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Abstract 

Field of systems engineering (SE) is developing rapidly and becoming more complex, where 

multiple issues arise such as over complexity, lack of communication or understanding of the 

design process on different stages of its lifecycle. Model-based systems engineering (MBSE) 

has been introduced to overcome the communication issues and reduce systems complexity. 

A novel approach for modelling interactions is proposed to enhance the existing MBSE 

methodologies and further address the identified challenges. The approach is based on graph 

theory, where pre-defined rules and relationships are substituted and reorganised 

dynamically with graphical constructs. 

A framework for reducing complexity and improving logic modelling in MBSE with metagraph 

object-oriented approach is presented. This framework is tested in use cases from literature, 

where the model-based systems approach is applied to design an automobile system to match 

the acceleration requirements, and to improve a CubeSat nanosatellite communication 

subsystem. Through the use case scenarios, it has been proven that the methodology 

framework meets all the identified functional and design requirements and achieves the aim 

of the research. 

This work may be viewed as a step forward towards more consistent and automatic modelling 

of interactions among subsystems and components in MBSE. Automation techniques have 

multiple applications in systems engineering field as engineers always aim to produce higher 

quality and cost-effective products in less time and that is achieved by integrating knowledge 

on every stage of a development lifecycle. In addition to those advantages for SE field, the 

research provides basis for potential research proposals for future work in various engineering 

fields such as knowledge based engineering or virtual engineering.
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1.0 Introduction 

1.1 Background 

In the modern era, a lot of different definitions of engineering has been derived. Engineering 

itself is “the creative exploitation of energy, materials and information in organized systems 

of people, machine and environment, systems which are useful in terms of contemporary 

human values” (Wymore, 1993). At the same time, systems engineering (SE) arouse as an 

advanced way of engineering by providing an inter-disciplinary approach and means to enable 

the realisation of successful systems from different points of view.  SE is “an inter-disciplinary 

approach and means to enable the realisation of successful systems” (Haskins, 2006). It has 

been evolving rapidly in the past decades and the rate of this evolvement has risen 

dramatically recently. This leads to growing complexity of the systems being designed with 

the use of SE methods as more sophisticated and larger systems are being developed 

nowadays. Numerous issues have become problematic for successful system development 

process, which are over complexity, lack of communication and lack of understanding of the 

design process at different stages of a lifecycle (Holt and Perry, 2008). Increasing complexity 

is further identified as one of the main challenges of the current state of systems engineering 

in the most recent studies (Mayfield et al., 2018). Furthermore, a requirement for common 

understanding of complex systems is distinguished as key opportunity for future research in 

the field (Akundi et al., 2018). 

Model-based systems engineering (MBSE) is an emerging approach in SE field that 

distinguishes itself as an advanced way to reduce and maintain systems complexity through 

storing all development knowledge in an organised model structure. As a fundamental 

principle of good system design, the essence of MBSE relies on the application of appropriate 

formal models to a given domain (Bahill and Botta, 2008). MBSE itself is “a formalised 
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application of modelling to support system requirements, design, analysis, verification and 

validation activities beginning in the conceptual design phase and continuing throughout 

development and later lifecycle phases” (“Systems Engineering Vision 2020,” 2007). Despite 

rapid development of MBSE field significant issues exist in the way of its further development. 

These issues involve over complexity, lack of understanding and proper interaction among 

different models as they are parts of the main system model (Madni and Sievers, 2018a). 

Existing MBSE approaches propose resolving these by using Systems Modelling Language and 

representing the data in the form of diagrams (Feldmann et al., 2019). Even though that is 

successful to some extent, the representation remains static and does not offer appropriate 

capabilities to automate interactions when one of the models is changed. New directions 

involve using the Digital Twin approach, which can be expected to become the integral part of 

MBSE in the future (Madni et al., 2019). Despite the promising applicability of the digital twin 

technology for MBSE, being a relatively new concept, there is a number of concerns that need 

to be resolved before its wide-spread application. These concerns include the data 

management, privacy, and data security. Making data management more dynamic and 

automating the interactions between different parts of the main system model can possibly 

help to ease the application of the virtual reality concepts for MBSE. 

Main system model in MBSE is decomposed into multiple sub models corresponding to 

separate sub systems (Yassine and Braha, 2003). These submodels represent various aspects 

of the development process - design engineering, computational analysis, cost model, 

manufacturing analysis, requirements model etc. All the components and systems are in 

constant interaction among each other but this interaction is not modelled in a way to 

automatically and dynamically update the system on time as well as check the consistency of 

the development process on its every stage (Shekar et al., 2011). The interactions within 
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systems need to be understood and identified before they can be modelled using MBSE 

methodologies. One of the ways to analyse systems is using decomposition principle, which is 

one of the key aspects of engineering helping to organise complex problem in the initial stages 

of the systems development. That provides a technique for quantifying the complexity of 

system being developed and understanding of how each individual sub system and 

component affects the behaviour of the system as a whole (Akundi et al., 2018). 

Once the model interactions are understood, the communication such as messages, decisions 

and response among models are set to be analysed. In this research, such communication 

among systems, subsystems and components is defined as logic. In current systems this logic 

is maintained manually through hard-coded rules, pre-defined relationships, constraints and 

fixed mathematical formulas (Wang et al., 2017). This increases the time required for the 

actual development and further leads to designing the system from scratch whenever serious 

and contradicting problems are discovered at the later stages of lifecycle. Moreover, often 

there are logical contradictions – inconsistencies in rules and dependencies among the rules 

that are not captured (Herzig et al., 2014). This could lead to incorrect system design, 

increased time spent on testing, redesign, and ultimately systems failures. 

Holt and Perry discuss the broader issues facing SE and call them “three evils of systems 

engineering” (Holt and Perry, 2008). These are further analysed in more recent research, and 

it is confirmed that they are becoming more evident with modern systems (Bajaj et al., 2017). 

These issues have been distinguished as follows: 

• Complexity: large systems have lots of interacting components and relationships between 

its entities. As shown in Figure 1-1, adding more rules and relationships make system more 

complex than before. 
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• Lack of understanding: concept of “lack of understanding” can arise at any stage of a 

lifecycle beginning with requirements formulation. It might lead to issues during the 

development stage, and then even during the operation of a product. Understanding of a 

system model is a major factor in any development (Rousseau, 2018). Models have to be 

dynamic as the systems are usually observed only from particular aspects of certain design. 

Similarly, it is legit for overcomplicated models with lots of communication, rules and 

relationships. 

• Communication problems: This problem can arise on any level, between several people or 

groups of people, companies, systems or different departments involved in process of 

development, where there is not enough data exchange among various sub models. 

 

Figure 1-1: Complexity description through relationships 

Development Model A 

Sub model 1 

Sub model 3 

Sub model 2 

Sub model 4 

Sub model 5 

Sub model 1 

Sub model 3 

Sub model 2 

Sub model 4 

Sub model 5 

Development Model B 

Development Model C 

Sub model 1 

Sub model 3 

Sub model 2 

Sub model 4 

Sub model 5 
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Thus, at present the mechanism of modelling interaction among different models is not 

dynamic enough to be able to support MBSE to full extent and there is a need to improve the 

way of modelling logic for future development in MBSE domain. Delivering new ways of 

modelling logic has its potential utilisation in design automation as making interaction 

mechanism dynamic, demand-driven and, therefore, more automatic, provides 

improvements to Knowledge Based Engineering (KBE) field (Vatchova et al., 2019). Therefore, 

this study aims to answer the following research questions: 

• How can the organisation of the interactions among the sub systems be analysed in MBSE 

for the purpose of solving complexity issues such as lack of communication and lack of 

understanding? 

• How can the new dynamic ways of interactions modelling improve and enhance the 

existing MBSE methods and static ways – hard-coded rules, pre-defined rules, relationship 

and mathematical expressions? 

In this research, the author proposes a novel approach that would address those questions. 

The proposed approach develops a central model that governs all interactions and data 

exchange among different models as well as substituting pre-defined rules and relationships 

with more sophisticated dynamic approach by utilising the principles of graph theory - 

specifically the graphical constructs known as Metagraphs. 

1.2 Aim and objectives 

In the previous section the general need for improving the interaction modelling has been 

presented and that leads to the aim and objectives of the study. 

This research aims to identify and develop methods and tools for creating dynamic ways of 

modelling logic in form of systems interaction for reducing complexity in MBSE environment. 
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The aim will be accomplished through successful achievement of the following objectives: 

1. Review methods and tools used in systems engineering for developing system models. 

2. Analyse current approaches for modelling logic in MBSE and KBE. 

3. Distinguish new approaches and techniques of improving the process of modelling 

systems interaction in MBSE where knowledge can be most usefully held and reasoned 

with. 

4. Develop these approaches to make dynamic ways of modelling logic in MBSE. 

5. Validate proposed approaches of modelling logic in MBSE and their potential utilisation 

for reducing systems complexity and design automation. 

6. Generate guidance on how to utilise the approach and enhance the effectiveness of the 

framework for product development using MBSE. 

1.3 Outline of the thesis 

The outline of the thesis is presented in this section. The research consists of five primary 

sections: research problem statement, literature review, framework representation, 

validation and verification, and conclusions. 

Chapter 1 of the thesis provides a brief introduction to the field of the research and shows the 

research questions addressed by the current work. This chapter also presents aim and 

objectives of the research. 

Chapter 2 of the thesis focuses on the literature review of the current approaches in model-

based systems engineering and design engineering. The different methods are discussed and 

compared. Expected contribution to knowledge is also presented. As a conclusion, the need 

for interaction modelling framework is summarised. 
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Chapter 3 explains the graph-based modelling theories and reviews the potential utilisation of 

graphical constructs for achieving the aim of the research. It discusses various methods, 

compares them, shows limitations and at the end selects the most appropriate ones. 

Chapter 4 presents the interaction modelling framework, which bridges the research gaps 

identified in the previous chapters. The chapter initially distinguishes the requirements for the 

developed framework and moves on to the actual representation of the framework elements 

themselves. Additional explanations are provided where appropriate. 

Chapter 5 explains the techniques and tools used for the proof-of-concept implementation 

and development explaining why particular methods have been utilised and on which stages. 

Chapter 6 shows the evaluation of the framework in a set of use cases. These test cases are 

Automobile Acceleration analysis example and CubeSat development example from the 

literature. The validation ensures that the proposed framework is doing appropriate job on 

modelling interactions among subsystems in MBSE environment. 

Chapter 7 overviews the key research thesis objectives, provides the summary of the thesis, 

discusses the findings of the proof-of-concept implementation and evaluation, summarises 

the research outcome in detail, limitations and draws conclusions based on the results. 

Furthermore, it outlines the recommendations for future work. 
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2.0 Systems engineering and interaction modelling 

2.1 Introduction 

As the research lies within the area of systems engineering there is a need to analyse 

definitions of key elements in this field in order to thoroughly understand research context of 

the thesis and key trends in the discipline being researched. A careful assessment of the 

current systems engineering and model-based systems engineering techniques has identified 

that the interaction modelling is still done mostly manually without the use of appropriate 

interactions automation techniques. This chapter provides an overview of the current state of 

systems engineering, model-based systems engineering and design automation. In the end 

the research gaps are distinguished based on the identified shortcomings of existing 

methodologies. 

2.2 Systems engineering 

As cited by Rhodes, one of the earliest definitions of Systems Engineering (SE) was given by 

Ramo in 1973 where Ramo argued that there is a necessity of looking at the bigger picture and 

taking into account all aspects on every stage of a lifecycle, which include non-technical sides 

such as various social factors (Rhodes and Hastings, 2004). Chase in 1974 also spoke of SE as 

a way of looking at systems being developed as not separate components but a coherent 

whole (Chase, 1974). Thus, defining SE started with identifying the importance of looking at a 

broader picture while developing systems. 

Systems engineering definition evolved through time while scientists added some new aspects 

as well as making old definitions clearer. In his definition Eisner introduced iterative process 

as a compulsory part of any design process (Eisner, 2008). Holt spoke of SE simply as “the 

implementation of common sense” (Holt, 2004), although it is rather difficult to define the 
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meaning of “common sense”. Humans have also started to be seen as a component of SE 

(Hybertson and Sheard, 2008). 

Modern definition of SE was provided by International Council on SE (INCOSE) and in fact was 

seen to be a combination of various viewpoints – “An interdisciplinary approach and means 

to enable the realization of successful systems. SE integrates all the disciplines and specialty 

groups into a team effort forming a structured development process that proceeds from 

concept to production and operation” (Haskins, 2006). Systems engineering consists of a rich 

and useful set of principles, tools, and techniques. SE provides ways to deal with complex 

issued in understandable and quantitative terms (Kenett et al., 2019).  

Moreover, there are already references to “the old SE” and “the new SE” which arose in the 

beginning of 2010s (Tien, 2008), (Sheard, 2007). The main difference is that “the new SE” 

identifies already existent complex systems and their development patterns whereas 

“conventional SE” solves specified problem with design and solution. 

Thus, it is significant not to forget about the ongoing evolving nature of the core subject itself 

– systems engineering. 

2.3 Model-based systems engineering 

The term “model” is a key concept part of Model-Based Systems Engineering (MBSE), which 

leads to the fact there is a need to define the model itself at first. According to Rumbaugh, a 

model is identified as a representation of a certain part of the world, which captures needed 

important aspects and does not include irrelevant features (Rumbaugh et al., 2004). A model 

has to obtain three features: it has to be based on original, it has to reflect some properties 

accordingly and it has to have a purpose to be used in place of the original (Stachowiak, 1973). 
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MBSE is an emerging approach and considered to be one of the most advanced approaches in 

engineering (Rhodes, 2008). It is acknowledged that practice of MBSE is becoming more 

widely adopted in engineering, industry and academia (Holt et al., 2016). INCOSE defines 

MBSE as “a formalised application of modelling to support system requirements, design, 

analysis, verification and validation activities beginning in the conceptual design the phase and 

continuing throughout development and later life cycle phases” (Sillitto et al., 2018). The key 

aspect of MBSE is the system model which consists of all aspects of the system being 

developed and used to support the development process on every stage of a lifecycle from 

meeting requirements to integrating design engineering and engineering analysis. It is widely 

recognised that MBSE is going to become the most applicable new generation approach in SE 

allowing systems engineers to model any kind of systems and support development of any 

product type. 

Weilkiens provides a survey through leading MBSE methodologies (Weilkiens et al., 2016). 

There are numbers of methodologies but among them there is a Vitech MBSE methodology 

and INCOSE Object-Oriented System Engineering Method (OOSEM) which involve generation 

of a system model with numerous interacting components. 

Vitech methodology is based on four concurrently maintained SE activities that are linked 

together through a common System Design Repository (Morkevicius et al., 2017). It is 

necessary to adequately manage behaviour of model components whereas organised scheme 

or ontology is essential. OOSEM methodology utilises System Modelling Language (SysML) to 

support all aspects of systems engineering which is used alongside object-oriented 

methodology in a hybrid approach (Dickerson and Mavris, 2013). 

This research aims to develop new methods and tools for modelling logic and comparison 

between various MBSE methodologies lies beyond the scope of the thesis. Nevertheless, one 
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of the MBSE methodologies must be utilised since the field of interest is building 

improvements upon existing MBSE basis. Thus, OOSEM methodology has been identified to 

be the most suitable candidate now as it involves object-oriented mechanisms which are 

widely used in programming, MBSE and can be utilised to develop framework to achieve the 

research goal. Also, SysML is a key part of OOSEM and this particular language is going to be 

used in the research process. 

2.3.1 Systems Modelling Language 

Systems Modelling Language (SysML) is defined by OMG as “a general-purpose graphical 

modelling language for specifying, analysing, designing and verifying complex system that may 

include hardware, software, information, personnel, procedures and facilities” (“The Official 

OMG SysML site,” n.d.). 

Technically SysML is a language intended for systems engineers allowing them to model all 

aspects of systems engineering such as requirements, behaviour and structure. The main 

purpose of developing SysML is to unify various modelling languages that are used by systems 

engineers for better cooperation and understanding (Holt et al., 2016). The work comes from 

initiative by OMG and INCOSE (“INCOSE Model-Based Systems Engineering (MBSE) initiative,” 

n.d.). 

SysML is considered as a newly language although it shares a close relationship to Unified 

Modelling Language (UML). Indeed, SysML is based on UML and utilises same kind of diagrams 

used in UML. Nevertheless, UML was developed in 1997 and mainly aimed at software 

engineering which leads to the fact that SysML is more advanced, includes all advantages of 

UML and offers more for SE. SysML and UML relationship is illustrated in Figure 2-1. 
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Figure 2-1: Relationship between SysML and UML (Willard, 2007) 

Willard identifies usefulness of UML/SysML in SE field and recognises SysML as a step in right 

direction in evolution of modelling languages for systems engineering (Willard, 2007). SysML 

is considered to be a more advanced tool for systems engineers then UML which is intended 

more for software engineers. Additionally, SysML has a history of successful application in 

MBSE field (Holt et al., 2016). Thus, SysML is more suitable for the research. 

Nikolaidou further recognises growing significance of SysML and argues that additional 

diagrams used in SysML allow engineers to model more complex systems for systems 

engineering purposes (Nikolaidou et al., 2015). Moreover, it is emphasised that SysML is not 

a methodology itself but a tool that can be utilised in any environment. In fact, UML and/or 

SysML are implemented in most of MBSE methodologies (Wymore, 2018). 

There are nine diagrams in SysML, each of them represents certain aspects of a system model 

and can be utilised as a representation of a corresponding submodel/subsystem of the system 

model for the purpose of defining interactions between models. 
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2.4 Design automation and Knowledge Based Engineering 

According to Rosenfeld in 1989, Knowledge Based Engineering (KBE) “is software technology 

that provides a means of storing product of process information as a set of engineering 

attributes, rules and requirements. The rules and requirements can generate designs, tooling 

or process plans automatically” (Rosenfeld, 1989). Conventional computer-aided design (CAD) 

software works only with geometric data and do not capture ideas involved to generate this 

geometry. On the other hand, KBE systems capture the intent behind the product design – the 

how and why, in addition to the what of the design – and then use the model of engineering 

design processes to automate all or part of the process and reduce lead-time of the product 

development (Chapman and Pinfold, 1999). 

Thus, the idea of KBE is to utilise previously collected knowledge of product development for 

design automation. This is achieved by integration of this knowledge into the design process 

making this process easier to maintain and allowing new products development with higher 

quality in less time (Reddy et al., 2015). 

There is a number of KBE methodologies. One of objectives of the research is to review these 

methodologies to be able to understand how they deal with logic modelling. 

MOKA (Methodology and tools Oriented to Knowledge-based engineering Applications) 

describes in terms of rules, processes, modelling techniques and definitions, the necessary 

stages for the specification of KBE systems (Stokes, 2001). As shown by Perry, there are two 

levels in this framework: informal (formalisation of knowledge in language that can be 

understood by experts without being specialist in formalisation languages) and formal 

(representing and storing knowledge in an encoding form) (Perry and Ammar-Khodja, 2010). 
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The MOKA methodology takes structural division of knowledge into account for its 

representation and storing (Górski et al., 2016).  

KOMPRESSA (Knowledge-Oriented Methodology for the Planning and Rapid Engineering of 

Small-Scale Applications) is designed to develop small-scale KBE systems (Chapman et al., 

2007). It shares lots of principles with MOKA but makes a bigger emphasis on risk evaluation 

and management (Lindholm and Johansen, 2018). 

KNOMAD (Knowledge Nurture for Optimal Multidisciplinary Analysis and Design) 

methodology identifies drawbacks in MOKA and aims to place KBE techniques within the 

design process supporting it on every stage from knowledge capturing to knowledge retention 

and maintenance (Curran et al., 2010). 

Methodologies such as Design and Engineering Engine (DEE) (Rocca and Tooren, 2007) and 

Rapid Application Development (RAD) (Zhou et al., 2015)try to improve KBE process even 

further although they do not move away from utilisation of pre-defined relationships and 

hard-coded rules. 

All of these methodologies were successful (Reddy et al., 2015), (Chapman and Pinfold, 2001), 

(Sandberg, 2003) in improving KBE on different stages of its lifecycle by providing techniques 

for capturing, acquiring and analysing knowledge through implementing different ways of 

representing it diagrammatically and visually (KOMPRESSA) and creating formal knowledge 

representation models in MOKA. 

Most KBE systems are based on object-oriented programming (OOP), so they use special 

procedures called objects (Chapman and Pinfold, 1999), (Stjepandić et al., 2015). 

Methodologies behind OOP and KBE define these objects, what properties are assigned to 

them, how they interact and combined to form more complex objects.  
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2.4.1 Adaptive Modelling Language 

One of the most advanced modern KBE modelling frameworks is Adaptive Modelling 

Language(AML) from Technosoft (“Technosoft Inc. The Adaptive Modelling Language. A 

Technical Perspective,” n.d.). This approach enables multidisciplinary modelling and 

integration of the entire product and process development cycle. Computation in AML is 

innately demand-driven, utilizing automatic dependency tracking between objects and 

properties to compute only that which is required. In that perspective AML can be 

hypothetically used in combination with MBSE approaches for creating truly dynamic logic 

modelling techniques. 

2.5 Limitation in model-based systems engineering 

2.5.1 What is logic? 

With decomposition principle in place all the subsystems and components are maintained 

independently, therefore modelling of individual sub models is done simultaneously. Classic 

approach to model and increase understanding of a complex system, which can be any kind 

of process, product or organisation, is to follow three steps (Browning, 2001): 

1. Decompose main complex system into simpler subsystem and then into components 

about which we have more information. 

2. Distinguish relationships among the subsystems to understand system behaviour. 

3. Identify external influence on the system. 

In context of this research logic is defined as a way of interaction among different sub models 

included in the main system model in the process of development (Chapman and Pinfold, 

1999). Each of these models covers its own part of product development such as design 



2.0 Systems engineering and interaction modelling 

16 
 
 

engineering, requirements management, analysis, cost model etc. Any of these sub models 

can possess its own internal logic. 

2.5.2 Growing complexity in systems engineering 

In his book on SE Holt identifies “the three evils of engineering” as (Holt et al., 2016): 

• Complexity 

Large systems have large number of relationships between its entities and adding more of 

them make its complexity become significantly higher than it was previously. Figure 2-2 

illustrates this problem and a block-diagram is utilised to show the complexity increase with 

the addition of more relationships and rules where (c) is the most complex one. 

 

Figure 2-2: Complexity description through relationships 

• Lack of understanding 

Concept of “lack of understanding” can arise at any stage of a lifecycle beginning with 

formulation of requirements which will lead to issues during the development stage and after 

that even during the operation of a product. Friedenthal argues that understanding of a 

system model is a major factor (Friedenthal et al., 2014). Models have to be dynamic due to 

the fact that usually there is a need to look at the system only from a particular aspect of 
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certain design. The same thing can be said about overcomplicated models with lots of 

communication, rules and relationships. 

• Communication problems 

With the “complexity concept” in place another issue arise which is the communication 

problem. This can happen on any level, between several people, groups of people, companies, 

systems or different departments involved in process of development. This problem leads to 

lack of communication between different models which are parts of a main system model in 

MBSE. 

Three of these problems cannot happen on their own but they will generate one another. It is 

always significant to tackle these issues on early stages of lifecycle. It is highlighted that 

modern systems are becoming more and more complex and these issues persist (Mayfield et 

al., 2018). Thus, creating a proper dynamic model of communication between different 

models of MBSE is a needed step in the development of the corresponding field. 

Paul Goossens from Maplesoft identifies major challenged arising when designing and 

delivering dynamic in nature products (Goossens, 2016). The most significant one is the need 

to follow through the entire design process multiple times due to discovering serious design 

issues in the later stages of lifecycle. The worst possible option is identifying problems even 

after a system has been commissioned and sold to end customers. 

In a paper from European Southern Observatory main issues of system projects complexity 

are stated (Karban et al., 2014) as identified by NASA’s Jet Propulsion Laboratory (JPL) 

(Integrated Model-Centric Engineering (IMCE) Workshop for JEO, 2011). These issues consist 

of growing mission complexity, huge number of pieces in system design without exact 

architecture, losing knowledge at lifecycle stage boundaries and different technical sides 

communicating poorly. This shows growing complexity of modern models in MBSE. The author 
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argues that MBSE is an advanced modern approach and identifies SysML as a key for modelling 

and integrating all parts of systems engineering. Nevertheless, conventional V-model 

development is seen to be outdated as validation stage comes too late and it is almost 

impossible to deal with the design problems on later stages of a lifecycle as it basically means 

to develop everything from scratch once again. MBSE allows verification and validation of 

requirements, concept and full design on early stages of the lifecycle but proper means of 

communication between different parts of design process are required to be integrated in 

MBSE. 

The concepts of concurrent engineering require a large amount of coordination between 

engineers who focus on different parts of product development. Mayfield names this problem 

as “design management’s challenge” and identifies that engineers usually works in isolation 

(Mayfield et al., 2018). The reason behind this challenge is to break down complex tasks into 

simple subtasks that individual engineers can perform. Addressing all these subtasks 

simultaneously makes engineering truly parallel and concurrent (Martelo Gomez et al., 2018). 

Thus, transforming a complex problem into sequence of relatively simple sub problems and 

organising communication between all these sub problems make the project work and 

improve problem-solving mechanisms. 

Farnell identifies growth of engineering system in size, scope and complexity (Farnell et al., 

2019). Concurrent engineering is seen to be a philosophy which makes product development 

lifecycle more successful in its completion but lacks certain aspects like proper parallelism, 

decomposition and stability. 
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2.5.3 Inconsistencies in MBSE 

Finkelstein identifies inconsistency as a logical contradiction (Finkelstein, 2000). As an 

example of inconsistency in MBSE any technical statement which includes ambiguous 

definition can be considered. With complexity of systems in industry increasing through time 

modern approaches tend more to decompose main system model into simpler sub models. 

Thus, quite a lot of inconsistencies can arise when you arrange communication between all 

the sub models. 

Friedenthal recognises that design inconsistencies can arise especially when multiple people 

work on the same model (Friedenthal et al., 2014).To tackle this problem just a well-defined 

disciplined process is proposed which leaves space for human mistakes generating 

inconsistencies. The crucial point of the systems engineering development process is the need 

to study the systems from various viewpoints as different experts study the systems from their 

own perspective. These views might hold multiple interrelations and that might lead to 

potential inconsistencies (Herzig and Paredis, 2014). It was identified that in current MBSE 

practices managing inconsistencies is highly limited by the underlying methods and overall 

static representation nature (Sandhu, 2015). Currently some graph-based methods to 

distinguish inconsistencies are being developed but as the number of all possible 

inconsistency patters is infinitely large, the issue remains (Feldmann et al., 2019). 

Developing proper means for communication between all parts of MBSE process and stages 

of product development lifecycle will allow systems engineers to reduce quantity of 

inconsistencies and lower possible impact of mistakes in design originating from inconsistent 

management. 
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2.5.4 Development state of logic models in MBSE and lack of dynamism 

MBSE methodologies utilise logic models where interaction is modelled in the ways of hard-

coded rules, pre-defined relationships and strict mathematical expressions. Knowledge is 

being implemented into the model itself or broken-down during capturing stage into different 

parts, features, relationships and rules. 

It is implied that there are some further limitations present in MBSE regarding the system 

representation for addressing general behavioural aspects of the product development 

process (Graignic et al., 2013). Furthermore, it has been shown that MBSE methods and tools 

are able to integrate and manage not only requirements but also all other aspects of the 

development process – product design, development test and production. Indeed, MBSE is 

successful in achieving its aim – minimising risks and avoiding changes at the later stages of 

the lifecycle. Despite that, systems are becoming more complex and even though MBSE can 

most definitely be applied to many industrial applications, in practice large systems remain 

static and extra difficult to manage and maintain (Li et al., 2019). That shows the need for the 

improvements for the current MBSE methodologies to be able to diminish the complexity of 

the system and make it manageable on all the development stages and making the system 

more dynamic (Motamedian, 2013). 

Also, it was recognised that most MBSE approaches demand certain forms of code 

instrumentalism that prevents the use of dynamic verification through the development 

process (Sandhu, 2015). MBSE tools allow the division of the production into two separate 

processes – domain engineering and application engineering that further generates the gap 

between different engineers involved in the modelling process. 
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According to Chapman, successful commercial developments are felt not to be flexible enough 

to model the dynamic design engineering environment (Chapman and Pinfold, 2001). Work 

carried out by Reddy et al. recognises the scarcity of dynamic specific KBE methodologies 

(Reddy et al., 2015). Moreover, Lolli argues that “blind spots” exist in logic because of the fact 

that pre-described set of rules can’t prove to be useful in every situation (Lolli et al., 2014). 

This identifies shortcomings of current methodologies and shows the potential of their 

improvement in the area of dynamic logic development. 

2.5.5 Research gap summary 

In summary, the outcome of the literature review has identified research gaps that need to 

be addressed. Logic in context of this research is seen as an interaction between different sub 

models forming the main system model. The survey through existing systems engineering 

trends shows that major issues in the engineering process which include growing complexity, 

lack of understanding, communication problems, and inconsistent management. 

Thus, the research gaps are: 

• Interactions are hard-coded in the form of rules, relationships or mathematical 

expressions not providing enough flexibility in the design process. 

• Logic is not dynamic leading to bulky rules/mathematical expressions systems with many 

unused parts in the logical tree process. 

• Growing complexity of current system models leads to a high possibility of inconsistencies 

existence in the form of logical contradictions which must be dealt with on all stages 

of a lifecycle. 



2.0 Systems engineering and interaction modelling 

22 
 
 

• Different models in MBSE uses different forms of interaction models in its structure. 

Therefore, universal way for dynamic modelling of the systems interaction is not existent. 

2.6 Research questions and hypotheses 

The objective of this section is to go from the statement and description of the problem and 

gaps to developing research questions and hypotheses for a possible solution approach. As 

discussed in Chapter 1, the primary question that motivated this research is as follows: 

How can the organisation of the interactions among the sub systems be analysed in MBSE 

for the purpose of solving complexity issues such as lack of communication and lack of 

understanding? 

Having explored and discussed this question, key research gaps have then been identified and 

presented in the previous sections. 

Based on the literature review presented in this Chapter, it was concluded that existing MBSE 

methodologies and approaches do not provide enough capabilities to effectively analyse and 

model the interactions among sub systems of the main system model. That leads to the 

formulation of the primary research hypothesis. Also, based on the original research 

hypotheses, the additional research question is posed for this research stating its own 

hypotheses. 

2.6.1 Research Question 1 and Hypothesis 1 

Research question 1: How can the organisation of the interactions among the sub systems be 

analysed in MBSE for the purpose of solving complexity issues such as lack of communication 

and lack of understanding? 
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Research hypothesis 1: The new methods and tools for modelling interactions in MBSE can 

improve the effectiveness of interactions analysis MBSE by: 

• Creating the common interaction module storing all information on interactions and 

relationships among the sub systems. 

• Formalising the interactions definitions and generating new dynamic ways of tracking the 

relationships among system model components. 

2.6.2 Research Question 2 and Hypothesis 2 

Research question 2: How can the new dynamic ways of interactions modelling improve and 

enhance the existing MBSE methods and static ways – hard-coded rules, pre-defined rules, 

relationship and mathematical expressions? 

Research hypothesis 2: The new methods and tools for modelling interactions can improve the 

existing MBSE techniques in such a way that the interaction model can be reused at any stage 

of the development process by: 

• Using a general formalism to describe the concept and the interaction knowledge storage. 

• Automatically tracking changes in the main system model and its sub systems and 

propagating changes to the other model components. 

• Providing capabilities to track interactions and relationships when performing various 

changes on all stages of the development lifecycle. 
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2.7 Need for interaction modelling automation and expected contribution to knowledge 

The interaction modelling addresses critical research gaps in effectively modelling interaction 

among sub systems and components in the main system model in MBSE methodologies.  

From the literature review conducted through this work, it is evident that there are many 

MBSE methodologies present in the current state of systems engineering. Also, from the 

description of the methods it can be distinguished that there are similarities between them. 

Each of the MBSE methodologies is successful in providing systems modelling capabilities to 

some extent based on the needs of a systems engineer (Weilkiens et al., 2016). However, the 

interactions are defined in the same manner and there is no automation mechanism used in 

the methodologies.  Changes propagation is performed by all methods but ultimately leaves 

the changes tracking to the systems engineer to do it manually. With growing complexity, it 

becomes impossible to take everything into account, resulting in the lack of understanding of 

the design process on different stages of the development lifecycle and errors in design that 

might lead to redoing many things from scratch. The literature also shows that MBSE 

methodologies and associated methods pre-define the relationships between components of 

the main system model in form of hard-coded rules and constraints making systems not 

dynamic and leading to the drastic growth of overall system complexity (Shekar et al., 2011). 

The development of any engineering system highly depends on quality, time and cost of the 

product (Chapman and Pinfold, 1999). Ultimately, MBSE methodologies provide the means to 

diminish times required to develop better quality in less time but fail to fully automate that 

process and still leave room for many mistakes based on unanticipated changes in some 

components while changing other models, values or relationships. Knowledge based 

engineering extends the automation capabilities but even though they are successful in 

making design knowledge reusable in new design processes, literature review of the current 
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KBE methodologies shows that they also require a lot of manual modelling and deep 

understanding of the whole project by everyone involved in the process of development 

(Rocca and Tooren, 2007). A similar understanding of KBE and MBSE methodologies 

limitations is discussed in the graph-based design languages paper (Gross and Rudolph, 

2016a). 

With regards to solving the interaction modelling issue, a research conducted by Albers (Albers 

and Zingel, 2013) provided some background information. Unfortunately, author 

acknowledges the fact that a lot of advancements are still needed for MBSE methodologies in 

product development processes to make changes propagation easier and more convenient 

for systems engineering. The relationships among sub systems are presented with pre-defined 

rules with not enough flexibility in the design process. The author distinguishes the need for 

extending existing methodologies and developing central model for controlling interactions in 

model-based systems engineering environment. 

The need for developing central model is further discussed by Rudolph and Gross (Groß and 

Rudolph, 2012). Designing modern complex systems includes solving a huge amount of 

problems among different interacting engineering domains (Madni and Sievers, 2018b). Thus, 

it is significant to construct proper data exchange mechanism between different engineering 

models to allow easy and convenient way of propagating changes in one model to all other 

models and track these changes beginning in early stages with conceptual modelling. 

2.8 Summary 

In this chapter review of the current state of systems engineering is provided. Initially, 

understanding of the existing systems engineering, model-based systems engineering, and 

design automation techniques is shown. The chapter further discusses the tools and software 
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that are available for performing systems engineering such as SysML. Even though model-

based systems engineering has been successful in its attempt to allow engineers to reduce 

systems complexity, significant research gaps were identified that interactions among 

subsystems are modelled manually in the form of hard-coded rules and pre-defined 

relationships. Based on the research gaps and the motivation, the research questions were 

formulated with corresponding hypotheses of how to provide an answer for them. The need 

for the interaction modelling automation is discussed based on the findings from the literature 

and expected contribution to knowledge is provided. That clearly shows that current logic 

modelling in systems engineering is limited and interaction modelling framework is needed, 

which fills the research gaps and answers the research questions. That leads to the next 

chapter that further discusses the state of the interaction modelling in the current engineering 

applications and introduces graph-based modelling approaches. 
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3.0 Graph-based systems modelling 

3.1 Introduction 

This chapter outlines the major aspects of the graph theory, which is a basis for the 

methodology developed in this research. Key graphical constructs are identified, and their 

own advantages and disadvantages are discussed. Next, the comparative analysis of all the 

graphical structures is provided where the best applicable concept is derived, which is a 

metagraph. Then the theory behind metagraphs utilisation for systems modelling is provided 

with examples of existing research and applications. Also, the related research is further 

discussed with the introduction to the graph-based design languages being developed. Finally, 

the applicability and the need of the metagraphs concept is discussed while concluding the 

chapter. 

3.2 Graph theory 

Literature review shows that graph theory is widely utilised in engineering and provides many 

functional capabilities for systems engineers. Deo highlights the usefulness of different 

graphical constructs in various engineering and computer science applications (Deo, 2017). 

Walter provides the information on utilising graph theory representation of engineering 

systems and their knowledge (Walter et al., 2019). Moreover, Basu and Blanning discuss the 

effectiveness of using graph and their extensions, such as metagraphs, in modelling decision 

support systems (Basu and Blanning, 2007). That leads to the clear idea that graphs provide 

extensive capacity to be used in the systems engineering field and be applied in modelling of 

sub systems, components and interactions among them in MBSE.  
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3.2.1 General definitions 

Graph itself is a “representation of a set of objects where some pairs of objects are connected 

by links. The interconnected objects are represented by mathematical abstractions called 

vertices (also called nodes or points), and the links that connect some pairs of vertices are 

called edges (also called arcs or lines)” (Tutte, 1984). 

Herzig recognises graphs as the best way of model representation and utilisation (Herzig et 

al., 2014). Every statement is divided into three parts – subject, predicate and object, vertices 

of a graph stand for subject and object as directed labelled edge is a predicate between subject 

and object (Giarratano and Riley, 1998). Graph visual representation is illustrated in 

Figure 3-1. For finding inconsistencies in MBSE Herzig proposes exact matching problem of 

graph patterns to determine whether or not ambiguous definition of a property exists. 

 

Figure 3-1: Graphs as a way of model representation (Herzig and Paredis, 2014) 

Heckmann recognises the fact that any big system with numerous related entities can be 

modelled by some kind of a graph (Heckmann et al., 2015). By utilising graph constructs 

number of benefits is provided. First of all, basis for use of graphs is the reason that it is an 

effective way to represent, visualise and understand very complex systems. This might not be 

possible with conventional system description techniques either text-based or formal ones, 

which are useful only to those who can understand utilised formal language. Secondly, formal 

properties of graph structures provide one of the most applicable ways to analyse structure 
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and behaviour of complex systems. The further usefulness of graph theory in application to 

systems engineering is highlighted by applying it to explore complex system of systems 

architecture (Potts et al., 2017). 

The main reason behind the use of the graphs is the fact that they provide effective means to 

represent, visualise and maintain very complex systems that might not be possible with 

standard text-based or formal description methods useful only to those who can understand 

corresponding formal language or familiar with the organisation of corresponding text-based 

document. Additionally, use of graphical structures present applicable ways to analyse 

structure and behaviour of complex systems. 

3.2.2 Comparative analysis of graphical structures 

There are a number of different graphical constructs applicable to various areas. Therefore, 

there is a need to distinguish among them the best methodology for the purposes of this 

research. To solve this problem a comparative analysis of different graphical constructs was 

performed with the help of literature. For this comparison the following list of criteria were 

identified: 

• Visualisation – shows model representation capabilities. 

• Directionality – implies that current graphical construct has means for showing directions 

of each input-output dependencies. 

• Model composition – displays whether we have enough information to determine set of 

variables involved in each relationship. 

• Multiple inputs/outputs – represents capabilities of each graphical construct to deal with 

multiple inputs/outputs in relationships. 
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• Simple algebraic form – shows that graphical construct has algebraic form representation 

that can be utilised to some extent in programming and this graphical construct 

application. 

• Multiple components – implies that graphical construct has developed theory for dealing 

with multiple interacting components. 

Based on the example set of interacting variables it is possible to perform comparative analysis 

of different graphical constructs that can be utilised for modelling interaction among these 

variables (Basu and Blanning, 1995). This example is shown in Figure 3-2. 

 

Figure 3-2: Graphical representation of a set of interacting variables 

(a) Simple graph, (b) Directed graph, (c) Hypergraph and (d) AND/OR graph 

Simple graph provides a good visualisation that can be utilised to show that a link between 

some variables exists but fails in providing information about the direction of existing 

relationships. Directed graph, in addition to showing the relationships among entities, 

includes the direction of the input-output dependencies. Thus, we know that some variables 
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determine other variables but we still do not have enough information about the composition 

of models to determine particular variables. 

The more sophisticated concept such a hypergraph is seen to be even more advanced way 

that can be utilised in systems engineering. Hypergraph handles any generalised object that 

represents physical or abstract properties: particles, states, points in space etc. Analytical 

representation in the matrix form can be comfortably used by the computer and easily 

modified according to the needs of a particular system. Gazdik’s analysis of modern graph 

approaches shows that hypergraph has to be considered as one of the most adaptable tool 

for modelling systems (Gazdík, 2006). That is further confirmed by more recent studies carried 

out by Bruza (Bruza, 2018).  

Hypergraph representation provides additional capabilities to determine the set of variable 

relevant to each relationship as a single hypergraph edge covers all the variables involved in 

particular interaction. However, hypergraph does not provide enough information to 

determine outputs and inputs in each relationship. A possible solution to this is to label all the 

variables/nodes of a hypergraph but it can be rather difficult for variables involved in different 

models simultaneously. Additionally, Basu provides discussion on existence of directed 

hypergraphs that are helpful to overcome identified problems.  

Directed hypergraphs can be used to overcome identified problems although theory of 

directed hypergraphs has been developed mostly for modelling relationships among 

individual elements and we aim to model interaction among large quantity of components. 

AND/OR graphs combines advantages of both previous graph constructs but in some 

situations, where model has multiple outputs, requires multiple edges and becomes too 

difficult. Harel explains that in Higraphs variables are grouped into special objects called 

“blobs”, which can be additionally grouped into higher-level blobs and so on (Harel, 1988). 
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Thus, these blobs can be sets of variables, sets of sets of variables etc., where edges connect 

one blob to another blob. Higraph is a useful and flexible graphical structure but requires very 

difficult mathematical concepts to represent it. 

Summary of this comparison together with directed hypergraphs and hierarchical graphs 

(Higraphs), which were introduced in section 3.5, is shown in Table 3-1. 

Table 3-1: Comparative analysis of graphical constructs 

Criteria 
Simple 
graph 

Directed 
Graph 

Hypergraph 
AND/OR 

Graph 
Metagrap

h 

Directed 
hypergrap

h 
Higraph 

Visualisation + + + + + + + 

Directionality – + – + + + + 

Model 
composition 

– – + + + + + 

Multiple 
inputs/outputs 

+ + – – + + + 

Simple 
algebraic form 

+ + – – + + – 

Multiple 
components 

+ + + + + – + 

Pluses (+) in the table mean that corresponding graphical construct has capabilities to meet 

the developed criteria whereas Minus (-) means the opposite. 

Thus, all these constructs can be useful to some extent in numerous scientific areas but each 

of them fails to cover all aspects of models interaction. This includes direction representation, 

input/output identification and overcoming inconsistencies problems that can exist if we work 

with multiple models with large number of interacting variables involved in numerous models 

simultaneously. To solve this problem, it is possible to utilise a more sophisticated graphical 

construct known as metagraph.  
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3.3 Metagraph definition 

Metagraphs, an extension of directed graphs and hypergraphs, differ from conventional 

graphical constructs as each edge is an ordered pair of sets of elements, not an ordered pair 

of elements as in directed graphs or an unordered set of one or more elements as in 

hypergraph (Basu and Blanning, 2007). Metagraphs are considered to be a powerful method 

for decision support systems as they can be utilised for interaction between components 

analysis no matter what these components are, models, relationships  

or rules (Basu and Blanning, 1999). 

Nodes or elements of a metagraph represent the variables and the edges represent 

calculation procedure of models. Example metagraph is shown in Figure 3-3. This example 

represents the same model, which was used for comparative analysis of different graph 

structures in section 3.2. 

 

Figure 3-3: Example metagraph 

Here metagraph consists of 7 elements and 5 edges and each edge provides full information 

on scope and direction of every relationship. For example, edge e5 shows that knowing 

variables TCOST and LSLS is enough to fully determine variable CAP, which makes TCOS and 

LSLS invertex of e5 and CAP its outvertex.  
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3.3.1 Metagraph properties 

Path. The one of the important aspects of metagraphs is a path that is a sequence of 

metagraph edges. First element of each path is its source whereas end of a path is its target. 

The source is a part of the invertex of the first edge in the path, the target is a part of the 

outvertex of the last edge in the path and the length of the path is number of edges in it (Basu 

and Blanning, 2007). For any adjacent pair of edges invertex of the first edge and outvertex of 

the second edge have at least one element in common. Paths not necessarily provide enough 

information to determine a target from its source as some other variable might be needed 

and these variables are called coinput of the path’s target. 

Metapath. However, concept of the path is not sufficient to describe all calculations in 

metagraphs. Figure 3-4 shows a metagraph, which contains two paths {sls, fin} and {cost, fin} 

but both paths do not have null coinput and do not provide enough information to calculate 

NI out of INFL. Thus, variable INFL, both edges sls and cost and edge fin form general 

instrument of metagraph connectivity called a metapath. Like a path, each metapath consists 

its source, which is an origin set of elements, and a target, which is a final set of elements. 

Metapath has three key properties: each edge of a metapath is on a conventional path from 

an element in metapath’s source to an element in metapath’s target, set of all elements in the 

invertices of the edges of the metapath that are not in the outvertex of some edge in the 

metapath are contained within metapath’s source, set of elements in the outvertices of all the 

edges in the metapath contains a target. 
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Figure 3-4: Metagraph with a Metapath 

Metapath is considerably different from a conventional path as edges do not have to be put 

in sequence, which allows designer to model parallel calculation procedures. Also, source and 

target of a metapath are sets of elements so there is no need for considering the coinput for 

metapaths as all the necessary information for calculation is contained inside a metapath. 

For small metagraphs it is easy to determine path and metapaths visually but for modelling 

real and large systems this can be done with the use of an adjacency matrix. 

3.3.2 Model as a metagraph 

In the metagraph view of models each model is represented as an edge with inputs as invertex 

and the outputs as outvertex. Yet, the main issue is connectivity, which implies that there 

might be lack of existence of one of more metapaths connecting a source set of elements to 

a target set of elements. This means that the corresponding models must exist if the source 

elements can be utilised to calculate the target elements. To overcome this issue, we need to 

distinguish whether there are any bridges, which are the intersection of all metapaths, and if 

there are more than one metapath between invertex and outvertex. 

Simple example model base is illustrated in Figure 3-4 (Basu and Blanning, 2007). There are 

four variables: INFL stands for inflation rate, REV are the revenues, EXP are the expenses and 

NI is the net income. Also, there are three models, which are represented by three edges: sls 

is a sales model that calculates REV out of INFL, cost model cost that calculates EXP from INFL 

and financial model fin, which determines NI from REV and EXP. 
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Table 3-2 shows the adjacency matrix A for this simple metagraph. From this matrix we can 

distinguish in simple manner that sls and cost models do not have coinputs or cooutputs but 

NI column of the matrix defines that financial model fin takes both EXP and REV as inputs and 

produces NI as output, which means that EXP is a coinput of 𝑎REV,NI and REV is a  

coinput of 𝑎EXP,NI. 

Table 3-2: Adjacency matrix A for Figure 3-4 

 INFL REV EXP NI 

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>} ∅ 

REV ∅ ∅ ∅ {<EXP, ∅, <fin>>} 

EXP ∅ ∅ ∅ {<REV, ∅, <fin>>} 

NI ∅ ∅ ∅ ∅ 

The closure of the adjacency matrix A* is shown in Table 3-3. 

It completes adjacency in a way that it shows the smallest relations among the elements. From 

this closure, we can determine that there are only two simple paths of length more than 1 - 

<sls, fin> and <cost, fin> and there is no sequence of models connecting INFL to NI that is free 

of coinputs. For that purpose, there is a metapath {sls, cost, fin} connecting INFL and NI, which 

shows the advantage of representing model bases as metagraphs and defining metapaths that 

can define connectivity where simple paths fail to do so. 
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Table 3-3: Closure A* of the adjacency matrix for Figure 3-4 

 INFL REV EXP NI 

INFL ∅ {<∅, ∅, <sls>>} {<∅, ∅, <cost>>} 
{<{EXP}, {REV}, <sls, fin>>, 

<{REV}, {EXP}, <cost, fin>>} 

REV ∅ ∅ ∅ {<EXP, ∅, <fin>>} 

EXP ∅ ∅ ∅ {<REV, ∅, <fin>>} 

NI ∅ ∅ ∅ ∅ 

Main advantage of a metagraph is a general, non-procedural formalism that defines all 

properties such as reachability, connectivity and transitive closure. This formalism can be 

utilised to distinguish coinputs, cooutputs of any path or metapath. Also, metagraphs provide 

convenient mathematical way of defining metapaths with the use of an adjacency matrix as 

discussed earlier. 

This further shows applicability of metagraphs for model organisation and logic management. 

Thus, this research currently identifies metagraphs as a basis upon which the desired 

framework can be most reasonably developed. Graphs extensions, such as hypergraphs and 

metagraphs, provide all sorts of potential to be applied for modelling systems interaction. 

3.3.3 Metagraphs, directed hypergraphs and hierarchical graphs (higraphs) 

Metagraphs, directed hypergraphs and higraphs share similar capabilities and from a 

visualisation point they appear close as shown in Figure 3-5. 

For directed hypergraph useful notions such as metapath, coinputs and cooutputs have not 

been developed as theory of directed hypergraphs has been developed mostly for modelling 

relationships among individual elements. 

Basu cites Harel and explains that in higraphs variables are grouped into special objects called 

“blobs”, which can be additionally grouped into higher-level blobs and so on (Harel, 1988). 

Thus, these blobs can be sets of variables, sets of sets of variables etc., where edges connect 
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one blob to another blob. Higraph is a useful and flexible graphical structure but requires much 

more difficult mathematical concepts to represent it, therefore metagraphs are found to be 

more adequate for systems engineering purposes. Nevertheless, one cannot forget about the 

higraph existence and its capabilities. 

Higraph and directed hypergraph capabilities in comparison with metagraphs are shown in 

Table 3-1. 

 

Figure 3-5: (a) Metagraph, (b) directed hypergraph and (c) hierarchical graph 

representation of the same system (Basu and Blanning, 2007) 

3.3.4 Metagraph applicability 

According to Basu, a number of features are needed in representing interactions among 

multiple models such as directionality representation, visualisation capabilities, 

understanding sets of variables involved in each relationship and formalised algebraic 

representation (Basu and Blanning, 2007). Thus, metagraphs support all these features and 

prove to be applicable for the purposes of the current research. 

It was identified from the literature that metagraphs can be applied to data and rule 

management, where rule bases can be represented as metagraphs and integrated into 
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models. Moreover, workflows and processes can be modelled with the use of metagraphs. 

Metagraphs are considered to be a powerful method for decision support systems as they can 

be utilised for interaction between components analysis no matter what these components 

are, models, relationships or rules (Skvortsova and Grout, 2018). 

The other application of metagraphs is in the field of complex systems and software 

engineering and deals with the semantic complex event processing (Gapanyuk, 2019). The 

goal is to develop an engine to distinguish meaningful events in the form of complex 

situations. Metagraph model is used as a single model for describing semantic events, complex 

situations and global ontologies, and makes it possible to construct hierarchy of dynamic 

metagraph agents. 

Also, metagraphs are successfully used in machine learning applications and neural networks 

(Sankar et al., 2019).  Metagraph approach is utilised to extract features from local 

metagraph-structured neighbourhoods and to capture semantic higher-order relationships in 

attributed heterogeneous information networks. These networks consist of multiple nodes of 

different types interconnected through various semantic relationships. That shows how 

metagraphs are applicable in the systems with multiple interacting components. 

Main advantage of a metagraph is a general, non-procedural formalism that defines all 

properties such as reachability, connectivity and transitive closure. This formalism can be 

utilised to distinguish coinputs, cooutputs of any path or metapath. Also, metagraphs provide 

convenient mathematical way of defining metapaths with the use of an adjacency matrix as 

discussed earlier. 
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Thus, this research identifies metagraphs as a basis upon which the desired framework can be 

most reasonably developed. Graphs extensions, such as hypergraphs and metagraphs, 

provide all sorts of potential to be applied for modelling systems interaction. 

3.4 Design structure matrix 

3.4.1 Decomposition principle 

According to “decomposition” principle of concurrent engineering, complex systems often can 

be divided into a number of more simple subsystems that are utilised to correspond to one or 

several tasks (Yassine and Braha, 2003). Then subsystems can be decomposed into completely 

independent components for further simplification of the main system model. All the 

subsystems and components are maintained independently, therefore modelling of individual 

submodels is done simultaneously. Yassine implies that proper decomposition of a complex 

system into simple manageable parts allows to boost product development efficiency by 

making engineering concurrent and easier maintainable on all phases of a life cycle. 

3.4.2 General concept 

There is another concept applicable to managing complexity in SE - Design Structure Matrix 

(DSM), which became a popular representation and dependency analysis tool. Browning 

identified growing popularity of this technique (Browning, 2015). DSM represents the 

interactions between different components of a system in a matrix form, advantageous for 

logic analysis in SE. DSM itself is a square matrix, as shown in Figure 3-6. Rows, columns and 

diagonal elements are identical and stand for different system components. Each non-

diagonal mark represents dependency existence between two components in one way or 

another. Going across a row reveals what other elements this component affects (output 
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sinks), while going down a column shows what other elements this component depends on 

(input sources). 

 A B C D E F G H I 

Element 

A 

         
Element 

B 

●  ● ●  ●  ● ● 
Element 

C 

● ●   ● ●  ● ● 
Element 

D 

● ●   ●  ● ● ● 
Element E ●  ● ●   ● ● ● 
Element F  ● ●       
Element 

G 

   ● ●     
Element 

H 

 ● ● ● ●     
Element I ●  ●  ●     

Figure 3-6: Example DSM 

Zhang identifies that DSM approach helps to manage complexity in projects (Zhang et al., 

2019). DSM itself is a useful matrix representation of a directed graphs that can be integrated 

in the development process. Author implies that for better system structure transparency and 

understanding DSM matrix can be partitioned, which includes identification of tasks series 

that can be executed sequentially. 

Although partitioning is an effective way for organising DSM matrix, and therefore managing 

complexity, it is useful mostly when the elements are direct tasks. When these elements are 

people controlling the tasks or subsystems of a larger complex system, the process called 

clustering is utilised. Clusters are special combinations of elements, where all the interaction 

is done inside of a cluster, minimising links to other clusters. An example of clustering is shown 

in Figure 3-7. 
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 A B C D E F G   A F E D B C G   A F E D B C G 

A A ●   ● ●   A A ● ●      A A ● ●     
B  B  ●   ●  F ● F ●      F ● F ●     

C  ● C ●   ●  E  ● E ●     E  ● E ●    
D  ● ● D ●  ●  D   ● D ● ● ●  D   ● D ● ● ● 
E    ● E ●   B    ● B  ●  B    ● B  ● 
F ●    ● F   C    ● ● C ●  C    ● ● C ● 
G  ● ● ●   G  G    ● ● ● G  G    ● ● ● G 

(a) (b)       (c) 

Figure 3-7: Example DSM: 

(a) Base DSM; (b) Clustered DSM; (c) Alternative Clustering DSM 

Overall Yassine implies that DSM method helps to control complexity and makes a better 

formal representation of the interactions among different subsystems. Clustering and 

partitioning allow to minimise needed quantity of iterations, which as well leads to reducing 

complexity. 

Tang identifies that DSM approach is able to help knowledge based engineering by utilising 

DSM-based change propagation analysis (Tang et al., 2010). This analysis can distinguish all 

possible indirect dependencies or interactions among system sub models with the help of 

DSM matrix. With all possible change options identified the knowledge about corresponding 

changes can be brought in advance, which is useful for design automation and prevents 

mistakes and inconsistencies in the design process. Although DSM approach is helpful for 

redesign process, only structured design knowledge can be addressed in the matrix, while 

unstructured knowledge must be organised at first. 

3.4.3 DSM applicability and connection with graph theory 

DSM offers a good way of models interaction representation in matrix form, which is 

comfortable and applicable for programming. It is worth noting that there is a strong 

connection between DSM and a graph, which is shown in Figure 3-8. Therefore, utilising DSM 

in combination with metagraphs will provide further benefits for systems modelling. 
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Figure 3-8: Example DSM (Yassine and Braha, 2003): 

(a) Directed graph; (b) Base DSM; (c) Partitioned DSM 

3.5 Graph-based design languages 

Complexity in spacecraft design is identified through the discussion of graph-based design 

languages and the requirement of new ways for solving complexity problems are distinguished 

(Gross and Rudolph, 2016a). In addition to that, designing modern complex systems includes 

solving a huge amount of problems among different interacting engineering domains (Gross 

and Rudolph, 2016b). Thus, it is significant to construct proper data exchange mechanism 

between different engineering models to allow easy and convenient way of propagating 

changes in one model to all other models and track these changes beginning in early stages 

with conceptual modelling. Data exchange process general view is shown in Figure 3-9. 

  

Figure 3-9: Data exchange process (Gross and Rudolph, 2016b) 

One way of solving this problem is the use of a central model to govern all interactions and 

data exchange among different models, which is shown in Figure 3-10. 
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Figure 3-10: Central data model (Gross and Rudolph, 2016b) 

Design graph approach is introduced in application to open FireSat example and provides 

design graph generation for FireSat example, where nodes are instances specifications (UML 

Classes) and edges are links between those instances (Gross and Rudolph, 2016c). Required 

equations for conceptual design of a satellite are provided by Wertz, where in graph-based 

design languages they are defined by edges of the design graph (Larson and Wertz, 2008).  

Design graph itself represents an analytical model and it is possible to analyse it in several 

ways, one of them being graphical representation of the solution sequence for the whole 

equation system. 

Another application of the design graph approach is enhancing the maintenance capabilities 

of virtual commissioning digital models (Kiesel et al., 2017). An example design graph of a 

robot cell is shown in Figure 3-11. In this case a robot cell consists of 6 axis robots and only 

needs the functionality to manage the connections among the inputs and outputs of the 

robots. The example design graph is a fragment of a larger graph as indicated by dashed 

elements. 
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Figure 3-11: Robot Cell example design graph (Kiesel et al., 2017) 

Overall graph-based design language has been demonstrated as a useful way of representing 

entire design by a complex equation system revealing all the design dependencies along the 

design process. Keeping large and complex system manageable by assembling all its parts by 

rules and dependencies is an important process (Gitelman et al., 2017). Graph view of 

variables involved in the development process and interactions among them provides a 

comfortable way of analysing systems in their current state. 

Although even one missing constraint or rule can lead to the entire equation system being 

unsolvable with no way of searching for the error, where one minor change in one subsystem 

can lead to an uncontrollable chain of changes. The same is applicable to inconsistencies in 

the design process, which often exist on different stages of a lifecycle. Therefore, in our study 

we aim to utilise such graph-based approaches that can not only represent the design in every 

moment but also be reliable and help design engineers to keep track of all the changes on 

every stage of a lifecycle automatically. 
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3.6 Summary 

This chapter introduced graph theory concepts and provided the general understanding of 

their utilisation in the systems engineering field. Based on the graph theory methods review 

the current chapter discussed the potential use of the graphical structures for achieving the 

aim of the research. The chapter explained the various graph constructs, their advantages and 

disadvantages and potential utilisation in systems engineering for systems modelling. The 

selection process of the most applicable graphical construct for this research purposes is 

provided. The chapter shows the understanding of metagraphs as the best suitable approach 

for modelling interactions in systems engineering. Metagraphs provide all necessary 

functionality for modelling interactions automatically based on the current research purposes. 

Moreover, it further highlighted the need for the systems interaction automation in 

engineering with links to the related research in the field based on graph-based design 

languages. Two previous chapters cover all aspects of the current methodologies used in 

MBSE and how they deal with interaction modelling. Also, findings from the current chapter 

clearly show the applicability of metagraphs for the purpose of this research. The outcomes 

of Chapters 1-3 are reflected in the papers from the list of publications (Filimonov et al., 2020), 

(Filimonov et al., 2016). The next chapter extends the findings and formulate the actual 

methodology framework based on the use of metagraphs and systems engineering 

methodologies. 
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4.0 Interaction Modelling Framework 

4.1 Introduction 

Previous chapters have provided an overview of current systems engineering methodologies, 

their comparison and applicability to the purpose of this research. It was identified that 

currently there is no appropriate methodology to automate the interaction process. From 

Chapter 3 it was concluded that graph theory helps modelling interactions in model-based 

systems engineering environment. It was further shown that metagraph is the most applicable 

concept to cover the research gaps. Hence, there is a need to develop a framework or method 

that helps to model interactions among different models. First, this chapter presents the 

research methodology and research plan. Then it proceeds with an interaction modelling 

framework, its requirements, and other infrastructural aspects. It discusses all phases of the 

methodology based on conclusions drawn from previous chapters. 

4.2 Research methodology 

The aim of this research is to identify and develop methods and tools for creating dynamic 

ways of modelling logic in form of systems interaction for reducing complexity in MBSE 

environment. The purpose of this research is to address both practical and theoretical issues 

of the interaction modelling in the existing MBSE methodologies. It is required to identify 

overall approach of the research based on the most applicable methods (Flick, 2015). This 

involves the ability to improve quantitative parameters of systems engineering, such as time 

needed on each stage of the development life cycle. Moreover, quality of life improvements 

are required for making development process easier by reducing its complexity and providing 

systems engineers a framework for being able to observe the system behaviour when various 

changes occur in one of the system model sub models. Therefore, for the purpose of this 
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research a combined method utilising both qualitative and quantitative information and 

techniques is adopted. It is known as “mixed method” and according to Creswell, “a mixed 

methods approach is one in which the researcher tends to base knowledge claims on 

pragmatic ground” (Creswell, 2013). 

This research includes two use cases, which are examples of development of real-life industry 

objects gathered from the literature. One is the general automobile acceleration analysis and 

the other is the standard CubeSat systems development example. They are represented by 

their project description and SysML diagrams with all the necessary parameters, relationships, 

interactions, and logic. The research utilises the use case approach. Even though case studies 

have been criticised in the past as lacking scientific robustness and not addressing general 

outcomes of the research, it has been reiterated and noted by many authors as appropriate 

technique when dealing with evaluation within the complex research (Noor, 2008).  

The qualitative and quantitative data from these use cases is then utilised for the verification 

and evaluation purposes. Modern systems engineering models are becoming more complex 

with appearance of a large amount of sub models showcasing smallest details of the 

development process. These systems are the subject of this research and it has been 

acknowledged that complex models are difficult to analyse so there is a need to create an 

appropriate amount of test cases that interpret sufficient behavioural aspects of the systems 

(Zhu et al., 2018). 

Use cases data is used to develop five unique scenarios for each use case that results in the 

comprehensive analysis based on essentially 10 different scenarios for the parametric and 

qualitative evaluation. According to the fundamentals of the research design (Ramdhani and 

Ramdhani, 2014), the amount of data needed for an effective evaluation depends on the 

systems being researched, their parameters, possible behaviour and the expected evaluation 
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outcome. Even though mixed method research is essentially more complicated than a single 

qualitative or quantitative method, it is supposed to drastically improve the results’ validity 

and reliability. Also, it presents means to observe data convergence or divergence in 

hypothesis testing (Abowitz and Toole, 2010). Therefore, the author implies that having 10 

different scenarios provides sufficient data for verification and evaluation purposes. It covers 

all possible and necessary types of changes in system models and accommodates enough 

information for the data convergence. Ultimately it is expected to fully justify framework 

effectiveness based on the evaluation outcome. 

4.3 Research plan 

 

Figure 4-1: Current thesis research design 

Identify research methodology, leads to the formulation of the research plan, and Figure 4-1 

shows the research plan adopted for this research. The whole process is broken down into 

three stages starting with literature review, proceeding to the methodology framework 
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development, and then finishing up with the evaluation of the framework. To be able to 

construct a well-designed framework that fulfils the aim of this research, detailed literature 

review was necessary and was carried out, presented and discussed in chapters 2 and 3. 

Thorough analysis of various model-based systems engineering methodologies was 

performed to fully understand the field of systems engineering and its current status. Based 

on these findings the research aim and objectives were outlined. The detailed review of the 

current graph theory methods was then performed. The comparison of different graph 

structures showed that metagraph is the most suitable method for interaction modelling in 

application to the research aim. The applications of metagraph methods in decision support 

systems further demonstrated its potential for utilisation in model-based systems engineering 

environment. The proposed framework based on metagraph theory and its different aspects 

are explained in the next sections of this chapter. The developed framework will be evaluated 

using two use cases and findings will be discussed in chapter 6. These findings account for the 

workability of the framework while measuring framework against distinguished requirement 

will show the effectiveness of the framework. The final outcome from the evaluation will be 

utilised to measure final potential and limitations of the proposed framework. 

4.4 Requirements 

To develop the framework, first it is needed to identify the requirements for how it should 

operate. The requirements for the methodology being developed are subdivided into two 

categories as functional and design. Functional requirements are responsible for the correct 

practical implementation of the developed methodology. These requirements are as follows: 

• Correctness – this requirement states that the developed method will allow effective 

modelling of systems interaction in MBSE environment. Correctness is defined and 

measured in a series of scenarios during the verification and validation stage. 
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• Automatic control over interactions – this is important so that modelling logic in the form 

of subsystems interaction is dynamic and allows systems engineer to automatically track 

the changes through the relationships according to certain rules. This helps to diminish the 

time needed for the development of products. 

• Systems interaction representation – requirement related to correct and simple 

representation of needed relationships from different points of view.  

Design requirements provides the methodology from the developer’s point of view and its 

other users. These requirements are as follows:  

• Special knowledge – there is a need for a special systems interaction engineer who will 

have knowledge of the composition of the interaction module and will be able to control 

this module in case there is a need for it. 

• Relationships models – it is necessary to provide systems interaction engineer full 

capabilities and a range of building blocks/models to be able to control automatically built 

interaction module. 

• Applicability for multiple users – this requirement states that different users should be 

able to utilise the developed methodology. These users involve engineers of different 

expertise involved in various stages of the development process. Not all of these engineers 

have adequate knowledge on how the actual system’s interaction is modelled inside the 

interaction module of the main system model but still, they have to be able to define 

relationships between their work and other engineers.  

• Friendly user experience – this requirement related to both users and the systems 

interaction engineer as they should be able to seamlessly utilise developed framework 

with the help of software with friendly and simple user interface. Also, the framework 
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should provide simple ways of representing certain relationships from different points of 

view, which is set to be achieved with the help of special graphical representation 

software. 

All design requirements are related to certain functional requirements as the developed 

method is set to be fully capable of simultaneously modelling interactions among models and 

providing means and tools to control and utilise the interaction model by all its users. 

4.5 The interaction modelling framework 

A framework for developing interaction mechanism, shown in Figure 4-2, consists of five 

phases, namely 

1. System definition 

2. System Modelling 

3. Interaction Modelling 

4. Validation and verification 

5. Visualisation.   

The framework provides a set of activities for MBSE experts to employ in order to implement 

graph-based systems interaction technique in the development process.  
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4.5.1 System definition 

The first phase of the methodology framework is to define the system - this includes 

identifying its key aspects and decomposing main system into subsystems and components 

while defining corresponding interaction interfaces and system functionalities. It is essential 

for correct system modelling to adequately distinguish key design concepts, rules, and 

parameters. 

 

Figure 4-3: System definition process to acquire key system design concepts, 

design rules and parameters 

It has been identified from the literature that the main principle of making the development 

process simpler is to decompose the main system into subsystems and as independent 

components as possible (Browning, 2001). Decomposition principle is the most important 

concept for correctly performing that task. 

The process of system definition is shown in Figure 4-3. It shows the tasks needed for the 

correct model representation. These tasks include the following: 

4. Define main system functionalities 

Phase 1. System definition 

1. Create thorough system 
description 

2. Decomposition of the main system model 
according to decomposition principle 

3. Distinguish interaction interfaces of 
individual component 
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1. Identify the system being developed and form its general description 

2. Decompose main system into sub systems and components that are as independent as 

possible. This complies with the decomposition principle. 

3. Distinguish system functionality and real-life scenarios for better understanding of the 

system. 

4. Identify interaction interfaces of all individual components based on their functional roles. 

Then system engineer can then model the relationships between these components. 

Following these tasks allows system engineer to create a comprehensive system design that 

is well decomposed and represented for further modelling and analysis with the use of 

software tools, modelling and programming languages. The result is shown in the same Figure 

4-3 – key systems design concepts, design rules and parameters. 

4.5.2 Systems Modelling 

The second phase is the systems modelling, where all sub systems identified in the previous 

sections are modelled with the use of systems modelling methods and techniques resulting in 

the creation of a comprehensive representation of the system model. 
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Figure 4-4: Systems modelling process to create the comprehensive SysML system model 

The tasks performed in that stage are shown in Figure 4-4. These tasks include the following: 

1. Based on the systems and components defined in the previous phase, distinguish types of 

diagrams and objects needed for modelling each sub system of the main system model. 

2. Based on the interaction interfaces of components and their relationships, organize the 

interactions between the components and identify their types. 

3. Model all the sub systems and components with relevant constructs and generate the final 

system model. 

The result of performing these tasks is the comprehensive main system model with all its sub 

systems, components and interactions among them modelled with help of SysML. 

Systems Modelling Language is used since it allows systems engineers to model all aspects of 

systems engineering such as requirements, behaviour and structure. Literature review 

showed that SysML is recognised by one of the most essential tools in the current MBSE 

methodologies, where Estefan in his review of these methodologies confirms the growing 
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significance of one common language and argues that additional diagrams used in SysML allow 

engineer to model more complex systems, which is the main subject of the current research 

(Estefan, 2008). As SysML is not a methodology itself and is entirely independent it can be 

used by any systems engineer and is used for the current research purposes. 

The major advantage of using SysML is the possibility of modelling complex systems in a simple 

manner and demonstrated in examples such as automated vehicle controllers (Ferreira and 

Gorlach, 2016). 

4.5.3 Interaction Modelling 

The third and the most significant part of the framework is metagraph construction, which 

automatically governs the interactions among different components. This is the phase where 

the interaction modelling happens. Data is set to be transferred from SysML to object-oriented 

modelling software, where metagraph approach is utilised to successfully model the 

interaction mechanism in the system being developed. The data from SysML is exported into 

XML-file and parsed using the object-oriented approach. XML has been widely adopted as a 

universal way to format data. Object-oriented approach grants capabilities to enhance 

knowledge categorisation and to model relationships among systems in a simple object-

oriented graph-based manner. 

The tasks for this phase have been distinguished as follows: 

1. Export system model data from SysML with all its modelling artefacts relevant for analysis. 

This is done with the use of XML format. 

2. Analyse the acquired data using object-oriented approach while distinguishing necessary 

objects, classes, properties and relationships among them. 
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3. Based on the metagraph concepts and parsed data, generate the object-oriented 

metagraph model of systems interaction for the current system. 

 

Figure 4-5: Interaction modelling process to construct the formalised object-oriented 

metagraph-based logic model of MBSE system 

The tasks are summarised in Figure 4-5. Successfully performing these tasks generates the 

metagraph of interactions among sub systems and components of the main system model. 

This is the common interaction module that was discussed in the introduction and literature 

review section of this research. 

4.5.4 Validation and Verification 

The fourth phase is the validation and verification phase, where the developed model is 

checked for consistency and correct representation of the initial model. As discussed in section 

4.2, the mixed qualitative and quantitative method is utilised for the verification purposes, 

where both parametric evaluation and qualitative analysis is performed for identifying 
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effectiveness of the proposed framework. If something changes in one of the subsystems of 

the initial model and its SysML representation the object-oriented metagraph interaction 

model checks the updates for consistencies and propagates changes to other sub systems and 

ultimately transferring data back to SysML and updating the corresponding diagrams. Systems 

engineer on all the stages of the lifecycle can check what will be affected if variables are to be 

changed in one model or another. That allows to vastly increase the predictability of the 

development process and avoid unnecessary complications in the later stages that, as 

discussed in the literature review, can result in practically developing the system from scratch. 

 

Figure 4-6: Steps to validate and verify the system and interaction model at the current 

moment of time  
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Literature review of the related research showed the evaluation principles utilised in the 

similar research based on graph-based design languages (Gross and Rudolph, 2016a). It has 

been noted that even though parametric quantitative evaluation is the key to measure the 

effectiveness of the method being developed, there is a need to weigh the quality of the 

proposed framework by developing proper tasks and criteria in order to prove the 

effectiveness and enhancements over existing MBSE methodologies. Based on these idea the 

tasks for the verification and validation were developed and are presented in Figure 4-6 and 

are summarised as follows: 

1. First the use case scenarios for the system are distinguished based on the system 

functionalities defined during the first phase of the methodology framework. 

2. The defined scenarios are used for validating interactions and making sure they comply 

with the system actual purpose. At the same time existence of inconsistencies can be 

checked based on changes made to the same components of the original model. 

Metagraph approach automatically takes into account the ambiguous definition of 

parameters and models resulting in not getting errors due to inconsistencies in the main 

system model. 

3. Find the parameters and models that will be affected by changes in other models and 

parameters based on the scenarios results defined from the previous tasks. 

4. Transfer the resulting data back from object-oriented view to the SysML diagrams and 

update the original system model accordingly. 

Following up on that, the evaluation criteria were developed and are set to be utilised in the 

use case and results analysis. These criteria are as follows: 

• The framework capabilities to propagate changes in one model to the other models. 
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• Correctness of the affected model identification based on manual check-up of the 

affected parameters. 

• The framework capability to diminish time needed to track the changes and ultimately 

develop products. 

• The framework potential to allow systems engineers identify the expected changes on 

all the stages of the development lifecycle and adjust the development process 

accordingly. 

• The framework potential to visualise the changes and provide systems engineers ways 

to easily observe the affected system components. 

Executing this sequence of tasks allows system engineer to verify that the object-oriented 

model complies with the actual system functionality by performing pre-defined use case test 

scenarios. Then after the metagraph model shows full functionality without errors, systems 

engineer can test any changes and see, which parameters are going to be affected in the 

original SysML system model on any stage of the development process. Then the acquired 

results are measured against the evaluation criteria. 

4.5.5 Visualisation 

The final visualisation phase is to provide a method to represent the model at any moment 

from different points of view with the help of graph visualisation techniques. 

From the methodology framework perspective, the visualisation highlights the ability to 

represent the parameters and models affected by changes made anywhere in the original 

model. This is done both in text and graphical ways (Abad et al., 2016). Going through different 

papers and books on metagraph theory revealed that currently there is no automatic 

metagraph visualisation techniques fully developed and adopted (Basu and Blanning, 2007). 
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But there is a promising method that was not fully developed yet but will be used for the 

implementation purposes. That method is based on the principles of force algorithms and is 

proposed by (Globa et al., 2015). It defines the set of rules for forces between metagraph 

nodes depending on the types of the nodes between which the forces act. It allows the 

visualisation of medium size metagraph but still has many issues exist such as the intersection 

between the edges. 

Visualisation is an important aspect of the proposed framework as it provides means for 

effective quality of life improvements for systems engineers. According to the literature on 

visualisation techniques, the engineering data is becoming more complex and that leads to 

the fact that it is getting more difficult to visualise relevant data from the necessary point of 

view (Pathak and Pathak, 2020). Effective visualisation improves the decision makers with an 

opportunity to observe the parametric data visually and make more quality decisions in less 

time. This helps systems engineers to better understand complex systems and find trends and 

correlations that might lead to a certain design mistake being unnoticed (Hariharan et al., 

2016). 

Being able to automatically visualise the changes and to compare the original and modified 

system models, results in easier development process, and ultimately leads to development 

of the product in less time with fewer resources spent. Overall, metagraph visualisation issue 

is one of the existing research problems that is currently being solved by graph theory experts, 

and poses interest for the future research, which will be discussed in the conclusion chapters. 

4.6 Summary 

This chapter provided the full overview of the interaction modelling framework. The initial 

sections of the chapter discussed the distinguished requirements that are later going to be 
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utilised for evaluation. Then the key elements that form the framework are described. 

Furthermore, each phase depicted in the framework is provided a detailed explanation to help 

determine the exact process of modelling interaction in model-based systems engineering 

environment. Later sub-sections explain how different phases of the framework work. First, 

the main system is decomposed into the as independent as possible components to allow 

system engineers model each component separately and define the interaction. This allows 

to simplify the process of development and avoid inconsistencies by multiple definition of the 

same thing. Then, the system is modelled with the use of Systems Modelling Language that is 

the common tool for most of current MBSE methodologies. After that, the model is exported 

and the metagraph of interactions is constructed that is then utilised to compare the initial 

and the changed systems and define, which components have been affected by the changes. 

This chapter has managed to identify all the aspects of the interaction modelling framework. 

The outcome of this chapter is reflected in the journal paper (Filimonov et al., 2020). Results 

from this chapter will be utilised in Chapter 5 describing the development and implementation 

of the framework and tools used for that. 
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5.0 Development and Implementation 

5.1 Introduction 

This chapter focuses on the further description of the interaction modelling framework and 

its proof of concept implementation. Selection of tools is presented to demonstrate how the 

methodology is implemented in real life use cases. It presents how and why particular 

software tools and packages are used for the purposes of this research. The next chapter 

provides the use case evaluation and shows the effectiveness of the framework based on the 

tools selected and described in this chapter. 

5.2 Interaction Modelling Framework 

5.2.1 Framework outline 

As discussed in the previous chapter interaction modelling framework consists of five phases: 

1. System definition 

2. System Modelling 

3. Interaction Modelling 

4. Validation and verification 

5. Visualisation.   

This chapter will go through each phase of the methodology and discuss the tools that are 

possible to utilise in each case and then describe, which tool is utilised for the proof of concept 

implementation in the current research. 
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5.2.2 System definition 

System definition is the first phase of the methodology for interaction modelling framework. 

In this stage the main system model’s components are being described in detail. Then the 

main system model is decomposed into as independent as possible subsystems and 

components with interaction interfaces of these components distinguished and used for 

further organisation of interactions and relationships among the components. In order to do 

so the concepts described in the previous literature review chapters are utilised such as the 

design structure matrix and decomposition principle. This phase is one of the most important 

stages of the framework as the correctness of model definition is essential for further 

modelling of all its aspects using modelling languages. 

 

Figure 5-1: Example DSM with external input/output regions (Eppinger and Browning, 2012) 
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Figure 5-1 shows the example Design Structure Matrix that has augmented external input and 

output regions that allow the model to account for any external interactions. This illustrates 

how the DSM can be utilised for model organisation in the system definition phase to define 

all the interactions and have a better understanding of the system and its components. 

5.2.3 Systems modelling 

Next phase in the interaction modelling framework is systems modelling. During this stage the 

chosen systems modelling technique is utilised to model all the aspects of the system model 

from the previous stage. As discussed in chapter 2 many Model-Based Systems Engineering 

methodologies utilise Systems Modelling Language for representing its components through 

various diagrams. SysML is a general-purpose graphical modelling language that supports all 

aspects of the general design process – the analysis, specification, design, verification and 

validation of complex systems. These systems can potentially include anything that is being 

under consideration including hardware, data, personnel, procedures, facilities, and other 

elements of man-made and natural systems (Friedenthal et al., 2014). 

As the research is focusing on developing general methodology that can be utilised to enhance 

the existing MBSE methodologies, the most important requirement for the tools being used 

for that is being methodology independent. SysML is the perfect example of that and it is 

emphasised that it is entirely methodology independent while being an essential part of most 

of the MBSE methodologies (Holt et al., 2016). SysML can create the cohesive and consistent 

model of the system that represents the following aspects of systems, sub systems and 

components: 

• Structural composition, interconnection, and classification 

• Function-based, message-based, and state-based behaviour 



5.0 Development and Implementation 

67 
 
 

• Constraints on the physical and performance properties 

• Allocations between behaviour, structure, and constraints 

• Requirements and their relationship to other requirements, design elements, and test 

cases 

There are many software packages that provide capabilities for systems modelling with SysML. 

The next step is to find the tool that is perfectly suitable for the purpose of the research. The 

following requirements on the systems modelling tool have been identified: 

• For the proof of concept implementation, the tool needs to be free of charge. 

• Even though the tool is free to use, it still needs to contain the full functionality of SysML 

modelling capabilities. 

• The chosen SysML tool should be able to specify the parametric modelling artefacts with 

defining relationships and interactions among different components. 

• The tool needs to contain export features to the XML format as that is the format that is 

used for further metagraph modelling in the next phase of the framework. 

For the selection process a thorough research of all current SysML tools have been conducted 

using the official SysML Open Source Project web platform (“How to Select a SysML Modeling 

Tool for MBSE,” n.d.) and official OMG Group SysML web site (“The Official OMG SysML site,” 

n.d.). These web platforms contain the process of how to choose the correct SysML modelling 

tool and provide and comprehensive list of the current tools. Originally IBM Rational Rhapsody 

software package was chosen as it contains evaluation version that can be used to model most 

of the systems artefacts while being free of charge. But as a matter of fact, the free version 

turned out to be limited in its modelling and export capabilities at the moment of technology 
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selection therefore the selection process continued and stopped at Visual Paradigm software 

package with its SysML plugin for Model-Based Systems Engineering Applications. 

The review of Visual Paradigm SysML modelling capabilities was performed by experts from 

SysML Open Source Project web platform (“How to Select a SysML Modeling Tool for MBSE,” 

n.d.) using the following weighted evaluation criteria: usability, major functions (drawing, 

simulation and execution), standards and interoperability, team modelling and tech support, 

and value. The results show that Visual Paradigm is a reasonable choice as MBSE tool that 

draws SysML-complaint notation and offers basic support for requirements traceability and 

basic model simulation. Also, Visual Paradigm has fully functional free of charge Community 

Edition version for non-commercial such as the current research. Moreover, Visual Paradigm 

has rich exporting capabilities and allows to easily export the whole system model to readable 

XML file. 

Figure 5-2 provides an example of an essential block definition diagram modelled with Visual 

Paradigm. 
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Figure 5-2: SysML Block Definition diagram modelled with Visual Paradigm SysML modelling 

tool (“Visual Paradigm Web Site,” n.d.) 

Therefore, for the implementation and development in the current research Visual Paradigm 

is utilised for the systems modelling of all subsystems and components distinguished in the 

previous section. Visual Paradigm fully satisfies all the distinguished requirements for the 

SysML modelling tool. 

5.2.4 Interaction modelling 

Next phase of the interaction modelling framework is the interaction modelling itself. This is 

the stage, where SysML main systems model with all its artefacts is being exported to XML file 

and then the acquired data is used to create a metagraph of the system model for further 

analysis. 

To achieve the goal of using all XML model data for the metagraph generation and analysis 

the object-oriented approach has been selected since it has all the capabilities necessary for 

the current research objectives. Object-oriented programming is widely utilised in multiple 
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fields of engineering and it is emphasised that it is the best possible solution to model many 

aspects in MBSE (Fusaro et al., 2016). 

As a competition to object-oriented approach the ontological modelling approach has been 

considered. In the recent years increased interest has been growing in the development and 

utilisation of engineering ontologies to support systems engineering [Sanya and Shehab, 

2014]. Ontology is a formal specification of a domain, which seeks to classify entities and 

relations that tie them together [Davies et al., 2003]. Ontological approach grants capabilities 

to enhance knowledge categorisation and to model relationships among systems in a simple 

object-oriented graph-based manner. Ontology modelling software such as Protégé provides 

graphic user interface to define ontologies and includes ways to validate model consistency 

through reasoning. The main drawback of using ontology modelling software is the fact that 

it does not have pre-existing reusable libraries for parsing XML data and creating certain 

objects required for the research such as metagraph. Ontological modelling focuses on using 

directed and undirected graphs but does not provide any functionality to create metagraph 

objects such as metapath or metavertex. 

Therefore, object-oriented programming is shown to be the most applicable in the current 

research as many programming languages contain existing libraries that can be used at certain 

stages of the data parsing and transforming it into a metagraph of the system model. 

The selection of the best object-oriented programming language lies beyond the scope of the 

research, so it has been decided to choose the language that I am most experienced with and 

that provides all necessary libraries for making coding implementation easier. Therefore, C# 

has been distinguished as object-oriented programming language backbone of the research. 

C# is a general-purpose multi-paradigm object-oriented programming language that is 
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developed by Microsoft and has many pre-existing libraries that can be used for various tasks 

during the implementation process. 

Not to develop XML parsing technique from scratch, the LINQ to XML parsing technique is 

utilised to analyse and parse XML data. This technique is a fast, forward-only, non-caching 

parser with a lot of useful built-in programming functions and guides. It is well documented 

by Microsoft and is easy to use. The software tool to parse XML data has been developed with 

the use of object-oriented programming in C# language and allows selection of the XML file 

created in the Systems Modelling phase of the interaction modelling language and automatic 

analysis of the entire system model. The overall tool interface is represented in Figure 5-3. 

 

Figure 5-3: Developed object-oriented tool example screenshot 

All the acquired data is stored in the separate lists of objects inside the tool. These lists include 

the objects – all the individual components from system model, and relationships – all the 

interactions defined during the systems modelling phase. Corresponding example data for 

objects and relationships is presented in Figure 5-4 and Figure 5-5. 
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Figure 5-4: Example data for parsed objects 

 

Figure 5-5: Example data for parsed relationships and interactions 

Then the data is used to generate the metagraph of the system model. This process is 

performed within the same tool with the entirely self-written code that automatically analyses 

all the objects and relationships and then generate the nodes and metapaths based on the 

acquired knowledge. 

The developed metagraph generation algorithm is performed by following these steps: 
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1) Search for the nodes involved in the interaction links alongside the identified relationships 

from SysML parametric diagram information stored in the XML file and sort them with the 

help of DSM and adjacency graph matrices. 

This is performed by automatically searching through the XML tags and collecting those 

relevant to the system model such as Package, SysMLBlock, Class, Attribute, Association 

and Generalization. That results in the formation of the Objects list in the tool. 

2) Identify the relationship directions and multiplicativity of the nodes in case they are 

involved in several relationships simultaneously. That means that these nodes will be part 

of several metanodes at the same time. 

The XML data contains the SysMLBindingConnector tag that stores the information on 

related nodes and the relationship direction. This data is utilised to form the list of 

Relationships objects in the tool. 

3) Based on the acquired relationship and nodes information, form the metanodes and 

distinguish interactions among these metanodes. 

4) Add the metanodes interaction in the same object as the metanode. In the code, that 

forms the Meta Objects that are shown later in the pictures. These Meta Objects are then 

utilised to compare original and modified system models by direct comparison between 

the objects and relationships these Meta Objects consists of. 

The list of Meta Objects is also shown in the tool under “Meta Objects” block and represented 

in Figure 5-6. Other software functionality will be explained later during the use case 

evaluation. 
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Figure 5-6: Metagraph objects data after original data analysis 

5.2.5 Validation and verification 

After automatic metagraph generation comes the next phase of the interaction modelling 

framework. During this phase verification scenarios need to be identified and then 

implemented to be able to show that metagraph is fully representing the real behaviour of 

the system model. These scenarios strongly depend on the certain use case aspects and the 

systems engineer needs. They might include the following: 

• Changing parameter values and seeing other parameters affected by the changes 

• Adding or removing parameters and seeing other values affected by the changes 

• Adding or removing models and see the affected parts of the original system model 

To analysis each scenario following steps should be followed: 

• Export original system model into XML format 



5.0 Development and Implementation 

75 
 
 

• Perform the desired changes in original system model and export the changed model into 

XML format 

• Run the developed software tool and select both original system model and changed 

model as shown in the screenshot of the tool inputs in Figure 5-7. 

 

Figure 5-7: Input for the developed tool 

These inputs include paths to the original and modified files, path to the output file, names of 

the SysML objects and relationships involved in the system model. 

• Click “Start” in the tool to automatically generate original system model metagraph and 

the changed system model metagraph. This results into the generation of two metagraphs 

– of the original system model and of the modified system model. The example metagraph 

objects data for both cases is shown in Figure 5-8. 

 

Figure 5-8: Metagraph objects example data of the original and modified system models 
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• Click “Compare metagraphs” button in the tool to automatically detect the changes 

between the original and modified models. The list of changes then represented in the 

“Changes” window of the tool. The results for the example used in this section is presented 

in Figure 5-9. 

 

Figure 5-9: Example data for changes after metagraph comparison  

This developed process will automatically detect all the changes that was caused by the 

systems engineer in the o-riginal model. Then, it will perform the comparative analysis 

between the original and modified metagraph to determine the parameters and models that 

will be affected by the changes. This allows systems engineer to check and validate the model 

on every stage of the development lifecycle without a need to manually track every 

relationship, which turns out to be too complicated with the growing systems. 

5.2.6 Visualisation 

Next phase in the interaction modelling framework is the visualisation of the changes or, in 

other words, ability to see the changes that will happen in the original system model. 
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Visualisation can be of different types as discussed by (Abad et al., 2016) and that includes 

text and graphical representation of data. 

First type of visualisation is shown in the tool itself in the special block “Affected parameters” 

and provides the list of models that will be affected by performing changes to the original 

system model. 

Graphical representation is a much broader topic that requires the visualisation of the 

automatically generated metagraphs. Literature review of papers on metagraphs show that 

there is no unified developed algorithm to automatically represent any metagraph that meets 

the requirements of aesthetics criteria that are defined across the literature and were 

summarised by (Beck et al., 2009). The use of the same algorithm on small and much larger 

metagraphs will violate these criteria. That includes positioning inner vertices of metavertex 

at a significant distance from each other leading to the loss of the metavertex form. The other 

issues might be positioning wrong inner vertices in metavertex or not being able to determine 

the metavertex edges. 

(Globa et al., 2015) proposes modified metagraph visualisation layout criteria as follows: 

• Metavertices coordinates can be equal in the presence of common inner vertices. 

• Metavertex figure contains the only inner vertices of the corresponding metavertex. 

• Metavertices figures without the common vertices do not intersect. 

Based on these criteria a modified algorithm for metagraph is proposed based on the 

Fruchterman and Reingold visualisation technique (Fruchterman and Reingold, 1991). 

Metagraph is defined as a system of objects, related by springs based on pre-defined rules. 

Each spring affects pair of nodes with the force of attraction or repulsion. Then vertices 
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position is transformed under the influence of the sum of these forces. The representation is 

considered complete as soon as a point of equilibrium is reached in the system. 

Visualisation result examples are shown in Figure 5-10 and Figure 5-11 as adopted from (Globa 

et al., 2015). 

 

Figure 5-10: Force-Directed Algorithms Method metagraph visualisation example for 50 

vertices, 20 metaobjects and 34 edges (Globa et al., 2015) 

 

Figure 5-11: Force-Directed Algorithms Method metagraph visualisation example 

for 20 vertices, 10 metaobjects and 13 edges (Globa et al., 2015) 

This showcases the use of the proposed visualisation technique on a random metagraph with 

50 vertices, 20 metaobjects and 34 edges, and a random metagraph with 20 vertices, 10 

metaobjects and 13 edges. According to the authors’ findings, the pictures were automatically 
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generated in 10.3 seconds and 1.0 seconds. It is worth noting that result varies depending on 

the initial nodes location, and the time required to get the satisfactory image is highly 

dependent on the user needs. 

Table 5-1: Time required for random metagraph representation 

Metagraph composition Time needed  

10 vertices, 5 metaobjects 0.41 sec 

20 vertices, 10 metaobjects 1.91 sec 

30 vertices, 15 metaobjects 5.39 sec 

40 vertices, 20 metaobjects 9.98 sec 

50 vertices, 20 metaobjects 14.81 sec 

60 vertices, 25 metaobjects 15.49 sec 

The Table 5-1 presents the time needed for random metagraph representation. The 

developed method allows visualising medium size metagraphs with a limit on the number of 

metavertices intersections. 

Despite the fact that this method is successful in visualising metagraphs to some extent, there 

are still a number of issues preventing fully automatic metagraph representation. It could be 

difficult to distinguish metavertices if some of them are included in other and intersect. Still 

this method has proven to be the applicable for the research and is utilised for automatic 

metagraph representation in the use cases. 

The C# code has been written that follows all the steps of this algorithm and it has been proven 

that is effective in visualising small-scale metagraphs used for the proof-of-concept 

verification and evaluation in this research. The code generates a high number of possible 

options of metagraph representation based on the mentioned force-based algorithm. Then it 
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checks for possible intersection between metanodes and metapaths in those options and 

produces one final variant with least amount of inconsistencies. As there is no ideal automatic 

algorithm for metagraph visualisation, the picture remains imperfect and there is still room 

for improvement. Overall, the metagraph visualisation problem is a separate large area that 

will be further discussed in the next chapters. 

5.3 Summary 

Based on the outline of the interaction modelling framework this chapter presented and 

discussed each phase of the methodology with regards to implementation and development, 

and specific techniques and software tools were discussed. The chapter provides 

understanding of the tool variety. The selection process of the most applicable tools was 

provided based on the specified requirements and research needs. Some limitations were 

derived from visualisation point of view and will be further discussed in the next chapters. The 

selected tools provide the basis for the actual implementation in real-life use cases and 

evaluation. These software packages and languages were used for the development of the 

proof-of-concept tool. The following chapter presents use case evaluation of the interaction 

modelling framework based on the findings of this and previous chapters. 
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6.0 Evaluation and Effectiveness of the framework 

6.1 Introduction 

The focus of this chapter is to present test application of the interaction modelling framework, 

and to validate the research hypotheses. In this chapter, use cases are presented to 

demonstrate all aspects of the proposed methodology. Use case evaluation is an important 

part of the research and that is based on both the existing information and actual results from 

the research (Yue et al., 2009). The critical analysis and comparison between current MBSE 

methodologies and interaction modelling framework are provided. Both use cases show the 

workability of the framework and then its limitations and advantages are discussed based on 

the requirements distinguished in the previous chapter. 

6.2 Evaluation objectives 

The objectives of the evaluation process are identified as follows: 

• Perform different scenarios in the use cases to compare the actual results from applying 

the interaction modelling frameworks against the functional and design requirements 

defined in the previous chapter. 

• Analyse the interaction modelling framework results and compare and contrast the 

application of the interaction modelling technique to the manual tracking of the changes 

• Critically analyse the difference in interaction modelling between current MBSE 

methodologies and interaction modelling methodology evaluation results in this thesis 

based on the evaluation criteria and findings from the literature review of existing 

methodologies. 
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The criteria for the evaluation have been defined in Section 4.5.4. The evaluation through use 

cases is based on the data collected from the literature during the literature review. The use 

case 1 is based on the acceleration analysis example for the automobile development. This 

use case is selected due to its general nature that showcases the application of Systems 

Modelling Language in actual real-life scenario of automobile development. The second use 

case is the CubeSat development example from literature. The CubeSat mission describes a 

nanosatellite flying in low earth orbit for earth observation or other research purposes. The 

model of the satellite is supposed to enable the layout of most of the subsystems on a 

conceptual level. In the following sections, a selection of some class diagrams from the model 

are presented along with short descriptions of their purpose (Groß and Rudolph, 2012). 

6.3 USE CASE 1: Acceleration Analysis of Automobile Development 

6.3.1 Use case overview 

The first use case is the Automobile Example from literature (Friedenthal et al., 2014). In this 

use case the model-based systems approach is applied to design an automobile system, where 

the final is set to match the acceleration and fuel efficiency requirements. The full range of 

Automobile design systems is modelled in SysML and the full list of models is shown  

in Table 6-1. 
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Table 6-1: Full list of models in the Automobile Example 

Diagram name/System Diagram Type 
Model Organisation Package diagram 
Automobile System Requirements Requirement diagram 
Automobile Domain Block definition diagram 
Operate Vehicle Use case diagram 
Drive Vehicle Sequence diagram 
Turn On Vehicle Sequence diagram 
Control Power Activity diagram 
Drive Vehicle States State machine diagram 
Vehicle Context Internal block diagram 
Vehicle Hierarchy Block definition diagram 
Provide Power Activity diagram 
Power Subsystem Internal block diagram 
Analysis Context Block definition diagram 
Vehicle Acceleration Analysis Parametric diagram 
Vehicle Performance Timeline Timing diagram (not SysML) 
Engine Specification Block definition diagram 
Max Acceleration Requirement Traceability Requirement diagram 
Architect and Regulator Viewpoints Package diagram 

That example showcases the use of SysML in actual model-bases systems engineering 

modelling example. It also defines at least one diagram for each SysML diagram kind and most 

of the SysML feature set is illustrated. There are even some extensions beyond the basic set, 

including continuous flows and generalisation sets. Modelling artefacts that are included in 

this example are representative of the types of modelling artefacts that are generated from a 

typical MBSE method. So that shows the general nature of the use case that can be applied in 

any of the possible MBSE methodologies mentioned in the literature review. 

A multidisciplinary team is responsible for designing an automobile with multiple participants 

and roles that constantly share information and adjust their own parts of the development 

process according to the changes made by the other engineers. First, the team needs to 

identify the needs of the stakeholders and distinguish their individual needs to form system 

requirements. In the Automobile example the main stakeholders include both purchaser and 

user of the car being developed. In addition to those, systems engineering key feature is to 
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address the requirements of all the other stakeholders who may be impacted during the 

product life cycle. That includes the manufacturers, maintenance engineers and governments 

that express their needs through driving laws and restrictions. Even though it is necessary that 

the analysis takes each stakeholder requirements into account, clearly their concerns have 

different importance. Therefore, in this example the main effectiveness measures are primary 

transportation needs such as comfort, performance, fuel economy etc. The functional 

requirements for the automobile system are selected by analysing what the system must do 

to achieve its original goals. The early and correct identification of the requirements is crucial 

to the success of the development process. Overall system design also distinguishes 

components involved in the system-level requirements. This research works with the 

acceleration analysis of the automobile system in order to be able to meet functional 

requirements to achieve certain speed in less than certain period of time. The selected aspects 

of the system design are appropriate to support an initial trade-off analysis. In order to satisfy 

the acceleration requirement, many parameters need to be changed and their effect on the 

other parameters needs to be determined. 

The later sections will focus on each phase of the proposed interaction modelling framework 

in application to the use case. 

6.3.2 Current interaction modelling state 

As mentioned in the previous section, the Automobile Acceleration Analysis example is 

modelled using various SysML diagrams showcasing their capabilities. Block definition 

diagrams present the overall structure of the project with the break-down of the Automobile 

Domain and Vehicle Hierarchy. Internal block diagrams highlight the more detailed structure 

of the Vehicle Context, which is the system of interest in this example. 
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Vehicle acceleration analysis itself is represented with the use of another block definition 

diagram – Analysis Context, and a parametric diagram – Vehicle Acceleration Analysis. While 

Analysis Context diagram presents the parameters and the equations used for the analysis, 

the Vehicle Acceleration Analysis parametric diagram showcases how these parameters and 

equations are utilised for the purpose of this example. 

Despite the fact that all the aforementioned diagrams provide the comprehensive picture of 

the automobile system being developed, the author of the example implies that these 

diagrams remain only the representation of the system without the capabilities to track the 

relationships between the models (Friedenthal et al., 2014). Therefore, interactions are 

entirely static in the existing implementation. That results in a complete redevelopment of the 

model whenever changes are needed to be made in the system model and the increased 

unpredictability of the system in question, as currently there is no way to automatically find 

the affected parameters. 

Even though SysML allows representation of the system model from various perspectives, 

each of these perspectives is a complex sub system on its own. Making the model consistent 

across all the different perspectives showcases more challenges for the current 

implementation of MBSE methodologies. The limitations of the current implementation state 

will be further discussed during the critical analysis of the results of the interaction modelling 

framework application in this use case. 

6.3.3 Systems modelling 

As shown in Table 6-1, the automobile example consists of 18 different diagrams and 

modelling artefacts. These diagrams cover all different aspects of the automobile 

development process including the ones that are not relevant for the research such as state 
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modelling of how the vehicle is being used by the driver and the occupant. Therefore, for the 

actual research purposes the simplification is needed. Relevant list of model components has 

been distinguished from the full list of models and is show in Table 6-2. Also, the diagrams 

were modified to better comply with the decomposition principle making components more 

independent from each other to better be able to model interactions among them. 

Table 6-2: List of models in the Automobile Example relevant for the use case 

implementation 

Diagram name/System Diagram Type 
Model Organisation Package diagram 
Automobile System Requirements Requirement diagram 
Automobile Domain Block definition diagram 
Vehicle Hierarchy Block definition diagram 
Analysis Context Block definition diagram 
Vehicle Acceleration Analysis Parametric diagram 

 

The distinguished diagrams fully model the acceleration analysis in the automobile example. 

Next stage of the interaction modelling framework methodology application is to model the 

system using Systems Modelling Language. This example was modelled with the use of Visual 

Paradigm software tool for SysML modelling. The overall model organisation is shown in 

Figure 6-1 and that is the package diagram representing overall model structure and its 

underlying systems. 
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Figure 6-1: Model organisation package diagram 

From the overall structure, automobile domain represents the more detailed composition of 

the test case as an internal diagram. Automobile domain block definition diagram is shown in 

Figure 6-2. It represents the blocks that are contained in the Structure package of the original 

model organisation and specifies their interrelationships. Although these diagrams contain all 

the modelling aspects of the main system model, the system of interest for the use case is the 

vehicle itself. Thus, the vehicle block is expanded with another block definition diagram 

showing all the components of the vehicle – system of interest. 
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Figure 6-2: Automobile Domain block definition diagram 

The vehicle block definition is shown in and provides the decomposition of the Vehicle block 

that was previously shown in components. The Vehicle is composed of the Body, Chassis, 

Interior, Power Train, and other components, while some of these blocks are further 

decomposed into more independent components. This completely complies with the 

decomposition principle discussed in the previous chapters and allows systems engineers to 

control the complexity level of the system from the start. The vehicle hierarchy block 

definition diagram is shown in Figure 6-3. 
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Figure 6-3: Vehicle Hierarchy block definition diagram 

Previous diagrams provided the comprehensive picture of the main system model and of all 

its modelling artefacts. In the current work, the focus is on the interaction modelling, 

therefore before the use case can be applied to the framework, there is a need to model the 

relevant interaction diagrams in SysML to get enough data for further analysis and changes 

propagation. The specification for the given problem is to analyse the vehicle acceleration 

based on the input parameters and requirements. The vehicle acceleration analysis in SysML 

is first modelled as another block definition diagram to provide the necessary models involved 

in the analysis process. This diagram is shown in Figure 6-4 and showcases the usability of the 

constraint block, that defines constraints in terms of equations and their parameters. That 

diagram is situated in the Parametrics package of the original model organisations and is 

composed of several blocks that are used to analyse vehicle acceleration. 
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Figure 6-4: Vehicle Acceleration Analysis (Analysis Context) block definition diagram 

The next and the most important diagram is a parametric diagram expanding the vehicle 

acceleration analysis block and showing how the distinguished parameters are used to analyse 

the system. It shows a network of constraints that use previously defined constraint blocks 

from the Analysis Context diagram. The parametric diagram is represented in Figure 6-5. 

 

Figure 6-5: Vehicle Acceleration Analysis parametric diagram 
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The parametric diagram and related modelling information can be used in the simulation 

and/or analysis tools to support analysis execution. However, SysML does not provide 

simulation capabilities on its own. This is the relevant information that is further used for the 

automated metagraph generation.  

6.3.4 Interaction modelling framework application 

Once the system is defined and built, the next stage is to utilise the system model data to be 

able to analyse the changes occurring in sub systems and components. A proof-of-concept 

tool is developed for the task and used for analysing systems modelling information with help 

of the tools discussed in the previous chapter. 

First, the expected metagraph was defined in theory and on paper. That is presented in Figure 

6-6 and shows the overall picture of what is expected to be achieved in the next stage of the 

interaction modelling framework application. 

 

Figure 6-6: Metagraph for the Automobile Acceleration Example 
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To generate the similar metagraph automatically the SysML model is exported to XML format 

and then the XML file is taken as the original data for the developed tool. The tool 

automatically parses the data and generates the metagraph of the original system model. In 

the current use case, the result is shown in Figure 6-7. In the tool the user selects the path to 

the original XML file and then program automatically acquires all the necessary data for the 

objects and relationships among the objects. These objects and relationships are shown in the 

corresponding Objects and Relationships windows. After the process is done, the metagraph 

is automatically generated and the results can be seen in the Meta Objects window of the 

tool. 

 

Figure 6-7: The proof-of-concept tool interface representing the metagraph objects 

automatically generated from the system model data 

The metagraph objects automatically acquired by the tool execution completely comply with 

the theoretical use case metagraph discussed previously. The more detailed metagraph 

objects, of the original and modified system models, are presented in Figure 6-8 as shown in 

the tool. 
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Figure 6-8: Metagraph objects of the original and modified system models 

Next, the scenarios for verifying the tool effectiveness are distinguished. This involves 

changing parameter values, removing existing and adding new components to the vehicle 

acceleration analysis. Five scenarios are identified: 

• Single parameter changed – incline. 

• Three parameters changed – weight, incline, drag coefficient. 

• Two torque components removed. 

• Two parameters changed and one component added – additional torque. 

• One model added – additional torque, one model removed – wheel torque, three 

parameters changed. 

After systems engineer changes something in the original system model, the resulting SysML 

is being exported to XML file again. Then, the path to both the original and changed system 

models are selected in the proof-of-concept tool, which results in the automatic construction 

of two metagraphs – based on the original SysML data and based on the modified SysML data.  

Figure 6-8 already shows the metagraph objects for both cases in Meta Objects and Meta 

Objects Changed windows. 
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The interaction modelling framework continues to analyse the data by comparing both 

metagraphs and searching for the affected parameters based on the results of this 

comparison. In the main tool window this is done by clicking the buttons “Compare 

metagraphs” and “Find affected attributes”. The results for the scenario with two torque 

models removed are provided in Figure 6-9. 

 

Figure 6-9: The proof-of-concept tool interface representing the automatically tracked 

changes from the SysML data 

The changes are showcased in the Changes window and the affected components are shown 

in the Affected attributes window. The changes for the scenario in question are showcased in 

Figure 6-10.  
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Figure 6-10: Automatically detected changes between the original and modified system 

models and list of affected parameters, as shown in the tool 

These changes clearly show the two models removal and are presented in Table 6-3. 

Table 6-3: Results. Automatically detected changes for scenario 3, use case 1 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Model Removal N/A Object name = Ttrans 
Id = a_O1n1aGAqAACw61 
 

Metaobject ID = e7bb86cc-dd93-
47da-974e-de70130bebc8 
Metaobject name = Power Train 
Force 
 

Model Removal N/A Object name = Twheel 
Id = Rdh1n1aGAqAACw7c 
 

Metaobject ID = e7bb86cc-dd93-
47da-974e-de70130bebc8 
Metaobject name = Power Train 
Force 
 

Affected attributes after these changes – fp, ft, a. 

This completely complies with the manual tracking of the system model. 

The visualisation of the results is performed both in text and graph visualisation. The text 

changes and affected parameters are shown in the tool as mentioned before. That provides 

systems engineer a clear picture of what is going to be affected by certain changes that might 

have been done in the original system model. 
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Figure 6-11: Metagraphs of the Automobile Example, Use Case 1, Scenario 3 

(a) Original System Model (b) Modified System Model 

 

The metagraph visualisation technique results discussed in the implementation chapter are 

shown in Figure 6-11. This represents the automatically generated metagraphs using force-

based algorithm of the original (a) and modified (b) system models. As can be seen the 

metagraph is fully representing the one that was drawn in theory before the modelling and 

represented in Figure 6-6. The colours in the metagraph automatically highlight the changes 

occurring in the system and the parameters affected by these changes. The colours are further 

explained in Table 6-4. 

 

  

(a) (b) 
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Table 6-4: Colour in metagraphs visualisation 

Colour Hex colour code RGB colour code Meaning 

Blue #075DDD RGB (7, 93, 221) Parameter modified 
 

Green #10C100 RGB (16, 193, 0) Model addition 
 

Red #CD2507 RGB (205, 37, 7) Model removal 
 

Purple #B213D1 RGB (178, 19, 209) Parameter affected 
 

The results for the other scenarios are provided below. 

• Scenario 1. Single parameter changed – incline. 

Changes are presented in Table 6-5. 

Table 6-5: Results. Automatically detected changes for scenario 1, use case 1 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = incline 
Id = cCo6EOaAUIW69Ax0 
 

Metaobject ID = c54571b4-9940-
49ca-bc36-9535fa3a5c8b 
Metaobject name = Gravitational 
Force 
 

Affected attributes after the changes – fg, ft, a. 

The metagraphs for that scenario are shown in Figure 6-12. 
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Figure 6-12: Metagraphs of the Automobile Example, Use Case 1, Scenario 1 

(a) Original System Model (b) Modified System Model 

• Scenario 2. Three parameters changes – weight, incline, drag coefficient. 

Changes are presented in Table 6-6. 

Affected attributes after the changes – fg, ft, fd, a. The metagraphs for that scenario are 

shown in Figure 6-13. 

 

  

(a) (b) 
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Table 6-6: Results. Automatically detected changes for scenario 2, use case 1 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = weight 
Id = YQ5BEOaAUIW69A1u 
 

Metaobject ID = d51376ac-9386-
4257-abf8-9af26708a363 
Metaobject name = Gravitational 
Force 
 

Parameter InitialValue Object name = incline 
Id = cCo6EOaAUIW69Ax0 
 

Metaobject ID = d51376ac-9386-
4257-abf8-9af26708a363 
Metaobject name = Gravitational 
Force 
 

Parameter InitialValue Object name = drag coef 
Id = EqTBEOaAUIW69A2j 
 

Metaobject ID = 739fc973-f291-
4b0a-a9c5-2461a79f947d 
Metaobject name = Drag Force 
 

 

 

Figure 6-13: Metagraphs of the Automobile Example, Use Case 1, Scenario 2 

(a) Original System Model (b) Modified System Model 

  

(a) (b) 
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• Scenario 4. Two parameters changed and one component added – additional torque. 

Changes are presented in Table 6-7. 

Table 6-7: Results. Automatically detected changes for scenario 4, use case 1 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = weight 
Id = YQ5BEOaAUIW69A1u 
 

Metaobject ID = 6c95ead1-0b6f-
489a-912f-3becd42e4770 
Metaobject name = Gravitational 
Force 
 

Parameter InitialValue Object name = incline 
Id = cCo6EOaAUIW69Ax0 
 

Metaobject ID = 6c95ead1-0b6f-
489a-912f-3becd42e4770 
Metaobject name = Gravitational 
Force 
 

Model Addition N/A Object name = Tadd 
Id = 073ccdaAUIVuwAwy 
 

Metaobject ID = 16c3ef47-1e25-
4ad0-9d82-caebb8a3d662 
Metaobject name = Power Train 
Force 
 

Affected attributes after the changes – fg, ft, fp, a. The metagraphs for that scenario are 

shown in Figure 6-14. 
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Figure 6-14: Metagraphs of the Automobile Example, Use Case 1, Scenario 4 

(a) Original System Model (b) Modified System Model 

• Scenario 5. One model added – additional torque, one model removed – wheel torque, 

three parameters changed. 

Changes are presented in Table 6-8. 

  

(a) (b) 
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Table 6-8: Results. Automatically detected changes for scenario 5, use case 1 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = weight 
Id = YQ5BEOaAUIW69A1u 
 

Metaobject ID = 7e5eab3c-e2ef-
481d-b071-52a2fa102c66 
Metaobject name = Gravitational 
Force 
 

Parameter InitialValue Object name = incline 
Id = cCo6EOaAUIW69Ax0 
 

Metaobject ID = 7e5eab3c-e2ef-
481d-b071-52a2fa102c66 
Metaobject name = Gravitational 
Force 
 

Parameter InitialValue Object name = drag coef 
Id = EqTBEOaAUIW69A2j 
 

Metaobject ID = 7f960cb6-7b5d-
46f0-9ab1-e36b9fd48239 
Metaobject name = Drag Force 
 

Model Addition N/A Object name = Tadd 
Id = 073ccdaAUIVuwAwy 
 

Metaobject ID = f24d19f8-a240-
42e4-b378-b6358235b43f 
Metaobject name = Power Train 
Force 
 

Model Removal N/A Object name = air density 
Id = 073ccdaAUIVuwAwy 

Metaobject ID = f7a6bb85-7541-
48f5-bac4-80061cfa7338 
Metaobject name = Drag Force 
 

Affected attributes after the changes – fg, ft, fd, fp, a. 

The metagraphs for that scenario are shown in Figure 6-15. 
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Figure 6-15: Metagraphs of the Automobile Example, Use Case 1, Scenario 5 

(a) Original System Model (b) Modified System Model 

The results after performing all the identified scenarios and manually tracking the changes, 

clearly show that the tool is successful in analysing the SysML system model data, generating 

both original and modified metagraphs, comparing them and finding the affected parameters. 

Also, it is proven to show both textual and graphical visualisation capabilities. The next section 

focuses on critically analysing the differences in interaction modelling between the existing 

MBSE implementation in this use case and the results obtained from the interaction modelling 

framework application. 

  

(a) (b) 
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6.3.5 Critical analysis 

After performing the full cycle of the interaction modelling framework methodology 

application for the Automobile Example use case, the next evaluation objective is to critically 

analyse the differences between interaction modelling in the existing MBSE methodologies 

and the proposed framework. This is done based on the results of the use case 

implementation. 

Going back to the evaluation criteria identified before, the author concurs that the framework 

satisfies all of them in this use case. First, the Interaction Modelling methodology is successful 

in propagating changes from one model to the other models. Also, the correctness of the 

affected model identification is proven based on the manual check-up of the system model. 

Next, framework indeed provides potential for systems engineers to identify the expected 

changes on every stage of the development lifecycle and adjust the model accordingly in less 

time without the need to redevelop many aspects from scratch based on the feedback and 

changes in the later stages of the development process. Moreover, the metagraph 

visualisation technique chosen and discussed in the development and implementation 

sections is fully successful in representing the metagraphs of the system models, changes and 

the affected parameters. 

The comparison between the interaction modelling in the existing MBSE methodology 

implementation for the current use case and the results of the interaction modelling 

framework is summarised in Table 6-9. This comparison is based on the evaluation criteria 

identified in the beginning of this chapter. 
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Table 6-9: Critical analysis of the Use Case 1 Interaction Modelling Framework 

implementation results 

Evaluation Criteria 
Existing MBSE methodology 

implementation 

Interaction modelling 

framework implementation 

Capabilities to propagate 

changes in one model to 

the other models 

Manual tracking of the 

changes required along the 

relationships in SysML 

diagrams of the Automobile 

Example systems. 

Automatic detection of the 

changes between the original 

system model and the 

modified one, based on the 

scenarios outcome. 

Correctness of the affected 

parameters identification 

Manual check-up of the 

model required. 

Framework application 

correctness proven during 

the implementation and 

validation stage. 

Capabilities to diminish 

time needed to track the 

changes 

Manual tracking of changes 

takes times depending on the 

number of the components in 

the system model. For the 

Automobile Example it takes 

between minutes to hours to 

propagate the changes 

manually and adjust the 

system model. 

Automatic tracking of 

changes allows systems 

engineer to instantly identify 

the affected parameters after 

performing any changes in 

the system model and then 

adjust the system model 

accordingly. 

The software tool performs 

the changes detection in 

seconds for the Automobile 

Example. 

Potential to allow systems 

engineers to identify the 

expected changes on all 

stages of the development 

lifecycle 

Manual tracking of the 

changes results in the 

possible redevelopments of 

the whole model in the later 

stages of the development 

lifecycle due to unexpected 

changes occurring. 

Performed scenarios for the 

Automobile Example clearly 

show that the interaction 

modelling framework 

provides the capability to 

probe any kind of changes in 

the main system model and 
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That results in inconsistencies 

and unpredictability of the 

model. 

being able to automatically 

identify the affected parts of 

the system model. 

That results in increase of the 

predictability of the 

development process and 

capability to deal with 

inconsistencies in due course. 

Potential to visualise the 

changes and provide 

systems engineers ways to 

easily observer the 

affected system 

components 

The visualisation in the 

existing MBSE methodologies 

stops at the SysML diagrams 

for the Automobile Example. 

There are a lot of interacting 

components in the use case 

with various forces and 

torque models. That results in 

the increasingly difficult 

process of the models 

tracking performed by 

manual navigation through 

the model. 

The text visualisation of the 

changes between the original 

and modified system models 

with the affected parameters 

in the proof-of-concept tool 

allows systems engineers to 

automatically track the 

affected parameters. 

Metagraph visualisation 

technique provided further 

graphical capabilities to 

observe the changes based on 

colours of the certain nodes 

of the metagraph. Metagraph 

visualisation completely 

complies with the initial 

theoretically constructed 

metagraph. 

The comparison between the interaction modelling in the existing MBSE methodology and the 

interaction modelling framework implementation further proves the effectiveness of the 

proposed framework in the chosen Automobile Example use case.  
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6.4 USE CASE 2: Standard CubeSat example 

6.4.1 Use case overview 

The second use case is the standard CubeSat systems development example. CubeSats are 

low-cost, standardised nanosatellites that a typically launched as secondary payloads during 

space launches. It is recognised that CubeSat standard is widely utilised as a means of 

performing scientific research, technology findings or surveillance missions (Spangelo et al., 

2012). Small spacecraft are more constrained in the development process by cost, mass, 

volume, power etc., and become increasingly complex with many sub systems functions being 

interconnected to overcome these constraints. Model-based systems engineering is an 

emerging approach and its applicability for describing small space systems have been 

evaluated on example of the FireSat satellite system, which was used in the book by (Larson 

and Wertz, 2008). Unfortunately, due to the hypothetical nature of the FireSat system, use of 

the model could not be properly shown and validated. 

The CubeSat modelling framework utilises Systems Modelling Language to model each aspect 

of its design process. That includes modelling sub systems, components, parameters, 

describing scenarios and functions of the spacecraft, and the interaction among these sub 

systems and components. It has been shown that SysML provides a comprehensive design 

capabilities to model every CubeSat system (Spangelo et al., 2012). 

The most basic CubeSat consists of both Space System and Ground System, which further 

consists of its subsystems serving various mission functionalities. One of those systems is the 

communication subsystem that passes the data from the spacecraft to the ground station. The 

main measure to evaluate effectiveness of this communication is signal-to-noise (SNR) ratio 

that must exceed certain minimum level in order for the ground team to be able to utilise the 
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data and get meaningful readings from the spacecraft. The SNR analysis depends on many 

external and internal influences such as atmosphere parameters, spacecraft trajectory, space 

loss, propagation path distance etc. The intent of the analysis is to optimise the download rate 

of the data that can be achieved under certain conditions. Due to the sheer number of 

parameters involved in the SNR calculations, it is crucial to establish fast and reliable means 

to find the affected parameters if some other parts of the systems are modified. Increasing 

the predictability of the CubeSat mission on each of its stages remains one of the most 

desirable improvements. Applying the interaction modelling approach to one of the CubeSat 

subsystems is expected to showcase the advantages that can be achieved for the system 

design. Therefore, this research interaction modelling framework is applied for the signal-to-

noise ratio analysis and tackles the issues of mission predictability and design optimisation. 

The CubeSat modelling example showcases the use of SysML and the interaction modelling 

framework in a real-life example that is currently being researched and utilised in the actual 

development of the CubeSats. The SysML reference models are currently being developed for 

the CubeSat standard that can be openly used as a backbone for the real CubeSat 

development as well as the proof-of-concept implementation in this research (Kaslow et al., 

2018). That shows that the Interaction Modelling Framework can also be applied to enhance 

the process of development of the most current systems. 

6.4.2 Current interaction modelling state 

As mentioned in the previous section, the main issue with the development of small spacecraft 

arises from the fact that it is more constrained in terms of mass, cost, volume and power. That 

results in many intersections between different systems and the reuse of various components 

for different purposes (Kaslow et al., 2018). The CubeSat reference model combines 

advantages of both MBSE methodologies and SysML method-independent techniques.  
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Even though the CubeSat Reference Model contains a lot of reusable knowledge, it is implied 

that the complete manual filling up of the model is required for each CubeSats system in 

question, as every system is different and a lot of changes are involved in the development 

process (Kaslow and Madni, 2018). The CubeSat communication sub system and signal-to-

noise ratio analysis that are going to be used later in this use case evaluation, further highlight 

the representative nature of SysML and current MBSE implementation. Stand-alone tools for 

the analysis and changes tracking are used to supplement the existing MBSE methodologies 

and they all require separate licenses and do not solve the issue of interaction modelling to 

full extent (Spangelo et al., 2013). It is further discussed that a lot of improvements are 

required for the simulations and analysis of CubeSat sub systems based on the limitations of 

SysML such as being static and representative in nature (Akyildiz et al., 2019). 

6.4.3 Systems modelling 

First, the overall structure and organisation of the CubeSat needs to be modelled. For that 

purpose, the decomposition principle is utilised, and the key aspects of the main system model 

are distinguished and decomposed into sub systems and components. Overall structure of the 

CubeSat system is shown in Figure 6-16. 

 

Figure 6-16: CubeSat overall system structure 
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This example focuses on the Communication sub system of the main system model. Therefore, 

Communication block is marked as the system of interest. Developing an effective 

communication sub system for a small spacecraft is a challenging process due to constraints 

mentioned before (Spangelo et al., 2013). The purpose of the sub system is to download data 

from the satellite to the ground systems for further analysis. In order to correctly evaluate the 

communication system functionality on the spacecraft, the signal-to-noise ratio (SNR) is 

calculated and measured against the requirements, where SNR should be higher than certain 

minimum threshold to achieve the given error rate. 

SNR analysis is modelled with help of SysML block definition diagram and represents the 

communication link that is being measured. The parameters used for the evaluation include 

design variables of the Communication block itself as well as parameters of Ground Network, 

Atmosphere and the spacecraft trajectory modelled by Orbital Elements block. The SNR 

analysis structure is represented in Figure 6-17, where everything is connected to SNR Analysis 

block. 

 

Figure 6-17: Signal-to-noise ratio analysis block definition diagram 
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The previous diagrams showed the composition of the main system model, communication 

sub systems and parameters involved in the SNR analysis that all belong to their own 

components. Next, there is a need to define how these components interact with each other. 

For that purpose, the parametric diagram is again utilized and shows the comprehensive 

picture of all the models and parameters involved in the analysis. This parametric diagram is 

shown in Figure 6-18. 

 

Figure 6-18: Signal-to-noise ratio analysis parametric diagram 

Overall system model definition and relevant SNR analysis information provides enough data 

to move on to the next stage of the interaction modelling framework application, that is the 

object-oriented automated metagraph modelling. 

6.4.4 Interaction modelling framework application 

Similar to the Use Case 1, since the system is defined and modelled with SysML, the next stage 

is to utilise the acquired modelling data to analyse the changes that might happen in sub 

systems or components on different stages of the development lifecycle. Same proof-of-

concept tool is used for the task of analysing systems modelling information. 
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The SysML is again exported to XML format and then the XML file is used as the original data 

for the analysis tool. The data is parsed using the object-oriented techniques, and then the 

metagraph interaction model is automatically generated for the system model. The result  

To generate the similar metagraph automatically the SysML model is exported to XML format 

and then the XML file is taken as the original data for the developed tool. The tool 

automatically parses the data and generates the metagraph of the original system model. In 

the current use case, the original XML file is named cubesat_originalModel.xml, and the result 

is shown in Figure 6-19 and Figure 6-20. The interaction model metagraph is automatically 

generated and the results can be seen in the Meta Objects window of the tool. 

Same as in the previous use case, the generated metagraph complies with theoretical 

metagraph representation for the CubeSat example. 

 

Figure 6-19: The proof-of-concept tool interface for CubeSat example 
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Figure 6-20: The proof-of-concept tool interface representing the metagraph objects 

automatically generated from the system model data for CubeSat example 

After the automated metagraph generation process is complete, the scenarios for verifying 

the tool effectiveness are distinguished. Same as in the previous use case, this involves 

changing parameter values, removing existing and adding new components to the SNR 

analysis. Five scenarios are identified: 

• Single parameter changed – propagation path distance L_p. 

• Four parameters changed – propagation path distance L_p, data download rate r_dl, 

antenna gain G_t and frequency f. 

• One component added – additional influence and one component removed – atmosphere 

influence. 

• Two parameters changed (frequency f, data download rate r_dl) and one component 

removed – atmosphere influence. 

• One model added – additional influence in the CubeSat Ground Network, one model 

removed – frequency, three parameters changed (data download rate r_dl, available 

power p_dl and antenna gain G_t). 
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After systems engineers change variables in the original system model, the resulting SysML 

model is being exported to new modified XML file. Then, the path to both the original and 

changed system models are selected in the proof-of-concept tool, which results in the 

automatic construction of two metagraphs – based on the original SysML data and based on 

the modified SysML data. Figure 6-20 already shows the metagraph objects for both cases in 

Meta Objects and Meta Objects Changed windows. 

The interaction modelling framework technique continues to analyse the data by comparing 

both metagraphs and searching for the affected parameters based on the results of this 

comparison. 

The results for performing distinguished scenarios are provided below. 

• Scenario 1. Single parameter changed – propagation path distance L_p. 

Changes for this scenario are presented in Table 6-10. 

Table 6-10: Results. Automatically detected changes for scenario 1, use case 2 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = L_p 
Id = g5qCi3aGAqAAC06o 
 

Metaobject ID = 90af3040-f7aa-
4c26-b631-aac5d500d112 
Metaobject name = Calculate SNR 
 

Parameter InitialValue Object name = L_p 
Id = g5qCi3aGAqAAC06o 
 

Metaobject ID = e4177191-ab0a-
4d7a-a6a5-7b29e1441e47 
Metaobject name = Calculate L_s 
 

Even though there is only change in the original system model, the tool automatically detected 

that it affects two metagraph objects as L_p is included in both. 

Automatically found affected attributes after the changes: L_s, SNR. 

The same visualisation force-based graph visualisation technique is used for this use case and 

the results are shown in Figure 6-21 with metagraphs of both original and modified system 
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models presented. Colours highlight the changes and the affected parameters. The 

visualisation complies with the theoretical metagraph for the CubeSat example while the 

textual visualisation in the tool interface allows engineer to see the simple list of the affected 

parameters. 

 

Figure 6-21: Metagraphs of the CubeSat Example, Use Case 2, Scenario 1 

(a) Original System Model (b) Modified System Model 

• Scenario 2. Four parameters changed – propagation path distance L_p, data download rate 

r_dl, antenna gain G_t and frequency f. 

Changes for this scenario are presented in Table 6-11.  

(a) (b) 
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Table 6-11: Results. Automatically detected changes for scenario 2, use case 2 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = L_p 
Id = g5qCi3aGAqAAC06o 
 

Metaobject ID = e498f9af-48a5-
4c49-baec-b850c08005b2 
Metaobject name = Calculate SNR 
 

Parameter InitialValue Object name = G_t 
Id = gSXSi3aGAqAAC0_V 
 

Metaobject ID = 697074bf-ab7c-
4906-b9ac-db3baacba502 
Metaobject name = Antenna 
 

Parameter InitialValue Object name = r_dl 
Id = svsYi3aGAqAAC0as 
 

Metaobject ID = e498f9af-48a5-
4c49-baec-b850c08005b2 
Metaobject name = Calculate SNR 
 

Parameter InitialValue Object name = f 
Id = 3g2Ui3aGAqAAC0t3 
 

Metaobject ID = 10b73339-2b17-
4dbf-bc3a-74e54b9aa97e 
Metaobject name = Calculate L_s 
 

Parameter InitialValue Object name = L_p 
Id = g5qCi3aGAqAAC06o 
 

Metaobject ID = 10b73339-2b17-
4dbf-bc3a-74e54b9aa97e 
Metaobject name = Calculate L_s 
 

Automatically found affected attributes after the changes: G_t, L_s, SNR. 

In this scenario system model is shown to be able to track multiple changes at the same time, 

detecting everything correctly and tracking the changes further down the model metagraph. 

The metagraphs of the original and modified system models are shown in Figure 6-22. 
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Figure 6-22: Metagraphs of the CubeSat Example, Use Case 2, Scenario 2 

(a) Original System Model (b) Modified System Model 

• Scenario 3. One component added – additional influence for calculating parameter L_s and 

one component removed – atmosphere influence. 

Changes for this scenario are presented in Table 6-12. 

Table 6-12: Results. Automatically detected changes for scenario 3, use case 2 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Model Addition N/A Object name = Add_infl 
Id = rnnMa3aGAqAACxCJ 
 

Metaobject ID = 05be7338-639f-
43de-87e5-099ceb39fc46 
Metaobject name = Calculate L_s 
 

Model Removal N/A Object name = L_a 
Id = UtNCi3aGAqAAC07P 
 

Metaobject ID = e376c478-6f22-
4611-a333-9e0a1867a96c 
Metaobject name = Atmosphere 
 

Automatically found affected attributes after the changes: L_a, L_s, SNR. 

It is seen from that scenario that as we remove the value property for atmosphere L_a it 

effects the L_a_out parameter. Also, additional influence is correctly added to the Calculate 

(a) (b
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L_s constraint block and shows that it affects the result of L_s calculation and further 

calculations of SNR. 

The metagraphs of the original and modified system models are shown in Figure 6-23. 

 

Figure 6-23: Metagraphs of the CubeSat Example, Use Case 2, Scenario 3 

(a) Original System Model (b) Modified System Model 

 

• Scenario 4. Two parameters changed (frequency f, data download rate r_dl) and one 

component removed – atmosphere influence. 

Changes for this scenario are presented in Table 6-13. 

  

(a) (b) 
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Table 6-13: Results. Automatically detected changes for scenario 4, use case 2 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = r_dl 
Id = svsYi3aGAqAAC0as 
 

Metaobject ID = d69bafe3-2390-
4046-ad54-03b033175dcd 
Metaobject name = Calculate SNR 
 

Parameter InitialValue Object name = f 
Id = 3g2Ui3aGAqAAC0t3 
 

Metaobject ID = f9e1994e-67d1-
49db-bca5-ba76b22de5c3 
Metaobject name = Calculate L_s 
 

Model Removal N/A Object name = L_a 
Id = UtNCi3aGAqAAC07P 
 

Metaobject ID = 1108e6b1-7996-
4285-a345-b26513dce9cc 
Metaobject name = Atmosphere 
 

Automatically found affected attributes after the changes: L_a, L_s, SNR. 

This scenario showcases the correctness of how both changing parameters and removing 

models affect the system model. Atmosphere influence parameter L_a is removed from the 

system as well as two parameters in the entirely different sub systems. 

The metagraphs of the original and modified system models are shown in Figure 6-24. 

 

Figure 6-24: Metagraphs of the CubeSat Example, Use Case 2, Scenario 4 

(a) Original System Model (b) Modified System Model 

(a) (b) 
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• Scenario 5. One model added – additional influence in the CubeSat Ground Network, one 

model removed – frequency, three parameters changed (data download rate r_dl, 

available power p_dl and antenna gain G_t). 

The changed parametric diagram for this scenario is represented in Figure 6-25. 

 

Figure 6-25: Signal-to-noise ratio analysis parametric diagram for scenario 5 

The automatically detected changes for this scenario are presented in Table 6-14. 

Table 6-14: Results. Automatically detected changes for scenario 5, use case 2 

Change type 
Attribute 

Affected 

Object name and 

information 
Metagraph object information 

Parameter InitialValue Object name = G_t 
Id = gSXSi3aGAqAAC0_V 
 

Metaobject ID = ffa660d6-5949-
4d6a-887f-2074fe62291a 
Metaobject name = Antenna 
 

Parameter InitialValue Object name = p_dl 
Id = sZKoi3aGAqAAC0YO 
 

Metaobject ID = a9fb28cf-80f6-
4338-97fc-999f0e66fb90 
Metaobject name = Calculate SNR 
 

Parameter InitialValue Object name = r_dl 
Id = svsYi3aGAqAAC0as 
 

Metaobject ID = a9fb28cf-80f6-
4338-97fc-999f0e66fb90 
Metaobject name = Calculate SNR 
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Model Addition N/A Object name = Add_infl 
Id = rnnMa3aGAqAACxCJ 
 

Metaobject ID = d36b1998-9639-
49cb-8939-b72fca4e3b24 
Metaobject name = CubeSat 
Ground Network 
 

Model Removal N/A Object name = f 
Id = 3g2Ui3aGAqAAC0t3 
 

Metaobject ID = dca45999-d290-
400b-bcaa-246d86f11e35 
Metaobject name = Calculate L_s 
 

Automatically found affected attributes after the changes: G_t, L_s, T_s, SNR. 

The metagraphs of the original and modified system models are shown in Figure 6-26. 

 

Figure 6-26: Metagraphs of the CubeSat Example, Use Case 2, Scenario 5 

(a) Original System Model (b) Modified System Model 

The multiple changes in this scenario as well as the different types of changes at the same 

time showcases flexibility of the method to automatically generate metagraphs, comparing 

them and then tracking the affected attributes and models based on the changes occurred in 

the system model. The results for that scenario are shown in Figure 6-27 with the screenshot 

of the proof-of-concept tool. 

(a) (b) 
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Figure 6-27: The proof-of-concept tool interface representing the metagraph objects and 

results for scenario 5 of CubeSat example 

The results after performing all the identified scenarios and manually tracking the changes, 

clearly show that the tool is successful in parsing the SysML system model data, generating 

both original and modified metagraphs, comparing them and finding the affected parameters. 

6.4.5 Critical analysis 

The advantages of the CubeSat example is that the interaction modelling framework is applied 

to the real-life example that is currently being researched by various teams and considered to 

be one of the most applicable for the use of MBSE and more specifically Systems Modelling 

Language (Cipera et al., 2019). 

Similar to Use Case 1, the next evaluation objective is to critically analyse the difference 

between the interaction modelling in the current MBSE implementation in CubeSat 

communication system analysis and interaction modelling framework application results. This 

is done based on the evaluation criteria identified in the beginning of this chapter and the use 

case implementation results. 

The interaction modelling framework implementation in CubeSat example further proves that 

the framework satisfied all the evaluation criteria identified before. The proposed 

methodology is successful in tracking changes between models, which is proven by the manual 
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check-up of the system models in all of the five performed scenarios. Next, framework shows 

full potential for systems engineers to automatically identify changes that would happen if 

some variables and models are modified in the main system model. The most important result 

of this is the increase in systems modelling predictability and decrease in the time needed for 

the development of the systems. By probing various changes on any stage of the development 

lifecycle, systems engineer is able to automatically find the affected parts of the system, 

identify potential inconsistencies and then adjust the system model accordingly. Both 

visualisation techniques – textual and graphical – are proven to be effective and correct. The 

textual representation of the changes and affected parameters completely matches the 

manual check-up of the system model based on the finding from the performed evaluation 

scenarios. The metagraph visualisation technique is successful in graphical representation of 

the changes and checked against graph theory and design requirements of the framework. 

That provides systems engineer a clear picture of what is going to be affected by certain 

changes that might have been done in the original system model. 

The comparison between the interaction modelling in the existing MBSE methodology 

implementation for the CubeSat example and the results of the interaction modelling 

framework is summarised in Table 6-15. This comparison is based on the evaluation criteria 

identified in the beginning of this chapter. 
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Table 6-15: Critical analysis of the Use Case 2 Interaction Modelling Framework 

implementation results 

Evaluation Criteria 
Existing MBSE methodology 

implementation 

Interaction modelling 

framework 

implementation 

Capabilities to propagate 

changes in one model to 

the other models 

Manual tracking of the changes 

along the relationships in 

SysML parametric and block 

definition diagrams of the 

CubeSat systems. 

Automatic detection of the 

changes between the 

original system model and 

the modified one, based on 

the scenarios outcome. 

Correctness of the affected 

parameters identification 

Manual check-up of the model 

required. 

Check-up of the framework 

application correctness 

during the implementation 

and validation stage. 

Capabilities to diminish 

time needed to track the 

changes 

Manual tracking of changes 

takes between minutes to 

hours to propagate the 

changes manually with many 

interacting variables involves in 

the signal-to-noise ratio 

analysis in the CubeSat 

Communication sub system. 

Then it also takes hours to 

adjust the system model 

accordingly. 

Automatic tracking of 

changes allows systems 

engineer to instantly 

identify the affected 

parameters after 

performing any changes in 

the CubeSat 

Communication sub system. 

The software tool performs 

the changes detection in 

seconds for the Automobile 

Example. 

Then methodology provides 

capabilities to automatically 

update the SysML models. 
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Evaluation Criteria 
Existing MBSE methodology 

implementation 

Interaction modelling 

framework implementation 

Potential to allow 

systems engineers to 

identify the expected 

changes on all stages of 

the development 

lifecycle 

The increased number of the 

variable involved in the SNR 

analysis results in the 

increasingly difficult process of 

manual tracking of the changes 

and possible redevelopments 

of the whole model in the later 

stages of the development 

lifecycle due to unexpected 

changes occurring. 

The SysML model remains 

representative and static in 

nature. 

Performed scenarios for the 

CubeSat SNR analysis 

showcase that the interaction 

modelling framework 

provides the capability to 

probe any kind of changes in 

the Communication sub 

system. 

Even though a lot of variable 

are involved in the analysis, 

the result is the increase in 

the predictability of the 

development process and 

fewer inconsistencies. 

Potential to visualise the 

changes and provide 

systems engineers ways 

to easily observer the 

affected system 

components 

The visualisation in the existing 

MBSE methodologies stops at 

the SysML diagrams for the 

SNR Analysis and the 

involvement of external 

commercial tools that need to 

be adjusted each time they are 

applied. There are a lot of 

interacting components in the 

use case. That results in the 

increasingly difficult process of 

the models tracking. 

The text visualisation of the 

changes between the original 

and modified system model 

with the affected parameters 

in the proof-of-concept tool 

was proven to be correct in 

the performed scenarios. 

Metagraph visualisation 

technique provided further 

graphical capabilities to 

observe the changes based on 

colours of the certain nodes 

of the metagraph. Metagraph 

visualisation completely 

complies with the graph 

theory. 
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The critical comparison between the interaction modelling in the existing MBSE methodology 

and the interaction modelling framework implementation for the SNR analysis in CubeSat 

Communication sub system shows the effectiveness of the interaction modelling framework 

implementation in real-life industrial example. The proposed framework provides clear 

enhancements to the existing MBSE and SysML implementation techniques. 

6.5 Discussion and findings 

To perform the effectiveness assessment of the framework, a use case evaluation was utilised. 

It was shown how all the stages of the Interaction Modelling Framework are applied in the 

real-life examples. It was seen that the proof-of-concept implementation tool correctly 

interprets the SysML data and analyses it for searching the changes occurring in the model, 

propagates them to other models and finds all the affected components of the main system 

model. It was demonstrated in a series of scenarios that the framework was able to handle 

multiple changes and identify the affected parameters fully automatically and correctly. This 

showcases the technique’s capability of allowing systems engineers to be able to monitor 

changes happening on different changes of the development lifecycle and making necessary 

adjustments by seeing, which parts of the system model are being impacted by certain 

changes. Also, the developed proof-of-concept software tool showed the visualisation 

capabilities with both textual representation of the changes in the system model and affected 

components of other subsystems, and visual representation with the automatic picture 

generation of the metagraph of the system model.  

In comparison to the existing model-based systems engineering methodologies, it is evident 

that the proposed interaction modelling framework provides extended capabilities and 

enhancements to the development process. Based on the survey of existing MBSE 

methodologies (Weilkiens et al., 2016) and literature review conducted in Chapters 2 and 3, 
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legacy MBSE techniques do not provide means to automatically track. As discussed by (Zhang 

et al., 2015) the MBSE methodologies are successful in providing ways to reduce complexity 

of the system model but still require a lot of manual tracking of the changes that might lead 

to inconsistencies (Herzig et al., 2014) and whole redevelopment of large parts of the 

products. Interaction Modelling Framework is methodology independent and is shown to fill 

these gaps by providing automatic change propagation. Therefore, it can be used to enhance 

existing MBSE methodologies and provide improvements for the development process where 

necessary. Critical analysis of the differences between the interaction modelling in the existing 

MBSE methodologies and the proposed framework application proved the advantages of this 

research and highlighted the potential enhancements to the legacy MBSE techniques. These 

improvements include the following: 

• Automatic changes propagation when some parts of the main system model are modified. 

• Increase of the predictability of the development process by allowing systems engineers 

to probe the changes and identify the potential changes needed in every stage of the 

development lifecycle. 

• Decrease of the time needed for the changes propagation and ultimately the product 

development. 

• Potential for the textual and graphical visualisation of both the changes found in the 

system model and the affected components by these modifications. 

• Reduce the complexity in model-based systems engineering environment. 

To ensure that the Interaction Modelling Framework shows full effectiveness, it was essential 

to compare it against the framework requirements and evaluation goals identified in Chapter 

4 and earlier in the current Chapter. First, the requirements are going to be assessed. There 
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requirements were subdivided into two categories – functional and design. Functional 

requirements are responsible for the correct practical implementation of the developed 

methodology. These requirements are as follows: 

• Correctness – this requirement states that the developed method will allow effective 

modelling of systems interaction in MBSE environment. 

This requirement was achieved through the use case evaluation with series of scenarios 

involving multiple kinds of changes in the main system model and then propagating of these 

changes and being able to identify the parameters and models affected. 

• Automatic control over interactions – this is important so that modelling logic in the form 

of subsystems interaction is dynamic and allows systems engineer to automatically track 

the changes through the relationships according to certain rules. 

It was shown that the changes propagation happens in a fully automatic manner and systems 

engineers can probe any possible changes, observe the affected parameters and make 

necessary adjustments on each stage of the development lifecycle. 

• Systems interaction representation – requirement related to correct and simple 

representation of needed relationships from different points of view. 

The proof-of-concept tool has been proven to contain the necessary capabilities to 

automatically represent the changes and affected parameters in all the tested scenarios 

during the use case evaluation. It is done both textually and graphically with metagraph 

visualisation technique implementation. 

The design requirements that were distinguished for the framework were as follows: 
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• Special knowledge – there is a need for a special systems interaction engineer who will 

have knowledge of the composition of the interaction module and will be able to control 

this module in case there is a need for it. 

The one engineer responsible for the application of the interaction modelling framework in a 

real-life example should have the knowledge of how the framework works and thus, being 

able to correctly implement it for the specific development process. In case of proof-of-

concept implementation in this research, this is achieved by the authors having done thorough 

research of metagraph theory. 

• Relationships models – it is necessary to provide systems interaction engineer full 

capabilities and a range of building blocks/models to be able to control automatically built 

interaction module. 

Systems Modelling Language was used as the systems modelling foundation of the 

methodology framework. It is a MBSE methodology independent framework that provides full 

modelling capabilities. 

• Applicability for multiple users – this requirement states that different users should be 

able to utilise the developed methodology. 

Proof-of-concept was shown to be completely independent. The utilisation of the interaction 

modelling framework does not require specific graph theory knowledge from systems 

engineers to be able to use the methodology to track the affected parameters. 

• Friendly user experience – this requirement related to both users and the systems 

interaction engineer as they should be able to seamlessly utilise developed framework 

with the help of software with friendly and simple user interface. 
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This requirement was achieved through developing the software tool that can is user friendly 

and provides good visualisation capabilities. Even though proof-of-concept is successful in that 

to some extent, there is still a lot of room for improvement in that regard and will be further 

discussed in the limitations of this research and recommendations for future work. 

Therefore, it has been proven that all the requirements are achieved based on the results from 

use case evaluation. The objectives and the criteria of the evaluation process were identified 

earlier in this chapter and it is needed to check if they were achieved as well. The objectives 

included performing full cycle of the interaction modelling framework implementation in the 

use cases, validating the implementation through scenarios and then comparing the results 

with the existing MBSE methodologies. As shown in this Chapter, the use case evaluation was 

successful in achieving all these objectives. 

All the evaluation criteria defined in Section 4.5.4 have been matched to full extent based on 

the evaluation process through the use cases and the critical comparative analysis between 

the existing MBSE methodologies and the proposed framework results outcome provided in 

Section 6.3.5 and 6.4.5. The evaluation also demonstrated that the framework provided 

consistent results in all the tested scenarios in both use cases. Based on these findings, it can 

be concluded that the results of the interaction modelling framework application are 

adequate and viable. 

6.6 Validation of Research Hypotheses 

In this section, both research hypotheses are validated using results obtained from the use 

case evaluation. The research questions and hypotheses are discussed. Capabilities of the 

interaction modelling framework in the context of each hypothesis are highlighted. Then, the 

description of the methodology effectiveness is presented. 
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6.6.1 Research question 1 and Hypothesis 1 

Research question 1: How can the organisation of the interactions among the sub systems be 

analysed in MBSE for the purpose of solving complexity issues such as lack of communication 

and lack of understanding? 

Research hypothesis 1: The new methods and tools for modelling interactions in MBSE can 

improve the effectiveness of interactions analysis MBSE by: 

• Creating the common interaction module storing all information on interactions and 

relationships among the sub systems. 

• Formalising the interactions definitions and generating new dynamic ways of tracking the 

relationships among system model components. 

Interactions management in MBSE environment was modelled with help of a common 

interaction module based on object-oriented metagraph approach. Metagraph of the original 

system model and a metagraph of the modified are automatically and independently 

constructed and then compared to be able to track the changes in the system model and find 

the affected parameters. This way is dynamic in nature as it provides systems’ engineers 

capabilities to constantly monitor the affected sub systems and parameters by any changes 

happening in the main system model. Thus, the first research question had been fully 

answered and the research hypothesis appears to be correctly stated in the early stages of 

this research. 
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6.6.2 Research question 2 and Hypothesis 2 

Research question 2: How can the new dynamic ways of interactions modelling improve and 

enhance the existing MBSE methods and static ways – hard-coded rules, pre-defined rules, 

relationship and mathematical expressions? 

Research hypothesis 2: The new methods and tools for modelling interactions can improve the 

existing MBSE techniques in such a way that the interaction model can be reused at any stage 

of the development process by: 

• Using a general formalism to describe the concept and the interaction knowledge storage. 

• Automatically tracking changes in the main system model and its sub systems and 

propagating changes to the other model components. 

• Providing capabilities to track interactions and relationships when performing various 

changes on all stages of the development lifecycle. 

Interaction modelling framework was based on the graph theory, which is a general formal 

mathematical theory widely utilised in all aspects of engineering and sciences. It is completely 

methodology independent and is applied to specific tasks with necessary adjustments based 

on tasks needs. A novel approach used in this research was based on a more sophisticated 

concept such as a metagraph that provides full general formalise and is being able to store 

interaction knowledge in a general formalised manner. Utilising the proposed methodology, 

systems engineer is able to probe various changes occurring on any stage of the development 

process. Then based on the automatically generated metagraphs, systems engineer can 

monitor the affected parameters and sub systems. Therefore, it allows to track interactions 

and relationships and adjust the development process where necessary, avoiding mistakes, 

inconsistencies and ambiguous definitions of parameters. 
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6.7 Summary 

The developed interaction modelling framework was applied to two different use cases and 

the use cases worked through the framework. Series of scenarios were distinguished, and the 

use cases were verified through their application. This chapter presented the evaluation of 

the framework with regards to its effectiveness. First, it started with the evaluation objectives 

and criteria that all have been met during the process. Next, it was shown that the framework 

is successful in achieving all the functional and design requirements distinguished in previous 

chapters. The chapter concludes with revising research questions and hypotheses and 

showing that both hypotheses were correct as an answer to the research questions. Based on 

the evaluation results, next chapter discusses the research outcomes in more details, 

discusses the limitation of the current work, provides recommendations to future research 

and draws overall conclusions. 
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7.0 Discussion, conclusion, and recommendations for future work 

7.1 Introduction 

The research has been successful in its development of the interaction modelling framework 

for reducing complexity in model-based systems engineering environment. The current 

chapter goes back to the foundations of the research, summarises the work done and 

discusses the findings of the use case implementation. The purpose of the research is further 

discussed, the aim and objectives of the research are restated, and it is shown how they are 

achieved by the work performed in this research. This chapter outlines the contributions to 

knowledge and defines limitations of the research. Furthermore, this chapter provides 

identified directions for future work such as automation of the full interaction cycle of the 

development process and virtual engineering. This chapter serves as the closure to the 

research and completes the thesis. 

7.2 Discussion 

The study aim was to identify and develop methods and tools for creating dynamic ways of 

modelling logic in form of systems interaction for reducing complexity in MBSE environment. 

To achieve that, this research has introduced a novel graph-based modelling approach. In 

Chapter 1 it was shown that aim of this work was derived from the general limitations of 

systems engineering and model-based systems engineering with regards to increasingly 

growing complexity of the modern systems. The review of the current state of systems 

engineering provided the basis and formed the understanding of how the SE methodologies 

have been evolving since first introduction of its principles in 1970s. 

It was identified that MBSE has emerged as a powerful technique to make the product 

development lifecycle simpler and more robust. The key challenge was to thoroughly 
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understand the design process in model-based systems engineering environment, find its 

limitations with regards to interactions automation and then to identify appropriate 

techniques and tools for improving the interaction modelling. These limitations include 

inconsistencies and lack of overall dynamism of the modelling process. Design inconsistencies 

arise on every stage of the lifecycle and need to be considered (Friedenthal et al., 2014).  

Even though model-based systems engineering has been successful in its attempt to allow 

engineers to reduce systems complexity and to improve systems engineering process to some 

extent, significant research gaps were identified that interactions among subsystems are 

modelled manually in the form of hard-coded rules and pre-defined relationships. It has been 

concluded from the literature that all the MBSE methodologies do not provide suitable ways 

to automatically track interactions among sub systems and components. Based on the type of 

relationships all the methodologies propose different ways of representation of the system, 

but ultimately tracking the interactions is left for a systems engineer to perform manually. 

Systems Modelling Language is a methodology independent technique to create 

comprehensive system model representation with the help of diagrams. Even though it 

provides a convenient way of representing systems interactions it still does not provide the 

capabilities to propagate the changes from one model to the others. SysML is widely utilised 

in most of the MBSE methodologies and remains methodology independent. 

Knowledge Based Engineering was discussed as another modern approach for developing 

more quality cost-effective products in less time. KBE methodologies also deal with multiple 

interacting systems on every stage on the lifecycle and at the same time provide capacity to 

automate the development process by reusing the existing knowledge from the previously 

developed product while working on something new. Nevertheless, work carried out by 

researchers recognised the scarcity of dynamic specific KBE methodologies with “blind spots” 
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in logic as pre-described rules cannot be useful in every situation (Lolli et al., 2014). This 

research results can also be applied to KBE applications. 

Since the focus of this research is graph-based modelling methods in application to systems 

engineering field, distinguishing graph theory functionalities and performing the comparative 

analysis of graph structures allowed the author to find the most applicable concept for 

interaction modelling – metagraph. Metagraph is an emerging and mostly theoretical graph 

theory approach that has not been applied to many engineering problems yet and is being 

researched mostly from academia point of view. It is seen that metagraph theory provides 

wide range of capabilities that can be successfully utilised in engineering, decision support 

systems and systems with multiple interacting components. A detailed literature review was 

conducted for graph modelling approaches and it was proven that graph-based modelling 

perfectly fits the research purpose.  

The selected graph theory constructs have the following capabilities: 

• Ability to visualise the model. 

• Provide information on model composition. 

• Show the relationships directionality. 

• Possess multiple inputs/outputs for the system. 

• Have mathematical form for representation. 

• Ability to model multiple components at the same time. 

The related research - graph-based design languages - focuses on the similar problem of 

connecting various models involved in the development process and dealing with complexity 

issues (Gross and Rudolph, 2016a). Overall, the concept of graph-based languages has been 
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proven to be a useful way of representing the entire design by a complex equation system 

showing all design dependencies. Although, this interaction representation remains static and 

even one missing rules definition can lead to the entire equation system being unmanageable 

and unsolvable with no appropriate way of searching for the actual error due to the system 

being too complex and the sheer number of components. 

In order to address the need for automatic changes propagation in MBSE environment, this 

research proposed an interaction modelling framework. As shown in Chapters 4 and 5, it was 

developed through the selection of appropriate tools and technique and was based on initially 

distinguished functional and design requirements and all the underlying concepts of MBSE 

and metagraph theory. Finding ways to connect the metagraph modelling with MBSE proved 

to be the main difficulty of this research. In the end the object-oriented programming solution 

was identified as the most suitable, while proof-of-concept showed the effectiveness of the 

developed framework. 

With the support of the framework, the thesis answered the research questions and showed 

how the interactions among the sub systems in the form of models could be analysed in MBSE 

for solving complexity problems such as lack of communication and lack of understanding. 

Through the framework, this research proposes an automatic object-oriented approach by 

storing all interaction in the common object-oriented metagraph-based module. This 

approach combines the advantages of the existing MBSE methodologies and expands it with 

the ability to dynamically track the relationships and changes that will be caused by 

modifications in other models on every stage of the development lifecycle. Systems engineer 

can always observe the parameters that will be affected by certain changes and make 

necessary adjustments to the model, and also can validate the model being developed by 

probing different solutions. In contrast to existing methodologies, this reduces the 



7.0 Discussion, conclusion, and recommendations for future work 

138 
 
 

unpredictability of the development process and eliminates the need to make last minute 

changes to design. Ultimately it leads to a dynamic evolutionary approach for product 

development. In comparison to legacy MBSE methodologies, that allows the creation of more 

quality cost-effective products in less time while also helping with tracking the inconsistencies 

and errors in the design process. 

The major difference between current work and these methods are that, in the interaction 

modelling method the changes traceability is done automatically and does not require 

systems engineer manual attention every time there is a need to adjust the model based on 

the changes done in individual components. Secondly, generated interaction data can be 

reused for multiple changes tracking, which allows for a much greater level of reusability and 

sharing of knowledge. The current approach utilises the more sophisticated concepts for 

modelling interactions such as metagraph. But at the same time systems engineer does not 

require to have underlying knowledge of such an academic centric graph theory method and 

still can utilise the methodology. That is programmed using object-oriented approach and 

remains methodology independent and allows for flexibility in modelling generic relationship 

types coming from SysML. 

The proposed method also allows for simultaneous identification of multiple parameters and 

values affected by certain model modifications as the process is ultimately automatic and has 

capabilities to analyse the data coming from SysML without a need to pre-define any rules 

and manually track the changes. 

Through the use case evaluation, the framework showed potential regarding effectiveness 

and workability. In order to measure the effectiveness of the framework evaluation objectives 

and criteria were derived. These included performing different scenarios in the use cases to 
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compare the actual results from applying the interaction modelling frameworks against the 

functional and design requirements and then critically analysing the evaluation outcome. 

The verification and validation through use cases is based on the data collected from the 

literature. The first use case is the acceleration analysis example for the automobile 

development. This use case is selected due to its general nature that showcases the 

application of Systems Modelling Language in actual real-life scenario of automobile 

development. The second use case is the CubeSat development example from literature. The 

CubeSat mission describes a nanosatellite flying in low earth orbit for earth observation or 

other research purposes. The model of the satellite is supposed to enable the layout of most 

of the subsystems on a conceptual level. For the purpose of this research communication 

subsystem was used and signal-to-noise ratio was analysed. 

The critical analysis was performed based on the differences between the legacy MBSE 

methodologies implementation and the interaction modelling framework application results. 

The results are provided in the form of table comparisons in Chapter 6 and clearly showed the 

effectiveness of the developed method. The advantages are as follows: 

• Automatic changes propagation when some parts of the main system model are modified. 

• Increase of the predictability of the development process by allowing systems engineers 

to probe the changes and identify the potential changes needed in every stage of the 

development lifecycle. 

• Decrease of the time needed for the changes propagation and ultimately the product 

development. 

• Potential for the textual and graphical visualisation of both the changes found in the 

system model and the affected components by these modifications. 
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• Reduce of the complexity in model-based systems engineering environment. 

This analysis shows the effectiveness of the framework and that it fully fills the research gaps 

identified in this research. The findings from the evaluation were presented and further 

discussed against the distinguished framework requirements. As opposed to spending 

resources and time on manual interaction tracking, it is proven that the interaction modelling 

framework methodology shall provide the foundation to bridge the gap between interaction 

automation and MBSE tools and techniques. As a result, applying the developed framework 

will provide systems engineers an easier way to focus on the design process and increase the 

predictability of the systems being developed. 

The proposed methodology has successfully answered the research questions showing that 

the research hypotheses were correctly stated. The interaction modelling framework matches 

all the requirements distinguished before the proof-of-concept implementation and 

development stage. Also, the defined evaluation objectives have been reached to fully prove 

the usefulness of the developed method. Overall, the proposed interaction modelling 

framework successfully manages to achieve the aim of the research and ultimately allows to 

enhance existing MBSE methodologies by providing new ways of modelling logic in the form 

of interaction among sub systems and components of the main system model. 

As the developed framework is methodology independent, it remains flexible and leaves space 

for necessary adjustments that might need to occur due to specific requirements of individual 

development process. 
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7.3 Contribution to knowledge 

In this section a summary of research contributions is presented. This research proposed the 

interaction modelling framework for the distinguished requirements. The contributions to 

knowledge are summarised below: 

• Modern model-based systems engineering methodologies are limited with regards to 

modelling interactions among sub systems and components. A novel interaction modelling 

framework is proposed that would provide an approach for tracking the changes in the 

system that might occur on any stage of the development lifecycle. This provides systems 

engineers capabilities to automatically observe the changes and adjust the system model 

where necessary. The predictability of the development is increased and prevents 

engineers from making errors in the development process. 

• The proposed methodology automatically generates the object-oriented metagraph-

based interaction model. This results in the simplification of the process of modelling the 

main system model. The proposed algorithm is capable of automatically showing all the 

models and values being affected by certain changes made in any other model. Systems 

engineers have more time to spend on the actual development and being able to see the 

possible development options that might need to be closely followed. 

• The framework is methodology independent and works as a possible enhancement of 

existing MBSE methodologies. This approach allows the framework to be flexible so that 

systems engineers can make necessary adjustments to it based on their own specific 

development needs. Making the adjustments would not cause any disruption in the 

functioning of the original main system model. 
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• The presented framework for graph-based modelling of systems interaction in MBSE 

environment is set to help systems engineers to develop better quality cost-effective 

products in less time. This work may be viewed as a step forward toward more consistent 

and automatic modelling of interactions among subsystems and components in MBSE. 

7.4 Limitations of research 

This research addresses the aim and objectives, and answers research questions that are set 

in Chapters 1 and 2 of this thesis. Still, there are limitations to this work that are not 

considered. 

Even though framework is completely methodology independent and generic, this research 

utilises specific system models for its proof-of-concept implementation in the use cases. The 

software tool needs to be further developed to become more generic regarding the data that 

can be analysed. 

Secondly, the framework provides automatic way of generating object-oriented metagraph 

interaction model of the system model coming from SysML. Then this model is used to analyse 

the changes and find the affected models and values. However, it proposes the process for 

exporting resulting data back to XML and automatically updating the original SysML. This 

research focused on proving capabilities to track the changes and find affected parameters 

while automatic update of the SysML model is going to be recommended for the future work. 

Lastly, the framework visualisation is currently limited due to the fact that metagraphs remain 

a highly academic concept that is not being widely researched for engineering purposes. The 

potential force-based algorithm for visualisation is utilised in this research but there is much 

room for improvement in that regard as visualisation is highly dependent on specific project 
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needs. For some projects just text visualisation might be enough, while for some commercial 

large products there is a need for high quality automatically generated picture. 

Despite these limitations, this research has proven that the proposed framework provides all 

the necessary capabilities, as indicated by the use case evaluation. Therefore, the aim and 

objectives of this research are achieved. Also, it can be argued that covering all mentioned 

limitations would require moving the product from research academia state to the 

development of a much larger scale software tool, and that requires more people involved in 

the development. 

7.5 Recommendations for future work 

Many potential research aims can be derived from this research for future work. This can be 

summarised as follows. 

As mentioned in the previous section, the software tool used for proof-of-concept 

implementation is limited for specific use case scenarios. Therefore, one of the potential 

future work directions is to further improve and develop the software tool and make it more 

generic and being able to model any kind of a system model. 

The other possible direction for future work is to make the automatic update of the original 

SysML model based on the results acquired from changes tracking. That will further extend 

the functional capabilities of the proposed framework and increases its effectiveness capacity. 

Also, as mentioned in limitations sections, working on the ways of metagraph representation 

is essential for providing much better-quality visualisation of the changes whenever required 

based on the specific development needs. Therefore, improving the metagraph automatic 

representation is another possible direction. This can be a completely new method, or an 

improvement of the force-based algorithms proposed in this research. 
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The potential applications of the interaction modelling framework include various fields of 

engineering such as virtual engineering, additive manufacturing, or machine learning. 

One of the modern technologies that is expected to become an integral part of MBSE in the 

nearest future is the Digital Twin approach (Madni et al., 2019). Digital twin is a virtual 

prototype – dynamic representation of a physical system. As mentioned in Chapter 1, even 

though the applicability of such technology is extra promising, being a relatively new concept, 

there is a number of issues that need to be resolved before it can be applied in MBSE to full 

extent. These issues include defining and dynamically managing the interactions among 

different subsystems and components within the virtual prototype. Therefore, one potential 

direction for expanding this research outcomes usability into the field of virtual engineering is 

developing methods and tools for applying the interaction modelling framework for 

controlling the interactions in the model’s digital twin – its virtual prototype. 

The other possible future work is connecting model-based systems engineering and additive 

manufacturing with help of the developed interaction modelling framework. Leveraging 

existing efforts in the fields of MBSE and rapid manufacturing, efforts were made to bring 

together requirement analysis, automated design and rapid prototyping in order to verify and 

validate the requirements (Justin et al., 2018). Interaction modelling framework can 

potentially be applied as a central module for controlling interactions among different parts 

of the system in order to provide a seamless way to verify and validate changes in the 

requirements and/or system itself and enhance the process of rapid manufacturing. 

As another future research direction, author suggests applying interaction modelling 

framework in conjunction with machine learning algorithms. New advances in the field such 

as natural language processing, deep learning, and overall interest in the big data analysis 

provide more potential in the use of machine learning techniques in the field of systems 
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engineering (Lee et al., 2018). MBSE tools can be used to define complex adaptive system 

architecture in multiple contexts and capture interrelationships in the system at different 

levels. That provides structured data format standards to integrate natural language 

processing techniques and thus, research behaviour of a system. Example of such systems can 

be complex natural gas systems with the examination of geographical, physical and 

commercial value streams through the machine learning analysis (McDermott et al., 2016). 

Interaction modelling framework can be applied for similar cases and improve overall 

predictability of the model with many interacting and changing components. 
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