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Abstract: A vehicular ad hoc network (VANET) is an emerging technology that improves road safety,
traffic efficiency, and passenger comfort. VANETs’ applications rely on co-operativeness among
vehicles by periodically sharing their context information, such as position speed and acceleration,
among others, at a high rate due to high vehicles mobility. However, rogue nodes, which exploit the
co-operativeness feature and share false messages, can disrupt the fundamental operations of any
potential application and cause the loss of people’s lives and properties. Unfortunately, most of the
current solutions cannot effectively detect rogue nodes due to the continuous context change and
the inconsideration of dynamic data uncertainty during the identification. Although there are few
context-aware solutions proposed for VANET, most of these solutions are data-centric. A vehicle is
considered malicious if it shares false or inaccurate messages. Such a rule is fuzzy and not consistently
accurate due to the dynamic uncertainty of the vehicular context, which leads to a poor detection rate.
To this end, this study proposed a fuzzy-based context-aware detection model to improve the overall
detection performance. A fuzzy inference system is constructed to evaluate the vehicles based on their
generated information. The output of the proposed fuzzy inference system is used to build a dynamic
context reference based on the proposed fuzzy inference system. Vehicles are classified into either
honest or rogue nodes based on the deviation of their evaluation scores calculated using the proposed
fuzzy inference system from the context reference. Extensive experiments were carried out to evaluate
the proposed model. Results show that the proposed model outperforms the state-of-the-art models.
It achieves a 7.88% improvement in the overall performance, while a 16.46% improvement is attained
for detection rate compared to the state-of-the-art model. The proposed model can be used to evict
the rogue nodes, and thus improve the safety and traffic efficiency of crewed or uncrewed vehicles
designed for different environments, land, naval, or air.

Keywords: misbehavior detection; VANET; context-aware; fuzzy inference system; context uncertainty

1. Introduction

Road collisions are on the rise and, by 2030, they are anticipated to be the sixth leading
cause of death [1,2]. Every year, millions of people die on the roads throughout the world
due to traffic accidents, with 40 times as many people suffering injuries [1]. Accidents are
also the primary source of traffic congestion, which significantly impacts economic activ-
ity [3]. As a result, billions of dollars are wasted because of injury treatments, material loss,
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lost operating time, and additional fuel consumption [4]. Human mistake is responsible for
almost 90% of all accidents [5]. Vehicle automation is among the main aspects of future
intelligent transportation systems (ITS) to resolve such problems. Automation can replace
(or at least help) human drivers with electronic and mechanical devices to provide both
road safety and traffic efficiency [6]. Individual vehicles can autonomously predict traffic
anomalies, such as accidents and congestion in real time before the actual happening if
instantaneous traffic information of neighboring vehicles is available in each vehicle. As
a result, the idea of a vehicular ad hoc network (VANET) arises to enhance road safety
and traffic efficiency by providing reliable, up-to-date context data about vehicles in the
vicinity [7].

In VANET, with hundreds of sensors and communication technologies, vehicles can
exchange real-time data on their state, road conditions, and traffic status [8,9]. Vehicles
or infrastructure roadside units (RSUs) analyze neighboring vehicles’ information, au-
tonomously detect traffic anomalies, and change their behaviors accordingly to avoid
accidents and congested areas [10,11]. Based on the co-operation concept and the shared
observations, a wide range of applications have been suggested for safety, traffic efficiency,
entertainment, and commerciality [12]. The availability of continuous and reliable re-
cent vehicle context information, such as position, velocity, and directions, is essential for
these applications to function properly [13–17]. Unfortunately, due to dynamic and harsh
environments, unreliable communication, and the presence of cyber attackers, mobility
information suffers from inaccuracy, incompleteness, and untrustworthiness [18–21]. The
co-operative nature of VANET applications attracts cyber attackers to perform a successful
attack. Because vehicles rely on context information for decision-making to preserve net-
work agility and provide safety and traffic efficiency, spreading false information by rogue
nodes results in catastrophic failure, including the loss of lives and property and affecting
economic sustainability [18].

Security is an essential requirement in VANET, as the attackers can exploit the co-
operative nature of VANET applications and inject false information that may cause traffic
illusions and trigger vehicles to take wrong but life-critical decisions. Misbehaving vehicles
that send bogus information can cause many consequences on network performance, road
safety, and traffic efficiency. The presence of misbehaving vehicles can disrupt the deploy-
ment of any potential VANET applications, protocols, or services [22–27]. Securing VANET
using prevention mechanisms is expensive and not enough [27,28]. VANET is also vulnera-
ble to internal attackers in the vehicles’ onboard unit because vehicles work in a hostile
environment where the owner can modify, customize, or tamper with communication and
computation units. For example, an attacker can trigger the vehicle to send false informa-
tion about road status, such as slippery roads, by simulating the environment to vehicles
sensors. Since preventing rogue vehicles from sending false information cannot prevented,
detecting misbehaving vehicles is a critical security requirement for VANET [22,29].

Although various misbehavior detection solutions have been proposed for VANET,
detecting misbehaviors still has a research challenge [21]. These solutions can be categorized
into two main approaches based on their detection objectives: entity-centric and data-
centric [30,31]. The data-centric is used for real-time applications and privacy-protected
environments. In contrast, the entity-centric approach is used for long-term detection after
enough vehicle data are collected in a centralized location (e.g., the traffic authority center).
The performance of the data-centric approach depends on the quality of the information
collected from neighboring vehicles. Meanwhile, the performance of the entity-centric
depends on the accuracy of the data-centric approach [32–35]. Unfortunately, due to the
harsh vehicle environment and unreliable communication, one cannot guarantee the quality
of the information being acquired and shared between vehicles. Therefore, misbehavior
detection solutions must be aware of the context. Otherwise, it will generate high false
alarms or/and low detection rates depending on the particular vehicular context situation.

Many studies show that context-aware solutions are more practical and effective for
VANET [30,32–35]. However, few context-aware misbehavior detection models were pro-
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posed for VANET [32–34]. Due to the high dynamic vehicular context, these solutions
rely on data-centric classifiers where the mapping between shared uncertain informa-
tion and vehicle class is fuzzy. Therefore, there is no deterministic correlation between
the quality of shared information and the malicious intent of the vehicles. Moreover,
machine-learning-based techniques in [33–37] are scenario-specific and assume a stationary
correlation between data accuracy and vehicle class, which is not always the case in the
highly dynamic context. Accordingly, such an assumption leads to low detection accuracy.
To this end, this paper focuses on improving detection performance. More precisely, we
intend to answer the following question: how a vehicle can locally detect misbehaving
vehicles (rogue nodes), especially in the early attack stage in the highly dynamic, harsh
vehicular environment.

This paper proposes a fuzzy-based context-aware misbehavior detection model to
detect rogue nodes locally and in their early attack stages. The main aim is to replace the
static security thresholds with adaptive context references that are aware of the context to
improve the overall detection accuracy. The proposed fuzzy-based context-aware MDS
(FCA-MDS) consists of four main phases. Firstly, each vehicle measures the quality of its ob-
servation using state-of-the-art acquisition algorithms, such as presented in [24]. Secondly,
vehicles evaluate the reliability of the communication by sharing their observations and
the quality of these observations using the state-of-the-art adaptive broadcasting scheme
presented in [25]. Thirdly, a fuzzy inference system is built to estimate the dynamic context
reference. Finally, a data-centric misbehavior detection technique is built to assess the
accuracy of incoming context information from nearby vehicles based on their divergence
from the dynamic context reference. The divergence of the vehicle’s score from the built
context reference using the proposed fuzzy inference system determines whether it is
rogue or legitimate. Rogue nodes differ significantly from the context reference. The Next
Generation Simulation dataset (NGSIM) [26] was used to evaluate the proposed solution.
The vehicles’ trajectories are replayed in a MATLAB simulation environment. A dataset is
collected for each vehicle containing neighboring vehicles’ context information with their
accuracy and reliability. This study made the following contributions:

1. A fuzzy-based context-aware misbehavior detection model is proposed to effectively
detect rogue nodes (misbehaving vehicles) that spread false context information in
VANET. Vehicular context is represented by the quality and the reliability of the
information created by a set of neighboring vehicles.

2. Due to the high dynamicity of vehicular context, the decision about the maliciousness
of vehicles is fuzzy. Thus, a fuzzy inference system is constructed to evaluate the
maliciousness of vehicles according to the current context on time.

3. Based on the output of the developed fuzzy inference system, a dynamic context
reference is built online. Rogue nodes are the vehicles that significantly diverge from
the context reference. This dynamic context reference is more flexible than solely
depending on statistical evaluation due to the use of linguistic methods, which is
similar to human reasoning.

4. Extensive testing was performed to evaluate and validate the proposed FCA-MDS
model. Results of the experiments show that the proposed model outperforms the
state-of-the-art models. It attains 83.38% overall performance in terms of F-measure,
which is 7.88% higher than the state-of-the-art model.

The rest of this paper is organized as follows. In Section 2, the related works are
reviewed with critical analyses. The proposed fuzzy-based context-aware misbehavior
detection scheme is presented in Section 3. In Section 4, the performance evaluation and
experimental procedure are explained. Results are presented and discussed in Section 5,
and in Section 6, the study is concluded.

2. Related Works

Misbehavior in terms of sending false information in VANET has been the subject of
many studies in recent years. Many misbehavior detection solutions were proposed. These
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solutions can be classified into three categories: data-centric, entity-centric, or hybrid. The
data-centric approach is commonly used in research to detect false information, and thus
thwart the misbehaving nodes. In the data-centric approach, messages are evaluated based
on the consistency and plausibility of their content data. Meanwhile, in the entity-centric
approach, vehicles are evaluated based on their reputation or role. For example, police
vehicles are more trusted than users’ vehicles. In the hybrid approach, researchers integrate
data-centric and entity-centric approaches into one model. That means the vehicles are
evaluated based on the validity of their generated data. Because of the highly dynamic
nature of vehicle environments, the shared context information among vehicles becomes
unreliable and inaccurate. The unreliability occurs because of losing the messages due to
the congestions in the communication channel when the traffic density is high. In contrast,
inaccuracy occurs due to the uncertain noise environment where the vehicles move. For
example, the positioning accuracy model changes according to time and space. Accordingly,
recent solutions for misbehavior detection are based on a context-aware approach, such as
the solutions in [30].

Authors in [30] devised a context-aware misbehavior detection model for VANET.
An adaptive context reference that considers data uncertainty and unreliability has been
constructed online using Kalman and Hampel filter. Kalman filter was used to track the
inconsistencies of the sequence of data received from a neighboring vehicle, while the
Hampel filter was used to track the special change to detect the abnormal messages. A
message is judged false if it deviates significantly from the context reference. However, it is
difficult to collaborate the threshold depending solely on data collected from neighboring
vehicles. The thresholds that construct the models are calculated online assuming normal
distribution, which is not necessary, especially if there are not enough data, such as in
the case of low density. Authors in [31] proposed a misbehavior detection model by
constructing a classifier using an artificial neural network (ANN). The features were derived
from the communication reliability of the nodes and the uncertainty of the data. Although
the proposed model shows effectiveness in detecting misbehaving vehicles, the model
assumes that the relationship between input features and vehicle class is deterministic,
which is not always valid in an ephemeral network, such as VANET. Authors in [32]
proposed a misbehavior-aware intrusion detection model for VANET. Each vehicle trains
a classifier using random forest (RF) algorithm and shares it with its neighbors; vehicles
whose classifiers deviate much from others are considered misbehaving vehicles. However,
it is difficult to train different classifiers for each vehicle. Authors in [33] extracted three
sets of features related to data consistency, plausibility, and behavioral features. Kalman
and Hampel’s filter were used to extract data consistency features, plausibility features
were extracted using physical models, such as overlaps of the vehicle’s movement model,
and behavioral features were extracted from broadcasting behavior of the vehicles. Three
classifiers were constructed and the final decision is taken based on aggregating the output
of the three classifiers using a majority voting algorithm. However, such a model relies on
parametric statistical representation, which is not suitable for highly stochastic processes
due to highly dynamic networks. Authors in [33] improved the model proposed in [32] by
extracting features from the parameters of the statistical model and their output score to
train an ensemble of classifiers using the random forest (RF) algorithm. However, similar
to [33], neither the parameters of the statistical models nor the statistical thresholds are
accurate for representing vehicular context. The decision by the classifiers is misloaded by
the inaccurate representation. Authors in [38] proposed a misbehavior detection scheme to
detect bogus information. However, the proposed scheme is data-centric, which focuses on
classifying the messages into true or false based on the consistency and plausibility of the
information, as proposed in [32]. Such a solution does not include identifying the rogue
node, which is challenging in VANET.

Zhang, Chen [36] proposed a misbehavior detection model using support-vector
machine (SVM) and Dempster–Shafer theory (DST). Two trust models were constructed,
one for data and the other for the vehicles. A message propagation-based classifier was
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designed based on the SVM to classify vehicle broadcasting behaviors. DST is used
to aggregate the reports made by a trusted authority. However, the dynamic context
uncertainty was not considered. Moreover, the model relies on reputation and long-term
trust establishment, which is complex and is not suitable for early detection and new
misbehaving nodes. Authors in [37] investigated different machine learning techniques
to design a misbehavior detection model. Then, an ensemble of two machine learning
techniques, namely k-nearest neighbor (kNN) and random forest (RF) classifiers, were used
to construct the detection classifier. However, the proposed model is scenario-specific and
cannot be generalized. Moreover, the context dynamic uncertainty was not considered
while extracting the features for classifications.

To summarize, most of the existing misbehavior detection schemes lack in considering
the highly dynamic context of the vehicular network. Most current solutions either rely on
static and predefined static thresholds or assume that the mapping between the input fea-
tures and vehicle class is stationary, which is not always true. There are few context-aware
models proposed for VANET. However, many of these solutions are data-centric. That is
because the mapping between sharing false or inaccurate information is fuzzy. There is
no deterministic correlation between inaccurate information and the malicious intent of
the vehicles. To this end, this study proposes a fuzzy-based context-aware misbehavior
detection model for VANET. The aim is to improve the detection rate while maintain-
ing low false alarms. A detailed description of the proposed model is presented in the
following section.

3. The Proposed Fuzzy-Based Context-Aware Approach

As shown in Figure 1, the proposed fuzzy-based context-aware misbehavior detection
model (FCA-MDS) consists of four main phases, as follows. The first phase is the context
acquisition phase, in which each vehicle is responsible for acquiring its observations from
its sensors, as well as filtering the noise. The second phase is the context sharing phase, in
which the observations that have been collected by each individual are broadcasted and
collected by all neighboring vehicles in the same communication range. The third phase is
the evaluation phase, in which the context is evaluated in terms of the uncertainty of the
observations and the reliability of the communication. Each vehicle also is evaluated in
terms of the uncertainty and reliability of its generated observations and sharing behavior
using the fuzzy inference system. The fourth phase is the classification phase, in which
vehicles are classified based on their fuzzy-based scores. Vehicles that deviate a lot from
the context reference are considered rogue vehicles (or misbehaving vehicles), otherwise
they are benign vehicles.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 1. The proposed fuzzy-based context-aware approach for detecting rogue nodes. 

3.1. Phase 1: Context Acquisition Phase 
Vehicles obtain their mobility information using onboard sensors. However, because 

of the dynamic and hostile environment, the quality of the collected observations is un-
certain. It depends on the context, causing vehicles to process and transmit uncertain in-
formation, potentially resulting in disastrous safety and traffic efficiency effects. For this 
reason, a context acquisition algorithm should be aware of the accuracy of the acquired 
information. Although many acquisition algorithms have been proposed for VANET, few 
context acquisition algorithms can estimate the accuracy of the acquired information, such 
as in [24]. As a result, during the context acquisition phase in this research, the enhanced 
innovation-based adaptive estimation Kalman filter (EIAE-KF) technique was used. The 
EIAE-KF produces two vectors as output: context information and the uncertainty of the 
obtained data. 

3.2. Phase 2: Context Sharing Phase 
As previously stated, vehicles should broadcast the gathered context information 

from their sensors to the surrounding vehicles. However, due to the dynamic and unique 
vehicle characteristics, such as density, speed, and environment, the communication chan-
nel is not reliable and is context-dependent. The context sharing scheme should be able to 
cope with such a high dynamic context so that vehicles can share high accurate and relia-
ble context. Although many context sharing schemes have been proposed for VANET, 
few context-aware schemes can preserve the quality of the information during the sharing 
phase. The driving-situation-aware adaptive broadcasting rate strategy (DSA-ABR) [25] 
is one of these techniques employed in this research. DSA-ABR can minimize each vehi-
cles' broadcast rate based on their driving status while giving up-to-date context infor-
mation every 100 milliseconds per surrounding vehicle. The context information received 
from surrounding cars using the DSA-ABR technique results from this step. 

In this study, vehicles use the DSA-ABR scheme [25] to broadcast their context infor-
mation with the vehicles in their vicinities. DSA-ABR scheme comprises two algorithms, 
one for efficient broadcasting and the second for accurately reconstructing the trajectories 
of the neighboring vehicles. The broadcasting algorithm works based on the concept of 
the broadcast if necessary. Only the critical context information is broadcasted. It contains 
a prediction mechanism that mimics the neighboring vehicles when reconstructing the 
trajectories of the vehicles using minimum context information. That is, vehicles broadcast 
the data if there is an unpredictable change by neighboring vehicles. The second algorithm 

Figure 1. The proposed fuzzy-based context-aware approach for detecting rogue nodes.



Sensors 2022, 22, 2810 6 of 21

3.1. Phase 1: Context Acquisition Phase

Vehicles obtain their mobility information using onboard sensors. However, because
of the dynamic and hostile environment, the quality of the collected observations is un-
certain. It depends on the context, causing vehicles to process and transmit uncertain
information, potentially resulting in disastrous safety and traffic efficiency effects. For this
reason, a context acquisition algorithm should be aware of the accuracy of the acquired
information. Although many acquisition algorithms have been proposed for VANET, few
context acquisition algorithms can estimate the accuracy of the acquired information, such
as in [24]. As a result, during the context acquisition phase in this research, the enhanced
innovation-based adaptive estimation Kalman filter (EIAE-KF) technique was used. The
EIAE-KF produces two vectors as output: context information and the uncertainty of the
obtained data.

3.2. Phase 2: Context Sharing Phase

As previously stated, vehicles should broadcast the gathered context information from
their sensors to the surrounding vehicles. However, due to the dynamic and unique vehicle
characteristics, such as density, speed, and environment, the communication channel is
not reliable and is context-dependent. The context sharing scheme should be able to cope
with such a high dynamic context so that vehicles can share high accurate and reliable
context. Although many context sharing schemes have been proposed for VANET, few
context-aware schemes can preserve the quality of the information during the sharing
phase. The driving-situation-aware adaptive broadcasting rate strategy (DSA-ABR) [25] is
one of these techniques employed in this research. DSA-ABR can minimize each vehicles’
broadcast rate based on their driving status while giving up-to-date context information
every 100 milliseconds per surrounding vehicle. The context information received from
surrounding cars using the DSA-ABR technique results from this step.

In this study, vehicles use the DSA-ABR scheme [25] to broadcast their context infor-
mation with the vehicles in their vicinities. DSA-ABR scheme comprises two algorithms,
one for efficient broadcasting and the second for accurately reconstructing the trajectories
of the neighboring vehicles. The broadcasting algorithm works based on the concept of
the broadcast if necessary. Only the critical context information is broadcasted. It contains
a prediction mechanism that mimics the neighboring vehicles when reconstructing the
trajectories of the vehicles using minimum context information. That is, vehicles broadcast
the data if there is an unpredictable change by neighboring vehicles. The second algorithm
is used to construct the trajectories of the neighboring vehicles using a minimum set of
context information. Both algorithms utilize the Kalman filter for estimating the context
information and their uncertainties to improve the estimation accuracy.

3.3. Phase 3: Context/Vehicle Evaluation Phase

There are two evaluation steps in this phase. The first is to evaluate the context by
constructing a context reference. The second is to evaluate the vehicles based on the quality
of their generated observations. In the first phase, the context reference is devised using
the fuzzy inference system as follows. Two fuzzy variables used the context uncertainty
and message arrival rate, which are obtained from the first and second phases, respectively.
A detailed explanation of these two variables is presented in the subsequent subsections.

3.3.1. Uncertainty Estimation

The uncertainty of the information of each vehicle is calculated based on the innovation
error of the Kalman Filter used in the neighboring predictor algorithm in the previous phase.
Let Qk denote the process noise covariance at time epoch k, Rk denotes the measurement
noise covariance, P+

k and P−k denote the posterior and prior estimation error covariance,
respectively, F denotes the transmission matrix, and H is the mapping matrix between
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prediction and measurements. Then, according to the Kalman filter algorithm, the prior
estimation of uncertainty can be calculated as follows:

P−k = FP+
k−1FT + Qk (1)

The Kalman gain Kk at time epoch k is calculated as follows:

Kk = P−k HTCk
−1 (2)

where Ck
−1 is the inverse matrix measurement uncertainties of Ck in terms of the innovation

error of the Kalman filter zi for time window m. zi denotes the disturbance between
measurements and prediction models. The Ck can be computed as follows:

Ck =
1
m

k

∑
i=k−m+1

zizT
i (3)

By calculating the measurement uncertainties, Kalman gain Kk is obtained. Kalman
gain is used to penalize either the prediction or the measurements model for accurate
estimation. However, the noise in the vehicle environment is stochastic highly dynamic,
and does not have a predetermined model. Many existing models assume that noise is
normally distributed, which leads to inaccurate estimation of the uncertainty and produces
inconsistent estimation, which, in turn, increases the false positive rate. Therefore, the
autocorrelation test detects whether the noise is normally distributed or correlated noise to
calculate the uncertainty using the correct noise model. Accordingly, the autocorrelation
function in the following equation is used for the test:

ρk =
∑m−1

k=1 (zk − µε)(zk+1 − µε)

∑m
k=1(zk − µε)

2 (4)

where ρk is the autocorrelation of the innovation sequence zk for a period of m epochs. Then,
if the absolute value |ρk| of the autocorrelation is greater than 2/

√
m, i.e., |ρk| > 2/

√
m,

then, according to the variance sum law statistic of random variables [4], the uncertainty
can be calculated using the standard deviation of the prediction model of the Kalman filter
using the following equation:

σDR(k) =
√

σ2
pi
+ k2 × σ2

v (5)

where σ2
pi

is the variance of the vehicle positions predicted during the Kalman filter predic-
tion phase, while k2 × σ2

v is the variance of the velocity times the square of the number of
time epochs k. If the |ρk| ≤ 2/

√
m, then the uncertainty can be calculated according to the

following equation:

σAKF(k) = εest(k) = (I − Kk H)Fεest(k−1) + (I − Kk H)vk−1 − Kkwk (6)

where σAKF(k) is the Kalman filter uncertainty when the autocorrelation of the innovation
sequence is approaching zero, which is the time where the noise in the vehicle environment
follows normal distribution as calculated in [24]. Algorithm 1 shows how each vehicle can
calculate the uncertainty of its generated context information.
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Algorithm 1: Estimate Data Uncertainty of Each vehicle

1: Initialize, Qk−1, Rk−1, P+
k−1,F, H

2: FOR Each Time Epoch k
3: Calculate the prediction error covariance
P−k = FP+

k−1FT + Qk

4: Calculate Kalman Gain Kk = P−k HTCk
−1

5: Compute P+
k = (I − Kk H )P−k

6: Compute the autocorrelation of the innovation sequence

ρk = ∑m−1
k=1 (zk−µε)(zk+1−µε)

∑m
k=1(zk−µε)

2

7: IF |ρk| > 2/
√

m THEN

8: σDR(k) =
√

σ2
pi + k2 × σ2

v //Estimation is not optimal
9: ELSE
10: σAKF(k) = εest(k) = (I − Kk H)Fεest(k−1) + (I − Kk H)vk−1 − Kkwk
11: CONTINUE LOOP

3.3.2. Communication Reliability Estimation

The second phase includes estimating the communication reliability in terms of mes-
sage arriving rate. Because many applications rely on the context information of all
neighboring vehicles, sharing context information is essential. However, due to the high
mobility of vehicles, the context information streams shared between vehicles are inter-
mittent due to the variety of vehicles’ velocity. Vehicles may go in and out of each other’s
communication ranges. Thus, their context information stream is sporadic, which leads to
inaccurate information. Therefore, the message arrival rate is calculated by each vehicle for
each neighboring vehicle in their vicinities according to the following equation:

Message Arrival Rate =
∑m

i=1(arrived messages for each vehicle)
m

(7)

where m is the length of the time window in terms of the number of time epochs.

3.3.3. Fuzzy-Based Context Reference and Vehicle Scores

The context reference is built using a fuzzy inference method in this phase. Fuzzy
logic is the generalization of crisp logic (Boolean logic), in which a variable’s truth value is
represented by a real integer between one and zero. A fuzzy inference system (FIS) is a rule-
based system that can automate human decision-making by simulating human thinking.
The fuzzy inference system consists of two input variables and one output variable. The
inputs are the overall context uncertainty, which is calculated by taking the average of the
uncertainties of all neighboring vehicles, as shown in Algorithm 1. The second variable is
the average message arrival rate, which is calculated based on Equation (7). The output
is the context reference calculated by each vehicle using fuzzy rules. A fuzzy rule is used
to map the input variables to calculate the output variable, i.e., the context reference.
The proposed FIS in this study is constructed by following the Mamdani fuzzy inference
method because it is intuitive and easy to understand and derived based on human expert
knowledge. Accordingly, the proposed FIS consists of three steps: fuzzification, inference
engine, and defuzzification. The fuzzification step includes the identification of the input
variables, the generation of the fuzzy sets, and the selection of the membership function.
For example, the traffic flow is low if the vehicles are not freely moving on the road, while
it is high if they freely move on the road. Similarly, the uncertainty is high if the noise has
no known distribution, it is medium if the noise is dynamic and has a known distribution,
and it is low if the noise has a known distribution and can be modeled.

The following is how the membership function was determined.The uncertainty of
the information collected by the neighboring vehicles has been assumed to have a random
normal distribution because they rely on independent sensors. Therefore, the membership
function of the context uncertainty variable is the probability density function for the
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normal distribution. Similarly, the average message arrival rate is used as the second
fuzzy input variable. Although the message arrival rate has been proved to have Poisson
distribution and, according to the central limit theory, this distribution will end up with
normal distribution if the sample size is large, the trapezoidal membership function is
used in this study. The intuition behind that is, for real-time applications, the sample size
will be very low, and thus the probability distribution will be biased. Consequently, the
trapezoidal membership function is used in this study to fuzzify the message arrival rate
variable. Thus, the context is represented by the fuzzy output according to the fuzzy input
of the average of the uncertainties and message arrival rate values of the neighboring
vehicles. Similarly, vehicles are evaluated based on their reported uncertainties and arrival
rate. Figure 2a–c shows the membership functions of input and output variables, while
Figure 2d shows the mapping between the input variables and output variables.
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Figure 2. Context reference/vehicle score fuzzy model. (a) Context Uncertainty (Innovation Er-
ror). (b) Message Receiving Rate. (c) Context Reference/Vehicle Score. (d) Context Reference/
Vehicle Score.

As shown in Figure 2a, the uncertainty of the context is modeled as three random
distribution functions: low, medium, and high. Three fuzzy sets are used to resample the
three vehicular context environments: low, medium, and high uncertainty. Low uncertainty
happens during vehicle movement in open spaces, while medium uncertainty happens
during vehicle movements under trees or in cloudy weather [31,35,36]. Meanwhile, the
high uncertainty happens during vehicle movements in upran environments under bridges
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and skyscrapers or during heavy rain [31,35,36]. Because neighboring vehicles in the same
geographical areas share the same context, the use of normal distribution for representation
is reasonable. Moreover, the uncertainty is represented using the innovation error of
the Kalman filter, which is usually a Gaussian process. The message receiving rate is
represented by three fuzzy sets with a trapezoidal membership function. The message
arrival rate is proven to have a Poisson distribution that tends to have normal distribution
according to the central limits theorems for the long run where enough data samples are
collected [39,40]. However, due to the highly dynamic vehicle movements where a small
number of vehicles can successfully broadcast the messages, the trapezoidal membership
function is more practical to represent the message’s arrival rate. Figure 2c shows the fuzzy
output of the proposed fuzzy inference system, which is represented by six fuzzy sets with
triangular membership functions. This output represents the current vehicle context score
and is used to construct the local context reference. For simplicity, triangular membership
functions are selected to represent the output of combining the two members drawn from a
normal distribution and trapezoidal membership function.

Moreover, according to the studies [39–41], selecting sample shapes, such as triangular,
is a reasonable decision for practical applications, as long as there is overlapping between
fuzzy sets. As the estimation uncertainty of the Kalman filter increases, the message
arrival rate should be increased due to high uncertainties about the data. Thus, a low
value approaching zero represents the vehicle score and context reference. Meanwhile,
during low estimation uncertainty, the message arrival rate should represent the traffic flow
behavior, which will be reflected in the fuzzy output set where vehicle score and context
reference varies from 1 to 0.5 to represent such dynamic context. Figure 2d shows the
output space of the mapping between the fuzzy input and output variables after applying
the fuzzy rules in the proposed inference system.

The second step of constructing the FIS is to construct the inference engine. The
inference engine consists of a set of rules called knowledge-based. The knowledge base is
built using domain expertise and therefore is employed to express the activity in linguistic
form. These rules map the input to the output based on a careful understanding of how
the communication reliability in terms of message receiving rate and context uncertainty
affect the misbehaving vehicle’s ability to conduct a successful attack. In this study, nine
rules were created to build the proposed FIS. For example, if the traffic flow is low and
the information uncertainty is high, then it is expected that the attacks might not be very
successful; thus, the vehicle will score low malicious (low attack risk). Meanwhile, if the
traffic flow is low and uncertainty is low, the attack is likely, then the vehicles will be strictly
scored (high risk of the attack). The third step of constructing the FIS is to perform the
defuzzification. Because the output of the fuzzy rule is fuzzy, such as very high, high,
medium, low, or very low, which is in linguistic form and not suitable for calculations,
such output must be defuzzed. This study used the centroid defuzzification approach for
defuzzification. The centroid technique works by calculating the output’s center of gravity,
which is the aggregate shape of the input variables. The centroid of fuzzy sets is calculated
as follows.

xc(j) =

∫ m
i=0 µ(xi).xi∫ m

i=0 µ(xi)
∀ neigboring vehicle j ∈ ℵ (8)

where xc is the center of the combined output fuzzy shape of vehicle j belonging to the
set of neighboring vehicles ℵ, and m is the length of the interval of the region bounded by
I = [0, m] in the x-axis of the output variable. Thus, the context reference parameters are
calculated as follows:

µ =
∑n

i=1 xc(i)

n
(9)

σ =

√√√√∑n
i=1

(
xc(i) − µ

)2

N
(10)
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where µ and σ denotes the mean and standard deviation of the center of gravity of the
output fuzzy set, which represents the proposed dynamic context reference.

3.4. Phase 4: Classification Phase

In the classification phase, a vehicle is classified as either genuine or malicious accord-
ing to the fuzzy-based output of the FIS. A vehicle whose fuzzy score deviated much from
the context is considered rogue, otherwise it is genuine. A statistical model with a normal
probability distribution assumption has been used in this study to classify the vehicles.
Thus, the classification model can be expressed as follows:

f (x, µ, σ) =

{
Genuine µ− Tσ ≤ xc(i) ≤ µ + Tσ

Rogue p(x) > µ + Tσ or p(x) < µ− Tσ
(11)

where p(x) is the probability density of the fuzzy output x, µ is the mean of the context
reference µ, and σ is the standard deviation of the fuzzy output (the parameters µ and of
the context), and T is a threshold that has been heretically selected.

4. Performance Evaluation

In this section, the activities that have been used for validating and evaluating the
proposed FCA-MDS model are described. The common evaluation procedures used by the
state-of-the-art models have been used [5,6]. These activities include dataset collection and
preprocessing, environmental noise injection, simulation of message losses, and simulation
of the rogue nodes. This study used the Next Generation Simulation (NGSIM) datsdet [26]
to evaluate the proposed model. NGSIM includes over 5000 vehicle trajectories and has
been used in related research [30,33,34]. Vehicle trajectories have been replayed in the
simulation environment, and vehicles have been modeled acquiring and sharing context
information with their surroundings. Matlab program has been used to simulate vehicular
environmental noises, communication losses, and rogue nodes’ activities.

4.1. Datasets’ Source and Preprocessing

In this study, the Next Generation Simulation (NGSIM) [26], which is commonly used
in related works to evaluate and validate the MDS models, has also been used to validate
the proposed FCA-MDS model. The NGSIM dataset contains ground truth data of more
than 5000 vehicles. Many traffic scenarios are presented in datasets relating to drivers’
behavior, vehicle density, velocity, and traffic flows. The dataset includes the ground
truth information related to vehicles’ local and global positions (longitude and latitude)
sampled every 100 ms. It also includes the velocity (longitude and latitude), acceleration,
direction, vehicles’ type, dimensions, and lane number. For prepossessing, missing data
and outliers were replaced by averaging and smoothing the values. Following the findings
of Thiemann et al. [42], the velocity measurements were smoothed using the exponentially
weighted moving average method (sEWMA). The derivative of velocity over time was
used to estimate the acceleration. Furthermore, the heading angle was calculated by taking
the derivative of position displacement in one axis over displacement in the other.

4.2. Simulation of Environmental Noises

The vehicle’s trajectories were subjected to three different forms of noise, including
static white noises, dynamic white noises, and dynamic correlated noises. The static and
dynamic white noise follows the normal distribution with zero mean, with fixed variance
for static noises and time-varying variance for dynamic noises. Meanwhile, the correlated
noise is modeled as a random walk process, such as in [30,33,34,43]. Static white noise
occurs in the open sky environment such as in driving in the rural environment, such
as the highway in the desert; the dynamic noises were reported under trees and cloudy
environment; and correlated noises were reported beside skyscrapers, under bridges,
tunnels, or earth features [30,33,34,44]. Table 1 shows the three models used to simulate
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the environmental noise in this study. These models were adopted from our previous
experiments in [25], which were used to evaluate the acquisition algorithm EIAE-KF that is
used in the first phase of the proposed FCA-MDS model in this study.

Table 1. The used noise models.

Noise Type Noise Model Description

Static Gaussian Noise N
(
µ, σ2), µ = 0, σ = 10m Static noise is represented as a normal distribution with mean zero mean

(µ = 0) and 10 m standard deviation (σ = 10m)

Dynamic Gaussian Noise N
(
µ, σ2), µ = 0, σ = 20 rand() m Dynamic noise is represented as a normal distribution with mean zero

mean (µ = 0) and random standard deviation (σ = 20 rand() )

Dynamic Correlated Noise et = αet−1 + u
Where et the noise at time t and represented as a random walking
process, α is a coefficient to weight previous noise value (α = 1) , and u
is white noise to represent the harsh environment.

Realistic environmental noises are simulated in this study. The road scenario was
divided into three segments, as shown in Figure 3. In each segment, a different noise model
was injected into the vehicles located in that segment, as shown in Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 3. Road noise scenario. 

4.3. Simulation of Communication Losses 
Because vehicles move in highly dynamic environments, communication loss is a 

common problem due to many parameters, including traffic density, vehicle velocity, and 
obstacles. Due to different vehicles’ speeds and behavior, vehicles go in and out of their 
communication ranges, which makes messages lost. The communication losses increase 
when the density of the vehicles increases. Due to the highly dynamic context of VANET, 
many safety applications require vehicles to share their data every 100 ms (10 messages 
per second). Such requirements cause channel congestions, and thus communication loss. 
However, many broadcasting schemes are unreliable for such applications due to the lack 
of consideration of information accuracy as the main performance measure. As mentioned 
earlier, the DSA-ABR [3] has been used in this study due to the consideration of dynamic 
context uncertainty for broadcasting decisions. In DSA-ABR, each vehicle estimates its 
context information using the Kalman filter every 100 ms. Vehicles also carry out self-
prediction of their previous broadcasted information, and, according to the prediction er-
ror, it decides whether to send or omit their information. Thus, to simulate communication 
loss in this study, as suggested by Knuth [8] and proved by Mcquighan [9], the message 
arrival time in each neighboring vehicle can be modeled as a random Poisson distribution 
as follows: 

Next Time Arrival = Previous Time Arrival + 
− ln(1 − 𝐺𝐺)

𝜆𝜆
 (12) 

where 𝐺𝐺 denotes a random value between 0 and 1: 𝑈𝑈 ∼ 𝑈𝑈𝑛𝑛𝑛𝑛𝑓𝑓𝑛𝑛𝑟𝑟𝑚𝑚(0,1), and λ is the actual 
average arriving rate in each particular time interval (e.g., 1 message per 100 ms). The 
random Many VANET researchers have employed the Poisson distribution to model mes-
sage arrival rates [10–12]. Figure 4 is adopted from our previous publication in [40] to 
demonstrate the dataset collected by each vehicle to be used for misbehavior detection. 

Figure 3. Road noise scenario.

4.3. Simulation of Communication Losses

Because vehicles move in highly dynamic environments, communication loss is a
common problem due to many parameters, including traffic density, vehicle velocity, and
obstacles. Due to different vehicles’ speeds and behavior, vehicles go in and out of their
communication ranges, which makes messages lost. The communication losses increase
when the density of the vehicles increases. Due to the highly dynamic context of VANET,
many safety applications require vehicles to share their data every 100 ms (10 messages
per second). Such requirements cause channel congestions, and thus communication loss.
However, many broadcasting schemes are unreliable for such applications due to the lack
of consideration of information accuracy as the main performance measure. As mentioned
earlier, the DSA-ABR [3] has been used in this study due to the consideration of dynamic
context uncertainty for broadcasting decisions. In DSA-ABR, each vehicle estimates its
context information using the Kalman filter every 100 ms. Vehicles also carry out self-
prediction of their previous broadcasted information, and, according to the prediction error,
it decides whether to send or omit their information. Thus, to simulate communication
loss in this study, as suggested by Knuth [8] and proved by Mcquighan [9], the message
arrival time in each neighboring vehicle can be modeled as a random Poisson distribution
as follows:

Next Time Arrival = Previous Time Arrival +
− ln(1− u)

λ
(12)

where u denotes a random value between 0 and 1: U ∼ Uni f orm(0, 1), and λ is the
actual average arriving rate in each particular time interval (e.g., 1 message per 100 ms).
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The random Many VANET researchers have employed the Poisson distribution to model
message arrival rates [10–12]. Figure 4 is adopted from our previous publication in [40] to
demonstrate the dataset collected by each vehicle to be used for misbehavior detection.
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In this study, nine communication context were simulated using Matlab-based sim-
ulator, which was implemented and used in our previous studies [31,34,35]. The IEEE
802.11p/WAVE standards were implemented according to the studies [45–47]. Table 2
lists the simulation parameters used in this study. In each communication scenario,
different message arrival probabilities were simulated ranging from 1 to 0.01, namely
λ = {1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.03, 0.02, and 0.01}. For example, in the ideal scenario,
the probability is set to one, so that all broadcasted messages arrive, whereas, for probability
equals 0.01 (worst communication scenario), only 1% of the broadcasted messages arrive.
Each communication scenario represents a different context scenario in terms of traffic flow
situation, including vehicle speeds and density.

Table 2. Simulation parameters.

Simulation Parameter Configured Value

Communication Protocol IEEE 802.11p/WAVE
Communication Range 1000 m
Message Generation Rate 10 Hz
Max Broadcasting Rate 10 messages/second
Data Payload 500 Byte
Data Rate 3 Mbps
Propagation Model Two-ray path-loss
Message arrival probabilities 1 to 0.01
Contention Mechanism CSMA/CA
Number of Vehicles 1725
Vehicle Speeds 40–100 km/h
Simulation Time 15 min

4.4. Rogue Nodes Simulation

To validate the proposed model in this study, rogue nodes that misbehave by sending
false context information were simulated. Due to the absence of a labeled dataset in VANET,
researchers in this domain simulate the vehicle’s actions against the false information [13,14].
False information attacks, which can seriously impact road safety, traffic efficiency, and
people’s lives, are simulated in this study. Attackers can launch different types of false
information, ranging from basic to sophisticated attacks, including sudden or random
continuous position jumping, Sybil attack, inaccurate movement patterns, and consistency
attacks. The most challenging attack is the consistency attack, in which the attacker tries
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to generate consistent but fake vehicle trajectories to cause traffic illusions that degrade
applications and network performance. These attacks were simulated based on work found
in [13,14,33–35].

This study randomly selected 10% of vehicles from the NGSIM dataset as rogue nodes
to simulate the consistency attacks. Three types of illusion attacks based on incremental
positioning jumping were included: creating fake trajectories, copying the history of the
trajectories of some neighboring vehicles, and false maneuvering patterns, such as fake
breaking and fake lane changing. Such types of attacks are easy to create but difficult to
detect. In the simulation environment, each rogue node (misbehaving vehicle) randomly
selects one attack type to create fake but consistent trajectories considering the neighboring
vehicles’ locations and speeds to avoid overlapping and position jumbling. Misbehaving
vehicles tried to report false context inaccurate information regarding their position, speed,
direction, or lane.

4.5. Expermintal Procedures

For the experiments in this study, 1725 vehicles were used. Nine context scenarios were
used in the experiments. In each context scenario, three types of noises were injected as
explained in Section 4.2 to represent context uncertainty and one communication scenario
as explained in Section 4.3 to represent communication status resulting from the traffic flow
situation. For example, if λ = 1, then this is ideal communication where no message loss is
present, while, if λ = 0.01, it represents the worst communication scenario where loss of
messages is high due to vehicle density and mobility.

According to the dataset timestamps, in every 100 ms, vehicles’ trajectories were
replayed in the Matlab simulation environment. The corresponding noises model was used
to inject noises into the vehicles’ trajectories according to their position in the road segment
in each time epoch, as shown in Figure 3. A total of 10% of vehicles were randomly selected
as rogue nodes. A misbehaving vehicle creates fake but consistent trajectories considering
the positions and speeds of the neighboring vehicles to avoid overlapping and position
jumbling, and create a more sophisticated attack. These fake trajectories are injected into
the datasets and the vehicles are labeled as benign and rogue vehicles. As there are nine
communication scenarios, this procedure is repeated nine times.

According to the dataset timestamps, each vehicle uses the EIAE-KF algorithm [24]
to estimate its correct context information, such as vehicle position, speed, direction,
and acceleration. Accordingly, each vehicle forms the co-operative awareness message
(CAMs) and uses the DSA-ABF [25] broadcasting scheme to broadcast the messages to their
neighboring vehicles within a 1 km communication range. Each vehicle creates a database
to store the received context information from their neighboring vehicles according to
the simulated communication scenario. Each vehicle also stores the innovation errors of
the Kalman filter to be used for uncertainty estimation for each neighboring vehicle in
that particular time epoch, as explained in Section 3.3.1. Then, each vehicle calculates
the message arrival rate for each neighboring vehicle, as described in Section 3.3.2. The
estimated uncertainty and the message arrival rate are fuzzified using the input fuzzy
sets, as explained in Section 3.3.3. Each vehicle invokes the particular fuzzy rules from the
knowledge base based on the fuzzified inputs to generate the output fuzzy value. Then,
the output fuzzy value is defuzzied using Equation (8) to represent the vehicle score, and
the context reference parameters are computed according to Equations (9) and (10). Then,
using Equation (11), vehicles are classified into benign or rogue. The results are extracted
from the detection reports of 16 benign vehicles that were randomly selected from the
dataset to evaluate the proposed FCA-MDS.
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4.6. Performance Measures

To validate the efficacy of the proposed FCA-MDS model, the accuracy, the detection
rate (DR), the false positive rate (FPR), the precession, and the F-measure were used in this
study, as they are commonly used measures for the evaluation in the related works [5,43].
Because the percentage of misbehaving vehicles is very low compared with normal vehicles,
the overall accuracy performance in this study has been measured using F-measure. F-
measure is considered a suitable evaluation metric by many related works because it does
not take the true negative into account [30,33,34,43]. In addition, using fixed thresholds, it is
easy to either optimize precession or the detection rate (recall). Thus, these two evaluation
metrics must be studied together to evaluate the effectiveness of the proposed detection
scheme. Thus, F-measure is adopted as the main performance measure to evaluate the
proposed model. The following equations are used for calculating the used performance
measures in this study:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

FPR =
FP

TP + FN
(14)

DR (Recall) =
TP

TP + FN
(15)

Precision =
TP

TP + FP
(16)

F−measure =
2× Precision × Recall

Precision + Recall
(17)

4.7. Performance Comparison

For the performance evaluation, the findings of the proposed FCA-MDS model have
been compared against state-of-the-art models, namely the baseline model as implemented
in [38,43], ECT-MDS model [6], and CA-EC-MDS [30,33]. The baseline and ECT-MDS
models are non-context-aware, while CA-EC-MDS is a context-aware model. CA-EC-MDS
is originally developed as a data-centric model in [30] and converted to modified as an
entity-centric model in [33]. The obtained performance has been measured using the
aforementioned metrics, namely the accuracy, FPR, DR, and F-measure. The baseline MDS
is configured with a fixed threshold set to 1.8. This threshold has been selected because it
gives the best performance in terms of F-measure.

5. Results and Discussion

The results of the proposed FCA-MDS model is presented and discussed in this
section. Figure 5a,b shows the results obtained by implementing the proposed model, while
Figures 6 and 7, as well as Table 3, show the results of the comparisons with the related
state-of-the-art models. Figure 5a illustrates the performance in terms of accuracy, detection
rate (DR), precession, and F-measure, while Figure 7b displays the false positive rate (FPR)
and false negative rate (FNR). The x-axis of Figure 7a,b consists of the nine simulated
VANET contexts. In reality, these scenarios represent the communication reliability of the
VANET context in terms of the number of received messages due to changes in traffic
flows because of the variations in the vehicle’s density and speeds. Each line in Figure 5a,b
represents the behavioral performance of the proposed FCA-MDS concerning communi-
cation reliability.
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As displayed in Figure 5a the accuracy performance slightly degrades when the
communication reliability decreases. The proposed model achieves 94.96% accuracy when
the communication is optimal (no message loss), while it degrades to 92.69% in the worst
studied communication scenario where the message receiving ratio is around 1% of the
generated messages. In terms of detection rate, procession, and F-measure, the proposed
model achieves 88.42%, 91.30%, and 89.84%, respectively, when the communication is
optimal (no message loss), while it degrades in the worst studied scenario to 81.13%,
78.18%, and 79.63% in the detection rate, procession, and F-measure, respectively. This
slight degradation is normal because, in high traffic flows and challenging vehicular
context, the message receiving rate decreases, and thus the data uncertainty increases
and, accordingly, it becomes challenging to differentiate between the benign and rogue
vehicles. However, the degradation of the accuracy should not lead to a low detection rate
or high classification error. The degradation of the performance in terms of DR, precession,
and F-measure increases compared with the accuracy performance. The reason for this
degradation is that the number of misbehavior messages generated by a vehicle is less
than the number of benign messages. In this case, the F-measure can best describe the
performance of the proposed MDS. The classification errors in terms of FPR and FNR, as
shown in Figure 5b, slightly fluctuate between 3% and 6%, which indicates the robustness
of the proposed model in a highly dynamic context.

To evaluate the performance of the proposed model, Table 3 and Figure 6 show
the performance evaluation of the proposed model compared to the related works in
terms of average performance. On average, the proposed model archives 92.88% accuracy,
82.65% detection rate, 84.18% precession, and 83.38% F-measure compared to the context-
aware approach CA-EC-MDS in [32], which achieves 90.98% accuracy, 66.18% detection
rate, 88.18% precession, and 75.5% F-measure. The non-context-aware models achieve
lower performance than the context-aware models and fail to strike the balance between
precession and recall. The proposed model outperforms the other studied models with
most of the performance measures. Although the CA-EC-MDS achieves a better reduction
in the false alarms (FPR) compared to the proposed model, its detection rate is 66.18%,
which is lower than that achieved by the proposed model (82.65%). In addition, the CA-
EC-MDS achieves better precision (88.18%) than the proposed FCA-MDS model (84.18%).
However, such achievement is in the favor of increasing the false negative rate (FNR). That
is, it fails to strike the balance between precession and recall. Overall, the proposed model
outperforms all the other studied models. The proposed FCA-MDS model achieves an
83.38% F-measure compared with 75.5% for the CA-EC-MDS, 44.49% for the ECT-MDS
model, and 71.6% for the baseline model. Table 3 also shows that the proposed model is
more stable than the other studied models for most performance measures. The accuracy
slightly changed (∓0.98%) and ∓3.17% for the overall performance in terms of F-measure.
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Table 3. Results of performance evaluation.

Model Accuracy% FPR% FNR% DR% Precession% F-Measure%

FCA-EC-MDS
(the proposed)

Average 92.88 4.27 4.27 82.65 84.18 83.38
Deviation ∓0.98 ∓0.94 ∓0.56 ∓2.26 ∓4.45 ∓3.17

CA-EC-MDS [32] Average 90.98 2.33 9.15 66.18 88.18 75.50
Deviation ∓1.05 ∓0.78 ∓5.03 ∓4.77 ∓4.03 ∓1.05

ECT-MDS [6] Average 74.79 2.98 33.49 30.65 83.83 44.49
Deviation ∓2.71 ∓1.49 ∓3.62 ∓2.32 ∓6.56 ∓3.32

Baseline [43] Average 87.037 4.79 11.88 62.25 87.25 71.6
Deviation ∓5.94 ∓8.29 ∓0.91 ∓3.0 ∓0.18 ∓7.21

Figure 7 illustrates the detailed comparison in terms of the robustness of the studied
MDS models with context dynamicity. In Figure 7a–d, the x-axis represents nine different
context scenarios; in each, the traffic flows of vehicles increases, causing different communi-
cation reliability levels. Meanwhile, the y-axis in Figure 7a–d represents the corresponding
studied performance measures, namely the accuracy, detection rate, false alarms, and
F-measure, respectively.

As can be noticed in Figure 7a the accuracy of the proposed model is stable, with
slight degradation when the communication reliability drops. the accuracy of the proposed
model remains the highest and more stable than the other studied models. It can also be
noticed that both the context-aware model of the proposed FCA-MDS and the CA-EC-MDS
are more stable than the non-context-aware model. In terms of detection rate (see Figure 7b),
the proposed model outperforms the other studied models; the detection rate remains
higher than 80% in all studied scenarios. In terms of false alarm rate (see Figure 7c), the
baseline is more stable in the reliable communication scenarios, while it increased rapidly
once the communication reliability decreases. The other studied models are more stable
and attain a false positive rate lower than 6% in most scenarios. The overall performance in
terms of the F-measure (see Figure 7d) shows that the proposed model is the most stable
among the compared model. The performance of the CA-EC-MDS fluctuates randomly
while the overall performance baseline model drops when the communication channel
becomes unreliable. Meanwhile, the overall performance of the ECT-MDS model remains
stable at under 55% which is not suitable for VANET’s highly dynamic context. To ensure
the statistical significance of the results, the Student test (t-test paired with two samples for
means) is conducted between the results obtained by the proposed model and the other
studied models. Table 4 lists the results for the t-test at a 95% significance level.

Table 4. The statistically significant of the overall performance (F-measure).

Tested Models t-Value p-Value Significance

CA-EC-MDS [32] 5.63845577 0.000107936 Statistically significant
ECT-MDS [6] 9.91473704 8.59619 × 10−7 Statistically significant
Baseline [43] 4.36128591 0.000709148 Statistically significant

As presented in Table 4, the results show that there are statistical differences between
the proposed FCA MDS and the other related works. As long as the p-value is smaller than
alpha (α = 0.05), the improvements by the proposed FCA MDS are significant. The t-value
represents the level of improvement in the overall accuracy.

To summarize, the proposed fuzzy-based context-aware MDS model (FCA-MDS)
outperformed other studied models in terms of overall performance. In general, due to
the use of dynamic context reference in the context-aware models and static reference in
the non-context-aware models, context-aware models perform better than non-context-
aware models. The proposed fuzzy-based context-aware approach has promising results
and provides data integrity and a more secure environment for ephemeral networks like
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VANET, FANET, and drone technology. However, the results showed that there is still room
for improvement. One potential improvement could be the use of artificial intelligence
techniques to adapt the detection thresholds according to the context. More features should
be included for obtaining an accurate representation of the vehicular context.

6. Conclusions

The performance of many essential VANET applications needs precise context infor-
mation about the vehicles in the vicinity. On the other hand, rogue vehicles disrupt the
potential of VANET applications by spreading misleading context information, endanger-
ing people’s lives and property. Detecting misbehaving vehicles in VANET is a challenging
task. Many solutions have been proposed for detecting misbehaving vehicles. However,
most of these solutions are data-centric, which maps false data to misbehaving vehicles,
which are not always true to the high uncertainty of the context information. That is,
vehicles may send false information unintentionally, which increases the false positive rate.
Many of these solutions use predefined and static thresholds for detection, which does not
hold for dynamic and uncertain contexts. Rogue vehicles misbehave by sending consistent
but false information to bypass such predefined detection thresholds. The detection of
misbehaving vehicles is fuzzier than the detection of false information messages. In this
paper, both vehicular context and vehicles’ behavior are represented by fuzzy variables.
Thus, a fuzzy inference system is constructed and used to evaluate both the context and
vehicles’ behavior. A context-aware misbehvior detection scheme based on fuzzy logic
approach is proposed. Firstly, the features that represent the context are extracted from
context information shared by neighboring vehicles. Then, a fuzzy inference system is
constructed to evaluate the context and vehicles’ behaviors. A score is generated for each
vehicle and the context. Finally, a statistically based classifier is applied to the output of
the fuzzy inference system such that vehicles whose scores are close to context score are
considered normal. Meanwhile, vehicles that deviate much from the context reference are
considered rogue (misbehaving) vehicles. The results presented in this study are promising
in terms of the performance achieved by the fuzzy-based context-aware detection approach.
However, the use of a predefined detection threshold leads to imprecise detection and
increases false alarms. This issue will be addressed in our future work. Moreover, we are
planning to incorporate artificial intelligence techniques, i.e., machine learning, to adapt the
detection threshold according to a given vehicular context. In addition, more representative
context features will be derived for accurate representation.
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