
1

A Machine Learning Approach for Detecting Fast Flux Phishing

Hostnames

Thomas Nagunwaa*, Paul Kearneya, Shereen Fouadb

a School of Computing and Digital Technology, Birmingham City University, Birmingham, UK
b School of Informatics and Digital Engineering, Aston University, Birmingham, UK

Abstract

Attackers are increasingly using Fast Flux Service Networks (FFSNs), networks of compromised

machines, to host phishing websites. In FFSNs, the machines rapidly change such that blacklisting them

does not entirely stop the networks from operating the websites. This increases the longevity of the

websites thus becoming more harmful. Existing solutions for detecting the websites are limited with

relatively low or moderate prediction performances, high prediction time and use of less diversified

features which increases their susceptibility to detection evasions. This paper proposes a Machine

Learning (ML) based approach for detecting phishing websites hosted in FFSNs using a novel set of 56

features. Compared with previous works, the approach achieves high accuracy, a low detection time

and uses highly diversified features to enhance resilience to detection evasion. The effectiveness of the

features for prediction was evaluated in the context of binary and multi-class classification tasks using

multiple traditional and deep learning ML algorithms. The proposed approach achieves an accuracy of

98.42% and 97.81% for binary and multi-class classification tasks respectively. Our results showed that

temporal and DNS based features are the strongest predictors while network and host related features

are the weakest. Our approach is a significant step towards tracking of core components of FFSNs with

an aim of shutting down the entire phishing ecosystem.

Keywords; phishing hostname, fast flux service network, machine learning, deep learning, flat

classification, hierarchical classification.

1. Introduction

Traditionally, phishing websites have been

hosted in single machines, small networks or

static botnets. Cybersecurity experts have

become proficient at taking down the websites

by tracking and blacklisting their hosts through

their consistent IP addresses [1, 2]. In order to

evade the blacklisting approach, thus increasing

longevity of the websites, attackers have been

increasingly using highly dynamic botnets, also

known as Fast Flux Service Networks (FFSNs)

to host the websites [3, 4]. In FFSNs, hostnames

of the hosted websites are dynamically mapped

to IP addresses of members of large, evolving

pools of compromised machines, also known as

* Corresponding author.

Email address: thomas.nagunwa@mail.bcu.ac.uk / tom.nag@gmail.com

flux agents. The flux agents act as proxies

relaying communications between users and a

small number of actual content hosts (which

often are also FFSN controllers) thus hiding

visibility of the hosts and controllers from the

public. Since the flux agents are the ones which

are visible to the public, blacklisting them will

not entirely stop the FFSN operations as the

motherships tend to recruit new agents to

replace the old ones, thus maintaining the

running of the operations. Through this way,

the blacklist approach always lags the evolving

networks. Consequently, the use of FFSNs

makes the shutting down of phishing websites

difficult, allowing them to stay alive longer and

2

become more impactful. An effective and

efficient approach to detect the websites hosted

in these networks is critical in order to

effectively address the phishing problem.

Detecting these websites can be useful in

complementing approaches such as that

proposed by Nagunwa, et al. [5]. It can also be

useful in building a blacklist of such websites.

The database can be used by security

stakeholders such as Internet Services

Providers (ISPs) to investigate and monitor flux

networks of the websites in order to identify the

compromised legitimate networks hosting the

flux agents. This can help the informed owners

of the compromised networks to clean their

machines and take precautions to prevent their

machines from being infected again. Also,

solutions such as those proposed by Gu, et al.

[6] and Khattak, et al. [7], which monitor data

traffic between flux agents in the local networks

and their external motherships, can be used at

the network gateways to track the motherships

in order to blacklist them, thus shutting down

the entire infrastructures of the phishing

attacks.

This work focuses on phishing specific FFSNs

because: 1) Phishing attacks are the major

source of global cybersecurity attacks, causing

up to 91% of global data breaches [8].

Preventing users from visiting phishing

websites will significantly reduce the number of

data breach incidents across the globe. 2)

FFSNs hosting different types of malicious web

services such as spam, malware and phishing

have different DNS, host and network related

characteristics which are often used to derive

features for detection [4]. Thus, solutions

designed to detect all types of malicious web

services hosted in generic FFSNs are likely to

be less effective than the ones which detect

specific services hosted in their dedicated

FFSNs.

The malicious web services hosted in FFSNs

are often detected through their hostnames (we

refer to them as Fast Flux (FF) hostnames). The

most effective FF hostname detection

techniques proposed to date have been based on

the analysis of DNS related predictive features

using a ML approach. Early techniques

proposed by Passerini, et al. [9], Perdisci, et al.

[10] and others monitored specific FF hostname

characteristics over a period of several hours,

days or weeks to identify the predictive

patterns. However, during this monitoring

period, the hostnames continue to operate thus

causing more damage. To address the issue,

some of the recent works including Hsu, et al.

[11] and Jiang and Li [12] proposed faster

techniques that take only a few seconds or

minutes to detect the hostnames. However, they

have the following limitations:

▪ A number of techniques achieved

relatively low or moderate prediction

performances. For instance, Kumar and

Xu [13] obtained an accuracy of

88.03%, Stevanovic, et al. [14]

achieved an F1 score of 0.85 and

Almomani [1] attained

misclassification rates of up to 16%.

▪ They rely on a restricted set of

predictive features mainly DNS,

network or spatial based features. With

little effort, attackers can discover the

features used and develop simple

techniques to evade detection.

▪ With an exception of Chen, et al. [15],

all the works have addressed the

problem as a classification task by

distinguishing FF hostnames from all

legitimate hostnames only, ignoring

non-FF malicious hostnames.

However, according to our data

(described in section 3.2), the majority

of malicious websites are still hosted by

non-FF malicious hostnames. By not

considering such hostnames, their

proposed solutions are deemed

impractical as they do not reflect the

real-world scenario in which non-FF

malicious hostnames exist, thus they

cannot be deployed directly to protect

end users.

3

▪ IP geolocation databases do not have

records of all public IP addresses.

Some of the works including Stalmans,

et al. [16] have based their detection

features on this data. These techniques

fail to detect websites whose hosts’ IP

geolocation records are unknown.

▪ The detection performances of the

current techniques were not thoroughly

validated using a wide range of reliable

performance measures including

precision, recall and false negative

rates, limiting our understanding of all-

round effectiveness of the techniques.

To address the above deficiencies, we propose

a more robust ML-based approach to detect FF

phishing hostnames. Our contributions in this

paper are as follows;

1. We design the approach using a novel

set of highly diversified features that

allows for a reliable detection of FF

phishing hostnames. The set consists of

56 features derived from DNS, host and

network characteristics of the hosting

networks. They are grouped into six

different categories, of which 41 are

newly-proposed features and the rest

are adopted from existing works.

2. The problem is formulated as both

binary and multi-class classification

tasks in which FF phishing hostnames

are distinguished from CDN

hostnames, and phishing and legitimate

non-flux hostnames. In binary

classification, the FF phishing

hostnames are distinguished from the

others combined as a single hostname

class. On the other hand, in the multi-

class classification, which deemed as

more difficult task from the ML

perspective, all four hostnames are

identified which allows for detecting

the exact type of hostname and hence

helps to take more informed decision.

3. Using flat and hierarchical

classification techniques, four

implementation architectures of our

prediction model are proposed based

on binary and multi-class classification

tasks with an aim of identifying the

architecture that provides the best

prediction performance.

4. An approach to evaluation of the

feature set was devised whereby the

performance of the features was

measured using a larger number of

different ML algorithms than the

number used in the related works.

Comparing the performance results

from such a large set of algorithms

allows conclusions to be drawn

regarding the general effectiveness of a

feature set. A larger number of metrics

were also used to measure and report

the performances in order to inform us

on the all-around effectiveness of the

prediction model.

To our knowledge, this is the first work that has

addressed the problem as a four-class

classification task, has used the hierarchical

classification approach, has applied DL

algorithms to address fast detection of FF

hostnames, and has compared the performance

of traditional ML and DL algorithms in this

context.

Our model has achieved a high prediction

performance but with a prediction time that is

currently higher than desirable for real-time

applications. We have not yet attempted to

optimise the prediction time, but this is on our

work plan. Alternatively, the model, could be

used to build a blacklist of FF phishing

hostnames, which could be used in an effective

real-time detection application and as a source

of data for research purposes. We are not aware

of any existing blacklist that is specific to FFSN

hostnames. It is important to mention that we

have not yet tried to distinguish between single-

flux FFSNs (i.e. those using only hostname IP

fluxing) and double-flux networks (combining

hostname IP fluxing with name server IP

fluxing. This will be part of the future work.

4

This paper is arranged in six sections. The

second section provides a background to non-

flux networks, CDNs, FFSNs, and flat and

hierarchical classifications. Significant works

related to our research are also reviewed. In

section 3, we present the design of our

prediction model and introduce the prediction

features. In section 4 we describe various model

architectures, the experiments for developing

and evaluating the model and present the results

of the experiments with their analysis. Section

5 compares our work with other related works,

and discusses applicability and limitations of

our solution. Section 6 concludes the paper by

re-visiting our results and contributions, and

outlines our future work.

2. Background and Related Work

2.1. Non-flux Networks

The majority of phishing and legitimate

websites are still hosted in traditional (non-flux)

networks. According to the data we collected,

more than 71.4% of all the phishing websites

are hosted in traditional networks whereas only

25 million websites of the 1.78 billion

legitimate websites are hosted in CDNs, the rest

being hosted in traditional networks [17, 18]. In

non-flux networks, the hostname of the website

is resolved to IP address(es) of one or a small

number of servers consistently. If multiple

servers are used, they are often located in one

or a few specific locations. Except for changes

due to rare events such as maintenance or

upgrading of the services, subsequent queries

return the same set of addresses. Since DNS

records rarely change, the time to live (TTL),

which is the maximum time intermediate name

servers can cache the queries, is set relatively

high. The default TTL value is normally

between one and three days [19, 20]. We refer

to such behaviour as non-fluxing.

To avoid being easily tracked, attackers

increasingly host their web services in

compromised legitimate servers. According to

Aaron and Rasmussen [21], up to 51% of all

phishing websites run on the compromised

hosts. In order to optimize their limited

resources, attackers usually host many of their

malicious web services in one machine.

Similarly, web hosting service providers co-

host a large number of legitimate web services

of their various customers. In both cases, a large

number of different hostnames will be resolved

by DNS to the same IP address.

Other attackers use proxies to hide the identities

of their hosting machines [22]. Hostnames of

their web services, when queried using DNS,

resolve to the IP addresses of the proxies. When

a proxy receives a request, it contacts the real

phishing server to obtain the content and returns

this to the user. Though there are legitimate

uses of proxies, including protecting hosts from

being probed by hackers, caching and traffic

filtering [23], proxies are more likely to be

deployed by attackers.

2.2. Content Delivery Networks

CDNs are networks of web server farms in

dispersed locations. Their purpose is to deliver

content efficiently to users scattered over a

large geographical area. Copies of the content

are cached in multiple farms and a user’s

request is served from the farm that can provide

a copy most efficiently. To decide the IP

addresses to return in response to a DNS query,

CDNs use sophisticated techniques based on

factors such as geographical distance, network

topology and link health [24, 25]. Short TTLs

are set to ensure users are served with freshly

computed IP addresses direct from authoritative

name servers.

The owners of CDNs use them to host their own

services or lease the infrastructure as a service

to others. For example, large organizations with

complex web service ecosystems such as

Google and Netflix own their specialized CDNs

while others including Akamai and Limelight

provide unspecialized CDNs as a service to

mid-sized content providers [24]. Their server

5

farms are usually in locations distributed

around the globe to serve local users. The

number and identities of the servers in a farm

changes occasionally due to, for instance,

maintenance and scaling of services [26].

Content is accessed directly from the servers

which are assigned with static IP addresses.

Because they need to deliver large volumes of

content to many users with high efficiency, high

performance servers and web server software

are used.

2.3. Fast Flux Service Networks

FFSNs are essentially networks of

compromised machines (flux agents) that are

managed by attackers for malicious purposes

including hosting phishing websites,

distributing spam or malware, and carrying out

denial of service attacks [9]. Typically, an

FFSN consists of a small number of content

servers (in comparison with the number of

proxies) and one or more command and control

servers (motherships) that may double as

content servers[1]. FFSNs recruit new flux

agents by infecting vulnerable machines with

malware that enables them to be controlled

from the motherships [10, 19]. DNS servers

map the malicious hostnames dynamically to

the IP addresses of sets of flux agents, so that

(as for CDNs) consecutive DNS queries return

different IP addresses. To ensure updated A

records (sets of IP address(es) mapped to

hostnames) of active agents are returned for

each DNS query, FF hostnames are set with

short TTLs. By using flux agents as proxies, the

motherships are invisible to users and attackers’

footprints are hidden from forensic

investigators. Tracking and taking down the

flux agents does not destroy the FFSN as

motherships can continually recruit and use

new flux agents, resulting in the prolonged

existence of malicious campaigns [27].

Most of the flux agents are the compromised

standard computers and Internet of Things

(IoT) devices in homes and small office

networks [2, 11, 27], which are often less

secured and have many security vulnerabilities

[28]. There is an evidence showing that some

FFSNs conceal identities of their flux agents by

using proxy applications in the agents [29].

FFSN sizes may range up to hundreds of

thousands of flux agents and their members

vary continuously as new machines are infected

and existing agents which are temporarily or

permanently inactive are removed [1, 9, 30].

Due to a random process of malware infection,

flux agents in an FFSN are typically from

different IP networks [19, 31]. As many of the

flux agents are owned by individual users and

small businesses, their availability is likely to

fluctuate as machines are turned off when not in

use. Furthermore, agents may be lost from the

FFSN when machines are cleansed of malware

[10]. FFSNs may host the malicious services of

their owners, be offered for hire, or a mixture of

the two [32]. Figure 1 provides an overview of

FFSN’s architecture.

Figure 1. Architecture of FFSNs.

2.4. Related Work

Various studies have proposed techniques for

detecting botnets or their members (i.e bots and

command and control servers (C&C)) and

domains/hostnames. For the former, signature

based and anomaly behaviour-based techniques

are the most common ones. Those based on

signatures, including Intrusion Detection

Systems (IDSs) such as Snort and Sagan, and

the proposed techniques by Gu, et al. [6],

6

Kirubavathi and Anitha [33], Xie, et al. [34] and

Khattak, et al. [7], use predefined patterns and

signatures of network traffic and of malicious

codes of previous known botnets to detect new

botnets or the members [35, 36]. The main

limitation of this approach is that it only detects

known botnets, leaving unknown (zero-day)

botnets undetected. The anomaly behaviour-

based techniques use heuristics or statistical

algorithms to analyse host and network

behaviours such as load processing overheads,

changing system calls, network latency,

network traffic volume and ports handling the

traffic to detect abnormal activities related to

bots [37-41]. These techniques, however, detect

only the botnets that are associated with the

networks which have implemented the

solutions.

The latter aim to detect botnets in the wider

internet using various hostname and network

characteristics. One approach in this category is

to detect malicious domains from their

linguistical properties. Yadav, et al. [42],

Antonakakis, et al. [43], Kelley and Furey [44],

Ravi, et al. [45] and Vinayakumar R. [46], for

instance, aimed at detecting malicious domains

generated by domain fluxing botnets using this

approach. Domain fluxing botnets are the

networks which generate large numbers of new

domains algorithmically after every specific

period or event. Consequently, their strings

follow specific patterns set by their algorithms

that are different to those typically chosen by

people. Fu, et al. [47], argued that the detection

solutions trained against specific domain-

generation algorithms may not perform well

against novel ones.

The other approach includes the techniques for

detecting malicious FF hostnames based on

DNS related features. These generally fall into

two groups: those based on the monitoring of

DNS related features over an extended period

of time, and those based on detection features

extracted from data collected at a point in time.

Using the former approach, Kumar and Xu [13]

proposed a SVM based classifier using seven

DNS related features to detect FF hostnames.

The model was trained on passive DNS data to

achieve a detection accuracy of 88.03%. Some

of the features, however, required long term

monitoring of hosts to obtain their appropriate

values. For instance, the feature ‘MaxCount’

counts the total number of visits to the

hostname observed in a particular period,

typically 24 hours. Using a LSTM deep

learning technique, Chen, et al. [15] proposed a

classifier to detect FF hostnames using three

features queried from active domains at five

different times. Though they achieved a good

accuracy of 95.4%, the classifier required an

input data collected at five separate times, thus

increasing a detection time. Other similar works

in this category include Passerini, et al. [9] and

Perdisci, et al. [10]

The above works require significant time

intervals to collect sufficient data to produce

good prediction results. To address detection

delays, some works proposed classifiers to

detect the hostnames in few seconds or minutes.

Huang, et al. [48] used six features based on

time zones and geographical locations of hosts

and name servers to develop a classifier that

achieved an accuracy, false positive rate (FPR)

and area under ROC curve (AUC) of 98.16%,

0.398% and 0.984 respectively However, not

all public IP addresses have recorded in IP

geolocation databases such as “MaxMind”.

Therefore, the classifier will fail to make

predictions for hostnames whose IP addresses

have not been recorded. Also, attackers’ DNS

servers may select flux agents from time zones

and locations similar to the users, emulating the

behaviour of CDNs, so as to increase false

alarms and evade the detection. Classifiers

proposed by Stalmans, et al. [16] and Wang, et

al. [49], which are also based on geolocation

features, face the same problem.

Hsu, et al. [11] developed an FF hostname

detection classifier based on response time

difference (RTD) between hosts of the same

hostname. The classifier achieved FPR and

false negative rate (FNR) of 0.3% and 2%

7

respectively. However, the feature can be

neutralised by configuring the FFSN’s name

server to return A records of flux agents that

yield similar response times. Other significant

studies that proposed classifiers with short

detection times are Hsu, et al. [28], Lin, et al.

[25], Stevanovic, et al. [14], Jiang and Li [12]

and Almomani [1].

3. Detection of Fast Flux Phishing

Hostnames

3.1. Design Overview

Our proposed approach uses supervised ML

techniques to train and develop a classifier that

can distinguish FF phishing hostnames from

CDN hostnames, and phishing and legitimate

non-flux hostnames using features extracted at

one point in time (instantaneous features). In

order to assign class labels to the set of

hostnames used to train the classifier, we

monitored their fluxing behaviour over an

extended period of time.

The approach has the following main steps:

1. Monitoring of the A records returned

by DNS for sets of known phishing and

legitimate websites in order to label

their hostname classes according to

their fluxing behaviour (see Figure 2).

Section 3.2 provides further details.

2. Extraction of instantaneous feature

data. For each URL, a range of services

(shown in Figure 3) are queried and the

features are extracted from the returned

information to generate the training

dataset. See section 3.3 for further

details.

3. Training a suitable ML algorithm on

the training dataset to develop a

classifier.

4. The classifier accepts instantaneous

features of given unknown website and

predicts its hostname class.

5. Periodic incremental updating of the

training dataset and re-training of the

classifier to improve and update its

performance. This takes into account

an assessment of the prediction

accuracy of the classifier over the

preceding period.

Figure 2. Monitoring of A records for 5 weeks for labelling classes of the hostnames.

8

Figure 3. Components 2 - 4 of our proposed approach; building of a classifier and prediction of a new hostname.

3.2. URL Monitoring for A Records

and Class Labelling

In order to be able to label a training set of

websites according to their fluxing behaviour,

we collected sets of known 4,271 phishing and

7,530 legitimate websites and monitored their

IP addresses returned by DNS queries over an

extended period. We obtained the legitimate

URLs from a list of 1 million most visited

website domains from Tranco† and the phishing

URLs from two major reputable online

repositories; PhishTank‡ and OpenPhish§. Each

URL was queried repeatedly for A records after

every 15 minutes for up to 5 weeks from June

16 to July 21, 2019. The IP addresses returned

in consecutive queries regarding the same

hostname were compared, and the number of

times a change was observed throughout the

period was recorded. In a similar fashion to the

‘fluxiness’ approach used by Holz, et al. [31] to

distinguish between FF and CDN domains, we

labelled any phishing or legitimate website

observed to have at least one IP change as a

phishing FF or CDN hostname respectively.

† https://tranco-list.eu

Figure 4 shows the distribution of the number

of IP changes observed for each monitored

website in the five-week period. Only 29% of

the collected phishing URLs (also indicated in

Table 4) were observed to undergo at least one

IP change while 17% underwent less than 10

changes. There is significant percentage of

URLs with number of changes at ranges

including 21 – 30, 11 – 20, 61 – 70 and 401 –

500. This suggests that most of the phishing

websites are still hosted in non-flux networks.

48% of the legitimate URLs experienced at

least one change (also indicated in Table 4),

with 25% having less than 10 changes. Other

ranges of number of IP changes with large

percentages of NSs are 61 – 70, 71 – 80, 501 –

600 and 11 – 20. Generally, legitimate URLs

were observed to have larger numbers of IP

changes across most of the ranges compared to

phishing ones. This is likely because the

legitimate URLs were obtained from a list of

1000 most visited websites, which are more

likely to be hosted in CDNs than lowly ranked

websites [17]. IP changes in websites with a

low flux rate, for instance less than 5 changes

in the monitoring period, may be due to non-

‡ https://www.phishtank.com
§ https://openphish.com

9

fluxing behaviours such as routine maintenance

of hosts and upgrading of the networks.

In order to investigate the structure of FFSNs,

the cumulative records of the IP addresses that

the phishing hostnames resolve to during

monitoring were imported into Gephi**, a graph

visualisation software. Figure 5 shows what we

suspect to be a large FFSN. The brown and

green discs represent hostnames and IP

addresses respectively, and an arc indicates that

the relevant IP address appears in the

hostname’s A records at least once in the

monitoring period. The size of the disc

indicates how many connections it has. It is

apparent that IP addresses are often shared by

different hostnames. This could simply be that

different FFSNs have infected the same

vulnerable hosts, but given the density of

interconnections, it seems more likely that this

cluster is a single network. Very small networks

consisting of one or two hostnames and a few

IP addresses were also observed.

Figure 4. Distribution of number of IP changes of

website hosts observed per URL type.

** https://gephi.org

Fig 5. Some of the phishing FF hostnames and their

FFSNs observed in our dataset.

3.3. Distinctive Features for Detecting

Fast Flux Phishing Hostnames

We propose 83 instantaneous features grouped

into 6 categories that, based on the analysis

summarised in section 2, are likely to be useful

in distinguishing FF phishing hostnames from

CDN hostnames, and legitimate and phishing

non-flux hostnames. 62 of the features are

newly-introduced by this study and the

remaining 21 features are adopted from the

existing works. Here we describe few important

features, a complete list is given in Table 1.

Table 2 provides a list of sources of information

we used to generate the features.

Many of the features measure the distribution

of various attributes across the set of IP

addresses identifying the hosts associated with

a given hostname. Consequently, the first step

in extracting the features is to perform a DNS

query to obtain this set. The feature value is

then obtained for each host and statistical

measures such as average, standard deviation,

entropy, minimum and maximum are

calculated. Entropy features are approximated

as Σipiln(pi) where i runs over the set of unique

values of the feature within the sample. pi is

then the number of occurrences of i within the

sample divided by the number of hosts. Entropy

10

is greatest when all the feature values are

different, and least when they are all the same.

3.3.1. Temporal Features

Round Trip Time (RTT). Using the traceroute

command, we measure the time interval

between sending a data packet and receiving an

acknowledgement from each host

corresponding to the hostname in question. Five

metrics are computed from these RTT values as

feature 1 to 5 (see Table 1).

DNS Response Time. This is the time taken to

receive an answer from the DNS server to a

query for A records.

Authoritative TTL for A records. This is a

maximum time set in the authoritative name

server for caching A records of each hostname.

It is obtained by querying A records of the

hostname from its authoritative nameserver.

Uptime of Hosts. This is an estimated time, in

hours, the machine has been up and running as

reported by a host scanning tool (Nmap). We

extract features 8–10 from the uptime recorded

for each IP address associated with the

hostname.

Domain Age and Domain Validity. We query

a WHOIS database to extract a date of first

registration and an expiry date of the

hostname’s domain. The former is used to

compute its age with respect to the current date

while the latter is used to compare with the

current date to determine whether the domain

has expired or is still valid.

3.3.2. Spatial Features

Geographical and Network Distances. We use

the traceroute command to obtain the IP

addresses of intermediate hops on the route to

each host of the given hostname. The hop IP

addresses are then used to generate features 16-

21 and 25-28. For instance, we identify the

country location of each hop and count the

number of unique countries on the route to a

host. By combining the numbers of all the hosts

†† https://dev.maxmind.com/geoip/geoip2/geolite2/

per each hostname, we derive features 19–21.

Using geographical coordinates of IP addresses

of a user and the hosts, various geographical

distances are computed to obtain features 29–

35. We obtain the coordinates from the

Maxmind’s Geolite2 database††.

3.3.3. DNS Features

Characteristics of Hosts’ PTR Records. PTR

records hold information allowing DNS to

perform an inverse look-up of a hostname given

an IP address. A DNS PTR query is performed

for each host of the same hostname to obtain its

PTR records. Features 41– 49 are then extracted

from the records.

Characteristics of Co-hosted Websites. We

search for websites that are co-hosted on a

machine identified by an IP address of each

host of the hostname using Bing search engine

with a search command ‘ip:W.X.Y.Z.’. From

the search results, we count the number of co-

hosted websites and extract their URLs from

which we generate features 50-57.

Similarity of Hostnames. Similar to the

approaches used by [42] and [47], we measure

similarity of all types of hostnames against the

FF phishing hostnames. Three similarity

measures are used namely Kullback-Leibler

distance (KL) [50], Jaccard Index (JI) [51] and

Edit Distance (ED) [52]. For KL and JI, the

similarity is measured for unigram and bigram

characters of the hostnames. The symmetric

values of KL are computed instead of

asymmetric ones. The metrics are computed as

follows; for example, JI of unigram characters

between hostnames h1 and h2 is defined as

JI(h1, h2) = 𝑋 ∩ 𝑌 / 𝑋 ∪ 𝑌

where X and Y are the sets of unigram

characters of h1 and h2. For classifier B

(described in section 4) as an example, we

calculate

∆JI =
1

|𝑂|
∑ 𝐽𝐼(ℎ, 𝑜)𝑜𝜖𝑂 -

1

|𝑃|
∑ 𝐽𝐼(ℎ, 𝑝)𝑝𝜖𝑃

the difference between an average of JI scores

of each tested hostname against all other three

11

combined hostnames (O) and against all FF

phishing hostnames (P) as a feature. The small

difference means JI(h,p) is large and therefore

the hostname is closely similar to the FF

phishing hostnames. Similar approach is used

to compute the differences for KL and ED to

obtain features 57-61.

3.3.4. Network Features

Network Characteristics. For each IP address

associated with the hostname, we extract its

network identity information including subnet,

network and Autonomous System Number

(ASN) from an IP geolocation database (we use

IP2location‡‡), to compute features 62 to 69.

For instance, for feature 62-63, subnet of each

host is identified and then we count the number

of unique subnets and also compute entropy of

all subnets per hostname.

3.3.5. Host Features

Up State of Hosts. Using a host scanning tool

(Nmap), we scan each machine hosting the

given hostname to determine its availability

state. We then compute a ratio of hosts in the

‘up’ state as feature 71.

Host’s Operating System. Using Nmap, we

scan each host of the given hostname and

identify its operating system (OS). We count

the number of unique OSs and identify the most

common OS per each hostname as features 72

and 73 respectively.

Host’s Webserver Software. We extract the

name of the webserver software installed on

each host of the given website from the

response to an HTTP header request. From this

we generate features 74 and 75.

Hosts with Proxy IP Addresses. We compute

the proportion of the IP addresses of each host

of the given website that are found in a database

of known public proxy IP addresses (we use

IP2Proxy§§ database) as feature 76.

3.3.6. Reputation Features

IP Addresses shared with Other Malicious

Hostnames. We identify the IP addresses

associated with the given hostname that appear

on a blacklist of phishing URLs collected in the

past three months to generate features 77-82.

For instance, in feature 77, we count the total

number of times the IP addresses of all hosts for

each hostname have matched in the database.

Similarly, from the same blacklist, we query for

NS records of each hostname to generate a list

of IP addresses of name servers of the phishing

websites. IP address of each host of the given

hostname is also compared against the list to

generate features 80–82.

Domain Registrar. We identify the registrar of

the website’s domain by querying against a

WHOIS database to obtain feature 83.

‡‡ https://lite.ip2location.com §§ https://lite.ip2location.com/ip2proxy-lite

Feature

Category

Feature

Features

Proposed or

Existing Features

Temporal

1 - 5
Round trip time: average, standard deviation, entropy,

minimum and maximum

1 - 2 Existing

3 - 5 Proposed

6 DNS response time 6 Proposed

7 TTL for A records 7 Existing

8 - 10 Uptimes of hosts: average, standard deviation and entropy
8 Existing

9 - 10 Proposed

11 - 12 Domain age, domain validity
11 Existing

12 Proposed

13 - 15
Domain ages of co-hosted websites: average, standard

deviation and entropy
13 - 15 Proposed

Spatial 16 - 18
hops on route to host: average, standard deviation and

entropy
16 - 18 Proposed

12

19 - 21
unique hop countries on route: average, standard deviation

and entropy
19 - 21 Proposed

22 Ratio of hosts in the same country with a user 22 Proposed

23 - 24 # unique hosts’ countries, # unique of hosts’ continents
23 Existing

24 Proposed

25 - 27
unique hops’ continents: average, standard deviation and

entropy
25 - 27 Proposed

28 - 30
Geo-distances between the user and hosts: average, standard

deviation and entropy
28 - 30 Proposed

31 - 34
Geo-distance between the hosts: sum, average, standard

deviation and entropy
31 - 34 Proposed

35 - 38
IP range between hosts: minimum, maximum, average,

standard deviation
35 - 38 Proposed

DNS

39 # unique A records 39 Proposed

40 - 43

Ratio of hosts: with PTR records, with their PTRs

containing IP addresses, with PTR’s hostnames matching

with the URL’s hostname, with PTR’s hostnames identity

matching with the URL’s hostname identity

40 - 43 Proposed

44 - 47
Average: length of hosts’ PTRs, # of digits in hosts’ PTRs,

of hyphens in hosts’ PTRs, # of dots in hosts’ PTRs
44 - 47 Proposed

48 # unique TLDs of hosts’ PTRs 48 Proposed

49 - 52

Ratio of hosts: with co-hosted websites, with co-hosted

websites’ hostnames matching with the URL’s hostname,

using private IP addresses, with dynamic IP addresses

49 - 51 Proposed

52 Existing

53 - 54 # co-hosted websites: average, standard deviation 53 - 54 Proposed

55 # unique hostnames of co-hosted websites in the hosts 55 Proposed

56
unique TLDs of hostnames of co-hosted websites in the

hosts
56 Proposed

57 - 58

Difference of average KL divergence between hostnames of

non-FF phishing and FF phishing hostnames: KL of

unigram characters, KL of bigram characters

57 - 58 Existing

59 - 60

Difference of average Jaccard Index between hostnames of

non-FF phishing and FF phishing hostnames: JI of unigram

characters, JI of bigram characters

59 - 60 Existing

61
Difference of average Edit distance (ED) between

hostnames of non-FF phishing and FF phishing hostnames
61 Existing

Network

62 - 63 Subnets of hosts: unique #, entropy of # of subnets 62 - 63 Existing

64 - 65 Networks of hosts: unique #, entropy of # of networks 64 - 65 Existing

66 - 67 ASNs of hosts: unique #, entropy of # of ASNs
66 Existing

67 Proposed

68 - 69
Organizations managing hosts’ ASs: unique #, entropy of #

of organizations
68 - 69 Existing

70 Ratio of hosts’ networks with generic gateways 70 Proposed

Host

71 Ratio of available (up) hosts 71 Proposed

72 - 73 OS of hosts: unique #, common OS 72 - 73 Proposed

74 -75
Webserver software of hosts: unique #, common webserver

software
74 -75 Proposed

76 Ratio of hosts with known proxy IP addresses 76 Proposed

Reputation 77 - 79

Hosts’ IP addresses in a blacklist of phishing IP addresses:

total # of occurrences, average #, ratio of hosts with their IP

addresses matched

77 - 79 Proposed

13

Table 1. A list of the proposed features for predicting phishing FF hostnames.

Feature # Source/Tool

1 – 5, 8 – 10, 16 – 18, 70 - 73 Network queries with traceroute and Nmap commands

6 – 7, 36 – 39, 40 – 49 Authoritative name server

11 – 15, 83 WHOIS database

13 – 15, 50 – 51, 54 - 56 Bing Search engine

19 – 35, 62 – 69, 76 IP geolocation database

51
A list of private IP addresses provided by Internet

Assigned Numbers Authority (IANA)

52 Dynamic User List (DUL) block list

57 - 61
Phishing blacklist (PhishTank, OpenPhish) and

Tranco’s list of top ranked websites

74 - 75 HTTP response header

77 - 82 Phishing blacklist (PhishTank)

Table 2. Sources of data for each feature.

4. Experiments and Results

Our experiments aim at evaluating the

effectiveness of the proposed features

(described in section 3.3) in predicting FF

phishing hostnames using supervised ML

techniques. In particular, we propose multiple

architectures designed to solve this problem in

the context of binary and multi-class

classification tasks using flat and hierarchical

classification techniques. We designed two sets

of experiments, the first one evaluates the

performance of the features using traditional

ML algorithms and the second one uses DL

algorithms. All experiments were run using

Python and Jupyter hosted on Google’s Colab

platform.

4.1. Flat and Hierarchical Techniques

for Binary and Multi Classification

Tasks

Some of the four hostname classes share

common characteristics and therefore have

parent-child relationships. In this case, both flat

and hierarchical classification techniques can

be applied. In the former, in which relationships

between classes are ignored, one binary or

multi-class classifier assigns instances to their

respective classes in a single step (see Figure

6a). In the latter, a hierarchical class structure

based on the parent-child relationships is used

to break down the overall multi-class

classification task into layers of simpler binary

or multi-class classification tasks [53]. Local

Classifier per Parent Node (LCPN), illustrated

in Figures 6b, in which for each parent node, a

classifier is trained to classify its child nodes, is

the most preferred technique to implement

hierarchical classification [54, 55].

Figure 6a. No parent-child relationships in flat

classification.

80 - 82

Hosts’ IP addresses in a blacklist of IP addresses of name

servers of phishing websites: total # of occurrences,

average #, ratio of hosts with their IP addresses matched

80 - 82 Proposed

83 Domain registrar 83 Existing

14

Figure 6b. LCPN technique for hierarchical

classification (dashed squares represent binary or

multi-class classifiers) [53].

Which of the two classification techniques

achieves better prediction results has been

shown to depend on the specific problem [53].

Based on the two classification techniques, we

therefore designed four model architectures

(see Figures 7), two architectures for each

technique, to evaluate and compare their

performances. Architectures A and B take the

flat classification techniques (Figures 7a and 7b

respectively). In the multi-class classification-

based Architecture A, the FF phishing

hostnames are classified against the three other

classes, whereas in the binary classification-

based Architecture B, the FF phishing

hostnames are classified against the other three

classes combined.

Architectures C and D apply the hierarchical

classification techniques (Figures 7c and 7d,

respectively). The multi-class classification is

performed through layers of binary

classification tasks. In each architecture, we

applied the LCPN technique to build the

classifiers. We use selective classifier

approach, proposed by Silla and Freitas [56], to

evaluate various ML algorithms to identify the

best performing classifier to use at each node.

A feature selection method (for traditional ML

algorithms) is also performed at each node to

determine the most relevant features for each

classifier. The classifiers used within the

architectures employ different prediction

classes and dataset sizes (see Tables 3 and 4),

and therefore are expected to produce different

prediction performances.

We build each classifier using a different set of

the best features selected from the same original

set of features proposed in section 3.3. Each

classifier is evaluated using the ML algorithms

(named in section 4.3) to identify the best

performing algorithm for the classifier. For

each hierarchical architecture, we combine

performances of the classifiers, from the parent

node of the hierarchy to the child node in which

FF phishing hostnames belong, to obtain the

overall performance. We then compare

performances of all architectures to determine

the best performing architecture as a

recommendation for the implementation of the

model.

Figure 7a. Architecture A - flat classification-based

architecture

Figure 7b. Architecture B - flat classification-based

architecture.

15

Figure 7c. Architecture C – hierarchical classification-based architecture.

Figure 7d. Architecture D - hierarchical classification-based architecture.

Classifier Classifier Description Archite

cture

Classification

Type

Classifier A

Classifies a webpage into four classes of hostnames; FF

phishing hostname, phishing non-flux hostname, CDN

hostname and legitimate non-flux hostname

A
Multi-class

classification

Classifier B

Classifies a webpage as FF phishing hostname or other

hostnames (phishing non-flux hostname, CDN hostname

and legitimate non-flux hostname combined)

B
Binary

classification

Classifier C.1 Classifies a webpage as flux or non-flux hostname
C

Multi-class

classification Classifier C.2 Classifies a webpage as FF phishing or CDN hostname

Classifier D.1 Classifies a webpage as phishing or legitimate webpage

D
Multi-class

classification Classifier D.2
Classifies a webpage as FF phishing or phishing non-flux

hostname

Table 3. FF phishing hostname detection classifiers forming various architectures of the model.

4.2. Training Datasets

Features described in section 3.3 were extracted

from all the monitored and labelled URLs

(described in section 3.2) to create a training

dataset from which specific training datasets for

16

each classifier were derived. As indicated in

Table 4, the training datasets of classifiers A, B,

C.1 and D.1 were formed by labelling the entire

dataset with their respective classes whereas in

classifier C.2, all URLs with no IP changes

were removed from the dataset. In classifier

D.2, we removed all legitimate URLs from the

dataset.

Classifier Class Labels
Class

Size

Dataset

Size

Classifier A

FF phishing hostname 1257

11801
Phishing non-flux hostname 3014

CDN hostname 3867

Legitimate non-flux hostname 3663

Classifier B
FF phishing hostname 1257

11801
Other hostnames 10544

Classifier C.1
Flux hostname 5124

11801
Non-flux hostname 6677

Classifier C.2
FF phishing hostname 1257

5124
CDN hostname 3867

Classifier D.1
Phishing webpage 4271

11801
Legitimate webpage 7530

Classifier D.2
FF phishing hostname 1257

4271
Phishing non-flux hostname 3014

Table 4. Classes and dataset sizes of training datasets used for each classifier.

4.3. Performance Results

We used various evaluation measures to report

the predictive performance of the proposed

features. Individual classifier performances

were assessed in terms of accuracy, FPR, FNR,

precision, recall, F1-score, ROC curve and

AUC metrics [57-59] , and they are defined as

follows:

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 / 𝑇𝑃 + 𝑇𝑁 +

𝐹𝑃 + 𝐹𝑁

• 𝐹𝑃𝑅 = 𝐹𝑃 / 𝐹𝑃 + 𝑇𝑁

• 𝐹𝑁𝑅 = 𝐹𝑁 / 𝐹𝑁 + 𝑇𝑃

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / 𝑇𝑃 + 𝐹𝑃

• 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 / 𝑇𝑃 + 𝐹𝑁

• 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 /

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
• ROC curve - A graph of Recall against

FPR values for thresholds ranging from
0 to 1.

• AUC - Area under the ROC curve.

The above performance measures are derived

from the counts of True Positives (TP), False

Positives (FP), True Negatives (TN) and False

Negatives (FN). Note that, if an instance is

positive and it is classified as positive, it is

defined as TP. If the instance is negative and it

is classified as positive, it is FP. While, a

negative instance classified as negative is TN

and if it is classified as positive, it is called FN.

A positive instance in this problem is the FF

phishing hostname. We present and compare

results of individual classifiers for both ML and

DL experiments in the following subsections.

4.3.1. Results of Individual

Classifiers Using Machine

Learning Algorithms

17

The predictive ability of the proposed features

was evaluated using eight traditional ML

algorithms namely Logistic Regression (LR),

k-Nearest Neighbour (k-NN), Decision Tree

(DT), Naive Bayes (NB), Support Vector

Machine (SVM), Artificial Neural Network

(ANN), Random Forest (RF) and Gradient

Boosting (GB) [38-41]. These algorithms have

been successfully used by other researchers to

address various classification problems in

cybersecurity [12, 60-63]. Firstly, we

performed feature selection using wrapper

subset feature evaluation method with RF

algorithm [64] to find the best subset of features

for each classifier. For instance, for classifier B,

we ranked the results (features) of the selection

method according to their importance weight.

Starting with the full feature set, we evaluated

various subsets of the ranked list of features

using RF by eliminating the least important

feature in each evaluation round. Optimal

accuracy was obtained with a subset of 56

features and therefore it was selected as the best

feature set for the classifier.

In each classifier, we applied ML algorithms on

the best features subset to determine the best

performing algorithm and its best performance

results. The stratified cross validation technique

(k-fold where k is 10) [65] was applied on the

algorithms to obtain average scores. We then

tuned the best classifier using a random search

method [66] to obtain its optimal performance.

Figures 8 show the performances of ML

algorithms in each classifier across all threshold

values in the ROC curve.

Tables 5a-b summarize the results of the four

best performing algorithms for each of the

individual classifiers (indicated in Table 3). The

results indicate that RF yields the best

performance across most metrics in each

classifier. Table 5c indicates the tuned

hyperparameters of RF for classifier B (the best

overall classifier) and their values which

yielded optimal performance.

Figure 8a. ROC curves of the

traditional ML algorithms for

classifier A.

Figure 8b. ROC curves of the

traditional ML algorithms for

classifier B.

Figure 8c. ROC curves of the

traditional ML algorithms for

classifier C.1.

Figure 8d. ROC curves of the

traditional ML algorithms for

classifier C.2.

Figure 8e. ROC curves of the

traditional ML algorithms for

classifier D.1.

Figure 8f. ROC curves of the

traditional ML algorithms for

classifier D.2.

Algorithm Classifier A Classifier B Classifier C.1

18

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

DT 88.54 5.20 12.27 0.89 97.23 1.37 13.88 0.98 95.44 4.62 6.10 0.95

ANN 89.13 4.23 11.15 0.89 98.07 1.25 14.02 0.98 97.60 1.67 4.97 0.97

RF 93.58 1.82 8.62 0.94 98.42 0.57 5.88 0.99 98.36 0.69 5.05 0.99

GB 91.94 3.73 7.64 0.92 95.05 4.26 7.79 0.95 96.57 2.04 10.33 0.96

Table 5a. Performance results of top four best performing ML algorithms for classifiers A, B and C.1.

Algorithm

Classifier C.2 Classifier D.1 Classifier D.2

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

DT 97.14 1.65 4.68 0.98 97.92 1.53 3.08 0.98 98.14 1.63 9.83 0.98

ANN 97.44 1.64 5.72 0.98 97.19 2.48 3.35 0.97 98.70 0.75 8.36 0.99

RF 98.49 0.56 3.82 0.99 98.64 0.62 2.15 0.99 99.16 0.19 7.07 0.99

GB 97.63 1.28 5.77 0.98 95.67 3.71 4.88 0.96 98.48 0.91 9.62 0.98

Table 5b. Performance results of top four best performing ML algorithms for classifiers C.2, D.1 and D.2.

Hyperparameter Description Value

n_estimators Number of trees 1000

max_features
Max number of features considered for splitting a

node
log2

max_depth Max number of levels in each decision tree 38

min_samples_split
Min number of data points placed in a node before

the node is split
2

min_samples_leaf Min number of data points allowed in a leaf node 3

bootstrap Method for sampling data points false

Table 5c. The optimal values of the tuned RF hyperparameters for classifier B.

4.3.2. Results of Individual

Classifiers Using Deep

Learning Algorithms

Here, we assess the performance of the

introduced features using three DL algorithms

which are Fully Connected feedforward Deep

Neural Networks (FC-DNN), Long Short-Term

Memory (LSTM) and one-dimension

Convolutional Neural Network (1D CNN) [41-

43]. The DL algorithms were tuned by a

random search method. We first identified key

hyperparameters for tuning and their

considerable range of values for evaluation. In

each hyperparameter, we first identified a set of

considerable values for performance tuning

(indicated in Table 6). We also attempted to

tune with multiple hidden layers. We found that

only one hidden layer was sufficient to produce

optimal performance in each algorithm.

Additional layers did not improve the

performances. The identified optimal values of

all the hyperparameters were then used to build

the classifiers. The final result of each classifier

was obtained by taking an average of the

performances of five runs of the tuned

classifier. Figures 9 show the three network

architectures of the tuned classifier B (the best

classifier), as an example, along with the tuned

hyperparameters and their optimal values. As

the final results in Tabless 6 7 indicate, FC-

DNN has performed best across most of the

19

measures in most of the classifiers (A, C.2 and

D.1), followed by 1D CNN (in C.1 and D.2).

LSTM has outperformed others in classifier B

only.

Hyperparameter Range of Evaluated Values

Number of neurons in dense

layers / memory units in a

hidden layer of LSTM / filters

in a convolution layer of

CNN)

10, 30, 50, 80, 100, 150, 200, 300, 400, 600, 800, 1000, 1200, 1400,

1600, 1800, 2000, 2200, 2400, 2800, 3000

Activation functions Relu, tanh, sigmoid, hard_sigmoid, linear, softmax, softplus, softsign

Optimization algorithms SGD, RMSprop, Adagrad, Adadelta, Adam, Adamax, Nadam

Learning rates 0.001, 0.01, 0.1, 0.2, 0.3

Kernel initializers Uniform, lecun_uniform, normal, zero, glorot_normal,

glorot_uniform, he_normal, he_uniform

Dropout rates 0.1, 0.2, 0.3, 0.4, 0.5

Batches 15, 30, 50, 70, 90, 110, 130, 150

Epochs 10, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300

Table 6. Hyperparameters and their ranges of values evaluated for tuning the three DL algorithms.

Figure 9a. The tuned FC-DNN architecture of

classifier B.

Figure 9b. The tuned LSTM architecture of classifier

B.

Figure. 9c. The tuned 1D CNN architecture of classifier B.

20

Algorithm

Classifier A Classifier B Classifier C.1

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

FC-DNN 83.56 6.96 20.12 0.72 94.86 0.79 36.52 0.94 92.60 4.68 19.24 0.92

LSTM 82.60 7.91 28.23 0.73 96.29 0.63 35.07 0.95 93.39 1.28 24.44 0.93

CNN 81.89 7.45 31.05 0.71 94.50 1.18 32.46 0.93 93.78 1.10 23.22 0.94

Table 7a. Performance results of the evaluated DL algorithms for classifiers A, B and C.1.

Algorithm

Classifier C.2 Classifier D.1 Classifier D.2

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

Acc.

(%)

FPR

(%)

FNR

(%)

F1

Score

FC-DNN 93.18 3.66 16.63 0.93 94.55 6.60 3.13 0.95 93.13 3.15 34.27 0.94

LSTM 91.54 5.44 21.35 0.92 90.24 10.14 10.26 0.90 94.69 1.47 41.03 0.94

CNN 90.58 2.50 37.67 0.90 91.89 6.37 12.04 0.90 94.62 1.35 42.68 0.94

Table 7b. Performance results of the evaluated DL algorithms for classifiers C.2, D.1 and D.2.

4.3.3. Overall Results of the Proposed

Architectures

By comparing results of ML and DL algorithms

for each classifier, we found that the tuned RF

has also outperformed the DL algorithms in all

measures. Recalling the proposed architectures

in section 4.1, our aim is to determine the

architecture that offers the FF phishing

hostname prediction performance. We first

determined overall accuracy rates of the

architectures. For hierarchical architectures, we

applied the approach used by Kowsari, et al.

[55] in which the overall accuracy at the leaf

class is obtained by taking accuracy of the child

classifier as a fraction of the accuracy of its

parent classifier. Since LCPN hierarchical

approach propagates misclassification errors

from top to bottom [53], we compute the errors

at the leaf class by summing up errors of the

parent and child classifiers.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 (𝑙𝑒𝑎𝑓) 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 ∗

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 (𝑙𝑒𝑎𝑓) 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =

 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 +

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

Table 8 below summarizes the best

performance of each architecture. As explained

above, the performance of architecture C was

obtained by combining performances of

classifiers C.1 and C.2 while for architecture D,

the performances of classifiers D.1 and D.2

were combined. Of the multi-class

classification-based architectures, architecture

D produced the overall best performance by

yielding the highest accuracy and relatively low

FPR. However, architecture B, which is based

on binary classification, produced the best

performance overall in all three metrics.

Architecture
Acc.

(%)

FPR

(%)

FNR

(%)

Classification

Type

A 93.58 1.82 8.62 Multi-class

B 98.42 0.57 5.88 Binary

C 96.87 1.25 8.87 Multi-class

D 97.81 0.81 9.22 Multi-class

Table 8. Prediction performances of the

architectures.

4.3.4. Feature Performance Analysis

21

This section studies the importance of

individual features and feature categories in the

performance of the best performing classifier

(classifier B). The classifier achieved the best

performance with 56 features, of which 41 are

novel and 15 were adopted from other works.

51 of these features were derived from third

party services while only 5 of them were

derived from the hostname string (local

features). The importance weights of the best

features of the classifier (shown in Figure 10)

were computed using the tuned RF algorithm

(described in section 4.3.1). To help explain this

ranking, we will examine the data distributions

of some of the best features with respect to the

four hostname classes.

The experiment reveals that counts of hosts of

a hostname matching with the blacklisted

phishing IP addresses (features 77 in Table 1) is

the strongest predictor. In observing the data,

the boxen plot in Figure 11a shows that hosts of

FF phishing hostnames have the largest median

counts (indicated by the horizontal black line

in) while a large number of them have the large

counts of up to nearly 250 compared to phishing

non-flux and CDN hostnames. Legitimate non-

flux hostnames have the lowest count by far.

Similar pattern is observed in a binary

classification of classifier B in Figure 11b. This

suggests that phishing FFSNs re-use a larger

number of machines which were found to host

known phishing websites in hosting their

phishing websites. This could be through an

FFSN hosting multiple phishing websites with

the same pool of flux agents or multiple FFSNs

hosting their unique websites using the same

pool of flux agents.

The high ranking of other IP reputation features

(for instance features # 82 and 81 at positions 4

and 5 respectively) and the features related to

co-hosted websites (for instance features #53

and 55 at positions 14 and 17 respectively)

affirms this trend. For instance, we observed

that although hosts of phishing non-flux

hostnames have the highest median number of

co-hosted websites (indicated in Figure 12a),

their resulting median number when they are

combined with both CDN and legitimate non-

flux hostnames is lowered to 5.5 against 7 of the

FF phishing hostnames (Figure 12b). In this

feature, we expected phishing FFSNs and

CDNs would co-host a large number of

malicious and legitimate websites respectively

compared to non-flux networks. A possible

explanation for the observed data distribution is

that phishing non-flux networks require the

fewest resources and therefore they are cheap to

build and maintain compared to the other

networks. Since phishers are driven by profits,

the networks make an ideal platform to host

multiple phishing websites in order to

maximize returns of investment. While hosts in

CDNs will be high performance machines, the

services they support will a have a high demand

for resources, so that the number of services

running on a given host is likely to be modest.

Furthermore, very large internet companies

such as Google and Microsoft are likely to own

CDNs dedicated to their own services.

The hostname similarity features (KL, JI and

ED) are ranked at positions 3, 6, 7, 13 and 16.

Although the features were originally used by

Yadav, et al. [42] and Fu, et al. [47] to detect

algorithmically generated domains (AGDs)

hosted in domain flux botnets, their high

ranking demonstrates that they are also

effective in detecting hostnames hosted in

phishing FFSNs. Figure 13a shows the

distribution of differences in average edit

distances (feature #61) between the sum of

averages of ED of hostnames of the three

categories (both legitimate and phishing non-

flux hostnames) and the average ED of FF

phishing hostnames. The distribution illustrates

that FF phishing hostnames have the largest

median difference followed closely by phishing

non-flux hostnames while both legitimate

hostnames have the smallest median. This

indicates that FF phishing hostnames have the

smallest average distance when compared to

each other, followed by phishing non-flux and

legitimate hostnames. The pattern, also

illustrated in Figure 13b in which the

22

differences were obtained by subtracting the

average ED of FF phishing hostnames from the

average ED of the non-FF phishing hostnames,

shows that FF phishing hostnames require the

fewest number of operations to transform one

hostname string to another, thus they have the

closest resemblance to each in terms of

character composition compared to the rest.

Similar observations were made in the other

four hostname similarity features. The close

similarity in median values and patterns

between the two categories of phishing

hostnames when compared to those of

legitimate hostnames suggests that FFSN and

phishing non-flux network owners use nearly

similar strategies in composing their phishing

hostnames, different from the strategies that are

used to generate legitimate hostnames.

TTL, domain age and average domain age of

co-hosted hostnames lead the ranking of

temporal based features at positions 2, 8 and 10.

In observing the TTL data, Figure 14a shows

that the majority of CDN and FF phishing

hostnames have the lowest TTLs compared to

non-flux hostnames, as we expected. Most of

the CDN hostnames have the lowest TTLs of

20s and 60s compared to the rest, while a

significant number of them have a TTL of 300s.

Most of the FF phishing hostnames, on the

other hand, have TTLs of 60s followed by 300s

and 3600s. The majority of the non-flux

hostnames have a TTL value of 300s while a

significant percentage have TTLs of 60s, 600s

and 3600s. Phishing non-flux hostnames are

observed to have the largest range of TTLs of

up to 144000s. However, when combining

CDN and the two non-flux hostnames as a

single category, a large percentage of their

hostnames have high TTLs values at 300s, 600s

and 3600s when compared to those of FF

phishing hostnames, which most of them have

TTL of 60s and 90s. The prediction significance

of domain age in classifier B is also reflected in

our data analysis in Figure 15. Although the

median domain age of phishing non-flux

hostnames is the lowest (Figure 15a), the value

is increased considerably to 1219 days when

they are combined with both categories of

legitimate hostnames (Figure 15b). The median

age of FF phishing hostnames is 3571 days.

Similar pattern is observed in the other domain

age related features. With both phishing

hostnames having the lowest medians of

domain age, this confirms the trend that

phishers use significant share of newly

registered domains to operate their phishing

websites

Average number of hops and average geo-

distance between user and hosts of a hostname

are the highest ranked spatial based features at

positions 11 and 12. The data in Figure 16a

shows the distribution of average number of

hops between user and hosts of a hostname.

Unexpectedly, CDN hostnames have the

highest median number while non-flux

hostnames have the lowest median number. We

expected FF phishing hostnames to have the

largest median number due to our

understanding that flux agents are often

distributed across many networks whereas

CDN hostnames would have the smallest

median number since CDNs deliver contents to

the local users. However, it is important to note

that the distribution of data of any feature

relating user and the hosts depends on the

current geographical location of the user

relative to the hosts since hosts of non-FF

phishing contents are located in few and

specific locations. Different distributions are

expected to be generated when users are at

different locations. In this case, the feature is

among the strong predictors because when

combining CDN and non-flux hostnames, the

median number is lowered to 9 while that of FF

phishing hostname is at 14.5 (see Figure 16b).

The low-ranking positions of standard

deviation and entropy of countries of hops

between user and hosts suggest that the

majority of hops in all hostname categories are

located in a small number of unique countries,

indicating that most of the hostnames are hosted

in regions closer to the users.

23

Fig 10. Importance weights of the best features of classifier B.

Fig 11a. Distribution of average of

total number of occurrences of

hosts’ IP addresses of the four

categories of hostnames in a

phishing blacklist.

Fig 11b. Distribution of average of

total number of occurrences of

hosts’ IP addresses of two

categories of hostnames in

classifiers B in a phishing blacklist.

Fig 12a. Distribution of average

number of unique co-hosted

websites in the hostname’s hosts

for all four categories of

hostnames.

Fig 12b. Distribution of average

number of unique co-hosted

websites in the hostname’s hosts

for the two categories of hostnames

in classifier B.

Fig 13a. Distribution of differences

of edit distances (Levenshtein)

between FF phishing hostnames and

each of the four categories of the

hostnames.

Fig 13b. Distribution of

differences of edit distances

between FF phishing hostnames

24

and each of the two categories of

the hostnames in classifier B.

Fig 14a. Distribution of TTLs of the four categories of hostnames.

Fig 14b. Distribution of TTLs of the two categories of hostnames in classifier B.

Fig 15a. Distribution of average domain age

of the four categories of hostnames.

Fig 15b. Distribution of average domain age

of hostnames of the two categories of

hostnames in classifier B.

25

Fig 16a. Distribution of average number of

hops between user and hosts of a hostname in

each of the four categories of hostnames.

Fig 16b. Distribution of average number of

hops between user and hosts of a hostname in

each of the two categories of hostnames.

We also analysed the composition and the

performance contribution of each feature

category in the best feature subset of classifier

B. Table 9 indicates the breakdown of the best

features of classifier B by category. Compared

with the full set of features proposed in section

3.3, there is a representation of features from

each category, indicating that all the categories

are important in predicting the FF phishing

hostnames. Existence of all the proposed

temporal, DNS and reputation features in the

best feature list indicates that the features

categories are the most important in this

classification task. As illustrated in Figures

17a-b, temporal and DNS categories produced

the highest accuracy rates and among the lowest

error rates, along with spatial features, and

therefore determined as strong predictors. The

network and the host features, on the other

hand, are the weakest predictors because they

produced the lowest accuracy rates and the

highest error rates. This result coincides with

the results in Table 9 which shows that temporal

and DNS categories have among the highest

percentages of features in the best feature

subset and the results in Figure 10 which

indicates that majority of them are highly

ranked. This is opposite to the results of the

network and host categories. The poor

performances of network features compared to

temporal and spatial features suggests that flux

agents in FFSNs are located in small number of

unique networks but are largely dispersed than

the hosts of non-FFSNs. Compared with the

overall accuracy, FPR and FNR, each category

has performed lesser than the overall

performance in all three metrics. This shows

that the combination of all feature categories

has improved the overall performance of the

model.

Similarly, we evaluated and compared

performance contributions of the proposed and

the existing features against the overall

performance of the model (results illustrated in

Figures 17c-d). While our proposed features

have achieved better results compared to the

existing features, the combination of the two

has improved the overall accuracy, and more

significantly to FPR and FNR, suggesting that

their combination is important as for the case of

feature categories, not only to achieve optimal

prediction performances, but also to increase

the diversity of features for hardening the

model against detection evasion techniques.

Feature

Category

of Full

Features

of Best

Features

Best Features #

(# from Table 1)

Temporal 15 15 1-15

Spatial 23 10 16 - 20, 28, 35 - 38

26

DNS 23 20 39, 40, 42 - 50, 53 - 61

Network 9 2 62, 63

Host 6 2 73, 75

Reputation 7 7 77 - 83

Table 9. Composition of categories in the best feature set of classifier B.

Fig 17a. Comparison of accuracy rates of feature

categories of classifier B.

Fig 17b. Comparison of error rates of feature

categories of classifier B.

Fig 17c. Comparison of accuracy rates between

existing, proposed and the overall features of

classifier B.

Fig 17d. Comparison of error rates between existing,

proposed and the overall features of classifier B.

4.4. Detection Time

We measured the runtimes of the model’s three

phases, feature extraction, dataset training and

prediction, to understand its efficiency in

detecting FF hostnames. Table 10 summarizes

the times. To determine the actual detection

time per webpage, we sum up an average time

to extract the 56 features per a webpage and an

average time to predict a new webpage, which

gives a total of 162.64 seconds. Almost all of

this time is due to the retrieval of features’ data

from their sources. Most features are the results

of queries of data from online third-party

services, which entail data retrieval and

network overheads. All the features were

extracted and generated sequentially. Figure 18

below indicates a distribution of the feature

extraction time by activities showing a

considerable variation of times, with host

scanning (using Nmap) and traceroute querying

consuming the most time. It is important to note

that the runtime of each activity was affected by

the Python libraries we selected to use as well

as the function(s) and the coding style we used

to implement the activity. We expect a

considerable speed-up to be achievable through

more efficient coding and choice of libraries,

27

and by querying services concurrently where

possible. Nevertheless, it is likely that the

latency will not be acceptable for real-time use.

Phase Time (s)

Training the dataset 8.50

Feature extraction per webpage 162.64

Prediction per webpage 0.0003

Detection Time 162.64

Table 10. Runtimes of the classifier’s three stages

for predicting FF phishing hostnames.

Fig 18. Distribution of feature extraction times by

activities.

5. Discussions

5.1. Comparison with Existing Works

We compare previously proposed fast FF

hostname detection methods with our work in

terms of prediction performance and execution

time. For fair comparison, we focus on methods

which utilized supervised ML techniques and

used datasets of a similar size to ours. Table 11

summarizes the comparisons. The below points

summarize the main benefits of our methods

compared to existing ones.

While all other works have proposed classifiers

to detect FF hostnames operating general

malicious services including spam, malware

and phishing, our work has refined the scope by

focusing on those hosting phishing websites

only. Having a detection solution specific for

phishing-based FF hostnames is important

because FFSNs hosting different types of

attacks have significant variations in network

behaviours which are used to determine most of

the common detection features for FF

hostnames. Generic FF hostname detection

solutions, thus, are likely to be less effective in

detecting specific FF hostnames than the

solutions for specific FF hostnames. The

difference in network behaviours of various

FFSNs was empirically investigated by

Caglayan, et al. [4]. The study showed that

different types of FFSNs have different

characteristics due to their unique economic

models. For instance, they observed that spam

FFSNs have longer lifespans, between 30 and

90 days while most of the phishing FFSNs live

less than a week. Since the longer the FFSN

exists, the more agents and domains are being

recruited and hosted respectively, spam FFSNs

tend to have large network sizes as well as large

numbers of hosted domains compared to

phishing FFSNs. The study illustrated this

difference by observing that the average

number of domains hosted in spam FFSNs and

phishing FFSNs were 71 and 19 respectively.

Such differences in their structures result in

differences in a number of characteristics that

are often used in detecting FF hostnames. The

characteristics include network and

geographical dispersion of hosts, and

distribution of co-hosted websites. Phishing

attacks are, by far, the leading cause of all

global security breaches, contributing up to

91% of global data breaches and 93% of data

breaches occurring specifically in organizations

[8, 67, 68]. Given the significance of phishing

to the global security, it is vital to have specific

methods for detecting FF phishing hostnames to

help prevent internet users falling victim to

phishing attacks, thus reducing the number of

data breaches.

In contrast to the existing works, our dataset

includes all four types of networks (described

in sections 2 and 4.2) with the majority of

phishing websites being hosted in non-flux

networks. This setting is more realistic and

relevant to real world applications. It has also

allowed us to evaluate the effectiveness of

28

different classification architectures described

in section 4.1.

We have used features belonging to six

different feature categories, the most compared

to the other studies. In comparison, Yadav, et

al. [42] used features from a single category

while Hsu, et al. [28], Lin, et al. [25] and

Almomani [1] used features from two

categories and Jiang and Li [12] from four. Our

widely diverse set of features is likely to

increase resilience of the solution to detection

evasion techniques. This is because the attacker

has to develop different evasion methods to

compromise the features from each or most of

the feature categories to increase significantly

their chance of evading detection. In addition,

most of our best features were extracted from

third-party services. Third party features are

difficult to emulate or forge since they are

generated from highly secure and verified

information. It would take extensive skills and

time for an attacker to forge the features.

Attackers will be unwilling to incur such costs

as they look to maximize their financial gains

using minimum effort.

In contrast to current methods, our method has

been evaluated using a large number of

measures to prove its reliability and all-round

robustness. Existing approaches have evaluated

their methods using only a small number of

performance measures (as indicated in Table

11), omitting other significant measures such as

FNR, which we consider to be one of the most

important measures for this problem. This

limits our understanding on the all-round

effectiveness of these solutions.

Most existing methods work by distinguishing

FF hostnames from both CDN and legitimate

non-flux hostnames. Malicious non-flux

hostnames, which host the majority of

malicious websites, were not considered in their

datasets. However, our approach distinguishes

FF hostnames from all possible types of

hostnames (including phishing non-flux

hostnames), thus it is more related to the real-

world use cases. Notably, Lin, et al. [25]

reported a performance similar to ours but with

a smaller number of features and lower

detection time. Their work, however, did not

include malicious non-flux hostnames in their

dataset. To be useful in real-world applications,

their classifier needs to be merged with other

methods, for instance, be preceded in the

processing pipeline by a filter to exclude

phishing non-flux hostnames from the data

stream. We evaluated three of their four

features, which we also used, using our dataset

with classifier B. We evaluated them first using

a three-class dataset, from which we had

eliminated phishing non-flux hostnames, and

then a four-class dataset. In the former, we

obtained an accuracy rate, FPR and FNR of

73.96%, 23.49% and 72.36% respectively

whereas in the latter, an accuracy of 60.74%,

FPR of 56.42% and FNR of 37.86% were

obtained. Note that the accuracy and FPR

decreased as a result of adding the fourth

hostname class. We expect a similar reduction

in the performance of their classifier would be

observed if their dataset were expanded to

include the fourth hostname class. Also, the

features performed less well against our

phishing-based dataset, suggesting that the

performance is sensitive to the type of FFSNs

in the dataset. In addition, it is important to note

that our work has achieved better accuracy rate

and FPR than their work.

We also compare our work against Yadav, et al.

[42]’s work from which we adopted four of the

hostname similarity features (features # 57-58

and 60-61). Their work used the features to

distinguish AGDs from the legitimate

hostnames. We evaluated all the four features

on the dataset of our classifier D.1 which

distinguishes phishing (both AGDs and non-

AGDs) from legitimate hostnames. We

obtained an accuracy of 92.37% and FPR of

4.82%. Comparing with performances reported

by Yadav, et al. [42] (see Table 11), the results

show that the features are more effective in

detecting AGDs than the combination of AGDs

and non-AGDs. This is because AGDs are more

29

likely to resemble in terms of composition of

their characters compared to non-AGDs since

the malware of each domain flux network

generating them follows a specific and uniform

pattern. Nevertheless, the features have shown

to increase significantly the performances of

our classifiers, suggesting that they are also

useful in classifying other categories of

hostnames. For instance, when excluding the

features, classifier D.1 produced an accuracy of

96.37% and FPR of 3.85% but the

performances were improved to 98.64% and

0.62 respectively after including the features.

The improvements were also observed in the

other classifiers. Yadav, et al. [42], observed

that JI performed the best followed by ED and

lastly KL. Our results showed that ED

performed the best followed by JI and KL.

Good performances of our proposed features

compared to the existing features on the same

dataset and that of our model against the models

developed by other works suggest that there are

other undiscovered features that are as effective

as or more than the existing ones. Given that

phishers continue to learn about the existing

features with an aim of subverting the solutions,

it is important that researchers also continue to

explore and add new potential features so as to

be ahead of the race against the attackers, thus,

making the solutions relevant and effective in

different periods and seasons.

It is important to note that the results obtained

in our work are based on the size and nature of

distribution of our dataset. Attackers are likely

to vary configurations of their FFSNs over the

time which may result in variations in some of

the detection features. This is likely to impact

the distribution of the training dataset, thus the

performances of the classifiers and the

architectures. We insist that continuous

observations of behaviours of FFSNs and

evaluation of the resulting collected dataset are

important to ensure that the detection results are

up to date and relevant on each monitoring

period.

Work Features
Data size

(URLs)

Classification

Type

Evaluation

Algorithms
Performance

Detection

Time (s)

Hsu, et al.

[28]

2 temporal

features, 4 host

features

17, 214 Binary

classification

(FF bots versus

benign server)

SVM Acc. = 95%

AUC = 0.993

Unknown

Lin, et al.

[25]

3 DNS features,

1 temporal

feature

12,952 Binary

classification

(FF hostnames

versus benign

hostnames)

Genetic

algorithm

Acc. = 98.2%

FPR = 1.78%

18.54

Jiang and

Li [12]

2 DNS features,

1 network

feature, 1

temporal feature,

1 spatial feature

26,873 Binary

classification

(FF hostnames

versus benign

hostnames)

SVM, Naïve

Bayes, K-

NN

Acc. = 96.7%

Prec. = 0.965

Recall = 0.981

F1 = 0.973

AUC = 0.989

400

Almomani

[1]

11 DNS features,

3 temporal

features

7,615 Binary

classification

(FF hostnames

versus benign

hostnames)

Adaptive

evolving

fuzzy neural

network,

SVM, Naïve

Bayes

Acc. = 98%

Error rate =

1 – 16 (%)

Unknown

30

Table 11. A summarized comparison chart between our work and the related works.

5.2. Applications, Limitations and

Future Work

Though the subset of 56 best features have

produced the optimal performance, smaller

subsets have also produced good accuracy and

moderate error rates. For instance, the top 7 best

features produced an accuracy, FPR and FNR

of 96.24%,15.87% and 1.56% respectively. If

accuracy and FNR are the most desirable

performances, then a trade-off can be made

between accuracy and number of features in

order to reduce computing overheads, thus, the

detection time. However, from the

cybersecurity point of view, reducing the

number of features increases the risk of

detection evasion which may led to serious

damage to users. We argue that the use of a

large number of features, not only improves the

performance across all measures, but also

enhances resilience to detection evasion for the

long-term reliability value of the solution. The

impact of longer detection time due the use of

large number of features can be countered by

using the classifier to build the solution

(described below) that will provide real time

detection to end users. When applied in this

way, our classifier achieves three important

goals; high detection performance, enhanced

resilience to detection evasion and real time

detection.

Our detection time is higher than the typical

delay a user can expect when accessing a

webpage, measured to be in the region of 8-9s

in [69]. Consequently, our model is not suitable

for providing direct real-time protection to end

users. Instead, we suggest that it would make

effective use in building and maintaining a

blacklist of FF phishing hostnames. Used in this

way, the classifier would be fed with a stream

of hostnames obtained from various sources

such as user emails, network traffic, and

databases of legitimate and phishing websites.

Those websites classified as FF phishing

hostnames would be added to the blacklist. The

blacklist then can be used in various ways to

provide real time protection to end users.

Yadav, et

al. [42]

4 features DNS

features

79,930 Binary

classification

(AGDs versus

benign

hostnames)

L1-

Regularized

Linear

Regression

Acc. = 100%

FPR = 2.0%

Unknown

Our work 15 temporal, 23

spatial, 20 DNS,

4 network, 3

host, 7 reputation

11,801 Binary

classification

(FF phishing

hostnames

versus other

hostnames)

Linear

Regression,

K-NN,

Decision

Tree, Naive

Bayes,

SVM,

Neural

Network,

Random

Forest,

Gradient

Boosting,

Fully-

connected

Deep Neural

Network,

LSTM, CNN

Acc. =98.42%

FPR = 0.57%

FNR = 5.88%

Prec. = 0.99

Recall = 0.99

F1 = 0.99

AUC = 0.99

162.64

Multi-class

classification

(FF phishing

hostnames

versus phishing

non-flux, CDN

hostnames and

legitimate non-

flux hostnames)

Acc. =97.81%

FPR = 0.81%

FNR = 9.22%

31

Examples of such applications are a web

browser plug-in and a cloud anti-malware suite

with its clients installed at the end users. A

blacklist approach has proved to be efficient for

real-time applications in other cybersecurity

related areas [70, 71]. The blacklist can also be

a useful resource for security researchers,

vendors and authorities for further

investigations on the operations of phishing

FFSNs. Currently there are no active blacklists

consisting of known FF phishing hostnames

only that we are aware of. Also, our classifier

D.2, which distinguishes FF phishing and

phishing non-flux hostnames with a high

performance (indicated in Table 5b), can be

integrated (as a second layer) with a real time

solution which distinguishes phishing and

legitimate hostnames, such as the one proposed

in Nagunwa, et al. [5], to offer a more

comprehensive solution for the mitigation of

phishing attacks. In this approach, the former

detects FF phishing hostnames from the

phishing hostnames detected by the latter.

The proposed multi-class model using

architecture D has produced relatively good

results. The advantage of this model is that it

predicts each hostname type as an independent

outcome. This can be useful in cases where

security experts want to distinguish FF phishing

hostnames from phishing non-flux hostnames.

By doing so, specific measures to address the

attacks at the network level can be applied. For

instance, for the former, this would require an

approach described in section 1. For the latter,

hosts of the hostnames can be directly identified

through querying A records of the hostnames

and then blacklist the returned IP addresses.

The current detection time of our models can be

reduced in an attempt to achieve a latency

suitable for a potential real-time application.

For instance, most of the features can be

extracted in parallel instead of sequentially.

Query of A records would be performed first to

retrieve hosts’ IP addresses before extracting

the rest of the features in parallel. Furthermore,

features obtained from some of the time-

consuming feature extraction activities (as

described in section 4.4) can be dropped to

further reduce the time at the expense of

detection performance. For instance, by

dropping all best features of classifier B

obtained through host scanning, the detection

time obtained was 44.6s while the accuracy

attained was 96.85%. We will further explore

this analysis as part of our future work.

One of the key limitations of our solution is that

data from online third-party services, from

which the majority of our features are derived,

may be missing from time to time, for reasons

including poor network connection, temporary

unavailability of servers or unfound records. A

high percentage of missing data is likely to

reduce detection performance. However, our

experience during data collection suggests that

scenarios that could give rise to missing data are

relatively rare in normal daily circumstances. In

some features missing data is quite common,

for instance 56.4% and 44.6% of data related to

PTR and uptime of hosts respectively was

missing. Though we attempted to drop features

with missing data, better results were obtained

with the full feature set. This suggests that our

solution is resilient against missing data in

several features.

Recently, much attention has been paid to

adversarial attacks and how to make ML/DL

algorithms resistant to them. See e.g. the

MITRE Adversarial Threat Landscape for

Artificial-Intelligence Systems (ATLAS)

knowledge [72]. A comprehensive study of the

robustness of our proposed feature set

combined with each of the ML/DL algorithms

against such attacks is beyond the scope of the

current paper. However, it is under

consideration as a topic for a follow-on project.

6. Conclusion

In this paper, we have proposed a

comprehensive set of predictive features for the

model for detecting FF phishing hostnames

using a supervised ML approach. In particular,

32

we have introduced 41 new predictive features

alongside 15 features, categorized in six groups,

that were used in existing works to build the

model. Four model implementation

architectures based on binary and multi-class

classification approaches were proposed and

evaluated using eight ML and three DL

algorithms. The model performance was

evaluated using seven reliable performance

measures. The binary classification-based

architecture achieved the highest accuracy of

98.42%, in which the FF phishing hostnames

are distinguished from the other three

hostnames combined as a single hostname

class. The multi-class classification-based

architecture yielded a highest accuracy of

97.81%, where all four hostnames are

identified, which allows for detecting the exact

type of hostname and hence help to take more

informed decision. We also investigated the

importance of the proposed features with

respect to the best performing architecture and

revealed that temporal and DNS related features

are strongest predictors while network and host

related features are the weakest. The proposed

approach has delivered a comparable detection

performance when compared against other

similar works in the literature. However, unlike

exiting approaches, we propose a more robust

solution as we have used many new features,

have addressed the problem in a four-class

classification context and have reported our

results using a wider range of performance

measures.

As part of our future work, we intend to analyse

changes in the performance of the model in

response to the removal of features that

contribute most to extraction times, with an aim

of finding the optimal combination of detection

time and detection performance. As observed

by Salusky and Danford [2] and Yadav, et al.

[42], it is likely that attackers can combine IP

flux with domain flux or name server flux or

both of them in the same botnets. We aim at

extending our work by exploring and

identifying hostnames that are hosted in botnets

with multiple fluxing behaviours.

Acknowledgment

This research was funded by Commonwealth

Scholarship Commission (UK) and

Birmingham City University (UK). The results

and the views of this research are from the

authors and were not influenced by the funding

bodies.

References

[1] A. Almomani, "Fast-flux hunter: a

system for filtering online fast-flux

botnet," Neural Computing and

Applications, vol. 29, pp. 483-493,

2018.

[2] W. Salusky and R. Danford. (2008,

April 2017). Know your Enemy: fast-

flux service networks. The Honeynet

Project. Available:

https://www.researchgate.net/publicati

on/328781281_Know_Your_Enemy_

Fast-Flux_Service_Networks

[3] O. Katz, Perets,R., Matzliach, G.,

"Digging Deeper – An In-Depth

Analysis of a Fast Flux Network "

2017.

[4] A. Caglayan, M. Toothaker, D.

Drapeau, D. Burke, and G. Eaton,

"Behavioral analysis of botnets for

threat intelligence," Inf. Syst. E-bus.

Manag., vol. 10, pp. 491-519, 2012.

[5] T. Nagunwa, S. Naqvi, S. Fouad, and

H. Shah, "A Framework of New

Hybrid Features for Intelligent

Detection of Zero Hour Phishing

Websites," in 12th International

Conference on Computational

Intelligence in Security for

Information Systems (CISIS), Seville,

Spain, 2019, pp. 36–46.

[6] G. Gu, P. Porras, V. Yegneswaran, M.

Fong, and W. Lee, "BotHunter:

detecting malware infection through

IDS-driven dialog correlation,"

presented at the Proceedings of 16th

USENIX Security Symposium on

USENIX Security Symposium,

Boston, MA, 2007.

[7] S. Khattak, Z. Ahmed, A. A. Syed,

and S. A. Khayam, "BotFlex: A

community-driven tool for botnet

https://www.researchgate.net/publication/328781281_Know_Your_Enemy_Fast-Flux_Service_Networks
https://www.researchgate.net/publication/328781281_Know_Your_Enemy_Fast-Flux_Service_Networks
https://www.researchgate.net/publication/328781281_Know_Your_Enemy_Fast-Flux_Service_Networks

33

detection," Journal of Network and

Computer Applications, vol. 58, pp.

144-154, 2015.

[8] Sophos. (2017, June 2020). Don’t take

the bait Available:

https://www.cygnussystems.com/wp-

content/uploads/2017/08/dont-take-

the-bait.pdf

[9] E. Passerini, R. Paleari, L. Martignoni,

and D. Bruschi, "FluXOR: Detecting

and Monitoring Fast-Flux Service

Networks," in Proc. 5th International

Conference on Detection of Intrusions

and Malware, and Vulnerability

Assessment, Paris, France, 2008, pp.

186-206.

[10] R. Perdisci, I. Corona, D. Dagon, and

W. Lee, "Detecting malicious flux

service networks through passive

analysis of recursive dns traces,"

presented at the Proc. 2009.

ACSAC'09. Annual Computer

Security Applications Conference

Honolulu, HI, USA, 2009.

[11] F. Hsu, C. Wang, C. Hsu, C. Tso, L.

Chen, and S. Lin, "Detect Fast-Flux

Domains Through Response Time

Differences," IEEE Journal on

Selected Areas in Communications,

vol. 32, pp. 1947-1956, 2014.

[12] C. Jiang and J. Li, "Exploring Global

IP-Usage Patterns in Fast-Flux Service

Networks," Journal of Computers, vol.

12, pp. 371-379, 2017.

[13] S. Kumar and B. Xu, "A Machine

Learning Based Approach to Detect

Malicious Fast Flux Networks,"

presented at the 2018 IEEE

Symposium Series on Computational

Intelligence (SSCI), 2018.

[14] M. Stevanovic, J. M. Pedersen, A.

D'alconzo, and S. Ruehrup, "A method

for identifying compromised clients

based on DNS traffic analysis,"

International Journal of Information

Security, vol. 16, pp. 115-132, 2017.

[15] X. Chen, G. Li, Y. Zhang, X. Wu, and

C. Tian, "A Deep Learning Based

Fast-Flux and CDN Domain Names

Recognition Method," presented at the

Proceedings of the 2019 2nd

International Conference on

Information Science and Systems,

Tokyo, Japan, 2019.

[16] E. Stalmans, S. O. Hunter, and B.

Irwin, "Geo-spatial autocorrelation as

a metric for the detection of Fast-Flux

botnet domains," presented at the 2012

Information Security for South Africa,

2012.

[17] BuiltWith. (2020, March, 2020).

Content Delivery Network Usage

Statistics. Available:

https://trends.builtwith.com/CDN/Con

tent-Delivery-Network

[18] Hosting Facts. (2020, June, 2020).

Internet Stats & Facts (2020).

Available:

https://hostingfacts.com/internet-facts-

stats/

[19] L. Bilge, S. Sen, D. Balzarotti, E.

Kirda, and C. Kruegel, "Exposure: A

Passive DNS Analysis Service to

Detect and Report Malicious

Domains," ACM Trans. Inf. Syst.

Secur., vol. 16, pp. 1-28, 2014.

[20] D. Barr. (1996, August, 2019).

Common DNS Operational and

Configuration Errors. Available:

https://www.ietf.org/rfc/rfc1912.txt

[21] G. Aaron and R. Rasmussen. (2017,

December, 2017). Global Phishing

Survey: Trends and Domain Name

Use in 2016. Available:

http://docs.apwg.org/reports/APWG_

Global_Phishing_Report_2015-

2016.pdf

[22] Y. Chang, K. Yoon, and D. Park, "A

Study on the IP Spoofing Attack

through Proxy Server and Defense

Thereof," in 2013 International

Conference on Information Science

and Applications (ICISA), 2013, pp. 1-

3.

[23] R. Prego. (2016, August, 2019). 5

Reasons Your Company Should Use

Proxy Servers. Available:

https://www.cmswire.com/information

-management/5-reasons-your-

company-should-use-proxy-servers/

[24] V. Stocker, G. Smaragdakis, W. Lehr,

and S. Bauer, "The growing

complexity of content delivery

networks: Challenges and implications

for the Internet ecosystem,"

Telecommunications Policy, vol. 41,

pp. 1003-1016, 2017/11/01/ 2017.

[25] H.-T. Lin, Y.-Y. Lin, and J.-W.

Chiang, "Genetic-based real-time fast-

https://www.cygnussystems.com/wp-content/uploads/2017/08/dont-take-the-bait.pdf
https://www.cygnussystems.com/wp-content/uploads/2017/08/dont-take-the-bait.pdf
https://www.cygnussystems.com/wp-content/uploads/2017/08/dont-take-the-bait.pdf
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://hostingfacts.com/internet-facts-stats/
https://hostingfacts.com/internet-facts-stats/
https://www.ietf.org/rfc/rfc1912.txt
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2015-2016.pdf
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2015-2016.pdf
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2015-2016.pdf
https://www.cmswire.com/information-management/5-reasons-your-company-should-use-proxy-servers/
https://www.cmswire.com/information-management/5-reasons-your-company-should-use-proxy-servers/
https://www.cmswire.com/information-management/5-reasons-your-company-should-use-proxy-servers/

34

flux service networks detection,"

Computer Networks, vol. 57, pp. 501-

513, 2013/02/04/ 2013.

[26] Vivek. (2017, March, 2020). Does

ever CDN server goes down?

Available:

https://www.quora.com/Does-ever-

CDN-server-goes-down

[27] S. Campbell, S. Chan, and J. R. Lee,

"Detection of fast flux service

networks," presented at the

Proceedings of the Ninth Australasian

Information Security Conference -

Volume 116, Perth, Australia, 2011.

[28] C.-H. Hsu, C.-Y. Huang, and K.-T.

Chen, "Fast-Flux Bot Detection in

Real Time." vol. 6307, ed Berlin,

Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 464-483.

[29] ThreatX Labs. (2017, August, 2019).

Malicious Bot Detection through A

Complex Proxy Network. Available:

https://blog.threatxlabs.com/malicious

-bot-detection-through-complex-

proxy-network

[30] M. Konte, N. Feamster, and J. Jung,

"Dynamics of online scam hosting

infrastructure," presented at the Proc.

International conference on passive

and active network measurement,

2009.

[31] T. Holz, C. Gorecki, K. Rieck, and F.

Freiling, "Measuring and Detecting

Fast-Flux Service Networks,"

presented at the Proc. 16th Annual

Network & Distributed System

Security Symposium (NDSS), San

Diego, CA, 2008.

[32] J. Nazario and T. Holz, "As the net

churns: Fast-flux botnet observations,"

presented at the 3rd International

Conference on Malicious and

Unwanted Software (MALWARE),

Fairfax, VI, USA 2008.

[33] G. Kirubavathi and R. Anitha, "Botnet

detection via mining of traffic flow

characteristics," Computers &

Electrical Engineering, vol. 50, pp.

91-101, 2016.

[34] Y. Xie, F. Yu, K. Achan, R.

Panigrahy, G. Hulten, and I. Osipkov,

"Spamming botnets: signatures and

characteristics," SIGCOMM Comput.

Commun. Rev., vol. 38, pp. 171–182,

2008.

[35] C. Lai, A. Chavez, C. Jones, N.

Jacobs, S. Hossain-McKenzie, J.

Johnson, et al., Review of Intrusion

Detection Methods and Tools for

Distributed Energy Resources, 2021.

[36] Y. Xing, H. Shu, H. Zhao, D. Li, and

L. Guo, "Survey on Botnet Detection

Techniques: Classification, Methods,

and Evaluation," Mathematical

Problems in Engineering, vol. 2021,

2021.

[37] A. Karim, R. B. Salleh, M. Shiraz, S.

A. A. Shah, I. Awan, and N. B. Anuar,

"Botnet detection techniques: review,

future trends, and issues," Journal of

Zhejiang University SCIENCE C, vol.

15, pp. 943-983, 2014/11/01 2014.

[38] Y. j. Ou, Y. Lin, Y. Zhang, and Y. j.

Ou, "The Design and Implementation

of Host-Based Intrusion Detection

System," in 2010 Third International

Symposium on Intelligent Information

Technology and Security Informatics,

2010, pp. 595-598.

[39] W. Lu, G. Rammidi, and A. A.

Ghorbani, "Clustering botnet

communication traffic based on n-

gram feature selection," Comput.

Commun., vol. 34, pp. 502–514, 2011.

[40] H. Choi and H. Lee, "Identifying

botnets by capturing group activities

in DNS traffic," Computer Networks,

vol. 56, pp. 20-33, 2012/01/12/ 2012.

[41] G. Creech and J. Hu, "A Semantic

Approach to Host-Based Intrusion

Detection Systems Using

Contiguousand Discontiguous System

Call Patterns," IEEE Transactions on

Computers, vol. 63, pp. 807-819,

2014.

[42] S. Yadav, A. K. K. Reddy, A. L. N.

Reddy, and S. Ranjan, "Detecting

algorithmically generated domain-flux

attacks with DNS traffic analysis,"

IEEE/ACM Trans. Netw., vol. 20, pp.

1663-1677, 2012.

[43] M. Antonakakis, R. Perdisci, Y. Nadji,

N. Vasiloglou, S. Abu-Nimeh, W.

Lee, et al., "From throw-away traffic

to bots: detecting the rise of DGA-

based malware," in Proc. 21st

USENIX conference on Security

symposium, Bellevue, WA, 2012, pp.

24-24.

https://www.quora.com/Does-ever-CDN-server-goes-down
https://www.quora.com/Does-ever-CDN-server-goes-down
https://blog.threatxlabs.com/malicious-bot-detection-through-complex-proxy-network
https://blog.threatxlabs.com/malicious-bot-detection-through-complex-proxy-network
https://blog.threatxlabs.com/malicious-bot-detection-through-complex-proxy-network

35

[44] T. Kelley and E. Furey, "Getting

prepared for the next botnet attack:

Detecting algorithmically generated

domains in botnet command and

control," in 2018 29th Irish Signals

and Systems Conference (ISSC), 2018,

pp. 1-6.

[45] V. Ravi, M. Alazab, S. Srinivasan, A.

Arunachalam, and K. P. Soman,

"Adversarial Defense: DGA-Based

Botnets and DNS Homographs

Detection Through Integrated Deep

Learning," IEEE Transactions on

Engineering Management, pp. 1-18,

2021.

[46] S. K. P. Vinayakumar R.,

Poornachandran P., Alazab M., Jolfaei

A., "DBD: Deep Learning DGA-

Based Botnet Detection," in Deep

Learning Applications for Cyber

Security, T. M. Alazab M., Ed., ed:

Springer, 2019.

[47] Y. Fu, L. Yu, O. Hambolu, I. Ozcelik,

B. Husain, J. Sun, et al., "Stealthy

domain generation algorithms," IEEE

Transactions on Information

Forensics and Security, vol. 12, pp.

1430-1443, 2017.

[48] S.-Y. Huang, C.-H. Mao, and H.-M.

Lee, "Fast-flux service network

detection based on spatial snapshot

mechanism for delay-free detection,"

presented at the Proceedings of the 5th

ACM Symposium on Information,

Computer and Communications

Security, Beijing, China, 2010.

[49] H. Wang, C. Mao, K. Wu, and H. Lee,

"Real-Time Fast-Flux Identification

via Localized Spatial Geolocation

Detection," presented at the 2012

IEEE 36th Annual Computer Software

and Applications Conference, 2012.

[50] S. Kullback and R. A. Leibler, "On

information and sufficiency," The

annals of mathematical statistics, vol.

22, pp. 79-86, 1951.

[51] H. Small, "Co‐citation in the scientific

literature: A new measure of the

relationship between two documents,"

Journal of the American Society for

information Science, vol. 24, pp. 265-

269, 1973.

[52] V. I. Levenshtein, "Binary codes

capable of correcting deletions,

insertions, and reversals," in Soviet

physics doklady, 1966, pp. 707-710.

[53] C. N. Silla and A. A. Freitas, "A

survey of hierarchical classification

across different application domains,"

Data Mining and Knowledge

Discovery, vol. 22, pp. 31-72, 2011.

[54] N. Weiss. (2020). Hierarchical

Classification with Local Classifiers:

Down the Rabbit Hole. Available:

https://towardsdatascience.com/hierarc

hical-classification-with-local-

classifiers-down-the-rabbit-hole-

21cdf3bd2382

[55] K. Kowsari, D. E. Brown, M.

Heidarysafa, K. J. Meimandi, M. S.

Gerber, and L. E. Barnes, "Hdltex:

Hierarchical deep learning for text

classification," presented at the 2017

16th IEEE international conference on

machine learning and applications

(ICMLA), 2017.

[56] C. N. Silla and A. A. Freitas, "Novel

top-down approaches for hierarchical

classification and their application to

automatic music genre classification,"

presented at the 2009 IEEE

International Conference on Systems,

Man and Cybernetics, 2009.

[57] J. Brownlee. (2014, August, 2018).

Classification Accuracy is Not

Enough: More Performance Measures

You Can Use. Available:

https://machinelearningmastery.com/cl

assification-accuracy-is-not-enough-

more-performance-measures-you-can-

use/

[58] A. Müller and S. Guido, Introduction

to Machine Learning with Python, 1

ed. U.S: O’Reilly Media, 2017.

[59] J. Brownlee. (2018, January, 2019).

How to Use ROC Curves and

Precision-Recall Curves for

Classification in Python. Available:

https://machinelearningmastery.com/r

oc-curves-and-precision-recall-curves-

for-classification-in-python/

[60] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y.

Li, H. Zhu, et al., "Machine Learning

and Deep Learning Methods for

Cybersecurity," IEEE Access, vol. 6,

pp. 35365-35381, 2018.

[61] M. Al-Garadi, M. Amr, A. Al-Ali, X.

Du, and M. Guizani, "A survey of

machine and deep learning methods

https://towardsdatascience.com/hierarchical-classification-with-local-classifiers-down-the-rabbit-hole-21cdf3bd2382
https://towardsdatascience.com/hierarchical-classification-with-local-classifiers-down-the-rabbit-hole-21cdf3bd2382
https://towardsdatascience.com/hierarchical-classification-with-local-classifiers-down-the-rabbit-hole-21cdf3bd2382
https://towardsdatascience.com/hierarchical-classification-with-local-classifiers-down-the-rabbit-hole-21cdf3bd2382
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/

36

for internet of things (IoT) security,"

arXiv preprint arXiv:1807.11023,

2018.

[62] G. Apruzzese, Colajanni, M., Ferretti,

L., Guido, A., Marchetti, M., "On the

effectiveness of machine and deep

learning for cyber security," in 2018

10th International Conference on

Cyber Conflict (CyCon), Estonia,

2018, pp. 371-390.

[63] J.-h. Li, "Cyber security meets

artificial intelligence: a survey,"

Frontiers of Information Technology

& Electronic Engineering, vol. 19, pp.

1462-1474, 2018/12/01 2018.

[64] A. Jović, K. Brkić, and N. Bogunović,

"A review of feature selection

methods with applications," in 2015

38th International Convention on

Information and Communication

Technology, Electronics and

Microelectronics (MIPRO), 2015, pp.

1200-1205.

[65] J. Brownlee, Machine Learning

Mastery With Python, 1.4 ed., 2016.

[66] P. Worcester. (2019, May, 2021).

Comparison of Grid Search and

Randomized Search Using Scikit

Learn. Available:

https://blog.usejournal.com/a-

comparison-of-grid-search-and-

randomized-search-using-scikit-learn-

29823179bc85

[67] Sophos. (2019, June, 2020). Don’t

Take the Bait. Available:

https://secure2.sophos.com/en-

us/medialibrary/Gated-Assets/white-

papers/Dont-Take-The-Bait.pdf

[68] Verizon. (2018, May, 2020). 2018

Data Breach Investigations Report.

Available:

https://www.phishingbox.com/assets/fi

les/images/Verizon-Data-Breach-

Investigations-Report-2018.pdf

[69] MachMetrics. (2018, February, 2018).

Average Page Load Times for 2018 –

How does yours compare? Available:

https://www.machmetrics.com/speed-

blog/average-page-load-times-

websites-2018/

[70] H. Kordestani and M. Shajari, "An

entice resistant automatic phishing

detection," in Proc. 5th Conference on

Information and Knowledge

Technology (IKT), Shiraz, Iran, 2013,

pp. 134-139.

[71] Y.-S. Chen, Y.-H. Yu, H.-S. Liu, and

P.-C. Wang, "Detect phishing by

checking content consistency," in

Proc. 15th IEEE International

Conference on Information Reuse and

Integration (IRI), Redwood City, CA,

USA, 2014, pp. 109-119.

[72] MITRE. (n.d, December, 2021).

MITRE Adversarial Threat

Landscape for Artificial-Intelligence

Systems. Available:

https://atlas.mitre.org/

https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-search-using-scikit-learn-29823179bc85
https://secure2.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/Dont-Take-The-Bait.pdf
https://secure2.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/Dont-Take-The-Bait.pdf
https://secure2.sophos.com/en-us/medialibrary/Gated-Assets/white-papers/Dont-Take-The-Bait.pdf
https://www.phishingbox.com/assets/files/images/Verizon-Data-Breach-Investigations-Report-2018.pdf
https://www.phishingbox.com/assets/files/images/Verizon-Data-Breach-Investigations-Report-2018.pdf
https://www.phishingbox.com/assets/files/images/Verizon-Data-Breach-Investigations-Report-2018.pdf
https://www.machmetrics.com/speed-blog/average-page-load-times-websites-2018/
https://www.machmetrics.com/speed-blog/average-page-load-times-websites-2018/
https://www.machmetrics.com/speed-blog/average-page-load-times-websites-2018/
https://atlas.mitre.org/

