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Abstract

The quest for simple solutions is not new in machine learning (ML) and related

methods such as genetic programming (GP). GP is a nature-inspired approach

to the automatic programming of computers used to create solutions to a broad

range of computational problems. However, the evolving solutions can grow

unnecessarily complex, which presents considerable challenges. Typically, the

control of complexity in GP means reducing the sizes of the evolved expressions

– known as bloat-control. However, size is a function of solution representation,

and hence it does not consistently capture complexity across diverse GP appli-

cations. Instead, this thesis proposes to estimate the complexity of the evolving

solutions by their evaluation time – the computational time required to evaluate

a GP evolved solution on the given task. After all, the evaluation time depends

not only on the size of the evolved expressions but also on other aspects such as

their composition, thus acting as a more nuanced measure of model complexity

than the expression size alone. Also, GP evaluates all the solutions in a popula-

tion identically to determine their relative performance, for example, with the

same dataset. Therefore, evaluation time can consistently compare the relative

complexity.

To discourage complexity using the proposed evaluation time, two approaches

are used. The first approach explicitly penalises models with long evaluation

times by customising well-tested techniques that traditionally control the size.

The second uses a novel technique that implicitly discourages long evaluation
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times by incorporating a race condition in the GP process. The proposed meth-

ods yield accurate yet simple solutions; furthermore, the implicit method im-

proves the runtime and training speed of GP.

Across a diverse suite of GP applications, the evaluation time methods prof-

fer several qualitative advantages over the bloat-control methods. They effec-

tively manage the functional complexity of regression models to enable them

to predict unseen data (generalise) better than those produced by bloat-control.

In two feature engineering applications, they decrease the number of features

– principally responsible for model complexity – while bloat-control does not.

In a robot control application, they evolve accurate and efficient routines – effi-

cient routines use fewer time steps to complete their tasks; bloat-control could

not detect the efficiency of the programs. In Boolean logic problems where size

emerges as the major cause of complexity, these methods are not hindered and

perform at least as well as bloat-control. Overall, the proposed system charac-

terises and manages various forms of complexity; also, it is broadly applicable

and, hence, suitable for an automatic programming system.
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Chapter 1

Introduction

1.1 Introduction of the Thesis

Genetic Programming (GP) is an evolutionary algorithm (developed based on

ideas from Darwinian evolution) for automatically evolving computer programs.

As computer programs can represent solutions to any computational problem,

GP, at least in theory, can be used to produce solutions to any problem automati-

cally. Correspondingly, its applications concern a wide variety of computational

problems such as automatic programming, machine learning, design, and gen-

eral problem-solving [1]. The user of the system must merely specify the ingre-

dients of the possible solution (such as system variables and useful functions

that can help model the solution to the underlying computational problem) and

then the system automatically searches for the best possible solution.

GP uses a flexible structure to represent potential solutions; this flexible

structure is designed to enable an effective search for increasingly better solu-

tions. However, although the flexibility makes the search potent and versatile,

the emerging solutions grow increasingly and often unnecessarily complex to

present considerable challenges.

This thesis addresses the challenges of managing the complexity of evolv-

ing solutions in a variety of contexts. Since GP is a versatile tool that evolves

solutions to problems in several domains, the motivations for avoiding it are
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diverse and therefore, the thesis argues the notion of complexity in GP must be

understood in a nuanced fashion.

Due to its versatility, the motivations for managing the complexity of GP

evolved solutions vary. For example, when applying GP to model data arising

from a phenomenon under study, a well-known reason for avoiding complex-

ity is to avoid overfitting [2]. Meaning, data models must not over-learn the

observed data to the extent that they cannot explain other data arising out of

the same phenomenon. Literature in Machine Learning argues that a common

indicator of overfitting is model complexity: a functionally complex model has

a greater ability to mimic the quirks of the noise (such as due to measurement

errors) in the data used to train the model than a simpler one. Such a model in-

evitably fails in predicting system behaviour on similar data that was not used

to train the model. Instead, the goal (in machine learning based data mod-

elling) is to infer models that accurately predict on unseen data [2], that is, to

avoid overfitting the training data.

Another reason to avoid needless complexity is to attain solutions with min-

imal computational effort and runtimes. For example, constraints on comput-

ing resources on Internet of Things (IoT) devices restrict acceptable models to

shorter evaluation times even if this compromises the model’s accuracy [3].

Also, short runtimes are, at least, desirable if not essential for computer pro-

grams, for example, interrupt service routines in operating system kernels [4],

evolvable neural networks [5] and circuit specifications [6] represent but only

a few instances that require efficiency. The short runtimes improve efficien-

cies such as computing resource utilisation, power consumption, response time,

amongst other objectives.

A well known and studied concern of the excessive complexity in GP is that

it can render GP’s search process ineffective; in fact, if left uncontrolled, it can

exhaust the computer system resources to physically halt a GP process [1].
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Therefore, complexity in the GP context is multifaceted, and a universal and

formal definition of complexity – that forms the basis of a quantifiable measure

for detecting and controlling the complexity – is yet to exist.

Current solutions for managing complexity are limited. For example, a form

of complexity that is easily measured and popularly used is the size of the ex-

pression that represents a solution. Discouraging this notion of complexity is by

far the most popular and most studied approach to managing the complexity

of GP solutions – known as bloat-control. However, this approach ignores the

underlying functional and computational complexity of GP solutions; more-

over, the small expressions (e.g., sin(x)) can be computationally and function-

ally more complex than larger-sized expressions (e.g., 5x + 4x + 3x + 2 + 1).

Accordingly, previous studies show that discouraging the size of a GP solu-

tion (bloat-control) does not always overcome the overfitting problem in data

modelling (poor performance on unseen data) [7, 8], which is associated with

the model’s functional complexity. Likewise, in other GP applications, attain-

ing solutions with small expressions does not always address the motivation

behind managing complexity. For example, an evolved program with a small-

sized representation (e.g., nested loops) may require much more computational

resources to execute than a larger-sized one that does not use these loops.

Despite these limitations, bloat-control remains by far the most popular

complexity control in GP. Although there has been some parallel work on com-

plexity control, it is restricted to specialised domains (for example, approaches

for data modelling may not cover the diversity of GP applications such as robot

control); and even so, exacts demands on the evolutionary dynamics that are

not always easy to fulfil.

Therefore, this thesis presents a broadly-applicable indicator of the complex-

ity of GP solutions and methods of controlling the complexity. Instead of using
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the sizes of the expressions representing GP solutions, this thesis proposes eval-

uation time – the computational time required to evaluate a GP solution (e.g.,

a data model on training data) – as a notion of its complexity. This notion is

founded on the observation that contending GP solutions within an application

can have different evaluation times based on their computational composition.

For instance, a data model can take a long time to evaluate because it com-

prises of computationally-expensive building blocks (functions), is structurally

large enough to take a long time to be evaluated, or both; hence the model is

computationally complex. Therefore, curbing the evaluation time can poten-

tially discourage both the structural and functional complexity. Moreover, this

notion can reflect complexity in other GP applications as well. For example, in

automatic programming, the evaluation times (execution times) of evolved pro-

grams reflects their efficiency (a form of complex behaviour; simple programs

require minimal computational effort).

To manage the complexity of GP solutions through their evaluation times,

this thesis demonstrates two main approaches.

The first approach controls complexity explicitly by leveraging the machin-

ery of the well-precedented bloat-control techniques, but to constrain the eval-

uation times instead of the sizes of GP solutions. Since these bloat-control tech-

niques are well studied, this study merely observes the benefits that may accrue

by replacing the objective of minimising sizes with evaluation times. This ap-

proach is a relatively minor adjustment to a well-accepted practice and therefore

is easy to adopt widely by GP practice.

The second approach controls complexity implicitly by simply allowing the

computationally simpler solutions to thrive and guide the remaining evolution-

ary search by virtue of completing their evaluations before their more expensive

counterparts. Since GP simulates natural evolution, it searches for increasingly

better solutions by maintaining a population of candidate solutions at all times
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instead of merely improving a single solution. As new solutions emerge from

the existing population, the current population indicates the direction of the

evolutionary search at the time; the present members of the population simu-

late sexual reproduction to produce offspring solutions. Since the future gen-

erations of solutions depend upon the genetic constitution of the current popu-

lation, the current population influences what kind of solution will eventually

emerge at the end of the simulation. The second approach, therefore, induces a

competition, a race (as is called in parallel computing), whereby multiple can-

didates evaluate in parallel, and those that finish evaluating first and get into

the breeding population can steer the remaining search by reproducing earlier,

while their expensive counterparts remain busy evaluating. This race gives the

simpler models an evolutionary advantage, not because of any explicit penalty

inflicted upon their complex counterparts but simply owing to their computa-

tional efficiency. Note, however, that evolutionary search is guided primarily by

the notion of fitness or quality of the evolving solutions; that is, in a given pop-

ulation, the fitter solutions reproduce more often and thus direct the evolution-

ary search. Consequently, if a qualitatively better but more complex solution

emerges later, it will influence the remaining evolutionary search. Therefore, in

this system, a complex interplay of computational efficiency and quality ensues

without explicit and subjective penalties on the solutions based on their defined

measure of complexity.

This thesis compares the impact of evaluation time control (both its flavours)

with several effective bloat-control techniques on several applications. The ob-

jective of this study is two-fold: a) to see as to whether the proposed schemes

can produce good quality solutions in a domain-specific way and b) as to whether

the idea of controlling complexity via evaluation times is broadly applicable.
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Positive results on both the counts reported in this thesis confirm that evalua-

tion time indeed effectively supports the genetic search to produce good qual-

ity solutions across disparate applications. Therefore, evaluation time control

is a versatile approach to complexity control that can characterise complexity

in different scenarios to proffer several qualitative advantages over the pop-

ular bloat-control techniques. For example, in machine learning applications

(regression and classification) where the principal objective is to avoid overfit-

ting, evaluation times help distil simpler models that generalise (avoid over-

fitting) better by differentiating between the relative complexity of transcen-

dental functions and simpler arithmetic operations. In robot control programs

the proposed measures produce solutions that are both more accurate and ef-

ficient; in fact, the presence of looping constructs in this application – that de-

crease expression size but increase computational complexity – made evalu-

ation times based control a whole lot more useful than bloat-control. While

evolving Boolean logic circuits where the computational differences in the cir-

cuit components were not as pronounced as perhaps in the earlier applications,

the proposed schemes were at least no worse than the standard bloat-control

methods. This result, though apparently unfavourable, actually demonstrates

the versatility of time-based control to mimic bloat-control when all else fails.

The efficacy of the evaluation time-based control is still clearer in another in-

teresting application where this thesis hybridises GP with the well known mul-

tiple linear regression (MLR) to generate powerful regression models. While

MLR works very well if the features (or system variables) are well identified, it

relies on the human user to identify these features. GP, in contrast, can manufac-

ture effective features but can still benefit from the ability of MLR to optimally

combine these features into a powerful regression model. While this makes for

an effective hybrid system (MLR+GP), this system runs the risk of generating
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very complex models with a very high number of complex features. Complex-

ity, in this case, is twofold: the number of features and the complexity of the

constitution of the GP evolved features themselves. The results indicate that

time-based complexity control covers both these aspects of complexity much

more effectively than bloat-control.

Furthermore, the thesis analyses the proposed techniques by empirically

verifying as to whether the results are indeed induced by internal evolution-

ary dynamics influenced by time control. For example, it empirically verifies

whether that if under time control, the computationally efficient solutions out-

pace their expensive counterparts to enrol into the population. Also, for the

implicit time control, this study verifies the impact of the number of parallel

threads on the race: it checks as to whether increasing the number of parallel

threads leads to a more equitable race. Also, this study investigates a new pop-

ulation initialisation scheme to kick start evolution in GP. Although the scheme

is motivated by the evolutionary dynamics of the time control introduced here,

the results indicate that the new population initialisation also improves the per-

formance of a standard implementation of GP with bloat-control.

This thesis highlights the inadequacy of the popularly used structural no-

tions of complexity in Genetic Programming. The success of the proposed al-

ternative – evaluation times – and the methods derived from it across a broad

set of GP applications attest to the ability of the evaluation time to characterise

complexity in a nuanced way and the breadth of their applicability.

1.2 Aim and Objectives

This thesis aims to highlight the inadequacy of the popularly used structural

based notions of complexity in Genetic Programming (GP) and, to introduce

and analyse an alternative – based on the evaluation times of evolving solutions
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– that helps produce a more effective complexity control across a broad set of

GP applications.

Essentially, the thesis addresses the question: Can the knowledge that sim-

ple tasks take a shorter time to perform than complex ones be used to effectively

produce simple and efficient computational models?

To achieve the aim of this thesis, the following objectives are pursued:

• Objective 1: Review the current notions of complexity in genetic program-

ming and the techniques for controlling them.

• Objective 2: Propose an alternative measure of complexity that charac-

terises complexity effectively enough to be useful and broadly applicable

across GP applications.

• Objective 3: Propose alternative methods to control complexity in GP based

on the complexity measured as proposed in this thesis.

• Objective 4: Compare the proposed system for producing simple GP solu-

tions against the state-of-the-art GP methods on a diverse set of applica-

tions.

• Objective 5: Analyse the behaviour of the proposed methods from Objec-

tive 3 to verify and optimise them.

1.3 Major Contributions of this Thesis

• A time-based measure of complexity. This thesis presents and demonstrates

that a time-based measure of complexity – evaluation time – detects many

notions of complexity across applications and, therefore, can be used to

manage complexity broadly and effectively. This contribution corresponds

to Objective 2.
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• Strategies for addressing the challenges of the practical use of the time-based

complexity measure. This thesis demonstrates how to overcome challenges

with the practicality of using this time-based complexity measure; these

include avoiding inconsistencies due to the work of the operating system

when scheduling and managing processor power. As evaluation time is

central to the proposals of this thesis, the contribution here is crucial to

achieving the objectives.

• Methods for controlling the complexity of GP solutions explicitly. This the-

sis demonstrates how to curb the complexity of GP solutions by explic-

itly discouraging solutions with high evaluation times. The methods cus-

tomise some of the best existing bloat-control techniques traditionally used

to manage the sizes of the GP solutions. Accordingly, this contribution is

in fulfilment of objectives 3 and 4.

• An effective population initialisation method for effective complexity control.

This thesis introduces a population initialisation scheme – Fixed length

Initialisation (FLI) – that promotes functional diversity in the population.

While results indicate that evaluation time-based control can curb size

growth, it works truer to its spirit if it can differentiate between compu-

tational complexity derived out of functional diversity (or semantics). To

this end, FLI ensures the production of a functionally diverse initial pop-

ulation. Surprisingly, however, the results indicate that FLI improves the

outcomes for GP regardless of which kind of complexity control is at play.

Therefore, FLI is another contribution to the general practice of GP. FLI is

one of the methods that help achieve Objective 3.

• A Novel genetic programming method that implicitly controls complexity. This

thesis proposes the Asynchronous Parallel Genetic Programming (APGP),
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which is a GP version that uses a race condition in the evolutionary pro-

cess to manage the complexity of GP solutions implicitly. This novel

approach provides advantages, such as managing complexity naturally

without subjective penalties, improving training speed and accuracy. Fur-

thermore, the APGP challenges the common but unnatural practice in GP

of producing offspring in a synchronised manner. This contribution is a

fulfilment of objectives 3 and 4.

• A proof of concept across a variety of popular GP. As proof of concept and fur-

ther investigation, this thesis presents the application of the proposed sys-

tem to a variety of popular GP applications. While this demonstrates the

system’s utility and broad applicability, it also shows the various forms

of complexity that the system can unearth and its qualitative effect on the

solutions. For example, it produces models that generalise well by detect-

ing functional complexity through computational complexity, size, and

the number of features in regressions models; and the methods yielded ef-

ficient and accurate robot control routines. As this contribution expands

the meaning of complexity in GP and compares the proposed methods

with existing ones, it addresses objectives 2 and 4.

• Expanding the discussion on what complexity is in artificial intelligence. This

thesis adds to the dialogue on complexity in artificial intelligence by propos-

ing a measure of complexity and demonstrating how it can unearth sev-

eral notions of complexity across several GP applications (e.g., size of the

representation of a model, number of features in a model, functional com-

plexity, and efficiency). This contribution partially addresses objectives 1

and 2.
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1.4 Published Works

The following are publications that were derived from this thesis:
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https://doi.org/10.1145/3341105.3373921
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P. Indramohan, Hanifa Shah “Feature Engineering for Enhanced Perfor-

mance of Genetic Programming Models", In: GECCO ’20 Companion, Ge-

netic and Evolutionary Computation Conference Companion, July 2020. URL:

https://doi.org/10.1145/3377929.3390078.
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Computing", In: GECCO ’21 Companion, Genetic and Evolutionary Compu-

tation Conference Companion, July 2021. URL: https://doi.org/10.1145/

3449726.3459583

1.5 Organisation of the Thesis

The rest of the thesis is organised as follows:

• Chapter 2 - Background. Chapter 2 provides an overview of genetic algo-

rithms (EAs) (a family GP belongs to) and explains how they work. The

chapter then builds on the introduction of EAs to explain the workings

of GP; next, it introduces how and why the challenge of complexity may

arise. The chapter starts to build an appreciation of the challenges of man-

aging complexity in GP, including showing that it is a multifaceted issue

driven by many motives.

• Chapter 3 - Complexity in Genetic Programming. Chapter 3 starts by show-

ing why producing a formal definition of complexity in GP is challenging;

it shows that in the absence of this definition, the practice is to resort to

using proxies that indicate complexity. Then, the chapter reviews the cur-

rent notions of complexity (the proxies) in GP and the techniques used to

manage the complexity. Finally, the chapter introduces the evaluation time

as an alternative that can better fill the gap in addressing the complexity

management challenge of GP.

• Chapter 4 - Time as a measure of complexity. Chapter 4 presents an examina-

tion of the evaluation time as a measure of complexity in GP. Accordingly,

the chapter theoretically and empirically validates the inference of this

thesis that the evaluation time can reflect more than the sizes of GP mod-

els. In addition, the chapter highlights the expected behaviour of the eval-

uation time, such as the insight that in a functionally diverse population,

https://doi.org/10.1145/3449726.3459583
https://doi.org/10.1145/3449726.3459583
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it distinguishes functional complexity; and, in a functionally converged

population, it distinguishes structural complexity (size). Furthermore, the

chapter addresses the crucial issue of measuring time reliably – the entire

system relies on estimates of complexity using evaluation time. Therefore,

this chapter proposes and tests strategies that overcome this challenge.

• Chapter 5 – Explicit Control of Evaluation Time. This chapter produces the

first results on complexity control with evaluation times. Specifically,

it demonstrates how to control the evaluation time to control the com-

plexity of GP models by largely using the machinery of the pre-existing

bloat-control methods that explicitly penalise large sizes; the implemen-

tations only replace size with evaluation time. Note that a new proposal

is far more palatable and easier to adopt widely if it requires minimal

changes to the existing practice. Hence, the proposed methods in this

chapter merely prescribe the replacement of the notion of expression size

with evaluation time in what are otherwise well-accepted as techniques

for bloat-control. Furthermore, this chapter presents a new population

initialisation scheme that promotes functional diversity in the popula-

tion – Fixed Length Initialisation (FLI); the motivation for the initialisa-

tion scheme is to create an environment for the evaluation time to detect

functional differences between the models better.

• Chapter 6 – Implicit Control of Evaluation Time. This chapter explores a sys-

tem that, instead of using explicit penalties, incorporates a race condition

that allows simple solutions (with short evaluation times) to gain an evo-

lutionary advantage – a metaphor from natural evolution. The fast evalu-

ating (simple) candidate solutions gain an evolutionary advantage when

they finish evaluating and get into the breeding population earlier than

their slower (more complex) counterparts. These simple solutions in the
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breeding population can breed (similarly simple and potentially more ac-

curate offspring) while the slower counterparts are busy evaluating. This

chapter explores whether this relatively gentler and implicit advantage

makes a noticeable difference and if the method encourages simplicity in

the GP populations.

• Chapter 7 – Analysis of the APGP. Chapter 7 analyses the implicit time con-

trol method (APGP) from Chapter 6 and investigates hyperparameters

for the population initialisation scheme that improves functional diver-

sity in the population (FLI). The analysis verifies whether computation-

ally efficient solutions outpace their expensive counterparts to enrol into

the population. In addition, it verifies as to whether the results produced

by the time control method are indeed induced by internal evolutionary

dynamics influenced by the evaluation time control method, as theorised.

Furthermore, the analysis studies the effect of the degree of concurrency

of the parallelisation on the APGP performance.

• Chapter 8 – Application of Evaluation Time Schemes in GP with Multiple Lin-

ear Regression. This chapter further demonstrates that the evaluation time

is more than size using this thesis’s novel hybridisation of GP and mul-

tiple linear regression (MLR-GP) as a platform. The MLR-GP evolves so-

lutions that incorporate several notions of complexity and, therefore, en-

ables a detailed study of how time characterises complexity and how well

it controls the complexity of the MLR-GP solutions in this environment

where complexity has a broader meaning than in regression. This chapter

shows that in this application, where complexity reflects the number of

features and the complexity of the constituents of the GP evolved features

themselves, the time-based complexity control covers both these aspects

of complexity much more effectively than bloat-control.
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• Chapter 9 – Beyond regression. This chapter demonstrates the versatility

of the evaluation time schemes by testing them on various diverse GP

applications. This chapter compares the time schemes with bloat-control

on popular benchmarks problems to demonstrate their ability to unearth

various notions of complexity. The benchmark problems are from robot

control, Boolean logic applications, and classification using hybridisation

of GP with multiple linear regression. Therefore, this chapter confirms

the ability of the proposed methods to provide a nuanced way to detect

various notions of complexity and offer qualitative improvements in a

broad range of applications.

• Chapter 10 – Conclusions and Future Work. This final chapter provides a

conclusion of the thesis and presents the direction of future work.
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Chapter 2

Background

2.1 Introduction

This chapter presents the background of this study. The central algorithmic

paradigm for this thesis – genetic programming – is one of the several algorithms

inspired by natural evolution (Darwinian Evolution). Therefore, this chapter in-

troduces the main concepts at work that these algorithms have borrowed from

Darwinian evolution. Then, it presents the details of genetic programming (GP)

and highlights the challenge this thesis addresses – the challenge of managing

the complexity of GP solutions.

Complexity in machine learning (ML), and GP in particular, is multifaceted.

Across the many diverse applications of GP, complexity means many things;

likewise, within an application of GP, several reasons may drive the need to

manage it. Because of the importance of this challenge, overcoming it has many

precedents. Yet, the challenge still demands effective solutions that address the

needs.

The rest of this chapter is organised as follows: Section 2.2 introduces evo-

lutionary algorithms; Section 2.3 explains how GP works and introduces the

challenge of managing complexity in GP; and, Section 2.4 concludes the chap-

ter.
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2.2 Overview of Evolutionary Algorithms

Evolutionary algorithms take inspiration from natural evolution and have a

common root – the idea that living organisms adapt over time to suit their en-

vironment. Charles Darwin (1809-1882) popularised the theories that explain

the mechanism that drives this adaptation [9]. Moreover, this adaptation mech-

anism relies on the presence and interplay of several factors and principles.

In nature, the evolutionary process involves a population of living organ-

isms that have the potential to multiply. Furthermore, this multiplication is as-

sociated with variation of the genetic makeup (genotype) of individuals in the

population through sexual reproduction, which involves the mixing of genetic

materials of individuals to produce offspring, and through mutation, which

makes random changes in genotype. The variation in genotype may result in

changes in the physical characteristics (phenotype) of the individual. Over an

extended period, new generations of the organism replace the old ones that die

off. As the population of individuals moves from one generation to another,

new traits may manifest, which can help them survive their environment better

or otherwise. However, only individuals with favourable adaptations survive

in their environment long enough to pass down those traits to their offspring.

Thus, heritable traits that help organisms survive and reproduce in a given en-

vironment become more common in the population over time. This natural

filtering out and preference for the relatively fitter individuals is termed natural

selection and is a central theme in Darwinian evolutionary theory.

2.2.1 The Basic Elements of Evolutionary Algorithms

To harness the power of natural evolution, which optimises a population of

organisms to fit its environment better, evolutionary algorithms identify and

mimic the core ideas and their relationships. Although natural evolution is a

highly complex system, evolutionary algorithms benefit from borrowing basic
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concepts; some versions may borrow more than others. The basic concepts in-

clude the following:

• Natural evolution maintains a population of living organisms. Accord-

ingly, evolutionary algorithms typically start by creating a population of

candidate solutions for a given problem.

• In natural evolution, the potential for the species to multiply is essen-

tial. In addition, the multiplication of the organism involves the varia-

tion of genetic makeup (with a possible resultant change in characteris-

tics) through sexual reproduction and mutation. Therefore, evolutionary

algorithms make new solutions from the existing ones using artificial ge-

netic operators that mimic reproduction and mutation.

• In natural evolution, organisms die off to make way for new generations

that increasingly fit the environment they inhabit. Correspondingly, evo-

lutionary algorithms incorporate methods that replace individuals of a

population with better performing offspring.

• In natural evolution, the struggle for existence is within a specific environ-

ment that determines the advantageous characteristics or fitness of an indi-

vidual organism. Therefore, an evolutionary algorithm employs a fitness

function, which evaluates and scores every candidate solution to quantify

how well it solves the problem. The exact definition of the fitness func-

tion varies from problem to problem, much like the variation in the en-

vironment in natural evolution. The fitness function computes the fitness

scores, which the evolutionary algorithm uses to determine the perfor-

mance of an individual and, in turn, its survival and the opportunity to

reproduce.

Experimental observations show that when algorithms apply these concepts

to a problem (a computational problem), the population of candidate solutions



Chapter 2. Background 19

improves with time. The following section describes how these borrowed con-

cepts work together to form evolutionary algorithms (henceforth abbreviated

as EA or EAs).

2.2.2 The Process Flow of Evolutionary Algorithms (EAs)

Natural evolution is a complex process, and EAs only mimic them coarsely.

Moreover, several variations of EAs exist, and more are emerging. Therefore,

this section describes a simplified version of a common approach to evolution-

ary computing to illustrate how they work.

As illustrated in FIGURE 2.1, the EA starts by producing a population of

sample (random) solutions and evaluating them. Typically, the number of indi-

viduals that make up a population is predetermined.

FIGURE 2.1: Overview of the evolutionary algorithm process.

Then, breeding that iteratively produces several generations of evolving in-

dividuals begins. Each iteration or a cycle includes a probabilistic selection of

good parents from the existing population to reproduce. Copies of the selected
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parents are recombined (sexual reproduction) and occasionally mutated to pro-

duce offspring.

While the population sizes in natural evolution vary, in contrast, EAs typi-

cally maintain a fixed population size (although some attempts to vary the pop-

ulation sizes have been made, e.g., [10], they are not commonly used). There-

fore, in this example, a cycle generates only as many offspring as there are in-

dividuals in the existing population. Next, all offspring are evaluated and as-

signed fitness scores.

A cycle (representing a generation) ends when the current breeding popula-

tion is replaced by the new one. Several methods for replacing the current pop-

ulation are available. The new generation may replace the older one entirely,

or a selection of the best from a combined pool of both parents and offspring

becomes the new generation. As such, there is no consensus in the community

as to which approach is universally the best.

The breeding cycle continues for several generations until a termination con-

dition is satisfied; for example, if the evolution produces an individual that

meets a set target fitness or completes the maximum number of allowed gener-

ations.

2.2.3 Evolutionary Algorithms as Guided Random Search

Considering evolutionary algorithms as search algorithms provides additional

insight into how they work. Evolutionary algorithms explore the possibilities

of a search space of solutions using a guided random search [11–13]. While

a random search relies on luck to find a solution to a problem that has a vast

search space, a guided random algorithm has a means of knowing whether ev-

ery step it takes is an improvement or not. Hence, although the immediate

steps (change in the solution) are somewhat randomised (e.g. genetic material
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is randomly recombined between the selected parents), the algorithm proba-

bilistically selects better performing parents to produce offspring; therefore, the

algorithm is guided during the search.

Moreover, instead of working with a single solution (e.g., in Simulated An-

nealing [14] or Gradient Descent [15]) the EAs work with a population of solu-

tions; this allows them to simultaneously sample multiple areas in the search

space (especially at the start of the evolution when the population is randomly

generated). As a result, the search in EAs is not restricted to the neighbourhood

of a single solution; instead, it is parallelised. Therefore, it increases the feasi-

bility of finding innovative solutions within a reasonable time in vast search

spaces. Also, since artificial evolution in the EA is driven by sexual recombina-

tion, offspring leverage the learning of different individuals, which differs from

independent agents exploring the search space.

Furthermore, the parallelisation in EAs can more rapidly explore (randomly)

different areas of the search space than simple random search to find at least an

acceptable solution, if not an optimal one.

Essentially, by coarsely mimicking natural evolution, evolutionary algorithms

embody a system where solutions are evolved by probabilistically sampling

from the promising regions of the search space. This provides an acceptable

trade-off between a highly exploratory but expensive random search and highly

exploitative but potentially limited local search.

FIGURE 2.2: Types of evolutionary algorithms.
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The categorisation of EAs shown in FIGURE 2.2 is popular in the EA lit-

erature [16]; they include Genetic Algorithms (GA), Evolution strategies (ES),

Evolutionary Programming (EP), and Genetic Programming (GP). GA, ES, and

EP all appeared at around the same time (the 1960s), but they differ in terms of

how they implement ideas from natural evolution. However, broadly they all

optimise parameters of some system under consideration.

GP is a relatively newer branch of this field and is also different in its tar-

get applications. GP emerged in the mid-1980s [17] and became popular in the

1990s [18]. Although its application is broad-based, it is generally considered an

automatic-programming EA. To borrow an analogy from the modelling appli-

cations, while the other EAs optimise only the parameters of the system under

consideration, GP evolves the model underlying the system itself. The next

sections describe GP in detail.

2.3 Genetic Programming (GP)

Genetic programming (GP) is a specialised evolutionary algorithm initially de-

signed for the automatic generation of computer programs [17, 18]. Today, GP

is used to generate solutions to several other types of problems. An important

feature that makes it versatile and distinguishes it from many other EAs is the

flexible structure GP uses to represent solutions. Instead of assuming a fixed

form, the structure of GP solutions is allowed to change as needed. For exam-

ple, while typical Genetic Algorithms (GA) often optimise a given set of param-

eters (thus a set structure), GP can explore vast possibilities to produce unex-

pected solutions without the benefit of prior knowledge of what an appropriate

form is for the solutions [19]. This GP’s ability to find and optimise appropri-

ate structures for its solutions makes it a powerful tool with broad applications.

However, the flexible representation used in GP comes with challenges. The

following sections describe how GP works and some of its challenges.
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2.3.1 Representation of Solutions

The traditional and most popular representation of GP individuals is a tree-style

structure [20]; other variations are also common [21–26]. It is easy to extend

or contract the tree structure and, therefore, it is suitable for variable-length

encoding.

To construct a GP tree, the user must first specify two sets, that is, functions

and terminals. The function set contains all the possible choices that can appear

in the internal nodes of a tree, while the terminals set contains all the possible

choices that can appear in the leaf nodes of a tree.

For example, consider a GP tree in FIGURE 2.3 that represents the mathe-

matical equation (x2) + sin(x + 1). The figure also shows a possible choice of

the functions and terminal sets from which the exemplified tree can be instanti-

ated. The internal nodes are sampled from within the functions set, and require

arguments that can be specified via either subtrees extending beneath them or

leaf nodes. Similarly, the leaf nodes are sampled from the terminals set but do

not require arguments (e.g., variables and constants are terminals); therefore,

the leaf nodes can not have subtrees extending beneath them. In the example,

the instance of ADD function at the top of the tree is the root node; MUL, SIN,

and the other instance of ADD are internal nodes (functions); and nodes X and

1 are leafs (terminals).

The representation of solutions in GP allows the flexibility of growing and

shrinking. While this flexibility is essential in how GP works, it also poses chal-

lenges; Later Section 2.3.7 details these challenges.

2.3.2 Population Initialisation

The makeup of the initial populations of evolutionary algorithms (EAs) affects

how effectively and quickly they find fit (good) solutions [27, 28]. The more
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FIGURE 2.3: A tree representation of the mathematical equation
(x2) + sin(x + 1). Not all functions or terminals necessarily ap-

pear on a single tree.

diverse the initial population is, the better EAs can explore the different possi-

bilities within the search space. The search space is the underlying theoretical

space of candidate solutions the EA can sample from; typically, the quality of

solutions varies across different subspaces within the broader search space. Due

to the parallelised exploration of the different areas of the search space (as men-

tioned in Section 2.2.3), the chances of EAs of finding optimal solutions (global

optima) increase. Otherwise, the EA may be searching within a limited area of

the search space at a time, which means that the search may only find the best

within that area (local optima) or may take a long time to move to other regions

with better solutions.

Therefore, the standard practices of creating an initial population in EAs aim

to start with a diverse population of individuals that samples from many re-

gions of the search space. However, maintaining a large population size also re-

quires a large computational effort because each population member must also

be evaluated. Therefore, selecting the right population size involves a trade-off

between adequate sampling and low processing requirements.
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Ramped-half-and-half Initialisation

Although an obvious method of producing a diverse population would be to

randomly generate individuals, the most popular initialisation method in GP

is one of the earliest – the so called Ramped-half-and-half (RHH) was proposed

by the early work of Koza [19] and it remains popular to this day. The RHH

leverages two other methods to produce equal percentages of the population –

the FULL and the GROW methods.

The FULL method builds a fully formed tree of a specified depth. Therefore,

while creating a tree, the FULL method only uses functions (specified in the

functions-set) from the root node until the tree grows to a specified maximum

depth level. At the last level, it only uses terminal nodes. As the choice of

internal nodes (functions) is typically random, two trees of the same depth may

produce trees with different makeup and even different structure; the choice of

internal nodes may still influence the breadth of the tree. The choice of different

functions will differentiate the makeup, whereas choice of functions of different

arity will make the structure also look different. However, the one commonality

across all trees is that all the branches extend to a common maximum-depth.

The GROW method can produce trees that are not necessarily fully formed

because the branches can terminate at various depths. To create a tree, GROW

randomly selects a function as a root node. Then, unlike the FULL method,

it randomly picks from either the functions or the terminals to extend the tree

– subject to a pre-specified maximum depth. If a branch reaches a depth that

is one less than the maximum depth, an appropriate terminal is randomly se-

lected to terminate the tree growth. Furthermore, if GROW chooses a terminal

type for a node position, the branch stops growing, sometimes before reaching

the maximum depth. Consequently, the GROW method produces trees with

diverse structures (often unbalanced) and generally smaller-sized than those

produced by FULL.
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Note, the GROW method produces a range of differently sized and struc-

tured trees. However, the probability of producing a fully formed tree with the

GROW method is small (because at each level functions and terminals are ran-

domly selected from); therefore, the RHH methods uses both of the methods

to produce a population that has equal shares of fully formed and irregularly

shaped trees.

The Ramped-half-and-half (RHH) method systematically combines the FULL

and the GROW methods to produce a diverse population. RHH specifies a

range of maximum depths and allocates equal quotas of individuals in the pop-

ulation to each of the maximum depth values. Then for each maximum depth,

half the quota of individuals is generated via the FULL method and the other

half is generated via GROW method. The RHH produces a diverse population

and remains the popular population initialisation technique in GP.

Other Initialisation Methods

Other reasons have motivated the development of a variety of population ini-

tialisation methods. For example, one approach [29] seeded the population with

data models with perfect training accuracy scores to get GP to evolve smaller-

sized versions of the models while maintaining their accuracy. For GP to evolve

parsimonious solutions from a population of these perfectly trained models, it

uses a Pareto fitness function, where a combination of model accuracy and size

determines fitness. The method used simple deterministic algorithms to at-

tain well-trained models; virtually, the models memorise the training data. For

example, on a classification problem, they created individuals by combining

if-then-else clauses; the collection of clauses are created by either finding a com-

bination of input variables for each training case or by building a decision tree

that uses interval tests on the input variables to get the desired output. For the
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experiments, they used a population of 500 such individuals with other logi-

cal operators, constants, and arithmetic operators. However, the models that

memorise large datasets can be unwieldy and often take many generations to

reduce. Therefore, they also used subsets of the data (a popular approach to

reducing expense in GP, for example, see [30]) to create the clauses for building

the individuals in some of the experiments. In one experiment, they used the

first half of the data, and in another, they used a combination of the first ten

negative training cases and the first ten positive cases. The results show that

this GP method can reduce the sizes of the models while maintaining accuracy.

Another example that aims to improve the quality of solutions and reduce

run-times incorporates domain knowledge in the form of existing high-quality

solutions [31]. However, while this not-random initialisation improved the av-

erage solution quality and run-time, it deteriorated the quality of the best solu-

tions found over many runs.

Similarly, to improve performance and increase diversity, the work in [32]

initialises the population with competent candidate solutions to the problem,

thus avoiding random individuals that tend to perform poorly. However, none

of the two versions of this method resulted in significant differences in problem-

solving performance or population diversity across the benchmark problems.

To speed up population initialisation, closely control the sizes of the trees,

and manage the distribution of functions in the population, the work in [33]

proposed two methods. The first method, which is an adaptation of GROW,

controls the appearance of functions (specified in the functions-set) in a tree

using user-defined probabilities. Also, it keeps the average tree sizes to a speci-

fied size; but, it does not control the variance in tree sizes. The second method

enables the user to also control the variance of the tree sizes in the initial popula-

tion. The proposed initialisation methods show low computational complexity

and are competitive with the GROW method.
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Yet, the RHH has remained the method of choice [34–46]; also, popular open

source implementations of GP offer RHH [47–49]. In fact, the method has been

so popular that other GP methods like Grammatical Evolution have devised

their own versions of RHH for non-traditional GP systems [46, 50].

2.3.3 Breeding

To produce a new generation of solutions, GP selects parents from the popu-

lation of solutions to breed offspring. Since the selection strategy impacts the

quality of offspring and the makeup of the newly generated population, differ-

ent selection techniques exist; the next section details some popular techniques.

However, let us first complete the overview of the breeding process.

After selecting the parents, GP creates a new generation of solutions using

three methods [19]. The first method mimics sexual reproduction (also known

as crossover) by recombining copies of selected parents from the current popu-

lation to breed offspring. The second method mutates existing individuals. The

third method termed elitism selects some small fraction of fit individuals from

the breeding generation and passes them onto the next generation unaltered.

Selection of Parents

Breeding involves selecting parents from the existing populations that will pro-

duce offspring for the next generation. Studies have shown that the choice of

selection mechanism impacts the performance of GP, such as its convergence

rate [51–53]. While selecting fit parents for breeding may produce fit offspring,

the selection methods are designed to avoid over-selecting the same parent even

if it is the best individual to maintain diversity in the population. Otherwise,

an individual with an outstanding fitness score will be selected repeatedly and
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take over the breeding population, and the resulting generation would com-

prise entirely of the genetic material coming from the same parent. Such a situ-

ation is typically undesirable because the search for solutions will thus focus on

a single region of the search space and stagnate; if the resulting quality of the

solutions is undesirable such stagnation is called premature convergence [54–56].

Therefore, maintaining a balance that rewards performance yet encourages

diversity in the population is a crucial consideration in the design of methods

for selecting parents. For example, tournament selection – a popular selection

schemed in EAs [57, 58] – randomly selects several individuals from within the

population and then in a manner of a tournament chooses the fittest of the se-

lection as the winner that will breed (together with the winner of another tour-

nament, if the genetic operator is crossover). The tournament size is normally

much smaller than the population size (typically 2 - 7 [57], while population

sizes are 100+). The random selection of tournament contestants ensures that

the fittest (and hence the same) members of the population are not necessar-

ily selected each time; however, crucially, relatively fitter solutions are selected

from the population. Thus, tournament selection provides a trade-off between

diversity and performance. The method is easy to implement and very popu-

lar, hence the method of choice in this thesis. Other popular selection methods

that attempt the same although to varying extents include Fitness Proportion-

ate Selection [59] whereby the chances of selecting a parent are proportional to

the magnitude of its fitness, and Ranking Selection [55] whereby the individu-

als are ranked according to their fitness before conducting Fitness Proportional

Selection. Since these methods are independent of the type of the solution rep-

resentation, they are often usable across evolutionary algorithms.
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Sexual Reproduction – Crossover

To mimic sexual reproduction, copies of two parents (selected individuals) ex-

change segments of genetic material to generate two offspring. Accordingly, the

offspring differs from the parents while likely containing inherited components

that were previously useful. As a result, sexual reproduction – also known as

crossover – is the most popular method of stimulating change in the population

of Evolutionary Algorithms.

Despite attracting considerable debate, the so-called building block hypoth-

esis has often been invoked to support the utility of crossover in GP in that

crossover can combine fit subunits (building blocks) of parents that are partial

solutions to eventually produce fitter solutions than those in the earlier genera-

tions [60, 61]. The other side of the debate countered that a crossover operation

is simply a form of mutation and no building blocks are involved [62, 63]. Sub-

sequent studies show that the building block hypothesis has merit even though

the exchange of randomly selected subtrees is often destructive to fitness. They

demonstrate that when GP discovers primary partial solutions, they spread in

the population and become constituents of fitter ones [64–67]. The crossover

operator is the dominant method of making changes to a population during

evolution in GP.

The crossover techniques are often specific to the type of representation. For

the tree representation in GP, subtree crossover is popular [19, 68]. The basic

subtree crossover randomly selects a crossover point in each of the parents and

swaps the subtrees beneath the points; see FIGURE 2.4 for the illustration of

this process.

Crossover operators are customised to suit a purpose. For example, the one-

point crossover first chooses the crossover point in one parent before determin-

ing a corresponding point on the second parent [69]. Thus, offspring maintain

structural similarity with their parents after the crossover. Others choose the
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FIGURE 2.4: Crossover in genetic programming: copies of par-
ents exchange segments to produce offspring.

crossover points according to the size of the exchanged subtrees [70] or the se-

mantics of the exchanged subtrees [71] to manage the sizes of the offspring and

improve their performance.However, the standard subtree crossover remains

the dominant choice in GP [47, 68, 72–75].

Mutations

Mutation in natural populations represents random copying errors when ge-

netic material is transferred from the parents to offspring. As such, mutation

is largely destructive to the developing embryo. However, studies in genetics

and particularly in unicellular organisms show that mutations allow organisms

to occasionally discover new traits that can be advantageous. Essentially, muta-

tions can inject new genetic material and hence genetic diversity. However, the

rate of mutation is typically small.
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Correspondingly, mutation in GP allows introducing new (random) genetic

material into an individual and, in turn, the population [19, 76]. Although mu-

tation is typically detrimental to the fitness of GP individuals, it plays a vital

role in increasing the diversity of genetic material. Thus, it can prevent stag-

nation during the search. The common practice is to allow mutation to occur

with a small probability (e.g., 0.1). If a very high mutation rate is applied, the

evolution will tend towards random search.

In tree-based GP, subtree mutation is a popular choice. The process creates

a random subtree, identifies a subtree of the individual that will be excised,

and swaps in a randomly generated subtree (of up to a pre-specified depth) to

replace the excised subtree. FIGURE 2.5 shows an illustration of subtree muta-

tion. Further, both offspring and existing individuals in the population may be

mutated.

FIGURE 2.5: Subtree mutation in genetic programming.
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Examples of alternative mutation techniques include: Point Mutation [19],

which changes a single node; Semantically Driven Mutation [76], which detects

possible behavioural changes caused by syntactic modification and applies ap-

propriate changes as mutations; and Permutation Mutation [19], which modi-

fies the argument order of a node (nodes and subtrees).

During both the crossover and mutation, a larger subtree can replace a small

one or vice versa. Therefore, an offspring may be larger or smaller than its

parent; likewise, a mutant may be larger sized than the original. Section 2.3.7

discusses the challenges associated with this potential for GP solutions to grow.

2.3.4 Replacement

Replacement in GP refers to the process used to update the breeding population

with offspring to move the evolution from one generation to the next. As GP

typically maintains a fixed number of individuals in the breeding population,

the GP process involves removing some (or all) of the individuals of the breed-

ing population to make room for the better performing offspring. The chal-

lenges during replacement are preserving better performing individuals and

maintaining diversity in the population. As discussed in Section 2.3.2, a diverse

population enables GP to explore different areas of the space of possible solu-

tions productively.

There are two popular approaches to replacement in GP. The first approach

is generational replacement, which swaps out the breeding population with a

new one. In this approach, the breeding population first produces a new off-

spring generation. After this, the generational GP has two options: it can re-

place the parent population with either the entire offspring population or a se-

lection from the combined pool of parents and offspring [77].

In contrast, the other method – steady-state replacement – does not maintain
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a distinct separation between the parent and offspring populations. Instead, af-

ter each breeding operation, the offspring is considered to replace an existing

member of the breeding (parent) population. Whether or not the replacement

actually occurs depends upon the exact strategy; for example, some replace-

ment strategies require that the offspring must be better than the worst member

of the parent population, while others may select a member of the parent pop-

ulation based on other criteria and replace it with the offspring just created. As

a result, the population steadily undergoes changes as opposed to generational

replacement, where changes occur at fixed generational intervals.

While replacing individuals, it is important to avoid losing diversity in the

population as well as the high performing solutions. For example, in steady-

state replacement replacing a random individual may kill off the best individ-

uals, while the relatively unfit individuals in the population may survive and

reproduce [57]. Alternatively, replacing only the worst individual may make it

harder to inject new genetic material into the population.

To ensure diversity in the breeding population and avoid premature conver-

gence (when the search stops progressing because the population is homoge-

nous), [78] proposed a replacement strategy that checks the similarity of indi-

viduals in the current population and replaces duplicates.

Other methods use probabilistic approaches to select individuals to replace.

For example, instead of replacing a random individual, a popular strategy re-

places the worst of a randomly selected set of individuals – known as inverse

tournament selection [79].

The random selection and inverse tournament are popular because they are

easy to implement and do not add significant processing overheads. Also, the

inverse tournament has the advantage of retaining the best solutions; further-

more, it represents a compromise between maintaining diversity and accuracy

because it randomly picks contenders and then replaces the worst of them.
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2.3.5 Fitness Evaluation

The fitness function takes a candidate solution to a problem as input and out-

puts a fitness value that reflects how well the solution solves the problem, that

is, fits the set objectives. Defining a suitable fitness function is crucial because it

determines the direction of the evolution; in natural evolution, the population

evolves to better suit its specific environment. Accordingly, the fitness function

must be specific to the problem.

For example, when GP is applied to evolve solutions for a classification

problem, a fitness function must compute the classification accuracy of the evolv-

ing models. Therefore, the fitness function evaluates the model with the train-

ing data. Then, the fraction of correctly classified instances serves as its fitness

score.

Although fitness functions are highly problem-specific, some general con-

siderations exist. For example, developers ensure the fitness functions avoid

unnecessary computation effort because a typical GP run will use the fitness

function to do multitudes of evaluations.

Also, while typically only one objective (accuracy) determines fitness, the

fitness function can also be multi-objective [80].

2.3.6 The Genetic Programming Algorithm

To outline how the elements of GP work together, this section describes a con-

ventional GP version that uses the generational replacement strategy in this

section; Algorithm 1 provides the pseudocode for it.

The process starts by setting the size of the population to maintain and the

number of generations. Next, GP produces an initial population with random

individuals; all the individuals are then evaluated and assigned fitness scores.

After this initialisation, the evolution begins.
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The next stage is to proceed with reproduction to move the evolution from

generation to generation cyclically. The cycle that produces offspring from the

existing population involves selecting parents and applying crossover and mu-

tation operations on their copies based on set probabilities to produce offspring.

In this example, GP creates as many offspring as the individuals in the breed-

ing population for a generation. A generational cycle ends when a population

of offspring replaces the population of parents. The GP run ends after produc-

ing the maximum number of generational cycles that are allowed.

Algorithm 1: A Genetic Programming Algorithm

/* Initialise */
Gen← set number of generations;
PS← set size of population;

/* Produce and evaluate the initial population */
population← generate initial population of size PS;
Evaluate(population);

/* Generate and evaluate generations of offspring */
g = 0;
while g < Gen do

offspringPop← {} ;
i← 0 ;
while i < PS do

Select offspring individuals from population ;
Generate offspring from selected parent ;
Evaluate fitness of offspring ;
offspringPop[i]← offspring ;
i← i + 1 ;

end
population← population∪ offspringPop ;
g← g + 1 ;

end

From the description of GP provided thus far, it is apparent that many con-

figuration options are available. The experiments in this thesis use a common

practice in GP of using popular and well-tested settings (where possible) to

make the experiments relatable and reproducible.
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2.3.7 The Complexity Challenge in GP

The complexity of GP solutions can affect both their quality and the effective-

ness of the GP evolutionary process that searches for the solutions. Moreover,

complexity is a multifaced concept in GP that can mean several things within

and across GP applications.

As typical GP runs involve maintaining hundreds to thousands of individu-

als across generations with resultant evaluations, a computationally expensive

and time-consuming evaluation function can make attaining solutions difficult

or impractical. Therefore, the fitness functions have to be as efficient as possi-

ble. This challenge becomes amplified when individuals grow in size during

the evolution to require more computing resources to evaluate.

Bloat in Genetic Programming

Since the inception of GP, studies showed that the evolving solutions tend to

grow without a corresponding improvement in fitness scores [81–87]. Hence,

the excessive and non-beneficial growth of the representation of a GP solu-

tion is termed bloat. In many GP applications, bloat can make the GP runs

resource-intensive (CPU processing and memory utilisation) to the point of

slowing down or halting the search for solutions. As a result, bloat has received

much attention, which has yielded several theories explaining it and many tech-

niques to manage it; Section 3.3.1 in Chapter 3 details bloat further.

Bloat-control is the most studied and most used complexity control approach

in GP. Using a form of bloat-control has become a standard practice in GP be-

cause of its ease of implementation and the benefit of making GP runs man-

ageable. However, bloat-control offers a limited view of complexity because

while it controls the size of the expression (e.g., tree) representing a model, it

disregards its functional and computational complexity. Moreover, complexity
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means different things across the various application domains of GP; the next

section exemplifies that.

Applications of GP and their Complexity Challenges

GP is being used to produce solutions to many practical problems in a wide va-

riety of domains [88, 89]; a detailed account of practical and innovative results

is available in [90]. The need to manage the complexity of GP solutions across

these applications is a reoccurring theme. Moreover, the notion of complexity

and the reason for containing complexity can differ from one application to an-

other. To illustrate, this section introduces a few categories of GP applications.

Machine Learning: The most popular GP application is symbolic regression

(SR), which is a machine learning application [91, 92]; GP is also used for many

other forms of machine learning [93–97]. SR evolves mathematical equations

that explain the relationships in data. While a popular method like linear re-

gression (LR) assumes that the relationship between the features of data and

their output is linear and, therefore, the structure of the model is predefined,

symbolic regression (SR) makes no such assumptions about the structure and

instead evolves both the model structure and the parameters to fit the data.

Accordingly, GP uses mathematical functions, variables, and constants as ge-

netic material to evolve suitable mathematical equations of varying structures.

The primary objective of machine learning is to attain models that generalise

well, i.e., they reflect the phenomenon that produces the data and therefore

extrapolate to unseen data well. Because a failure to generalise is associated

with excessive functional complexity, there is a fundamental need to manage

the complexity of data models [7, 98]. As the subsequent chapters show, even

with bloat-control, GP is not immune to such effects of complexity; in fact, the

complexity of GP solutions must be tamed at many different levels.
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Automatic programming: GP is applied to produce computer programmes

automatically [89, 99]. Hence, GP is used to independently discover programmes

that perform a task without being explicitly guided. For example, GP is used to

produce a programme to control a robot to perform a specific task [100]. Addi-

tionally, GP can build software [101] and optimise existing ones [23, 102]. Due

to its stochastic process, GP may produce unnecessarily complex programs or

those that contain dead code (do not affect functionality). Despite bloat-control,

parsimonious programs can still contain expensive computational constructs

like nested loops or other time consuming operations that are otherwise syn-

tactically succinct. Therefore, efficiency should be an important consideration

when assessing the quality of automatic programming solutions.

Design: The use of GP to solve design problems is another category of GP

applications. For example, GP is used to design electrical circuits and neural

network architectures. Designing simple digital circuits is easy using conven-

tional methods but difficult and time-consuming for complex circuits. There-

fore, GP has provided a means of automating the design of challenging circuits

like asynchronous electronic circuits [103]. Furthermore, the manual configura-

tion of Convolutional Neural Network architectures requires expert knowledge

and a lot of trial and error. Hence, developers have adopted Neuroevolution,

which is an application of GP that automates the design of such neural net-

works [104, 105]. Much like automatic programming, attaining efficient design

solutions is an important objective. Therefore, the challenge is to find a means

to enable GP to detect such efficiency and manage it when evolving solutions.

These example GP applications show that the challenge of managing the

complexity of GP solutions is an important and reoccurring one. Also, they

show that complexity in GP is a broad concept. Therefore, bloat-control, which

merely contains the size of the representation of the solutions and disregards
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their functional complexity, cannot adequately address the various complexity-

related challenges of GP applications presented in this section. After all, small-

sized programmes, models, and designs can be more functionally complex than

larger ones. Chapter 3 discusses how limited bloat-control is in detail.

2.4 Conclusion

This chapter introduced GP, explained how it works, and exemplified its appli-

cations to indicate how versatile it is as a tool, to provide the background for

this thesis. This introduction enabled the discussion about the need to manage

the complexity of GP solutions to begin. Furthermore, this chapter highlighted

complexity as a reoccurring challenge across GP applications. Additionally, it

showed that complexity has a broad meaning in GP. Consequently, to effectively

manage complexity, one must either customise the methods per application or

develop a broadly applicable one. This thesis targets the latter.

The next chapter reviews the current approaches to managing complexity

in GP, then shows the need for a new approach to complexity control in GP, and

justifies the proposal of this thesis.
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Chapter 3

Complexity in Genetic

Programming

3.1 Introduction

As genetic programming (GP) is a versatile tool used in several domains, many

reasons drive the need to control the complexity of the solutions it produces.

Therefore, complexity in GP means several things – it is a multifaceted notion.

However, to control the complexity of GP solutions, a quantifiable measure

of complexity and techniques for manipulating it are needed. Yet, efforts to pro-

duce a concise characterisation of the complexity in GP to achieve a measure of

complexity that is authentic continue; a universally accepted formal definition

of complexity in GP does not exist. Therefore, the common practice is to use

proxies as indicators of the complexity of the GP solutions; yet, finding an ap-

propriate proxy with a broad application is challenging, and existing ones are

often limited in their effectiveness at addressing the various motivations for

managing the complexity.

This chapter examines the challenges with defining the notion of complexity

in GP to set the stage for the ensuing discussions. Following that, it reviews

the current approaches to managing the complexity of GP solutions. Then, it

presents the measure of complexity that this thesis proposes.
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The rest of this chapter is organised as follows: Section 3.2 highlights the

challenge of defining complexity in GP ; Section 3.3 reviews the existing com-

plexity control methods, and introduces and justifies the use of evaluation time

as a measure of complexity; and, Section 3.4 concludes the chapter.

3.2 The Challenge of Defining Complexity in GP

The term complex exists in several fields of research, such as in the study of

complex systems in natural and social sciences [106]. Hence, numerous attempts

to define a complex system are available. Although a set of core features are

widely associated with complex systems in the field, the search for a universally

agreed formal definition is ongoing [107]. This section illustrates with examples

that defining complexity in GP is challenging.

Many natural systems are regarded as complex because they show intri-

cate interactions between their constituent components to exhibit elaborate be-

haviour of the whole. The interactions in such systems are non-linear and can-

not be studied using the reductionism paradigm. Reductionism assumes that

understanding a system is possible through understanding its isolated compo-

nents. For example, reductionism is successful when applied to the kinetic the-

ory of gases, where considering the motion of individual molecules enables us

to accurately predict the global properties of the gas system (such as pressure,

volume and temperature) [108].

However, the presence of interactions within complex systems means that if

we consider the constituent in isolation, we can not sufficiently understand the

whole system. For example, studying the behaviour of an isolated ant is inade-

quate to provide an understanding of the ant colony [109]. Likewise, genes do

not operate as independent units but may up-regulate and down-regulate each

other [110, 111]; thus, the alteration of a single gene may significantly affect the

entire network. Also, some genes have pleiotropic effects, which is when one
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gene affects several phenotypic traits simultaneously [112]. Therefore, the ef-

fect of changes at the constituent component level on the whole system is not

easily predictable in a complex system, nor is the complexity easily quantifi-

able; a study or assessment of the complexity of such systems must consider

the non-linear interactions.

An explanation of the non-linearity of interactions within complex systems

is their non-homogenous and non-additive attributes [113, 114]. For a simple ex-

ample, consider function f that is regarded homogeneous if it exhibits the fol-

lowing property:

f (αx) = α f (x), (3.1)

where α is a scalar and x is the argument. The output of a homogenous system

only depends on the magnitude of the input into the system. However, the

output of a non-homogenous system depends on both its input and its current

state. In other words, the input of a non-homogenous system is not directly

proportional to its output [114, 115].

The additive property means that a part of the system is completely inde-

pendent of other parts. A function f is additive if:

f (x + y) = f (x) + f (y), (3.2)

where x and y are arguments. For example, consider a system that produces

Output1, Output2, and Output3 given Input1, Input2, and Input3, respectively. In

an additive system, if Input3 = Input1 + Input2 then Output3 = Output1 +

Output2. In non-additive systems, the relationship given in Equation 3.2 does

not hold because components of the system are not independent of each other.

As a result, in a nonadditive system, Output3 6= Output1 + Output2.

The non-linearity attribute of a complex system means that its output is not
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a simple (or even parameterised) sum of its inputs. Therefore, the number of

components of a complex system alone does not reflect its complexity; instead,

the complexity of such systems must reflect the intricate relations, amongst

other things. Thus, defining complexity in a non-linear system is a non-trivial

task.

3.2.1 Complexity in Various GP Applications

Studies of the evolution of complexity indicate that at some point all complex

systems increase complexity [116]. The fitness improvement in complex sys-

tems relies on the intricate interactions between their subunits and is not a sum-

mation of the fitness of the subunits [117]. Therefore, evolutionary pressure si-

multaneously acts on the system’s subunits as well as the interactions between

them [118]. The constituents of the solution and their relationships result in a

behaviour (function) that determines its fitness.

Genetic programming (GP) evolves solutions by combining basic primitives

to build and optimise intricate structures. In most of the popular GP applica-

tions, these structures are non-linear [119–122]. For example, in symbolic re-

gression (SR), GP combines mathematical operators (e.g., add, sin, cos, sub-

tract), constants, and variables to produce mathematical equations that serve

as data models. During the GP process, the SR solutions (models) evolve to

fit their purpose. The models become increasingly complex by adding compo-

nents or changing the relationship between existing ones (add new or intensify

existing relationships);

The inherent and gradual complexification of solutions during the evolu-

tionary process of GP is the source of its utility. However, the complexity of

the GP solutions may become excessive to impact their quality. For example,
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data models should be functionally only complex enough to explain the phe-

nomenon that generated the given data and therefore must predict well (gener-

alise) on new data [2].

If the data models are functionally over-complex, they may go beyond re-

flecting the general phenomenon that produced the data by also learning the

noise in the data; therefore, overly complex models predict very well on train-

ing data but poorly on unseen data (they overfit).

The challenge is to determine a measure of complexity, which enables the

control of the functional complexity of GP models during their evolution. Like

the complex systems described earlier, the constituents of GP SR models of-

ten have intricate and non-linear relationships. A single change in a model

may dramatically change the functional complexity of the model; in contrast,

several changes together may not change anything at all. Yet, the most pop-

ular approach to managing the complexity of GP solutions is to prefer those

with small-sized representations (trees). Although the small-sized expressions

that represent the models tend to (loosely) be less complex than much larger-

sized ones, size neither fully encapsulates the functional complexity of the con-

stituents nor their often non-linear relationships.

Furthermore, in GP based automatic programming and design, another mo-

tive for containing complexity is to produce efficient solutions – as discussed in

Section 2.3.7; efficiency thus is another view on complexity. Inefficient solutions

take longer and more resources to execute; this is sometimes a crucial criterion

when choosing appropriate solutions, and most times a desired one. In such

cases, the size of the representations of the programmes and designs does not

necessarily indicate their efficiency; after all, small solutions can still incorpo-

rate inefficient components. For example, an electronic circuit may comprise

of a small number of components but the design may still yield unacceptable

latency. Similarly, a small program with multiple nested loops may take longer



Chapter 3. Complexity in Genetic Programming 46

to complete than a syntactically larger program.

In addition to application-specific motivations, a common motive for man-

aging complexity is to overcome computational constraints. In many instances

across GP applications, if the complexity of GP solutions is unconstrained, the

computing resource utilisation for evaluating many individuals over many gen-

erations may be excessively high to a level that slows GP’s search or brings it

to a halt. Furthermore, devices such as Internet of Things (IoT) may constrain

the execution time of an acceptable model (evolved by GP) even if this compro-

mises the model’s accuracy [3].

From these examples of motives for managing complexity, it is apparent that

the notion of complexity in GP is contextual and diverse. Furthermore, the dis-

cussion highlights a need to consider context and motivations when assessing

any (existing or emerging) complexity control. Later, this chapter (Section 3.3.3)

introduces the evaluation time of an evolving model as a measure of its com-

plexity. Although not perfect, it is still a more nuanced approach to estimating

complexity in GP than size as it can reflect many forms of complexity to address

the various motives for controlling the complexity of GP solutions.

However, before that, the following section reviews some of the popular

approaches to controlling the complexity of GP solutions.

3.3 Existing Complexity Control Methods

This section reviews the most widely used measures of complexity in GP; most

of this literature concerns the classic applications of machine learning, that is,

regression and classification – the most popular applications of GP. The pop-

ularity of these applications in GP literature ensures an adequate depth of the

review. However, later in Chapter 9 examines the complexity of GP solutions

in other domains as well.
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3.3.1 Approaches Based on the Structure of Representations

The term structure here refers to the representation of the GP solutions – such as

the tree structure – and not the relationships between its building blocks. As in-

troduced in Section 2.3.7, managing this structure is the most popular approach

to managing the complexity of GP solutions. However, this approach often

assumes that simplifying the structure of the representation of a GP solution

will automatically simplify its functional behaviour. While a complex structure

(e.g., a large tree) may constitute many components and exhibit a more complex

function than a small structure, this is not always the case. For example, a large

structure may contain building blocks that do not affect its functionality or have

components with weak or no relationships; thus, a complex structure may still

be functionally simple. Accordingly, studies show that this approach to manag-

ing complexity may not address the motivations for managing complexity; for

example, discouraging the sizes of data models does not always lead to models

that extrapolate well to unseen data [7, 8].

However, the popularity of structural indicators of complexity at least par-

tially owes to the ease of their use (e.g., counting the number of nodes and

layers in a GP evolved expression), and therefore easy to monitor and control

[123]. Furthermore, since the inception of GP, it was observed that the struc-

ture of GP solutions has a propensity to grow unproductively – a phenomenon

termed bloat. Therefore, controlling bloat has been the most popular approach

of managing complexity that has produced several theories explaining it and

many techniques for containing it. Although this thesis poses that complexity

is more than the structure, this chapter highlights and reviews some of the bloat

related literature in detail because of the ubiquity of bloat-control in GP; more-

over, bloat and the impact of its control becomes a very important benchmark

for what this thesis proposes later.
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Theories Explaining Bloat

Several theories have emanated that explain the propensity of the GP solutions

to grow unproductively (bloating); some of them overlap. An overview of the

leading ideas is as follows:

Hitchhiking: An early theory explains bloat as simply the occurrence of in-

effective building blocks within a fit individual [124, 125]; the unproductive

components of the individual are called introns (a term borrowed from genet-

ics). Thus, being part of an individual with high fitness allows introns to propa-

gate – the theory is termed hitchhiking. This theory maintains that unproductive

components can be part of an individual by chance without adversely affecting

its fitness. Other theories attribute bloat to the effect of GP operators and the

characteristics of the individuals and the population.

Defense Against Crossover: Another theory explains that individuals with in-

trons proliferate because they are more resilient against the adverse effect of the

crossover operator [126–130]; the crossover operator is the most used genetic

operator but it often degrades the fitness [129, 131]. Therefore, introns repre-

sent regions in a model where alterations do not affect the fitness of the whole.

Consequently, a large-sized individual with many introns will thrive better than

those that experience non-neutral variations that disrupt fitness.

Removal Bias: Similar to the defence against crossover theory, the removal

bias theory asserts that evolution in GP favours individuals with regions that are

not affected by addition or removal to their representation [132, 133]. Removal

and additions to an individual occur during crossover or mutation operations.

Hence, the large-sized individuals that are more likely to have such regions will

proliferate.

Modification Point Depth: Another bloat theory is modification point depth

[134–136], which associates bloating with the depth at which modifications of

the tree representation occur; they observed that the deeper the modification
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point, the smaller the change in fitness. Further, the deeper the modification

point, the smaller the removed branch, thus creating a removal bias [137]. Ac-

cordingly, deeper trees, which tend to be larger-sized, proliferate more during

the evolutionary process.

Fitness Causes Bloat: The fitness causes bloat theory argues that the tendency of

solutions to bloat is inherent in a variable-length representation when fitness-

based selection is used [81, 84, 138]. The theory builds on the idea that for a

given function, there are more ways to represent it using a larger-sized expres-

sion than with a concise expression. Therefore, the lengthy representations will

occur more often during GP runs; furthermore, the lengths are likely to increase

with time because lengthier but equally fit solutions can emerge as they change

during the evolution. In essence, fitness-based selection leads to bloat.

Crossover bias: A relatively recent bloat theory is the Crossover Bias theory,

which relates bloat to the effect of the crossover operator on the distribution

of tree sizes in the population [139–142] (also known as operator length bias).

The theory backed by empirical evidence shows that there is a bias in favour

of larger-sized individuals in the population. Theoretically, after crossover (the

exchange of subtrees), the average size of individuals is expected to remain the

same; however, in practice, the average size of the population increases after re-

peated crossover operations. Hypothesis and experimental evidence show that

this distribution, without the effect of selection, is a Lagrange distribution of the

second kind [143–145], where small individuals are much more frequent than

the larger ones. For example, crossover generates many single-node individu-

als that are generally unfit for most non-simple applications. Selection tends,

therefore, to reject them in favour of the larger-sized individuals, causing an

increase in mean tree size in the population.

These theories have inspired a variety of techniques for controlling bloat.

The following section discusses representative examples of them.
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Bloat Control Methods

Traditionally, controlling complexity in GP means controlling the size of the

representation of the evolved models (bloat-control), such as by limiting the

number of nodes, encapsulated sub-trees and layers. Bloat-control can ease the

challenge associated with the unwanted growth in the structures of GP indi-

viduals that can exhaust computational resources and severely stifle the search

for solutions [1, 146–151]. However, bloat-control ignores the underlying func-

tional or computational complexity of the solutions.

Many bloat-control techniques either set an arbitrary size (or depth) limit

for models or penalise large models [152]; the intron-based bloat theories and

tree-depth-based one inspire this practice. However, studies show that such

setups also encourage the models to grow to the size limits because that guar-

antees their survival after crossover [153, 154]. Other bloat-control techniques

either limit the search space or lessen the likelihood of generating large mod-

els through customisation of the evolutionary process [152]. Another practice

is to use multi-objective genetic programming (MOGP) [123], which optimises

the twin objectives of fitness and size to obtain Pareto optimal solutions. Some

instances of MOGP combine fitness and other measures of complexity.

Dynamic Operator equalisation (DynOpEQ) [155], a recent and advanced

bloat-control technique, dynamically changes the distribution of size in a pop-

ulation to admit more individuals in those size ranges that are producing fitter

models; DynOpEQ is inspired by crossover bias theory. First, DynOpEQ seg-

ments the individuals of the population into bins according to their sizes. As

GP creates individuals for a new generation, DynOpEQ uses a quota system to

decide whether to keep them in the new population or discard them. DynOpEQ

sets quotas for size ranges (bins that correspond to those from the parent gen-

eration); it sets quotas for each bin based on the average fitness score of the
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corresponding bin in the parent generation. As a result, bins with higher av-

erage fitness scores are allowed more individuals. Still, DynOpEQ will always

admit an offspring if its fitness score is higher than the average score of the bin

it belongs to, even if the bin’s quota has been exhausted. Further, if the fitness

of an offspring is the new best and its size does not fit into any existing bin

then a new one is created for it. Effectively, DynOpEQ somewhat controls the

growth in size in the population unless fitness is improving; however, it does

not guarantee that bloated individuals will not exist in the population. Further-

more, DynOpEQ is inefficient as it discards a significant number of evaluated

candidates; an evaluated offspring is likely to be discarded if the bin it belongs

to is full. To alleviate this problem, Mutation Operator Equalisation [155] was

introduced; to avoid discarding of evaluated individuals, it mutates candidates

(in small steps) to fit into the nearest bin that has available space. However, the

required changes may be exceedingly destructive to the model’s fitness when

the distance between the individual’s original size and the size it needs to be is

too large.

Some studies have explored the concept of Kolmogorov complexity [156,

157] to manage complexity in GP. This concept is adopted from algorithmic in-

formation theory and relates to specifying an object such as a binary string or

a sequence of numbers. The Kolmogorov complexity of such an object is the

length of the shortest computer program that can produce it and nothing more.

An abstract coding language (universal Turing machine) provides a reference.

However, this measure is uncomputable [158, 159] because it is impractical to

determine the shortest such program definitively. Therefore, the minimum de-

scription length (MDL) [160, 161] – a computable form of the Kolmogorov com-

plexity – has been applied in GP instead [162]. The study [162] calculated the

MDL value of an individual by summing the length of code required to encode

it (e.g. tree size) and to encode its classification errors. Then, a scaling technique
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[163] is used to transform the MDL value to a windowed MDL value; the win-

dowed MDL value is relative to the maximum MDL value of the individuals

produced up to that point of the GP run. The MDL-based fitness function (con-

figured to minimise the windowed MDL value) controlled the growth of the

individuals. However, the implementation only works on types of problems

that have two features: (1) the performance (fitness) of candidate solutions in-

creases with the growth of the trees (e.g., SR), and (2) where the fitness of the

substructures of the trees are well-defined.

Despite all the discussed advances, restricting the structural representation

of GP solutions is not an effective way of managing their complexity. For exam-

ple, the size of the representation of a symbolic regression model may not rep-

resent its underlying functional and computational complexity. For instance,

restricting size would mean penalising the large yet linear expression 9x + 6x +

3x + 2x + x, which is computationally less complex than the smaller expression

sin(x) [8], which is computationally equivalent to the implementation of its Tay-

lor series expansion ∑∞
n=0(−1)n x2n+1

(2n+1)! . Moreover, the response surface of sin(x)

is more complex than that of the linear function that is larger in size. Further-

more, two expressions with the same size may have different response surfaces;

the response of the function sin(9x) has more oscillations than sin(2x). There-

fore, model complexity in GP is more than their representation. The finding of

studies that bloat-control does not automatically lead to models that generalise

may be explained by the understanding that size and functional complexity are

not the same [7, 8, 164].

Considering the motivations for managing the complexity of GP solutions,

approaches that focus on the structure of models are limited. While it alle-

viates the computational constraint challenge, it does not effectively manage
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functional complexity to address overfitting. This observation suggests that, de-

spite the ease of quantifying and hence controlling bloat, alternatives to bloat-

control methods must be considered that look into functional characteristics

of the evolving structures. While the proposed evaluation time-based method

of controlling functional and computational complexity promises to be easy to

implement, and broadly applicable, this review first look into some existing

approaches from the literature that have gone some way down this route.

3.3.2 Functional-Based Approaches

Instead of working on the structure of expressions that represent GP models,

another approach for managing complexity considers the functionality of the

models. Methods in this category aim to detect and control the functional com-

plexity of models; they try to evolve simpler functional forms in a bid to elicit

data models that explain the phenomenon that generated the data and not the

noise in the data. That is, they seek models that generalise on new data well,

which bloat-control does not do effectively.

A method for quantifying functional complexity approximates the evolved

expressions with Chebyshev polynomials such that the more functionally com-

plex expressions have polynomials of higher degrees [165]. The degree of the

approximating polynomials is termed as the order of non-linearity of the corre-

sponding GP expressions [166]; it is minimised during the evolution to produce

functionally simpler models. However, applying this method sometimes fails

because it requires the evolved expressions to be twice differentiable, which

is a property that is not always guaranteed. For expediency, the study com-

bined and optimised the order-of-non-linearity and two other objectives: accu-

racy and expressional complexity (size). Furthermore, the study introduced a

framework that alternates between optimising two sets of objectives during the

evolution: (1) order of non-linearity with accuracy and (2) size with accuracy.
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This optimisation framework (referred to as 2-D) showed some improvement

in managing the size of evolved models and their generalisation ability.

To avoid the failings that requiring models to be twice-differentiability can

present (in [165]), the study in [7] defined a less rigorous measure of functional

complexity. In the study, the proposed method approximates the slope of an

expression along each feature dimension with a simpler but error-prone mea-

sure that approximates second-order partial derivatives with a finite difference

method that uses unequal intervals. Further, the eventual measure of complex-

ity that the work proposes is mathematically questionable because it simply av-

erages these approximations to partial derivatives across all the feature dimen-

sions to get an average complexity. To what extent that average diverges from

a Hessian is not discussed. Furthermore, to avoid the computational expense,

they only computed complexity for the best individual in each generation, thus

not using the measure as a complexity control but merely as a complexity in-

dicator. Crucially, however, the paper reported that a decrease in this measure

did not necessarily improve the generalisation ability of the models.

Furthermore, the work in [167] offered other complexity measures that still

relate to the curvature of the response surface of the models. They quantified

the degree of curvature by examining the output of the pairs of close training

points for a data model. To indicate oscillations in the curvature, they counted

the number of pairs of outputs with very different values. The result formed

the basis of two measures: (1) graph-based complexity to measure functional com-

plexity and (2) graph-based learning ability to quantify the ability to learn difficult

training points. The outcome of the experiments showed some generalisation

gains over standard GP. Although the authors did not report statistics describ-

ing the execution time differences, the proposed methods likely introduce com-

putational overheads.



Chapter 3. Complexity in Genetic Programming 55

Some methods for managing functional complexity in GP exploit the knowl-

edge available from statistical learning theory. Notable examples include the

generalisation error-bound Vapnik–Chervonenkis (VC) theory and Rademacher

complexity theory [168] [169], which aim to find a balance between model com-

plexity and its generalisation capability. The VC dimension is a general measure

of the capacity or complexity of a learning machine [170, 171]; that is, it is a mea-

sure of the expressive power of a set of functions that a statistical binary classifi-

cation algorithm can learn [170]. According to the original definition (proposed

for a set of indicator functions), the VC dimension is the maximum number of

vectors that can be separated (shattered) into two classes in all possible ways

by a set of functions [170]. The VC dimension enables various estimations of

generalisation errors.

Structural Risk Minimisation (SRM) is a framework that uses the VC dimen-

sion to assess the generalisation ability of a learning machine [172]. The assess-

ment involves predicting the distance between the training and test errors. To

achieve this, SRM defines the upper bound of the generalisation error based on

the empirical risk (training error) and confidence interval. The confidence inter-

val measures the difference between the empirical risk (training error) and the

expected risk (generalisation error); it depends on (1) the VC dimension and (2)

the size of the training dataset. If the size of the dataset is fixed (as is typically

done), the generalisation bound is indicated by the VC dimension only; there-

fore, it is also referred to as VC generalisation bound or VC bound. SRM is used

to produce an optimal model that finds a balance between minimising the up-

per bound of the generalisation error and the training error. For example, SRM

was used to manage the complexity of evolved models in [173]. While the pro-

posed method outperformed standard GP by producing smaller sized models
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with better generalisation, the authors acknowledged the expensive computa-

tional cost of the method and the lack of exploration of the parameters used in

measuring the VC dimension.

Rademacher complexity extends the VC dimension to handle real-valued

functions; therefore, it is applicable in both classification and regression types

of problems. This measure of complexity has a tighter bound on the generali-

sation error than the VC dimension, and unlike the VC dimension, it depends

on the data distribution. For example, a study [174] used the Rademacher com-

plexity in the fitness function to steer the evolution and control the functional

complexity of its models. The method produced models with better generalisa-

tion ability than those generated by standard GP and Support Vector Regression

(SVR) [175]. Also, the solutions the method produced were smaller-sized than

the models standard GP yielded. However, the implementation has a lengthy

process of tuning the parameters used to increase the pressure when overfit-

ting occurs. Like the VC bound method, the Rademacher is computationally

expensive.

Furthermore, the work in [176] used the variance of the output values of

evolving expressions to infer their complexity. The study combined the vari-

ance and fitness as twin objectives to optimise. Although variance differs with

mathematical smoothness (a straight line can have more variance than a sinu-

soid), its combination with fitness means that expressions within a similar func-

tional space may normally be compared in later generations, where greater ge-

netic convergence usually occur. However, this needs further verification. The

method improved generalisation. Moreover, since the proposed method does

not require specialised multi-objective optimisation methods, it is simple to im-

plement and computationally inexpensive.

Tikhonov Regularization (also known as ridge regression) is a simple and

common L2 parameter regularisation strategy (for managing complexity). The
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work in [177] proposed a measure of complexity that combines the Tikhonov

regularisation (as a functional complexity indicator) and size (a structural com-

plexity measure). This proposed measure is motivated by the understanding

that addressing structural complexity does not necessarily address functional

complexity and vice versa – while addressing both is important in GP. There-

fore, they proposed a method that registers the complexity of individuals in a

two-dimensional (2-D) vector that consists of (1) Tikhonov Regularizer, which

indicates functional complexity through the smoothness of response of the func-

tion, and (2) the size of the model, which represents its structural complexity;

the Pareto optimal individual is the preferred. Then, traditional multiobjective

GP optimises both the proposed measure of complexity and accuracy of the

models. The results show that the generalisation ability of models produced

by this method improved over GP with bloat-control; also, they attain higher

accuracy over GP with Tikhonov Regularization. Like the discussed order of

non-linearity method, this method has to contend with the differentiability of

the models and the related computational costs.

The functional complexity methods generally offer some gains in the gener-

alisation ability of models but come with associated challenges. The computa-

tional effort of some of these methods is so expensive that in some cases, such as

the work in [7] only employed the measure for the best individual, thus render-

ing it impractical for complexity control. Some have stringent requirements like

twice differentiability, while others use questionable approximations. More-

over, unlike bloat-control, they are non-trivial tasks to implement.

Furthermore, the functional complexity methods do not transfer from one

GP application to another. These methods – most of which apply in regres-

sion problems, some in classification, but seldom both – do not work in other

GP applications such as automatic programming and design. This limitation is

consequential for a versatile tool like GP.
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Therefore, despite the limitations of bloat-control (as highlighted in Sec-

tion 3.3.1), such as its inability to manage functional complexity effectively, it

remains the most popular form of complexity control in the GP literature. Al-

though limited in its ability to address the various motivations for managing

complexity, its simplicity and ease of use across GP applications contribute to

this popularity.

The GP community needs an approach for managing functional complexity

that is effective and simple. The proposed time-based measure of complexity of

GP portends to be equally simple, broadly applicable, but more effective than

controlling size.

3.3.3 Time Can Indicate Complexity

As indicated in the previous sections, there is a need for a measure of complex-

ity that can effectively characterise complexity to address the motivations be-

hind the complexity control when applied. Also, a measure of complexity that

is broadly applicable and simple to manage is desirable. Therefore, this thesis

proposes the use of the evaluation time of the GP solutions – the computational

time required to evaluate a GP solution (compute its fitness) – as an indicator

of their complexity. For example, the time it takes to test a data model with the

given data; and the time it takes to execute an evolved programme. This idea

is inspired by the observation in reality and computing that simple tasks take

less time to perform than more complex ones. Accordingly, models within a

GP application can have different evaluation times based on differences in their

computational complexity, which may also relate to their functional complexity.

For example, executing transcendental functions can be computationally more

complex than simple arithmetic operations.

Furthermore, a data model constituted from computationally-expensive build-

ing blocks or carrying a large structure takes a long time to be evaluated and
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hence is computationally complex. Therefore, curbing the evaluation time can

discourage the growth of both the structural and functional complexity.

In addition, evaluation time can detect efficiency in evolved programs and

designs (e.g., digital circuits). The efficiency of these solutions is a form of com-

plex behaviour because simple programs require less computational effort to

execute than complex ones.

Furthermore, the evaluation time can address the computational constraint

better than using size; as discussed in section 3.2.1 and 3.3.1, a small-sized repre-

sentation of GP solutions can be computationally more expensive than a larger-

sized one. Therefore, constraining the evaluation times of GP solutions will re-

flect more positively on the execution times of the individuals and the runtimes

of GP than if their sizes are constrained.

The examples of the potential of the evaluation time presented in this section

suggest that it will be a versatile and broadly applicable measure of complexity.

However, the next chapter discusses this matter in detail.

3.4 Conclusion

This chapter examined the popular measures of the complexity of GP solu-

tions and the techniques used to manage them and highlighted the need for

a broadly-applicable indicator of the complexity. Essentially, it demonstrated

that given the diversity of GP applications, the very definition of complexity is

context-dependent, multifaceted and a reoccurring challenge across GP appli-

cations. In addition, it highlights the challenge of defining the complexity in GP

and points out that because a formal and adequate definition of complexity is

pending, the common practice is to resort to proxies. However, the measures of

complexity that serve as proxies of true complexity are limited.
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While reviewing existing complexity control methods, this chapter under-

scored the need to consider the various motivations that drive a need for com-

plexity control. The most popular category of complexity control methods dis-

courages the sizes of the expressions representing GP solutions (structural).

These methods reduce the structural complexity of the representation of the

solutions but ignore their computational or functional complexity. As the func-

tional complexity of data models is associated with overfitting, this approach

does not address the overfitting challenge effectively. The second category of

methods (functional), which aim to address the shortcomings of the structural

complexity method, offers some gains but with additional challenges. They in-

troduce significant and sometimes prohibitive overheads, and at other times de-

mand constraints like twice-differentiability of randomly evolving expressions;

in any case, they are not broadly applicable beyond regression. However, this

thesis notes that GP applies beyond regression and that the complexity control

methods do not transfer from one GP application to another.

Therefore, the review in this chapter recommends building towards a broadly

applicable measure of complexity that is aptly nuanced. Consequently, the

chapter merely introduces evaluation time as a measure of complexity; however,

the next chapter will detail it. Also, the next chapter will address the key ques-

tions and practical challenges associated with using the evaluation time. These

include: (1) a demonstration of how to measure the evaluation time reliably and

(2) validation of time’s ability to effectively detect differences in both the sizes

and the computational complexity of individuals.
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Chapter 4

Time as a Measure of Complexity

“Time is the most valuable thing that a man can spend.”

Diogenes

4.1 Introduction

This chapter examines the viability of evaluation time as an indicator of complex-

ity. Therefore, it addresses questions related to the practical use of evaluation

time to measure and control complexity.

The chapter details how – without using complicated programming struc-

tures (such as loops for components) and instead by using mathematical func-

tions only – the evaluation times of models can still vary significantly. Hence,

it shows that this variation can be related to the smoothness of the response

function of the evolving functions.

In addition to building an intuitive case for evaluation time as a complexity

indicator, this chapter also demonstrates this empirically. This demonstration is

essential because it practically shows that the differences in computational com-

plexity show up in evaluation times and thus can help GP differentiate between

different kinds of complexity in models.

Furthermore, this chapter demonstrates that although evaluation time de-

pends upon the size of an expression, contrary to some existing arguments in
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GP literature, it is more than just a proxy for measuring size. In fact, this thesis

argues that evaluation time can vary between differentiating size and functional

complexity, and outlines the evolutionary conditions that dictate this variation.

Finally, a key question in measuring evaluation times is their reliability:

evaluation times vary even for an identical process. Hence, for GP to use eval-

uation time to differentiate complexity, the variation must be curbed to bring

some tolerable degree of certainty. Accordingly, this chapter proposes strategies

to improve the reliability of the evaluation times measurements and demon-

strates this reliability with experiments.

The rest of this chapter is organised as follows: Section 4.2 provides a closer

look at evaluation time as a measure of complexity; Section 4.3 details experi-

ments and analysis to show that the evaluation time can detect more than the

sizes of GP individuals; Section 4.4 presents strategies for measuring the evalua-

tion time reliably, and empirically demonstrates their effect; and finally, Section

4.5 concludes the chapter.

4.1.1 Time Complexity

Although the use of time to measure the complexity of GP solutions is new, the

idea of using time to indicate complexity in computing is not. For instance, Big

O time complexity is used in software design to measure the complexity of algo-

rithms and describe their limiting behaviour [178–180]. Furthermore, machine

learning fields have sparingly used the Big O time complexity [181–183]. Al-

though different to the proposal of this thesis, Big O time complexity serves as

a precedent showing that time can indeed reflect at least a form of complexity.

The runtime of computer programs and algorithms has always been a con-

cern in computing. Hence, developers in computing strive to produce solutions

with the shortest possible runtimes to meet many objectives, such as minimis-

ing the processing effort required, power consumption, and response time. To
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manage some of these challenges, the Big O time complexity – a time-based in-

dicator of the complexity of algorithms – is used. Big O time complexity tells

how quickly the runtime of an algorithm grows as the size of its input increases.

Therefore, the Big O notation is used to communicate algorithmic complexity

and is in the form O(n), where O stands for order of magnitude and n signifies

the complexity; the calculations consider the worst-case scenario. For example,

O(1) denotes a constant time complexity, which means that the time complexity

of the algorithm stays constant regardless of the size of the input. In addition,

O(N) denotes a linear time complexity, which means that the time complexity

grows in direct proportion to the size of the input (N). Also, O(N2) denotes a

quadratic time complexity, which means the time complexity is directly propor-

tional to the square of the input size. FIGURE 4.1 shows an illustration of the

Big O time complexity.

FIGURE 4.1: The line graphs show how time changes with input
size for different Big O time complexities.
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Big O time complexity is decided after a thorough understanding of the be-

haviour of a computational process; this is something infeasible when thou-

sands of processes (varying GP individuals) are evolving. Therefore, this thesis

resorts to a more practical measure, that is, the actual run time (or the evaluation

time) of the evolving expressions.

4.2 The Evaluation Time

In this thesis, evaluation time is defined as the time it takes to evaluate GP solu-

tions. Usually, GP must evaluate all candidate solutions the same way to assign

fitness scores fairly. For example, GP uses the same dataset to evaluate data

models in a population, and their evaluation times may vary due to differences

in their make-up. Similarly, programs evolved by GP may have different eval-

uation times based on their efficiency.

Around the time of publishing the proof of concept of using evaluation time

to control complexity in this thesis [184], another study [185] also used evalu-

ation times to discourage growth in the size of GP individuals (bloat-control).

Although this other study corroborates the premise in this thesis that time is

a viable measure of complexity, the work presented some empirical results to

reason that evaluation times behaved as merely a proxy for measuring expres-

sion sizes. However, the investigations in this thesis dispel this notion, and

this chapter shows that evaluation time indeed varies for same sized individ-

uals, even in symbolic regression. The following section argues that due to

the evolutionary dynamics – especially during the later GP generations where

the population has typically converged to very similar individuals – evaluation

time may not vary much and thus may resign to being merely a proxy for sizes.

However, this behaviour is not constant and is actually a function of the state

of the evolution, as explained in the next section.
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Therefore, this thesis has argued that the evaluation time can reflect more

than the sizes of the evaluated individuals; this thesis poses that it can reflect

the computational and functional complexity of the GP solutions and their ef-

ficiency. Therefore, this chapter empirically demonstrates that the evaluation

times of GP individuals can detect more than their sizes in this chapter.

4.3 Time Detects Size and Functional Complexity

Since Chapter 3 explains that the model size does not necessarily represent func-

tional complexity, this section empirically demonstrates how, instead, the eval-

uation time can discriminate between different functional complexities of mod-

els (through their computational complexities). After all, the evaluation time is

also a function of model size and if functional differences of identically sized

expressions do not show up in their evaluation times then measuring time is

just another way of measuring expression size. Clearly, this is undesirable.

As discussed in Section 3.3.1, one can expect the linear expression x + x +

x + x to be both computationally and functionally simpler than a shorter ex-

pression sin(x + x), which functionally represents an oscillating behaviour and

computationally requires the corresponding Taylor series to be computed. If the

expected computational differences exist and computational complexity reflects

functional complexity, then a GP system can exploit these differences to pro-

mote functionally simple models. Accordingly, the experiments in this section

verify whether considerable time differences exist between different functional

complexities of identically sized expressions.

Although the verification experiments are limited to mathematical func-

tions, the approach is widely applicable; the verification establishes that time

can reflect more than the sizes of the models. Chapters 8 and 9 confirm that this

understanding also applies in other GP applications such as robot control and

Boolean circuit design. Accordingly, the results in the chapters show that, when
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exploited, the nuanced nature of evaluation times can produce simple solutions

that offer qualitative gains.

4.3.1 Experimental Setup

The experiment in this section demonstrates that evaluation time can detect

more than size. To this end, four different function sets were used to generate

symbolic regression models of different complexities. Functional complexity of

these sets decreases in the following order: {cos, sin}, {cos, sin,+,−}, {×,÷,+,−}
and {+,−}.

Then, differently sized expressions (10, 20, 30, ..., 300) were generated for

each function set; for each size within the function sets, 30 random expressions

were generated.

For adequate sampling and to generate enough data to analyse, the models

(expressions) were evaluated 50 times each, using the same data.

4.3.2 Experimental Results

The four line-graphs in FIGURE 4.2 represent the average evaluation times of

the individuals according to their size and functional complexity.

Two trends are clearly visible in Figure 4.2: (1) for a given size, the higher the

functional complexity, the greater are the evaluation times; and (2) the evalua-

tion times are strongly correlated with the expression sizes, as expected. Hence,

the evaluation time indeed discriminates between different functional complex-

ities.

However, if a simple function is represented inefficiently by an excessively

large expression, it evaluates slowly. Therefore, evaluation time control impacts

conditionally: it curbs functional complexity when individual sizes are similar
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and allows greater sizes for functionally simpler models up to a certain toler-

ance (or range); however, in the presence of very different sizes (such as during

early generations) it curbs growth in size (controls bloat).

FIGURE 4.2: The line graphs illustrate the relationship between
the evaluation time and features of a model. The graphs show
the mean evaluation times of models made up of mathemati-
cal operators of different computational complexity. Individuals
made up of COS/SIN operators have higher evaluation times
than same-sized ones made up of less complex operators. More-

over, the size of models correlates with their evaluation time.

To estimate the tolerance for greater sizes of simpler models, compare dif-

ferent curves at identical values along the y-axis of Figure 4.2: for example, at

evaluation time = 300 ms, ADD-SUB models can be more than twice as large as

COS-SIN models.

The above findings also reveal the limiting behaviour of evaluation time

control in GP. In a functionally diverse but size-converged population – where

the bloat-control is impotent —, evaluation times discriminate between func-

tional complexities; whereas, in a functionally converged but size-diverse pop-

ulation, evaluation times discriminate between sizes.



Chapter 4. Time as a Measure of Complexity 68

4.3.3 Challenges with Administering Evaluation Time

On the basis that any computational work takes time on a granular basis, the

evaluation time should closely reflect the computational complexity of the task

in an ideal situation. However, a question arises as to whether the measurement

of time can be reliable and fine enough.

The evaluation time measurements of an individual can vary significantly

from one computer system to another; however, this variance is inconsequential

because we are concerned with the relative complexity of contending GP solu-

tions within a GP run. However, within a system, multiple time measurements

of an individual may vary due to excessive resource sharing by the operating

system. Such variations within the system will make the estimations of the

complexity of the solutions unreliable. Therefore, this thesis must find ways to

address this challenge before proceeding with the study.

Accordingly, the following section proposes measures that improve the eval-

uation time measurements and details experiments to verify their efficacy.

4.4 Measuring Evaluation Time Reliably

This section demonstrates how to improve the consistency of the evaluation

time measurements. Consistency in the evaluation time measurements is crit-

ical to estimate the complexity of models reliably. However, evaluation times

vary across multiple executions, and if this variability is high, the reliability of

the complexity estimate is low.

Noting this challenge, the work in [186] proposed a relatively expensive

measure whereby they made multiple measurements of times and used the av-

erage (treating it as the first quartile) and left tasks with very long run times as

is. Another study [185], which avoids such computational expense, ignored the

impact of variability altogether and measured the time just once. This thesis
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takes a more careful approach whereby the time variation is minimised signifi-

cantly without incurring extra overhead.

Although the variability may not be eliminated absolutely – because of the

CPU scheduling decisions being beyond our control – later sections of this chap-

ter show that the proposed CPU management options adequately improve the

time measurements.

4.4.1 CPU Management Options

Careful consideration and some testing showed that specific CPU management

options minimise variations of the evaluation time measurements. The CPU

management options are as follows:

1. Stop background services: A typical office or home system has several back-

ground services running, which means processing will switch from one

task to another. Furthermore, because some background services are trig-

gered by events or scheduled to activate periodically, the sharing may

not be predictable. This unpredictable sharing of the CPU means that the

evaluation time of an individual may vary within a system. Therefore,

stopping background services avoids excessive CPU time sharing.

2. Lock processor speed: Modern computer systems usually have advanced

power management systems that regulate the processor (CPU); for exam-

ple, to dynamically manage the power consumption and conserve battery

life. This change in CPU speed may affect the evaluation time measure-

ments. Therefore, locking the processor speed prevents the power man-

agement feature from making these changes.

3. Run on dedicated processors: The popular operating systems (e.g., Windows

10 and Linux Ubuntu 18) permit the running of programs on dedicated
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processors. Pinning a GP run on a CPU means that the expected evalua-

tion time of an evaluation task will not vary because of load differences

across the CPU cores.

4. Execute with high CPU priority: Setting a higher than a normal priority for

the GP runs further ensures that another task will not relegate an evalua-

tion to the background and affect the time measurements. Testing of this

idea showed that setting the CPU priority of the GP run just above normal

is better than to the highest.

4.4.2 Experimental Setup

The experiment in this section compares evaluation time measured with and

without the CPU management options listed above. Therefore, the experiment

ran tests under the following two conditions:

1. Condition 1: This setting simulates a typical level of utilisation of an office

system by simultaneously running multiple applications as the evaluation

times are measured. Several applications run simultaneously on the test

system to raise its processor utilisation to between 20-30%; examples of

the typical applications include email, browsers, office applications, and

periodic synchronisation of network drives.

2. Condition 2: All the CPU management options were applied.

First, the experiment starts by creating ten individuals of varying sizes rang-

ing from 10 to 200 nodes in steps of 20. Next, under the two conditions de-

scribed above, the evaluation times of each individual are measured and recorded

50 times. Then, the results are analysed to determine the level of fluctuations in

the measurements of the individuals.

For the evaluation time measurements, the experiment used a CPU-time-

based function that employs CPU performance counters [187]. This function
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is available in Python 3.3 and above. The function offers high resolution (in

nanoseconds) across platforms, while the returned values are in fractional sec-

onds.

4.4.3 Experimental Results

Figure 4.3 illustrates the impact of these options. Each boxplot in the figure

shows multiple evaluation times of an individual of a given size. Figure 4.3a

shows that under Condition 1 (no CPU management options applied), the vari-

ation in the evaluation times was high. In contrast, Figure 4.3b shows that un-

der Condition 2 (CPU management options applied), the variation clearly de-

creased. As expected, the evaluation times have significantly dropped because

of the elimination of background services that demand CPU resource sharing.

In addition, adjacent boxplots of Condition 2 (the improved readings) do not

overlap. Hence, differences between the computational complexity of the indi-

viduals are distinguished consistently.

(A) Condition 1 (Before) (B) Condition 2 (After)

FIGURE 4.3: Result of improving the reliability of evaluation
time measurements with CPU management options. Applying

the option reduced the variability in the time measurements.
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Based on the improvements achieved by applying these CPU management

options, single measurements of evaluation time can be used reliably in later

experiments. The multiple evaluations of an individual in the experiments in

this section are for the sole purpose of studying variations in readings.

The techniques used to improve the evaluation time readings may not work

in exceptional situations. For example, stabilising the time measurements be-

comes more challenging when the models are exceptionally large-sized, such

as in [186], where the evolved trees have millions of nodes. In this case, CPU

memory caching comes into play; the caching occurs when the processor in the

middle of evaluating an individual is forced to access CPU memory caches (L1,

L2, and L3) having different speeds. Moving from one type of cache to another

may introduce delays and inconsistencies in the time measurements. However,

the experiments in this thesis do not have the challenges of the described excep-

tional circumstance; typically, the experiments here use individuals with tens to

hundreds of nodes and not millions.

Overall, applying the measure made the evaluation time readings consistent

enough to explore the proposed evaluation time schemes.

4.5 Conclusion

This chapter empirically demonstrated that the evaluation time characterises

the complexity of GP models in a more nuanced way than size, which is cur-

rently the most popular measure of complexity in GP. The investigation in this

chapter shows that the complexity based on evaluation times even distinguishes

between the models based on the mathematical functions (e.g., SIN vs ADD)

that constitute them and, therefore, will help detect differences in their func-

tional behaviours. Furthermore, the analysis of the results also shows the ex-

pected behaviour of the evaluation time. Since the evaluation time can detect

such minor differences, it will productively detect pronounced differences in
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complexity between GP individuals across applications (e.g., efficiencies of pro-

grams and designs). This seemingly obvious finding dispels the understanding

in some existing GP literature that sees the evaluation time as no more than just

a proxy for measuring size. Subsequent chapters will test this indicated ability

of the evaluation time in various applications.

To use evaluation times to measure complexity, the reliability of the mea-

surements is critical. The chapter discussed some past precedent in using eval-

uation times; however, this work either achieved reliability at the cost of a great

computational expense (a high number of repeated evaluations) or simply ig-

nored the question of reliability. In contrast, this thesis propose a strategy to

measure the evaluation times, which successfully achieves the twin target of

attaining reliability without incurring additional expense.

The outcome from this chapter sets the stage appropriately for investigat-

ing the value of the evaluation time in managing complexity. The following

two chapters propose and assess methods for controlling the complexity of GP

models by controlling their evaluation times.
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Chapter 5

Explicit Control of Evaluation

Time

5.1 Introduction

This chapter empirically demonstrates the viability and merit of using evaluation

time as an indicator of complexity. Therefore, it compares the effect of control-

ling evaluation time (time-control) with that of controlling size (bloat-control).

The methods proposed in this chapter use explicit penalties on high evaluation

times, much like how existing methods penalise other complexity measures.

This approach differs from a second proposed approach (detailed in Chapter 6)

that implicitly controls the evaluation time.

Furthermore, the study in this chapter leverages the findings in Chapter

4 that show that the evaluation time differentiates functional complexity even

better in a functionally diverse population of models to create an environment

that allows it to do so. To build such a diverse population, a new population

initialisation scheme is proposed that is termed the Fixed Length Initialisation

scheme (FLI). The FLI produces an identically sized but functionally diverse pop-

ulation. The results of the experiments not only confirm that understanding but

also show that FLI generally improves the performance of various GP systems.

This additional finding is a surprising but welcomed result.
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The outcome of the comparison shows that time-control produces more ac-

curate solutions on both training and test data; however, in terms of complexity

control, the result of the comparison is close. Time-control had significantly

more accurate models in 17 out of 20 tests and significantly simpler models in

11 out of 20. This result takes us back to the argument in the GP literature as

to whether bloat-control manages complexity appropriately, such as whether it

improves the generalisation of the evolving model.

The rest of this chapter is organised as follows: Section 5.2 introduces the

techniques that will be used to compare the effect of time-control with size-

control (bloat-control); Section 5.3 details the need and mechanics of the pro-

posed fixed-length initialisation scheme (FLI); Section 5.4 details the experi-

ments; Section 5.5 presents the results; and finally, Section 5.6 concludes this

chapter.

5.2 The Explicit Time-Control Techniques

This chapter employs well-established bloat-control techniques (which tradi-

tionally control size) to control the evaluation times of the GP solutions. They

were adapted to do so by simply replacing the size of the evolving tree as a

measure of complexity with their evaluation times and using the remaining

mechanics of the bloat-control techniques as is.

The experiments in this chapter compare time-control with bloat-control be-

cause size is the most researched measure of complexity in GP [123]. This exten-

sive research has led to a plethora of bloat-control techniques. However, these

techniques may set arbitrary size limits for models or penalise large models

without considering their functional behaviour [152]. Other approaches utilise

multi-objective genetic programming (MOGP) [123] to optimise the twin objec-

tives of fitness and size to produce Pareto optimal solutions.
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The experiments in this chapter use a selection of four well-known bloat-

control techniques, which are popular in the literature and are known for bal-

ancing accuracy and size-complexity. The selected techniques are as follows:

1. Death by Size (DS) [188] discourages size-growth by simply increasing

the probability of replacing the large-sized individuals from the breeding

population with the newly created offspring. Once a crossover event pro-

duces offspring, DS randomly selects two individuals from the existing

population and probabilistically replaces the larger one with the offspring.

Typically, the probability of substituting the larger-sized individual is 0.7;

the experiments in this chapter use the same setting. To implement time-

control with DS (and the other bloat-control techniques described below),

the evaluation times measurements replace the sizes of the respective in-

dividuals.

2. Double Tournament (DT) [188, 189] discourages size-growth by selecting

relatively smaller individuals as parents. DT uses two rounds of tourna-

ments to select the parents. The first round runs n probabilistic tourna-

ments, each of which pitches two randomly-selected contenders from the

population against each other; in each competition, the smallest-sized in-

dividual wins with a probability of 0.7. At the end of the first round, a set

of n individuals emerge. Then, in the second round, DT selects the fittest

out of the n individuals.

3. Operator Equalisation (OpEq) [164, 190] discourages size-growth by iden-

tifying and preferring those sizes that on-average produce better fitness

values. To do this, OpEq bins the present population according to differ-

ent sizes and computes the average fitness of each size range (bin). Then

in the following generation, each size is allocated a quota of individuals;

this quota is proportional to the average fitness of the individuals of this
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size. Therefore, the sizes that produce better average fitness values get

more representation in future generations.

As a parameter setting, bin widths of 1 to 10 have been used successfully

in the previous work [164]; therefore, the experiments here use a bin width

of 5. Also, for performance reasons, OpEq was later replaced with a better

version called Dynamic OpEq [164]; the Dynamic OpEq version is the

choice here.

In addition to replacing size with time (to adapt OpEq to control evalua-

tion time), the time equivalent of the bin width is estimated. The modified

OpEQ uses this estimate to create bins that group individuals according

to their evaluation times as the original OpEq groups them by size. To

estimate the time equivalent of bin width 5, the procedure generates 30

random individuals of size 5; then, their average evaluation time is noted

and used as the equivalent of bin width for the OpEq version with time-

control. Note, however, that the evaluation times depend upon the num-

ber of data points, which vary for each problem. Therefore, the bin-width

equivalent is computed separately for each time-control experiment with

OpEq.

4. The Tarpeian (TP) method [191] discourages size-growth by killing-off a

portion of the large-sized individuals in the population regardless of their

accuracy. TP realises this by calculating the average size of the breeding

population at every generation and then assigning the worst fitness score

to a fraction W of the individuals with the above-average size (recom-

mended W = 0.3; the experiments here use the same).

Therefore, the selected techniques control size (or time) in a variety of ways.

DS disadvantages size during replacement; DT disadvantages size during se-

lection for breeding; OpEq manipulates the distribution of the population to
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favour a size that is producing the more accurate (fitter) individuals (OpEq);

and TP excludes a portion of large-sized individuals. In addition, note that DS

and DT use the steady-state replacement strategy and TP and OpEq use the

generational replacement strategy. Therefore, these techniques are a diverse set

and are commonly cited in the GP literature; they have not been optimised to

suit this comparison. The papers that introduced these techniques have been

cited in other publications as follows: DS [188] in 226; DT [189] in 99; OpEq

[190] in 62; and TP [191] in 213.

5.3 Time Control for Functionally Diverse Populations

Chapter 5 showed that the evaluation time detects both the size and the compu-

tational (functional) complexity of models. This finding implies that when the

individuals are identically sized but functionally diverse, the variations in eval-

uation times will mainly be the differences in the functional or computational

complexity of the components that make up the models. Therefore, restrain-

ing the evaluation time in this environment will restrict the complexity of the

components (functions) that make up the individuals; this restriction, in turn,

may then lead to a simpler functional behaviour and better generalisation of

the models. Therefore, this thesis proposes the Fixed-Length Initialisation (FLI)

scheme, which starts the evolution with a same-size but functionally diverse

population; the details of the FLI are given in Section 5.3.1. Before applying FLI

to the experiment that compares time-control with size-control, Section 5.5.1

tests its impact on each method.

5.3.1 The Fixed Length Initialisation Scheme (FLI)

The proposed Fixed Length Initialisation scheme produces an initial population

of unique individuals with uniform sizes (or lengths). To further ensure func-

tional diversity in the population, FLI considers two individuals that only differ
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by numeric constants as not unique. Algorithm 2 shows the pseudocode of the

FLI. A fixed length of 10 nodes is set as the default.

Given the function set that the experiments use (7 mathematical operators),

FLI can produce a large number of unique individuals with ease. To illustrate,

consider the tree in Figure 5.1 which represents an individual made up of only

binary functions and terminals. Given that there are 4 options for the binary

operators and 5 variables as terminals, the number of unique individuals that

can be produced can be calculated as follows:

4× 4× 4× 4× 5× 5× 5× 5× 5 = 160, 000. (5.1)

Therefore, this tree with 9 nodes, which represents only a subset of the pos-

sibilities, can have 160,000 unique individuals.

FIGURE 5.1: A tree representing an individual made up of bi-
nary functions and terminals.
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Algorithm 2: The Fixed Length Initialisation (FLI)

/* Initialisation */
ln← set length of individual;
ps←set population size;
pln← 0 ;/* empty population */

/* Create a population */
while ‖pln‖ < ps do

newind← random individual of size ln ;
if CheckUnique(newind, pln) = True then

pln← pln + newind;
end

/* Function to check if an individual is unique; */
/* constants are treated as same. */
Function CheckUnique(newind, pln):

isUnique←− True;
nodesNew←− list of nodes in newind ;
foreach ind ∈ pln do

nodesInd←− list of nodes in ind;
di f f erent←− False;
for i← 1 to ln do

if nodesNewi 6= nodesIndi then
if (nodesNewi 6= numeric) ∨ (nodesIndi 6= numeric) then

di f f erent←− True;
continue to next ind;

end
if di f f erent = False then

isUnique←− False; /* match found for newind in pln */
return isUnique ;

end
return isUnique ;

5.4 Experimental Setup

5.4.1 Test Problems

The experiments in this chapter use symbolic regression (SR) problems, which

is a popular GP application. Unlike linear regression, which assumes that the

relationship between the features is linear and thus only optimises the parame-

ters of the features, symbolic regression (SR) makes no such assumptions and,

instead, discovers both the structure and parameters of an appropriate model
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from data. SR uses the evolution-inspired process of GP to combine mathemat-

ical building blocks (such as operators, functions, variables, and constants) to

make data models. Furthermore, because SR often produces large and nonlin-

ear monolithic models, managing the complexity of these models is important.

Therefore, SR is an appropriate testbed for studying complexity management

in GP.

The experiments use five challenging regression problems for which GP pro-

duces models with low accuracy scores; the results in section 5.5 show that the

accuracy scores of all of them are less than 28%. On challenging problems, GP

will have to run for a long time to improve the fitness scores of the solutions;

moreover, long runs are associated with growth in complexity. Therefore, the

longer that GP runs, the more opportunity for bloating (growth in the size of the

expression without a corresponding improvement in fitness). Bloat is a well-

studied phenomenon for which numerous theories have been proposed. For

example, a theory explains that small trees are likely to be simple and have rel-

atively low fitness scores for challenging problems [81–83]. Consequently, the

selection operator favours the large-sized (relatively more complex) individu-

als in the population, which results in further bloating; furthermore, large-sized

individuals are more likely to produce bloated offspring [84–87]. Therefore, the

challenging SR problems are suitable for experiments that manage complexity

in GP.

In addition to choosing challenging problems, the recommendations in some

benchmarking studies in GP [192, 193] were considered. These studies sur-

veyed the GP community and reviewed current practices. Instead of producing

a recommended list of benchmark problems, they collated an exclusion list of

unreliable ones (that exist in GP literature) to avoid. Therefore, the choice for

the experiments in this study avoids problems on the exclusion list. Further-

more, the selection criteria include the following: relevance to real applications
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and research in the GP field; variety in the class of problems; execution that is

fast enough to allow for the large runs that GP requires; and ease to implement

and reproduce without a need for specialised domain expertise.

Table 5.1 shows a summary of the benchmark problems (datasets). Four

of these problems (problems 1 - 4) have five or more input variables and are

available at [194]. Problem 5 is a bi-variate version of the function used in [195].

ID Problem label Number of
Variables

Number of Instances

1 Airfoil 5 1503
2 Boston Housing 13 506
3 Concrete Strength 8 1030
4 Energy Efficiency 8 768
5 y2x6 − 2.13y4x4 +

y6x2
2 250 (x=min:-0.3, step: 0.012;

y=x + 0.03)

TABLE 5.1: Test problems for Explicit Time Control experiment.

5.4.2 Experimental Settings

This section presents the basic parameters in Table 5.2 and discusses other ex-

perimental decisions.

First, it is common for GP to evolve mathematical models that produce

divide-by-zero errors upon evaluation. However, as recommended in [196] the

experiments in this study simply kill off such models (individuals) by award-

ing them the worst possible fitness because protecting them via the so-called

protected operators produces overfitting. Note, protected operators such as

protected-division, protected-log, and protected-exponential detect when an in-

computable value (e.g. NaN or infinity) is generated and replace this value

with a default value. For example, protected-division avoids divide-by-zero

errors by replacing the result of the offending division operation with just the

value of its numerator or a constant value of 1.0. Despite the popularly cited

and well-motivated warning as in [196] protected operators are still used as a
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legacy convention of GP since the 1990s; however, this study does not use them

here. Second, the datasets are randomly split (without replacement) in an 80%

and 20% ratio for training and testing, respectively. Third, the fitness score is

computed as the normalised mean square error (NMSE) as follows:

1
1 + 1

n Σn
i=1(yi − ŷi)2

. (5.2)

Therefore, the experimental setup configures GP to maximise the fitness scores

(prefer high values).

The experiments are run on a system with Windows 10 (64-bit), 32GB of

RAM, and an Intel Quad-Core processor (Core i7-6700 CPU @ 3.40GHz).

Parameter Setting
Number of runs 50
Population size 500
Run terminates After 70 generations ≡ 35,000 evaluations
Random tree generation Fixed Length Initialisation (see Section 5.3.1)
Subtree generation Ramped half-and-half (1 =< depth =< 4)
Operators &
probabilities

One point crossover = 0.9;
Point mutation = 0.1

Depth Limit 17
Function set +,−, ∗, /, sin, cos, neg
Constants (ERC) |ERC| = 100 (min = 0.05, step: 0.05)
Terminal set {Input variables} U ERC
Selection Tournament of size = 3
Replacement Steady-state/generational as per each method

TABLE 5.2: Experimental settings for Explicit Time Control.

5.5 Experimental Results

Before applying FLI to the experiment that compares time-control with size-

control, its impact on the selected GP methods is examined. The aim, at this

point, is to determine if introducing FLI will unduly favour or disadvantage

the contending methods as they are used conventionally.
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5.5.1 The Impact of the Fixed Length Initialisation

Section 5.3 motivated FLI, which initialises the population with functionally

diverse individuals of the same size, to increase the focus of the time-control

on differentiating functional complexity. To check how it affects the selected

bloat-control techniques on their default, FLI is compared with the popularly

used Ramped-Half-and-Half initialisation scheme; henceforth, the term Vari-

able Length Initialisation (VLI) will refer to the Ramped-Half-and-Half.

The charts in Figure 5.2 and Figure 5.3 show the mean test fitness accuracy

by generation for time-control with and without FLI and size-control with and

without FLI. The figure shows that FLI generally improves the test fitness scores

of both time-control and size-control; the results in Figure 5.4 are from analysing

the final population.

Figure 5.4 details the result of the test for significance in the difference that

FLI makes on both time-control and size-control; the test is Mann-Whitney U

with an alpha of 0.05. The figure is colour coded so that green indicates where

FLI makes a positive and significant difference, brown where the difference is

negative and significant, and yellow where the difference is not significant. FLI

produced significantly better results in 16 out of 20 for time-control and 11 out

of 20 for size-control.

The results show that when using OpEq, size-control with VLI was better

than size-control with FLI on all the test problems. This exception can be at-

tributed to the mechanism OpEq uses. To improve accuracy, the OpEq bins the

population of models by size; and then allows the bins with the higher average

accuracy to produce more offspring. While OpEq with VLI (variable length)

will naturally start with multiple bins, OpEq with FLI (fixed length) begins the

evolution with only one bin. As a result, OpEq with FLI does not have the

means to favour the more accurate solutions until later generations when the

sizes of individuals begin to differ. However, when OpEq with FLI is used to
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FIGURE 5.2: Test fitness scores of both size-control and time-
control (using DS and DT) with and without FLI. The red and
green lines represent size-control and time-control, respectively;

the bold and thin lines indicate FLI and VLI, respectively

control time, the binning is done with time instead of size. Therefore, despite

a uniform size in the population, their evaluation times will differ and enable

OpEq with FLI to create multiple time-based bins, which allows it to favour the

time-based bins that are more accurate. Consequently, the better performing
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FIGURE 5.3: Test fitness scores of both size-control and time-
control (using OpEq and TP) with and without FLI. The red and
green lines represent size-control and time-control, respectively;

the bold and thin lines indicate FLI and VLI, respectively

size control initialisations will be the benchmark: OpEq with VLI and all other

methods with FLI.
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FIGURE 5.4: Result of significance test for the difference FLI
makes. The FLI test fitness accuracy improved 11 out of 20 for

size-control and 16 out of 20 for time-control.

5.5.2 Comparing Time-Control and Size-Control

This section compares the effect of controlling complexity with evaluation time

and controlling it with size (bloat-control). The bloat-control techniques de-

scribed in Section 5.2 are used to compare the accuracy, complexity, and com-

positions of the models the two approaches produce. For accuracy, the test

fitness (accuracy on out-of-sample data) is the key measure (high values pre-

ferred); however, the comparison also reports the training fitness scores. For

complexity, the sizes and evaluation times of the models are compared (low

values preferred). Finally, the comparison checks the composition of the final

populations to determine the percentage of the genetic material comprised of

more or less complex mathematical functions. This finding indicates that the

evaluation time detects more than the sizes of the models.

Figures 5.5, 5.6, 5.7 and 5.8 (representing the results for DS, DT, OpEq and

TP, respectively) compare the development of performance measurements by

generation of time-control and size-control. A trend is observable where time-

control generally gains accuracy (on all four methods) and simplicity (on DS

and DT) over size-control. The test for significance of their differences uses
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their final populations; the charts show that all measures continuously increase

through to the final generation and therefore is an appropriate common point.

FIGURE 5.5: Comparison of size-control and time-control with
Death By Size (DS).

Figure 5.9 shows the result of the significance test for the difference; also,

unless stated otherwise, henceforth, the discussion about differences refers to

this figure.

Difference in accuracy: Time-control produced significantly more accurate

models (on both seen and unseen data) on all but 3 (out of 20) combinations

of problems and control techniques; the difference is not significant on one of

the three exceptions. The exceptions are Problem 1 on TP, where the difference

is insignificant, and Problem 2 on DS and Problem 5 on TP, where size-control

outperforms time-control. Overall, the result indicates that using evaluation

time to control complexity produces significantly more accurate models than

using size to control complexity.
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FIGURE 5.6: Comparison of size-control and time-control with
Double Tournament (DT).

Difference in Complexity: Note, to compare complexity, the size of the ex-

pressions and their evaluation time is analysed. Therefore, for 5 test problems,

10 complexity results per complexity-control method are generated.

In terms of complexity control, the results appear to differ depending upon

the replacement scheme employed by the time-control method. Time-control

using steady state replacement with DS and DT created less complex models

than size-control 9 out of 10 times each; however, time-control with generational

replacement, that is, TP and OpEq created less complex models only 2 and 0

times respectively. While it is not clear as to why the complexity control of

TP does not work well, the result in Section 5.5.1 indicates that OpEq behaves

differently and does not benefit from FLI.

Although, this does not conclusively prove that steady state replacement is

better suited for time-control, it does provide us with a benchmark for further
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FIGURE 5.7: Comparison of size-control and time-control with
Operator Equalisation (OpEq).

experiments in the thesis with time-control. Based on these results, from among

the selection of complexity control techniques tried, DT and DS are better suited

to time-control.

Difference in the Composition of Models: Table 5.3 shows the result of

counting and differentiating the nature of nodes constituting the trees of the

models in the final populations to understand the composition of the genetic

material therein. Consistent with the complexity results (evaluation time and

size), time-control with DS and DT used smaller percentages of complex math-

ematical functions (the COS and SIN operators) in the population they pro-

duced than the respective figures for size-control. Also consistent with their

complexity results, TP and OpEq used higher percentages of complex mathe-

matical functions in the population they produced than those by size-control.
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FIGURE 5.8: Comparison of size-control and time-control with
The Tarpeian (Tp).

TABLE 5.3: Composition of the populations produced by Time-
control and Size-control are compared.



Chapter 5. Explicit Control of Evaluation Time 92

FIGURE 5.9: The result of the significance test for the difference
between size-control and time-control. Time-control methods
have significantly higher accuracy scores (on both training and
test) in 17 out of 20 test cases. Whereas DS and DT on time-
control produced simpler models than on size-control in 9 out
of 10 test cases, TP and OpEq on time-control produced more

complex models than size-control in 8 out of 10 test cases.

5.5.3 Discussion

The discussion in Section 5.1 argues that a sensible control of complexity should

provide models that are only complex enough to explain the phenomenon that

generated the given data but not too complex. As a result of a faithful learning

about the phenomenon, such models can predict accurately on unseen data.

The results in this chapter show that time-control delivers superior accuracy on

unseen data than size control; it does this almost consistently despite produc-

ing more complex solutions using the methods with generational replacement

(OpEq and TP). Still, the increased complexity with time-control on OpEq and

TP is not as excessive as is typically the case with unrestrained GP.

Unlike the steady-state replacement methods where a new individual dis-

places the loser of a tournament, the generational replacement methods (OpEq
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and TP) compute the evaluation times of individuals and their distribution in

the current generation before producing the next. However, as discussed in Sec-

tion 5.5.1, the increased complexity of OpEq may be attributed to the impact of

FLI on it.

To distinguish the functionally complex individuals, the experiments lever-

age a fixed-length initialisation (FLI) scheme, which keeps the individual sizes

constant but promotes functional (compositional) diversity in the initial popu-

lation. The expectation is that this would suit the time-control techniques; how-

ever, the results indicated that FLI improves all methods that use time-control

and size-control; OpEq with size-control is the only exception.

The results support further research into this initialisation method. Also,

as FLI only enforces the functional diversity in the initial generation, future

work must study whether promoting the functional diversity in the population

during the remaining evolution further enhances the effect of time control.

The techniques used to control size and time in this chapter, and the GP

literature, explicitly penalise or discourage the measure of complexity. How-

ever, the next chapter shows that using time as a measure of complexity can

also enable a more natural means of controlling complexity. Instead of explicit

penalties, the evolutionary process can itself confer an advantage to the sim-

pler solutions such that they participate in further evolution before their more

complex (and slow evaluating) counterparts.

5.6 Conclusion

This chapter shows that using the evaluation time as a measure of complex-

ity is viable and beneficial. Time-control almost consistently produces models

with greater accuracy on both training and test data than size-control. In the in-

stances where time-control produces slightly greater sizes or evaluation times,

the corresponding greater accuracy compensates for the increases. Hence, the
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increases are not unwanted complexity; after all, the end goal is not to avoid

complexity per se, but to have complexity that brings accuracy. Therefore, the

result of this study and the idea that the evaluation time goes beyond the size

of a model to reflect its computational complexity advocate for evaluation time

as a better alternative to size.

This chapter also shows that time-control can distinguish more than size;

it can differentiate functional complexity, particularly in a functionally diverse

population. Therefore, the proposed Fixed Length Initialisation (FLI), which

creates an identically sized but functionally diverse population, improved the

time-control methods and most of those of size-control.

Overall, the results in this chapter back the evaluation time as a promising

alternative to counting nodes in GP. Moreover, it promises to be a measure that

can characterise complexity in many domains. Also, as indicated at the end

of the last section, use of evaluation times opens up different opportunities for

complexity control beyond merely replacing size with time in the bloat-control

methods. The next chapter expands on one such opportunity.
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Chapter 6

Implicit Control of Evaluation

Time

“Everything should be made as simple as possible,

but no simpler.”

Albert Einstein

6.1 Introduction

All the techniques that were used to manage the complexity of models through

controlling their size and evaluation times in the previous chapter – and those

commonly found in GP literature – actively penalise complexity to various de-

grees. The degree to which a method penalises complexity is a design choice

and acts as a parameter to the system.

The proposal in this chapter takes a radically different approach by taking

the view that while a model is undergoing evaluation it is consuming valuable

computational resources; therefore, a slow-evaluating model must not impede

the progress of a fast-evaluating model that can evaluate much faster and thus

help evolution continue. This is similar to the competition in product innova-

tion where a product that takes longer to reach the market does not stop the

competing products from taking a share of – or even taking over – the market.
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Therefore, the onus is on the competing products to arrive faster in the market

and there is no pressure by design on them to be ready before a certain time 1.

The products essentially race against each other to take over the market.

Following that analogy, this chapter incorporates a race in the evolutionary

process that lets multiple models to asynchronously evaluate in parallel. Also, in-

stead of penalising the computationally complex models by design, the process

allows the fast evaluating models to join the breeding population (effectively

our market here) as soon as they are ready, provided they pass a performance

threshold. As a result, this process allows simple (fast evaluating) and accu-

rate solutions to gain an evolutionary advantage. Aptly, the proposed process

is called Asynchronous Parallel Genetic Programming (APGP). Thus, unlike the

complexity control employed explicitly by the techniques introduced in the pre-

vious chapter, the complexity control in this method is relatively implicit and

naturally adapts to the given situation of a specific GP run.

Since the APGP lets multiple models evaluate in parallel with different fin-

ish times, this allows the simpler models who finish earlier to potentially join

the breeding population in a steady-state2 fashion earlier than the complex ones.

Once such an individual enters the breeding population, it may be selected to

breed while its counterparts are still evaluating. This behaviour is natural as

well; after all, breeding is not synchronised in nature. Although unnatural, syn-

chronised breeding has been the norm in evolutionary algorithms. Therefore,

the APGP borrows an extra leaf from nature.

As stated already, unlike the time control methods discussed in Chapter 5,

the APGP does not explicitly exclude or penalise the complex and slowly eval-

uated individuals; the sole criterion for joining the population is still the fitness

1except where the product becomes useless after a certain deadline.
2The steady-state replacement scheme allows GP to update the breeding population with new

individuals one at a time instead of in batches.
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of the new offspring – every new offspring must be fitter than an individual se-

lected (via an inverse tournament) from the existing population. However, eval-

uation speed (a proxy for simplicity) is still an advantage because that means

the fast-evaluating offspring only competes with the older (and generally less

fit and simpler) models that exist in the present population. In contrast, the

task for the late-comers is harder because, by the time they arrive, the popula-

tion may have got fitter because of all those that joined the population earlier.

However, the simpler pre-existing models can survive only until a more accu-

rate yet complex model arrives. In fact, the validation of APGP presented later

in Section 6.4 and its analysis in Chapter 7 confirm that APGP does line up the

simpler solutions for an opportunity to join the population; however, whether

they actually make it into the population depends on their fitness. Thus, a dy-

namic interplay between simplicity and accuracy happens continuously during

the evolution in the APGP. Therefore, unlike the explicit time control methods,

the complexity control in the APGP may be gentler due to the absence of explicit,

time-based penalties.

A set of experiments in this chapter compares the APGP with standard GP

(GP) and GP with a very effective bloat-control mechanism (GP+BC). Another

set compares the APGP with the time control methods introduced in Chapter

5; henceforth, those methods are called explicit time control methods. A further

set of experiments checks the impact of the Fixed Length Initialisation scheme

(FLI) on APGP and the other methods; FLI was introduced in Chapter 5 as a

means to create an initial population of individuals that are functionally diverse

to encourage the evaluation time to distinguish functional complexity.

The results show that the APGP produces the most accurate models (on both

training and test data) that are also simple; moreover, it trains the fastest in that

it uses the fewest evaluations to match a target accuracy (the average that GP

achieves), whereas GP+BC takes the most. Against the explicit time control
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methods, APGP still produces the most accurate solutions with a gentler com-

plexity control. In addition, like other methods, the accuracy of APGP solutions

improves with FLI. Overall, the results suggest that the complexity control in

APGP is a viable method to balance the accuracy-simplicity dilemma. Thus,

APGP adds to a family of algorithms that are possible due to adopting evalua-

tion time as a proxy for measuring complexity.

The rest of this chapter is organised as follows: Section 6.2 discusses the

works that are related to the APGP; Section 6.3 details the workings of the

APGP; Section 8.4 details the experimental setup; Section 6.6 presents the re-

sults; and finally, Section 6.7 concludes this chapter.

6.2 Parallelism in Genetic Programming

Since the proposed APGP leverages parallel computing, this section first re-

views parallel computing in GP and contrasts its use in existing GP literature

with the objectives of this study.

Parallel computing in GP [197–199] is typically used to improve the run

times [200], as opposed to reducing the complexity of individual models, which

is the target of this study. Reducing the overall runtime is prudent because GP

runs can take a long time to complete. Most commonly, generational replace-

ment schemes – that evaluate the entire set of offspring produced by the present

population to create the next population – parallelise the evaluation of the off-

spring. However, the generational replacement requires the entire offspring

population to be ready before the next set of breed operations can proceed; this

means that all evaluation threads join at a single point of synchronisation before

the evolution proceeds further. Therefore, this parallelisation gives no advan-

tage to simpler (faster) individuals. Moreover, this approach is inefficient in

terms of resource utilisation - while a complex individual is taking an excessive
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amount of time to evaluate on a CPU, the remaining CPUs stay idle after the

other faster (less complex) individuals have completed evaluation.

Some evolutionary algorithms (EA) have used asynchronous parallel com-

puting in non-GP setups to alleviate the idle CPU time challenge. The exam-

ples [198, 201] observed an evaluation time bias that favours individuals with

shorter evaluation times. However, these studies are concerned with optimising

parameters using fixed-length chromosomes; therefore, they do not study the

impact of asynchronous parallelism on the functional complexity of variable-

length structures in GP.

EAs also use parallel computing in the so-called island model [202, 203],

where the evolving populations divide into multiple distinct islands, and the

sub-population in each island can be evolved in a separate parallel thread. Through

this parallelisation, the island model offers advantages such as greater diversity

in the overall population; the diversity arises because each island remains iso-

lated from other islands except at discrete intervals when selected individuals

are exchanged across the islands. This work does not use island models; in-

stead, this thesis uses a single panmictic population.

6.3 Asynchronous Parallel Genetic Programming (APGP)

The APGP algorithm lets GP individuals evaluate asynchronously to allow sim-

ple individuals (that evaluate quickly) to get into the breeding population ear-

lier than their more complex (slow evaluating) counterparts. This practice is

natural in natural evolution, where individuals of a population continue breed-

ing while one of them is still testing (evaluating) against the environment. Yet,

the contrary is precisely what happens in traditional GP; while the GP individ-

ual (of any complexity) is testing against its natural environment, the evolution

waits regardless of how long it takes. Thus, traditional GP does not confer any

advantage to fast evaluation (and potentially low complexity). However, APGP



Chapter 6. Implicit Control of Evaluation Time 100

strives to leverage speed (quick evaluation) as an advantage to breed simple yet

accurate models.

APGP works with the Steady State [77] replacement scheme, which allows an

offspring to compete for a place in the breeding population as soon as it com-

pletes its evaluation. This scheme enables APGP to allow a set number of mul-

tiple breeding operations and fitness evaluations to be executed in parallel and

asynchronously. For example, configure APGP to run 50 of these breed opera-

tions (followed immediately by the corresponding fitness evaluation; note the

setup here produces one offspring per breed operation)3 simultaneously and

asynchronously in the same population. As soon as one of the 50 operations

finishes, another starts; this keeps the total number of simultaneous operations

fixed. Still, the evaluations may complete at different times due to the varying

times taken to evaluate models that differ by their make-up; since the evalua-

tion of models is done the same way (using the same dataset).

Section 6.4 details the experiments carried out to validate the race condition

in APGP. The results confirm that the simpler models, having shorter evaluation

times, finish before the more complex counterparts. Therefore, when a batch

or a stream of evaluation tasks runs asynchronously, the simpler models often

overtake the more complex ones.

Thus, a race condition establishes in the evolutionary process of APGP such

that less complex individuals can contest for a place in the breeding population

before their slower counterparts. Contesting for a place in the population means

checking if the new model is fitter than the "winner"4 of an inverse tournament

and if so, replacing that winner with the new model. Hence, if the fast evaluat-

ing individuals enter the breeding population, they may reproduce earlier than

the more complex individuals taking longer to evaluate.

350 produces reasonable results; however, later Chapter 7 analyses the impact of varying the
number of parallel threads.

4The winner of an inverse tournament is the worst member; the experiment in this chapter
uses a tournament size of 5.
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6.3.1 The APGP Algorithm

Algorithm 3: Asynchronous Parallel Genetic Programming (APGP)
Algorithm

/* Initialise */
N ← set total number of offspring to produce;
threadpool← set number of concurrent operations allowed;
popsize← set population size;

/* Generate and evaluate initial population */
population← generate initial population of size popsize;
Evaluate(population);

/* Generate and evaluate offspring in parallel */
count = 0; while count < N do

if threadpool > 0 then
Thread(threadpool← threadpool − 1 &&
offspring← Breed_and_evaluate() );
count← count + 1;
if offspring_evaluated then

replace← To_Replace(population);
if fitness(offspring) > fitness(population[replace]) then

Lock population[replace] memory position;
population[replace]← offspring;
Release locked position;

else
Discard offspring;

Release thread: threadpool← threadpool + 1;
else

Wait
end

The APGP algorithm is outlined in the pseudo-code in Algorithm 3. It

begins by setting the number of concurrent breed operations (evaluations) al-

lowed, the population size, and the total number of offspring to produce (total

number of fitness evaluations in the run). Next, the initial population is pro-

duced and evaluated. Then, the parallel breeding begins by launching multiple

breed operations up to the allowed limit. A breed operation evaluates its off-

spring within its independent thread. As soon as the evaluation of an offspring

completes, it tries to get into the breeding population; it replaces the winner of
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an inverse tournament in the current population if it is fitter than the winner.

Immediately after that, the corresponding resources (for the thread) are freed,

and a new breed operation commences. As these parallel operations work on

the same breeding population, a temporary lock is necessary on the memory

position of the individual that is being replaced; this prevents clashes that may

occur from multiple threads trying to replace the same individual.

As discussed earlier, the criterion when an offspring tries to find a place in

the population is its accuracy only. Therefore, for an offspring to take advantage

of its speed, its accuracy needs to be competitive. When the more complex

candidates become more accurate, they will eventually get in, get selected and

propagate. As such, APGP does not exclude the more complex individuals from

the contest. Therefore, the possibilities within a specific problem will determine

how simple the accurate models can be.

Before evaluating the APGP on various problems (in Section 6.5) as proof of

concept, the following section first validates that a race condition indeed exists

in the experimental settings used; a race condition – where simple solutions

finish evaluating before their more complex counterparts – is essential in the

APGP.

6.4 Validating the Race in APGP

In order to demonstrate that APGP can give an advantage to simpler individu-

als, this section simply validates as to whether the simpler individuals do finish

evaluation earlier. Thus, here the objective is not to trace the end results of evo-

lution but only to practically demonstrate that the simpler individuals do get a

time-advantage that can give them an opportunity to join the breeding popula-

tion earlier.
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6.4.1 Experimental Setup

To ascertain as to whether fast-evaluating models actually finish evaluations

earlier than their slower counterparts, evaluations tasks that take verifiably dif-

ferent times to complete are designed. Thus, the test in this section creates ten

types of evaluation tasks of varying complexity; they all involve executing an

identical model but on varying dataset sizes. The dataset sizes ranged from

10,000 to 190,000 in steps of 20,000 (this makes 10 different tasks). Since in-

creasing dataset sizes increases the computational load, this setup can check if

a parallel race indeed suits the computationally cheaper tasks.

Two thousand such tasks are sent to evaluate in parallel and asynchronously

(a race to completion) while tracking the order they started and the order they

finished. Also tracked are their evaluation times and complexity (as designed).

Then, using the collected data, different stages of the race are analysed; for ex-

ample, from the beginning to the 100th, to the 200th, and so forth.

6.4.2 Results

The results show that the race condition (that APGP also uses, though APGP

was not used here) allows simpler evaluation tasks to finish earlier. FIGURE 6.1

shows periodical snapshots of the completed evaluations by the dataset sizes

and FIGURE 6.2 shows them by their evaluation times; the charts result from

using 50 threads. At the earliest stage of the race (as illustrated by the graph at

the top of the figure, which corresponds to the first 100 completed evaluations),

a high number of simple evaluations have been completed; thus, the peak is

around dataset size of 25,000 data points. At the later stages of the race (bot-

tom chart in the figure), the spread increasingly evens out (by dataset size and

evaluation time, respectively) in both FIGURES 6.1 and 6.2; this shows that the

slower (complex) evaluations do also complete as time goes on.
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FIGURE 6.1: The race enables the tasks with smaller dataset sizes
to complete earlier than those with larger datasets. Note, x-axis
shows the dataset sizes in thousands. Y-axis shows the number
of completed evaluations; thus, the distribution of the first 100

completions is at the top.

FIGURE 6.2: The race enables tasks with smaller evaluation
times to complete earlier than those with larger evaluation

times.
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Since factors (such as accuracy scores) beyond the speed of evaluation de-

termine the result of the APGP, the race condition is validated separately. The

results demonstrate that simpler individuals finish earlier than their more com-

plex counterparts. Thus, the method for inducing the race condition in APGP is

validated. While the validation test in this section used a set degree of concur-

rency (50 threads), Chapter 7 examines the effect of varying it.

6.5 Proof of Concept: Experimental comparison of APGP

with Other Methods

Using the selected suite of symbolic regression problems, three sets of experi-

ments are run in this chapter, as follows:

1. APGP is compared with GP with bloat-control (GP+BC) and standard GP

(GP). This serves as a proof of concept for APGP and further compares

bloat-control with time control.

2. APGP is compared with the time control methods that were introduced

in Chapter 5. This is done to compare the implicit time-control technique

that APGP offers with the explicit time control techniques from Chapter

5. The explicit time control methods are:

• Death by Size (DS) [188], which raises the likelihood of displacing

large-sized individuals from the breeding population.

• Double Tournament (DT) [188, 189], which increases the likelihood of

producing simple offspring by raising the probability of selecting

simple parents to breed.
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• Operator Equalisation (OpEq) [164, 190], which prevents unnecessary

growth in size by controlling the distribution of size in the popu-

lation to increase opportunities for more accurate sizes to produce

more offspring.

• The Tarpeian (TP) [191], which penalising a portion of the large-sized

individuals in the population and makes them noncompetitive; thus,

it discourages growth in size.

Like the experiments in Chapter 5, size is replaced by time in these meth-

ods to effect time-control.

3. APGP with the Fixed Length Initialisation (APGP-FLI) is compared with

APGP without FLI. This experiment examines the behaviour of the APGP

in a functionally diverse environment, which the FLI facilitates.

6.5.1 Test Problems

The experiments in this chapter use six test problems: five multidimensional

problems and a bi-dimensional one. The data and description for Problems 1

- 5 are available at [194]; Problem 6 is a bivariate variant of the mathematical

function used in [195]. As shown in the summary of the problems in Table 6.1,

all but Problem 4 are the same carefully selected problems from Chapter 5; the

criteria for the selection are discussed in Section 5.4.1.

ID Problem label No. of
variables

No. of instances

1 Airfoil 5 1503
2 Boston Housing 13 506
3 Concrete Strength 8 1030
4 Dow Chemical 57 1066
5 Energy Efficiency 8 768
6 y2x6 − 2.13y4x4 + y6x2 2 250 (x= min: -0.3, step: 0.012;

y = x + 0.03)

TABLE 6.1: Test problems for Implicit Time Control Experiment.



Chapter 6. Implicit Control of Evaluation Time 107

6.5.2 Experiment Settings

Table 6.2 provides the basic GP settings the experiments use. Other configura-

tions and parameters are as follows:

• Bloat-control for GP+BC was implemented with the Double tournament [188],

which has been effective on a variety of benchmark problems [188][189].

Furthermore, the results in Chapter 5 show that this method restricts the

sizes of the models aggressively while producing accurate solutions.

• Degree of Concurrency: For the experiments in the chapter, APGP uses 50

parallel threads; however, Chapter 7 investigates other settings.

Some of the settings are the same as Chapter 5 (Section 5.4.2); these include

the system configuration, handling of divide-by-zero errors, dataset splitting,

and the fitness function.

Parameter Setting
Number of runs 50
Population size 500
Run terminates After 35,000 evaluations (≡ 70 generations)
Random tree/
subtree generation

Ramped half-and-half
(depth min = 1, max = 4)

Tree depth limit 17
Operators &
probabilities

One point crossover = 0.9
Point mutation = 0.1

Function set +,−, ∗, /, sin, cos, neg
Constants Ephemeral random constants (ERC)

|ERC| = 100 (min = 0.05, step: 0.05)
Terminal set {Input variables} U ERC
Selection tournament size = 3
Replacement steady state, inverse tournament size = 5

TABLE 6.2: Experimental settings for Implicit Time Control.
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6.6 Experimental Results

6.6.1 APGP compared with GP and GP+BC

The experiments enable comparing the accuracy (on training and test data) and

the simplicity of the models that APGP produced with those of the contend-

ing methods. Furthermore, the number of evaluations the compared meth-

ods perform to reach a target accuracy (the average accuracy that standard GP

achieves) are analysed to determine the efficiency of the APGP and GP+BC rel-

ative to GP.

Accuracy and Complexity Control

As the fitness in the experiments in this thesis is a maximisation function (where

a higher score is preferred), the terms fitness and accuracy are interchangeable

here. Figure 6.3 shows a colour-coded table of results of the Mann-Whitney U

statistical test on the final populations of APGP against those of GP and GP+BC.

The table includes the mean evaluation times, sizes, fitness scores (training and

test); also, the table shows the p-values of each test. The green coloured cells

show instances where APGP is significantly better (i.e., higher accuracy scores

or lower complexity) than GP or GP+BC and brown where it is significantly

worse; the yellow cells indicate an insignificant difference.

The dominance of the green coloured cells in Figure 6.3 indicates that APGP

is significantly better generally. This dominance by APGP is greater against

GP. In terms of accuracy (training and test fitness scores), the APGP scores are

significantly better than those of GP and GP+BC in all tests, except for the in-

significant difference (against GP) seen in the training fitness scores on Problem

5. Moreover, as the APGP test fitness values are consistently and significantly

better than those of GP and GP+BC, this indicates that APGP models tend to
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FIGURE 6.3: Result of significance test in the differences between
the APGP populations and those of GP and GP+BC. The APGP
models are more accurate (on both training and test data) than
those of GP and GP+BC in all tests. Also, APGP models are sim-
pler than GP. However, APGP models showed a greater com-

plexity than GP+BC that is associated with higher accuracy.

generalise better; test fitness score is the main concern because it reflects gener-

alisation. Moreover, the reported p-values are very small, which indicates very

significant differences.
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In terms of managing complexity, APGP produced significantly simpler mod-

els than GP but more complex than GP+BC. The APGP models were signif-

icantly simpler than those of GP in all but Problem 4. Although APGP pro-

duced more complex individuals, in this exception, it produced models that

have greater accuracy scores. Therefore, the increase in complexity comes with

an associated gain in fitness; consequently, the greater sizes and evaluation

times do not necessarily indicate bloat – bloat is a growth in size without a

correlated improvement in accuracy. However, APGP did not produce simpler

solutions than GP+BC in most cases. Instead, GP+BC generated significantly

smaller sized models in 6 out of 6 tests and shorter evaluation times in 3 out

of 6 tests; note, GP+BC aggressively and solely targets the model size. But, the

simplicity of models that GP+BC achieved is associated with significantly lower

training and test accuracy values. In other words, simplicity in GP+BC comes

at the expense of accuracy.

Training Efficiency of the Methods

As the APGP allows simple and accurate models to push through, the exper-

iment examines if APGP affects the overall training speed and how that com-

pares with the effect of bloat-control. To that end, the number of evaluations it

takes for each run of the methods to meet a set target training fitness – the av-

erage training score that GP usually achieves. Runs that do not reach the target

are assigned the maximum number of budgeted evaluations.

As detailed in Table 6.3, APGP used between 10% to 40% fewer evaluations

than GP, and 15% to 84% fewer than GP+BC to meet the same target training

scores. Therefore, APGP is the fastest to train. Note, GP+BC is the slowest

to train despite producing smaller individuals. These observations tally with

the consistently less accuracy that GP and GP+BC models show against APGP

models in Figure 6.3.
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Problem
ID

GP
Mean

GP+BC
Mean

APGP
Mean

Difference
APGP v. GP

Difference
APGP v. GP+BC

1 29407 33041 23941 18.59 % 38.01 %
2 20761 27792 17762 14.44 % 56.47 %
3 31668 33595 20422 35.51 % 64.50 %
4 17861 19762 10719 39.99 % 84.36 %
5 28852 34842 25658 11.07 % 35.79%%
6 33077 33895 29546 10.68 % 14.72 %

TABLE 6.3: The relative training speeds of the methods as deter-
mined by the number of evaluations needed to meet a set train-
ing accuracy target. Columns 2 - 4 show the average number of
evaluations the methods used. Column 5 - 6 show the percent-
age differences of APGP relative to GP and GP+BC, respectively.

APGP uses significantly fewer evaluations than the others.

6.6.2 Comparison of APGP with Explicit Time Control

APGP consistently produced significantly more accurate models than the ex-

plicit time control methods (DS, DT, OpEq and Tp) on both training and test

data; Figure 6.4 shows the results of the significance tests. Moreover, similar

to its performance against GP+BC in Section 6.6.1, APGP produced more com-

plex models against the time control methods; the exceptions are Problem 5 on

OpEq and Problem 6 on Tp. Therefore, the complexity control of APGP is not

as aggressive as the explicit time-control methods.

Despite producing more accurate solutions than size-control in Chapter 5,

the time-control methods do not meet the accuracy of APGP. APGP remains

the most accurate on both training and test data. Also, like GP+BC, the explicit

time-control methods show more aggressive management of complexity than

APGP that costs accuracy.

6.6.3 APGP in a Functionally Diverse Population

The experiments examine how the APGP performs in the functionally diverse

initial populations that FLI creates. Therefore, results of APGP with and with-

out FLI are compared, and Figure 6.5 details the significance of their difference.
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FIGURE 6.4: Comparison of APGP and the time-control meth-
ods (DS, DT, OpEq and Tp). APGP consistently produced sig-
nificantly more accurate models (on both training and test data)
than all the time-control methods. The time-control methods

tend to produce simple models at the expense of accuracy.

APGP with FLI (APGP-FLI) produced significantly more accurate models

(on both training and test data) on 5 out of 6 tests. The sizes of the models

produced by APGP-FLI were significantly better (smaller) than those produced

by APGP. Furthermore, the evaluation times of the models produced by APGP-

FLI were significantly better (less) than those of APGP. Therefore, functionally

diverse initial populations enable APGP to improve the accuracy and simplicity

of the models it generates.
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FIGURE 6.5: Result of test for significance of the impact of FLI on
APGP. FLI significantly improved the accuracy scores (on both
training and test data) of APGP on 5 out of 6 problems. Also,
FLI reduced size (on 4 out of 6 problems) and evaluation times

(on 5 out of 6 problems).

6.6.4 APGP with FLI vs. Time Control with FLI

As FLI improves the performance of both APGP and the explicit time-control

methods, this section examines if FLI has tilted the balance. Therefore, the re-

sults of APGP-FLI with those of time-control methods with FLI are compared;

Figure 6.6 details the results of the significance testing.

The results indicate that APGP-FLI produces significantly more accurate in-

dividuals than all the compared time-control methods despite introducing FLI

in all methods. APGP-FLI generated models with significantly better test fitness

scores in 23 out of 24 tests and 23 out of 24 training test scores; the exceptions
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are on DT. Furthermore, like earlier comparisons with time-control methods,

APGP-FLI tends to produce more complex individuals that improve accuracy

scores.

FIGURE 6.6: Result of significance test for differences in the fi-
nal populations of APGP with FLI and the time-control methods
with FLI. APGP-FLI produced models with higher accuracy (on
both training and test data) in all cases. The models produced
by time-control methods with FLI were simpler (smaller size or

evaluation time) than APGP in 34 out of 48 tests.

6.7 Conclusion

As a novel method that evaluation time enables, the APGP introduces a simple

yet significant change in the evolutionary process of GP to offer several gains.

The APGP induces a race between concurrent executions of multiple breed op-

eration (evaluations) to allow simple and accurate models to get a competitive
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advantage. Therefore, APGP removes the point of synchronisation that enforces

a lock-step evolution of models. Instead, the race condition in APGP allows

models that finish evaluating earlier than their counterparts to join a steady-

state population if their accuracy is competitive enough. APGP thus questions

the conventional, but ultimately unnatural, practice of evolving individuals in

a lock-step manner or one after the other.

Contrary to bloat-control techniques that target and penalise sizes while

sacrificing accuracy and training time, APGP produces models that are signif-

icantly more accurate than standard GP and GP with bloat-control in all the

tests (100%). The APGP complexity control (size and evaluation times as com-

plexity) was significantly better in 5 out of 6 tests against GP; however, GP+BC

produced smaller sizes in 6 out of 6 tests and smaller sizes in 3 out of 6. There-

fore, APGP produces significant gains in accuracy and manages complexity in

a way that does not compromise accuracy.

The race condition in APGP that allows simple and accurate solutions to

push through, has the added advantage of improving training speed. On all six

problems, APGP used fewer evaluations to match the training accuracy of GP

(11% to 40% fewer) and that of GP+BC (15% to 84% fewer).

APGP consistently produced significantly more accurate solutions than the

explicit time control methods introduced in Chapter 5; it prevailed in 24 out of

24 tests. Compared with the explicit time control methods, the APGP complex-

ity control was less aggressive. This shows the advantage of APGP’s ability to

simultaneously encourage simplicity and accuracy without subjectively target-

ing and penalising complexity.

The Fixed Length Initialisation (FLI), whose introduction was motivated by

the understanding that evaluation time can differentiate functional complex-

ity, improved the performance of the APGP; FLI creates an initial population

made up of same-sized individuals that are functionally diverse. The accuracy
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of APGP-FLI on the test data improved significantly in 5 out of 6 cases; the

complexity improved (decrease) in 8 out of 12 tests (6 tests for size and 6 for

evaluation time). Moreover, despite introducing FLI, APGP retained its lead in

accuracy scores; APGP-FLI results remained significantly more accurate than

the time-control that improved with FLI.

Ultimately, the results presented in this chapter show that the proposed

APGP manages the challenge of balancing the simplicity and accuracy of the

models it generates well. Although the experiments in this chapter used regres-

sion problems, in principle, the evaluation time can also characterise complexity

in other applications. Therefore, it promises to be a broadly applicable means

to achieve simple and accurate solutions fast.

As a novel system, which uses a new measure of complexity and a novel

approach that implicitly controls it, the APGP needs to be analysed. The anal-

ysis will validate the assumptions behind it, answer questions that have arisen

about it, and explore ways it may be optimised. The next chapter (Chapter 7)

presents the results of the analysis of the APGP.
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Chapter 7

Analysis of the APGP

7.1 Introduction

The asynchronous parallel GP (APGP) is a novel GP method that introduces a

simple yet fundamental change in the evolutionary process. The rationale for

this change and the result it produced (in Chapter 6) challenge the common

practice of executing evolutionary algorithms in a lock-step manner, where the

evaluation of all existing individuals is completed (in batches or sequentially)

before the evolution proceeds to produce new offspring [184, 204]. Although

the results in Chapter 6 attest that the APGP works as expected, some further

analysis in this chapter helps understand the impact of the key APGP hyperpa-

rameter: the number of threads in the parallel race.

Furthermore, the analysis examines the following assumptions about the

APGP: (1) increasing the degree of concurrency (the number of individuals that

are allowed to race at a time) will increase the number of simpler solutions that

become available early to contest for a place in the breeding population; (2) if

the complex solutions do well they will not be excluded simply because they are

complex; (3) and the fitness scores of simple (fast-evaluating) solutions must be

competitive for them to both get into the population and reproduce further.

In concordance with the assumptions behind the APGP, the analysis in this
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chapter shows that the APGP offers increased opportunities for simple (fast-

evaluating) individuals to get ahead during the evolution. Furthermore, the

analysis shows that increasing the degrees of concurrency can increase the com-

plexity control without compromising training accuracy scores. Furthermore, it

confirms that simple individuals have to be competitive (in terms of accuracy)

to take advantage of the opportunities.

The rest of this chapter is organised as follows: Section 7.2 analyses the ef-

fect of the degree of concurrency on APGP. This section examines the effect of

concurrency in both a simplified setting (without selection and further breed-

ing) and when APGP is applied to real problems with selection and breeding

back in play. Section 7.3 examines the interplay between the accuracy and the

complexity of models during the evolution; Section 7.4 examines how concur-

rency affects the APGP’s ability to manage complexity; Section 7.5 examines

how the fixed-length initialisation (FLI) can be used to improve APGP further,

and; finally, Section 7.6 concludes this chapter.

7.2 Effect of Degree of Concurrency in APGP

This section examines whether increasing the degree of concurrency will in-

crease the opportunity for the simpler solutions to finish early, which, in turn,

means they have more opportunities to get into the breeding population to gain

an evolutionary advantage. To this end, the analysis starts by examining the

impact of varying the degrees of concurrency in a simplified setting as used in

Section 6.4, where evolutionary processes like selection and replacement are not

involved. Subsequently, the analysis examines the effect of concurrency when

all evolutionary processes are at play.
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7.2.1 Testing Concurrency in a Simplified Environment

Using the same experimental setup from Section 6.4 (where evolutionary pro-

cesses like selection and replacement are not involved), tests were carried out

and monitored with varying degrees of concurrency (threads). Similarly to the

earlier experiments, the order evaluations started and finished were recorded;

likewise, their evaluation times and complexity (as designed). Using the col-

lected data, different stages of the race are analysed to study the completed

evaluations at different points. For example, from the beginning to the 100th, to

the 200th, and so forth.

Results: Higher Degree of Concurrency Increase the Opportunity for Simple

Solutions to Finish Early

Figure 7.1 illustrates the impact of the degree of concurrency on the rate that

simpler solutions (with smaller dataset sizes and evaluation times) complete

their concurrent evaluations. The higher the degree of concurrency (threads),

the higher the number of simple evaluations that return earlier. For example, at

the early stages of the race (top charts of the figure), the completion of simple

evaluations peaks in the same order as their degrees of concurrency; over time

(charts at the bottom of the figure), the differences between the different threads

reduces as expected. This result indicates that a higher degree of concurrency

increases the opportunity for the simpler evaluation tasks to complete earlier.

In Sections 6.3, this thesis theorised that the APGP allows simple solutions

to complete evaluation earlier than their more complex counterpart and that

a higher degree of concurrency in APGP increases the opportunity to do so.

Further, it posited that this does not necessarily mean that the simpler individ-

uals will continue to thrive because it also matters as to how fit they are. Thus,

by delineating task completions with subsequent evolution, the result in this

section shows that at least the simpler individuals complete earlier than their
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FIGURE 7.1: Illustrated is the effect of degree of concurrency on
the rate that simple evaluation tasks (with small dataset sizes)
complete their concurrent evaluations. Higher degrees of con-
currency (threads) allow the simpler tasks to complete early

more frequently.

complex counterparts and increasing the degree of concurrency does increase

the opportunity for the simple solutions to finish early. This is not necessarily a

trivial result considering the experiments were not run on specialised systems

with advanced parallelisation; instead, the experiments were on a Quad-Core

processor where some noise in the measurements of evaluation time can not

be completely eliminated despite the techniques introduced that substantially
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improve the reliability of time measurements.

7.2.2 Testing Concurrency on Real Problems

While Section 7.2.1 examines how the degree of concurrency affects evaluation

tasks outside the evolution, this section investigates how concurrency affects

the APGP, where all evolutionary dynamics are at play.

Although a higher concurrency allows a more frequent early completion for

simpler individuals, it does not automatically mean that simpler solutions will

thrive more during actual evolution. This is because fitness is key to participat-

ing in subsequent evolution. Moreover, the makeup of the parent population

that the subsequent breed operation selects from may have been shaped by the

result of previous replacement attempts. Therefore, the effect of breeding and

replacement means that the relationship between the degree of concurrency and

the performance of the APGP is expected to be more complex in this case, and

therefore merits the investigation reported in this section.

The experiment in this section tests the degrees of concurrency 5, 25, 50, 75

and 100 on the regression problems from the experiments in Section 6.5. This

time, in addition to tracking the order the individuals are sent for evaluation

and their return, the data collected includes how successfully they replace other

individuals in the population. Tracking the success at replacement enables veri-

fying the assumption that merely completing an evaluation does not guarantee

that an individual will successfully get into the breeding population. Further-

more, while tracking the successful individuals, changes in the population are

observed to study how the incoming individuals influence the characteristics

of the population; for example, the changes in the distribution of size in the

population.Section 7.3 analyses the interplay between speed and accuracy.
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Results: Higher concurrency still suits simpler solutions in APGP

The analysis starts by checking if the simple solutions finish evaluating early in

APGP (inside evolution) as observed in Section 7.2 (outside evolution).

FIGURE 7.2: Effect of the Degree of Concurrency of APGP on
Real Problems. The charts in each row show the distribution
of size in the population at the 1,000th evaluation that different

degrees of concurrency produced.

Figure 7.2 visualises the distribution of size in the populations after the

1,000th evaluation of degrees of concurrency 5, 25, 50, 75 and 100. Each row
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represents a test problem, and the overlapping charts within a row represent

the result from the different degrees of concurrency. Further, each chart is an

aggregation of the first 1,000 evaluations of 30 runs.

Two key points are notable in the charts in Figure 7.2. First, concurrency

still enables simple evaluation tasks to finish earlier in APGP; the distribution

of size is skewed to show that the simpler solutions are finishing earlier than

the more complex ones across all six problems. Second, higher degrees of con-

currency tend to create more opportunities for simple individuals; for example,

concurrency 5 shows a lower number of simple (smaller) individuals that have

finished than do the higher concurrencies.

As expected, the distribution is not as predictable as the charts in Figure 7.2,

where the difference from one thread to another is proportional. Note, in the

proposed APGP, the impact of the parallelisation and the degree of concur-

rency is conditional: while simple solutions may complete evaluations early,

they are discarded unless their accuracy is competitive. The next section exam-

ines whether the conditional impact of parallelisation is true.

7.3 A dynamic complexity control based on the accuracy

of simple models

According to the formulation of the APGP, evaluated individuals must com-

pete for a place in the breeding population based on training accuracy (fitness

score); therefore, the fast individuals are not guaranteed places in the popula-

tion. Unlike techniques that control complexity by penalising, APGP simply

creates more opportunities for the fast evaluating individuals to join the popu-

lation but to actually join the population they must be accurate as well. There-

fore, it is important to: (1) verify if this assumption is true, and (2) to understand
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what happens when the opportunity for simple individuals is increased by rais-

ing the degree of concurrency.

Therefore, the experiments from Section 7.2.2 are re-run; in addition to the

data previously collected, here the experiments also record whether the evalu-

ated individuals succeed at getting into the breeding population or not.

As empirically demonstrated in Section 7.2, an increase in the degree of con-

currency increases the frequency of simple solutions finishing evaluations early;

therefore, the subsequent analysis compares the result of two extreme degrees

of concurrency – that is, 5 and 100. Furthermore, the analysis includes the re-

sults from several problems because the expectation is that the success of simple

(fast evaluating) individuals at getting into the breeding population is problem-

specific. Accordingly, the analysis examines whether or not the relatively sim-

ple individuals fail to win out consistently.

A close look at the first 1,000 evaluations of the test problems shows that

the replacement process (which is based on training fitness) plays an important

role. APGP with 100 threads (APGP-100) was compared with APGP with 5

threads (APGP-5); the results are visualised in figures 7.3, 7.4 and 7.5. Each

figure reports the results from two problems.

For each of the test problems, the first column shows the distribution of size

of all the models that have completed evaluations at 10 different intervals, (top

row for 0 to 100th and bottom for 0 to 1,000th), the second column shows how

successful the evaluated individuals are at replacement (percentage), and the

third column compares the mean size of the population at the corresponding

stage of the evolution.

The mean size of the population for APGP-100 and APGP-5 change based

on how well their individuals are succeeding at replacement; as expected, this

is problem specific because while simpler solutions may suit one problem, it

may not do so for another problem to the same degree. Note, it is important
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(A) Problem 1 (B) Problem 2

FIGURE 7.3: APGP runs with 100 and 5 threads are compared.
The first 1,000 evaluations were monitored; column 1 shows
their distribution by size as they complete (top charts is for 0 to
100th and bottom for 0 to 1,000th), column 2 shows their success
(%) at replacement, and Column 3 shows how the mean size of

the population changes.
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for APGP allow a dynamic interplay between accuracy and simplicity and not

obstruct accuracy by over-hindering complexity.

Therefore, when APGP-100 produces a higher number of simple solutions

than APGP-5, the mean size of its population becomes lower than that of APGP-

5 only when its individuals replace into the population at least as often as those

produced by APGP-5. For example, the results for Problem 1 and Problem 5,

visualised in Figure 7.3a and Figure 7.5a respectively, show that APGP-100 cre-

ates more opportunities for simpler solutions than APGP-5. For both problems,

APGP-100 and APGP-5 were succeeding in replacement at similar levels and

this resulted in lower mean sizes for 100 threads.

In contrast, APGP-5 produced greater numbers of small individuals for Fig-

ure 7.3b (Problem 2) and Figure 7.4a (Problem 3); and, because they were more

successful at replacement, the mean size of the population of APGP-5 reduced.

Therefore, a higher degree of concurrency alone does not reduce the mean size

of the population. The simple solutions need to be accurate enough to take ad-

vantage of the increased opportunity that higher degrees of concurrency pro-

vides. This relationship is observable in the results of all test problems.
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(A) Problem 3 (B) Problem 4

FIGURE 7.4: APGP runs with 100 and 5 threads are compared.
The first 1,000 evaluations were monitored; column 1 shows
their distribution by size as they complete (top charts is for 0 to
100th and bottom for 0 to 1,000th), column 2 shows their success
(%) at replacement, and Column 3 shows how the mean size of

the population changes.
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(A) Problem 5 (B) Problem 6

FIGURE 7.5: APGP runs with 100 and 5 threads are compared.
The first 1,000 evaluations were monitored; column 1 shows
their distribution by size as they complete (top charts is for 0 to
100th and bottom for 0 to 1,000th), column 2 shows their success
(%) at replacement, and Column 3 shows how the mean size of

the population changes.
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7.4 Balancing Accuracy with Simplicity Across a Wide Range

of Concurrency

The experiment in this section explores degrees of concurrency of a wider range

than those used before to determine how this may affect the accuracy and com-

plexity control of APGP and search for an optimal value. To this end, the exper-

iment uses multiple runs of the six problems with different degrees of concur-

rency 5, 100, 250, and 500; these values correspond to 1%, 20%, 50% and 100%

of the population size, respectively. Other settings include a population of 500,

25,000 evaluations (50 generations) and 50 runs.

Figure 7.6 shows the development by the generation of the mean size and

training fitness for the degrees of concurrency. The first column in Figure 7.6

compares how the size changes across generations with different degrees of

concurrency (threads); size is an indicator of complexity here as simple, intu-

itive, and easy to quantify measure. The results show that the higher degrees

of concurrency have a greater effect on suppressing complexity than the lower

degrees. On all the problems, 5 threads produced the highest mean sizes across

the generations and 500 threads the lowest. Thus, it shows that a very high

degree of currency does create more opportunities for the simpler individuals,

which subsequently makes the population simpler. Although 100 threads gen-

erally produce a greater mean size than 250 threads, their mean sizes converge

to similar values at some point of the evolution for some of the problems. There-

fore, a clear difference is seen when comparing the effect of concurrency values

from the extremes but not with the middle and closer concurrency values.

While the higher degree of concurrency (500 threads) suppresses the size

of the individuals predictably, it does not compromise the training fitness. As

shown in column two of Figure 7.6, no clear trend as to which concurrency level

produces better fitness is consistently better than the others is observable. Also,

generally, the training fitness values converge by the end of evolution.
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FIGURE 7.6: The development in size and training fitness (by
generations) in the population of APGP with 5, 100, 250 and 500
parallel threads are on the plots. The higher degree of concur-
rency (threads) increases the opportunities for the smaller sized
individuals to lower the average population sizes; yet, as pre-

ferred, their average training fitness is generally not reduced.
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7.5 Varying the Lengths in the Fixed Length Initialisation

Chapter 6 showed that the Fixed Length Initialisation (FLI) improves the per-

formance of the APGP; also, FLI generally improves the explicit time control

methods in Chapter 5. FLI raises functional diversity (mathematical operators)

in the population to let evaluation time can characterise this complexity, and

size can not. To do that, FLI initialises the population with random and unique

individuals of uniform size. Thus far, FLI has initialised with a population of

individuals with a length of ten nodes each. Therefore, this section explores as

to whether initialising with other lengths affects the performance of APGP.

The experiments in this section involve re-running the APGP-FLI experi-

ments from Section 6.5 with ten different sizes: from five to fifty, in steps of 5

(FLI-5 to FLI-50); other settings remain the same.

7.5.1 Result: Effect of varying the length in the FLI

The results of varying the fixed-length of FLI are illustrated in Figure 7.7. For

each problem, a box-plot for the mean test fitness values and another for the

mean sizes of individuals in the final populations are plotted; the horizontal

axis shows the variation of the fixed-length parameter.

The variation did not significantly change the sizes of individuals in the fi-

nal populations. However, there was some activity in test-fitness scores: except

for Problem 2, the results show that setting a length of five (5 nodes) for FLI ap-

pears disadvantageous. In addition, the setting that produced the best results is

problem-specific. However, it is reassuring to see that the relatively low length

settings – FLI-10, FLI-15 and FLI-20 – are at least competitive with the higher

lengths.
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FIGURE 7.7: Result of varying the fixed length in FLI. The vari-
ation did not significantly change the sizes of individuals in the
final populations. However, their test-fitness accuracy showed

some differences.

7.6 Conclusion

The outcome of this chapter confirms that increasing the degree of concur-

rency increases the opportunity for simpler individuals to finish their evalu-

ation early. However, the increased opportunity for simple solutions does not

offer any advantage for them unless they are competitive enough to get into the

population; replacement is based on accuracy. The success in replacement by

simple candidates is problem specific and dependent on the current state of the

population. When the simple candidates are competitive and are succeeding at

getting into the current population, the constitution of the population becomes

simpler and increases the chances of breeding simple offspring.
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However, if the simple solutions are not as competitive (in terms of accu-

racy) as the complex ones, then the more complex candidates are admitted into

the population and the population changes accordingly. When the simple and

complex individuals are competitive and are getting into the population, then

increasing the degree of concurrency has a greater effect of discouraging com-

plexity; note, in this case, increasing the degree of concurrency has the effect of

encouraging simplicity without compromising accuracy. Therefore, increasing

the degree of concurrency will increase complexity control where possible.

Next, the analysis considered what may be the optimal degree of concur-

rency for APGP. Given that the possibility of producing very simple and ac-

curate solutions is problem-specific, it may not be easy to specify an optimal

degree of concurrency. However, since the higher degree of concurrency tends

to control complexity better than the lower values, they may be preferred. This

is supported by the observation that the higher values do not stop the devel-

opment of training accuracy. In addition, the simpler solutions that the degree

of concurrency produces may improve generalisation. Furthermore, the higher

degree of concurrency offers the added advantage of improving the overall run-

time.

Finally, the investigation of an optimal length for FLI indicates that a mod-

erately small value is sufficient: node length of 10 to 20. Though the analysis

shows that initialising with large-sized individuals does not negatively impact

the final solutions, initialising with the smaller (10 to 20 nodes) sizes is pre-

ferred. The smaller sizes are sufficient to produce ample numbers of unique

individuals (as discussed in Section 5.3.1) and will save some computing re-

sources at the beginning of the APGP run.

In addition to the explicit time control methods from Chapter 5, this thesis

presents the APGP as a promising method that automatically manages the com-

plexity of the solutions that GP produces. Fundamental to these systems is the
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evaluation time as an indicator of complexity; thus far, this thesis shows time

can characterise the size of an individual and the computational complexity of

its constituent components. The next chapter explores how the evaluation time

may detect other ideas of the complexity of GP solutions. The investigation will

be in the context of a practical GP application; thus, the next chapter assesses

the usefulness of the proposed system.
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Chapter 8

Application of Evaluation Time

Schemes in GP with Multiple

Linear Regression

8.1 Introduction

This chapter practically demonstrates that time and size, as measures of com-

plexity, are not the same. At the time of the publication of the proof of concept

of this thesis [184], another paper [185] hypothesised that time and size are no

more than two sides of the same coin. In contrast, this thesis shows that the

evaluation time can detect and leverage other notions of complexity to offer

benefits that size is unable to. These findings represent a novel contribution

to the debate. Before now, studies of time in GP focus on managing the over-

all run-time and not using it to determine and manage the complexity of GP

solutions (models).

Although like [185], this thesis also observes that the evaluation time in-

creases with size, but goes further to investigate and show that there is more to

time than size. Chapter 4 theoretically argues why time as a measure of com-

plexity is different from size. Chapter 5 and Chapter 6 demonstrate the benefit

of using the evaluation time to control complexity over using size. This chapter
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uses a practical application of GP to quantify the differences between size-based

and time-based methods of managing complexity.

This chapter uses a novel hybridisation of GP and multiple linear regres-

sion (MLR) as a platform to show that time can decisively reflect several no-

tions of complexity. The so-called MLR-GP system [205] is made of two com-

ponents: GP and MLR. In MLR-GP, the GP component evolves a set of features

instead of a monolithic model and then hands this set over to MLR that opti-

mally combines these features to produce a model that is a linear combination

of the features (illustrated in FIGURE 8.1). The results indicate that the MLR-

GP hybrid significantly outperforms both its constituent components (GP and

MLR). As the MLR-GP feature adds to a model’s learning capacity and their

numbers can easily grow in a GP setting, managing this complexity (number of

features) becomes necessary. Furthermore, the much-improved training perfor-

mance, which increases the likelihood of overfitting, makes MLR-GP an appro-

priate platform to gain insight into the impact of the evaluation time schemes

on overfitting.

With the MLR-GP application, this chapter further examines how the eval-

uation time characterises complexity. In addition, it compares the effect of con-

trolling model complexity using time with that of doing so using size (bloat-

control). The choice of bloat-control technique is the Double Tournament [189],

which is the best performing technique from Chapter 4, to control size (BC) and

control time (TC); using the same mechanism and settings give a fair compari-

son of the measures of complexity. Additionally, the APGP is used, which was

introduced in Chapter 6 and analysed in Chapter 7, to control the evaluation

time implicitly. Instead of subjectively penalising the slow evaluation times,

the APGP induces a race among competing models that offers a competitive

advantage to the simpler (fast evaluating) models because they may enter the
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breeding population (if their accuracy permits) and reproduce before their ex-

pensive (slow) counterparts. Altogether, the evaluation time schemes (APGP

and TC) on MLR-GP are benchmarked against MLR-GP with bloat-control (ti-

tled BC in the results) and MLR-GP without bloat-control (titled STD in the

results).

The results, computed over 10 datasets, indicate that although evaluation

time correlates with size, its correlation with the number of features is much

stronger. This shows that a GP scheme that exploits the evaluation times to re-

duce complexity in models is effectively different from the one that uses size to

do the same. This is because each additional feature significantly increases the

expense of computing the MLR model - computing the MLR model is a major

component of the total computational expense per fitness evaluation. While in-

creasing the number of nodes in the features also increases the computational

cost, the results indicate that this cost is smaller than that of adding an extra

feature. This delineation of respective expenses is possible for the evaluation

time based complexity control but not so for the traditional, size-based com-

plexity control in GP. Consequently, the evaluation time schemes were able to

effectively control the number of features in models but the size-based method

could not.

These findings practically support the qualitative view that containing eval-

uation time is about more than just containing size. Therefore, these findings

steer the discussion in the field that the evaluation time control can draw bene-

fits, that standard approaches like bloat-control cannot.

The rest of this chapter is organised as follows: Section 8.2 introduces MLR-

GP and argues why such systems are effective for GP based regression; Sec-

tion 8.3 then empirically exemplifies this efficacy; Section 8.4 details the exper-

iments; Section 8.5 presents the results; and finally, Section 8.7 concludes the

chapter.



Chapter 8. Application of Evaluation Time Schemes in GP with Multiple

Linear Regression
138

8.2 Enhancing GP with Multiple Linear Regression

This section reviews the literature that shows that hybridisation of GP with var-

ious approaches of linear regression produces effective systems for GP based re-

gression. The review justifies the choice of an MLR based GP system later in the

chapter to investigate the efficacy of evaluation-time based complexity-control.

After reviewing the literature in this section, the chapter later (in Section 8.3.1)

also empirically demonstrates that hybridised MLR-GP outperforms both GP

and MLR when used individually.

GP systems that are hybridised with statistical and machine learning tech-

niques [205–208] have become increasingly popular lately because they im-

prove the training performance significantly; this is because the traditional GP

often underfits the data [209]. After all, it can not efficiently generate numeric

constants [210, 211], that is, the coefficients of the evolving models. This hap-

pens because, unlike the statistical and numeric methods that use numerical

methods to tune the parameters of an otherwise fixed model, GP traditionally

relies on evolution alone to evolve both the model as well as its parameters,

which is a significant undertaking. The history of GP’s struggle with manufac-

turing the requisite constants is well-documented [196, 210] and dates back to

Koza’s early work [19]. Hybridising GP with statistical and machine learning

(ML) methods help circumvent the problem of tuning constants in GP [212]; in

fact, the performance boost can be significant.

Instead of evolving monolithic models as in traditional GP, the GP compo-

nent of MLR-GP here evolves a set of features: each individual is a collection of

features. MLR-GP then hands each such collection over to the MLR component,

which now combines these features into a regression model and optimises the

coefficients of each feature. Thus the representation of a model in MLR-GP is

different from that in standard GP; in fact, representation learning [213] is a well-

known topic in machine learning. Before providing the details of the adopted
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FIGURE 8.1: The MLR-GP process flow.

approach, this section briefly reviews some approaches in the spirit of MLR-GP

that have been proposed for addressing the challenge of tuning constants in GP

but do so to varying degrees only.

Linear Scaling [211] treats the whole model as a feature and uses linear re-

gression (LR) to find the best coefficient and intercept to minimise the error of

a model. Thus, GP finds the correct structure of the model, while LR optimises

its overall slope and intercept. This approach improves the model accuracy;

however, because linear scaling only optimises the two coefficients (slope and

intercept) that are attached to the model, the improvement is limited [205]. Lin-

ear Scaling is implemented as follows. Suppose y = the output of a candidate

model f on the given data, ȳ = mean of y, t = the target (true y) and t̄ = mean of

t, then linear scaling optimises the slope (b) and intercept a of the model f via

the deterministic computations as follows:

b =
∑ (t− t̄)(y− ȳ)

∑ (y− ȳ)2 ; (8.1)

a = t̄− bȳ; (8.2)

such that the optimised function ( f ′) is:

f ′ = b f + a (8.3)

Another approach combines some or all of the models in a population to

form an ensemble-model [207, 214–216]; therefore, this approach also treats
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the individuals in the population as features. Typically, one ensemble-model

is produced per generation and its quality heavily depends on the makeup of

the current population. However, the relationship between the evolutionary

processes (selection and variation) that are used to improve an individual and

how the ensemble model improves is unclear. For example, the evolutionary

search process tends to make the individuals of a population converge to have

a similar makeup; thus, this leads to collinearity of the features, which in turn

limits the representation learning. Therefore, several approaches have been pro-

posed to overcome the challenge of collinearity in the produced features and for

enabling the evolutionary process to update the features predictably and pro-

ductively. For example, [215] uses the ε-lexicase selection to build a method

that encourages the production and survival of diverse features; as a result, se-

mantically unique individuals are preserved and a population of uncorrelated

features is maintained. Another intervention avoids or limits the use of the evo-

lutionary updating of the models [214, 216]; for instance, [214] simply produces

a randomly generated population of models (features) and formulates the final

model without evolutionary updating. However, the capacity of the individ-

ual features is limited because they do not get developed by the evolutionary

process.

Instead of working with a population of models, another set of approaches

looks within a model (program) to identify useful building blocks (features)

that can in turn be exchanged during crossover for producing high-quality off-

spring [207, 217, 218]. For example, some approaches of GP-based Program

Synthesis identify useful features (blocks within evolving programs) with the

help of Machine-Learning based classification methods such as Decision Trees

[217][218]. However, these approaches typically work with problems of non-

continuous (e.g. Boolean) nature. Instead, an example that is a close contender

to the proposed MLR-GP method, is the multiple regression GP (MRGP) [207].
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MRGP considers the output of every tree node as a distinct feature for MLR to

optimise. Therefore, a GP tree contains many overlapping features because the

output of one feature inputs into another feature.

The MRGP [207] method assumes that all subexpressions of a model can be

treated as features. Thus, the method involves stepping through a hierarchical

tree, stopping at each node, evaluating and recording the output; each node is

treated as a feature and its output is the corresponding feature value. MLR is

then applied to a matrix containing all such feature values and the target vari-

able values. Note, every feature, a node in the GP tree, hierarchically depends

upon the lower level features (that is, subtrees located beneath the node); in

such a system crossover can be disruptive because swapping a feature out in

turn impacts the evaluation of all features higher up the hierarchy. Thus the

features in such a system are hierarchically tangled.

Instead, the proposed MLR-GP method in this study keeps the features un-

tangled and allows GP to designate different parts of the tree structure as dis-

tinct and transferable features; the details of the MLR-GP are provided in Sec-

tion 8.2.1. With MLR-GP, the subtree crossover can swap both complete features

or subtrees within the features. This makes the MLR-GP more robust to the de-

structive effect of crossover [68, 219]; the results of the validation and analysis

in Section 8.3 confirms that MLR-GP improves crossover performance.

Note, the purpose of using MLR-GP here is to showcase how containing

evaluation time practically realises benefits that containing sizes cannot. There-

fore, Section 8.5.1 shows that the time cost of a model with a high number of

features is different from that of a model that is just big in size (contains more

nodes). Therefore, a complexity control method that can differentiate between

time and size is better able to control these various aspects of complexity of such

a system, but a size-based control cannot.
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FIGURE 8.2: An MLR-GP representation of a model. The nodes
labeled tag are placeholders that are not evaluated; and the sub-

trees F1 - F4 are treated as features.

8.2.1 The Proposed Multiple Linear Regression Genetic Programming

(MLR-GP)

Key aspects of the proposed MLR-GP method include: (1) changes to the tree

structure of the expressions representing models and (2) changes to the way the

expressions are evaluated.

MLR-GP Representation and Genetic Operators

The MLR-GP uses a modified version of the standard tree representation of

symbolic regression models; an example is shown in FIGURE 8.2. A new type of

node, labeled tag, is introduced to act as a placeholder, that is not evaluated. The

placeholder was defined with an arity of two. This enables it to either branch

out further creating more placeholders or contain a feature directly below it. As

marked in FIGURE 8.2, F1, F2, F3 and F4 are subtrees that act as independent

features.

The only constraint required for the MLR-GP tree to remain valid is that

the tag nodes can only have tag nodes as parent nodes. The genetic operators

(mutation and crossover) must obey this constraint.
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Besides respecting the above constraint, genetic operators (crossover and

mutation) proceed as usual. This means that mutations can change a subtree

within a feature or replace an entire feature (or even a set of features that are all

rooted together). Regardless of whether the replacing structure is a feature or a

standard subtree, a valid position is randomly selected. Similarly, the crossover

is enabled on all nodes that will lead to a valid structure. Using FIGURE 8.2 as

an example, all the features (F1 to F4) can be replaced with a constant, a stan-

dard subtree, another feature, or even a set of features. Inside the features, all

changes are allowed as long as they obey the one constraint mentioned earlier,

that is, a tag node can only be placed at a position where its parent is another

tag node.

Evaluating an MLR-GP Model

The fitness evaluation in MLR-GP begins by identifying the distinct features

in a tree; these are the subtrees rooted at a tag node. Then, these features are

evaluated for each input data point. The set of these evaluations is recorded

in a matrix; the final column of the matrix contains the target values (for the

outcome variable as specified in the problem dataset). This matrix then becomes

the design matrix for MLR; MLR is applied next to produce a linear model that

uses all of the features in the design matrix.

For example, four features appear in the example in FIGURE 8.2. Each iden-

tified feature is then evaluated against the training data. The expression in the

example will return the following as the final model:

Y = β0 + β1F1 + β2F2 + β3F3 + β4F4 (8.4)

where Y is the output of the model, β0 is the intercept, β1 to β4 are the

coefficients of features F1 to F4 respectively. The training and test-set accuracy

of the final model is then recorded.
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8.3 Validation of the MLR-GP

As mentioned earlier in Section 8.2, before experimenting with the time-control

methods, the impact of hybridising MLR with GP is examined; that is, to deter-

mine if MLR-GP significantly outperforms both standard GP and MLR individ-

ually [205]. Therefore, the performance of MLR-GP is compared with standard

GP (GP), MLR, and the popular Linear Scale GP (LS-GP) [211]; LS-GP (intro-

duced in Section 8.2) is included because it is a popular hybridisation of GP

with regression that improves upon GP’s performance with minimal overhead.

The comparison of performances is done on some challenging test problems

from Chapter 6 where standard GP could achieve no more than 17% training

accuracies. The experiments use the same settings as described in Chapter 6.

Moreover, the results include a report on the performance of the crossover

operator on the MLR-GP system. The report shows that an extra benefit of

using MLR-GP is that the normally destructive nature of crossover in standard

GP significantly improves with MLR-GP. As such, the MLR-GP system provides

a viable medium for exchanging the building blocks in an evolving population;

Section 8.3.2 gives the background to the disruptive nature of crossover in GP

and explains the significance of the results in that background. Overall, the

rationale behind this section is to show that MLR-GP is a worthy system to

investigate with time-control methods.

8.3.1 Accuracy Improvement in MLR-GP

FIGURE 8.3 compares the training accuracy of the models produced by MLR-

GP, standard GP (GP) and GP with linear scaling (LS-GP). The results clearly

show that MLR-GP significantly improves the training fitness scores; in fact,

MLR-GP at 5th generation outperforms GP at the 30th generation, that is, GP at

a far more advanced stage. This supports the earlier statement that standard

GP often underfits and MLR-GP can ameliorate that.
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Table 8.1 also records the performance of MLR and the percentage improve-

ment produced by MLR-GP over all benchmarks considered here. MLR-GP

improved the average training scores by: between 178% to 226% over MLR; be-

tween 261% to 730% over LS-GP; and between 448% to 2,750% over GP meth-

ods.

FIGURE 8.3: The training fitness values by generation of MLR-
GP, GP, and LS-GP are compared. MLR-GP has improved train-

ing to the point of overfitting the data.

Mean Training Fitness MLR-GP Improvement
Problem
ID

MLR-GP MLR LS-GP GP over
MLR

over
LS-GP

over
GP

Airfoil 0.114 0.041 0.024 0.004 178 % 375 % 2,750%
Boston 0.119 0.041 0.033 0.017 190 % 261 % 600%
Concrete 0.029 0.009 0.006 0.003 222 % 383 % 867%
Energy 0.307 0.094 0.037 0.056 226 % 730 % 448%

TABLE 8.1: The training accuracy gain by MLR-GP over MLR,
LS-GP and GP; both the mean training fitness scores and the per-

centage improvement by MLR-GP are detailed.
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8.3.2 Crossover Performance in MLR-GP

To improve the population of candidate solutions, GP relies on operators in-

spired by natural evolution. Crossover is one of the most frequently used op-

erators. It exchanges genetic material between better performing individuals

(models) from the current generation to produce the next generation. How-

ever, previous work [219][68] has shown that crossover in GP is quite inefficient

because it produces a high percentage of poor offspring (offspring that are sig-

nificantly worse than their parents). However, as explained below, MLR-GP

can significantly improve the nature of crossover.

Unlike the standard GP tree that is a monolithic structure, MLR-GP uses in-

dependent sub-structures (features) to make up a model. These substructures,

when exchanged into another tree, are then tuned by the MLR to according to

the needs of the model encoded by that tree. This is unlike crossover in stan-

dard GP where the incoming tree is simply patched-in at a random location

without any tuning; naturally, such a random patching is unlikely to produce a

better offspring. Therefore, MLR-GP can be expected to be more robust against

the destructive effect of the crossover operator. To gain insight into this im-

portant operator and the MLR-GP,monitored the effect of crossover during the

evolution. The effect of crossover is measured as the percentage difference in

the fitness of an individual before and after crossover:

FA f ter − FBe f ore

FBe f ore
× 100, (8.5)

where FBe f ore is the fitness (training accuracy) before crossover of the parent that

accepts an incoming subtree and FA f ter is its fitness after crossover. This fitness

differential is computed for both offspring resulting from the crossover.

Table 8.2 compares the percentages of negative crossover operations, which
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degrade the fitness values (less than zero percent improvement). As antici-

pated, MLR-GP significantly improves the crossover efficiency.

The effects of crossover in GP, LS-GP and MLR-GP are visualised in FIG-

URE 8.4 in the form of 3D histograms that illustrate how crossover affects fitness

(accuracy). The results are plotted for all the generations: For all the test prob-

lems, crossover with MLR-GP was clearly less disruptive because the incidences

of disimprovements with MLR-GP are clearly less than those with the counter-

parts. While the MLR-GP crossover differentials are mostly centred around the

neutral point (zero), the corresponding results for standard GP and LS-GP have

a larger proportion in the negative region.

Problem ID GP LS-GP MLR-GP
Airfoil 73% 69.0% 55%
Boston 71% 76.0% 51%
Concrete 68% 70.0% 50%
Energy 72% 78.0% 35%

TABLE 8.2: Comparison of percentage of crossover with nega-
tive improvements (a deterioration). MLR-GP is having fewer

negative improvements on all test problems.
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FIGURE 8.4: The 3D histograms show fitness (accuracy) im-
provement after crossover by generation. MLR-GP (column 3)
shows fewer negative improvements (deterioration) than GP

and LS-GP.

8.4 Experiments with Time-Control Methods

Using MLR-GP as a benchmark, the experiments compare the performance of

the methods that contain evaluation times (APGP and TC) with that of MLR-

GP without complexity control (MLR-GP) and MLR-GP with an effective bloat-

control technique (MLR-GP-BC).
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8.4.1 Methods for Controlling Complexity Using Evaluation Time

The two approaches that are used to control complexity using the evaluation

times are as follows:

1. Explicit Time Control (TC): As introduced in Chapter 5, Time-control (TC)

leverages the mechanisms of established bloat-control techniques but in-

stead of containing size growth, it contains the evaluation times. Dou-

ble Tournament (DT) version is the chosen method; it has been the best

performing bloat-control technique so far in the experiments in this the-

sis. Note, the same technique will be used to control size in a contending

method.

2. Implicit Time Control with Asynchronous Parallel GP (APGP): As introduced

in Chapter 6 and analysed in Chapter 7, the APGP implicitly manages

the evaluation times of models by inducing a race condition in the evolu-

tion process; it does not aggressively target models with high evaluation

times but gently encourages simplicity where possible. The previous re-

sults show that APGP attained the highest training accuracy against its

counterparts.

8.4.2 The Contending GP Methods

The two evaluation time methods, that are detailed in Section 8.4.1, will be com-

pared with the following methods in the experiments:

1. MLR-GP without Bloat-control (STD): The MLR-GP with no complexity

control (no bloat-control nor time-control) is run on the problems for com-

parison.

2. MLR-GP with Bloat-Control (BC): The choice of bloat-control technique is

Double Tournament [188, 189]. From the results of Chapter 5, this is the
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best bloat-control technique that balances accuracy and bloat-control; it is

also considered a good technique in [188][189][220].

3. MLR-GP with Adjusted R2 for Fitness (AR2): Since the complexity control

with the evaluation time schemes in MLR-GP contains the growth in the

number of features (amongst other things), this study also considers other

statistical measures that similarly control the growth of features; the Ad-

justed R2 as a fitness measure is an established statistical measure that has

that effect. The purpose of this inclusion is not to outperform the use of

Adjusted-R2 but to show how time-control methods, that are not designed

just for the regression domains, can still produce an effect that is similar to

that produced by the conventional human wisdom specialised in a partic-

ular problem domain. Note, rediscovery of such human-designed effects

has been a popular application of Genetic Programming, and one of the

principal reasons behind its early popularity [221].

Unlike the well-known R2, the Adjusted R2 [222] is a performance mea-

sure used in MLR that balances out the accuracy of a model with the num-

ber of features it uses. R2 (also known as the coefficient of determination)

is a measure of how well a model explains the response variable. The

closer its value is to 1.0, the better the model is. A shortcoming of using

R2 as a fitness measure in MLR-GP is that it allows adding features that

contribute very little or nothing to the fitness of a model. Adjusted R2

overcomes this shortcoming by considering the contribution of additional

features. Whenever a new feature is added to a linear model, the value

of Adjusted R2 increases only when the additional feature enhances the

R2 more than one would expect to see by chance; otherwise, Adjusted

R2 decreases. Using the Adjusted R2 in the fitness function of MLR-GP

discourages the growth in the number of features (subtrees) unless these

features significantly improve the model performance.
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The selected version of Adjusted R2 used here is the Wherry/McNemar

version [223]; the formula is as follows:

1− (1− R2)(n− 1)
(n− k− 1)

, (8.6)

where k denotes the number of features and n denotes the number of in-

stances in the data.

To compare the accuracy of AR2 with with other methods, the Normalised

Mean Squared Error (NMSE) is also captured.

8.4.3 Test Problems

Ten widely used and publicly available datasets were selected as test problems.

As in Section 5.4.1, the selection is based on the recommendations in the studies

[192, 193] that surveyed the common practice of selecting test problems in GP

and collected feedback from the GP community. The recommendation includes

the sources of benchmarking datasets, guidelines for choosing benchmarks (for

example, variety, relevance, and fast runtime) and problems to avoid (provided

in the blacklist they collated). The data for problems 1 - 7 are available at the

Penn machine learning benchmark (PMLB) [224] and the data for problems 8 -

10 are available at [194]. The problems are summarised in Table 8.3.

Before using the selected problems to study time control on the MLR-GP, the

investigation checks to determine whether MLR-GP outperforms standard GP

on the selected problems. The results show that MLR-GP increases fitness scores

and complexity. FIGURE 8.5 shows the mean training and test fitness scores by

generation for both GP and MLR-GP. The figure shows that MLR-GP signifi-

cantly improves the training accuracy over all the test problems. However, the

results also reveal that this improvement in training accuracy also brings over-

fitting well before the 30th generation (see FIGURE 8.5). Therefore, and also due
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to a much-improved training performance achievable within 30 generations,

the subsequent experiments in this chapter only run until the 30th generation.

Problem ID Data-Set Name Variables Instances
1 027 ESL 3 488
2 207 AutoPrice 14 159
3 522 pm10 6 500
4 547 NO2 6 500
5 560 bodyfat 13 252
6 666 rmftsa ladata 9 508
7 690 Visualizing galaxy 3 323
8 Boston Housing 13 506
9 Concrete Strength 8 1030
10 Diabetes 10 442

TABLE 8.3: Test problems for the MLR-GP experiment.

8.4.4 Configurations and Settings

The basic parameters are detailed in Table 8.4. Other settings are as follows:

• Population Initialisation: The Fixed Length Initialisation (FLI) that was in-

troduced in Chapter 5 is used. FLI creates a population that contains indi-

viduals of identical size but of diverse make-up. This enables the evalua-

tion time methods to discriminate between the functional complexities of

individuals. However, this does not hamper other GP methods: as seen

in Chapter 5 and Chapter 6, FLI improves the performance of a variety of

GP methods.

• Divide-by-zero error: Individuals that contain fractions that result in divide-

by-zero errors are assigned a zero fitness-score to make them noncompet-

itive; previous studies [196] have shown that the standard practice of us-

ing protected operators (that replace the offending fraction with just the

numerator or some other constant) can lead to overfitting.
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• Data Splitting: 70% of a dataset is allocated for training and 30% for testing

using random selection without replacement.

• Concurrency of APGP: 250 parallel threads, representing 50% of the popu-

lation size, are used.

• Replacement Scheme: As APGP uses a steady-state replacement scheme, all

the contending methods use same.

• Fitness function: is a maximisation fitness function that uses the normalised

mean squared error (NMSE); the NMSE formula is as follows:

1
1 + 1

n Σn
i=1(yi − ŷi)2

. (8.7)

Parameter Setting
No. of runs 50
Size of population 500
Generations 30 (15,000 evaluations)
Initialisation Fixed Length Initialisation (FLI)

(length = 10)
Tree depth max = 17
Operator types crossover = One point; Point mutation
Operator settings crossover = 0.9 ; mutation = 0.1
Function set +,−, ∗, /, sin, cos, neg
Constants (ERC) |ERC| = 100 (min = 0.05, step: 0.05)
Terminal set {Input variables} U ERC
Selection tournament (size = 3)
Replacement steady state; inverse tournament (size = 5)

TABLE 8.4: Experimental settings for the MLR-GP experiment.
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FIGURE 8.5: The training and test fitness values of MLR-GP and
standard GP are compared. For all the test problems, MLR-GP

has improved training to the point of overfitting the data.
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8.5 Results and Discussion

Before discussing the effect of using evaluation time to control complexity in

the MLR-GP application, this section analyses the result to answer the question:

Does the evaluation time reflect more than size?

8.5.1 Evaluation Time Characterises Complexity Beyond Size

As discussed in Section 8.2, the MLR-GP method finds the features that make up

an individual model. Also, the method evaluates each feature independently

on the training data and stores the evaluation results in a column of the design

matrix; MLR then uses this design matrix to generate the regression model. This

means that increasing the number of features increases the size of the design

matrix, which must increase the evaluation times.

An MLR-GP feature can add to a model’s learning capacity. Unlike standard

GP where adding a node (or a subtree) to a monolithic tree can deteriorate its

fitness (because genetic operators do not test the suitability of the additional

nodes to the receiving tree), MLR can cancel out the effect of any additional

feature if it decreases R2 by simply assigning it a zero coefficient. While this

ensures that crossover in MLR-GP is more constructive than in standard GP,

it also means that MLR-GP models can grow unnecessarily complex because

unproductive features can be added without negatively affecting the fitness of

a model. Therefore, managing the number of features is important. However,

a bloat-control method that discourages the addition of nodes can be oblivious

to it because a small tree can still contain a large number of features and vice

versa.

The results show that, unlike the bloat-control methods, the time control

methods detect the contribution of the number of features and therefore by con-

taining the evaluation times, it contains the number of features as well. The

final populations that MLR-GP produced show a stronger correlation between
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the evaluation time and the number of features (average of 0.996) than between

evaluation time and the sizes (average of 0.843); see the plots and correlation

values in FIGURE 8.6 and FIGURE 8.7.

FIGURE 8.6: Correlations between evaluation time and size and
between evaluation time and the number of features for Problem

1 - 5.
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FIGURE 8.7: Correlations between evaluation time and size and
between evaluation time and the number of features for Problem

6 - 10.

Therefore, this finding implies that discouraging the evaluation time in the

MLR-GP will discourage all that contributes to the evaluation times, includ-

ing the size, the number of features, and the computational complexity of the
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components ( as discussed in Section 4). Instead, discouraging size alone (bloat-

control) ignores the complexity of the components and the number of features

within the individual. After all, two individuals of the same size can have dif-

ferent numbers of features and exhibit different functional behaviours. This un-

derscores that time is not size, as motivated in Chapter 4; instead, it is a richer

characterisation of complexity in GP.

The following section analyses the practical implication of using the evalu-

ation to control complexity in the MLR-GP application.

8.5.2 Complexity Control and Generalisation Ability of Models

The effects of time-control and size-control to manage the accuracy and com-

plexity of models are analysed next. For accuracy, the test fitness scores are

used, which reflect the generalisation ability of the models; for complexity, the

analyses compare differences in size, evaluation times, and the number of fea-

tures.

The test for the significance of the differences in the final populations of the

competing methods uses the Mann-Whitney U test; the details (including mean

values and p-values) are captured in the colour coded tables in FIGURE 8.8 and

FIGURE 8.9. The green coloured cells represent the results that favour the time-

control method and where the difference is significant. The brown coloured

cells indicate where time-control is significantly worse than the other methods.

The yellow coloured cells indicate that the difference is not statistically signifi-

cant.

In terms of accuracy (test fitness), the time-control methods (TC and APGP)

outperformed STD and BC on 9 out of 10 and 7 out of 10 problems, respectively.

In addition, when comparing the solution simplicity, both TC and APGP con-

sistently outperformed STD (evaluation time, size, and the number of features).
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However, while TC also outperformed BC (bloat-control method), APGP could

not.

FIGURE 8.8: Result of the significance test for the difference be-
tween the MLR-GP with APGP and MLR-GP with bloat-control

(BC) and without (STD).

However, note that – besides using different complexity measures – TC and

BC use the same mechanics; they both use the same complexity-control tech-

nique and settings to control their respective complexity measures. Therefore,
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their comparison is more equitable, and any difference in their results is at-

tributable to the complexity measure. As shown in FIGURE 8.9, TC outper-

formed BC by containing the number of features and evaluation times in all 10

problems and containing the size in 9 out of 10 problems. In addition, TC pro-

duced solutions with better test scores (reflecting generalisation) in 7 out of 10

problems. Hence, the results show that the complexity-control with evaluation

time serves its purpose, that is, it produces simple yet accurate models.

FIGURE 8.9: Result of the significance test for the difference be-
tween MLR-GP with Time-control (TC) and MLR-GP with bloat-

control (BC) and without (STD).
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While the TC and APGP both produce more accurate models than do STD

and BC, TC controls complexity more aggressively and – on these problems –

more successfully. These results contrast with those in Chapter 6 where APGP

was both more accurate and faster to train. Therefore, while one cannot conclu-

sively pinpoint a winner among the two methods, it is encouraging to note that

the two methods generalise consistently better than their counterparts.

8.5.3 Comparing Adjusted R2 with the Evaluation Time Schemes

FIGURE 8.11 shows the result of the significance test for the difference between

MLR-GP with Adjusted R2 (AR2) and the time-control methods (TC and APGP).

Both TC and APGP produced significantly better test fitness scores in 6 out of 10

tests each. However, AR2 produced the simple solutions; it produced simpler

solutions (size, evaluation time, and number of features) than APGP in 10 out

of 10 problems. Against TC, AR2 produced simpler solutions as follows: 9 out

of 10 problems for size, 7 out of 10 problems for evaluation times and 8 out of

10 problems for number of features.

Note, however, as illustrated in FIGURE 8.10, AR2 and TC are closer than

AR2 and APGP; in fact, there is some overlap in the error bars of AR2 and TC

(Problem 2, 7 and 8) charts. This is because much like AR2, TC effectively dis-

courages the addition of new features because they increase the computational

expense unless they significantly improve the training accuracy. The sensitivity

of the evaluation time (as employed by time control methods) to the number of

features of a model is supported by the very strong positive correlation between

the evaluation time and the number of features in all test problems (reminder:

FIGURE 8.6 - 8.7). The slightly more aggressive suppression of the number of

features by AR2 is not a surprise: AR2 by design penalises additional features

unless they significantly improve R2. Instead, TC and – more gently – APGP
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promote accuracy and simplicity simultaneously without reducing the fitness

score of a model at any point.

Essentially, the time control methods with MLR-GP have produced a be-

haviour that approximates the effect of Adjusted R2 by employing the eval-

uation time to control complexity. Note, this is significant because while the

Adjusted R2 is the result of a carefully crafted human design to achieve a spe-

cific aim, the time control methods are general. By design, Adjusted R2 tar-

gets features in a manner similar to how bloat-control only targets size; instead,

time-control targets several notions of complexity and is broadly applicable.

Moreover, the ability of GP to produce phenomena resembling or outperform-

ing human interventions has already popularised GP [225] [226], and has in

fact inspired annual competitions [227]. Consequently, the result in this section

adds to the conversation.

Moreover, the time-control methods on MLR-GP can incorporate Adjusted

R2. Section 8.6, examines how leveraging Adjusted R2 impacts the performance

of time-control.

FIGURE 8.10: Comparison of the average number of features in
the final populations of AR2, TC and APGP.
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FIGURE 8.11: Result of the test for significance of the difference
in the final populations of AR2 against APGP and TC.

8.6 Time Control Schemes with Adjusted R2

Because MLRGP with Adjusted R2 (AR2) outperforms the time control tech-

niques on complexity measures (as seen in Section 8.5.3), it makes sense to try

Adjusted R2 with the time control techniques as well. Thus, this section com-

pares APGP and TC with Adjusted R2 (APGPAR2 and TCAR2, respectively)
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with the other MLRGP methods. To produce APGPAR2 and TCAR2, the fitness

is changed from normalised mean square error (NMSE) to Adjusted R2 but also

captured the NMSE, which provides a means to compare with other methods

that do not use Adjusted R2. The following sections report the differences.

8.6.1 APGP with Adjusted R2

As detailed in FIGURE 8.12, using the Adjusted R2 as the fitness function im-

proves both the simplicity and accuracy of APGP. Therefore, APGPAR2 pro-

duced a final populations that were significantly simpler (size, evaluation times,

and number of features) than those from APGP 10 out of 10 times and were sig-

nificantly more accurate test scores 8 out 10 times. Against the other methods

the test fitness improved as follows: 9 out of 10 times against STD, 9 out of 10

against BC, 7 out of 10 (plus an insignificant difference in 1 problem) against TC,

9 out of 10 against AR2. In terms of complexity control (size, evaluation time,

and the number of features), APGPAR2 produced less complex solutions than

STD, BC and APGP all the time; only once (out of 90 comparisons) was the dif-

ference insignificant. Also against TC APGPAR2 produced solutions with sig-

nificantly fewer features 9 times out of 10, smaller sized solutions 9 times out of

10, and shorter evaluation times in 7 times out of 10. Futhermore, against AR2,

APGPAR2 produced solutions with fewer features in 5 out 10 tests, smaller

sized solutions in 10 out 10 and shorter evaluation times in 4 out 10 tests.

So overall, using Adjusted R2 in APGP (APGPAR2) led to more accurate

(test fitness scores) and simpler (in terms of size, evaluation times, and number

of features).
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FIGURE 8.12: Result of significance test for difference between
the final populations of APGPAR2 (APGP with Adjusted R2 as

fitness) and those of the other Methods.

8.6.2 Time Control (TC) with Adjusted R2

This section compares time-control (TC) with Adjusted R2 (TCAR2) against all

the methods except APGPR2; TCAR2 is compared with APGPAR2 later in this

section. FIGURE 8.13 shows that TCAR2 produced more accurate scores on test

sets. On 10 problems TCAR2 outperformed TC, STD, BC, APGP and AR2 7, 8,

7, 8 and 9 times respectively. On the three complexity scores, TCAR2 outper-

formed all the benchmark methods all the time.
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FIGURE 8.13: Result of significance test for difference between
the final populations of TCAR2 (TC with Adjusted R2 as fitness)

and those of the other Methods.

8.6.3 TCAR2 vs. APGPAR2

Next, FIGURE 8.14 shows the difference between TCAR2 and APGPAR2. TCAR2

produced significantly simpler solutions across all the problems; also the solu-

tions produced by TCAR2 were more accurate 7 out of 10 times.
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FIGURE 8.14: Result of significance test for difference between
the final populations of APGPAR2 and those of TCAR2.

8.6.4 Summary of Time Control Schemes with Adjusted R2

These results show that using Adjusted R2 benefits the evaluation time schemes.

The resulting solutions both usually generalise better and are simpler in terms

of size, evaluation times and the number of features.
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8.7 Conclusion

While earlier chapters showed that the evaluation time reflects the size of a

model and the functional complexity of its components, this chapter practically

demonstrates an additional notion of complexity that the evaluation time re-

flects - the number of features. This finding further counters the argument that

evaluation time is the same as size.

To examine how the proposed complexity measure – that is, evaluation time

– encompasses further notions of complexity, this chapter leverages a novel hy-

bridisation of MLR and GP that discovers features within a model and effec-

tively exploits them to produce efficient regression models. This hybridisation,

termed MLR-GP, improves training fitness remarkably – within 5 generations,

MLR-GP outperforms the training accuracy of standard GP after 50 genera-

tions; however, MLR-GP also overfits the data easily. Thus, a natural follow-

up question is to examine how this overfitting can be improved via effective

complexity-control that the time-control methods offer.

Examining how time characterises complexity in MLR-GP shows that it

detects the number of features very effectively; in fact, time correlates more

strongly with the number of features than it does with size. Therefore, man-

aging complexity by restricting the evaluation time is effectively different from

restricting just size.

The time-control methods (TC and APGP) generalise better than the bench-

mark methods; they both outperformed standard GP (STD) (on 9 out of 10 prob-

lems) and BC (7 out of 10 problems). However, on simplicity (evaluation time,

size, and the number of features) while both TC and APGP outperformed STD,

only TC outperformed BC (GP with bloat-control method). Given that TC and

BC use the same technique to manage time and size, respectively, their com-

parison is a truer reflection of the difference that using evaluation time makes.

Using time as a measure of complexity is the better option because TC prevails
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over BC as follows: accuracy (7 out of 10), size (9 out of 10), evaluation time (10

out of 10) and the number of features (10 out of 10).

Because time-control manages the number of features effectively, it is com-

pared with an effective human-designed method that specifically manages the

number of features – Adjusted R2. The results show that while the accuracy

scores on test sets were mixed, the use of Adjusted R2 generally outperformed

APGP on simplicity; however, TC performed similarly. This was a useful result

in that unlike AR2, the time-control methods are not limited to regression but

are general methods with potentially broader applications. However, GP with

time control still managed to approximate the behaviour of Adjusted R2. Also,

there is no reason why Adjusted-R2 can not be combined with the evaluation

time based methods.

Therefore, when the Adjusted R2 was used with the evaluation time schemes,

they produced the overall winners, that is, simpler solutions that generalise bet-

ter than all the benchmark methods. TC with Adjusted R2 also outperformed

APGP with Adjusted R2.

Overall, this chapter reasserts that not only does the evaluation-time con-

trols complexity more effectively than the size control methods in GP but also

that these methods (based on evaluation time control) can also synergise with

domain-specific methods such as Adjusted R2 to yield the most optimised re-

sults.

The next chapter further demonstrates the versatility of the evaluation time

schemes. Accordingly, they are employed to solve other classical GP problems

from robot control, classification, and Boolean logic applications.
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Chapter 9

Applications - Beyond

Regression

9.1 Introduction

Before this chapter, the experiments to assess the evaluation time schemes used

only regression problems. However, this thesis argues that time is a versatile

measure of complexity; therefore, it is imperative to test how containing eval-

uation times unearths different notions of complexity across some other highly

popular GP applications. In doing so, this lets us further explore the forms of

complexity the evaluation time can characterise.

This chapter applies the evaluation time schemes to some well-known GP

applications. The problem domains are Boolean logic, robot control and classifi-

cation. While later sections give details of these problems, this section provides

a brief overview.

For the Boolean logic applications, the multiplexer and even-parity prob-

lems are used. The challenge in the multiplexer problem (henceforth termed

Multiplexer) [228, 229] is for GP to use Boolean logic operators to reproduce the

behaviour of an electronic multiplexer given all its possible input and output

values. The challenge in the even-parity problem (Parity) [229, 230] is for GP
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to use Boolean logic operators to find a solution that produces the value of the

Boolean even parity given n independent Boolean inputs.

For the robot control application, GP is used to evolve solutions to the well

known artificial ant problem (ANT) [229, 231]. The challenge in ANT is to

evolve a routine for navigating a robotic ant on a virtual field to help it find

food items within a given time limit.

The classification application uses a hybridisation of GP with machine learn-

ing (GPML). Like MLR-GP in Chapter 8, the hybridisation involves GP and

machine learning (GPML), whereas here it is for classification; GP engineers a

set of features and then logistic regression [232] uses these features to build a

classification model.

When reviewing the outcome of the complexity control, the analyses con-

sider the common motives for managing complexity. As discussed in Chap-

ter 4, the incentive for managing complexity varies; thus, the motive can be to

produce models that generalise well, utilise computing resources efficiently, or

have short run times. The problem domains selected in this chapter help us

explore these various notions of complexity. Much like the regression appli-

cations, the generalisation ability of models continues to be important in the

classification applications. The results in this chapter indicate that time control

indeed improves generalisation.

However, generalisation is not relevant in the robot control (ANT) and Boolean

logic problems (Multiplexer and Parity) because the inputs are completely spec-

ified during training for both these problems. However, in the ANT problem, it

is advantageous to produce a routine that both navigates correctly and does so

in a short amount of time. A question arises as to whether time control can con-

fer an advantage over standard GP or GP with bloat-control. The results show

that indeed time control helps evolve accurate routines that are significantly

more efficient than those produced by the counterpart GP systems.
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Similarly, in the Boolean problems, the benefits of simplicity differ. If the

computational complexity of the Boolean constructs used as building blocks

for the solutions differ significantly, the results of the time control systems and

others may differ. Otherwise, the time control systems will simply act as bloat-

control systems. The results indicate that time control systems act as bloat-

control systems for the Boolean problems.

From the above discussion it appears that, unlike with bloat-control that is

popularly used in GP to control complexity, time control is versatile in that it

exploits different notions of complexity depending upon the problem domain.

The investigation in this chapter verifies this.

The rest of this chapter is organised as follows: Section 9.2 investigates the

ANT problem; sections 9.3 and 9.4 investigate the Boolean problems; Section 9.5

investigates classification with GP aided by machine learning; Section 9.6 sum-

marises and discusses the results of this chapter; and Section 9.7 concludes this

chapter.

9.2 Robot Control Application - The Artificial Ant

For the robot control application, a classical GP problem – The Artificial Ant

(ANT) – is used. The challenge here is to evolve a program that navigates an

artificial ant on a virtual field to eat up all the available food within a time

constraint. The food is distributed along a trail, well known as the Santa Fe

Ant trail, which contains 89 pieces of food spread along a given path within a

toroidal grid of 1024 squares. The ant is only allowed 600 moves to consume as

many food items as possible.

Koza introduced this problem in [229, p. 147–155] and it has been stud-

ied extensively in the GP community [18, 229, 231, 233–236]. Previous studies

consider the ANT problem hard [237]; this is because the search space is charac-

terised by multiple plateaus, deep valleys, and many local and global optima.
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The experiment builds on the implementation of this problem that is avail-

able in DEAP (a GP framework) [47]. FIGURE 9.1 illustrates the Santa Fe trail.

As stated earlier, the robotic ant is only allowed a limited number of moves

to pick up the food available (600); therefore, the fitness of a navigating routine

is the number of food items picked within 600 moves. This limit encourages the

programs to navigate smartly and precludes excessively long running routines.

FIGURE 9.1: Santa Fe food trail for the Artificial Ant problem
(ANT). The black cells represent the food items, and the grey
cells are gaps in the trail. The artificial ant begins in the top left

corner facing eastward.

Three operations are available for the programs to navigate the ant across

the field: MoveForward, TurnRight, and TurnLeft move the ant in the direction

it presently faces, turns the ant right and turns the ant left respectively; execut-

ing any of these actions consumes a unit from the budgeted number of moves

allowed. Note these operations do not need any input arguments (they access

the current position and direction of the ant from a global memory); therefore,

these operations act as the terminals in a GP tree, that is, the GP tree can not
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extend any further after one of these operations appears in the tree. Therefore,

GP also needs a function set to grow trees.

Thus, besides the operations that indicate movement, an individual can also

leverage three functions: Prog2, Prog3 and IfFoodAhead. The Prog2, and, Prog3

functions enable producing a sequence of 2 and 3 operations or functions re-

spectively; these sequences can also include Prog2 and Prog3 themselves. This

allows creating longer sequences of instructions in a GP tree that encodes the

navigation routine. Figure 9.2 shows an example tree representation of an ANT

program.

FIGURE 9.2: An example of ANT solutions.

IfFoodAhead is a function that detects the presence of food in the square

immediately in front of the ant; it has an arity of two and can execute either of

two child nodes (arguments) based on the Boolean output (whether the food

is directly in front or not) of the function. The IfFoodAhead function does not

automatically consume the food it detects. Consequently, part of the learning is

to know to move forward into a square with food to consume.

Note during the execution of a navigating program IfFoodAhead, Prog2 and

Prog3 do not consume a move.
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Naturally, while GP is evolving fit solutions (programs that can eat an in-

creasingly large number of food items), it may also produce unnecessarily com-

plex and inefficient ones. This challenge makes this problem appropriate for

studying time control as to whether it can induce efficiency in a way that stan-

dard GP approaches cannot.

9.2.1 Experiment

The experiments compare the time schemes (APGP and TC) with standard GP

(GP) and GP with bloat-control (BC).

ANT Fitness Evaluation: The evaluation function of ANT assesses a pro-

gram and gives a fitness score as follows. First, it compiles the program to

translate it to a routine that will navigate the artificial ant. Next, the ant nav-

igates through the field by continuously using the routine until it either finds

all the food or reaches the maximum number of moves allowed (600). All ants

begin in the top left corner facing eastward. When the ant enters a square with

food, the food item is considered eaten and is no longer available on the field.

The fraction of food eaten from the available is the fitness score of the control

program. Therefore, the fitness score is simply the amount of eaten divided by

the total available. In other words, fitness f = x÷ y, where x is the number of

eaten items and y is the total number of items on the trail.

The parameters for the ANT experiments are summarised in TABLE 9.1.

9.2.2 Size is Not Time in ANT

In the ANT application, the final populations of all the contending methods

show a weak correlation between size and evaluation times. As illustrated in

FIGURE 9.3, the correlation scores between the size and the evaluation times

are 0.149 for TC, 0.183 for APGP, 0.16 for BC, and 0.493 for GP. Note that two

individuals with very different sizes may have similar evaluation times in these



Chapter 9. Applications - Beyond Regression 176

Parameter Setting
Terminal set: TurnLeft, TurnRight, MoveForward
Function set: IfFoodAhead, Prog2, Prog3
Fitness: Amount of Food eaten
Selection: Tournament size of 7, non-elitist
Wrapper: Program repeatedly executed up to 600 moves
Population Size: 500
Max program size: 32,767
Initial population: "ramped half-and-half" (max. depth = 6)
Probabilities: mutation = 0.3, crossover rate = 0.7
Termination: After 70 generations
Probabilities: crossover = 0.7, mutation = 0.3

TABLE 9.1: Experimental settings for the Ant problem.

populations. This similarity exists because the evaluation function demands

that all the candidate solutions make 600 moves (steps) unless they find all the

food items before then. Therefore, a routine that comprises a few steps (e.g. 50)

will be rerun until it makes 600 moves; and another that implements more than

600 steps (e.g. 900) will stop before a single run of the routine is completed.

Thus, the evaluation times of very different sized individuals may be similar.

These findings further counter the assertion of another study [185] that eval-

uation time is another side of the same coin as size. Furthermore, the results

later in Section 9.2.3 show that using evaluation time to manage complexity in

the ANT application does offer a qualitative advantage over using size.

Despite this weak correlation, the evaluation time schemes discourage growth

in the sizes of their solutions because after all size can contribute to the evalu-

ation time. Note, on the correlation charts in on FIGURE 9.3, the individuals

produced by TC and APGP are less than 500 nodes in size, and those of GP

(without complexity control) are up to 1,400. Furthermore, the results in (Sec-

tion 9.2.3 confirms this observation.
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FIGURE 9.3: The correlation in ANT between evaluation time
and size in the final populations of the contending methods.

Factors that affect Evaluation Times in ANT

A series of tests were used to determine the factors that significantly contribute

to the evaluation times. The tests involve evaluating individuals of different

makeup (detailed below) 200 times each and testing the significance of the dif-

ference in their evaluation times.

Efficient solutions that find all food items before using up the budgeted

number of moves (steps) can have significantly shorter evaluation times than

similar-sized solutions that use up theirs. The mean evaluation times of an in-

dividual that uses 475 moves differed by 13.35% from one that uses 309. This

difference is despite the individual with the shorter evaluation time being the

larger-sized one (length 34 vs 23). In this example, the evaluation time can easily

spot the more efficient program. Therefore, the efficiency of individuals affects

their evaluation time.

However, evaluation time detects size because of other reasons. For exam-

ple, the duration for the compilation of a shorter solution may be significantly
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less than that of a much larger-sized one. As part of the evaluation, the eval-

uation function compiles an evolved solution to get an executable routine be-

fore navigation begins. The tests confirm that the compilation times of very

different-sized individuals are significantly different. This significant contri-

bution by compilation time helps evaluation time to detect differences in size.

Therefore, size still influences the evaluation time.

In summary, the difference in sizes impacts compile time; however, the ex-

ecution time of different sizes may be similar because each is allowed the same

number of maximum moves, that is 600. Therefore, it is the internal logic of

the program that can gain a program a time advantage (shorter duration) dur-

ing execution. So an ideal program according to the evaluation time schemes

will be the one that is both small in size (hence incurs small compile time) and

in execution (hence intelligent logic). In contrast, bloat-control decreases the

compile-time while maintaining accuracy; but it does not target execution time,

which reflects intelligent logic.

9.2.3 Results

According to the results, the evaluation time schemes can produce efficient so-

lutions by minimising evaluation times. As detailed in Section 9.2.1, a solution

translates into a routine that is allowed to make up to 600 moves (move for-

ward, turn left or right). Therefore, efficient solutions are routines that find all

the 89 food items making fewer moves than the 600 limit; the fewer, the more

efficient.

The efficiency of the best performing individuals in each generation is anal-

ysed. Figure 9.4 shows that the average number of moves used by the contend-

ing GP methods by generation. Generally, the average number of moves that

all the methods use reduces from the first generation to later ones. However,

while standard GP (GP) and GP with bloat-control (BC) stopped reducing the
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FIGURE 9.4: The figure shows the average number of moves
used by the ANT solutions for the different methods. The time
schemes (APGP and TC) effectively reduce the average number
of moves required by their solutions; therefore, their solutions

are more efficient than those of the others.

number of moves after the 34th generation, the time control schemes (APGP and

TC) continue to reduce the number they used. Thus, the time schemes produce

increasingly efficient solutions. They can do this because the evaluation time

detects the difference in the number of moves used to find all food (solutions

that use significantly more steps take a longer time); therefore, time schemes

encourage efficiency by promoting solutions with shorter evaluation times.

FIGURE 9.5: The average fitness scores of the ANT solutions
produced by the methods by generation.

In addition to producing efficient solutions, the evaluation time schemes
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also produce more accurate and simpler solutions than GP and BC. The fig-

ures 9.5, 9.7 and 9.6 show the evolution of fitness, evaluation times, and size

respectively. TC controls complexity (evaluation time and size) most effectively

and produces the fittest solutions. Similar to some previous results, APGP

shows a milder complexity control and produces the next best fitness scores.

FIGURE 9.6: The average size (length of expressions) of the ANT
solutions produced by the methods by generation.

FIGURE 9.7: The average evaluation times of the ANT solutions
produced by the methods by generation.

The significance in the differences between the reported results is captured

in figures 9.9 and 9.8. The tests compare the best individuals of the methods at

the end of the runs. FIGURE 9.8 shows the result of the test for significance of

the differences between the output of TC and GP and between TC and BC. The

results show that TC produces significantly more accurate, less complex, and
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more efficient solutions than both GP and BC; improved efficiency is indicate

by the fewer number of moves taken to find all the available food items.

FIGURE 9.8: ANT application result of the test for significance in
the difference between Time-control (TC) and standard GP (GP),

and between TC and GP with bloat-control (BC).

As detailed in FIGURE 9.9, APGP produces significantly more efficient so-

lutions (that use fewer moves) than both GP and BC. Moreover, the solutions

that APGP produces are more accurate and simpler (evaluation times and size)

than those produced by GP. Furthermore, against BC, APGP produces solutions

that are not significantly different in terms of evaluation time, size and fitness.

FIGURE 9.9: ANT application result of the test for significance
in the difference between APGP and standard GP (GP), and be-

tween APGP and GP with bloat-control (BC).

These results show that time is much more than size in the ANT application.

Furthermore, the time schemes deliver qualitative improvements – accuracy

and efficiency.
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9.3 Boolean Logic Application - Even-Parity

The Even-Parity problem (Parity) is one of the two Boolean logic applications

used. Like ANT, Parity is a classic GP challenge that was introduced by Koza

[229]. The goal is to find a program that computes the Boolean even parity given

n independent Boolean inputs. TGP uses standard Boolean operators (AND,

OR, XOR, and NOT) as building blocks (primitives). In addition, it uses two

constant terminals: 0 and 1, which represent a true and false state, respectively.

The difficulty of this challenge is tunable. Empirical evidence from the GP

literature shows that increasing the number of Boolean inputs makes the prob-

lem harder for GP [238, 239]. However, using 6 Boolean inputs is common,

which means that the target is to produce a program that computes the par-

ity value for each of the 64 (26) possible input combinations. However, here

the Parity experiments use two challenging settings – with 9 (Parity9) and 10

(Parity10) inputs that require 29 and 210 input combinations, respectively.

FIGURE 9.10: Parity bits of binary strings.

9.3.1 Experiment

The evaluation function of the Parity application calculates fitness based on the

number of times the evolved program successful computes the even parity out

of all the input combinations. Therefore, the fitness score of an evolved Parity

solution (program) is simply the number of successes represented as a decimal

fraction (a value between 0 and 1) of the total input combinations. The experi-

mental settings are detailed in TABLE 9.2.
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Parameter Setting
Number of runs 50
Population size 500
Function set AND, OR, XOR, and NOT
Terminal set 0 (false), 1 (true)
Initial population Ramped-half-and-half;

depth: min. = 3 , max. = 5
Selection: Tournament size = 3
Replacement Steady-state
Probabilities Crossover = 0.7, mutation = 0.3
Subtree generation Ramped-half-and-half;

depth min. = 0 , max. = 3

TABLE 9.2: Experimental settings for the Parity problems.

FIGURE 9.11: Correlations between size and evaluation time in
Even Parity (Parity10).

9.3.2 Results

The components of Boolean logic solutions do not vary in their computational

complexity greatly like those of symbolic regression in Chapters 5 – 6 (e.g., sin

and add require significantly different computation time). In addition, FIG-

URE 9.11 shows a very high correlation between size and time in the popu-

lations of this application; the correlation scores are 0.976 for GP, 0.906 for BC,

0.99 for APGP, and 0.851 for TC. However, it is noteworthy that TC reports a
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(A) Parity 9 (B) Parity 10

FIGURE 9.12: The charts show the evolution of fitness in the
parity problems by the contending methods.

comparatively lower correlation value of 0.851. The results later in this section,

as well as those from the Multiplexer problem (another Boolean problem, in

Section 9.4) indicate that on occasions, TC possibly exploits this fact to exhibit

better complexity control.

As expected, the results of TC and BC were similar in this application; these

methods explicitly control time and size, respectively. FIGURE 9.12, which rep-

resents the evolution of fitness, shows that BC and TC overlap several times (in

both Parity9 and Parity10). Furthermore, comparisons of the final solutions of

TC and BC show insignificant differences in some performance indicators and

divided performance in others. As detailed in FIGURE 9.13, the complexity

measures (evaluation time and size) of TC and BC do not differ significantly

in Parity9 but do so in Parity10 in favour of TC. In terms of accuracy, TC was

better in one (Parity10), and BC was better in the other (Parity9).

In line with previous results, the complexity control that APGP offers in

this application is milder than TC and BC. Therefore, the solutions that APGP

produces are less complex (both size and time) than GP’s but more complex

than BC’s. Furthermore, the final population of APGP is more accurate than

that of GP; also, it was more accurate than that of BC in Parity10 but less than

that of BC in Parity9.
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FIGURE 9.13: Even Parity: significance test result for the differ-
ence between TC vs GP and TC vs BC.

The graphs in FIGURE 9.12 show that APGP trains the fastest. For exam-

ple, at the 10th generation of Parity9, APGP reached a fitness score of 0.61 while

GP, TC, and BC were at 0.51, 0.53, and 0.53, respectively. Similarly, at the 10th

generation of Parity10, APGP reached a fitness score of 0.56 while GP, TC, and

BC were at 0.54, 0.51, and 0.51, respectively. This trend continues to the later

generations (generation 40), where the accuracy values converge to similar val-

ues. This observation tallies with the findings in Chapter 6 that measured and

compared the training speed of the methods – the number of evaluations used

to meet the average fitness of GP.

FIGURE 9.14: Even Parity: significance test result for the differ-
ence between APGP vs GP and APGP vs BC.

In summary, although in Parity problems the evaluation time of individuals

is highly correlated with their size, TC still managed to control complexity at
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least as well as BC. The following section further investigates this possibility

with another Boolean problem.

Furthermore, consistent with the results from previous chapters, APGP ex-

erts a gentler complexity control, but there is some indication that it trains faster.

9.4 Boolean Logic Application - Multiplexer

The multiplexer problem (Multiplexer, henceforth) is another Boolean logic ap-

plication that has been extensively studied in GP [229]. The challenge is for GP

to use Boolean logic to evolve a program that replicates the behaviour of an

electronic multiplexer given all its possible input and output values. A 3-8 mul-

tiplexer setting is commonly used, which means three address lines (labelled

A0 to A2), and eight data lines (labelled D0 to D7) together make 11 input lines.

Therefore, the data will consist of 211 input combinations and their correspond-

ing outputs.

FIGURE 9.15: The Multiplexer with 3 address and 8 data lines.

The multiplexer problem falls under the GP applications area that designs

electronic circuits. While the design of simple digital circuits is easy using

conventional methods, it is difficult and time-consuming for complex circuits.

Therefore, researchers and designers are turning to GP for automation of the
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design of such circuits; for example, the challenging task of designing asyn-

chronous electronic circuits is leveraging GP [103]. Moreover, in addition to

the functionality and accuracy of the automatically generated solutions that GP

offers, the proposed complexity control methods in this thesis can provide sim-

plicity and efficiency.

9.4.1 Experiment

With two exceptions, the experimental settings are the same as the Parity ap-

plication; TABLE 9.2 details the parameters. The additional settings for Multi-

plexer are: (1) the XOR logical operator is excluded, (2) the logical If-Then-Else

is included. The training data is all the possible inputs of the 3-8 multiplexer

and the corresponding outputs.

9.4.2 Results

Like the Parity application (Section 9.3), which is also a Boolean logic applica-

tion, the evaluation times and size are practically the same in Multiplexer. From

their results, TC and BC behave similarly; these methods use identical mecha-

nisms to manage complexity by controlling evaluation time and size. The over-

lapping of their fitness graphs in FIGURE 9.16 indicates the similarity.

In addition, a high correlation is observed between the size and evaluation

times of individuals in the final population of the methods; FIGURE 9.17 shows

correlation scores of 0.985, 0.885, 0.982, and 0.883 for GP, BC, APGP, and TC, re-

spectively. Again, as with the Parity problem earlier on, TC reports a relatively

lower correlation. Correspondingly, the results later show that TC possibly ex-

ploits this lower correlation to produce slightly but significantly better results.

Note, in FIGURE 9.16, TC and BC – which control complexity more aggres-

sively (explicitly) than APGP – train slower (from generation 1 to 34) than APGP

and GP.
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FIGURE 9.16: Multiplexer: The mean fitness scores by genera-
tion of the contending methods.

FIGURE 9.17: Correlations between size and evaluation time in
Multiplexer applications.

However, a small but significant difference in the final populations they pro-

duced is observed. As detailed in FIGURE 9.18, TC delivers significantly sim-

pler (shorter evaluation times and smaller size) and more accurate solutions

than BC and GP.

As commented earlier, it is possible that TC exploits a relatively lower size-

time correlation to differentiate its results from the other methods. As to why

TC and (to an extent) BC report lower correlations are not entirely clear; how-

ever, one clue may be that these methods, on average, produce smaller sizes,
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which deviate from an otherwise linear relationship; this deviation decreases

the correlation.

FIGURE 9.18: Multiplexer: significance test result for the differ-
ence between Time-control (TC) vs standard GP and GP with

bloat-control.

As observed in previous results, the complexity control of APGP is gentler

than TC in Multiplexer. As detailed in FIGURE 9.18, APGP produces solutions

that have significantly shorter evaluation times and sizes than GP but not BC.

In terms of accuracy, the difference between APGP and BC is not significant;

APGP produces significantly less accurate solutions than GP.

FIGURE 9.19: Multiplexer: significance test result for the differ-
ence between APGP vs standard GP and GP with bloat-control.

9.4.3 Summary of Boolean Logic Results

On both the Boolean logic applications (Multiplexer and Parity), in terms of

complexity control, TC performed at least as well as BC (GP with bloat-control)

and strictly better than GP. TC also produced the best fitness values two out of

three times. As to why TC outperforms other GP methods is perhaps rooted in

the relatively lower size-time correlations that it induces in its population. As
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to what causes this lower correlation is not entirely clear; however, the results

indicated one clear differentiating factor – on average a lower size in TC popu-

lations. Overall, the improvement that TC realises over BC was not as clear as

against GP.

Again, APGP did not outperform BC or TC in terms of complexity control

but it did outperform GP. In terms of accuracy the results were mixed: better in

one, worse in another and similar in the third.

Overall, the results suggest that time-control (especially TC) continues to be

a versatile complexity control mechanism in GP applications: where possible, it

exploits the time-size disparity to curb complexity, but even otherwise, it is no

worse than GP with or without the traditional complexity control.

9.5 Classification with GP Aided by Machine Learning

This section uses GP as a machine learning tool for classification [96]. Although

both regression and classification approximate functions (models) from histor-

ical data, they differ fundamentally. While regression models produce contin-

uous output values, classification models provide discrete ones. The discrete

output of a classification model reflects the categorisation of data instances into

one of a given set of classes. Therefore, in symbolic regression, GP can identify

and reward the minute improvement of one model over another. The minute

improvement is detected because the fitness score of a regression model reflects

how far its prediction is from the actual continuous value on each instance of the

training data. Instead, the fitness score of a classification model is the fraction

of the data instances that it has classified correctly. As such, classification in GP

requires a change in the model that is significant enough to affect its behaviour

and performance.

The classification application in this section uses a hybridisation of GP with

machine learning. Like the hybridisation of MLR-GP in Chapter 8, again here
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GP finds features while logistic regression [232] classifies the data instances by

building a model based on the evolved features; this GP hybrid is named GP

with machine learning (GPML).

The rationale for using GPML is to attain a GP based classification system

that trains better than standard GP. Such a system increases the likelihood of

model overfitting; as discussed in Chapter 8.2, traditional GP often underfits the

data [209]. As preventing overfitting (to maintain generalisation) is the motive

for managing complexity in classification, GPML allows us to assess the time

schemes in this regard.

Before using the GPML application to assess the time schemes, it is bench-

marked with standard GP and with a selection of popular machine learning al-

gorithms for classification. The result shows that GPML generally outperforms

the other methods.

Furthermore, the results show that managing complexity with the time con-

trol schemes benefits GPML: complexity and overfitting are both reduced.

9.5.1 Experiment

The classification experiments in this section use all the basic settings as MLRGP

(in Chapter 8, Table 8.4) and add logical functions. The additional functions and

terminals are: logical If-Then-Else , Less-Than, and Greater-Than; Boolean

AND, OR, and NOT; and the terminals True and False. The experiments compare

APGP and TC with GPML without complexity control (GPML) and GPML with

bloat-control (BC).

GPML Evaluation function

Like the evaluation function of MLRGP (Chapter 8), the GPML evaluation func-

tion starts by extracting the features of the individual. Next, the evaluation
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function evaluates the features with the training data to populate a design ma-

trix with the values of the evaluated features. Thereafter, the design matrix is

used as training data to build a classification model with logistic regression (a

machine learning algorithm). Finally, the evaluation function calculates the fit-

ness score of the model as a fraction of all instances in the data that it classifies

correctly. Therefore, the fitness score is a decimal fraction that ranges between

0 and 1 inclusively.

The Classification Problems

The datasets used for the classification problems are available at [194]; Table 9.3

details the datasets. Brief descriptions of the datasets are as follows:

1. Bank Note: The banknote dataset (BankNote) contains digital images from

banknote-like specimens. The instances are labelled as either forged or

genuine notes.

2. Blood Transfusion: The blood transfusion dataset (Blood) consists of 748

donor data from a blood transfusion service centre. The challenge is to

build a model for determining if a donor donated within a period.

3. Pima Indians diabetes: The Pima Indians diabetes dataset (Diabetes) consist

of diagnostic measurements that predict whether or not a patient has di-

abetes; examples of the measures include the patients’ age, glucose level,

and body mass index.

4. Indian Liver Disease: The Indian liver disease dataset (Liver) contains the

labelled data of healthy and liver disease patients (such as age, gender,

protein levels, and bilirubin characteristics).

5. Ozone: This dataset contains environment measurements that predict air

quality. The dataset includes the ozone level and other environmental

measurements such as temperature, wind speed, and precipitation.
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6. Spam Mail: In the Spam Mail dataset (Spam), each row is a Boolean vector

of size 57 and each column flags the presence or otherwise of a specific

word in the contents of an email. The rows are labelled as either spam

emails or not.

ID Data-Set Name Variables Instances Class Distribution

1 Bank Note 3 1371 1: 44%, 0: 56%

2 Blood Transfusion 4 748 1: 76%, 0: 24%

3 Diabetes 8 767 1: 35%, 0: 65%

4 Liver Disease 10 583 1: 71%, 0: 29%

5 Ozone 72 2534 1: 93%, 0: 6.3%

6 Spam Mail 57 4601 1: 39%, 0: 60.6%

TABLE 9.3: Datasets for the classification experiments.

9.5.2 Benchmarking GPML with other Classification Algorithms

The results of GPML are compared with those from standard GP and six pop-

ular machine learning algorithms for classification. The machine learning algo-

rithms include logistic regression, which is the algorithm used to hybridise GP

to produce GPML. The others are Decision Tree Classifier (DecisionTree), Sup-

port Vector Classifier (SVC), Random Forest Classifier (RandomForest), Gaus-

sian Naive Bayes (GaussianNB), and K-Neighbors Classifier (KNeighbors); the

implementations in the SKLearn Library [240].

As illustrated in Figure 9.20, GPML outperformed the other machine learn-

ing algorithms. GPML produced significantly more accurate solutions (both

training and test fitness scores) in 5 out of 6 problems; the non-overlapping er-

ror bars indicate significance. On the sixth (SPAM), GPML did not do better

than RandomForest, LogisticRegression, and KNeighbors.
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FIGURE 9.20: Comparing GP and GPML with other machine
learning classification algorithms.
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Furthermore, GPML performed at least as well as GP on all the problems; it

was significantly better in three out of six. Therefore, GPML (the hybrid) offers

a performance advantage over the constituent components (GP and LogisticRe-

gression).

9.5.3 Time Detects More than Size in Classification with GPML

Like the results in Chapter 8, the evaluation time reflects the size, number of fea-

tures, and components of individuals. Similarly, the correlation between evalu-

ation time and the number of features is stronger than between evaluation time

and size for all but the SPAM problem; see Figure 9.21 for details.

9.5.4 Results: Complexity Control

To assess how the time schemes control complexity, the analysis considers the

evaluation times, sizes, and the number of features of the models produced by

the methods. Figures 9.22 and 9.23 summarise the result of the test for signifi-

cance in the difference between the final populations.

APGP generally produces significantly simpler solutions than GPML (stan-

dard) but more complex than BC. Compared with GPML, APGP produced solu-

tions with significantly shorter evaluation times in 4 out of 6 problems, smaller

sizes in 4 out of 6, and fewer features in 5 out of 6. Compared with BC, APGP

produced solutions with significantly shorter evaluation times in 1 out of 6

problems and fewer features in 2 out 6.
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FIGURE 9.21: The figure shows the correlation of evaluation
times with size (column 1) and the number of features (column
2) in the classification with GPML application. Evaluation time
shows a stronger correlation with the number of features than

with size, except for the SPAM problem.
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FIGURE 9.22: Result of statistical tests of the difference of the
complexity control in the GPML application between APGP and
GPML (GPML without complexity control) and between APGP
AND BC (GPML with bloat-control). The difference in the final

populations of the methods were tested.

TC produced the simplest solutions. Compared with GPML, TC produced

simpler solutions (smaller evaluation times, sizes, and number of features) on

all 6 out of 6 problems. Compared with BC, TC produced solutions with shorter

evaluation times in 5 out of 6 problems, smaller sizes in 3 out of 6, and fewer

features in 6 out of 6. Note, in some instances (three in Figure 9.23 and one in

Figure 9.22) the time schemes produced shorter evaluation times and fewer fea-

tures but not smaller sizes; this observation further confirms that size is indeed

not time in this application.
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FIGURE 9.23: Result of statistical tests of the difference of the
complexity control in the GPML application between TC and
GPML (GPML without complexity control) and between TC
AND BC (GPML with bloat-control). The difference in the final

populations of the methods were tested.

9.5.5 Results: Accuracy and Generalisation

In the GPML classification application, the motivation for complexity control is

to attain solutions that generalise well, which is reflected by test fitness scores.

Therefore, the analysis considers the test fitness scores (from unseen data) as

the measure of accuracy and the indicator of the generalisation ability of the

models.

Figure 9.24 shows both the average training fitness (column 1) and test fit-

ness (column 2) scores by generation. The average training fitness scores in-

crease by generation as expected. However, the test fitness fluctuates, which in-

dicates overfitting. As a result of the different fluctuations shown per method,

the analysis does not compare the scores at a single point, such as the final pop-

ulation. Therefore, the peak average fitness values that each method attains are
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FIGURE 9.24: The mean training and test fitness (accuracy) by
generation of the methods in GPML.
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considered.

Table 9.4 shows a comparison of the peak test fitness values attained by the

various method on all the problems. The highest test fitness scores per problem

is indicate by the bold text in the table. APGP produced the highest peaks in 4

out of 6 problems and TC produced the highest in the other 2 out of 6. Therefore,

the complexity control of the time schemes produce models that generalise the

best.

Problem APGP TC BC GPML
BLOOD 0.67084 0.67192 0.65777 0.66825
LIVER 0.71747 0.72187 0.69504 0.695
BANKNOTE 0.86512 0.81278 0.84266 0.84942
DIABETES 0.61631 0.60975 0.6161 0.6019
SPAM 0.77969 0.75465 0.76512 0.75901
OZONE 0.67913 0.63282 0.67667 0.62802

TABLE 9.4: Peak average test fitness scores of GPML and the
compared methods on classification problems.

9.6 Discussion

This chapter tested the versatility of complexity control via curbing the evalua-

tion times on problems from several different domains. The experiments sought

to ascertain whether time control effectively curbs complexity without signifi-

cant side effects across various problem domains. In addition, the investigation

wanted to explore the types of complexity that the evaluation time determines

across the GP applications and, subsequently, examine how the proposed time-

based system addresses the motivations for managing complexity.

In the robot control application (ANT), the time schemes can detect the so-

lutions that find all the available food items using fewer moves and hence have

shorter evaluation times. Therefore, evaluation time recognises efficiency – a
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non-functional requirement of a piece of code – in a way that size can not. Im-

proving non-functional requirements can be sought-after in real-world applica-

tions. For example, in automatic programming, a small expression (such as a

nested loop) may translate to a resource-intensive and inefficient program; time

control can detect and discourage this type of inefficiencies.

In the classification application (GPML), the time schemes effectively detect

and manage the number of features in a solution, which bloat-control can not

match. This improved characterisation of complexity that time offers produced

classification models that generalise better than those by bloat-control and stan-

dard GPML.

As anticipated, because of the similarity in the computational complexity of

the logical operators that Boolean applications use, the effect of controlling com-

plexity via time and via size were similar. However, the explicit time control

(TC) was at least as good as bloat-control in terms of both accuracy and com-

plexity control. The lower correlation between evaluation time and size that

TC showed suggests that time can find and capitalise on some differences. As

to why TC and (to an extent) BC report lower correlations is not entirely clear;

however, one clue may be that these methods, on average, produce smaller

sizes, which cause a greater time-scatter and hence a deviation from an other-

wise linear relationship; this deviation decreases the correlation.

Generally across all the problem domains considered in this chapter, the re-

sults show that TC almost consistently yields solutions with lower evaluation

times than both standard GP (GP) and GP with bloat-control (BC). Since small

expressions can sometimes demand more resources than larger ones (as demon-

strated in Chapter 4 and this chapter), discouraging evaluation time addresses

the resource utilisation and run time challenge better than discouraging size.

Therefore, lower evaluation time itself is an advantage for the time schemes.

Whilst shorter evaluation times of solutions are closely reflected by smaller
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sizes in the Boolean applications, it is very different in the others. Despite

the differences across the various applications, the time schemes generally pro-

duced solutions with smaller sized expressions than those by standard GP (or

its appropriate variants such as GPML), and TC did not produce more complex

solutions than BC. Although the analysis did not investigate the interpretability

of the evolved models, the time schemes also help with that as long as parsimo-

nious expressions are more interpretable.

The results in this chapter show that evaluation time is a versatile measure

of complexity. Unlike bloat-control that is popularly used in GP to control com-

plexity, the evaluation time schemes manage the complexity of GP solutions in

various ways to address the diverse motives behind the quest for simplicity.

9.7 Conclusion

The results in this chapter demonstrate that time characterises complexity in a

resourceful way; when time is employed to manage complexity, several quali-

tative advantages are achieved. In the ANT application, time distinguishes be-

tween efficient solutions (those that find all food items using minimal moves)

from the inefficient ones. Next, although the computational complexity of the

operators in the Boolean applications may appear to be similar, TC still showed

a difference; TC was at least as accurate and as simple as bloat-control. More-

over, In the GPML application (classification), time effectively detects the num-

ber of features of solutions, which bloat-control could not - hence leading to a

more rounded complexity control that improves the generalisation capacity of

the models. Therefore, the results indicate that the proposed time-based system

of managing complexity is versatile, and it addresses the motivations behind

managing the complexity of GP solutions well.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

This thesis presents a system for managing the complexity of the solutions GP

produces. Unlike many other evolutionary algorithms that use fixed-length

structures to represent the evolving solutions, GP evolves variable-length ones,

which is, in part, driven by the idea that computer programs are not necessarily

limited to fixed lengths when written. Consequently, GP has its own unique

evolutionary dynamics, and one of the most commonly observed results is that

the evolving solutions become increasingly more complex with time – even pro-

hibitively so.

Crucially, because GP is applied to produce solutions in many domains, the

notion of complexity differs from one application domain to another (e.g., ma-

chine learning, automatic programming and design), and so do the motivations

for curbing the complexity of these solutions. As a result, producing a universal

and formal definition of complexity is hard, and, therefore, one is yet to exist.

Yet, to control the complexity of the evolving solutions, we must first quantify

it objectively. Therefore, the common practice in GP is to resort to proxies for

indicating complexity; these proxies address varying concerns from system re-

sources required for executing the evolving solutions to their functional charac-

teristics – whatever the implementer prioritises at the time. However, it is clear
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that these motivations are not always transferable across the various applica-

tions and sometimes fail to answer the myriad questions concerning complexity

even within the same domain.

Therefore, this thesis presents a simple idea to measure the complexity of

the evolving solutions in any GP application – the time it takes to evaluate a

solution or evaluation time. The idea stems from the fact that a simple task takes

a shorter time to perform than a more complex one. Hence, this evaluation time

– even if not perfect in all aspects – can at least differentiate the complexity of GP

solutions in a computational sense because GP evaluates all the evolving solu-

tions to a given application in an identical environment. However, questions

that arise are whether this idea will hold in practice and whether the evaluation

time measurements can be reliable.

Therefore, before applying the proposed evaluation time to manage the com-

plexity of the GP solutions, its viability and practical challenges are studied.

The result of the study reveals that the evaluation time detects differences in

both the structural and computational complexity of GP solutions. In addi-

tion, it shows that evaluation time is a versatile measure of complexity that,

in a functionally diverse population, it can elicit functional or computational

differences, whereas, in a functionally converged population, it switches to act

as a bloat-control method. This versatility shows that when conditions permit,

evaluation time control can capture various nuances of complexity as prevalent

in the evolving population. Crucially, to ensure that the evaluation time mea-

surements are reliable and not distorted by the effect of system decisions, this

thesis proposes and tests strategies that effectively improve the consistency of

the time measurements. Therefore, unlike other GP studies that use time mea-

surement without ensuring consistency, this chapter sets an appropriate and

reliable stage for investigating the value of the evaluation time as a measure of

complexity. As previous work has found attaining reliable time measurements
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particularly challenging, the usefulness of this finding can go beyond this work.

The next question is how to manipulate the evaluation time of solutions to

make them simple. The first approach leverages the machinery of the well-

precedented bloat-control techniques to constrain (with explicit penalties) the

evaluation times of the GP solutions. Identical mechanisms and settings con-

trol size on one set of experiments and evaluation time in another so that the

results can show the benefit of using the proposed measure or otherwise. The

outcomes decisively show that the time control methods manage the functional

complexity of models to make them generalise better (higher test fitness scores)

than the bloat-control methods. Also, the solutions were frequently simpler

than those by bloat-control (smaller size and evaluation times). This result sug-

gests that evaluation time can detect and prefer less computational complex-

ity (and smaller sizes) to produce less functional complexity. As this approach

only involves a relatively minor adjustment to a well-accepted practice, it can

be adopted readily and widely by the GP users as a complexity control method.

The next question is whether using time as a measure of complexity can open

new opportunities for complexity control beyond merely replacing size with

time in the bloat-control methods.

Therefore, this thesis presents a new approach for controlling complexity –

an opportunity evaluation time opens – that implicitly discourages high evalu-

ation time (APGP) and represents a significant change in the evolutionary dy-

namics of GP. Instead of explicit penalties, the APGP incorporates a race condi-

tion in the evolutionary process that allows simple individuals (with relatively

shorter evaluation times) to gain an evolutionary advantage – this is a metaphor

from natural evolution. In the APGP, the fast evaluating (simple) candidate so-

lutions gain an evolutionary advantage when they finish evaluating and get

into the breeding population earlier than their slower (more complex) counter-

parts. These simple solutions in the breeding population can breed (similarly
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simple and potentially more accurate offspring) while their slower peers are

busy evaluating. The results in this chapter show that the APGP, like the ex-

plicit time control methods (TC), overwhelming outperforms bloat-control, and

it is competitive with the TC. Moreover, the APGP offers a gentler complex-

ity control than TC. Another significant finding is that APGP trains faster (uses

fewer evaluations to meet accuracy targets) than all the other methods; on the

contrary, bloat-control slows down training. As a general principle in evolu-

tionary computing is to mimic concepts from nature to enhance the algorithms,

the success of this system, which mimics nature further, thus designates a sig-

nificant development.

Given that APGP is unstudied and represents a significant shift in the GP

paradigm, analysing it is imperative. Findings from the analysis validate the

assumptions made while conceptualising the idea of the APGP. Accordingly,

the result confirms that the computationally efficient solutions outpace their ex-

pensive counterparts to enrol into the population; therefore, verifying that the

APGP results are indeed induced by its internal evolutionary dynamics influ-

enced by the evaluation time control method. Furthermore, the analysis shows

that increasing the degree of concurrency opens up more opportunities for the

simple solutions to finish evaluating early and try to get ahead. A welcome

finding is that the high degrees of concurrency (e.g., the same number as the

population size) significantly reduce the complexity (e.g., average population

size) without negatively affecting fitness.

Following the forging, testing and analysis of the proposed methods, a GP

application that produces solutions whose complexity adds another notion to

the ones seen already is used as a platform to examine the proposed system fur-

ther. The application is set up by hybridising GP with the well-known multiple

linear regression (MLR) for generating regression models. While MLR works

very well if the features (or system variables) are well-identified, it relies on



Chapter 10. Conclusion and Future Work 207

the human user to identify these features. In this hybridisation, GP manufac-

tures useful features and; MLR combines them optimally to produce a powerful

regression model (MLR-GP). While this makes for an effective hybrid system

(MLR-GP), this system runs the risk of generating very complex models with a

very high number of complex features. Complexity, in this case, is twofold: the

number of features and the complexity of the constitution of the GP evolved

features themselves. The results indicate that time-based complexity control

covers both these aspects of the complexity of the models much more effectively

than bloat-control. The results show that evaluation time control leveraged this

ability (to manage both features and size effectively) to prevail in producing

models with higher test fitness scores (generalise better), fewer features, and

smaller sizes. The results from this application reaffirm the versatility of the

evaluation time and the associated methods.

As GP is a tool with broad application, it is vital to examine the proposed

system on a diverse set of applications to find out how it may unearth vari-

ous forms of complexity. Accordingly, the highly-popular application domains

(classical GP problems) are selected; they include robot control, Boolean logic

applications, and classification using a hybridisation designed for classification

problems (GPML). The variety of applications means that context and motiva-

tion for managing the complexity of evolved solutions must be considered per

application when assessing performance. The results produced in these appli-

cations show that time characterises complexity in a resourceful way to offer

several qualitative advantages. In the ANT application (robot control), time

control distinguishes between the efficiency of the solutions (efficient solutions

find all food items using minimal moves). Next, although the computational

complexity of the operators in the Boolean applications may appear to be sim-

ilar, TC still showed a difference; TC was at least as accurate and as simple as
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bloat-control. Moreover, in the GPML application (classification), the time con-

trol effectively detects the number of features in models, which bloat-control

could not; hence, time control leads to a more rounded complexity control that

improves the generalisation capacity of the models. Therefore, the results indi-

cate that the proposed time-based system of managing complexity is versatile,

and it broadly addresses the motivations behind managing the complexity of

GP solutions.

This thesis arguably addresses one of the most significant challenges in GP

– managing the complexity of the GP solutions. GP presents an exciting sys-

tem that harnesses the power of evolution to produce solutions to seemingly

limitless types of problems; after all, natural evolution produced life and in-

telligence in myriad forms, and it continues to optimise both. However, the

unconstrained complexity of GP solutions renders it impractical to use exhaus-

tively in many applications or makes the quality of the solutions it produces

unfit for purpose. Furthermore, the current methods are limited in how well

they manage complexity. Thus, the success of the proposed system for man-

aging complexity across a broad set of GP applications attests to its ability to

characterise and manage complexity in a more nuanced way than the existing

methods to offer qualitative gains and to its significance. Therefore, this thesis

contributes to the pivotal efforts to make GP more accessible and prolific.

10.2 Future Work

Lines of further research include the following:

• Applying the evaluation time schemes in processor-intensive problems.

Although the proposed strategies for improving the reliability of the eval-

uation time measurements improved it significantly, it is not perfect. There-

fore, processor-intensive tasks may cancel out minor fluctuations, and

they stand to gain more from the time schemes, given that evaluation time
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can detect computational effort. Therefore, a compelling area of studying

the time schemes is applications with intense computing resource utilisa-

tion and high evaluation times. For example, neuro-evolution – the auto-

matic design of artificial neural networks with GP – is an appropriate ap-

plication. Further, such an application can demonstrate the benefit of the

time schemes in a challenging and high-in-demand application.

• Exploring more opportunities in the Fixed Length Initialisation scheme (FLI).

As the proposed FLI initialisation scheme improved the performance of

all the contending methods (with only one justifiable exception: OPEQ on

time-control), further investigation of the initialisation scheme may pro-

vide a means to enhance GP.

• Studying how the evaluation time schemes may be improved by encouraging

functional diversity throughout the evolutionary process of GP.From the re-

sults of using FLI and in theory, evaluation time distinguishes functional

complexity better in a functionally and structurally diverse population.

As improvements from FLI only comes from starting the evolution with

a functionally diverse population, future work can explore the effect of

maintaining functional diversity in the breeding population throughout

the evolution. Therefore, such an environment, may allow evaluation

time to continuously distinguish functional complexity productively.

• Exploring the utility of the time schemes in applications where computational

simplicity is essential.Future work can explore using the time schemes in

application areas where computationally simple solutions are highly val-

ued. Therefore, they may serve as a general complexity management tool,

similar to how evolutionary algorithms optimise accuracy in many do-

mains. For example, as a well-established GP application, automatic pro-

gramming stands to gain from the complexity control of APGP because it
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can improve accuracy, simplicity and training speed.



211

Bibliography

[1] Terence Soule, James A. Foster, and John Dickinson. “Code Growth in

Genetic Programming”. In: Genetic Programming 1996: Proceedings of the

First Annual Conference. Ed. by John R. Koza et al. Stanford University,

CA, USA: MIT Press, July 1996, pp. 215–223. URL: http://cognet.mit.

edu/sites/default/files/books/9780262315876/pdfs/9780262315876_

chap26.pdf.

[2] Gregory Paris, Denis Robilliard, and Cyril Fonlupt. “Exploring Overfit-

ting in Genetic Programming”. In: Evolution Artificielle, 6th International

Conference. Ed. by Pierre Liardet et al. Vol. 2936. Lecture Notes in Com-

puter Science. Revised Selected Papers. Marseilles, France: Springer, Oct.

2003, pp. 267–277. ISBN: 3-540-21523-9. DOI: 10.1007/b96080.

[3] Ashish Kumar, Saurabh Goyal, and Manik Varma. “Resource-efficient

Machine Learning in 2 KB RAM for the Internet of Things”. In: Proceed-

ings of the 34th International Conference on Machine Learning. Ed. by Doina

Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Re-

search. International Convention Centre, Sydney, Australia: PMLR, Aug.

2017, pp. 1935–1944.

[4] Joseph Yiu. “CHAPTER 9 - Interrupt Behavior”. In: The Definitive Guide

to the ARM Cortex-M3 (Second Edition). Ed. by Joseph Yiu. Second Edi-

tion. Oxford: Newnes, 2010, pp. 145–153. ISBN: 978-1-85617-963-8. DOI:

https://doi.org/10.1016/B978-1-85617-963-8.00012-0.

http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap26.pdf
http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap26.pdf
http://cognet.mit.edu/sites/default/files/books/9780262315876/pdfs/9780262315876_chap26.pdf
https://doi.org/10.1007/b96080
https://doi.org/https://doi.org/10.1016/B978-1-85617-963-8.00012-0


Bibliography 212

[5] Kenneth O. Stanley et al. “Designing neural networks through neuroevo-

lution”. In: Nature Machine Intelligence 1 (Jan. 2019), pp. 24–35. DOI: doi:

10 . 1038 / s42256 - 018 - 0006 - z. URL: https : / / www . nature . com /

articles/s42256-018-0006-z?fbclid=IwAR0v_oJR499daqgqiKCAMa-

LHWAoRYuaiTpOtHCws0Wmc6vcbe5Qx6Yjils.

[6] Thanwa Sripramong and Christofer Toumazou. “The invention of CMOS

amplifiers using genetic programming and current-flow analysis”. In:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems 21.11 (Nov. 2002), pp. 1237–1252. ISSN: 0278-0070. DOI: doi:10 .

1109/TCAD.2002.804109.

[7] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. “Measuring bloat,

overfitting and functional complexity in genetic programming”. In: GECCO

’10: Proceedings of the 12th annual conference on Genetic and evolutionary

computation. Ed. by Juergen Branke et al. Portland, Oregon, USA: ACM,

July 2010, pp. 877–884. DOI: 10.1145/1830483.1830643.

[8] Raja Muhammad Atif Azad and Conor Ryan. “A Simple Approach to

Lifetime Learning in Genetic Programming based Symbolic Regression”.

In: Evolutionary Computation 22.2 (June 2014), pp. 287–317. ISSN: 1063-

6560. DOI: 10.1162/EVCO_a_00111. URL: http://www.mitpressjournals.

org/doi/abs/10.1162/EVCO_a_00111.

[9] Charles Darwin. On the origin of species: A facsimile of the first edition. Har-

vard University Press, 1964.

[10] Sean Luke, Gabriel Catalin Balan, and Liviu Panait. “Population Implo-

sion in Genetic Programming”. In: Genetic and Evolutionary Computation

– GECCO-2003. Ed. by E. Cantú-Paz et al. Vol. 2724. LNCS. Chicago:

Springer-Verlag, July 2003, pp. 1729–1739. ISBN: 3-540-40603-4. DOI: doi:

10.1007/3-540-45110-2_65. URL: http://cs.gmu.edu/~lpanait/

papers/luke03population.pdf.

https://doi.org/doi:10.1038/s42256-018-0006-z
https://doi.org/doi:10.1038/s42256-018-0006-z
https://www.nature.com/articles/s42256-018-0006-z?fbclid=IwAR0v_oJR499daqgqiKCAMa-LHWAoRYuaiTpOtHCws0Wmc6vcbe5Qx6Yjils
https://www.nature.com/articles/s42256-018-0006-z?fbclid=IwAR0v_oJR499daqgqiKCAMa-LHWAoRYuaiTpOtHCws0Wmc6vcbe5Qx6Yjils
https://www.nature.com/articles/s42256-018-0006-z?fbclid=IwAR0v_oJR499daqgqiKCAMa-LHWAoRYuaiTpOtHCws0Wmc6vcbe5Qx6Yjils
https://doi.org/doi:10.1109/TCAD.2002.804109
https://doi.org/doi:10.1109/TCAD.2002.804109
https://doi.org/10.1145/1830483.1830643
https://doi.org/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
http://www.mitpressjournals.org/doi/abs/10.1162/EVCO_a_00111
https://doi.org/doi:10.1007/3-540-45110-2_65
https://doi.org/doi:10.1007/3-540-45110-2_65
http://cs.gmu.edu/~lpanait/papers/luke03population.pdf
http://cs.gmu.edu/~lpanait/papers/luke03population.pdf


Bibliography 213

[11] Lau Tung Leng. “Guided genetic algorithm”. In: University of Essex, A

thesis submitted for the degree of Ph. D in Computer Science, Department of

Computer Science (1999).

[12] Charles C Peck and Atam P Dhawan. “Genetic algorithms as global ran-

dom search methods: An alternative perspective”. In: Evolutionary Com-

putation 3.1 (1995), pp. 39–80.

[13] Mary Lou Maher and Douglas H Fisher. “Using AI to evaluate creative

designs”. In: DS 73-1 Proceedings of the 2nd International Conference on De-

sign Creativity Volume 1. 2012.

[14] Peter JM Van Laarhoven and Emile HL Aarts. “Simulated annealing”.

In: Simulated annealing: Theory and applications. Springer, 1987, pp. 7–15.

[15] Sebastian Ruder. “An overview of gradient descent optimization algo-

rithms”. In: arXiv preprint arXiv:1609.04747 (2016).

[16] Mehrdad Dianati, Insop Song, and Mark Treiber. An introduction to ge-

netic algorithms and evolution strategies. Tech. rep. Citeseer, 2002.

[17] Nichael Lynn Cramer. “A representation for the Adaptive Generation

of Simple Sequential Programs”. In: Proceedings of an International Con-

ference on Genetic Algorithms and the Applications. Ed. by John J. Grefen-

stette. Carnegie-Mellon University, Pittsburgh, USA, July 1985, pp. 183–

187. URL: https://dl.acm.org/doi/10.5555/645511.657085.

[18] John R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

ISBN: 0-262-11170-5. URL: http://mitpress.mit.edu/books/genetic-

programming.

[19] John R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

https://dl.acm.org/doi/10.5555/645511.657085
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming


Bibliography 214

ISBN: 0-262-11170-5. URL: http://mitpress.mit.edu/books/genetic-

programming.

[20] Nguyen Xuan Hoai, R. I. (Bob) McKay, and Daryl Essam. “Representa-

tion and Structural Difficulty in Genetic Programming”. In: IEEE Trans-

actions on Evolutionary Computation 10.2 (Apr. 2006), pp. 157–166. DOI:

10.1109/TEVC.2006.871252. URL: http://sc.snu.ac.kr/courses/

2006/fall/pg/aai/GP/nguyen/Structdiff.pdf.

[21] Conor Ryan, Michael O’Neill, and J. J. Collins, eds. Handbook of Grammat-

ical Evolution. Springer, Sept. 2018. DOI: 10.1007/978-3-319-78717-6.

[22] Raja Muhammad Atif Azad. “A Position Independent Representation

for Evolutionary Automatic Programming Algorithms - The Chorus Sys-

tem”. PhD thesis. Ireland: University of Limerick, Dec. 2003. URL: http:

//www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.

gz.

[23] Gopinath Chennupati, Raja Muhammad Atif Azad, and Conor Ryan.

“Performance Optimization of Multi-Core Grammatical Evolution Gen-

erated Parallel Recursive Programs”. In: GECCO ’15: Proceedings of the

2015 Annual Conference on Genetic and Evolutionary Computation. Ed. by

Sara Silva et al. Madrid, Spain: ACM, July 2015, pp. 1007–1014. DOI:

10.1145/2739480.2754746. URL: http://doi.acm.org/10.1145/

2739480.2754746.

[24] Lee Spector and Alan Robinson. “Genetic Programming and Autocon-

structive Evolution with the Push Programming Language”. In: Genetic

Programming and Evolvable Machines 3.1 (Mar. 2002), pp. 7–40. ISSN: 1389-

2576. DOI: 10.1023/A:1014538503543. URL: http://hampshire.edu/

lspector/pubs/push-gpem-final.pdf.

http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
https://doi.org/10.1109/TEVC.2006.871252
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
https://doi.org/10.1007/978-3-319-78717-6
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/azad_thesis.ps.gz
https://doi.org/10.1145/2739480.2754746
http://doi.acm.org/10.1145/2739480.2754746
http://doi.acm.org/10.1145/2739480.2754746
https://doi.org/10.1023/A:1014538503543
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf


Bibliography 215

[25] Ting Hu et al. “Evolutionary dynamics on multiple scales: a quantitative

analysis of the interplay between genotype, phenotype, and fitness in

linear genetic programming”. In: Genetic Programming and Evolvable Ma-

chines 13.3 (Sept. 2012). Special issue on selected papers from the 2011

European conference on genetic programming, pp. 305–337. ISSN: 1389-

2576. DOI: 10.1007/s10710-012-9159-4.

[26] James Alfred Walker and Julian Francis Miller. “The Automatic Acqui-

sition, Evolution and Reuse of Modules in Cartesian Genetic Program-

ming”. In: IEEE Transactions on Evolutionary Computation 12.4 (Aug. 2008),

pp. 397–417. ISSN: 1089-778X. DOI: 10.1109/TEVC.2007.903549. URL:

http://results.ref.ac.uk/Submissions/Output/3354578.

[27] Edmund K Burke, James P Newall, and Rupert F Weare. “Initialization

strategies and diversity in evolutionary timetabling”. In: Evolutionary

computation 6.1 (1998), pp. 81–103.

[28] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “A review of popula-

tion initialization techniques for evolutionary algorithms”. In: 2014 IEEE

Congress on Evolutionary Computation (CEC). IEEE. 2014, pp. 2585–2592.

[29] W. B. Langdon and J. P. Nordin. “Seeding GP Populations”. In: Genetic

Programming, Proceedings of EuroGP’2000. Ed. by R Poli et al. Vol. 1802.

LNCS. Edinburgh: Springer-Verlag, Apr. 2000, pp. 304–315. ISBN: 3-540-

67339-3. DOI: doi:10.1007/978-3-540-46239-2_23. URL: http://www.

cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_eurogp2000_seed.

pdf.

[30] R. Muhammad Atif Azad, David Medernach, and Conor Ryan. “Effi-

cient Approaches to Interleaved Sampling of training data for Symbolic

Regression”. In: Sixth World Congress on Nature and Biologically Inspired

Computing. Ed. by Ana Maria Madureira et al. Porto, Portugal: IEEE, July

2014, pp. 176–183. DOI: doi:10.1109/NaBIC.2014.6921874.

https://doi.org/10.1007/s10710-012-9159-4
https://doi.org/10.1109/TEVC.2007.903549
http://results.ref.ac.uk/Submissions/Output/3354578
https://doi.org/doi:10.1007/978-3-540-46239-2_23
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_eurogp2000_seed.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_eurogp2000_seed.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_eurogp2000_seed.pdf
https://doi.org/doi:10.1109/NaBIC.2014.6921874


Bibliography 216

[31] Patrick D Surry and Nicholas J Radcliffe. “Inoculation to initialise evolu-

tionary search”. In: AISB Workshop on Evolutionary Computing. Springer.

1996, pp. 269–285.

[32] Hammad Ahmad and Thomas Helmuth. “A comparison of semantic-

based initialization methods for genetic programming”. In: GECCO ’18:

Proceedings of the Genetic and Evolutionary Computation Conference Com-

panion. Ed. by Carlos Cotta et al. Kyoto, Japan: ACM, July 2018, pp. 1878–

1881. DOI: doi:10.1145/3205651.3208218.

[33] Sean Luke. “Two Fast Tree-Creation Algorithms for Genetic Program-

ming”. In: IEEE Transactions on Evolutionary Computation 4.3 (Sept. 2000),

pp. 274–283. DOI: doi:10.1109/4235.873237. URL: http://ieeexplore.

ieee.org/iel5/4235/18897/00873237.pdf.

[34] Dirk Schweim, David Wittenberg, and Franz Rothlauf. “On sampling

error in genetic programming”. In: Natural Computing (2021), pp. 1–14.

[35] Tiantian Dou and Peter Rockett. “Comparison of semantic-based local

search methods for multiobjective genetic programming”. In: Genetic Pro-

gramming and Evolvable Machines 19.4 (2018), pp. 535–563.

[36] Hamidreza Abbasianjahromi, Emadaldin Mohammadi Golafshani, and

Mehdi Aghakarimi. “A prediction model for safety performance of con-

struction sites using a linear artificial bee colony programming approach”.

In: International Journal of Occupational Safety and Ergonomics (2021), pp. 1–

16.

[37] Sibel Arslan and Celal Ozturk. “Multi hive artificial bee colony program-

ming for high dimensional symbolic regression with feature selection”.

In: Applied Soft Computing 78 (2019), pp. 515–527.

https://doi.org/doi:10.1145/3205651.3208218
https://doi.org/doi:10.1109/4235.873237
http://ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf
http://ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf


Bibliography 217
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Appendix A

Code Base

The code and data used in this thesis are available as follows:

1. for the explict time control methods introduced in Chapter 5 at:

https://github.com/aliyus/Explicit-Time-Control.git

Codes for the bloat control methods and standard GP are included.

2. for the Implicit Time Control code (APGP) introduced in Chapter 6 at:

https://github.com/aliyus/APGP.git

3. for the hybridisation of GP with multiple linear regression (MLRGP) in-

troduced in Chapter 8 at: https://github.com/aliyus/MLR-GP.git

4. for the GP applications used in Chapter 9 at:

https://github.com/aliyus/Applications-Time-Control.git

https://github.com/aliyus/Explicit-Time-Control.git
https://github.com/aliyus/APGP.git
https://github.com/aliyus/MLR-GP.git
https://github.com/aliyus/Applications-Time-Control.git
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In machine learning, reducing the complexity of a model can help to improve its computational
efficiency and avoid overfitting. In genetic programming (GP), the model complexity reduction is often
achieved by reducing the size of evolved expressions. However, previous studies have demonstrated
that the expression size reduction does not necessarily prevent model overfitting. Therefore, this
paper uses the evaluation time – the computational time required to evaluate a GP model on data
– as the estimate of model complexity. The evaluation time depends not only on the size of evolved
expressions but also their composition, thus acting as a more nuanced measure of model complexity
than the expression size alone. To discourage complexity, this study employs a novel method called
asynchronous parallel GP (APGP) that introduces a race condition in the evolutionary process of GP;
the race offers an evolutionary advantage to the simple solutions when their accuracy is competitive.
To evaluate the proposed method, it is compared to the standard GP (GP) and GP with bloat control
(GP+BC) methods on six challenging symbolic regression problems. APGP produced models that are
significantly more accurate (on 6/6 problems) than those produced by both GP and GP+BC. In terms
of complexity control, APGP prevailed over GP but not over GP+BC; however, GP+BC produced simpler
solutions at the cost of test-set accuracy. Moreover, APGP took a significantly lower number of
evaluations than both GP and GP+BC to meet a target training fitness in all tests. Our analysis of the
proposed APGP also involved: (1) an ablation study that separated the proposed measure of complexity
from the race condition in APGP and (2) the study of an initialisation scheme that encourages functional
diversity in the initial population that improved the results for all the GP methods. These results
question the overall benefits of bloat control and endorse the employment of both the evaluation
time as an estimate of model complexity and the proposed APGP method for controlling it.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The key challenges in managing the complexity of machine
learning (ML) models include defining what complexity is and
constructing a mechanism to control it; however, because the
motivations behind existing definitions vary significantly, these
definitions fail to transfer across various applications or algo-
rithms. For example, a common reason for managing the com-
plexity of ML models is attaining models that are just complex
enough to explain the phenomenon generating the given data but
not too complex to reflect noise in the training data. This way, the
predictions on unseen data will be accurate [1]. Often in standard

∗ Corresponding author.
E-mail address: aliyu.sambo@mail.bcu.ac.uk (A.S. Sambo).

regression methods, the complexity is constrained by penalising
the increase in the magnitudes of the coefficients of a fixed model.
However, in methods such as Genetic Programming [2] the model
is not fixed and hence such a penalty does not make sense. An-
other reason for controlling complexity is interpretability because
simple models can be more interpretable [3]; interpretability of
ML models is now a legal requirement due to frameworks such
as the EU General Data Protection Regulation (GDPR).1 Although
very useful, such research produces post-hoc methods to explain
pre-trained models on each training instance [4]. Therefore, this
interpretability does not concern accuracy on test data. A yet

1 The EU General Data Protection Regulation includes a right to explanation
in situations, where ML algorithms are applied to make a decision affecting a
person.

https://doi.org/10.1016/j.asoc.2021.107198
1568-4946/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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another incentive for managing complexity is computational con-
straints. For example, Internet of Things (IoT) devices constrain
the evaluation time of an acceptable model even if this compro-
mises the model’s accuracy [5]. However, a question arises as to
whether constraining evaluation times can effectively decrease
complexity and improve accuracy. In summary, the reasons for
controlling model complexity vary and so does the notion of
complexity [6].

This study focuses on the complexity of models produced by
Genetic Programming (GP) [7]. In GP, the concern is that mod-
els may grow too complex and render ineffective evolutionary
search [8]. Bloat control is thus the most common way of control-
ling model complexity in GP, and it limits the sizes of the evolved
expressions. However, previous studies have demonstrated that
bloat control alone does not always overcome the model over-
fitting problem (that is, a good performance on the training/seen
data but a poor performance on the test/unseen data) [9,10].

To address such ineffective control of model complexity in GP,
this paper presents a novel method called Asynchronous Parallel
Genetic Programming (APGP). Instead of model size, APGP em-
ploys the evaluation time – the computational time required to
evaluate a GP model on data – as a notion of its complexity. This
notion is based on the observation that a model made up of com-
putationally expensive building blocks or having large structures
takes a long time to be evaluated, and hence is computationally
complex. Therefore, the evaluation time control discourages both
the structural as well as functional complexity.

The next question is how to control the evaluation times.
Instead of subjectively penalising the slow evaluations, APGP
takes a simple view: induce a race among competing models
that allows a model to join the breeding population as soon
as it has finished evaluating. Hence, the faster models can (fit-
ness permitting) join the breeding population before their slower
counterparts and gain an evolutionary advantage. This advantage
arises because the competing models compete in terms of not
only their accuracy but also their evaluation times due to the
race; this is quite unlike in standard GP where each evaluation (or
a batch of evaluations, as in generational replacement) is allowed
to finish before the next evaluation (or a batch of evaluations) can
start. Note, however, that selection is solely based on accuracy;
therefore, APGP facilitates a dynamic interplay between accu-
racy and simplicity. To induce this race, APGP evaluates multiple
models simultaneously across multiple asynchronous threads.

To evaluate the effectiveness of the proposed APGP method,
this work first compares APGP with standard GP and GP with
a very effective bloat control mechanism (GP+BC). The results
indicate that APGP is capable of breeding models that are sim-
pler than those produced with GP, yet more accurate on both
training and test data than the models produced by the other two
methods. Moreover, APGP takes a lower number of evaluations to
match the training accuracy of GP compared to GP+BC.

This work then further analyses the proposed APGP in two
ways. The first is an ablation study that analyses containing
complexity explicitly with evaluation time instead of using APGP,
which controls complexity implicitly with a race. To do that we
employ four effective bloat-control techniques but to control
evaluation time instead of expression sizes. The results indicate
that while evaluation time control performs better than size con-
trol, the APGP still produces more accurate models (both training
and test) than explicit control of evaluation time but while allow-
ing greater model complexity. This suggests that the complexity
control in APGP balances the accuracy-simplicity dilemma better
than its counterparts.

This work also explored an initialisation scheme where the
initial population comprises of identically sized individuals. This
is because when models in a population are sized identically,

the evaluation times are determined primarily by functional
complexity; therefore, an evaluation time control can discourage
functional complexity more than it can in a size-varying popula-
tion. The results indicate that this initialisation scheme benefited
all the methods, even the standard bloat control methods that do
not employ time control.

The rest of this paper is organised as follows. Section 2 pro-
vides some background on GP and some notions of complexity
related to it. Also in Section 2, the concept of evaluation time is
introduced and the challenge of measuring it reliably is discussed.
Section 3 presents the proposed APGP method. The experimental
setup is outlined in Section 4. The results of the experiments are
reported and discussed in Section 5. Sections 6 and 7 provide fur-
ther analysis of the proposed method. Finally, Section 8 concludes
the paper and outlines some directions for further work.

2. Background

2.1. Genetic Programming (GP)

GP enables computers to program themselves and build mod-
els automatically. It is also known as an evolutionary algorithm
(EA) because it loosely imitates the Darwinian principle of natural
selection to automatically search the space of possible models
without any prior knowledge [2]. The process involves probabilis-
tically choosing better performing individuals (models) from a
given population, and producing offspring via simulated genetic
operators of crossover and mutation. GP has been used to pro-
duce solutions to many practical problems. A detailed account
of practical and innovative results produced by GP can be found
in [11].

A variable tree-styled structure is the traditional and most
popular representation of GP individuals [12], although other
variations are also common [13–18]. These representations pro-
duce models of different sizes; in fact, these sizes may grow
without improving accuracy (also known as code bloat) [19]. To
address this issue, a lot of research efforts have been dedicated to
developing methods for measuring and managing the complexity
of GP models. The existing notions of complexity in GP and ways
of its control are discussed below in turn.

2.2. Complexity in genetic programming

Some motivations for managing the complexity of computa-
tional models were discussed in Section 1. Here, we consider
how some of these motivations are being addressed in GP. This
involves examining the most widely used measures of complexity
and mechanisms employed to control them.

2.2.1. Structural complexity
Traditionally, controlling complexity in GP means controlling

the size of evolved structures, which includes limiting the num-
ber of nodes, encapsulated sub-trees and layers making up the
evolved expressions, while ignoring the underlying functional or
computational complexity.

The size is a simple and easy-to-calculate measure of complex-
ity [20]. Early in the development of GP, it was observed that the
size of GP models can grow unnecessarily (a phenomenon termed
as bloat), severely constraining the computational resources [8].
The study of bloat control in GP has produced a large body of
literature that cannot be covered extensively here. Instead, we
provide a quick summary of some of the popular bloat control
methods.

Many bloat-control techniques either set an arbitrary size (or
depth) limit for models, or penalise large models [21]. How-
ever, such setups also encourage growing up to these size lim-
its because that guarantees survival of such individuals after

2
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crossover [22,23]. Other bloat-control techniques either limit the
search space or reduce the likelihood of producing large mod-
els through customisation of the evolutionary process [21]. An-
other approach is to use multi-objective genetic programming
(MOGP) [20] that optimises the twin objectives of fitness and size
to obtain Pareto optimal solutions. MOGP is sometimes used in
combination with other measures of complexity.

Dynamic Operator equalisation (DynOpEQ) [24], a recent and
advanced bloat-control technique, dynamically changes the dis-
tribution of size in a population to admit more individuals in
those size ranges that are producing fitter models. First, the
individuals of the population are segmented into bins according
to their sizes. When a new generation is produced, the number of
individuals allowed in each bin is determined by the average fit-
ness score of the corresponding bin in the parent generation; bins
with higher average fitness scores are allowed more individuals.
However, an offspring will always be admitted if its fitness score
is higher than the best of the bin it belongs to, even if the bin’s
quota has been exhausted. Further, if an offspring is the new best
and its size does not fit into any existing bin, then a new bin is
created for it. In effect, DynOpEQ does not guarantee that bloated
individuals will not exist in the population; however, the popula-
tion is controlled in such a way that growth in size is somewhat
contained unless fitness is improving. DynOpEQ is inefficient as
it discards a large portion of evaluated candidates; an evaluated
offspring is likely to be discarded if the bin it belongs to is full. To
alleviate this problem, Mutation Operator Equalisation [24] was
introduced; it mutates candidates (in small steps) to fit into the
nearest bin with available space. However, the required changes
may be exceedingly destructive to the model’s fitness when the
distance between the individual’s original size and the size it
needs to be is too large.

Some studies have explored the concept of Kolmogorov com-
plexity [25,26] to manage complexity in GP. This concept is
adopted from algorithmic information theory and relates to spec-
ifying an object such as a binary string or a sequence of numbers.
The Kolmogorov complexity of such an object is the length of
the shortest computer program that can produce the object and
nothing more. An abstract coding language (universal Turing
machine) is used as a reference. However, this measure is un-
computable [27,28] because the output of every program cannot
be computed to definitively determine the shortest. Hence, the
minimum description length (MDL) [29,30], a computable form of
the Kolmogorov complexity, has been applied in GP instead [31].
The study [31] calculated the MDL value of an individual by
summing the length of code required to encode it and the length
of code required to encode its classification errors. Thereafter, a
scaling technique [32] was used to transform the MDL value to a
windowed MDL value; the windowed MDL value is relative to the
maximum MDL value of the individuals produced up to that point
of the GP run. The MDL-based fitness function, which was setup
to minimise the windowed MDL value, controlled the growth of
the individuals. However, the implementation only works under
two conditions: (1) where performance of individuals improves
with the growth of the trees, and (2) where the fitness of the
substructures of the trees are well-defined.

Restricting the structural representation of GP solutions is
not an effective way of managing their complexity. In symbolic
regression, for example, the model size does not represent the un-
derlying functional and computational complexity of the model.
For instance, restricting size would mean penalising the large yet
linear expression 9x+ 6x+ 3x+ 2x+ x, which is computationally
less complex than the smaller expression sin(x) [10], which is
computationally equivalent to the implementation of its Taylor
series expansion

∑
∞

n=0(−1)
n x2n+1
(2n+1)! . Moreover, the response sur-

face of sin(x) is more complex than that of the linear function

that is larger in size. Further, two expressions with the same
size may have different response surfaces; the response of the
function sin(9x) has greater fluctuations than sin(2x). Thus, model
complexity in GP is more than their representation.

2.2.2. Functional complexity
Approaches based on functional complexity focus on the func-

tionality of models rather than their representation. To elicit
functional complexity, one method approximates the evolved
expressions with Chebyshev polynomials [33] such that func-
tionally complex expressions are approximated by polynomi-
als of a higher degree. The degree of approximating polynomi-
als is termed as the order of non-linearity of the corresponding
GP expressions [34], which should be minimised. However, the
minimisation procedure requires the evolved expressions to be
twice differentiable, a property that is not always guaranteed.
The study [33] aimed to optimise three objectives: accuracy, the
order of non-linearity and expressional complexity (size). A trade-
off between accuracy and the order-of-non-linearity to guide
selection led to improved generalisation over bloat control. Fur-
ther, the study introduced a system that alternates between the
optimisation of two sets of objectives during the evolution: (1)
the optimisation of accuracy and the order of non-linearity, and
(2) the optimisation of accuracy with size. This 2-D optimisation
framework showed improvements in both managing the size of
evolved models and their generalisation ability.

To avoid the constraint of twice-differentiability in [33] Van-
neschi et al. [9] defined a less rigorous measure of functional
complexity, whereby the slope of an expression along each fea-
ture dimension is approximated with a simpler but error-prone
measure that approximates second order partial derivatives with
a finite difference method that uses unequal intervals; however,
the eventual measure of complexity that the work proposes is
mathematically questionable because it simply averages these
approximations to partial derivatives across all the feature di-
mensions to get an average complexity. To what extent that
average diverges from a Hessian is not discussed. To avoid com-
putational expense, this measure was only computed for the
best individual in each generation. Crucially, however, the paper
reported that a decrease in this measure did not necessarily
decrease overfitting.

Castelli et al. [35] proposed other complexity measures that
relate to curvature. The authors quantified the degree of curvature
by examining the output of the pairs of close training points for
a given model. The number of pairs with very different outputs
were used to reflect the curvature. This formed the basis of two
measures: (1) graph-based complexity to measure functional com-
plexity and (2) graph-based learning ability to quantify the ability
to learn difficult training points. The result of the experiments
showed some generalisation gains over standard GP.

2.2.3. Complexity based on statistical learning
Methods for managing model complexity based on statistical

learning theory, including generalisation error-bound Vapnik–
Chervonenkis (VC) theory and Rademacher complexity theory [36,
37], are designed to find a balance between model complexity
and its generalisation capability; while models should be complex
enough to find patterns in training data, those that are too
complex do not generalise well. The VC dimension is a general
measure of the capacity or complexity of a learning machine [38,
39]. According to the original definition proposed for a set of
indicator functions, the VC dimension is the maximum number
of vectors that can be separated (shattered) into two classes in
all possible ways by a set of functions [38]. The VC dimension is
used to provide various estimations of generalisation errors.

Structural risk minimisation (SRM) is a framework that uses
the VC dimension to assess the generalisation ability of a learning
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machine [40]. The assessment involves predicting the distance
between the training and test errors. To do this, SRM defines the
upper bound of the generalisation error based on the empirical
risk (training error) and confidence interval. The confidence inter-
val measures the difference between the empirical risk (training
error) and the expected risk (generalisation error); it depends
on (1) the size of the training set and (2) VC dimension. When
the size of the training data is fixed, the generalisation bound is
indicated by the VC dimension only; therefore, it is also called
the VC generalisation bound or VC bound. SRM is used to pro-
duce an optimal model that finds a balance between minimising
the upper bound of the generalisation error and minimising the
training error. SRM was also used to manage the complexity
of evolved models in [41]. While the proposed method outper-
formed standard GP by producing smaller sized models with
better generalisation, the authors acknowledged the expensive
computational cost of the method and lack of exploration of the
parameters used in measuring the VC dimension.

Rademacher complexity extends the VC dimension to handle
real-valued functions; therefore, it can be applied to both clas-
sification and regression problems. This measure of complexity
has a tighter bound on the generalisation error than the VC
dimension, and unlike the VC dimension, it depends on the data
distribution. Rademacher complexity was used in [42] to drive
the evolutionary process, which led to models with significantly
smaller sizes and better generalisation ability compared to those
generated by standard GP. However, the implementation has a
lengthy process of tuning the parameter used to increase the
pressure when overfitting occurs. Similar to the VC dimension,
this is not a trivial task to compute.

Azad and Ryan [43] used the variance of the output values
of evolving expressions to infer their complexity. They combined
the variance and the fitness as twin objectives to optimise. Al-
though variance differs with mathematical smoothness (a straight
line can have a greater variance than a sinusoid), its combina-
tion with fitness meant that expressions within similar func-
tional space may normally be compared in later generations with
greater genetic convergence; however, this needs further veri-
fication. The method improved generalisation. Moreover, since
the method does not require specialised multi-objective optimi-
sation methods, it is simple to implement and computationally
inexpensive.

Ni and Rockett [44] coined a measure of complexity that
incorporates Tikhonov regularisation (as a functional complexity
indicator) and size (a structural complexity measure). Tikhonov
regularisation (also known as ridge regression) is a simple and
common L2 parameter regularisation strategy. This work was mo-
tivated by the understanding that addressing functional complex-
ity does not necessarily address structural complexity and vice
versa; also both are important in GP. Therefore, they used a two-
dimensional vector that consisted of the Tikhonov regulariser (an
indicator of the smoothness of response of the function) and
the size of the model to represent its complexity; the Pareto
optimal individual is considered the simpler individual. The two-
dimensional vector was then used as an objective in conjunction
with accuracy in a traditional multi-objective optimisation ap-
proach. This method led to generalisation gains over GP with size
control. It also attained higher accuracy over GP with Tikhonov
regularisation.

In summary, the popular techniques based on structural com-
plexity tend to reduce the model sizes but not overfitting; like-
wise, the techniques based on functional complexity show some
generalisation gains but often need to be married up with struc-
tural complexity and require parameter tuning overhead; also,
these techniques are often tailored to specific tasks such as re-
gression whereas automatic programming in GP extends beyond

that. In contrast, the present study aims to induce non-complex
models naturally regardless of the application domain by using
the model evaluation time as a measure of its complexity.

The use of the evaluation time as an indicator of complexity
is relatively new in GP such as in the proof of concept of this
work [45]. At around the time of publication of [45] another
study [46] also used evaluation times to control bloat, where
the correlation between the size and the evaluation time was
employed to manage bloat in a variety of problems. Although that
second study corroborates our proposal that the evaluation time
can be used to control model complexity, this work goes beyond
bloat control to assess how evaluation time reflects both size and
functional complexity, and proposes a new method, called APGP,
for managing model complexity by enabling a race condition
among evolved models.

2.3. Time is not size

Since Section 2.2.1 explains that model size does not neces-
sarily represent functional complexity, this section empirically
demonstrates how, instead, evaluation time can discriminate be-
tween different functional complexities. This demonstration is
important because it verifies whether considerable time differ-
ences exist between different functional complexities of iden-
tically sized expressions so that a GP system can exploit these
differences to promote functional simplicity. After all, evaluation
time is also a function of model size, and if functional differences
of identically sized expressions do not show up in evaluation
times, then measuring time is just another way of measuring
expression sizes. Clearly, this is undesirable.

To this end, four different function sets were used to gener-
ate symbolic regression models of different complexities. Func-
tional complexity of these sets decreases in the following order:
{cos, sin}, {cos, sin,+,−}, {×,÷,+,−} and {+,−}. Then, differ-
ently sized expressions (10, 20, 30, . . . , 300) were generated for
each function set, and 30 random expressions were generated for
each size. All models (expressions) were then evaluated 50 times,
each with the same set of data. The four plots in Fig. 1 represent
the average evaluation times of the individuals according to their
size and complexity.

Two trends are clearly visible in Fig. 1: (1) for a given size,
the higher the functional complexity the greater are the eval-
uation times; and (2) evaluation times are strongly correlated
with the expression sizes, as expected. Hence, the evaluation
time indeed discriminates between different functional complex-
ities. However, if a simple function is represented inefficiently
by an excessively large expression, it evaluates slowly. Therefore,
evaluation time control impacts conditionally: it curbs functional
complexity when individual sizes are similar and allows greater
sizes for functionally simpler models up to a certain tolerance (or
range); however, in the presence of very different sizes (such as
during early generations) it curbs growth in size (controls bloat).
To estimate the tolerance for greater sizes of simpler models,
compare different curves at identical values along y-axis of Fig. 1:
for example, at evaluation time = 300 ms, ADD-SUB models can
be more than twice as large as COS-SIN models.

The above findings also reveal the limiting behaviour of eval-
uation time control in GP. In a functionally diverse but size-
converged population – where bloat control is impotent – evalua-
tion times discriminate between functional complexities, whereas
in a functionally converged but size-diverse population, evalua-
tion times discriminate between sizes.
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Fig. 1. Relationship between the evaluation time, size and composition of
models. Individuals made up of COS and SIN operators have higher average eval-
uation times than same-sized individuals from other function sets. Furthermore,
the size correlates with the evaluation time.

2.4. Measuring evaluation time reliably

Consistency in the measurement of the evaluation times is
critical to estimate the complexity of models reliably. However,
evaluation times vary across multiple executions, and if this
variability is high, the reliability of the complexity estimate is
low. However, this variability cannot be completely eliminated
because it results from CPU scheduling decisions that are be-
yond our control. Still, we managed to significantly minimise this
variation across evaluations.

In particular, we found that certain CPU management options
can help minimise the evaluation time variation. These options
include: stopping all background services; locking the CPU speed
to prevent the operating system power management from inter-
fering; executing the experiments on dedicated processors; and
assigning the experimental tasks a high priority. Fig. 2 illustrates
the impact of these options. In the figure, each box-plot repre-
sents multiple evaluation times for an individual of a given size.
Fig. 2(a) shows that when no CPU management options were
applied the variation in the evaluation times was high. In contrast,
Fig. 2(b) shows that when the CPU management options were
applied the variation clearly decreased. Thus, we were able to use
a single evaluation to measure the evaluation time in the later
reported experiments.

The time measurements were made using a CPU-time-based
function that employs CPU performance counters [47]. This func-
tion is available in Python 3.3 and above. The function offers high
resolution (in nanoseconds) across platforms, while the returned
values are in fractional seconds.

The techniques used to improve time readings may not work
in all situations. For example, stabilising time measurements
becomes more challenging when the models being evaluated are
exceptionally large, like those used in [48], where trees with
millions of nodes were evolved. In this case, CPU memory caching
comes into play. This is when the processor, while executing a
task, has to access CPU memory caches (L1, L2 and L3) having
different speeds. Moving from one type of cache to another may
introduce delays and inconsistencies in the time measurements.
In any case, the achieved improved stability enabled us to explore
the proposed concepts and systems.

2.5. Parallel genetic programming

Because we leverage parallel computing for our proposed sys-
tem, we first review its use in existing GP literature and contrast
it with our objectives.

Although the use of parallel computing is not new in GP [49–
51], it is typically to improve the run times [52] of GP, as op-
posed to reducing the complexity of individual models, which
is the target of this study. As GP runs can take a long time to
complete, parallelising these runs reduces the overall run time.
Most commonly, generational replacement schemes parallelise
the evaluation of offspring populations. However, the genera-
tional replacement requires the entire offspring population to be
ready before its members can start breeding, which means that
all evaluation threads join at a single point of synchronisation
before the evolution proceeds further. Hence, this parallelisation
confers no advantage to simpler individuals and is inefficient in
terms of resource utilisation: while a complex individual is taking
an excessive amount of time to be evaluated on one CPU, the
remaining CPUs stay idle after other, less complex, individuals
have been evaluated.

Some EAs have employed asynchronous parallel computing in
non-GP setups to alleviate this problem of idle time. For example,
an evaluation time bias favouring smaller evaluation times can be
observed in [50,53]; however, these studies are concerned with
real parameter optimisation using fixed-length chromosomes and
do not study the impact of asynchronous parallelism on the
functional complexity of variable length structures in GP.

EAs also use parallel computing in the so called island model
[54,55], where the evolved populations are divided into multiple
distinct islands, and the sub-population in each island can be
evolved in a separate parallel thread. Regardless of parallelisation,
the island model offers advantages such as greater diversity in the
overall population because each island remains oblivious to other
islands except at discrete intervals when selected individuals are
sent to other islands. Parallelisation in this model just speeds up
the run times.

3. Asynchronous Parallel Genetic Programming (APGP)

The APGP method evaluates GP individuals asynchronously
to allow simple individuals that are evaluated faster an oppor-
tunity to get into the breeding population prior to their more
complex (and still evaluating) counterparts. This mechanism is
also natural; after all, natural populations do not simply halt
breeding while one of their members is being tested against the
environment. Yet, this is precisely what happens in traditional
GP: while an individual of any complexity is being evaluated, the
evolution stops regardless of how long that evaluation takes. Thus
traditional GP confers no advantage to fast evaluations (and hence
potentially low complexity). However, APGP aims to leverage
the advantage of fast evaluations to breed simple yet accurate
models.

APGP is based on Steady State GP [56], a replacement scheme
in which the offspring immediately competes for a place in the
parent population after being evaluated. In APGP steady state re-
placement allows multiple breeding operations and fitness eval-
uations to be executed in parallel and asynchronously. For ex-
ample, a maximum of 50 of such breed operations (followed
immediately by the corresponding fitness evaluation; note our
setup produces one offspring per breed operation) can be allowed
to run at the same time; as soon as one operation finishes,
another one starts. However, these operations may finish at dif-
ferent times due to the varying times taken to evaluate different
models. This difference is due only to the different make up of
models because all models are evaluated on exactly the same
dataset. Thus, a race condition develops such that less complex
individuals taking less time to be evaluated can apply for a place
into the population before their slower counterparts; applying
for a place means checking if the new model is fitter than the
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Fig. 2. Measuring evaluation time reliably: applying CPU management options leads to more consistent measurements.

‘‘winner"2 of an inverse tournament, and if so replacing that win-
ner with the new model. Hence, the fast evaluating individuals
may reproduce earlier than the more complex individuals taking
longer to be evaluated.

Algorithm 1 lists the pseudo code of the APGP algorithm. The
algorithm begins by initialising the number of allowed concurrent
evaluations, population size and total number of offspring (total
number of fitness evaluations in the run). This is followed by
creating the initial population and evaluating it. The parallel
breeding then begins by initiating multiple breed operations up
to the allowed limit. These breed operations evaluate offspring in
independent threads. As soon as an offspring completes evaluat-
ing, it replaces the winner of an inverse tournament in the current
population if it is fitter than the winner, and the corresponding
thread is released to allow another breed operation to commence.
As these parallel operations work over the same population, a
temporary lock is set on the position of the individual being
replaced to avoid clashes.

As discussed above, the decision on whether an offspring finds
a place in the population is made based on its accuracy only. As
such, speed becomes an advantage only when it is accompanied
by high accuracy. Where complex candidates are more accurate,
they will eventually get in, get selected and propagate. Thus,
complex models are not excluded, and the simplicity of good
models is constrained by the possibilities within the specific
problem.

4. Experiments

The performance of APGP was evaluated against standard GP
and GP with an effective bloat control mechanism (GP+BC) on
a suite of symbolic regression problems. Identical parameters
were adopted across the three methods except: the race con-
dition, which was present only in APGP; and the bloat control
mechanism, which was present only in GP+BC.

4.1. Test problems

We considered the recommendations provided in [57] when
choosing the test problems. Five multi-dimensional problems and
one bi-dimensional problem were used. The datasets for Prob-
lems 1–5 are described in [58]; Problem 6 is a bi-variate version

2 The winner of an inverse tournament is the worst member of the
tournament; we use an inverse tournament of size 5.

Algorithm 1: Asynchronous Parallel Genetic Programming
(APGP) Algorithm

/* Initialise */
N ← set total number of offspring to produce;
threadpool← set number of concurrent operations allowed;
popsize← set population size;

/* Generate and evaluate initial population */
population← generate initial population of size popsize;
Evaluate(population);

/* Generate and evaluate offspring in parallel */
count = 0;
while count < N do

if threadpool > 0 then
Thread(threadpool← threadpool − 1 &&
offspring← Breed_and_evaluate() );
count ← count + 1;
if offspring_evaluated then

replace← To_Replace(population);
if fitness(offspring) > fitness(population[replace]) then

Lock population[replace] memory position;
population[replace] ← offspring;
Release locked position;

else
Discard offspring;

Release thread: threadpool← threadpool + 1;
else

Wait
end

of the function used in [59]. The datasets are summarised in
Table 1. As the results reported in Section 5 show, all but Dow
are hard for GP (the accuracy scores are less than 41%). Hence,
these problems require GP to run long and thus present a good
test bed for evaluating complexity control because complexity in
GP grows with the increase in the duration of runs.

4.2. Configuration and parameters

The basic parameters for all the methods are summarised in
Table 2. Other key experimental decisions included the following.
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Table 1
Overview of the test problems.
ID Label Test problem No. of variables No. of instances

1 Airfoil Airfoil self-noise 5 1503
2 Boston Boston housing 13 506
3 Concrete Concrete strength 8 1030
4 Dow Dow chemical 57 1066
5 Energy Energy efficiency 8 768
6 Y2X6 y2x6 − 2.13y4x4 +

y6x2
2 250 (x = min:-0.3,

step: 0.012;
y = x+ 0.03)

• Bloat Control for GP+BC: Double tournament [60] was employed
to control bloat. This is a method that has been very suc-
cessful on a variety of benchmark problems [60,61], and the
results of our experiments reported in Section 5 also show
that this method indeed limits sizes aggressively. The best
problem-independent settings for this method were used as
recommended in [60]: in the first round, run n probabilistic
tournaments, each with a tournament of size 2, to select a
set of n individuals; then, in the second round, select the
fittest out of the n individuals. The tournaments in the first
round choose the smallest individual with a probability of
0.7. We also considered using Operator Equalisation (OpEq),
a more recent bloat control method [62,63]; however, un-
like APGP, which uses steady-state replacement, OpEq requires
generational replacement.
• Degree of Concurrency: The size of the thread pool (number

of parallel threads available) can vary in APGP. We tested
pool sizes 5, 25, 50, 75 and 100. While size 50 produced the
best or competitive results generally, some problem-specific
improvement may be possible with other thread sizes. Future
work can further investigate this.
• System Configuration: The experiments were run on Windows

10 (64-bit) with 32GB RAM, and Intel Core i7-6700 CPU @
3.40 GHz (quad-core).
• Additional Configuration and Parameters: The other key exper-

imental decisions were the following. First, the individuals
with divide-by-zero errors were assigned the worst fitness;
as discussed in [64], the protected operators commonly used
in GP lead to poor generalisation. Second, the datasets were
randomly split into training and test sets using the 80:20 ratio.
Finally, the fitness was calculated as 1

1+ 1
n Σn

i=1(yi−ŷi)
2 such that

yi and ŷi represent ideal and model’s outputs respectively; the
fitness value stays between 0 and 1, where a higher value is
better.

5. Experimental results

To evaluate the performance of the proposed APGP method,
we compared the accuracy (fitness) scores of its evolved models
over the training and test sets against those of models evolved
by standard GP and GP+BC. In addition, we noted the average
number of evaluations it took APGP and GP+BC to reach the
average training accuracy of GP (target accuracy); this shows the
efficiency of the other methods relative to GP.

5.1. Accuracy of the tested methods

As fitness in our experiments was set up as a maximisation
function (where higher fitness scores are better), we use the term
fitness and accuracy interchangeably. Fig. 3 shows the colour-
coded results of the Mann–Whitney U statistical test on the final
populations (of models) that were output by APGP, standard GP

Table 2
Summary of parameters used in the tested methods.
Parameter Setting

Number of runs 50
Population size 500
Run terminates After 35,000 evaluations (≡ 70 generations)
Random tree/
subtree
generation

Ramped half-and-half
(depth min = 1,max = 4)

Tree depth limit 17
Operators &
probabilities

One point crossover = 0.9 Point mutation
= 0.1

Function set +,−, ∗, /, sin, cos, neg
Ephemeral
random constants
(ERC)

|ERC | = 100 (min = 0.05, step: 0.05)

Terminal set {Input variables} U ERC
Selection tournament size = 3
Replacement steady state, inverse tournament size = 5

Fig. 3. Results of Mann–Whitney U tests on the final populations (APGP vs
GP; APGP vs GP+BC). The results show that APGP produced significantly more
accurate models (in terms of their training and test fitness) on all datasets
compared to both GP and GP+BC. While APGP produced significantly simpler
models than GP in five out of six test, GP+BC produced significantly simpler
models than APGP at the price of accuracy.

and GP+BC for all test problems. The results include the eval-
uation time, size, training and test fitness of the models. The
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Fig. 4. Scatter-plot Test-fitness by Size of final populations of APGP, GP and GP+BC. The preferred individuals are in the top left corners of the charts (individuals
with high test fitness accuracy and small sizes). The clusters discovered by K-means clustering are indicated.

p-values shown in Fig. 3 correspond to the statistical difference
between APGP and GP, as well as APGP and GP+BC. The rows
coloured in green represent the cases when APGP is significantly
better (i.e. outputs less complex models or achieves higher accu-
racy) than either GP or GP+BC, red when it is significantly worse,
and yellow when it is not significantly different.

The dominating green colour in columns 3 and 4 of Fig. 3 indi-
cate that APGP significantly outperforms GP in the vast majority
of the tests. In particular, the final population output by APGP is

simpler than that output by GP for all the problems except Dow;
this is indicated by significantly smaller mean evaluation times
and sizes. Furthermore, the training and test accuracy scores
(fitness) of APGP are significantly better than those of GP for
all the problems except for the training fitness of Energy, where
the improvement is not significant. Finally, the APGP test fitness
values, which is the major concern when evaluating models, are
significantly better than those of GP for all the problems. This
indicates that the models output by APGP tend to generalise
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Table 3
Comparison of the best individuals that were output by the three considered
methods. Positive/negative numbers correspond to the increase/decrease in the
corresponding metric values of APGP relative to GP or GP+BC. APGP produced
more accurate models than GP and GP+BC for all the problems, however,
sometimes, at the expense of longer evaluation times and/or larger model sizes.
Test ID Test fitness gain Eval. time

increase
Size increase

Relative performance of APGP compared to GP

Airfoil +24.99% −43.26% −47.17%
Boston +6.64% +12.31% −0.896%
Concrete +22.43% −36.99% −44.96%
Dow +2.04% −78.13% −85.71%
Energy +3.13% −22.92% −18.38%
Y2X6 +0.11% +42.57% −11.11%

Relative performance of APGP compared to GP+BC

Airfoil +19.93% +18.00% +15.0%
Boston +43.24% +95.17% +452.5%
Concrete +11.56% +72.70% +100.0%
Dow +2.43% −78.56% −65.82%
Energy +69.10% −34.51% +40.91%
Y2X6 +1.71% +49.45% +695.0%

better on unseen data compared to the models output by GP. It
can be noticed that the reported p-values are very small, which
indicates that the differences between the results of the two
methods are very significant.

While APGP produced more complex individuals than GP for
Dow, it demonstrated better training and test fitness values. The
relative increase in complexity (size and evaluation time) in this
one instance comes with an associated gain in fitness; therefore,
it is not necessarily bloat — bloat is growth in size without an
associated gain in accuracy.

When comparing APGP with GP+BC, as captured in columns 5
and 6 of Fig. 3, GP+BC produced significantly smaller models for
all the problems since it aggressively and solely targets the model
size. However, these simpler models achieved significantly lower
training and test accuracy values. In other words, simplicity in
GP+BC came at the expense of accuracy.

While APGP outperformed GP and GP+BC on average, we were
also interested in identifying the method that produced the bet-
ter individuals; GP applications are often interested in the best
solutions and not averages. We used the test fitness scores as a
criteria for identifying the best of each method. A comparison is
summarised in Table 3; the values show how APGP differs from
the other compared methods in percentages. It can be noticed
from the table that APGP produced individuals with the overall
best test accuracy (fitness) values for all the six problems. As
noted before, the best models that were output by APGP were
also smaller than those output by GP but sometimes larger than
GP+BC.

5.2. Cost of producing accurate models

Using the average training accuracy of GP as a benchmark,
we compared the average evaluations taken by each method to
match that training accuracy. Where a particular run did not
achieve that target, it was assigned the maximum number of
budgeted evaluations. As summarised in Table 4, APGP used 10%
to 40% fewer evaluations than GP, and 15% to 84% fewer than
GP+BC. Thus, APGP is the fastest to train, whereas GP+BC despite
producing smaller individuals is the slowest; note, as in Fig. 3,
both GP and GP+BC are also consistently less accurate than APGP
on both training and test sets.

5.3. Constitution of the populations

The proposed APGP is based on the idea that simple models
that are competitive will be allowed to thrive and that complex
models that are accurate will not be excluded. In this section
we examine the makeup of the final populations in terms of the
accuracy and simplicity of the individual models.

Scatter-plots that plot test fitness against model-size in the
final populations are presented in Fig. 4. Each method has a sepa-
rate plot for each problem. Columns 1, 2 and 3 are plots for APGP,
GP and GP+BC respectively. The plots also have clusters indicated
(by ovals) that were identified using K-means algorithm [65].

The GP+BC plots (column 3) show more convergence towards
the origin than the other methods. In other words, the aggressive
restriction of size by GP+BC also restricts test fitness accuracy. On
the other hand, GP allows size to grow with gains in accuracy.
Whereas, APGP produced the highest test fitness scores while
gently managing complexity.

These trends are similar to those observed in the population
in Section 5.1, where it was established that the difference in the
populations is statistically significant.

These observations suggest that the best test fitness values are
not associated with either extreme of size restriction. They also
suggest that APGP normally offers the best trade-off in terms of
accuracy and simplicity.

As all the methods show variation within the populations and
an appropriate size is problem specific, finding ideal solutions is
more a matter of investigation than persistently controlling size.
APGP aims to control complexity in an organic approach, where
simple solutions can thrive when their training accuracy is better
than their more complex counterparts.

From the above results the merit of the ideas behind the APGP
system are apparent. However, a questions arises: if we use time-
control methods that explicitly minimise evaluation time instead
of sizes, can we reproduce the previous results without using
the race condition that APGP uses to induce a more implicit time
control? The next section explores this question.

6. Explicit time control

The proposed APGP controls complexity by implicitly control-
ling evaluation time. Therefore, it offers novelty in two fronts: (1)
the idea that evaluation time can serve as a measure of complex-
ity and (2) the race condition that APGP employs to control this
indicator of complexity. Here we decouple the two to examine
how explicit control of evaluation time compares with APGP. This
will also enable us to explore the behaviour of evaluation time.

As in [66] that introduced explicit time control, we use four
well-known techniques for bloat-control to now instead con-
trol evaluation time; hence, the techniques effect an explicit
time-control. However, unlike in [66] that compared time-control
with only standard GP methods, here we compare the explicit
time-control against a relatively implicit time-control in APGP.

6.1. Techniques for explicit time control

The bloat-control techniques that were adapted to control
evaluation time are as follows:

1. Death by Size (DS) [60] increases the probability of replacing
the larger individuals from the present population. To replace
an individual, DS randomly selects two individuals and re-
places the larger with a given probability (typically 0.7; we use
the same).
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Table 4
APGP used significantly fewer evaluations than both GP and GP+BC to reach the same target
accuracy. .
No. of evaluations to reach target accuracy

Test ID GP mean GP+BC mean APGP mean Difference APGP
/GP

Difference APGP
/GP+BC

Airfoil 29407 33041 23941 18.59% 38.01%
Boston 20761 27792 17762 14.44% 56.47%
Concrete 31668 33595 20422 35.51% 64.50%
Dow 17861 19762 10719 39.99% 84.36%
Energy 28852 34842 25658 11.07% 35.79%%
Y2X6 33077 33895 29546 10.68% 14.72%

Fig. 5. APGP vs explicit time-control methods. Detailed here are the results of the test for significance of difference in the final populations of APGP against those
of the explicit time control methods. The results show that APGP produced significantly more accurate (training and test fitness) models on all tests against and
against all time-control methods. The time-control methods produced simpler models at the cost of accuracy.

2. Double Tournament (DT) [60,61] encourages the reproduc-
tion of small offspring by increasing the probability of choos-
ing smaller individuals as parents. This is achieved with two
rounds of tournaments. In the first round, it runs n probabilis-
tic tournaments each with a tournament of size 2 to select a set
of n individuals. Each of these tournaments selects the smaller
individual with a probability of 0.7. Then, in the second round,
DT selects the fittest out of the n individuals.

3. Operator Equalisation (OpEq) [62,63] allows the sizes of indi-
viduals to grow only when fitness is improving. It controls the
distribution of size in the population by employing two core
functions. The first determines the target distribution (by size)
of individuals in the next generation; the second ensures that
the next generation matches the target distribution. To define
the target distribution, OpEq puts the current individuals into
bins according to their sizes and calculates the average fitness
score of each bin. This average score is then used to calculate
the number of individuals to be allowed in a corresponding

bin in the next generation (target distribution). Thus, from one
generation to the next the target distribution changes to favour
the sizes that produce fitter individuals. In our experiments we
used Dynamic OpEq, which is the variant that produces higher
accuracy [63].
To adapt OpEq to control evaluation time, we had to estimate
the time equivalent of the bin width at the beginning of the
run; we used bin width = 5 in our experiments.

4. The Tarpeian (TP) [19] discourages growth in size by penal-
ising larger individuals in the population and making them
noncompetitive. This is effected by calculating the average
size of the population at every generation and then assigning
the worst fitness to a fraction W of the individuals that have
above-average size (recommended W = 0.3; we use the
same).

Similar to APGP, Death by Size and Double Tournament use
Steady-state replacement strategy. However, although Operator
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Equalisation and Tarpeian use the generational replacement strat-
egy that differs from the steady state in APGP, we still report their
results as benchmarks due to their popularity as bloat control
methods.

6.2. Results of comparing APGP with explicit time control

APGP produced more accurate models (both training and test
fitness) on all tests against all time-control methods. Fig. 5 details
the results of the tests for significance of difference in the final
populations. The improvement in accuracy by APGP was signif-
icant. Also, similar to the result of comparing APGP with bloat
control in Section 5, the control of complexity by APGP was not
as aggressive as the explicit time-control methods. The explicit
time-control techniques produced significantly simpler models
but lost out on accuracy.

Although [66] reported that the explicit control of evaluation
time instead of size outperforms the standard GP methods with
and without bloat control, these results show that APGP is still
more accurate. Thus, the asynchronous parallel breeding in APGP
manages complexity in such a way that allows greater accuracy
and while keeping complexity less than that in standard GP. In the
next section, we explore how evaluation time can be manoeuvred
to enhance APGP.

7. APGP for functionally diverse populations

In Section 2.3 we demonstrated that the evaluation time can
reflect both the size and functional complexity of models. This
finding suggests that when the individuals are identically sized
but functionally diverse, then differences in evaluation times
will largely reflect the differences in functional or computational
complexity of the functions that make up the models. Therefore,
restricting evaluation time in this environment will restrict the
complexity of the functions that make up the individuals. This
in turn may lead to simpler functional behaviour of the mod-
els and better generalisation. Therefore, in [66] we proposed a
Fixed-Length Initialisation (FLI) scheme that can be used to start
the evolution with a size converged and functionally diverse
population. The results demonstrated that using FLI significantly
improves the test fitness on a variety of GP techniques both with
bloat-control and time-control. Also, the results indicated that
time-control with FLI produces simpler functions.

However, FLI was not tested with APGP in [66]; therefore, we
test the impact of FLI on APGP in this paper.

7.1. Fixed Length Initialisation scheme (FLI)

We use FLI to produce an initial population of unique individ-
uals each having the same length (or size) of 10 nodes. Given the
functions set size of 7 a length of 10 can easily produce popula-
tions of a few hundred unique individuals. Later in Section 7.4,
we explored the impact of varying the lengths.

To encourage functional diversity, two individuals that only
differ by numeric constants are considered the same.

7.2. Impact of fixed length initialisation on APGP

APGP with FLI (APGP-FLI) produced significantly more accu-
rate models (on both training and test data) than plain APGP on
five out of the six test problems; see Fig. 6. In terms of sizes the
results were mixed (though APGP-FLI is better 4 out 6 times);
however, in terms of evaluation times, APGP-FLI was significantly
better than APGP on 5 out of six problems.

Fig. 6. Impact of FLI on APGP. Statistical tests showed that apply FLI to APGP
improved the mean accuracy values (both training and test) of the population
in 5 out of 6 problems. Also there was a reduction in size and evaluation times
in 4 out of 6 and 5 out of 6 respectively.

7.3. APGP with fixed length initialisation vs. time control with fixed
length initialisation

Next, we compare APGP-FLI against the time-control methods
with FLI. For this, we re-ran time-control methods with FLI and
tested for a significance in difference in the final populations
against APGP-FLI; the results of the Mann-U Whitney tests are
captured in Fig. 7.

The results show that APGP-FLI produced significantly more
accurate individuals than all the compared time-control tech-
niques with FLI. This is both in terms of training and test fitness
accuracy. Out of the twenty-four comparisons of accuracy with
APGP-FLI, only once another method outperformed APGP-FLI.
Also, the accuracy difference was not significant in one out of
twenty-four tests.

As with earlier comparisons with time-control methods,
mostly APGP-FLI produced more complex individuals; however,
again this complexity also brings higher accuracy on the test data.

7.4. Varying the lengths in the fixed length initialisation

In all the previous FLI experiments all the individuals in the
initial generation were made up of ten nodes. Here we explore the
impact of varying the initial size on APGP. Therefore, we re-ran
the APGP-FLI with ten different sizes from five to fifty (FLI-5 to
FLI-50, in steps of 5). Fig. 8 details the results. For each problem,
box-plots of the average test fitness values and average lengths
of the final populations are shown; the X-axis show the different
FLI sizes.
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Fig. 7. Results of Mann–Whitney U test for significance in the differences between the final populations of APGP with FLI and explicit time-control with FLI. APGP
produced more accurate solutions (both training and test) in all cases. Explicit time-control produced simpler (smaller sizes and evaluation times) models than APGP
in xx out of 24 tests.

The lengths of individuals in the final populations are not
affected significantly despite varying FLI lengths. However, there
is some activity in test-fitness: with the exception of Boston, the
results show that starting with individuals of size five (5 nodes
each) appears disadvantageous. The lengths that produced the
best results are problem specific. However, it is reassuring to note
that relatively lower lengths in FLI-10, FLI-15 and FLI-20 are at
least competitive with the greater lengths.

7.5. Summary of APGP in a functionally diverse population

The results in this section show that FLI significantly im-
proved APGP. Similarly, our related work [66] showed that FLI
improved the performance of time-control methods. However,
APGP retained its leading position in the environment that FLI
creates.

The analysis of time in Section 2.3 indicated that in a func-
tionally diverse and size converged environment, controlling time
will distinguish complexity based more on composition than on
size; FLI creates such an environment at the beginning of the
evolution but does not control the remaining generations. Future
work will study if encouraging such an environment in the re-
maining evolution will further intensify the effect of time-control.

8. Conclusions and future work

This paper exemplifies redefining complexity in GP with the
evaluation time. The evaluation time is both a function of the
size, as well as functional and computational effort of a model. Al-
though we only applied the measure here to regression problems,
it is also applicable to other domains.

A criticism of the proposed evaluation time measure is the
variability in its repeated measurements. To address this issue,
the paper demonstrated a way to minimise this variability, so that
the evaluation time could be measured reliably.

Leveraging evaluation times, this paper further presented a
novel method, called Asynchronous Parallel GP (APGP), which
uses asynchronous parallel computing to induce a race between
concurrent executions of multiple models to discourage com-
plexity. According to this race condition, models are allowed
to join a steady-state population as soon as they are evaluated
rather than waiting for other models to be evaluated. This condi-
tion provides an evolutionary advantage to simpler models, that
are also competitive in terms of accuracy. APGP thus challenges
the conventional, but ultimately unnatural, way of evaluating
individuals one after the other or in a lock-step.

Unlike aggressive bloat control techniques that penalise sizes
at the expense of achieving lower accuracy and hence increasing
training times, APGP produces models that are simpler than those
from standard GP and are more accurate than those from GP both
with or without complexity control; complexity was controlled
with standard bloat control methods or their time variants that
we defined as time-control methods. Against standard GP, APGP
improved test fitness accuracy on 6/6 test; the solutions were
also significantly simpler in 5/6 tests, both in terms of size and
evaluation times. Against GP with bloat control (GP+BC), APGP
improved test fitness accuracy on 6/6 test; but the solutions were
not simpler than BC (in 3/6 for evaluation times and 6/6 for size).
Thus, instead of aggressively going after complexity control, the
APGP decreases complexity but not to the extent that it starts
hurting accuracy on test data.

The APGP trained faster than GP and GP+BC on all 6 problems;
it reached the average training scores of GP with 11% to 40%
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Fig. 8. Impact of changing the sizes of individuals for FLI. Despite varying FLI lengths, the lengths of individuals in the final populations has remained fairly stable.
However, some changes were observed with test-fitness accuracy.

fewer evaluations than GP and 15% to 84% fewer evaluations than
GB+BC.

When APGP was compared against the explicit control of
evaluation time using four well-known and effective bloat control
techniques, APGP produced significantly more accurate solutions
on all tests (24/24). The explicit control methods controlled com-
plexity more aggressively; they produced significantly simpler
models in all tests but 1/24 for size and 3/24 for evaluation times.
Again, this shows the merit of APGP’s approach of not directly
targeting and penalising the complexity of models but rather
encouraging simplicity in competitive models.

Motivated by the idea that the evaluation time can distin-
guish functional complexity in a functionally diverse and size-
converged environment, we tested APGP with a new and effective
initialisation scheme called the Fixed Length Initialisation (FLI).
The FLI improved APGP even further: The test set accuracy in-
creased significantly in 5/6 tests; and the complexity decreased
significantly in 8/12 tests (3/6 for size and 5/6 for evaluation
times).

We also tested the sensitivity of the FLI to different initial
lengths and we found that the performance of APGP remains
largely robust against the variation. However, usefully, the rela-
tively smaller lengths of 10, 15, and 20 produced at least as good
performance as the greater lengths. While FLI allows functional
complexity to be detected in the earliest generations, future work
can explore similar possibilities throughout the evolution.

In summary, the results of the experiments presented in this
paper demonstrated that APGP has the potential for generating
simple and accurate models fast. While this study focused on
regression problems only, in principle, the evaluation time can
represent complexity in other domains as well. In the future, we
plan to test the proposed method on classification problem with
discrete fitness values and non-machine-learning problems such
as automatic programming and design.
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Abstract. Complexity of evolving models in genetic programming (GP)
can impact both the quality of the models and the evolutionary search.
While previous studies have proposed several notions of GP model com-
plexity, the size of a GP model is by far the most researched measure
of model complexity. However, previous studies have also shown that
controlling the size does not automatically improve the accuracy of GP
models, especially the accuracy on out of sample (test) data. Further-
more, size does not represent the functional composition of a model,
which is often related to its accuracy on test data. In this study, we
explore the evaluation time of GP models as a measure of their com-
plexity; we define the evaluation time as the time taken to evaluate a
model over some data. We demonstrate that the evaluation time reflects
both a model’s size and its composition; also, we show how to mea-
sure the evaluation time reliably. To validate our proposal, we leverage
four well-known methods to size-control but to control evaluation times
instead of the tree sizes; we thus compare size-control with time-control.
The results show that time-control with a nuanced notion of complex-
ity produces more accurate models on 17 out of 20 problem scenarios.
Even when the models have slightly greater times and sizes, time-control
counterbalances via superior accuracy on both training and test data.
The paper also argues that time-control can differentiate functional com-
plexity even better in an identically-sized population. To facilitate this,
the paper proposes Fixed Length Initialisation (FLI) that creates an
identically-sized but functionally-diverse population. The results show
that while FLI particularly suits time-control, it also generally improves
the performance of size-control. Overall, the paper poses evaluation-time
as a viable alternative to tree sizes to measure complexity in GP.
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1 Introduction

Motivations for controlling the complexity of machine learning (ML) models
vary and so does the notion of complexity [3]. One reason for managing the
complexity of ML models is to attain models that are only complex enough
to explain the phenomenon generating the given data but not too complex to
reflect noise in the data. Doing so means that the predictions produced by the
models on previously unseen data are accurate [18]; in other words, the model
generalises well. However, the challenge in this goal is determining when the
complexity is just enough. Another incentive for managing complexity is the
requirement for models to use computational resources efficiently. For example,
some computational environments such as the Internet of Things (IoT) devices
constrain the evaluation time of an acceptable model even if this compromises
its accuracy [13]. In Genetic Programming (GP), preventing the models from
growing too complex is also necessary to prevent the evolutionary search from
becoming ineffective [11]. A further motivation for managing complexity is the
demand for interpretable models: simple models can be more interpretable [14],
and the interpretability of ML models is now important. For example, the EU
General Data Protection Regulation (GDPR) stipulates a right to explanation
where ML algorithms are applied to make a decision affecting a person.

The challenge of defining a notion of complexity is compounded in the con-
text of Genetic programming (GP). For example, while ridge regression penalises
the growth in the magnitude of numeric coefficients in an otherwise fixed regres-
sion model, this penalty does not necessarily work in GP because GP evolves
the model itself. Moreover, GP is a versatile tool that can also evolve compilable
programs; therefore, minimising the coefficients does not automatically make
sense. Also, since during evolution the GP models grow in size, controlling this
growth (bloat control) has dominated the landscape of complexity control in
GP. However, some previous work [21] shows that controlling the size alone does
not automatically produce models that generalise as might have been expected.
Moreover, [2] shows that size does not indicate functional composition (or com-
plexity): after all, a very large GP tree may compose a simple linear function;
likewise, a small GP tree can compose a highly non-linear function. Together the
above challenges show that universally defining complexity is difficult.

This paper uses the evaluation time – the computational time required to
evaluate a model on the given data – to indicate its complexity. Due to different
functional and syntactic compositions of models in the evolving populations,
the evaluation time of the models varies. For example, the models made up of
computationally expensive functions or exceptionally large syntactic structures
take long to evaluate. Unlike size, the evaluation time thus indicates both the
syntactic and functional complexity; Sect. 2.2 expands further on that. However,
since evaluation times vary from one measurement to another, Sect. 2.3 shows
how to measure them reliably.
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To control evaluation times, we use four well-known techniques for bloat-
control to control evaluation time. However, instead of controlling size, we control
evaluation times using the same mechanisms; the techniques thus effect time-
control. We then compare the effect of time-control with that of size (or bloat)
control on the composition, size and accuracy of the evolving models.

The results of our experiments suggest that time-control with a nuanced
notion of complexity outperforms size-control in model-accuracy on 17 out of 20
problem scenarios. Even when time-control produces models with slightly greater
times and sizes, it counterbalances via superior accuracy on both training and
test data. The paper also shows that time-control can differentiate functional
complexity even better in an identically-sized population. To facilitate this, the
paper proposes Fixed Length Initialisation (FLI) that creates an identically-sized
but functionally-diverse population. The results show that while FLI particularly
suits time-control, it also generally improves the performance of size-control.

Following this introductory part, Sect. 2 of this paper provides some back-
ground; Sect. 3 details the experiments; Sect. 4 presents the results; and Sect. 5
covers future works and concludes the paper.

2 Background

2.1 Complexity in Genetic Programming

Traditionally, controlling complexity in GP means controlling structural com-
plexity such as the size (bloat control) of the evolved expressions, or the number
of encapsulated sub-trees and layers, while ignoring the underlying functional or
computational complexity [6,7,9,17,21]. For example, bloat control penalises a
large yet linear expression 4x+8x+2x+x+x, which is functionally and computa-
tionally less complex than a smaller expression sin(x) [2], which is equivalent to

its Taylor series expansion
∑∞

n=0(−1)n x2n+1

(2n+1)! . Clearly, the smaller expression

sin(x) needs more computational resources than its linear counterpart. Thus,
complexity in GP is more than merely the expression size.

Approaches based on functional complexity recognise that small structures
may be more complex than larger ones and hence focus on the functionality
of structures. To elicit functional complexity, one approach approximates the
evolving expressions by polynomials [23]; complex expressions are approximated
by polynomials of a high degree owing to large oscillations in the response of the
function. This degree of approximating polynomials is thus minimised in [23].
However, the minimisation requires the evolving expressions to be twice differ-
entiable, a property that is not always guaranteed. To alleviate this constraint,
Vanneschi et al. [21] defined a less rigorous measure of functional complexity,
whereby the slope of an expression is approximated by a simpler but error prone
measure. As such Vanneschi et al. did not control the complexity; instead, they
only measured the complexity of evolving expressions. Another approach [1] used
the variance of the outputs of the evolving expressions to measure the functional
complexity; this approach explicitly minimised the variance and maximised accu-
racy using a multi-objective optimisation approach. Note, however, that slope
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of the evolving functions can not indicate complexity when evolving compilable
programs for tasks such as robot navigation.

Similarly, statistical learning theory measures the complexity of a space of
functions that can be learned using statistical classification. The main techniques
include generalisation error bound VC theory and VC dimensions [12,22].

As the discussion highlights, the above techniques are either specialised to
various domains or challenging to implement. In contrast, the present study
simply measures the complexity of a model with its evaluation time.

2.2 Evaluating Time Is More Than Measuring Size

Fig. 1. Relationship between evaluation time, size and the composition of models is
shown. Individuals made up of COS and SIN operators have higher average evaluation
times than the same-sized individuals from other functions sets. Also, note that size
correlates with evaluation time.

While the previous section argues why measuring size is fundamentally different
to evaluating time, it is also important to empirically verify that. After all, the
evaluation time also increases when the expression size increases; however, we
must also ascertain if the evaluation time also practically increases with the
functional complexity. Otherwise, measuring time becomes simply a proxy for
measuring size. Clearly, that is undesirable.

To this end, we used four different functions sets to generate symbolic regres-
sion models of different complexities; Fig. 1 details the functions sets. For each
functions set, we generated differently sized individuals (10, 20, 30, ..., 300), and
in turn for each size we generated 30 random expressions. All the models were
then evaluated 50 times, each with the same data. Figure 1 presents the average
evaluation times of individuals according to their size and complexity.

Two trends are clearly visible in Fig. 1: (1) given the same size, the evalua-
tion times of functionally complex individuals are consistently higher than those
for their counterparts; and (2) evaluation times are also strongly correlated with
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the expression sizes, as expected. Hence, the evaluation times indeed differenti-
ate between functional complexities; however, if a simple function is inefficiently
coded as an excessively large expression, it evaluates slower. Therefore, evalu-
ation time control impacts conditionally: it prefers functional simplicity if the
sizes of a competing set of individuals are within a certain tolerance (or range);
otherwise, it prefers smaller sizes. Note, this tolerance increases as the size of
individuals increases. For example, the evaluation time of size 75 with functions
set COS-SIN is the same as that for size 175 with the functions set ADD-SUB.

The above findings also predict the limiting behaviour of evaluation time
control in GP. In a functionally diverse but a size-converged population – where
bloat control is impotent – evaluation times discriminate between functional
complexities, whereas in a functionally converged but a size-diverse population,
evaluation times discriminate between sizes.

The idea that time control discriminates between functional complexities
when sizes have converged prompted us to try a new initialisation scheme. The
new scheme starts with a population of identically sized but functionally diverse
individuals. We tested the impact of this new initialisation on all methods before
applying it to our experiments. Section 3.4 details this scheme and its impact.

2.3 Stabilising Evaluation Time Measurements

A problem with measuring evaluation times is that they vary across multiple
executions, and if this variability is high, one cannot reliably estimate the com-
plexity of a given model from a single evaluation. Since this variation results from
CPU scheduling that is under the control of the operating system, we can not
eliminate this variation totally. However, we found ways to significantly minimise
this variation across evaluations.

We found that CPU management options can help minimise this variation.
These options include: (1) stopping all background services, (2) locking the CPU
speed to prevent the operating system power management from interfering, (3)
executing the experiments on dedicated processors and (4) assigning the exper-
imental tasks a high priority. Figure 2 illustrates the impact of these changes.
Each box-plot represents multiple evaluation times for an individual of a given
size. Clearly the variation decreases significantly after CPU management. Thus,
we were able to use a single evaluation to measure the evaluation time.

3 Experiments

We used four existing bloat control techniques to compare size-control with time-
control. When controlling time, the evaluation time replaces size in each of the
bloat control techniques.

3.1 Bloat Control Techniques

(a) Death by Size (DS) [16] is a steady state replacement method that replaces
the larger individuals from the present population with a given probability
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Fig. 2. Using CPU management options decreases variability in evaluation times.

(typically 0.7; we use the same). To replace an individual, DS selects two indi-
viduals randomly and replaces the larger one probabilistically. By necessity, DS
uses steady-state GP.

(b) Double Tournament (DT) [15,16] increases the probability of choosing
smaller individuals as parents to encourage the reproduction of similarly small
offspring. DT runs two rounds of tournaments. In the first round, it runs n
probabilistic tournaments each with a tournament of size 2 to select a set of
n individuals. Each of these tournaments selects the smaller individual with a
probability of 0.7. Then, in the second round, DT selects the fittest out of the n
individuals. We implemented the DT experiments using steady-state GP.

(c) Operator Equalisation (OpEq) [4,20] allows the sizes of individuals to
grow only when fitness is improving. It controls the distribution of the popula-
tion by employing two core functions. The first determines the target distribution
(by size) of individuals in the next generation; the second ensures that the next
generation matches the target distribution. To define the target distribution,
OpEq puts the current individuals into bins according to their sizes and calcu-
lates the average fitness score of each bin. This average score is then used to
calculate the number of individuals to be allowed in a corresponding bin in the
next generation (target distribution). Thus, from one generation to the next the
target distribution changes to favour the sizes that produce fit individuals. The
width of the bins can vary and thus is a parameter. Bin width of 1 to 10 has
been successfully used previously [20]. In our experiments we used the better
performing Dynamic OpEq variant [20] and used bin width = 5. Note, OpEq
uses generational replacement.

To adapt OpEq to control evaluation time, we had to estimate the time
equivalent of the bin width. This value is then used to create bins to classify
individuals according their evaluation times in the same way as bin width size is
used to create bins to classify individuals by their sizes. To get a reliable estimate
we used multiple samples, evaluated multiple times and used the median of
several estimates. This is done only once at the beginning of the GP run.
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(d) The Tarpeian (TP) [19] method controls size-growth by assigning the
worst fitness to a fraction W (recommended W = 0.3; we use the same) of the
individuals that have above-average size. TP uses generational replacement and
calculates the average size of the population at every generation.

To adapt this method to control evaluation time we simply replaced the
average size with the average evaluation time.

3.2 Test Problems

We use five tough problems to compare the results in this paper. The problems
are tough because the results in Sect. 4 show that the accuracy scores are low
(less than 41%). Hence, these problems require GP to run long and thus present
a good test bed for complexity control because at least the size-complexity in
GP grows with long runs. Four of these problems are multi-dimensional (with
five or more input variables). The data set for problems 1–4 are available at [5];
Problem 5 is a bi-variate version of the function used in [8]. A summary of the
data sets is available in Table 1.

Table 1. Overview of test problems

ID Problem label No. of variables No. of instances

1 Airfoil 5 1503

2 Boston housing 13 506

3 Concrete strength 8 1030

4 Energy efficiency 8 768

5 y2x6 − 2.13y4x4 + y6x2 2 250 (x= min:−0.3, step: 0.012; y= x + 0.03)

3.3 Configuration and Parameters

The basic parameters for all the methods are summarised in Table 2. The other
key experimental decisions are as follows. First, the individuals with divide-by-
zero errors were assigned the worst fitness; as discussed in [10], the protected
operators commonly used in GP lead to poor generalisation. Next, the data-
sets were randomly split (without replacement) into 80% for training and 20%
testing. Finally, the fitness was computed as the normalised mean squared error
(MSE) and maximised as follows: 1

1+ 1
n Σn

i=1(yi−ŷi)2
.

The experiments were run on Windows 10 (64-bit) with 32 GB RAM, and
Intel Core i7-6700 CPU @ 3.40 GHz (Quad-Core).

3.4 Initialising the Population

Section 2.2 motivated the need for an initialisation scheme that produces func-
tionally diverse but identically sized individuals; such a scheme can increase
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Table 2. Summary of Parameters

Parameter Setting

Number of runs 50

Population size 500

Run terminates After 35,000 evaluations (≡ 70 generations)

Random tree/subtree generation Ramped half-and-half(1 =< depth =< 4); and
Fixed Length Initialisation (see Sect. 3.4)

Operators & probabilities One point crossover = 0.9; Point mutation
= 0.1

Depth Limit 17

Function set +, −, ∗, /, sin, cos, neg

Constants (ERC) |ERC| = 100 (min = 0.05, step: 0.05)

Terminal set {Input variables} U ERC

Selection tournament size = 3

Replacement steady state/generational as per each method

the focus of the time-control on differentiating functional complexity. Therefore,
we created a Fixed-Length Initialisation scheme (FLI) for these experiments.
Henceforth, we call the Ramped-Half-and-Half initialisation the Variable Length
Initialisation (VLI).

For the present study, we used the FLI to produce an initial population of
unique individuals each having the same length (or size) of 10 nodes. Given
the functions set size, a fixed length of 10 can easily produce populations of a
few hundred unique individuals; we leave studying the impact of varying the
lengths to future work. To encourage functional diversity, we do not consider
two individuals different if they only differ by numeric constants.

Before applying FLI to our experiments, we examined its impact on all the
methods. The charts in Fig. 3 show the mean test fitness accuracy by generation
for all the methods and problems. The significance of the differences of the final
populations as established by the Mann-Whitney U test are captured in Fig. 4.
The figure is colour coded so that green indicates where the accuracy of the
final populations produced by FLI are significantly higher, brown where VLI is
higher, and yellow where the difference is not significant. FLI produced better
results in 16 out of 20 for Time-control and 11 out of 20 for size-control.

We observed that when using OpEq, size-control with VLI was better than
size-control with FLI on all the problems. Therefore, for OpEq we compare time-
control with the result of size-control with VLI (the better result). For all other
methods we used the proposed FLI.
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4 Results

We compare the accuracy, complexity and compositions of the models produced
by each method to controlling size and time. For accuracy, although our key
measure is test fitness (accuracy on out-of-sample data), we also report training
fitness; the higher the value the better. For complexity we report both the size
and evaluation times of the models; the lower the values the better. Finally, to
give further insight into the complexity of the evolved models, we report the
composition of final populations as to what percentage of the genetic material
comprised of more or less complex mathematical functions.

Fig. 3. Comparing the test fitness of initialisation schemes, VLI and FLI. The mean
test fitness values are plotted by generation. The thick lines represent FLI and the
thin VLI; the green and red lines represent time-control and size-control respectively.
(Color figure online)

Figures 6, 7, 8 and 9 show how the test set accuracy, size and evaluation
times of both time-control and size-control evolve with each of DS, DT, OpEq
and TP. The figures show that for all the methods the values of all the measures
increase continuously through to the final generations. Therefore, we evaluate
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the statistical significance of the differences in the performances in the final
generations and report it in Fig. 5. Also, unless stated otherwise, henceforth, the
discussion of results concerns Fig. 5.

Statistical Significance: Figure 5 shows the colour-coded results of the Mann-
Whitney U statistical test comparing the final populations of time-control and
size-control. The table contains results for all the test problems and techniques.
The attributes tested include the evaluation time, size, training and test fitness
(accuracy on out-of-sample data). The p-values included in Fig. 5 statistically
compare the metrics of time-control against those of size-control. The rows are
green when time-control is significantly better (more for accuracy, and less for
both size and evaluation time), brown when it is significantly worse, and yellow
when the difference is not significant.

Fig. 4. Testing the significance of the impact of the new FLI initialisation scheme. In
the final populations, FLI test fitness accuracy improved 16 of 20 for time-control and
11 of 20 for size-control. (Color figure online)

Accuracy of Models: Time-control produced significantly more accurate mod-
els (on both training and test data) across all problems and all control techniques
except on three occasions. The exceptions are problem 1 on TP (the difference is
not significant), and problem 2 on DS and problem 5 on TP where size-control
outperformed time-control. Overall, time-control outperformed size-control on
training and test accuracy on 17 of the 20 occasions and matched size-control
on one occasion.

Complexity of Models: Time-control produced less complex (evaluation time
and size) models with 2 out of the 4 control techniques; the techniques are DS
and DT. As seen in Fig. 5, DS produced simpler models on all the problems
except on problem 2 where the difference in evaluation times is not significant.
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Likewise, DT produced simpler models on 4 out of 5 problems, the exception
being problem 3.

Composition of Models: Table 3 counts and differentiates the nature of nodes
constituting the GP trees in the final populations to understand the composition
of the genetic material therein. Consistent with the results on evaluation times
and sizes, time-control with DS and DT used smaller percentages of complex
mathematical functions: the percentages of tree nodes containing SIN and COS
with time-control are smaller than the respective figures for size-control. Like-
wise, OpEq and TP – much like their results on evaluation times and sizes – use
greater percentages of SIN and COS.

Fig. 5. Results of Mann-WhitneyU test for significance in the differences between the
final populations of time-control and size-control. Time-control produced more accurate
training and test scores in 17 out of 20 tests. While time-control with the steady-state
methods (DS and DT) produced simpler (smaller sizes and evaluation times) models
than size-control in 9 out of 10 tests, time-control with the generational methods (OpEq
and TP) produced more complex models in 8 out of 10 tests. (Color figure online)

4.1 Discussion

Section 1 argued that sensible management of complexity should produce models
that are only complex enough to explain the phenomenon generating the given
data but not too complex. The results show that time control almost consistently
delivers superior accuracy despite splitting results on complexity measures. Even
so, the increased complexity with time-control with OpEq and TP is not off the
scale as is typically the case with the standard, unrestrained GP.
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Fig. 6. Death By Size: Comparing changes in metrics by generation between time-
control and size-control using DS.

Fig. 7. Double Tournament: Comparing changes in metrics by generation between
time-control and size-control using DT.
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Fig. 8. Operator Equalisation: Comparing changes in metrics by generation between
time-control and size-control using OpEq.

Fig. 9. Tarpeian: Comparing changes in metrics by generation between time-control
and size-control using TP.
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Table 3. Composition of the final populations.

As to why time-control with OpEq and TP produces greater complexity is
not exactly clear at present; however, it is worth noting that these two meth-
ods require generational replacement where the size (or time) distributions of
the entire generations must be computed before allowing new individuals in. In
contrast, DT and DS are steady state methods where a new individual replaces
the loser of a tournament.

Interestingly, Fixed Length Initialisation (FLI) improved the results with not
only time control but more often than not even with size control. The results
encourage further investigation into this initialisation technique. FLI is designed
to promote compositional (functional) diversity and thus allow time-control to
distinguish complexity based more on composition than on size. However, FLI
can not enforce size similarity beyond the initial generation; therefore, further
work must investigate the effects of promoting size similarity in the remaining
evolution and see if that further intensifies the effect of time-control.

5 Conclusions and Future Work

This paper asks the question - why not use time instead of size to measure
complexity in GP? Unlike model size, evaluation time is a function of both
syntactic and computational characteristics of a model. This measure is broadly
applicable, and although this paper studies regression problems, in principle,
evaluation time can represent complexity in other domains as well.

A criticism of evaluation time is the variability in its repeated measurements;
therefore, this paper shows how to minimise this variability.

The results indicate that the nuanced notion of complexity in time-control
almost consistently produces superior accuracy on both training and test data.
Even when time-control produces slightly greater sizes or times, the correspond-
ingly superior accuracy counter-weighs these increases. After all, the complexity-
control is not the end-goal alone; instead, it should also accompany better accu-
racy. Even so, the increase in complexity is not off the scale as is typically the
case with unrestrained GP.
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The paper also shows that time-control can differentiate functional complex-
ity especially when the population has identically-sized individuals. To facili-
tate this, the paper proposes Fixed Length Initialisation (FLI) that creates an
identically-sized but functionally-diverse population. The results show that while
FLI particularly suits time-control, it also generally improves the performance
of size-control.

Overall, the paper poses evaluation time as a promising alternative to count-
ing nodes in GP.
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ABSTRACT
Traditionally, reducing complexity in Machine Learning promises
benefits such as less overfitting. However, complexity control in
Genetic Programming (GP) often means reducing the sizes of the
evolving expressions, and past literature shows that size reduction
does not necessarily reduce overfitting. In fact, whether size con-
sistently represents complexity is itself debatable. Therefore, this
paper proposes evaluation time of an evolving model – the computa-
tional time required to evaluate a model on data – as the estimate of
its complexity. Evaluation time depends upon the size, but crucially
also on the composition of an evolving model, and can thus distil its
underlying complexity. To discourage complexity, this paper takes
an innovative approach that asynchronously evaluates multiple
models concurrently. These models race to their completion; thus,
those models that finish earlier, join the population earlier to breed
further in a steady-state fashion. Thus, the computationally simpler
models, even if less accurate, get further chances to evolve before
the more accurate yet expensive models join the population. Cru-
cially, since evaluation times vary from one execution to another,
this paper also shows how to significantly minimise this variation.

The paper compares the proposed method on six challenging
symbolic regression problems with both standard GP and GP with
an effective bloat control method. The results demonstrated that
the proposed asynchronous parallel GP (APGP) indeed produces
individuals that are smaller, faster and more accurate than those
in standard GP. While GP with bloat control (GP+BC) produced
smaller individuals, it did so at the cost of lower accuracy thanAPGP
both on training and test data, thus questioning the overall benefits
of bloat control. Also, while APGP took the fewest evaluations to
match the training accuracy of GP, GP+BC took the most.
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These results, and the portability of evaluation time as an esti-
mate of complexity encourage further experimentation and fine-
tuning of this hitherto unexplored style of GP.
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1 INTRODUCTION
The key challenges of managing the complexity of machine learning
(ML) models include defining what complexity is and constructing
a mechanism to control it. Not only do these definitions fail to trans-
fer from one ML algorithm to another, but the motivations for this
endeavour vary. A common reason for managing the complexity
of ML models is attaining models that are just complex enough to
explain the phenomenon generating the given data and not too
complex to reflect noise in the data. This way, the predictions on
unseen data will be accurate [28]. A challenge related to this goal
is determining when the complexity is just enough. Another incen-
tive is a requirement for models to use computational resources
efficiently; for example, some computational environments such
as in the Internet of Things (IoT) devices [22] constrain the eval-
uation time of an acceptable model even if this compromises its
accuracy. Moreover, a concern specifically in Genetic Programming
(GP) [17] is that models grow too complex and render the evolu-
tionary search ineffective. A further motivation is the demand for
interpretable models: simple models can be more interpretable [23],
and interpretability of ML models is now important, especially due
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to legal frameworks such as the EU General Data Protection Regu-
lation (GDPR)1. To summarise, the reasons for controlling model
complexity vary and so does the notion of complexity [6].

Genetic programming (GP), the algorithm of our interest, is a ver-
satile tool used in ML, automatic programming and design, and as a
general problem-solving instrument. The notions of complexity in
these diverse applications are not always interchangeable. For exam-
ple, in data modelling, managing the size and structure of a model
is useful but some other notions of complexity are also desired.
Some of these notions are briefly discussed in section 2.1.2. These
notions are highly contextual and application specific; therefore,
universally defining a notion of complexity is difficult. Furthermore,
implementing different complexity controls can be non-trivial.

This paper proposes a novel method called Asynchronous Par-
allel Genetic Programming (APGP) for managing the complexity
of GP models based on a broad notion of complexity. This notion
is the evaluation time, namely, the computational time required
for evaluating a model on data. The accuracy of different models
being produced during the evolutionary process must be evaluated
using the same data-set but the time required to evaluate a model
varies from another according to its makeup. For example, models
made up of computationally expensive building blocks or having
exceptionally large structures take longer to evaluate. Section 2.2
discusses the correlation between the evaluation time and some
notions of complexity.

If complex models take longer to evaluate than the simpler ones,
that allows an opportunity to naturally control complexity while
still encouraging accuracy. Let multiple models race in parallel
to finish evaluating asynchronously such that the simpler models
who finish earlier can potentially join the breeding population in a
steady-state fashion earlier than the complex ones that are still eval-
uating. Thus, the simpler models can thrive but only until a more
accurate yet complex model arrives; that is because selection solely
considers accuracy. Thus, a dynamic interplay between accuracy
and simplicity occurs during evolution.

Note, unlike common practice of parallel GP, in the APGP the
breeding for the next generation does not wait for the entire cur-
rent set of evaluations to finish. Due to asynchronous parallelism,
as soon as an individual finishes evaluation and joins the parent
population, it can be selected to breed while some others are still
evaluating. This is natural as well; after all, breeding in natural
populations is not synchronised. Section 3 further details APGP.

Despite the absence of a universal notion of complexity, we
must still assess the complexity of the models produced by APGP.
In this study, we note both the model expressions size (an easily
quantifiable and popular notion) and the evaluation time. To then
assess as to whether APGP controls complexity effectively, we test
accuracy on test sets (generalisation); this is because some previous
work [3, 37] shows that bloat control alone does not automatically
producemodels that generalise. To this end, we compare APGPwith
standard GP, and GP with a very effective bloat control (GP+BC).

The results indicate that the APGP breeds simple and the most
accurate (both on the training and test data) models; also, it trains

1The EU General Data Protection Regulation includes a right to explanation in situa-
tions, where ML algorithms are applied to make a decision affecting a person.

the fastest in that it takes the fewest evaluations to match the
training accuracy of GP, whereas GP+BC takes the most.

Section 2 of this paper provides some background; section 4
details the experiments and the associated challenges; section 5
presents the results; and section 6 concludes the paper.

2 BACKGROUND
2.1 Genetic Programming
GP enables computers to program themselves and build models
automatically. It is also known as an evolutionary algorithm (EA)
due to the way it loosely simulates the Darwinian principle of nat-
ural selection to automatically search a space of possible models
without any prior knowledge [18]. This involves a continuous use
of operators that probabilistically choose the better performing in-
dividuals (models) from the current population, and then cross and
mutate them to produce new ones. A variable tree-based structure
is the traditional and most popular representation of GP individuals
[12], although other variations are also common [1, 5, 13, 31, 35, 40].
As a result, the sizes of GP individuals may vary, which introduces
challenges such as uncontrolled growth in the size of evolving code,
also termed code bloat [29].

GP has been used to produce solutions to many practical prob-
lems. A detailed account of practical and innovative results pro-
duced by GP is provided in [19].

2.1.1 Parallel Genetic Programming. The use of parallel com-
puting is not new in GP [16, 20, 32]. However, the aim of applying
parallel computing has been typically to improve the run times
[27] of GP, as opposed to reducing the complexity of individual
models, which is the target of this study. As GP runs can take a
long time to complete, parallelising these runs reduces the over-
all run time. Most commonly, generational replacement schemes
parallelise the evaluation of offspring populations. However, the
generational replacement requires the entire offspring population
to be ready before its members can start breeding, which means
that all evaluation threads join at a single point of synchronisation
before the evolution proceeds further. Hence, this parallelisation
confers no advantage to simpler individuals and is disadvantageous
in terms of resource utilisation: while an individual is taking an
excessive amount of time to evaluate on one CPU, the remaining
CPUs stay idle because other individuals have completed their eval-
uations. Some recent work has employed asynchronous parallel
computing in non-GP EAs to alleviate this problem of idle time.

An evaluation time bias, that favours smaller evaluation times,
has been observed in [32][33], However, they were concerned with
real parameter optimisation using fixed-length chromosomes; there-
fore, the impact of asynchronous parallelism on the variable length
structures in GP and associated challenges in terms of both the
complexity and accuracy have not been studied.

Another candidate for parallelisation in EAs is the so called
island model [4, 30], where the evolving populations are divided into
multiple distinct islands, and the subpopulation in each island can be
evolved in a separate parallel thread. Regardless of parallelisation,
the island model offers advantages such as greater diversity in
the overall population because each island is shielded from other
islands except at discrete intervals when selected individuals are
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exchanged across islands. The role of parallelisation in this model
is still to just speed up the run times.

2.1.2 Complexity in Genetic Programming. Deciding what
complexity is and implementing the functionality to manage it
are often non-trivial tasks [37]. Therefore, existing techniques for
controlling complexity in GP vary in their spirit.

Traditionally, controlling complexity in GP means controlling
structural complexity such as the size (bloat control) of the evolved
expressions, or the number of encapsulated sub-trees and layers,
while ignoring the underlying functional or computational com-
plexity. Representative studies in this area proposed bloat control
measures [37], techniques based on theminimum description length
principle [10][14], Kolmogorov-based approaches [9] and invari-
ance theorem [26]. For example, bloat control penalises a large yet
linear expression 4x + 8x + 2x + x + x , which is functionally and
computationally less complex than a smaller expression sin(x) [3],
which is computationally equivalent to its Taylor series expansion∑∞
n=0(−1)n x 2n+1

(2n+1)! . In this case, the smaller expression sin(x) re-
quires a lot more resources to execute than its linear counterpart.
Thus, complexity in GP is more than merely the expression size.

Approaches based on functional complexity recognise that small
structures may be more complex than larger ones and hence focus
on the functionality of structures. To elicit functional complexity,
one approach approximates the evolving expressions by polyno-
mials [39]; complex expressions are approximated by polynomials
of a high degree owing to large oscillations in the response of the
function. This degree of approximating polynomials is termed the
order of non-linearity of the corresponding GP expressions, and it
should be minimised. However, the minimisation requires evolving
expressions to be twice differentiable, a property that is not always
guaranteed. To alleviate this constraint, Vanneschi et al. [37] de-
fined a less rigorous measure of functional complexity, whereby the
slope of an expression is approximated by a simpler but error prone
measure. As such Vanneschi et al. did not control the complexity;
instead, they only measured the complexity of evolving expressions.
Note, in fact, if the evolving code is not made of mathematical ex-
pressions, neither of the above approaches apply. In another related
approach, Azad and Ryan [2] used the variance of the outputs of
evolving expressions as a measure of the functional complexity.
They explicitly minimised the variance and maximised accuracy
using a multi-objective optimisation approach.

Finally, statistical learning theory-based approaches measure
the complexity of a space of functions that can be learned using
statistical classification. Main techniques include generalisation
error bound VC theory and VC dimensions [21] [38].

Implementing these techniques for controlling complexity is not
always trivial and can be different from one application of GP to
another. In contrast, the present study aims to induce non-complex
models naturally, where the complexity of a model is simply its
evaluation time.

2.2 Time is not Size
While the previous section theoretically exemplifies why control-
ling size is not the same as controlling evaluation time or com-
putational complexity, it is also important to empirically verify
that. Without that verification we can not be certain as to whether

we can practically differentiate between functional complexities
of equally sized expressions. Moreover, obviously, evaluation time
also increases when the expression size increases; however, if the
evaluation time does not practically increase with the functional
complexity, then measuring this time is just a fancy way of counting
nodes in a GP expression. Clearly, that is undesirable.

To this end, we used four different functions sets to generate sym-
bolic regression models of different complexities; Figure 1 details
the functions sets. For each functions set, we generated differently
sized individuals (10, 20, 30, ..., 300), and in turn for each size we
generated 30 random expressions. All models were then evaluated
50 times, each with the same set of data. The four plots in Figure 1
represent the average evaluation times of individuals according to
their size and complexity.

Two trends are clearly visible in Figure 1: (1) given the same
size, the evaluation times of functionally complex individuals are
consistently higher than those for their counterparts; and (2) evalu-
ation times are also strongly correlated with the expression sizes,
as expected. Hence, evaluation times indeed discriminate between
different functional complexities; however, if a simple function
is represented inefficiently by an excessively large expression, it
will evaluate slower. Therefore, evaluation time control impacts
conditionally: it curbs functional complexity when the sizes of a
given set of individuals are within a certain tolerance (or range);
otherwise, it curbs the growth in size (controls bloat). Note, this
tolerance increases as the size of individuals increases. For example,
the evaluation time of size 75 with functions set COS-SIN is the
same as that for size 175 with the functions set ADD-SUB.

The above findings also predict the limiting behaviour of eval-
uation time control in GP. In a functionally diverse but a size-
converged population – where bloat control is impotent – evalua-
tion times discriminate between functional complexities, whereas in
a functionally converged but a size-diverse population, evaluation
times discriminate between sizes.

Figure 1: Relationship between evaluation time, size and the
composition of models is shown. Individuals made up of
COS and SINoperators havehigher average evaluation times
than same-sized individuals from other functions sets. Also,
note size correlates with evaluation time.
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Algorithm 1: The APGP Algorithm

/* Initialise */

n← set total number of offspring to produce;
threadpool← set no. of concurrent operations allowed;
popsize←set population size;

/* Generate and evaluate initial population */

for j ← 1 to popsize do
new← generate individual;
Evaluate new ;
population + new;

end

/* Generate and evaluate offspring in parallel */

for i ← 1 to n do
if threadpool > 0 then

Create thread: threadpool← threadpool − 1;
Select parents;
Produce offspring;
Evaluate offspring;
i← Selected individual to be replaced;
if Offspring fitness > i fitness then

Lock i memory position;
i← Offspring;
Release locked position;

else
Drop offspring;

Release thread: threadpool← threadpool + 1;
else

Wait;
end

3 ASYNCHRONOUS PARALLEL GENETIC
PROGRAMMING

The proposed Asynchronous Parallel GP (APGP) method evaluates
GP individuals asynchronously to potentially let the simple, fast-
evaluating individuals get into the breeding population prior to
their more complex counterparts. This is also natural; after all, nat-
ural populations do not simply halt while one of their members is
tested against the environment. Yet, this is precisely what happens
in traditional GP: while an individual of any complexity is being
evaluated, the evolution stops regardless of how long that evalu-
ation takes. As a result, in classical GP, there is no advantage for
being evaluated quickly and thereby being less complex. However,
the APGP aims to leverage that performance advantage to breed
simple yet accurate models.

APGP is based on Steady State GP [36], a technique that can
be used to produce a single offspring that immediately competes
for a place in the population after being evaluated. This method
allows multiple independent breeding operations, working on the
same population, to be executed in parallel and asynchronously. For
example, a maximum of 50 of such breed operations can be allowed
to run at the same time; and as soon as one operation finishes,
another one starts. However, these operationsmay finish at different

times due to the varying times it takes to evaluate different models.
This difference is due to different make up of models because all
models are evaluated on exactly the same data-set. Thus, a race
condition develops such that less complex individuals that take
less time to be evaluated and are good enough to find a place
in the population may reproduce earlier than the more complex
individuals that evaluate slower.

Algorithm1 lists the pseudo code of the APGP algorithm, which
is initialised by setting the number of allowed concurrent evalua-
tions, population size and total number of offspring (total number
of fitness evaluations in the run). This is followed by creating the
initial population and evaluating it. The parallel breeding then be-
gins by initiating multiple breed operations up to the allowed limit.
These breed operations evaluate offspring in independent threads.
As soon as the evaluation of an offspring is complete, if it is more
accurate than a randomly selected individual in the current popu-
lation, it replaces that individual and then releases the computing
resources to enable another breed operation to commence. As these
parallel operations work over the same population, a temporary
lock is set on the individual being replaced to avoid clashes.

As discussed above, only the accuracy of an offspring decides
whether it finds a place in the population. As such, speed becomes
an advantage only when it is accompanied by high accuracy. Where
complex candidates are more accurate, they will eventually succeed
and propagate. Thus, complex models are not excluded, and the
simplicity of good models will be constrained by the possibilities
within the specific problem.

4 EXPERIMENTS
We compared the performance of APGP against standard GP and
against GP with a bloat control mechanism (GP+BC) on a suite of
symbolic regression problems. Identical parameters were adopted
except for the race condition, which was present only in APGP, and
the bloat control mechanism in GP+BC.

4.1 Test Problems
We considered the findings in [41] when choosing the test problems.
Five high-dimensional problems (with five or more input variables)
and one low-dimensional problem were used. The data set for prob-
lems 1–5 are available at [8]; Problem 6 is a bi-variate version of
the function used in [11]. A summary of the data sets is available
in Table 1. As the results in section 5 show, all but Problem 4 are
hard for GP (the accuracy scores are less than 41%). Hence, these
problems require GP to run long and thus present a good test bed
for complexity control because complexity in GP grows with long
runs.

4.2 Configuration and Parameters
The basic parameters for all the methods are summarised in Table 2.
Other key experimental decisions are as follows:
- Bloat Control for GP+BC: To control bloat, we used the Double
tournament [25], a non parametric method that neither requires
finding the right penalty for greater sizes, nor does it assume an
appropriate size. This method has been very successful on a variety
of benchmark problems [25][24] and the results of our experiments
later in Section 5 also show that this method indeed limits sizes
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ID Problem label No. of
Variables

No. of instances

1 Airfoil 5 1503
2 Boston Housing 13 506
3 Concrete Strength 8 1030
4 Dow Chemical 57 1066
5 Energy Efficiency 8 768
6 y2x6−2.13y4x4−

+y6x2
2 250 (x=min:-0.3, step:

0.012; y=x + 0.03)
Table 1: Overview of Test Problems

aggressively. As recommended [25], we used the best problem-
independent settings for this method as follows: in the first round,
run n probabilistic tournaments, each with a tournament of size 2,
to select a set of n individuals; then, in the second round, select the
fittest out of the n individuals. The tournaments in the first round
choose the smallest individual with a probability of 0.7. We also
considered using Operator Equalisation (OpEq), a more recent bloat
control method [7] [34]; however, unlike APGP, which uses steady
state replacement, OpEq requires generational replacement.
- Division by zero: Individuals with zero division errors were as-
signed the worst fitness. As discussed in [15], protected operators
commonly used in GP lead to poor generalisation.
- Data split: The data-sets were randomly split (without replace-
ment) into 80% for training and 20% testing.
- Fitness function: The following minimisation function based on
the normalised mean squared error was used: 1

1−
√

1
n Σ

n
i=1(yi−ŷi )2

.

Parameter Setting
Number of runs 50
Population size 500
Run terminates After 35,000 evaluations (≡ 70 generations)
Random tree/
subtree generation

Ramped half-and-half
(depthmin = 1,max = 4)

Tree depth limit 17
Operators &
probabilities

One point crossover = 0.9 ;
Point mutation = 0.1

Function set +,−, ∗, /, sin, cos, neg
Constants (ERC) |ERC| = 100 (min = 0.05, step: 0.05)
Terminal set {Input variables} U ERC
Selection tournament size = 3
Replacement steady state, inverse tournament size = 5

Table 2: Summary of Parameters

4.3 Key Implementation Challenges
The key challenges associated with the proposed implementation
include the following.

4.3.1 Measuring Evaluation Time Consistently. A problem
with measuring evaluation times is that they vary across multiple
executions, and if this variability is high, one cannot reliably es-
timate the complexity of a given model from a single evaluation.

Unfortunately, since CPU scheduling is the prerogative of the op-
erating system kernel, we can not eliminate this variation totally.
However, we found ways to significantly minimise this variation
across evaluations.

We found that CPU management options can help minimise
this variation. These options include: (1) stopping all background
services, (2) locking the CPU speed to prevent the operating system
power management from interfering, (3) executing the experiments
on dedicated processors and (4) assigning the experimental tasks a
high priority. Figure 2 illustrates the impact of these changes. Each
box-plot represents multiple evaluation times for an individual of a
given size. Figure 2a represents the case when no CPUmanagement
was applied; clearly the variation in evaluation times is high. In
contrast, Figure 2b shows that after applying the above-mentioned
CPU management options, the variation clearly decreased.

(a) (b)

Figure 2: Measuring evaluation time consistently. Applying
CPU management options lead to more consistency.

4.3.2 Degree of Concurrency. The size of the thread pool (num-
ber of parallel threads available) can vary in APGP. We tested pool
sizes 5, 25, 50, 75 and 100. Although, size 50 produced the best or
competitive results generally, some problem specific improvement
may be possible with other thread sizes. Future work can further
investigate this.

5 RESULTS
To evaluate the performance of the proposed APGP we compared
the metrics of the final populations and of the best individuals (on
test data) against standard GP and GP with bloat-control (GP+BC).
In addition, we also noted the average number of evaluations to
reach the average training accuracy of GP (target accuracy); this
shows the efficiency of the other methods relative to GP.

5.1 APGP is the Most Accurate
Figure 3 shows the colour-coded results of the Mann-Whitney U
statistical test on the final populations for all test problems. The
attributes tested include the evaluation time, size, training and test
fitness (accuracy on out-of-sample data). The p-values included
in Figure 3 statistically compare GP and GP+BC with APGP only.
The rows are green when the APGP is significantly better (more
for accuracy and less for complexity), red when it is significantly
worse, and yellow when it is not significantly different.
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Figure 3: Results ofMann-Whitney U tests on the final popu-
lations (APGPvsGP;APGPvsGP+BC). The results show that
APGP produced significantly more accurate (training and
test fitness) models on all tests against both GP and GP+BC.
While APGPproduced significantly simplermodels thanGP
in 5 out of the 6 test, GP+BC produced significantly simpler
models than APGP at the price of accuracy.

Columns 3 and 4 in Figure 3 show that the APGP significantly
outperforms GP in the majority of the tests, as indicated by the
green colour (colour code for results favouring APGP). Also, the
final population of APGP is simpler than GP for all problems except
Problem 4; this is indicated by significantly smaller mean evaluation
times and sizes. Furthermore, the training and test accuracy scores
of APGP are significantly better than those of GP in all problems
except for the training fitness of Problem 5 where the improvement
is not significant. Finally, the APGP test fitness values, which is
the major concern when evaluating models, are significantly better
than those of GP in all problems. This indicates that the APGP
models tend to generalise better on unseen data. Notice also that the
reported p-values are very small; this indicates that the differences
between the results of the two methods are very significant.

In Problem 4, where the APGP produced more complex individ-
uals, the training and test fitness values are better. This is not the
traditional bloat, where size grows without an associated increase

in fitness. In our case, the increase in the size comes with an in-
crease in fitness. Also, note that Problem 4 is the easiest of all the
problems: accuracy scores are more than 90%.

When comparing the APGP with GP with bloat control (GP+BC),
as captured in columns 5 and 6 of Figure 3, GP+BC has produced
significantly smaller models in all problems. However, these simpler
models have significantly lower training and test accuracy values.
Unlike APGP, the simplicity produced by GP+BC comes at the
expense of accuracy.

That GP+BC produces significantly smaller models is not sur-
prising given that it aggressively targets sizes. In contrast, the
complexity control in APGP is gentler as in it simply offers a poten-
tial advantage of getting a place in the population due to quicker
evaluations; parent selection solely prefers training accuracy. Even
so, the APGP outperforms GP+BC on training and test set accuracy,
and GP on all accounts. Note, much like GP+BC, APGP can also
leverage the bloat control techniques to select individuals; we leave
that investigation for future work.

While the APGP outperforms GP and GP+BC on average, next
we compare the best individuals produced by each algorithm in
terms of test set accuracy, which is a principal motivator behind
complexity control in Machine Learning.

Test ID Best
Method

Test Fitness
Gain

Eval. Time
Reduction

Size
Reduction

GP and APGP Compared
Problem 1 APGP 24.99 % 43.26 % 47.17 %
Problem 2 APGP 6.64 % -12.31 % 0.896 %
Problem 3 APGP 22.43 % 36.99 % 44.96 %
Problem 4 APGP 2.04 % 78.13 % 85.71 %
Problem 5 APGP 3.13 % 22.92 % 18.38 %
Problem 6 APGP 0.11 % -42.57 % 11.11%

GP+BC and APGP Compared
Problem 1 APGP 19.93 % -18.00 % -15.0 %
Problem 2 APGP 43.24 % -95.17 % -452.5 %
Problem 3 APGP 11.56 % -72.70 % -100.0 %
Problem 4 APGP 2.43 % 78.56 % 65.82 %
Problem 5 APGP 69.10 % 34.51 % -40.91 %
Problem 6 APGP 1.71 % -49.45 % -695.0%

Table 3: Best individuals Compared. On all problems,
APGP produced more accurate models than GP and GP+BC.
GP+BC produced simplermodels at the expense of accuracy.

5.1.1 APGP Tops the Leaderboards. GP is often concerned with
finding the best solution. Therefore, we examine the best of each
set of runs and summarise the results in Table 3. For all the six
problems APGP produced individuals with the overall best test
fitness (accuracy) values. As before, the best models produced by
the APGP were also smaller than those by GP.

5.2 Cost of Producing Accurate Models
Using the average training accuracy of GP as a benchmark, we
compared the average evaluations taken by each method to match
that training accuracy. Where a particular run did not achieve
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that target, it was assigned the maximum number of budgeted
evaluations. As summarised in Table 4, APGP used 10% to 40% fewer
evaluations than GP, and 15% to 84% fewer than GP+BC. Thus,
APGP is the fastest to train, whereas GP+BC despite producing
smaller individuals is the slowest; note, as in Figure 3, both GP
and GP+BC are also consistently less accurate than APGP on both
training and test sets.

No. of Evaluations To Reach Target Accuracy
Test ID GP

Mean
GP+BC
Mean

APGP
Mean

GP&APGP
Difference

GP+BC &
APGP Diff.

Problem 1 29407 33041 23941 18.59 % 38.01 %
Problem 2 20761 27792 17762 14.44 % 56.47 %
Problem 3 31668 33595 20422 35.51 % 64.50 %
Problem 4 17861 19762 10719 39.99 % 84.36 %
Problem 5 28852 34842 25658 11.07 % 35.79%%
Problem 6 33077 33895 29546 10.68 % 14.72 %

Table 4: APGP used significantly fewer evaluations than
both GP and GP+BC to reach the same target accuracy.

5.3 Standout Multi-Objective Solutions
As the aim of APGP is to produce both simple and accurate models,
we examine the final populations to see if this is happening. The test
fitness (representing accuracy on unseen data) is plotted against
the evaluation time (our proposed notion of complexity) to produce
Figure 4. The red, blue and yellow dots represents APGP, GP and
GP+BC respectively. Desirable models are thus close to the top left
corner (low complexity; high accuracy).

We observed that the APGP produced some distinct clusters
of models that are both accurate and simple in five out of the six
test problems (labelled C1, C2a, C2b, C3, C4a and C5). Cluster C2b
represents a situation where the accurate models lie in the relatively
more complex individuals.

When the test fitness was plotted against size, we found similar
clusters but space constrains do not permit producing them here.

The presence of these breakout clusters indicates that the APGP
normally offers the best trade-off in terms of accuracy and simplic-
ity.

6 CONCLUSIONS AND FUTUREWORK
This paper proposes a new measure of complexity, evaluation time;
unlike model size, evaluation time is a function of size, functional
and computational effort of a model, both theoretically as well as
practically. This measure is broadly applicable, and is especially
useful where complexity is difficult to define.

A criticism of evaluation time is the variability in its repeated
measurements; therefore, this paper shows how to minimise this
variability so the evaluation time can be measured reliably.

Instead of explicitly and subjectively penalising evaluation times,
the paper proposes asynchronous parallel GP (APGP), which lever-
ages asynchronous parallel computing to induce a race between
concurrent executions of multiple models; the models that finish
evaluating early can join a steady state population early and thus
may get an evolutionary advantage. The APGP thus questions the

Figure 4: Mapping accuracy and evaluation time of the in-
dividuals in the populations. APGP produced clusters with
the combined attributes of simplicity and accuracy (C1-C5).

conventional, but eventually unnatural, way of evaluating individ-
uals only one after the other, or in a lock-step.

Although the evolutionary pressure to breed simpler models in
the APGP is potentially gentler than that with an aggressive bloat
control technique (because selection in the APGP prefers accuracy
on training data), the APGP still produces models that are not only
more accurate both on training and out of sample (test) data but also
simpler than those produced by standard GP. Although, GP with
an effective bloat control (GP+BC) still produced smaller solutions,
these solutions were inferior to those from the APGP in terms of
both training and test set accuracy and required greater training
time (more fitness evaluations); in fact GP+BC took the greatest
number of evaluations to match the training accuracy of simple GP.

Often Machine Learning associates low complexity with better
performance on test sets. However, the results produced in this
paper echo the concerns in some previous literature that decries
the link between bloat control and better generalisation in GP.
Instead, the results indicate that controlling evaluation time may
indeed link complexity control with better generalisation in GP.

Future work can explore, how combining bloat control with the
APGP works. Better still, how about time control instead of bloat
control? Moreover, since evaluation time is a function of expression
size, can we develop better initialisation schemes that produce size-
identical but time-diverse populations? Perhaps, that can further
encourage functional simplicity.
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ABSTRACT
Isolating the fitness-contribution of substructures is typically a
difficult task in Genetic Programming (GP). Hence, useful substruc-
tures are lost when the overall structure (model) performs poorly.
Furthermore, while crossover is heavily used in GP, it typically
produces offspring models with significantly lower fitness than
that of the parents. In symbolic regression, this degradation also oc-
curs because the coefficients of an evolving model lose utility after
crossover. This paper proposes isolating the fitness-contribution of
various substructures and reducing the negative impact of crossover
by evolving a set of features instead of monolithic models. The
method then leverages multiple linear regression (MLR) to optimise
the coefficients of these features. Since adding new features cannot
degrade the accuracy of an MLR produced model, MLR-aided GP
models can bloat. To penalise such additions, we use Adjusted R 2 as
the fitness function. The paper compares the proposed method with
standard GP and GP with linear scaling. Experimental results show
that the proposed method matches the accuracy of the competing
methods within only 1/10th of the number of generations. Also, the
method significantly decreases the rate of post-crossover fitness
degradation.
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1 INTRODUCTION
The canonical Genetic Programming (GP) method evaluates the
quality of the produced model as a whole and can not isolate the
quality of its substructures. These substructures may differ in their
contributions to the performance of the entire model. While some
substructures may be useful, others may negatively impact the
model performance; moreover, the utility of these substructures
as building blocks for producing new superstructures (better mod-
els) has been a subject of intense debate [2, 7]. Therefore several
studies report that subtree crossover, which exchanges these sub-
structures, is often ineffective [7] and largely produces models that
are significantly worse than their parents [4].

A further talking point in GP has been the optimisation of con-
stants or coefficients in the evolving expressions [1, 3] . Typically,
GP based symbolic regression does not use numerical methods that
are often employed in Machine Learning (ML) to tune numerical
constants (parameters), and instead relies on evolution to manu-
facture the constants. This is challenging because each expression
requires bespoke constants; however, in standard GP, which does
not use some form of lifetime learning [1, 3], both the expression
and the constants are produced together. Future improvement of
these constants may take genetic adaptation over several genera-
tions, and requires that the context [6] of the evaluation of these
constants does not change due to genetic operators. Therefore,
some researchers have even pointed out that while overfitting is a
problem for every ML method, GP must first avoid underfitting [5].

Despite these shortcomings GP has thrived as a strand of ML that
produces symbolic models that can even outperform competing
methods from ML or Statistics. One potential reason behind the
success of GP is that it can automatically engineer features as hier-
archical substructures; in contrast, many standard ML/statistical
methods require the user to pre-specify the features.

This paper acknowledges the relative strengths of the competing
methods and instead proposes a collaborative approach whereby
GP evolves features for symbolic regression tasks that are then
combined via Multiple Linear Regression (MLR) into a useful model.
The proposed method, MLR-GP, employs a customised tree rep-
resentation that designates various subtrees as features, and then
MLR optimises the coefficients of these features.
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However, neutralising the effect of bad features can encourage
code bloat because if these features are not penalised they can still
join in. To counter this, this study uses the well known Adjusted
R2 (𝐴𝑅2) (regression-related) measure as the fitness function of
MLR-GP; 𝐴𝑅2 decreases if an additional feature does not improve
the fitness of a model significantly.

2 THE PROPOSED MLR-GP
Representing Expressions: MLR-GP modifies the standard tree
representation of SR models to auto designate subtrees as features.
Figure 1 illustrate a sample MLR-GP tree. The new type of node
labeled tag acts as a placeholder that is not evaluated. This place-
holder was defined with an arity of two and can either branch out
further creating more placeholders or contain a feature directly be-
low it. Tag nodes are constrained to have only tag nodes as parents.

Crossover can either recombine the entire features (or sets of fea-
tures) that can act as building blocks, or exchange genetic material
within the individual features.

Figure 1: An MLR-GP tree representing a model made up of
features. F1 - F4 are subtrees that are treated as features.

Fitness Evaluation Function in MLR-GP: The fitness evalua-
tion in MLR-GP requires identifying the features from a tree. Each
identified feature is then evaluated with the training data. The out-
put of the feature evaluation is a design matrix (one column for
each feature) that MLR uses to tune the coefficients of each feature
(regression parameters) and produce a model. For example, the
expression in Figure 1 will return the following final model:

Y = 𝛽0 + 𝛽1F1 + 𝛽2F2 + 𝛽3F3 + 𝛽4F4
where Y is the output of the model, 𝛽0 is the intercept, 𝛽1 to 𝛽4

are the coefficients of features F1 to F4 respectively.

3 RESULTS
Six regression problems were used to compare the proposed MLR-
GP method against (1) plain MLR, (2) standard GP (std-GP), and (3)
GP with linear scaling (LS-GP). The outcome is as follows:

Accuracy:MLR-GP showed remarkable gains in accuracy on both
the training and test data. MLR-GP gained up to 1304% over the
best result of the other GP methods and up to 542% over MLR.

Size:MLR-GP methods is producing larger individuals than both
std-GP and LS-GP. However, the growth in size is accompanied by
growth in training accuracy, whereas bloat is typically viewed as
code growth in the absence of any fitness improvement.

Speed:MLR-GP is able to exceed the accuracy of other compared
GP methods in early generation of its run; the high accuracy is also
achieved with smaller sized models. By the fifth generation, MLR-
GP was able to at least match the accuracy of the other compared
GP methods at generation 50.

Adjusted R2 is Controlling Bloat: MLR-GP with AR2 as fitness
measure is suppressing the unwanted growth in the number of
features. The average number of features of MLR-GP with AR2
is consistently less than that in MLR-GP with Normalised Mean
Square Error.

Crossover Effect: Crossover with MLR-GP produced offspring
with fewer negative improvements in fitness values on all tests. The
method increases the efficiency of the crossover operator by signif-
icantly decreasing the rate of post-crossover fitness degradation.
This is a contributing factor for the observed higher training speed
in MLR-GP than in the compared GP methods.

4 CONCLUSIONS
This study combines the strengths of two methods, that is, GP and
MLR to produce a system that trains faster and better than either
of the two systems alone. The study shows that due to its innate
innovative nature, GP is effective as a feature engineer when it is
aided by numerical methods such as Multiple Linear Regression.
Therefore, instead of pitting GP against the other methods, it is
more fruitful to collaborate with them.

The combination of methods not only improved the accuracy
of the results, but also improved the internal dynamics of a major
evolutionary operator – crossover. Normally deemed as disrup-
tive because it often lowers fitness, crossover in the proposed GP-
MLR methods became much more robust as the number of fitness
degradations decreased substantially. This study thus adds to the
literature on the nature of crossover in Genetic Programming.
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ABSTRACT
In genetic programming (GP), controlling complexity often means
reducing the size of evolved expressions. However, previous studies
show that size reduction may not avoid model overfitting. There-
fore, in this study, we use the evaluation time — the computational
time required to evaluate a GP model on data — as the estimate of
model complexity. The evaluation time depends not only on the
size of evolved expressions but also their composition, thus acting
as a more nuanced measure of model complexity than size alone.
To constrain complexity using this measure of complexity, we em-
ployed an explicit control technique and a method that creates a
race condition. We used a hybridisation of GP and multiple linear
regression (MLRGP) that discovers useful features to boost training
performance in our experiments. The improved training increases
the chances of overfitting and facilitates a study of how managing
complexity with evaluation time can address overfitting. Also, ML-
RGP allows us to observe the relationship between evaluation time
and the number of features in a model. The results show that con-
straining evaluation time of MLRGP leads to better generalisation
than both plain MLRGP and with an effective bloat-control.
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1 INTRODUCTION
It has always been an important challenge in machine learning
(ML) to avoid generating models that fit the training data very
well but without generalising to the unseen data; this is termed
overfitting. Often these overfitting models are overly complex [4];
however, determining how much complexity is just enough is a
challenge. Another traditional concern in GP is complexity, which
is often manifested by a tendency to grow model sizes to a point
that renders the evolutionary search process ineffective. The most
popular approach to controlling complexity in GP is bloat control,
that is to limit the growth in size of the evolved expressions. How-
ever, previous studies have shown that bloat control alone does not
always overcome the model overfitting problem [2]. This begs the
question: is bloat control really complexity control?

To address the above limitation in bloat control, recent literature
[6–8] has proposed alternative approaches to control the computa-
tional complexity of models in GP. Instead of using size as a measure
of complexity, they use the evaluation time — the computational
time it takes to evaluate a GP model on data. The use of evaluation
time as a measure of complexity is built on the observation that a
model that is made up of computationally expensive building blocks
or that has large structures takes a long time to be evaluated, and
hence it is computationally complex. The work in [6] empirically
shows how the functional and structural complexity are different
by plotting the evaluation times of identically sized but functionally
diverse GP models, see a reproduction in Figure 1. Therefore, if
the evaluation time of evolving models are constrained then the
growth in the structural as well as the functional complexity will be
discouraged. The same work also recommended various techniques
to significantly minimise the noise in measuring evaluation times.
This paper adopts the use of all these recommendations to measure
complexity of the evolving models in MLRGP.

The next question is how to control the evaluation times. We
used two approaches to control evaluation times. First, we use an
effective bloat control method to discourage high evaluation times
in the same way it discourages large size, named Time-control (TC).
The second approach takes a simple view: induce a race among
competing models, named the Asynchronous Parallel Genetic Pro-
gramming (APGP) [6][8]. With APGP, the faster models can (if their
fitness is competitive) join the breeding population before their
slower counterparts and gain an evolutionary advantage.
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Figure 1: Size and composition affect evaluation times.
Higher average evaluation times were returned by individ-
uals made up of COS and SIN operators than same-sized in-
dividuals made up of simpler functions sets.

Method Test
Fitness

Size Evaluation
Times

No. of
Features

Time-Control Success
STD 9/10 10/10 10/10 10/10
BC 7/10 9/10 10/10 10/10
APGP Success
STD 9/10 10/10 10/10 10/10
BC 7/10 0/10 0/10 0/10

Table 1: Summary of the test for significance in difference.
The figures show the fraction of the tests where TC and
APGP produced significantly better results, respectively.

Figure 2: The correlation between evaluation time and the
number of features is greater than it is with size.

We used a GP system that is aided by Multiple Linear Regression
(MLR) [5] in our experiments. Such MLRGP systems [3] have be-
come increasingly popular lately because they improve the training
performance significantly; this is because the traditional GP often
underfits the data because it can not efficiently generate numeric
constants [1]. As this improved training accuracy can result in se-
rious overfitting [5], MLRGP is suitable for studying the effect of
controlling complexity with evaluation time on overfitting. With
this system, we compare the performance of the two methods that
restrict evaluation time with plain MLRGP (STD) and with MLRGP
combined with an effective bloat control technique (BC).

2 RESULTS
Ten widely used datasets were selected as test problems. We com-
pared test fitness scores and our three indicators of complexity: size,
evaluation times and the number of features. The Mann-Whitney

U test was used to determine the significance of the difference in
the final populations and the results are summarised in Table 1.

In terms of test-fitness accuracy (generalisation), the evaluation
times methods (TC and APGP) prevailed over STD and BC. Also,
they had matching results in terms of the number of tests they
prevailed; they both produced significantly higher test scores in 9
out of 10 tests against STD and 7 out of 10 against BC. However, the
two time control methods differed in how they handled complexity
(size, evaluation times and the number of features). TC produced
significantly simpler solutions against BC and STD with one ex-
ception out of 60 tests, this is despite TC and BC used the same
techniques to control time and size, respectively. APGP complexity
control was gentler; it produced significantly simpler solutions than
STD in all tests but more complex solutions than BC.

In addition to the effective control of the number of features by
TC and APGP, the final populations that MLRGP produced showed
a stronger correlation between the evaluation times and the number
of features (average of 0.996) than between evaluation times and the
sizes (average of 0.843), see a representative example in Figure 2.

3 CONCLUSION
We showed that the evaluation time behaves differently from size.
We demonstrated that it can discriminate between the size, the
complexity of the components, and the number of features of the
MLRGP individual. Also, the results asserts that using the evaluation
time to mange complexity leads to better generalisation. Thus, this
approach promises to be broadly applicable. Overall, this study
highlights the feasibility and merits of using the evaluation time.
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