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ABSTRACT

Recent advancements in generative audio synthesis have al-

lowed for the development of creative tools for generation and

manipulation of audio. In this paper, a strategy is proposed for the

synthesis of drum sounds using generative adversarial networks

(GANs). The system is based on a conditional Wasserstein GAN,

which learns the underlying probability distribution of a dataset

compiled of labeled drum sounds. Labels are used to condition

the system on an integer value that can be used to generate audio

with the desired characteristics. Synthesis is controlled by an input

latent vector that enables continuous exploration and interpolation

of generated waveforms. Additionally we experiment with a train-

ing method that progressively learns to generate audio at different

temporal resolutions. We present our results and discuss the ben-

efits of generating audio with GANs along with sound examples

and demonstrations.

1. INTRODUCTION

Sample-based electronic music (EM) describes a variety of genres

that emerged through advancements in audio production and digi-

tal sampling technologies. EM is mainly created through the use of

digital audio workstation (DAW) software for arranging and ma-

nipulating short audio recordings, commonly referred to as sam-

ples. Early sampling technologies (e.g., Akai S950) were limited

by a small amount of memory; however, this constraint stimulated

creativity, artistic choices, and new genres of music. Considering

the abundance of free and affordable audio sample libraries avail-

able at present, there is the potential for an EM producer’s personal

collection of samples to become unwieldy and therefore difficult

to navigate and maintain.

Sample selection is an integral part of the EM production work-

flow and is one of the key skills harnessed by EM producers. The

selection of samples in this context is a meticulous retrieval task in-

volving careful listening for key subjective attributes (e.g., warmth,

boominess) of particular timbral features. Online sample libraries

such as Splice1 and Loopmasters2 have well-annotated databases

with high quality sounds; however, when a producer is searching

a collection for an exact sample or a sample with certain charac-

teristics (e.g., bass-heavy kick), the sound selection process can be

tedious and labor-intensive.

1https://splice.com/
2https://www.loopmasters.com/
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In this paper, a system is presented that allows EM producers

to interactively generate and fine tune novel audio sounds based on

their own personal collections. The system is based on a generative

adversarial network, which learns a mapping between a collection

(i.e., dataset) of labelled drum sounds and a low-dimensional latent

space that provides high-level control of the input data distribution.

1.1. Background

Advancements in generative modelling have allowed for the de-

velopment of novel tools for the generation and manipulation of

audio. Generative models learn the underlying probability distri-

bution of a given dataset and produce new data based on example

observations. Generative methodologies include generative adver-

sarial networks (GANs) [1], autoencoders [2] and autoregressive

networks [3]. Autoencoders map high-dimensional data distribu-

tions onto low-dimensional latent spaces and reconstruct the out-

put from this representation using a decoder. Several generative

models using autoencoders have been proposed for the task of gen-

eralised musical audio generation including autoregressive (AR)

models (e.g., [4, 5]) and non-AR models (e.g. [6, 7, 8]). AR mod-

els for raw audio synthesis have the capacity to generate high fi-

delity audio, yet this comes at the cost of slow generation and the

inability to learn compact latent space representations. An alter-

native solution is found in GANs, a subset of non-AR generative

models, which map low-dimensional latent spaces to complex data

distributions through an adversarial training strategy [1]. The gen-

erator learns to produce realistic synthesized data from a prior dis-

tribution, while the discriminator learns to correctly classify real

and synthetic data. GANs can be conditioned on additional infor-

mation (e.g., pitch, instrument class) enabling high-level control

over data generation [9]. Unlike AR models, GANs are capable

of parallelised training and generation. However, GANs require

much larger models to generate longer audio recordings, becom-

ing computationally expensive. Thus, GANs are well-suited for

the synthesis of short audio recordings such as drum sounds.

Donahue et al. [10] were the first apply adversarial learning

to musical audio using a modified deep convolutional GAN [11]

that operates on raw audio data. Alternatively, Engel et al. [12]

proposed GANSynth, an adversarial approach to audio synthesis

that utilised recent improvements in the training stability of GANs

[13, 14, 15]. Musical notes are conditioned with labels represent-

ing the pitch content and are modelled as log magnitude and in-

stantaneous frequency spectrograms, which are used to approxi-

mate the time-domain signal. More recently, Engel et al. [16]

achieved high resolution audio generation without the need for

large AR models or adversarial losses through a modular approach

to generative audio modeling that integrates digital signal process-

ing elements into a neural network.

Specific to the generation of drum sounds, Aouameur et al.
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[8] used a conditional Wasserstein autoencoder to generate audio

spectrograms that are inverted to audio through a multi-head CNN.

Ramires et al. [17] synthesized percussion sounds with high-level

control over timbral characteristics using Wave-u-net [18]. Tom-

czak et al. [19] proposed a method for joint synthesis and rhythm

transformation of drum sounds by combining the use of adversar-

ial autoencoders with a Wasserstein GAN adversarial framework.

1.2. Motivation

In this paper, a system for synthesising drum samples is presented,

which is suitable for generating novel drums sounds based on a

producers personal sample collection. The system is designed to

be lightweight, in that it can learn to generate high-quality audio

when trained using a small amount of data. High-level condition-

ing organises drum sounds into specific categories, while a com-

pact latent space with low dimensionality is used for intuitive syn-

thesis control to output a variety of different drum sounds. In addi-

tion, interpolating the compact latent space of a learned generative

model provides an intuitive way for EM producers to morph be-

tween generated drum samples when composing new grooves and

rhythms.

The system is realised through a conditional Wasserstein gen-

erative adversarial network trained with a small dataset of labelled

drums sounds. Conditioning is achieved with the three main per-

cussion instruments from the common drum kit—that is, kick drum,

snare drum, and cymbals—and it can generate a diverse range of

sounds when trained on a relatively small dataset of short audio

recordings.

By varying the input latent vector, large or subtle variations

can be made to the timbral characteristics of the output. In order

to reduce training time, a progressive growing training methodol-

ogy similar to [13] is considered, in which audio is incrementally

generated at increasingly higher temporal resolutions.

The remainder of this paper is structured as follows: Section

2 presents our proposed method for drum sound generation. Sec-

tion 3 presents our training procedure and dataset processing, and

Section 4 provides the results and discussion. Conclusions and

suggestions for future work are presented in Section 5.

2. METHOD

The proposed approach to drum synthesis builds upon the architec-

ture of WaveGAN [10] but is designed specifically for conditional

audio generation of a variety of different drum sounds. Figure 1

presents a general overview of the proposed system. Generator G

is trained to generate audio signals given a latent vector z and a

conditional variable y, and discriminator D is trained to estimate

the Wasserstein distance between the generated and observed dis-

tributions. Both networks are optimised simultaneously until G

can produce drum samples that are indistinguishable from the ob-

served training data.

The original GAN framework as proposed by [1] defines an

adversarial game between generator network G and discriminator

network D. G is used to learn mappings from a noise space Z to

drum data space X . Z = R
dz , where dz is a hyperparameter that

controls the dimensionality of Z. Latent variables z ∈ Z are sam-

pled from a known prior p(z), which is modelled with a simple

distribution (e.g., Gaussian, Uniform). X is the drum data space

that represents the input to D or output of G. As training data,

drum samples D are drawn from a real distribution pD(x). By

Figure 1: Overview of proposed system for drum synthesis: Gener-

ator G (left) is trained to generate audio given a latent vector z and

conditioning variable y. Discriminator D (right) is trained to min-

imise the Wasserstein distance between the generated distribution

and the observed distribution.

sampling from p(z), G can be used to output drums that represent

a synthetic distribution q(x). Following the more general formula-

tion introduced in [20], the GAN learning problem aims at finding

a min-max optimisation of objective V between the pair of G and

D (i.e., Nash equilibrium), of the value function defined as:

min
G

max
D

V (G,D) = Ex∼pD(x)[f(D(x))] +

Ez∼p(z)[f(−D(G(z)))], (1)

where E[·] denotes expectation, and f : R −→ R is a concave func-

tion. G is trained to output q(x) as close to pD(x) as possible. D

is trained to distinguish between real data PX and synthesised data

q(x). Convergence occurs when G can mislead D by generating

synthesized samples that are indistinguishable from real samples.

Training GANs correctly utilising the original formulation is

difficult and prone to mode collapse, resulting in reduced sample

variability. To help stabilise training, Arjovsky et al. [14] suggest

minimising the Wasserstein distance between the generated and

observed distributions.

D is modified to emit an unconstrained real number rather than

a probability value to recover the traditional GAN [1] formulation

f(x) = −log(1 + exp(−x)), where f is the logistic loss. This

convention slightly differs from the standard formulation in that

the discriminator outputs the real-valued logits and the loss func-

tion would implicitly scale this to a probability. The Wasserstein

GAN is achieved by taking f(x) = x. Within this formulation,

f has to be a 1-Lipschitz function and D is trained to assist in

computing the Wassertein distance, rather than to classify samples

as real or fake. To enforce the Lipschitz constraint, Arjovsky et al.

[14] suggest the application of a simple clipping function to restrict

the maximum weight value in f . To avoid subsequent difficulties

in optimisation (i.e., exploding or vanishing gradients), the authors
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in [15] utilised a gradient penalty parameterised by penalty coeffi-

cient λ to enforce the constraint.

In the conditional formulation of the GAN, the G and D net-

works use additional input layers with labels y. The updated ob-

jective function can be stated as:

min
G

max
D

V (G,D) = Ex,y∼pD(x,y)[f(D(x))] +

Ey∼p(y),z∼p(z)[f(−D(G(z, y), y))], (2)

where p(y) is the prior conditioning distribution. Conditioning the

system on labels allows for targeted generation of drum sounds

from a specific category. Methods for categorical conditioning

commonly involve encoding conditional labels as one-hot vectors

and concatenating them with the latent code [9]; however, this can

lead to undesirable behaviour such as cross-over between classes.

Following [21], an embedding space Y is used to condition the

model on external information, where Y = R
dY , where dY is a

hyperparameter used to control the dimensionality of Y .

2.1. Model Details

In order to learn an instrument-specific encoding, conditioning

variable y is passed through an embedding layer with a dimen-

sionality w, such that each of the three drum classes are mapped

to a different w-element vector representation that is learned by G

(w = 50). The embedding layer and latent vector are then scaled

to the initial size of the network using a dense layer, then concate-

nated together and passed through a series of upsampling blocks to

output a generated waveform. Each upsampling block consists of

one-dimensional nearest neighbour upsampling with a stride of 4,

a one-dimensional convolutional layer with a kernel length of 25,

and a ReLU activation. Thus, at each block the number of audio

samples is increased by a factor of 4 with the output layer passed

through a tanh activation.

Discriminator network D mirrors the architecture in G. D

takes an audio signal and conditioning variable y. In D, y is passed

to an identical embedding layer to that in G and is scaled to the size

of the input waveform using a dense layer and reshaping. This

representation is then concatenated with the input waveform and

passed through a series of downsampling blocks. Each downsam-

pling block consists of a convolutional layer with a stride of 4 and

kernel length of 25, a leaky ReLU activation (α = 0.2). Thus, at

each stage of the discriminator the input waveform is decreased by

a factor of 4. The final layer of D is a dense layer with a linear

activation function that outputs the authenticity of the input audio

sample through the Wasserstein distance.

Upsampling in generator networks is known to cause peri-

odic checkerboard artifacts when synthesising images [22]. When

generating raw audio, checkerboard artifacts can be perceived as

pitched noise that degrades the overall audio quality. An optimi-

sation problem can occur when D learns to reject generated audio

with artifact frequencies that always occur at a particular phase.

Donahue et al. [10] introduced a phase shuffle module that ran-

domly perturbs the phase at each layer of D. Phase shuffle forces

D to become invariant to the phase of the input waveform and is

controlled by hyperparameter s that perturbs the phase of a layer’s

activations by -s to s samples (s = 2).

Figure 2: Progressive growing procedure, in which D and G be-

gin learning with low resolution audio resolution of 256 samples.

As training advances new layers are added to the models to incre-

mentally increase the number of samples by a multiple of 4 thus,

learning higher frequencies as training progresses.

3. TRAINING

3.1. Network training

In order to optimise Equation 2 we use alternating updates between

networks G and D. At each training iteration, the parameters of

network D are updated k times for each G parameter update (k =
5). The model is trained using the Adam optimiser [23] with a

learning rate 2e–4, β1 = 0.5, β2 = 0.99 for a 2000 epochs and

50000 iterations in total, where each iteration takes a mini-batch

of 64 examples. The model is trained using a gradient penalty

coefficient (λ = 10). n upsampling and downsampling blocks are

used to allow for the generation of T samples of audio. Following

[10], the latent dimensionality dz was initially set to 100 and a

second model is trained with a lower dimensionality (dz = 3) to

explore the tradeoff between dimensionality and audio quality.

3.2. Progressive Growing

To reduce the length of training time, a progressive growing pro-

cedure is adopted during training. Following [13], the model is

initially trained with downsampled input audio data, then learns

to generate output at samplerates of incrementally higher qual-

ity. Figure 2 depicts the progressive growing procedure for net-

works D and G, which are trained on low resolution audio un-

til stable. Additional layers are then added to support more au-

dio samples and thus higher samplerates can be used to sample

the audio. Higher frequencies are learned in successive epochs as

training progresses. As in [10], the output size of layers grows in

increments of 4 until the desired samplerate of is met. When train-

ing completes at its current resolution, networks are incrementally

grown by adding a new set of layers to increase the resolution each

time by a multiple of 4. Skip connections are used to connect the

new block to the input of D or output of G and the newly added
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Figure 3: Example waveform generations (left) and corresponding

Mel-scaled log frequency spectrograms (right) for kick drum (top),

snare drum (middle) and cymbal (bottom).

layers are linearly faded in to prevent shocks from the sudden ad-

dition of a larger layer. Fading between layers is controlled by

parameter r, which is linearly interpolated from 0 to 1. Learning

the earlier simple models first helps to stabilise training and pro-

gressively learn finer high frequency details. G and D both start

training with a short audio length of 256 samples. As training ad-

vances, we incrementally add layers to both G and D to increase

the number of samples used in the generated audio.

3.3. Dataset

For all experiments, both networks are trained using raw audio

waveforms. We compiled a dataset of drums sounds D selected

from a wide variety of sample libraries (including Loopmasters

and Splice). Sounds were categorised manually into p domains

comprising kick, snare and cymbal samples. Each domain contains

3000 individual samples resulting in a total dataset size of 9000
samples. All samples are mono 16-bit PCM audio files sampled at

44.1kHz. Prior to preprocessing, the mean sample length of each

audio file in the dataset was 18234 samples (i.e., 0.41s). In accor-

dance with the network architecture in [10], we choose the training

data input length to the nearest power of two (T = 16384) to sat-

isfy the symmetric structure of networks G and D. Each training

sample is trimmed or zero-padded to ensure a constant length of T

samples. All waveforms are normalised and a short linear fade of

samples is applied to the start and end of each waveform to ensure

that they consistently begin and end at 0 amplitude.

4. RESULTS

A system for generative audio synthesis of drum sounds has been

implemented as presented in Sections 2 and 3. We report on the

system’s capacity for generating coherent drum samples and pro-

vide an accompanying webpage3 for examples of individual gener-

ated audio samples, interpolation experiments, and example usage

within electronic music compositions. These examples allow for

subjective evaluation of audio generation quality and waveform

interpolation properties.

4.1. Generation Quality

Figure 3 presents examples of a kick drum, snare drum and cymbal

generated through the system output. Informal listening tests were

conducted to assess the generation quality of audio samples from

each class. Conditioning the system with labels improves overall

quality and omits overlap between classes. Generally, kick and

snare drums can be more easily modelled by the system and are

less prone to artifacts. As can be seen from the spectrograms in

Figure 3, some checkerboard artifacts remain; however, this does

not have a considerable effect on the overall perceived quality of

the drum sounds and in most cases could be removed with simple

post-processing (e.g., amplitude fading, equalisation). Inclusion of

the progressive growing procedure results in both reduced training

time and coherent audio generated at an earlier stage. Unfortu-

nately, this results in an increase in artifacts present, degrading the

perceived quality of the generations. Due to its fast training time,

the progressive growing model could be used as a tool to preview

drum samples from a large collection.

4.2. Latent Space Dimensionality

As the proposed system is intended to allow producers to interac-

tively navigate a compact representation of audio sounds, experi-

mentation was undertaken with a small latent dimensionality. The

dimensionality of the latent space and its relationship to generation

quality and diversity in GANs has yet to be thoroughly explored in

literature.

For comparison, we provide a selection of randomly generated

drum sounds from each domain using dz = 100 and dz = 3. Inter-

estingly, the size of the latent space had little effect on output audio

quality, following findings in other similar research [24]. Different

values for dz returned similar results, leading to our early con-

clusion that latent parameters up to rank three define the majority

of parameter variance within the set of 100 dimensions; however,

additional investigation is required to validate this.

4.3. Waveform Interpolation

The proposed system learns to map points in the latent space to the

generated waveforms. The structure of the latent space can be ex-

plored by interpolating between two random points. Experiments

with linear interpolation and spherical linear interpolation are pro-

vided on the accompanying webpage. The purpose of the spher-

ical linear interpolation experiment is to ensure that the curving

of the space is taken into account as linear interpolation assumes

that the latent space is a uniformly distributed hypercube. When

traversing the latent space, changes in audio quality are continuous

3https://jake-drysdale.github.io/blog/

adversarial-drum-synthesis/

DAFx.4

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

170



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Figure 4: Interpolation in the latent space for kick drum genera-

tion. Kick drums are generated for each point along linear paths

through the latent space (left). Paths are colour coded and subse-

quent generated audio appears across rows (right).

and without abrupt variation. Figure 4 demonstrates the transition

between output kick drums when navigating linearly through the

latent space. Timbral modifications can be made to a generation

by making adjustments to latent variables Z. Larger steps in the

latent space are perceptually equivalent to smoothly mixing ampli-

tudes between distinct drum sounds whereas smaller adjustments

result in subtle variations of timbral characteristics. Subtle varia-

tions in timbre could be a useful for humanizing programmed drum

sequences to provide a more natural feel. While the effect each

dimension in d has on the output can not be anticipated, many ex-

amples demonstrate consistent variations in pitch, envelope shape

and the presence or omission of high and low frequencies. Spher-

ical interpolation seem to result in a more abrupt change of tim-

bral characteristics (e.g., alteration between different kick drum

sounds) than linear interpolation.

5. CONCLUSIONS AND FUTURE WORK

A method for generative audio synthesis of drum sounds using a

generative adversarial network has been presented. This system

provides a music production tool that encourages creative sound

experimentation. The results demonstrate the capacity of the con-

ditional model to generate a wide variety of different class-specific

drums sounds. High-level conditioning organises drum sounds

into specific categories, while a compact latent space allows for

intuitive synthesis control over output generations. The model is

lightweight and can be trained using a reasonably small dataset

to generate high-quality audio, further demonstrating the potential

of GAN-based systems for creative audio generation. The exper-

imental dataset could be replaced with an EM producers personal

collection of samples and custom tags could be defined for condi-

tioning. Future work will involve embedding the system into an

audio plug-in that can be evaluated by EM producers in efforts to

inform and improve the breadth of the design goals. The plug-in

will be designed to have various parameters that enable navigation

of the latent space.
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