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Abstract: The water distribution system has deployed several low-power IoT devices on an uneven
surface where battery power is a major concern. Therefore, this paper focuses on using a UAV-
enabled wireless powered communication network capable of directing energy to a target location
and using it for communication, thereby reducing battery issues. In this paper, a static optimization
was applied to find the initial height values using 3D clustering and beamforming method and
dynamic optimization using extremum seeking method was applied to find the optimized height.
The optimized height values were calculated and Travelling Salesman Problem (TSP) was applied
to create the trajectory of the UAV. The overall energy consumption of the UAV was minimized by
integrating dynamic optimization and dome packing method, which can find an optimal position
and trajectory where the UAV will be hovering to direct energy and collect data. Moreover, we also
minimized the total flight time of the UAV.

Keywords: wireless powered communication network; beamforming; unmanned aerial vehicle;
water distribution network

1. Introduction

The water distribution systems (WDS) are crucial to the water supply in cities as it
directly affects public health. However, water quality is hard to maintain as its prone
to contamination during distribution [1]. The goal of researching new technological ad-
vancements in WDS is to improve energy efficiency and security as a high amount of data
will be collected in real-time for water quality monitoring [2,3]. Besides, the water quality
sensors are battery operated and it depletes after a specific time period which requires
human labour for its charging or replacement [4]. For these reasons, many efforts are made
in the technological advancements that could be integrated with the WDS to minimize
communication cost and time and thereby reduce human effort. The research in the field of
wireless powered communication networks (WPCN) and unmanned aerial vehicle (UAV)
is leading to more ways to ensure water quality and optimize the cost and energy during
communication between the sensors and the UAV [5,6].

In the early days, UAV’s were used widely as a communication equipment for data
collection and transmission in wireless networks. Now, it is used as a wireless base
station to transfer energy and collect data from the ground nodes (GN) using a wireless
powered communication network (WPCN). In WPCN, the GN’s harvest energy from the
radio frequency (RF) signals and use this energy to transmit information collected to the
uplink/UAV which is termed Wireless energy transfer (WET) and Wireless information
transfer (WIT). There is a lot of technological advancements and research happening in
the water distribution system (WDS) especially in remote water monitoring using wireless
sensors and Supervisory control and data acquisition, but battery depletion, human labour
for battery replacement, and a huge amount of data transmission during the communication
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required more attention [7]. The WPCN in cellular communication was implemented
with fixed base stations which broadcasts energy to the receivers for data collection and
communication. Since the base stations were fixed, users who are far away receive less
energy and require more energy for data transmission which is called a doubly near-far
problem. The doubly near-far problem encountered due to the line of sight (LOS) issues
with fixed based stations were resolved using the UAV as a flying base station in the
WDS [8,9].

The key issue encountered in adopting WPCN in WDS was energy optimization
during communication, as the UAV’s onboard energy is limited and must be allocated for
communication, moving, hovering, and other activities, which was one of the main motives
for the research. The energy efficiency of the communication may be improved by optimiz-
ing the UAV’s trajectory and determining an appropriate height for the UAV to traverse,
hence minimizing the overall flight time and energy used during the conversation [10].
Further study was required in the domain of real-time water monitoring since water quality
must be checked regularly owing to a variety of problems such as leaks, floods, and other
issues, and this generates a large quantity of data, prompting the selection of WDS as the
application scenario.

The project aims to find an optimal energy management strategy to complete a mission
that includes charging and data acquisition to and from all the GN’S. The application
scenario taken for this research is illustrated in Figure 1 where the UAV-enabled WPCN
were able to wirelessly transfer energy to charge the GN’s using energy beamforming and
collect water quality information for further processing.

Figure 1. Application scenario of UAV enabled WPCN in water quality monitoring.

One of the main problems in WPCN is the near-far problem where the base station
was fixed and the users who are far away from the base station receive less energy during
the wireless energy broadcast and different protocols and techniques such as harvest
then transmit protocol, user cooperation, etc., were implemented at first to address this
problem [11]. Later, the problem was solved in much research by using a UAV as a mobile
base station which is also used in this paper [12–14]. Since the battery capacity of the UAV
is limited, it is critical to research how to reduce the UAV’s energy consumption so that
the wireless network’s connection time may be extended. In some of the research works,
the authors assumed that the UAV has sufficient energy for completing the given task for
secure data collection [15,16] whereas in [17] reduce the energy usage of the communication
by finding an optimized trajectory path using successive convex approximation technique
for a mobile relay network [18]. In [19] the placement of the UAV optimization and
performance analysis was studied to understand various characteristics of UAV enabled
base station. A multi-UAV communication network has been studied in [20] where the
minimum throughput was maximized by optimizing the trajectory, power allocation, user
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scheduling, and resource allocation. The problem of trajectory and resource allocation
optimization for UAV-mounted systems has been addressed in orthogonal frequency
division multiple access (OFDMA) systems [21], Internet of Things (IoT) networks [22],
and multicasting systems [23].

The development of Beamforming in antenna design encourages researchers to integrate
with applications such as satellite, energy harvesting, wireless communications, etc., [24].
Beamforming is a wireless communication technique that could be integrated with UAVs
to direct an energy signal to a specific receiver. In several studies, beamforming is used to
increase the capacity of the uplink for onboard UAVs [25,26]. Since the beam is directed to a
specific receiver, it results in increased coverage, security, quality of service, and a higher data
rate with minimum interference. To enhance the energy efficiency, the physical components
that make up the UAV’s weight were taken into account in [27,28], whereas [29,30] used
iterative algorithms in UAV-enabled sensor networks to optimize the energy transfer and
thereby increase the energy efficiency. Energy efficiency is optimized by power distribution,
trajectory, user scheduling, and bandwidth in wireless mobile communication in [31], where
the UAV functions as an aerial base station. Most UAV communication designs include
trajectory, routing, or route optimization to improve energy efficiency, performance, and
throughput. The research of [32,33] suggested an energy efficiency model and design based
on the trajectory route, speed, and time of a fixed-wing UAV. For sum throughput optimization
in solar-powered UAV communication, [34] employed a 3D trajectory and resource allocation.
The majority of the research focuses on energy optimization on an even plane, with the
UAV’s height assumed to remain constant. Table 1 shows that there is no significant study on
minimizing the overall energy of the UAV in a terrain, according to the literature [25–34].

Table 1. Comparison of the Methods and their limitations.

Method Limitations

Optimize energy transfer using Iterative Algorithms [29,30] Not implemented in WPCN
Beaming for improving uplink (WDT) [25,26] Energy consumption of the UAV is not considered.
Sub gradient algorithm and bisection search method to minimize
completion time [8,9]

The sensors are assumed to be on an even plane with a fixed
height of the UAV and RF charging method.

Sum throughput maximization using convex optimization [20,34] Energy consumption model and trajectory design are
not considered.

Iteration algorithm using convex approximation to optimize the
transmit power [13]

Achieved using complex mathematical solutions and height of
the UAV is fixed.

Energy efficiency is optimized by power distribution, trajectory,
user scheduling, and bandwidth [31] Implemented only in a mobile communication network

Cell partitioning to minimize total flight time [32,33] Not implemented in WPCN; applied in telecommunication.

The paper is based on extending the work [35] which focuses on finding an optimal
position using a dome packing method where the UAV acts as an energy transmitter and a
data receiver. Whereas, this paper proposes two optimization models, in which a dome
packing technique is used to combine and pack the sensors based on the beamforming
range and a dynamic optimization model to determine the ideal positions of the UAV to
charge the sensors on the ground. In addition, this study provides a theoretical model for
minimizing the energy utilized in UAV-enabled WPCN by optimizing the UAV’s location
in the terrain.

This paper addresses the challenges of energy management of sensing and communi-
cation in the water distribution system and aims to minimize the total energy consumption
and completion time of the UAV-enabled WPCN during communication in WDS.

The contributions can be summarized as follows:

1. A rotary-wing UAV-based WPCN framework is proposed for WDS for energy-efficient
communication.

2. The dome packing method calculates the optimal hovering positions to communicate
with the ground users (charging / data transfer) by optimizing a number of hovering
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points using dynamic optimization, hovering duration, and order of visit using 3D
clustering and TSP.

3. An energy-efficient trajectory design for the communication between the UAV and
the GN’s using beamforming.

In this paper, the rest of the segments are structured as follows. Section 2 depicts the
system model. Section 3 contributes to the proposed dome packing method and Section 4
illustrates the simulation results and finally summarizes with Section 5.

2. Design the System Model of UAV Enabled WPCN in WDS
2.1. System Model Design

In our model, we assumed that the UAV would have a constant power source for
charging and the energy optimization is considered only for the communication [36]. It is
also assumed that the UAV starts from point X and finishes at point Y and the energy calcu-
lations are based on this assumption. The UAV is integrated with a uniform rectangular
antenna array (URA) with N antenna elements and the horizontal position at any time t will
be u(t) = (x(t), y(t)). The GNs are located at fixed points on the ground gn = (xn, yn, hn) and
are equipped with two omnidirectional antennas for WIT and WET. The distance between
the UAV and the GN’s (d) at any time can be calculated using the distance formula [37].

d =
√
(u(t)− gn(t))̂2 + huav2 (1)

where huav is the flying height of the UAV. The wireless link between the UAV and the
GN’s are calculated using a vector l ∈ CNx1, where CNx1 denotes the space of Nx1 complex
matrices of N element transmitter [38].

l =
√

l0 l1a(N, θ,∅) (2)

where a(N, θ,∅) is the steering vector, θ,∅ are the elevation and azimuth angles of the
LOS/NLOS path of the UAV and the ground node. For LOS path θ = arctan

( √
d

huav

)
,

∅ = arctan(u(t)− un(t)/g(t)− gn(t)) and for NLOS vary from − 90 to 90, ∅ from
− 180 to 180. l0 and l1 are the large scale and small-scale fading variables where l1 ∈ CNx1

where as l0 depends on the line of sight(LOS) and non-line of sight(NLOS) links between
the transmitter and the receiver [38].

l0 = 10−(
PrLos PLLos+PrNLos PLNLos

10 ) (3)

PLLos = PLFS(d0) + 10 ELos log(d) and PLNLos = PLFS(d0) + 10 ENLos log(d) (4)

where

PLFS = 20 log
(

d0 f
4π
c

)
−Gt−Gr (5)

In the above formulas PL represent path loss, PrLos is the LOS probability
i.e., PrLos + PrNLos = 1, d0 is the reference distance of 1 metre, FS represent free space
path loss, f is the frequency and c is the speed of light, ELos and ENLos are the path loss
exponents for LOS and NLOS communication which depends on the environment, Gt and
Gr are the transmitter and receiver antenna gains [5].

To create a beamforming energy signal (S) which is derived by referring to the
work [39].

S =
√

PTw (6)

where w is the beamforming vector along with the energy signal and PT is the transmitted
power from the antenna array. The beamforming vector is calculated as w = v1/||v1||where
v1 is an eigenvector calculated by finding the maximum eigen value (Ei) from the matrix
L where L = llH and H is the conjugate transpose. The square of the Euclidean norm of
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beamforming energy signal should be less than or equal to the power spectrum density of
each sub bands and

∣∣∣∣w∣∣|22 = 1 [39,40].
Let Ttot be the total time required for energy transfer and data transmission and T be

the time required to complete the mission here we also consider that the amount of energy
received will be fully utilized by the GN’s for data transmission such that no energy is
wasted. Let XTtot be the time for energy transfer, then 1 − X Ttot will be the time required
for data transmission. It is assumed that equal time is assigned for energy transfer and
data transmission.

The harvested power (PEH) should be greater than equal to the threshold (PTH) value
of the GN’s which will be assumed to be a constant and PT depends on the distance of
transmission. Hence, PEH is a function of PT/d2 and d is the distance between the UAV
and the GN’s [41].

PEH = ηXTtotPTEi/d2 ≥ PTH (7)

where Ei = 1/||v1||2 and ||v1||2 is the Euclidean norm of the eigen vector and η is the
energy conversion efficiency which will be assumed to be a constant.

Similarly, the energy consumed by the UAV for WET is EET [42].

EET = PTXTtot (8)

Data Transmission

The energy consumed by the GN’s during data transmission

EDT= PEH (1− X) Ttot (9)

According to Shannon-Hartley’s theorem, the Data transmission rate R is

R = B log2(1 + SNR) (10)

where SNR = PGN trace(L)
σ2d2 , PGN ,σ are the transmit power and noise power of GN’s and

data transmission time (TDT) will be equal to the size of data transmitted (Sz) to the data
transmission rate [43] and hence

TDT = Sz/(1− X)R (11)

Now, the overall energy consumption of the UAV during each communication cycle
i.e., the energy required by the UAV for propulsion and WET

ETot = EUAV + EET (12)

where EUAV represents the propulsion energy used by the UAV, that is used for hovering
and moving [44].

2.2. Problem Formulation

The total energy consumption and usage were always an issue in UAV enabled WPCN
due to the limited onboard energy in the UAV. Minimizing the total power consumption and
execution time of the UAV enabled WPCN during communication in the WDS during the
mission could resolve this problem. To find the optimal energy used for the communication,
a cost function needs to be calculated. The potential and kinetic energy used by the UAV
is represented using T = 1/2mv2 and V = mgh and EET. According to Lagrange’s rule
L = V − T and therefore with extended Lagrange’s rule L= V − T − EET.

Therefore, the Energy function is

E = mgh− 1
2

mvuav
2 − EET(huav) (13)
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where vuav= −ahuav represents the (vertical)dynamics of the UAV and a is the time con-
stant [45]. Therefore:

E = mghuav −
1
2

ma2huav
2 − EET(huav) (14)

The problem can be formulated as

min
huav

E (15)

s.t. c1 : vuav = vmax (16)

c2 : u(0) = uI, u(T) = uF (17)

c3 : EET(huav) ≥ETH d2 (18)

The constraints for the problem are as follows: For simulation, EET(huav) must be
greater than the GN threshold energy (ETH) multiplied by d2, which in turn is h2/ sin2 θ

where θ is the elevation of the UAV (18). The velocity is assumed to be at the maximum (16)
and uI and uF are the initial and final locations of the UAV to complete the mission (17).
The energy function problem will be quadratic equation and can be formulated as a linear
quadratic equation and solved using linear quadratic regulator in MATLAB. The model
calculates the range/position of huav where the Energy function is at maximum.

3. Dynamic Optimization

This section describes dynamic optimization methods that has been used in this work.

3.1. Implementation of the Proposed Model

In this initial optimization, we use a dome packing method (DPM) to find an optimized
position at which the UAV could hover for WET and WIT as in Figure 2. The GN’s are
represented as sensors and UAV at an initial height of h and the distance between the UAV
and the GN is represented by d in Equation (1) and θ is the angle between the UAV and the
GN. The dome packing Algorithm 1 [35] is as follows:

Figure 2. Optimization model using UAV enabled WPCN to calculate optimal position of the UAV.

In the dome packing method, M domes are arranged inside the simulated area with a
maximum packing density and radius r without overlapping each other. For implementa-
tion, K means algorithm is used to implement three-dimensional (3D) clustering and after
calculating the beaming range [35], an initial optimal height (huav) ranges are calculated for
each of the clusters since the positions of the GN’s and the distance from the cluster centre
towards the GN’s are known. The optimal height (huav) is calculated as in Section 3.2 using
extremum seeking control. The number of hovering points is determined by the cluster
centres created using the K means algorithm.
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Algorithm 1: The algorithm to implement Dome packing method (DPM)

1: Initialize the system parameter values u(t), gn(t), h
2: Repeat for n = 1:k Perform 3D clustering of the GN’s and calculate the clusters and its cluster centriods
(c1 . . . cx)
3: end
4: Repeat n = c1:cx, Position the UAV at the cluster centroid
5: Calculate beamforming range based on the antenna array to find huav from the cluster centroids
6: If GN’s are unreachable, calculate ∆ (u∆x,u∆y,u∆z) which will be the change in position and the UAV
will be repositioned until an LoS is established.
else
7: continue/go to step 4
8: end

The order of the visit of the GT’s is implemented by using the Travelling salesman
problem (TSP). In this work, greedy heuristic algorithm is used to construct the trajectory of
the UAV as it provides results very close to the optimum solution [45]. The hovering time
of the UAV is shared evenly between WET and WDT and it depends on the throughput
requirements of the GT’s. The hovering time also depends on beaming, number of clusters
and WET time required to charge the ground terminals. Hovering time is also affected by
beaming, the number of clusters, and the amount of WET time needed to charge the ground
terminals. To compute the total energy for travelling, hovering, and WET, a trajectory path
employing these hovering points is generated, as shown in Equation (13).

The computational complexity is represented in this DPM using the big O notation.
The complexity of the method is O(nt) since it has one inner loop with n iterations and one
outer loop with t iterations. In the next step, the K means algorithm is employed, which
calculates to O(n*d*k*l), where n is the number of data points, d is the dimension, k is
the number of centroids, and l is the number of iterations performed. Finally, in order to
use the beamforming approach, the channel’s covariance matrices must be computed first,
which takes O(N2). Then, in order to calculate the null phase of the interference outputs,
the eigen vector corresponding to the biggest eigen value is chosen resulting in O(N3).
The steering vector is then computed and projected to the null space, which is O(N). As a
result, the beaming method’s computational complexity is O(N3). The parameters used for
implementing the scenario are provided in Table 2 [41,42].

Table 2. Parameter Table.

Parameters Values

Transmitting Bandwidth 25 MHz
Frequency 1.5 GHz
Energy harvesting efficiency (η ) for GN’s 0.7
Pathloss Exponent of LOS (ELos ) 2
Pathloss Exponent of NLOS (ENLos ) 2.5
Transmit Power of UAV (PT ) 10 W
Data Transmission Power (PDT) 0.1 W

3.2. Optimization Using Extremum Seeking Control

To solve this optimization, by using the initial optimization output (height) as the
initial condition to the dynamic model to calculate a further optimized height for wireless
communication between the UAV and the GN where energy function E in Equation (14) is
at maximum. The optimization model using extremum seeking control is represented in
Figure 3 where the UAV dynamics, as well as the initial conditions or output of the initial
optimization (Energy and height), are fed as input to the lookup table. The altitude scope
provides optimal height as output from the model.
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Figure 3. Optimization using extremum seeking control model to calculate optimal height.

The extremum seeking control scheme of Figure 3 is underpinned by the Theorem of
Averaging, by which a T-periodic signal and u is the input signal [46,47].

.
h = f(h, u, t) (19)

is equivalent, to within O(∈) where ∈ > 0, to its ‘average’ value

heq =
1
T

T∫
0

f(h, u, t)dt (20)

Expanding the input to the integrator in a Taylor series:

.
heq = E(h + asinwt) a sin wt =

(
E(h) + asinwt.

∂E
∂h

+
1
2

a2 sin2 wt.
∂2E
∂h2 + O

(
a3
))

asinwt

Applying the Theorem of Averages:

.
heq =

wa2

2
∂E
∂h

(21)

Thus, the stationary point of E is an equilibrium point of the system as in (21) and
can be shown [48], to be stable if ∂2E

∂h2 < 0, the condition is for a maximum. The larger the
perturbation, the faster the maximum is reached. Since h has to satisfy both the system
dynamics (f) and the static constraint (E), this can only be achieved when E and h are
independent, i.e., at the optimum, where the curve E is flat. In this case, f represents the
state model and E, the energy (as in Equation (13)) and h, the state variable and the model
is represented as in Figure 3.

The output (altitude) from the extremum seeking is applied to the proposed model in
Section 3.1. The optimized height of one among the clusters is obtained as in Figure 4 and a
trajectory path through these optimized heights is designed and TSP is applied to generate
an optimized trajectory for the UAV to complete the mission.

Figure 4. Optimized height using extremum seeking control of among the clusters.
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4. Simulation Results

This section evaluates the performance of the proposed methods to prove their ef-
ficiency. In the simulations, we assume that the maximum height of the UAV is 100 m
and the UAV will be integrated with a uniform rectangular array (URA) to implement
beamforming. Figure 5 depicts the amount of energy harvested by the GN’s at a distance d
from the UAV with N antenna elements implemented and analyzed using MATLAB.

Figure 5. Harvested Power based on distance d with N = 24 antenna elements.

Optimization Outputs

Figure 6 shows the energy harvested using beaming by each of the GT’s at t = 1 s based
on the distance d and how it varies over distance expressed in meters. The implementation
of the proposed model is represented in Figure 7a,b with a front and a side view. From
Figure 7a, a clear picture of the new trajectory path after optimization with total flight
time Ttot represented as t in seconds. The start and the end represent the starting and
ending positions of the UAV to complete the mission. Based on the DPM, the WET begins
at the starting points, charging each of the ground nodes and WDT happens when it starts
charging the next node. So, there is an overlap of WET and WDT which helps in minimizing
Ttot. The distance between the GT’s is assumed to be 50 m apart and the filled markers in
different colours represent the GT’s and their cluster centres at each cluster.

Figure 6. Harvested Power in the GT’s based on energy and distance at time hovering for 1 s.
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Figure 7. (a,b) UAV optimized trajectory path with energy transmission and data transmission.

In Figure 7 an evaluation of the proposed method where the energy consumption
of the UAV with and without DPM using (14) is represented with a data transfer rate
of 60 Mbps. It is evident from the graph in Figure 8 that the proposed method will be
completed efficiently with less energy consumption of the UAV and Ttot when compared
to the existing method [41,48]. In the existing method, the charging of the GT’s is on a
sequential basis by using an RF charging method where the UAV will be at a constant
height for WDT and WET by using a heuristic approach by calculating an optimal trajectory
through the tangential points of the assumed energy transfer and data collection points.
Since the RF charging could be done within a reduced range of the GTs, it results in
increased total flight time.
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Figure 8. UAV energy consumption with and without DPM.

Firstly, the suggested solution reduces the overall time by charging the GTs using a
much more targeted beaming manner rather than broadcasting it to all users. Secondly, the
use of 3D clustering and optimization using extremum seeking control helps to manage the
nodes and thereby finding an optimal position and trajectory for both WET and WDT saves
the majority of the change in heights during the flight that leads to the reduced energy
consumption of the UAV.

5. Conclusions

WPCN research is rapidly expanding, and when combined with computation, beam-
forming, and energy harvesting, it could lead to new technologies in communication. In
this paper, a UAV-enabled WPCN is implemented in a terrain WDS to calculate an optimal
position to reduce the UAV energy consumption where the UAV acts as an energy transmit-
ter and data receiver. The first optimization in this paper is to find the best position and
trajectory using a proposed dome packing method by optimizing the number of hovering
points, hovering duration, and order of visit. The output of the first optimization (energy
and position) is fed as an input to the dynamic optimization model to prove its efficiency.
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