et al. [47], argued that the detection 

solutions trained against specific domain-

generation algorithms may not perform well 

against novel ones. 

 

The other approach includes the techniques for 

detecting malicious FF hostnames based on 

DNS related features. These generally fall into 

two groups: those based on the monitoring of 

DNS related features over an extended period 

of time, and those based on detection features 

extracted from data collected at a point in time. 

Using the former approach, Kumar and Xu [13] 

proposed a SVM based classifier using seven 

DNS related features to detect FF hostnames. 

The model was trained on passive DNS data to 

achieve a detection accuracy of 88.03%. Some 

of the features, however, required long term 

monitoring of hosts to obtain their appropriate 

values. For instance, the feature ‘MaxCount’ 

counts the total number of visits to the 

hostname observed in a particular period, 

typically 24 hours. Using a LSTM deep 

learning technique, Chen, et al. [15] proposed a 

classifier to detect FF hostnames using three 

features queried from active domains at five 

different times. Though they achieved a good 

accuracy of 95.4%, the classifier required an 

input data collected at five separate times, thus 

increasing a detection time. Other similar works 

in this category include Passerini, et al. [9] and 

Perdisci, et al. [10] 

 

The above works require significant time 

intervals to collect sufficient data to produce 

good prediction results. To address detection 

delays, some works proposed classifiers to 

detect the hostnames in few seconds or minutes. 

Huang, et al. [48] used six features based on 

time zones and geographical locations of hosts 

and name servers to develop a classifier that 

achieved an accuracy, false positive rate (FPR) 

and area under ROC curve (AUC) of 98.16%, 

0.398% and 0.984 respectively However, not 

all public IP addresses have recorded in IP 

geolocation databases such as “MaxMind”. 

Therefore, the classifier will fail to make 

predictions for hostnames whose IP addresses 

have not been recorded. Also, attackers’ DNS 

servers may select flux agents from time zones 

and locations similar to the users, emulating the 

behaviour of CDNs, so as to increase false 

alarms and evade the detection. Classifiers 

proposed by Stalmans, et al. [16] and Wang, et 

al. [49], which are also based on geolocation 

features, face the same problem.  

 

Hsu, et al. [11] developed an FF hostname 

detection classifier based on response time 

difference (RTD) between hosts of the same 

hostname. The classifier achieved FPR and 

false negative rate (FNR) of 0.3% and 2% 
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respectively. However, the feature can be 

neutralised by configuring the FFSN’s name 

server to return A records of flux agents that 

yield similar response times. Other significant 

studies that proposed classifiers with short 

detection times are Hsu, et al. [28], Lin, et al. 

[25], Stevanovic, et al. [14], Jiang and Li [12] 

and Almomani [1].  

 

 

 

3. Detection of Fast Flux Phishing 

Hostnames 

 

3.1. Design Overview 

 

Our proposed approach uses supervised ML 

techniques to train and develop a classifier that 

can distinguish FF phishing hostnames from 

CDN hostnames, and phishing and legitimate 

non-flux hostnames using features extracted at 

one point in time (instantaneous features). In 

order to assign class labels to the set of 

hostnames used to train the classifier, we 

monitored their fluxing behaviour over an 

extended period of time.  

 

The approach has the following main steps:  

1. Monitoring of the A records returned 

by DNS for sets of known phishing and 

legitimate websites in order to label 

their hostname classes according to 

their fluxing behaviour (see Figure 2). 

Section 3.2 provides further details. 

2. Extraction of instantaneous feature 

data. For each URL, a range of services 

(shown in Figure 3) are queried and the 

features are extracted from the returned 

information to generate the training 

dataset. See section 3.3 for further 

details. 

3. Training a suitable ML algorithm on 

the training dataset to develop a 

classifier. 

4. The classifier accepts instantaneous 

features of given unknown website and 

predicts its hostname class. 

5. Periodic incremental updating of the 

training dataset and re-training of the 

classifier to improve and update its 

performance. This takes into account 

an assessment of the prediction 

accuracy of the classifier over the 

preceding period.

 

 
 

Figure 2. Monitoring of A records for 5 weeks for labelling classes of the hostnames. 
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Figure 3. Components 2 - 4 of our proposed approach; building of a classifier and prediction of a new hostname. 

 

3.2. URL Monitoring for A Records 

and Class Labelling 

 

In order to be able to label a training set of 

websites according to their fluxing behaviour, 

we collected sets of known 4,271 phishing and 

7,530 legitimate websites and monitored their 

IP addresses returned by DNS queries over an 

extended period. We obtained the legitimate 

URLs from a list of 1 million most visited 

website domains from Tranco† and the phishing 

URLs from two major reputable online 

repositories; PhishTank‡ and OpenPhish§. Each 

URL was queried repeatedly for A records after 

every 15 minutes for up to 5 weeks from June 

16 to July 21, 2019. The IP addresses returned 

in consecutive queries regarding the same 

hostname were compared, and the number of 

times a change was observed throughout the 

period was recorded. In a similar fashion to the 

‘fluxiness’ approach used by Holz, et al. [31] to 

distinguish between FF and CDN domains, we 

labelled any phishing or legitimate website 

observed to have at least one IP change as a 

phishing FF or CDN hostname respectively.  

 

 
† https://tranco-list.eu 

Figure 4 shows the distribution of the number 

of IP changes observed for each monitored 

website in the five-week period. Only 29% of 

the collected phishing URLs (also indicated in 

Table 4) were observed to undergo at least one 

IP change while 17% underwent less than 10 

changes. There is significant percentage of 

URLs with number of changes at ranges 

including 21 – 30, 11 – 20, 61 – 70 and 401 – 

500. This suggests that most of the phishing 

websites are still hosted in non-flux networks. 

48% of the legitimate URLs experienced at 

least one change (also indicated in Table 4), 

with 25% having less than 10 changes. Other 

ranges of number of IP changes with large 

percentages of NSs are 61 – 70, 71 – 80, 501 – 

600 and 11 – 20. Generally, legitimate URLs 

were observed to have larger numbers of IP 

changes across most of the ranges compared to 

phishing ones. This is likely because the 

legitimate URLs were obtained from a list of 

1000 most visited websites, which are more 

likely to be hosted in CDNs than lowly ranked 

websites [17]. IP changes in websites with a 

low flux rate, for instance less than 5 changes 

in the monitoring period, may be due to non-

‡ https://www.phishtank.com 
§ https://openphish.com 
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fluxing behaviours such as routine maintenance 

of hosts and upgrading of the networks. 

 

In order to investigate the structure of FFSNs, 

the cumulative records of the IP addresses that 

the phishing hostnames resolve to during 

monitoring were imported into Gephi**, a graph 

visualisation software. Figure 5 shows what we 

suspect to be a large FFSN. The brown and 

green discs represent hostnames and IP 

addresses respectively, and an arc indicates that 

the relevant IP address appears in the 

hostname’s A records at least once in the 

monitoring period. The size of the disc 

indicates how many connections it has. It is 

apparent that IP addresses are often shared by 

different hostnames. This could simply be that 

different FFSNs have infected the same 

vulnerable hosts, but given the density of 

interconnections, it seems more likely that this 

cluster is a single network. Very small networks 

consisting of one or two hostnames and a few 

IP addresses were also observed.  

 

 
Figure 4. Distribution of number of IP changes of 

website hosts observed per URL type. 

 

 
** https://gephi.org 

 
 

Fig 5. Some of the phishing FF hostnames and their 

FFSNs observed in our dataset. 

 

3.3. Distinctive Features for Detecting 

Fast Flux Phishing Hostnames 

 

We propose 83 instantaneous features grouped 

into 6 categories that, based on the analysis 

summarised in section 2, are likely to be useful 

in distinguishing FF phishing hostnames from 

CDN hostnames, and legitimate and phishing 

non-flux hostnames. 62 of the features are 

newly-introduced by this study and the 

remaining 21 features are adopted from the 

existing works. Here we describe few important 

features, a complete list is given in Table 1. 

Table 2 provides a list of sources of information 

we used to generate the features. 

 

Many of the features measure the distribution 

of various attributes across the set of IP 

addresses identifying the hosts associated with 

a given hostname. Consequently, the first step 

in extracting the features is to perform a DNS 

query to obtain this set. The feature value is 

then obtained for each host and statistical 

measures such as average, standard deviation, 

entropy, minimum and maximum are 

calculated. Entropy features are approximated 

as Σipiln(pi) where i runs over the set of unique 

values of the feature within the sample. pi is 

then the number of occurrences of i within the 

sample divided by the number of hosts. Entropy 
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is greatest when all the feature values are 

different, and least when they are all the same. 

 

3.3.1. Temporal Features 

 

Round Trip Time (RTT). Using the traceroute 

command, we measure the time interval 

between sending a data packet and receiving an 

acknowledgement from each host 

corresponding to the hostname in question. Five 

metrics are computed from these RTT values as 

feature 1 to 5 (see Table 1).  

DNS Response Time. This is the time taken to 

receive an answer from the DNS server to a 

query for A records. 

Authoritative TTL for A records. This is a 

maximum time set in the authoritative name 

server for caching A records of each hostname. 

It is obtained by querying A records of the 

hostname from its authoritative nameserver. 

Uptime of Hosts. This is an estimated time, in 

hours, the machine has been up and running as 

reported by a host scanning tool (Nmap). We 

extract features 8–10 from the uptime recorded 

for each IP address associated with the 

hostname. 

Domain Age and Domain Validity. We query 

a WHOIS database to extract a date of first 

registration and an expiry date of the 

hostname’s domain. The former is used to 

compute its age with respect to the current date 

while the latter is used to compare with the 

current date to determine whether the domain 

has expired or is still valid.  

 

3.3.2. Spatial Features 

 

Geographical and Network Distances. We use 

the traceroute command to obtain the IP 

addresses of intermediate hops on the route to 

each host of the given hostname. The hop IP 

addresses are then used to generate features 16-

21 and 25-28. For instance, we identify the 

country location of each hop and count the 

number of unique countries on the route to a 

host. By combining the numbers of all the hosts 

 
†† https://dev.maxmind.com/geoip/geoip2/geolite2/ 

per each hostname, we derive features 19–21. 

Using geographical coordinates of IP addresses 

of a user and the hosts, various geographical 

distances are computed to obtain features 29–

35. We obtain the coordinates from the 

Maxmind’s Geolite2 database††.  

 

3.3.3. DNS Features 

 

Characteristics of Hosts’ PTR Records. PTR 

records hold information allowing DNS to 

perform an inverse look-up of a hostname given 

an IP address. A DNS PTR query is performed 

for each host of the same hostname to obtain its 

PTR records. Features 41– 49 are then extracted 

from the records. 

Characteristics of Co-hosted Websites. We 

search for websites that are co-hosted on a 

machine identified by an IP address of each 

host of the hostname using Bing search engine 

with a search command ‘ip:W.X.Y.Z.’. From 

the search results, we count the number of co-

hosted websites and extract their URLs from 

which we generate features 50-57. 

Similarity of Hostnames. Similar to the 

approaches used by [42] and [47], we measure 

similarity of all types of hostnames against the 

FF phishing hostnames. Three similarity 

measures are used namely Kullback-Leibler 

distance (KL) [50], Jaccard Index (JI) [51] and 

Edit Distance (ED) [52]. For KL and JI, the 

similarity is measured for unigram and bigram 

characters of the hostnames. The symmetric 

values of KL are computed instead of 

asymmetric ones. The metrics are computed as 

follows; for example, JI of unigram characters 

between hostnames h1 and h2 is defined as 

JI(h1, h2) =  𝑋 ∩ 𝑌 / 𝑋 ∪ 𝑌  

where X and Y are the sets of unigram 

characters of h1 and h2. For classifier B 

(described in section 4) as an example, we 

calculate 

∆JI = 
1

|𝑂|
∑ 𝐽𝐼(ℎ, 𝑜)𝑜𝜖𝑂  -  

1

|𝑃|
∑ 𝐽𝐼(ℎ, 𝑝)𝑝𝜖𝑃   

the difference between an average of JI scores 

of each tested hostname against all other three 
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combined hostnames (O) and against all FF 

phishing hostnames (P) as a feature. The small 

difference means JI(h,p) is large and therefore 

the hostname is closely similar to the FF 

phishing hostnames. Similar approach is used 

to compute the differences for KL and ED to 

obtain features 57-61. 

 

3.3.4. Network Features 

 

Network Characteristics. For each IP address 

associated with the hostname, we extract its 

network identity information including subnet, 

network and Autonomous System Number 

(ASN) from an IP geolocation database (we use 

IP2location‡‡), to compute features 62 to 69. 

For instance, for feature 62-63, subnet of each 

host is identified and then we count the number 

of unique subnets and also compute entropy of 

all subnets per hostname. 

 

3.3.5. Host Features 

 

Up State of Hosts. Using a host scanning tool 

(Nmap), we scan each machine hosting the 

given hostname to determine its availability 

state. We then compute a ratio of hosts in the 

‘up’ state as feature 71.   

Host’s Operating System. Using Nmap, we 

scan each host of the given hostname and 

identify its operating system (OS). We count 

the number of unique OSs and identify the most 

common OS per each hostname as features 72 

and 73 respectively. 

Host’s Webserver Software. We extract the 

name of the webserver software installed on 

each host of the given website from the 

response to an HTTP header request. From this 

we generate features 74 and 75. 

Hosts with Proxy IP Addresses. We compute 

the proportion of the IP addresses of each host 

of the given website that are found in a database 

of known public proxy IP addresses (we use 

IP2Proxy§§ database) as feature 76. 

 

3.3.6. Reputation Features 

 

IP Addresses shared with Other Malicious 

Hostnames. We identify the IP addresses 

associated with the given hostname that appear 

on a blacklist of phishing URLs collected in the 

past three months to generate features 77-82. 

For instance, in feature 77, we count the total 

number of times the IP addresses of all hosts for 

each hostname have matched in the database. 

Similarly, from the same blacklist, we query for 

NS records of each hostname to generate a list 

of IP addresses of name servers of the phishing 

websites. IP address of each host of the given 

hostname is also compared against the list to 

generate features 80–82. 

Domain Registrar. We identify the registrar of 

the website’s domain by querying against a 

WHOIS database to obtain feature 83. 

 

 
‡‡ https://lite.ip2location.com §§ https://lite.ip2location.com/ip2proxy-lite 

Feature 

Category 

Feature 

# 
Features 

Proposed or 

Existing Features 

Temporal 

1 - 5 
Round trip time: average, standard deviation, entropy, 

minimum and maximum 

1 - 2 Existing 

3 - 5 Proposed 

6 DNS response time 6 Proposed 

7 TTL for A records 7 Existing 

8 - 10 Uptimes of hosts: average, standard deviation and entropy 
8 Existing 

9 - 10 Proposed 

11 - 12 Domain age, domain validity 
11 Existing 

12 Proposed 

13 - 15 
Domain ages of co-hosted websites: average, standard 

deviation and entropy 
13 - 15 Proposed 

Spatial 16 - 18 
# hops on route to host: average, standard deviation and 

entropy 
16 - 18 Proposed 
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19 - 21 
# unique hop countries on route: average, standard deviation 

and entropy 
19 - 21 Proposed 

22 Ratio of hosts in the same country with a user 22 Proposed 

23 - 24 # unique hosts’ countries, # unique of hosts’ continents 
23 Existing 

24 Proposed 

25 - 27 
# unique hops’ continents: average, standard deviation and 

entropy 
25 - 27 Proposed 

28 - 30 
Geo-distances between the user and hosts: average, standard 

deviation and entropy 
28 - 30 Proposed 

31 - 34 
Geo-distance between the hosts:  sum, average, standard 

deviation and entropy 
31 - 34 Proposed 

35 - 38 
IP range between hosts: minimum, maximum, average, 

standard deviation 
35 - 38 Proposed 

DNS 

39 # unique A records 39 Proposed 

40 - 43 

Ratio of hosts:  with PTR records, with their PTRs 

containing IP addresses, with PTR’s hostnames matching 

with the URL’s hostname, with PTR’s hostnames identity 

matching with the URL’s hostname identity 

40 - 43 Proposed 

44 - 47 
Average:  length of hosts’ PTRs, # of digits in hosts’ PTRs, 

# of hyphens in hosts’ PTRs, # of dots in hosts’ PTRs 
44 - 47 Proposed 

48 # unique TLDs of hosts’ PTRs 48 Proposed 

49 - 52 

Ratio of hosts: with co-hosted websites, with co-hosted 

websites’ hostnames matching with the URL’s hostname, 

using private IP addresses, with dynamic IP addresses 

49 - 51 Proposed 

52 Existing 

53 - 54 # co-hosted websites: average, standard deviation 53 - 54 Proposed 

55 # unique hostnames of co-hosted websites in the hosts 55 Proposed 

56 
# unique TLDs of hostnames of co-hosted websites in the 

hosts 
56 Proposed 

57 - 58 

Difference of average KL divergence between hostnames of 

non-FF phishing and FF phishing hostnames: KL of 

unigram characters, KL of bigram characters 

57 - 58 Existing 

59 - 60 

Difference of average Jaccard Index between hostnames of 

non-FF phishing and FF phishing hostnames: JI of unigram 

characters, JI of bigram characters 

59 - 60 Existing 

61 
Difference of average Edit distance (ED) between 

hostnames of non-FF phishing and FF phishing hostnames 
61 Existing 

Network 

62 - 63 Subnets of hosts: unique #, entropy of # of subnets 62 - 63 Existing 

64 - 65 Networks of hosts:  unique #, entropy of # of networks 64 - 65 Existing 

66 - 67 ASNs of hosts: unique #, entropy of # of ASNs 
66 Existing 

67 Proposed 

68 - 69 
Organizations managing hosts’ ASs:  unique #, entropy of # 

of organizations 
68 - 69 Existing 

70 Ratio of hosts’ networks with generic gateways 70 Proposed 

Host 

71 Ratio of available (up) hosts 71 Proposed 

72 - 73 OS of hosts: unique #, common OS 72 - 73 Proposed 

74 -75 
Webserver software of hosts:  unique #, common webserver 

software 
74 -75 Proposed 

76 Ratio of hosts with known proxy IP addresses 76 Proposed 

Reputation 77 - 79 

Hosts’ IP addresses in a blacklist of phishing IP addresses:  

total # of occurrences, average #, ratio of hosts with their IP 

addresses matched 

77 - 79 Proposed 
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Table 1. A list of the proposed features for predicting phishing FF hostnames. 

 

Feature # Source/Tool 

1 – 5, 8 – 10, 16 – 18, 70 - 73 Network queries with traceroute and Nmap commands 

6 – 7, 36 – 39, 40 – 49 Authoritative name server 

11 – 15, 83 WHOIS database 

13 – 15, 50 – 51, 54 - 56 Bing Search engine 

19 – 35, 62 – 69, 76 IP geolocation database 

51 
A list of private IP addresses provided by Internet 

Assigned Numbers Authority (IANA) 

52 Dynamic User List (DUL) block list 

57 - 61 
Phishing blacklist (PhishTank, OpenPhish) and 

Tranco’s list of top ranked websites 

74 - 75 HTTP response header 

77 - 82 Phishing blacklist (PhishTank) 

 

Table 2. Sources of data for each feature. 

 

 

 

4. Experiments and Results 

 

Our experiments aim at evaluating the 

effectiveness of the proposed features 

(described in section 3.3) in predicting FF 

phishing hostnames using supervised ML 

techniques. In particular, we propose multiple 

architectures designed to solve this problem in 

the context of binary and multi-class 

classification tasks using flat and hierarchical 

classification techniques. We designed two sets 

of experiments, the first one evaluates the 

performance of the features using traditional 

ML algorithms and the second one uses DL 

algorithms. All experiments were run using 

Python and Jupyter hosted on Google’s Colab 

platform. 

 

4.1. Flat and Hierarchical Techniques 

for Binary and Multi Classification 

Tasks 

 

Some of the four hostname classes share 

common characteristics and therefore have 

parent-child relationships. In this case, both flat 

and hierarchical classification techniques can 

be applied. In the former, in which relationships 

between classes are ignored, one binary or 

multi-class classifier assigns instances to their 

respective classes in a single step (see Figure 

6a). In the latter, a hierarchical class structure 

based on the parent-child relationships is used 

to break down the overall multi-class 

classification task into layers of simpler binary 

or multi-class classification tasks [53]. Local 

Classifier per Parent Node (LCPN), illustrated 

in Figures 6b, in which for each parent node, a 

classifier is trained to classify its child nodes, is 

the most preferred technique to implement 

hierarchical classification [54, 55]. 

 
Figure 6a. No parent-child relationships in flat 

classification. 

80 - 82 

Hosts’ IP addresses in a blacklist of IP addresses of name 

servers of phishing websites:  total # of occurrences, 

average #, ratio of hosts with their IP addresses matched 

80 - 82 Proposed 

83 Domain registrar 83 Existing 
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Figure 6b. LCPN technique for hierarchical 

classification (dashed squares represent binary or 

multi-class classifiers) [53]. 

 

Which of the two classification techniques 

achieves better prediction results has been 

shown to depend on the specific problem [53]. 

Based on the two classification techniques, we 

therefore designed four model architectures 

(see Figures 7), two architectures for each 

technique, to evaluate and compare their 

performances. Architectures A and B take the 

flat classification techniques (Figures 7a and 7b 

respectively). In the multi-class classification-

based Architecture A, the FF phishing 

hostnames are classified against the three other 

classes, whereas in the binary classification-

based Architecture B, the FF phishing 

hostnames are classified against the other three 

classes combined.  

 

Architectures C and D apply the hierarchical 

classification techniques (Figures 7c and 7d, 

respectively). The multi-class classification is 

performed through layers of binary 

classification tasks. In each architecture, we 

applied the LCPN technique to build the 

classifiers. We use selective classifier 

approach, proposed by Silla and Freitas [56], to 

evaluate various ML algorithms to identify the 

best performing classifier to use at each node. 

A feature selection method (for traditional ML 

algorithms) is also performed at each node to 

determine the most relevant features for each 

classifier. The classifiers used within the 

architectures employ different prediction 

classes and dataset sizes (see Tables 3 and 4), 

and therefore are expected to produce different 

prediction performances.  

 

We build each classifier using a different set of 

the best features selected from the same original 

set of features proposed in section 3.3. Each 

classifier is evaluated using the ML algorithms 

(named in section 4.3) to identify the best 

performing algorithm for the classifier. For 

each hierarchical architecture, we combine 

performances of the classifiers, from the parent 

node of the hierarchy to the child node in which 

FF phishing hostnames belong, to obtain the 

overall performance. We then compare 

performances of all architectures to determine 

the best performing architecture as a 

recommendation for the implementation of the 

model.  

 

 
 

Figure 7a. Architecture A - flat classification-based 

architecture 

 
 

Figure 7b. Architecture B - flat classification-based 

architecture. 
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Figure 7c. Architecture C – hierarchical classification-based architecture. 

 

 

 
 

Figure 7d. Architecture D - hierarchical classification-based architecture. 

 

 

 

Classifier Classifier Description Archite

cture 

Classification 

Type 

Classifier A 

Classifies a webpage into four classes of hostnames; FF 

phishing hostname, phishing non-flux hostname, CDN 

hostname and legitimate non-flux hostname 

A 
Multi-class 

classification 

Classifier B 

Classifies a webpage as FF phishing hostname or other 

hostnames (phishing non-flux hostname, CDN hostname 

and legitimate non-flux hostname combined) 

B 
Binary 

classification 

Classifier C.1 Classifies a webpage as flux or non-flux hostname 
C 

Multi-class 

classification Classifier C.2 Classifies a webpage as FF phishing or CDN hostname 

Classifier D.1 Classifies a webpage as phishing or legitimate webpage 

D 
Multi-class 

classification Classifier D.2 
Classifies a webpage as FF phishing or phishing non-flux 

hostname 

 

Table 3. FF phishing hostname detection classifiers forming various architectures of the model. 

 

4.2. Training Datasets 

 

 

Features described in section 3.3 were extracted 

from all the monitored and labelled URLs 

(described in section 3.2) to create a training 

dataset from which specific training datasets for 
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each classifier were derived. As indicated in 

Table 4, the training datasets of classifiers A, B, 

C.1 and D.1 were formed by labelling the entire 

dataset with their respective classes whereas in 

classifier C.2, all URLs with no IP changes 

were removed from the dataset. In classifier 

D.2, we removed all legitimate URLs from the 

dataset. 

 

Classifier Class Labels 
Class 

Size 

Dataset 

Size 

Classifier A 

FF phishing hostname 1257 

11801 
Phishing non-flux hostname 3014 

CDN hostname 3867 

Legitimate non-flux hostname 3663 

Classifier B 
FF phishing hostname 1257 

11801 
Other hostnames 10544 

Classifier C.1 
Flux hostname 5124 

11801 
Non-flux hostname 6677 

Classifier C.2 
FF phishing hostname 1257 

5124 
CDN hostname 3867 

Classifier D.1 
Phishing webpage 4271 

11801 
Legitimate webpage 7530 

Classifier D.2 
FF phishing hostname 1257 

4271 
Phishing non-flux hostname 3014 

 

Table 4. Classes and dataset sizes of training datasets used for each classifier. 

 

4.3. Performance Results  

 

We used various evaluation measures to report 

the predictive performance of the proposed 

features. Individual classifier performances 

were assessed in terms of accuracy, FPR, FNR, 

precision, recall, F1-score, ROC curve and 

AUC metrics [57-59] , and they are defined as 

follows: 
 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁 / 𝑇𝑃 + 𝑇𝑁 +

𝐹𝑃 + 𝐹𝑁 

• 𝐹𝑃𝑅 =  𝐹𝑃 / 𝐹𝑃 + 𝑇𝑁 

• 𝐹𝑁𝑅 =  𝐹𝑁 / 𝐹𝑁 + 𝑇𝑃  

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / 𝑇𝑃 + 𝐹𝑃 

• 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / 𝑇𝑃 + 𝐹𝑁  

• 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 /

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  
• ROC curve - A graph of Recall against 

FPR values for thresholds ranging from 
0 to 1. 

• AUC - Area under the ROC curve. 

 

The above performance measures are derived 

from the counts of True Positives (TP), False 

Positives (FP), True Negatives (TN) and False 

Negatives (FN). Note that, if an instance is 

positive and it is classified as positive, it is 

defined as TP. If the instance is negative and it 

is classified as positive, it is FP. While, a 

negative instance classified as negative is TN 

and if it is classified as positive, it is called FN. 

A positive instance in this problem is the FF 

phishing hostname. We present and compare 

results of individual classifiers for both ML and 

DL experiments in the following subsections. 

 

 

4.3.1. Results of Individual 

Classifiers Using Machine 

Learning Algorithms 
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The predictive ability of the proposed features 

was evaluated using eight traditional ML 

algorithms namely Logistic Regression (LR), 

k-Nearest Neighbour (k-NN), Decision Tree 

(DT), Naive Bayes (NB), Support Vector 

Machine (SVM), Artificial Neural Network 

(ANN), Random Forest (RF) and Gradient 

Boosting (GB) [38-41]. These algorithms have 

been successfully used by other researchers to 

address various classification problems in 

cybersecurity [12, 60-63]. Firstly, we 

performed feature selection using wrapper 

subset feature evaluation method with RF 

algorithm [64] to find the best subset of features 

for each classifier. For instance, for classifier B, 

we ranked the results (features) of the selection 

method according to their importance weight. 

Starting with the full feature set, we evaluated 

various subsets of the ranked list of features 

using RF by eliminating the least important 

feature in each evaluation round. Optimal 

accuracy was obtained with a subset of 56 

features and therefore it was selected as the best 

feature set for the classifier. 

 

In each classifier, we applied ML algorithms on 

the best features subset to determine the best 

performing algorithm and its best performance 

results. The stratified cross validation technique 

(k-fold where k is 10) [65] was applied on the 

algorithms to obtain average scores. We then 

tuned the best classifier using a random search 

method [66] to obtain its optimal performance. 

Figures 8 show the performances of ML 

algorithms in each classifier across all threshold 

values in the ROC curve.  

 

Tables 5a-b summarize the results of the four 

best performing algorithms for each of the 

individual classifiers (indicated in Table 3). The 

results indicate that RF yields the best 

performance across most metrics in each 

classifier. Table 5c indicates the tuned 

hyperparameters of RF for classifier B (the best 

overall classifier) and their values which 

yielded optimal performance.

 

   
Figure 8a. ROC curves of the 

traditional ML algorithms for 

classifier A. 

 

Figure 8b. ROC curves of the 

traditional ML algorithms for 

classifier B. 

Figure 8c. ROC curves of the 

traditional ML algorithms for 

classifier C.1. 

   
Figure 8d. ROC curves of the 

traditional ML algorithms for 

classifier C.2. 

Figure 8e. ROC curves of the 

traditional ML algorithms for 

classifier D.1. 

Figure 8f. ROC curves of the 

traditional ML algorithms for 

classifier D.2. 

 

 

Algorithm Classifier A Classifier B Classifier C.1 
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Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

DT 88.54 5.20 12.27 0.89    97.23 1.37   13.88  0.98   95.44 4.62   6.10  0.95   

ANN 89.13 4.23 11.15 0.89    98.07 1.25   14.02   0.98   97.60 1.67   4.97   0.97  

RF 93.58 1.82 8.62 0.94 98.42 0.57   5.88 0.99   98.36 0.69   5.05   0.99 

GB 91.94 3.73 7.64 0.92 95.05 4.26   7.79   0.95   96.57 2.04   10.33   0.96   

 

Table 5a. Performance results of top four best performing ML algorithms for classifiers A, B and C.1. 

 

Algorithm 

Classifier C.2 Classifier D.1 Classifier D.2 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

DT 97.14 1.65   4.68   0.98 97.92 1.53   3.08   0.98   98.14 1.63   9.83   0.98   

ANN 97.44 1.64  5.72 0.98 97.19 2.48   3.35   0.97   98.70 0.75   8.36   0.99 

RF 98.49 0.56   3.82   0.99   98.64 0.62   2.15   0.99   99.16 0.19   7.07   0.99 

GB 97.63 1.28  5.77   0.98   95.67 3.71   4.88   0.96   98.48 0.91   9.62   0.98 

 

Table 5b. Performance results of top four best performing ML algorithms for classifiers C.2, D.1 and D.2. 

 

Hyperparameter Description Value 

n_estimators Number of trees  1000 

max_features 
Max number of features considered for splitting a 

node 
log2 

max_depth Max number of levels in each decision tree 38 

min_samples_split 
Min number of data points placed in a node before 

the node is split 
2 

min_samples_leaf Min number of data points allowed in a leaf node 3 

bootstrap Method for sampling data points false 

 

Table 5c. The optimal values of the tuned RF hyperparameters for classifier B. 

 

4.3.2. Results of Individual 

Classifiers Using Deep 

Learning Algorithms 

 

Here, we assess the performance of the 

introduced features using three DL algorithms 

which are Fully Connected feedforward Deep 

Neural Networks (FC-DNN), Long Short-Term 

Memory (LSTM) and one-dimension 

Convolutional Neural Network (1D CNN) [41-

43]. The DL algorithms were tuned by a 

random search method. We first identified key 

hyperparameters for tuning and their 

considerable range of values for evaluation. In 

each hyperparameter, we first identified a set of 

considerable values for performance tuning 

(indicated in Table 6). We also attempted to 

tune with multiple hidden layers. We found that 

only one hidden layer was sufficient to produce 

optimal performance in each algorithm. 

Additional layers did not improve the 

performances. The identified optimal values of 

all the hyperparameters were then used to build 

the classifiers. The final result of each classifier 

was obtained by taking an average of the 

performances of five runs of the tuned 

classifier. Figures 9 show the three network 

architectures of the tuned classifier B (the best 

classifier), as an example, along with the tuned 

hyperparameters and their optimal values. As 

the final results in Tabless 6 7 indicate, FC-

DNN has performed best across most of the 
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measures in most of the classifiers (A, C.2 and 

D.1), followed by 1D CNN (in C.1 and D.2). 

LSTM has outperformed others in classifier B 

only. 

 

Hyperparameter Range of Evaluated Values 

Number of neurons in dense 

layers / memory units in a 

hidden layer of LSTM / filters 

in a convolution layer of 

CNN) 

10, 30, 50, 80, 100, 150, 200, 300, 400, 600, 800, 1000, 1200, 1400, 

1600, 1800, 2000, 2200, 2400, 2800, 3000 

Activation functions Relu, tanh, sigmoid, hard_sigmoid, linear, softmax, softplus, softsign 

Optimization algorithms SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam 

Learning rates 0.001, 0.01, 0.1, 0.2, 0.3 

Kernel initializers Uniform, lecun_uniform, normal, zero, glorot_normal, 

glorot_uniform, he_normal, he_uniform 

Dropout rates 0.1, 0.2, 0.3, 0.4, 0.5 

Batches 15, 30, 50, 70, 90, 110, 130, 150 

Epochs 10, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 

 

Table 6. Hyperparameters and their ranges of values evaluated for tuning the three DL algorithms. 

 

 
 

Figure 9a. The tuned FC-DNN architecture of 

classifier B. 

Figure 9b. The tuned LSTM architecture of classifier 

B. 

 

 

 

Figure. 9c. The tuned 1D CNN architecture of classifier B. 
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Algorithm 

Classifier A Classifier B Classifier C.1 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

FC-DNN 83.56 6.96 20.12 0.72    94.86 0.79 36.52 0.94   92.60 4.68 19.24 0.92    

LSTM 82.60 7.91 28.23 0.73    96.29 0.63 35.07 0.95    93.39 1.28 24.44 0.93    

CNN 81.89 7.45 31.05 0.71    94.50 1.18 32.46 0.93 93.78 1.10 23.22 0.94    

 

Table 7a. Performance results of the evaluated DL algorithms for classifiers A, B and C.1. 

 

Algorithm 

Classifier C.2 Classifier D.1 Classifier D.2 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

F1 

Score 

FC-DNN 93.18 3.66 16.63 0.93    94.55 6.60 3.13 0.95    93.13 3.15 34.27 0.94    

LSTM 91.54 5.44 21.35 0.92 90.24 10.14 10.26 0.90    94.69 1.47 41.03 0.94    

CNN 90.58 2.50 37.67 0.90 91.89 6.37 12.04 0.90    94.62 1.35 42.68 0.94    

 

Table 7b. Performance results of the evaluated DL algorithms for classifiers C.2, D.1 and D.2. 

 

4.3.3. Overall Results of the Proposed 

Architectures 

 

By comparing results of ML and DL algorithms 

for each classifier, we found that the tuned RF 

has also outperformed the DL algorithms in all 

measures. Recalling the proposed architectures 

in section 4.1, our aim is to determine the 

architecture that offers the FF phishing 

hostname prediction performance. We first 

determined overall accuracy rates of the 

architectures. For hierarchical architectures, we 

applied the approach used by Kowsari, et al. 

[55] in which the overall accuracy at the leaf 

class is obtained by taking accuracy of the child 

classifier as a fraction of the accuracy of its 

parent classifier. Since LCPN hierarchical 

approach propagates misclassification errors 

from top to bottom [53], we compute the errors 

at the leaf class by summing up errors of the 

parent and child classifiers. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 (𝑙𝑒𝑎𝑓) 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ∗

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 (𝑙𝑒𝑎𝑓) 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =

 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 +

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  

 

Table 8 below summarizes the best 

performance of each architecture. As explained 

above, the performance of architecture C was 

obtained by combining performances of 

classifiers C.1 and C.2 while for architecture D, 

the performances of classifiers D.1 and D.2 

were combined. Of the multi-class 

classification-based architectures, architecture 

D produced the overall best performance by 

yielding the highest accuracy and relatively low 

FPR. However, architecture B, which is based 

on binary classification, produced the best 

performance overall in all three metrics.  

 

 

Architecture 
Acc. 

(%) 

FPR 

(%) 

FNR 

(%) 

Classification 

Type 

A 93.58 1.82 8.62 Multi-class 

B 98.42 0.57   5.88 Binary 

C 96.87 1.25 8.87 Multi-class 

D 97.81 0.81 9.22 Multi-class 

 

Table 8. Prediction performances of the 

architectures. 

 

4.3.4. Feature Performance Analysis 
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This section studies the importance of 

individual features and feature categories in the 

performance of the best performing classifier 

(classifier B). The classifier achieved the best 

performance with 56 features, of which 41 are 

novel and 15 were adopted from other works. 

51 of these features were derived from third 

party services while only 5 of them were 

derived from the hostname string (local 

features). The importance weights of the best 

features of the classifier (shown in Figure 10) 

were computed using the tuned RF algorithm 

(described in section 4.3.1). To help explain this 

ranking, we will examine the data distributions 

of some of the best features with respect to the 

four hostname classes.  

 

The experiment reveals that counts of hosts of 

a hostname matching with the blacklisted 

phishing IP addresses (features 77 in Table 1) is 

the strongest predictor. In observing the data, 

the boxen plot in Figure 11a shows that hosts of 

FF phishing hostnames have the largest median 

counts (indicated by the horizontal black line 

in) while a large number of them have the large 

counts of up to nearly 250 compared to phishing 

non-flux and CDN hostnames. Legitimate non-

flux hostnames have the lowest count by far.  

Similar pattern is observed in a binary 

classification of classifier B in Figure 11b. This 

suggests that phishing FFSNs re-use a larger 

number of machines which were found to host 

known phishing websites in hosting their 

phishing websites. This could be through an 

FFSN hosting multiple phishing websites with 

the same pool of flux agents or multiple FFSNs 

hosting their unique websites using the same 

pool of flux agents.  

 

The high ranking of other IP reputation features 

(for instance features # 82 and 81 at positions 4 

and 5 respectively) and the features related to 

co-hosted websites (for instance features #53 

and 55 at positions 14 and 17 respectively) 

affirms this trend. For instance, we observed 

that although hosts of phishing non-flux 

hostnames have the highest median number of 

co-hosted websites (indicated in Figure 12a), 

their resulting median number when they are 

combined with both CDN and legitimate non-

flux hostnames is lowered to 5.5 against 7 of the 

FF phishing hostnames (Figure 12b). In this 

feature, we expected phishing FFSNs and 

CDNs would co-host a large number of 

malicious and legitimate websites respectively 

compared to non-flux networks. A possible 

explanation for the observed data distribution is 

that phishing non-flux networks require the 

fewest resources and therefore they are cheap to 

build and maintain compared to the other 

networks. Since phishers are driven by profits, 

the networks make an ideal platform to host 

multiple phishing websites in order to 

maximize returns of investment. While hosts in 

CDNs will be high performance machines, the 

services they support will a have a high demand 

for resources, so that the number of services 

running on a given host is likely to be modest. 

Furthermore, very large internet companies 

such as Google and Microsoft are likely to own 

CDNs dedicated to their own services.  

 

The hostname similarity features (KL, JI and 

ED) are ranked at positions 3, 6, 7, 13 and 16. 

Although the features were originally used by 

Yadav, et al. [42] and Fu, et al. [47] to detect 

algorithmically generated domains (AGDs) 

hosted in domain flux botnets, their high 

ranking demonstrates that they are also 

effective in detecting hostnames hosted in 

phishing FFSNs. Figure 13a shows the 

distribution of differences in average edit 

distances (feature #61) between the sum of 

averages of ED of hostnames of the three 

categories (both legitimate and phishing non-

flux hostnames) and the average ED of FF 

phishing hostnames. The distribution illustrates 

that FF phishing hostnames have the largest 

median difference followed closely by phishing 

non-flux hostnames while both legitimate 

hostnames have the smallest median. This 

indicates that FF phishing hostnames have the 

smallest average distance when compared to 

each other, followed by phishing non-flux and 

legitimate hostnames. The pattern, also 

illustrated in Figure 13b in which the 
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differences were obtained by subtracting the 

average ED of FF phishing hostnames from the 

average ED of the non-FF phishing hostnames, 

shows that FF phishing hostnames require the 

fewest number of operations to transform one 

hostname string to another, thus they have the 

closest resemblance to each in terms of 

character composition compared to the rest. 

Similar observations were made in the other 

four hostname similarity features. The close 

similarity in median values and patterns 

between the two categories of phishing 

hostnames when compared to those of 

legitimate hostnames suggests that FFSN and 

phishing non-flux network owners use nearly 

similar strategies in composing their phishing 

hostnames, different from the strategies that are 

used to generate legitimate hostnames.  

 

TTL, domain age and average domain age of 

co-hosted hostnames lead the ranking of 

temporal based features at positions 2, 8 and 10. 

In observing the TTL data, Figure 14a shows 

that the majority of CDN and FF phishing 

hostnames have the lowest TTLs compared to 

non-flux hostnames, as we expected. Most of 

the CDN hostnames have the lowest TTLs of 

20s and 60s compared to the rest, while a 

significant number of them have a TTL of 300s. 

Most of the FF phishing hostnames, on the 

other hand, have TTLs of 60s followed by 300s 

and 3600s. The majority of the non-flux 

hostnames have a TTL value of 300s while a 

significant percentage have TTLs of 60s, 600s 

and 3600s. Phishing non-flux hostnames are 

observed to have the largest range of TTLs of 

up to 144000s. However, when combining 

CDN and the two non-flux hostnames as a 

single category, a large percentage of their 

hostnames have high TTLs values at 300s, 600s 

and 3600s when compared to those of FF 

phishing hostnames, which most of them have 

TTL of 60s and 90s. The prediction significance 

of domain age in classifier B is also reflected in 

our data analysis in Figure 15. Although the 

median domain age of phishing non-flux 

hostnames is the lowest (Figure 15a), the value 

is increased considerably to 1219 days when 

they are combined with both categories of 

legitimate hostnames (Figure 15b). The median 

age of FF phishing hostnames is 3571 days. 

Similar pattern is observed in the other domain 

age related features. With both phishing 

hostnames having the lowest medians of 

domain age, this confirms the trend that 

phishers use significant share of newly 

registered domains to operate their phishing 

websites 

 

Average number of hops and average geo-

distance between user and hosts of a hostname 

are the highest ranked spatial based features at 

positions 11 and 12. The data in Figure 16a 

shows the distribution of average number of 

hops between user and hosts of a hostname. 

Unexpectedly, CDN hostnames have the 

highest median number while non-flux 

hostnames have the lowest median number. We 

expected FF phishing hostnames to have the 

largest median number due to our 

understanding that flux agents are often 

distributed across many networks whereas 

CDN hostnames would have the smallest 

median number since CDNs deliver contents to 

the local users. However, it is important to note 

that the distribution of data of any feature 

relating user and the hosts depends on the 

current geographical location of the user 

relative to the hosts since hosts of non-FF 

phishing contents are located in few and 

specific locations. Different distributions are 

expected to be generated when users are at 

different locations. In this case, the feature is 

among the strong predictors because when 

combining CDN and non-flux hostnames, the 

median number is lowered to 9 while that of FF 

phishing hostname is at 14.5 (see Figure 16b). 

The low-ranking positions of standard 

deviation and entropy of countries of hops 

between user and hosts suggest that the 

majority of hops in all hostname categories are 

located in a small number of unique countries, 

indicating that most of the hostnames are hosted 

in regions closer to the users.   
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Fig 10. Importance weights of the best features of classifier B. 

 

 
 

Fig 11a. Distribution of average of 

total number of occurrences of 

hosts’ IP addresses of the four 

categories of hostnames in a 

phishing blacklist. 

 
 

Fig 11b. Distribution of average of 

total number of occurrences of 

hosts’ IP addresses of two 

categories of hostnames in 

classifiers B in a phishing blacklist. 

 

 
 

Fig 12a. Distribution of average 

number of unique co-hosted 

websites in the hostname’s hosts 

for all four categories of 

hostnames. 

 
 

Fig 12b. Distribution of average 

number of unique co-hosted 

websites in the hostname’s hosts 

for the two categories of hostnames 

in classifier B. 

 
 

Fig 13a. Distribution of differences 

of edit distances (Levenshtein) 

between FF phishing hostnames and 

each of the four categories of the 

hostnames. 

 
 

Fig 13b. Distribution of 

differences of edit distances 

between FF phishing hostnames 
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and each of the two categories of 

the hostnames in classifier B. 

 

 

Fig 14a. Distribution of TTLs of the four categories of hostnames. 

 

 

Fig 14b. Distribution of TTLs of the two categories of hostnames in classifier B. 

 

 

 
 

Fig 15a. Distribution of average domain age 

of the four categories of hostnames. 

 
 

Fig 15b. Distribution of average domain age 

of hostnames of the two categories of 

hostnames in classifier B. 
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Fig 16a. Distribution of average number of 

hops between user and hosts of a hostname in 

each of the four categories of hostnames. 

 
 

Fig 16b. Distribution of average number of 

hops between user and hosts of a hostname in 

each of the two categories of hostnames. 

We also analysed the composition and the 

performance contribution of each feature 

category in the best feature subset of classifier 

B. Table 9 indicates the breakdown of the best 

features of classifier B by category. Compared 

with the full set of features proposed in section 

3.3, there is a representation of features from 

each category, indicating that all the categories 

are important in predicting the FF phishing 

hostnames. Existence of all the proposed 

temporal, DNS and reputation features in the 

best feature list indicates that the features 

categories are the most important in this 

classification task. As illustrated in Figures 

17a-b, temporal and DNS categories produced 

the highest accuracy rates and among the lowest 

error rates, along with spatial features, and 

therefore determined as strong predictors. The 

network and the host features, on the other 

hand, are the weakest predictors because they 

produced the lowest accuracy rates and the 

highest error rates. This result coincides with 

the results in Table 9 which shows that temporal 

and DNS categories have among the highest 

percentages of features in the best feature 

subset and the results in Figure 10 which 

indicates that majority of them are highly 

ranked. This is opposite to the results of the 

network and host categories. The poor 

performances of network features compared to 

temporal and spatial features suggests that flux 

agents in FFSNs are located in small number of 

unique networks but are largely dispersed than 

the hosts of non-FFSNs. Compared with the 

overall accuracy, FPR and FNR, each category 

has performed lesser than the overall 

performance in all three metrics. This shows 

that the combination of all feature categories 

has improved the overall performance of the 

model. 

 

Similarly, we evaluated and compared 

performance contributions of the proposed and 

the existing features against the overall 

performance of the model (results illustrated in 

Figures 17c-d). While our proposed features 

have achieved better results compared to the 

existing features, the combination of the two 

has improved the overall accuracy, and more 

significantly to FPR and FNR, suggesting that 

their combination is important as for the case of 

feature categories, not only to achieve optimal 

prediction performances, but also to increase 

the diversity of features for hardening the 

model against detection evasion techniques.  

 

Feature 

Category 

# of Full 

Features 

# of Best 

Features 

Best Features # 

(# from Table 1) 

Temporal 15 15 1-15 

Spatial 23 10 16 - 20, 28, 35 - 38 
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DNS 23 20 39, 40, 42 - 50, 53 - 61 

Network 9 2 62, 63 

Host 6 2 73, 75 

Reputation 7 7 77 - 83 

 

Table 9. Composition of categories in the best feature set of classifier B. 

 

 
 

Fig 17a. Comparison of accuracy rates of feature 

categories of classifier B. 

 
 

Fig 17b. Comparison of error rates of feature 

categories of classifier B. 

 

 
 

Fig 17c. Comparison of accuracy rates between 

existing, proposed and the overall features of 

classifier B. 

 
 

Fig 17d. Comparison of error rates between existing, 

proposed and the overall features of classifier B. 

4.4. Detection Time 

  

We measured the runtimes of the model’s three 

phases, feature extraction, dataset training and 

prediction, to understand its efficiency in 

detecting FF hostnames. Table 10 summarizes 

the times. To determine the actual detection 

time per webpage, we sum up an average time 

to extract the 56 features per a webpage and an 

average time to predict a new webpage, which 

gives a total of 162.64 seconds. Almost all of 

this time is due to the retrieval of features’ data 

from their sources. Most features are the results 

of queries of data from online third-party 

services, which entail data retrieval and 

network overheads. All the features were 

extracted and generated sequentially. Figure 18 

below indicates a distribution of the feature 

extraction time by activities showing a 

considerable variation of times, with host 

scanning (using Nmap) and traceroute querying 

consuming the most time. It is important to note 

that the runtime of each activity was affected by 

the Python libraries we selected to use as well 

as the function(s) and the coding style we used 

to implement the activity.  We expect a 

considerable speed-up to be achievable through 

more efficient coding and choice of libraries, 
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and by querying services concurrently where 

possible. Nevertheless, it is likely that the 

latency will not be acceptable for real-time use. 

 

Phase Time (s) 

Training the dataset 8.50 

Feature extraction per webpage 162.64 

Prediction per webpage 0.0003 

Detection Time 162.64 

  

Table 10. Runtimes of the classifier’s three stages 

for predicting FF phishing hostnames. 

 

 
Fig 18. Distribution of feature extraction times by 

activities.  

 

5. Discussions 

 

5.1. Comparison with Existing Works 

 

We compare previously proposed fast FF 

hostname detection methods with our work in 

terms of prediction performance and execution 

time. For fair comparison, we focus on methods 

which utilized supervised ML techniques and 

used datasets of a similar size to ours. Table 11 

summarizes the comparisons. The below points 

summarize the main benefits of our methods 

compared to existing ones. 

 

While all other works have proposed classifiers 

to detect FF hostnames operating general 

malicious services including spam, malware 

and phishing, our work has refined the scope by 

focusing on those hosting phishing websites 

only. Having a detection solution specific for 

phishing-based FF hostnames is important 

because FFSNs hosting different types of 

attacks have significant variations in network 

behaviours which are used to determine most of 

the common detection features for FF 

hostnames. Generic FF hostname detection 

solutions, thus, are likely to be less effective in 

detecting specific FF hostnames than the 

solutions for specific FF hostnames. The 

difference in network behaviours of various 

FFSNs was empirically investigated by  

Caglayan, et al. [4]. The study showed that 

different types of FFSNs have different 

characteristics due to their unique economic 

models. For instance, they observed that spam 

FFSNs have longer lifespans, between 30 and 

90 days while most of the phishing FFSNs live 

less than a week. Since the longer the FFSN 

exists, the more agents and domains are being 

recruited and hosted respectively, spam FFSNs 

tend to have large network sizes as well as large 

numbers of hosted domains compared to 

phishing FFSNs. The study illustrated this 

difference by observing that the average 

number of domains hosted in spam FFSNs and 

phishing FFSNs were 71 and 19 respectively. 

Such differences in their structures result in 

differences in a number of characteristics that 

are often used in detecting FF hostnames. The 

characteristics include network and 

geographical dispersion of hosts, and 

distribution of co-hosted websites. Phishing 

attacks are, by far, the leading cause of all 

global security breaches, contributing up to 

91% of global data breaches and 93% of data 

breaches occurring specifically in organizations 

[8, 67, 68]. Given the significance of phishing 

to the global security, it is vital to have specific 

methods for detecting FF phishing hostnames to 

help prevent internet users falling victim to 

phishing attacks, thus reducing the number of 

data breaches.  

 

In contrast to the existing works, our dataset 

includes all four types of networks (described 

in sections 2 and 4.2) with the majority of 

phishing websites being hosted in non-flux 

networks. This setting is more realistic and 

relevant to real world applications. It has also 

allowed us to evaluate the effectiveness of 
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different classification architectures described 

in section 4.1.  

 

We have used features belonging to six 

different feature categories, the most compared 

to the other studies. In comparison, Yadav, et 

al. [42] used features from a single category 

while Hsu, et al. [28], Lin, et al. [25] and 

Almomani [1] used features from two 

categories and Jiang and Li [12] from four. Our 

widely diverse set of features is likely to 

increase resilience of the solution to detection 

evasion techniques. This is because the attacker 

has to develop different evasion methods to 

compromise the features from each or most of 

the feature categories to increase significantly 

their chance of evading detection. In addition, 

most of our best features were extracted from 

third-party services. Third party features are 

difficult to emulate or forge since they are 

generated from highly secure and verified 

information. It would take extensive skills and 

time for an attacker to forge the features. 

Attackers will be unwilling to incur such costs 

as they look to maximize their financial gains 

using minimum effort. 

 

In contrast to current methods, our method has 

been evaluated using a large number of 

measures to prove its reliability and all-round 

robustness. Existing approaches have evaluated 

their methods using only a small number of 

performance measures (as indicated in Table 

11), omitting other significant measures such as 

FNR, which we consider to be one of the most 

important measures for this problem. This 

limits our understanding on the all-round 

effectiveness of these solutions.  

 

Most existing methods work by distinguishing 

FF hostnames from both CDN and legitimate 

non-flux hostnames. Malicious non-flux 

hostnames, which host the majority of 

malicious websites, were not considered in their 

datasets. However, our approach distinguishes 

FF hostnames from all possible types of 

hostnames (including phishing non-flux 

hostnames), thus it is more related to the real-

world use cases. Notably, Lin, et al. [25] 

reported a performance similar to ours but with 

a smaller number of features and lower 

detection time. Their work, however, did not 

include malicious non-flux hostnames in their 

dataset. To be useful in real-world applications, 

their classifier needs to be merged with other 

methods, for instance, be preceded in the 

processing pipeline by a filter to exclude 

phishing non-flux hostnames from the data 

stream. We evaluated three of their four 

features, which we also used, using our dataset 

with classifier B. We evaluated them first using 

a three-class dataset, from which we had 

eliminated phishing non-flux hostnames, and 

then a four-class dataset. In the former, we 

obtained an accuracy rate, FPR and FNR of 

73.96%, 23.49% and 72.36% respectively 

whereas in the latter, an accuracy of 60.74%, 

FPR of 56.42% and FNR of 37.86% were 

obtained. Note that the accuracy and FPR 

decreased as a result of adding the fourth 

hostname class. We expect a similar reduction 

in the performance of their classifier would be 

observed if their dataset were expanded to 

include the fourth hostname class. Also, the 

features performed less well against our 

phishing-based dataset, suggesting that the 

performance is sensitive to the type of FFSNs 

in the dataset. In addition, it is important to note 

that our work has achieved better accuracy rate 

and FPR than their work. 

 

We also compare our work against Yadav, et al. 

[42]’s work from which we adopted four of the 

hostname similarity features (features # 57-58 

and 60-61). Their work used the features to 

distinguish AGDs from the legitimate 

hostnames.  We evaluated all the four features 

on the dataset of our classifier D.1 which 

distinguishes phishing (both AGDs and non-

AGDs) from legitimate hostnames. We 

obtained an accuracy of 92.37% and FPR of 

4.82%. Comparing with performances reported 

by Yadav, et al. [42] (see Table 11), the results 

show that the features are more effective in 

detecting AGDs than the combination of AGDs 

and non-AGDs. This is because AGDs are more 
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likely to resemble in terms of composition of 

their characters compared to non-AGDs since 

the malware of each domain flux network 

generating them follows a specific and uniform 

pattern.  Nevertheless, the features have shown 

to increase significantly the performances of 

our classifiers, suggesting that they are also 

useful in classifying other categories of 

hostnames. For instance, when excluding the 

features, classifier D.1 produced an accuracy of 

96.37% and FPR of 3.85% but the 

performances were improved to 98.64% and 

0.62 respectively after including the features. 

The improvements were also observed in the 

other classifiers. Yadav, et al. [42], observed 

that JI performed the best followed by ED and 

lastly KL. Our results showed that ED 

performed the best followed by JI and KL.   

 

Good performances of our proposed features 

compared to the existing features on the same 

dataset and that of our model against the models 

developed by other works suggest that there are 

other undiscovered features that are as effective 

as or more than the existing ones. Given that 

phishers continue to learn about the existing 

features with an aim of subverting the solutions, 

it is important that researchers also continue to 

explore and add new potential features so as to 

be ahead of the race against the attackers, thus, 

making the solutions relevant and effective in 

different periods and seasons. 

 

It is important to note that the results obtained 

in our work are based on the size and nature of 

distribution of our dataset. Attackers are likely 

to vary configurations of their FFSNs over the 

time which may result in variations in some of 

the detection features. This is likely to impact 

the distribution of the training dataset, thus the 

performances of the classifiers and the 

architectures. We insist that continuous 

observations of behaviours of FFSNs and 

evaluation of the resulting collected dataset are 

important to ensure that the detection results are 

up to date and relevant on each monitoring 

period. 

 

Work Features 
Data size 

(URLs) 

Classification 

Type 

Evaluation 

Algorithms 
Performance 

Detection 

Time (s) 

Hsu, et al. 

[28] 

2 temporal 

features, 4 host 

features 

17, 214 Binary 

classification 

(FF bots versus 

benign server) 

SVM Acc. = 95% 

AUC = 0.993 

Unknown 

Lin, et al. 

[25] 

3 DNS features, 

1 temporal 

feature 

12,952 Binary 

classification 

(FF hostnames 

versus benign 

hostnames) 

Genetic 

algorithm  

Acc. = 98.2% 

FPR = 1.78% 

18.54 

Jiang and 

Li [12] 

2 DNS features, 

1 network 

feature, 1 

temporal feature, 

1 spatial feature 

26,873 Binary 

classification 

(FF hostnames 

versus benign 

hostnames) 

SVM, Naïve 

Bayes, K-

NN 

Acc. = 96.7% 

Prec. = 0.965 

Recall = 0.981 

F1 = 0.973 

AUC = 0.989 

400 

Almomani 

[1] 

11 DNS features, 

3 temporal 

features 

7,615 Binary 

classification 

(FF hostnames 

versus benign 

hostnames) 

Adaptive 

evolving 

fuzzy neural 

network, 

SVM, Naïve 

Bayes 

Acc. = 98% 

Error rate =  

1 – 16 (%) 

 

Unknown 
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Table 11. A summarized comparison chart between our work and the related works.  

 

5.2. Applications, Limitations and 

Future Work 

 

Though the subset of 56 best features have 

produced the optimal performance, smaller 

subsets have also produced good accuracy and 

moderate error rates. For instance, the top 7 best 

features produced an accuracy, FPR and FNR 

of 96.24%,15.87% and 1.56% respectively. If 

accuracy and FNR are the most desirable 

performances, then a trade-off can be made 

between accuracy and number of features in 

order to reduce computing overheads, thus, the 

detection time. However, from the 

cybersecurity point of view, reducing the 

number of features increases the risk of 

detection evasion which may led to serious 

damage to users. We argue that the use of a 

large number of features, not only improves the 

performance across all measures, but also 

enhances resilience to detection evasion for the 

long-term reliability value of the solution. The 

impact of longer detection time due the use of 

large number of features can be countered by 

using the classifier to build the solution 

(described below) that will provide real time 

detection to end users. When applied in this 

way, our classifier achieves three important 

goals; high detection performance, enhanced 

resilience to detection evasion and real time 

detection. 

 

Our detection time is higher than the typical 

delay a user can expect when accessing a 

webpage, measured to be in the region of 8-9s 

in [69]. Consequently, our model is not suitable 

for providing direct real-time protection to end 

users. Instead, we suggest that it would make 

effective use in building and maintaining a 

blacklist of FF phishing hostnames. Used in this 

way, the classifier would be fed with a stream 

of hostnames obtained from various sources 

such as user emails, network traffic, and 

databases of legitimate and phishing websites. 

Those websites classified as FF phishing 

hostnames would be added to the blacklist. The 

blacklist then can be used in various ways to 

provide real time protection to end users. 

Yadav, et 

al. [42] 

4 features DNS 

features 

79,930 Binary 

classification 

(AGDs versus 

benign 

hostnames) 

L1-

Regularized 

Linear 

Regression 

Acc. = 100% 

FPR = 2.0% 

 

Unknown 

Our work 15 temporal, 23 

spatial, 20 DNS, 

4 network, 3 

host, 7 reputation 

11,801 Binary 

classification 

(FF phishing 

hostnames 

versus other 

hostnames) 

Linear 

Regression, 

K-NN, 

Decision 

Tree, Naive 

Bayes, 

SVM, 

Neural 

Network, 

Random 

Forest, 

Gradient 

Boosting, 

Fully-

connected 

Deep Neural 

Network, 

LSTM, CNN 

Acc. =98.42% 

FPR = 0.57% 

FNR = 5.88% 

Prec. = 0.99 

Recall = 0.99 

F1 = 0.99 

AUC = 0.99 

162.64 

Multi-class 

classification 

(FF phishing 

hostnames 

versus phishing 

non-flux, CDN 

hostnames and 

legitimate non-

flux hostnames) 

Acc. =97.81% 

FPR = 0.81% 

FNR = 9.22% 
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Examples of such applications are a web 

browser plug-in and a cloud anti-malware suite 

with its clients installed at the end users. A 

blacklist approach has proved to be efficient for 

real-time applications in other cybersecurity 

related areas [70, 71]. The blacklist can also be 

a useful resource for security researchers, 

vendors and authorities for further 

investigations on the operations of phishing 

FFSNs. Currently there are no active blacklists 

consisting of known FF phishing hostnames 

only that we are aware of. Also, our classifier 

D.2, which distinguishes FF phishing and 

phishing non-flux hostnames with a high 

performance (indicated in Table 5b), can be 

integrated (as a second layer) with a real time 

solution which distinguishes phishing and 

legitimate hostnames, such as the one proposed 

in Nagunwa, et al. [5], to offer a more 

comprehensive solution for the mitigation of 

phishing attacks. In this approach, the former 

detects FF phishing hostnames from the 

phishing hostnames detected by the latter. 

 

The proposed multi-class model using 

architecture D has produced relatively good 

results. The advantage of this model is that it 

predicts each hostname type as an independent 

outcome. This can be useful in cases where 

security experts want to distinguish FF phishing 

hostnames from phishing non-flux hostnames. 

By doing so, specific measures to address the 

attacks at the network level can be applied. For 

instance, for the former, this would require an 

approach described in section 1. For the latter, 

hosts of the hostnames can be directly identified 

through querying A records of the hostnames 

and then blacklist the returned IP addresses. 

 

The current detection time of our models can be 

reduced in an attempt to achieve a latency 

suitable for a potential real-time application. 

For instance, most of the features can be 

extracted in parallel instead of sequentially. 

Query of A records would be performed first to 

retrieve hosts’ IP addresses before extracting 

the rest of the features in parallel. Furthermore, 

features obtained from some of the time-

consuming feature extraction activities (as 

described in section 4.4) can be dropped to 

further reduce the time at the expense of 

detection performance. For instance, by 

dropping all best features of classifier B 

obtained through host scanning, the detection 

time obtained was 44.6s while the accuracy 

attained was 96.85%. We will further explore 

this analysis as part of our future work. 

 

One of the key limitations of our solution is that 

data from online third-party services, from 

which the majority of our features are derived, 

may be missing from time to time, for reasons 

including poor network connection, temporary 

unavailability of servers or unfound records. A 

high percentage of missing data is likely to 

reduce detection performance. However, our 

experience during data collection suggests that 

scenarios that could give rise to missing data are 

relatively rare in normal daily circumstances. In 

some features missing data is quite common, 

for instance 56.4% and 44.6% of data related to 

PTR and uptime of hosts respectively was 

missing. Though we attempted to drop features 

with missing data, better results were obtained 

with the full feature set. This suggests that our 

solution is resilient against missing data in 

several features.  

 

Recently, much attention has been paid to 

adversarial attacks and how to make ML/DL 

algorithms resistant to them.  See e.g. the 

MITRE Adversarial Threat Landscape for 

Artificial-Intelligence Systems (ATLAS) 

knowledge [72]. A comprehensive study of the 

robustness of our proposed feature set 

combined with each of the ML/DL algorithms 

against such attacks is beyond the scope of the 

current paper. However, it is under 

consideration as a topic for a follow-on project. 

 

6. Conclusion  

 

In this paper, we have proposed a 

comprehensive set of predictive features for the 

model for detecting FF phishing hostnames 

using a supervised ML approach. In particular, 
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we have introduced 41 new predictive features 

alongside 15 features, categorized in six groups, 

that were used in existing works to build the 

model. Four model implementation 

architectures based on binary and multi-class 

classification approaches were proposed and 

evaluated using eight ML and three DL 

algorithms. The model performance was 

evaluated using seven reliable performance 

measures. The binary classification-based 

architecture achieved the highest accuracy of 

98.42%, in which the FF phishing hostnames 

are distinguished from the other three 

hostnames combined as a single hostname 

class. The multi-class classification-based 

architecture yielded a highest accuracy of 

97.81%, where all four hostnames are 

identified, which allows for detecting the exact 

type of hostname and hence help to take more 

informed decision. We also investigated the 

importance of the proposed features with 

respect to the best performing architecture and 

revealed that temporal and DNS related features 

are strongest predictors while network and host 

related features are the weakest. The proposed 

approach has delivered a comparable detection 

performance when compared against other 

similar works in the literature. However, unlike 

exiting approaches, we propose a more robust 

solution as we have used many new features, 

have addressed the problem in a four-class 

classification context and have reported our 

results using a wider range of performance 

measures. 

 

As part of our future work, we intend to analyse 

changes in the performance of the model in 

response to the removal of features that 

contribute most to extraction times, with an aim 

of finding the optimal combination of detection 

time and detection performance. As observed 

by Salusky and Danford [2] and Yadav, et al. 

[42], it is likely that attackers can combine IP 

flux with domain flux or name server flux or 

both of them in the same botnets. We aim at 

extending our work by exploring and 

identifying hostnames that are hosted in botnets 

with multiple fluxing behaviours. 
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