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Abstract: In infrared small target detection, the infrared patch image (IPI)-model-based methods
produce better results than other popular approaches (such as max-mean, top-hat, and human visual
system) but in some extreme cases it suffers from long processing times and inconsistent performance.
In order to overcome these issues, we propose a novel approach of dividing the traditional target
detection process into two steps: suppression of background noise and elimination of clutter. The
workflow consists of four steps: after importing the images, the second step applies the alternating
direction multiplier method to preliminarily remove the background. Comparatively to the IPI model,
this step does not require sliding patches, resulting in a significant reduction in processing time.
To eliminate residual noise and clutter, the interim results from morphological filtering are then
processed in step 3 through an improved new top-hat transformation, using a threefold structuring
element. The final step is thresholding segmentation, which uses an adaptive threshold algorithm.
Compared with IPI and the new top-hat methods, as well as some other widely used methods, our
approach was able to detect infrared targets more efficiently (90% less computational time) and
consistently (no sudden performance drop).

Keywords: infrared image; small-target detection; alternating direction method of multipliers; new
top-hat; signal to clutter ratio; background suppression factor

1. Introduction

Infrared small-target detection is a key technology in infrared search-and-track systems
and has been widely used in many areas, such as aerial reconnaissance, early warning,
military surveillance, and reconnaissance [1–3], for its advantages of long-range detection,
full-time operation, and anti-interference. However, due to the nature of light scattering
and energy loss in long-distance imaging, the targets are captured in small sizes and often
with clutter and noise, resulting in images with low signal-to-noise ratios [4–6]. Despite
many efforts made in the past decades (as outlined below), the detection of small infrared
targets remains a challenge, especially in an environment of complex backgrounds or when
detecting extra-small targets.

Generally, infrared small-target detection methods fall into two categories: multiframe
image detection, and single-frame image detection. Multiframe image detection utilizes
the prior information of the target and background from the previous frame(s) to detect
the moving targets. While early studies/algorithms were mostly implemented through
dynamic programming [7], three-dimensional matched filtering [8], and multilevel hy-
pothesis testing [9], studies after the 2000s often used combined methods, e.g., using a
direction-matched filter based on spatiotemporal information to suppress clutter [10], or a
combination of a bilateral filter and a temporal cross product (BF-TCP) [11] with temporal
cross-entropy to generate spatiotemporal images to detect targets. In recent years, methods
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such as the Markov random field guide noise model [12], spatial-temporal local contrast fil-
tering (STLCF) [13], spatial-temporal features measure (STFM) [14], or guided filtering and
convolution neural networks were used in many studies [15]. However, those approaches
often required prior information about the image and suffered from high time complexities,
which was due to numerous calculations on the motion trajectories of all potential targets
to determine the potential targets. Furthermore, their performances still depended on the
detection performance of a single frame image, which therefore limited their applications
in practice. As a result, more studies now focus on the single-frame image approach [16].

Early studies on single-frame images aimed to improve the contrast and signal-to-
noise ratio by enhancing targets and suppressing noise, either through linear or nonlinear
filtering, or by estimating the background component with preprocessing. Popular algo-
rithms include max-median, max-mean [17], and wavelet transformation [18], which work
well when the background in the image is simple. However, significant change in the
background, where the grey value gradient of the corresponding area changes greatly, often
results in a false detection. In addition, the complex backgrounds also cause high false
alarm rates for similar reasons. To tackle such issues, some studies took a morphological
approach. In morphology, the scale of the structuring element is a critical parameter; its
value determines the accuracy of feature extraction [19] by utilizing the prior knowledge
of the size and shape of the target to construct the appropriate structuring elements and
then obtain the detection image through the differential operation between the original
image and the filtered image, such as in traditional top-hat [20] and adaptive top-hat
methods [21,22]. The structuring element has a great impact on the top-hat operation and
the new white top-hat transformation (NWTH) [23] is often considered the best in the
morphological approach, along with some improved ring top-hat transformation [24–26].

Alternatively, human visual system (HVM) was introduced to infrared small-target
detection in 2013 when the local contrast measure (LCM) method [27] was proposed.
This approach considers the target, and the background can be separated by constructing
different local contrasts, as the grey values of the small target are higher than the grey
values of the background. It provided both initial good detection performance and short
processing time, hence many further studies were carried out, such as improved LCM
(ILCM) [28], relative LCM (RLCM) [29], and novel LCM (NLCM) [30]. In addition, the
method combined with other modules, such as the method of combining weighted double-
layer local contrast and multidirectional map [31], which realizes the detection of small
targets in terms of local contrast and gradient of targets, and the method of combining
the Laplace of Gaussian (LoG) filter and the negative LoG filter with local contrast [32].
However, such methods show mediocre effects in background suppression when dealing
with bright backgrounds and they are also known for the corresponding phenomenon of
noise point enhancement.

Based on the characteristics of the infrared small target image, Denney et al. [33]
first suggested the target detection problem could be converted into a robust principal
component analysis (RPCA) problem. Gao et al. [34] further proposed an infrared patch
image model (IPI) that considered the infrared background as a single low-rank subspace
and therefore the small target should be regarded as an outlier, i.e., the small-target detection
problem became an optimization problem of low-rank-matrix and sparse-matrix recovery.
In IPI, the infrared image was first processed and transformed into smaller image patches.
Then, the accelerated proximal gradient (APG) algorithm was used to solve the low-rank-
and sparse-matrix separation problem. Such an approach showed superior results but
required a significantly longer processing time, normally in seconds or tens of seconds (for
comparison, the processing times of the methods based on the aforementioned approaches
were under 0.1 s). In addition, its performance could be affected by serious clutter and
noise. To address such issues, some studies considered replacing APG with the alternating
direction method of multipliers (ADMM), such as the weighted IPI model (WIPI) [35] and
the non-negative IPI model, by minimizing the partial sum of singular values (NIPPS) [36].
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Despite the excellent detection performance, the high time complexity of this approach is
yet to be resolved.

With the development of deep learning in the field of computer vision, some studies
applied this method to infrared small-target detection [37–40]. Such an approach provides
comparative performance but requires training the model with a large amount of data in
advance. Furthermore, such models rely on the types of training data, i.e., the detection
performances on various and new backgrounds/scenarios may vary. Although the deep
learning model and network structure are becoming lighter and lighter [41,42], it is still a
challenge to apply these models to the field of infrared small-target detection because the
characteristics of the infrared small target only occupy individual pixels and fuzzy textures.

To address such issues, we propose a novel combined approach to further improve
the excellent detection performance of IPI models, as well as to significantly reduce the
processing time by incorporating an improved NWTH transformation with a specifically
designed threefold structuring element. Our method produced a consistent performance
across all five testing image sequences. It used 90% less time than the IPI method and
scored the best in all metrics overall as compared to the methods using a single approach.

The paper is organized as follows: Section 2 presents the RPCA and morphological
approaches and their recent developments which underpin our study. Section 3 describes
the combined approach and the workflow of the proposed method. Section 4 shows the
experimental results and the evaluation against six state-of-art methods. The conclusion is
presented in Section 5.

2. Related Work
2.1. Robust Principal Component Analysis (RPCA)

In infrared small-target detection, on one hand, the infrared images normally have
a characteristic of nonlocal autocorrelation [43]; thus, the background can be represented
by a low-rank matrix. For example, Figure 1 shows four classic infrared images and their
corresponding singular value curves. Although the images have different backgrounds,
their singular values converge to zero quickly.
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Figure 1. Infrared image and its corresponding singular value curve.

On the other hand, the small target can be considered a sparse matrix when the target
area is less than 15% of the total image and the signal-to-clutter ratio between the target and
the background is less than 4 dB [27]. As a result, the original infrared image is composited
of a background image with low-rank characteristics and a foreground image containing
a small target showing sparse characteristics and noise. Therefore, RPCA can be used to
separate the background and the foreground.
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2.2. Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm is a method to solve the RPCA convex optimization problem [35,36]
through which the infrared image is taken as the low-rank data observation matrix D.
However, when D is affected by random noise, its low-rank characteristic disappears,
and D becomes full rank. One solution is to convert the constrained optimization into
an unconstrained optimization through convex optimization, i.e., to decompose D into a
low-rank matrix and a sparse matrix to its real structure. As a result, the RPCA problem
can be represented in the following form:

min
A,E
‖ A ‖∗ + λ‖ E ‖1 + γ‖ N ‖2

F s.t.D = A + E + N (1)

where ‖ A ‖∗ = ∑m
i=1 δi(A) represents the kernel norm of matrix A; δi(A) represents the

ith singular value of A; λ is the weighting of the noise; ‖ E ‖1 = ∑
ij

∣∣Eij
∣∣ represents the sum

of the absolute values of all elements in matrix E; A is the background; E is the target; N
is the random noise; and γ is the weighting of the random noise with a small value. The
augmented Lagrange function of Equation (1) is defined as follows:

Lρ(A, E, N, G, ρ) = ‖ A ‖∗ + λ‖ E ‖1 + γ‖ N ‖2
F + 〈G, D− A− E− N〉 + ρ/2 ‖ D− A− E− N ‖2

F (2)

where ρ is the penalty factor; G is the Lagrange multiplier; and ρ/2 ‖ D− A− E− N ‖2
F

represents the square regular term, as the additional constraint when compared to Equation (1).

2.3. Top-Hat and NWTH

In the traditional top-hat method [20], separated the target by subtracting the result
of the original image after the opening operation from the original image. In morphology,
opening is used to eliminate bright pixels (i.e., the target) from an infrared image via a
carefully constructed structuring element. The opening operation is defined as follows:

f (x, y) ◦ B = ( f (x, y)	 B)⊕ B (3)

where f (x, y) represents the original image; B is the structuring element; ◦ represents the
opening operation; ⊕ is the dilation operation; and 	 is the erosion operation.

To better tackle the heavy clutter and noise, the new white top-hat method (NWTH) [23]
proposed a new operation by swapping the order of erosion and dilation as below:

f (x, y)�Boi = ( f (x, y)⊕ ∆B)	 Bb (4)

where � represents new operation; and ∆B and Bb represent structural elements in Figure 2.
In addition, a different but correlated structuring element (see Figure 2) were used for both
erosion and dilation.
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3. The Proposed Method
3.1. Overview

On one hand, although the RPCA-based IPI methods generally produced better results,
they suffered from long processing times, which, in most cases, were among tens of seconds.
This was due to the nature of reconstructing the matrix via the patch images using the
nonlocal autocorrelation and cannot be easily improved without fundamentally changing
the algorithms. On the other hand, methods using the morphologic or the HVM approaches
could run much faster (under one second) and were still able to produce good results. Our
motivation was to explore whether a combined approach could be made possible to achieve
both a better result and a short processing time.

For a given infrared image, it can be decomposed as target, background, and noise [34]:

fD(x, y) = fT(x, y) + fB(x, y) + fN(x, y) (5)

where (x, y) is the coordinate of the pixel; fD is the original infrared image; fT represents
the target; fB represents the background; and fN represents the noise.

Rather than using a single step to separate the target matrix fT directly, we proposed to
first separate the background fB from the image, which can be described as a typical RPCA
problem (where ADMM could be used without using IPI). In the next step, with the new
image having most of the background removed, the morphological filtering method could
be performed. We considered NWTH to be a good choice, as it was specifically designed to
tackle noise and clutter. It is worth pointing out that although the morphological approach
was not good at dealing with the complex background, such a weakness would not be
exposed in our combined approach wherein the background was already preliminarily
removed in the first step. We did not choose the HVM-based approach because it had
issues dealing with images that had bright backgrounds where such a character could not
be mitigated in the first step. As a result, our proposed method is described in Figure 3.
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3.2. Image Decomposition—ADMM

The goal of this step was to separate the background from the image, which was an
RPCA-related problem as discussed in Section 2. As compared to the traditional RPCA-
based methods wherein both the background and the noise were suppressed in a single
process, in our approach, the image decomposition step had a much higher tolerance and
allowed partially residual background and noise, which would be suppressed at the next
step of morphological filtering, i.e., the decomposition aimed to mainly separate fB from
Equation (1). Therefore, this step was considered a preliminary suppression and ADMM
could be applied to the whole image directly. As compared to the IPI-based methods, our
approach did use process patch images with a sliding window, and thus could significantly
improve the processing time.
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To attack the problem defined by Equation (2), only one of A, E, and G was targeted
to solve the proximity function at each iteration, while the other two were fixed. The
pseudocode of the algorithm is shown in Algorithm 1.

Algorithm 1 The pseudocode of ADMM.

Output: Sparse matrix Ak and low-rank matrix Ek
let λ = 1/

√
max(m, n), E0 = 0, N0 = 0, k = 1, σ = 2;

while (not converged)

(Uk, ∑k, Vk) = SVD
(

D− Ek − Nk + ρ−1
k Gk

)
Ak+1 = UkSρ−1

k
(∑k)VT

k ;
Ek+1 = Sλ/ρ

(
D− Ak+1 − Nk + ρ−1Gk

)
;

Nk+1 = ρ/ρ + 2γ
(

D− Ak+1 − Nk+1 + ρ−1Gk
)
;

Gk+1 = Gk + ρk(D− Ak+1 − Ek+1 − Nk+1);
ρk+1 = σρk;
k = k + 1;

end

k represents the number of iterations; σ represents the coefficient of the penalty factor
at each iteration; SVD

(
D− Ek − Nk + ρ−1

k Gk

)
represents the singular value decomposition

of matrix D− Ek − Nk + ρ−1
k Gk; Uk and Vk represent the left and right orthogonal matrices

of the singular value decomposition of matrix D − Ek − Nk + ρ−1
k Gk; ∑k represents the

diagonal matrix composed of the eigenvalues of the singular value decomposition; S
ρ−1

k

represents the contraction operator given the specific penalty factor ρ−1
k .

After decomposing the low-rank matrix (i.e., the background fB), the remaining
components of the image consisted of the target fT and the noise, which included the
original noise fN plus the residual background.

3.3. Morphological Filtering—An Improved NTWH Transformation

To better identify the small targets from the decomposed sparse-matrix image, we
constructed a threefold structuring element when adapting the top-hat-based method
NWTH [23]. The structuring element is shown in Figure 4. Sp is the structuring element for
dilation, which is formed by Si subtracting So. So (a square) represents the outer shape of Sp,
for which the size is slightly larger than the target, while Si (a square diamond) represents
the inner shape of Sp, for which the size is slightly smaller than the target. S f (a circle) is
the structuring element for erosion, for which the size should be between Si and So. The
matrices of Sp and S f are shown in Figure 5, where “1” represents the structuring elements.
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To demonstrate how this threefold structuring element works, the process of the
improved NWTH transformation is shown in Figure 6, wherein the images of the target
region at each step are at the top and their corresponding matrices are at the bottom.
The target is in the shape of 5 × 3, and its corresponding pixels are highlighted in blue
in Figure 6a. With the specifically constructed structuring element Sp, the pixels in the
surrounding area of the target all gained the local maximum values via dilation. Figure 6b
shows the target was successfully highlighted by a rectangle (of bright pixels) while the
target itself was restrained in a smaller diamond shape (of grey pixels). The result of erosion
is shown in Figure 6c, wherein the target was enlarged into a rectangle (of grey pixels) with
a highlighted outer boundary (of bright pixels). This was because of the circle structuring
element S f had a size between the outer boundary and the inner boundary of Sp. The final
result was obtained by subtracting Figure 6c from Figure 6a, wherein all background and
noise were eliminated and the target was successfully obtained, as shown in Figure 6d.
During the substruction, the pixels in the nontarget regions might result in negative values,
which should be set to 0. As a result, our improved NWTH transformation was defined
as below:

TiNW = f (x, y)−min
((

f (x, y)⊕ Sp
)
	 S f , f (x, y)

)
(6)

where f (x, y) represents the original image; min is the minimum operation; ⊕ is dilation;
	 is erosion; and Sp and S f are defined in Figure 4. To better eliminate the clutter and noise
in the target region, the sizes of Si and So for Sp should be adjusted accordingly.
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3.4. Adaptive Thresholding Segmentation

After the above steps, there might be a few false alarm points which generally oc-
cupied only one or two pixels. To eliminate them, the image was binarized via adaptive
thresholding segmentation. Threshold T was defined as [24,44]:

T = M + k× S (7)

where M and S represent the average value and standard deviation of the image after
background suppression, respectively, and k is an empirical constant which has its value
set to 40 in this study.

4. Experimental Results and Analysis
4.1. Experimental Setup
4.1.1. Hardware and Software

The simulation experiment was carried out in a MATLAB r2020b environment. The
experimental hardware used an HPS-P18C32GB workstation, with Intel Xeon scalable
platinum 8124 m 3.0 GHz, and 32 GB DDR RAM.

4.1.2. Datasets

To test and verify the performance of the proposed method, five sequences of images
were selected from open-sourced infrared image datasets [45,46] and their properties are
shown in Table 1.

Table 1. The properties of the image sequences. “*” means to converted to grey-scale images in the
step “Image Input”.

Sequence Target Region Frames Frame Size Avg SCR Image Description

Seq 1 5 × 5 30 256 × 200 0.62
Sky background; mostly covered by
scattered clouds; fixed camera position and
the target is from left to right.

Seq 2 5 × 5 30 238 × 158 0.65

Sky and sea background, with a clear
horizontal boundary; fixed camera
position and the target is moving
from top to bottom.

Seq 3 5 × 5 30 302 × 202 0.51
Sky background; partially covered by thick
cloud; fixed camera position and the target
is moving from right to left.

Seq 4 * 4 × 4 30 256 × 256 3.81
Land background (Rapidly changing);
tracking camera position; small target
(16 pixels).

Seq 5 * 3 × 3 30 256 × 256 1.63 Land background; tracking camera
position; ultra-small target (9 pixels).

4.1.3. Baseline Methods

Six methods were selected for comparison, including the traditional max-mean al-
gorithm [17] as a baseline method, two morphological filtering methods (the classical
top-hat transform [20] and the new top-hat method NWTH [23]), two HVS-based methods
(the LCM algorithm [27] and the RLCM algorithm [29]), and one RPCA-based model
(IPI [34]). The parameters of such methods are shown in Table 2.



Sensors 2022, 22, 7327 9 of 18

Table 2. The parameters of the comparison methods.

Methods Parameter Settings

Max-mean Sliding window size = 21 × 21
Top-hat Structuring element size = 5 × 5
NWTH RO = 9, Ri = 4 for sequences 1–4; RO = 8, Ri = 3 for sequence 5

LCM Cell size v = 3, h = 3, 5, 7, 9
RLCM Scale = 3; k1 = 2, 5, 9k2 = 4, 9, 16

IPI Patch size = 80 × 80, sliding step = 5, λ = 1/
√

max(m, n)
Ours So = 7, Si = 3 for sequences 1–4; So = 5, Si = 2 for sequence 5; other parameters are shown in Algorithm 1.

4.1.4. Evaluation Metrics

To quantitatively measure the effectiveness of target highlighting and background com-
pression, signal-to-clutter ratio (SCR) and background suppression factor (BSF) [12,13,34,35]
are the two commonly used metrics:

SCR = |µt − µb|/σb (8)

BSF = σin/σout (9)

where µt represents the mean values of target pixels; µb represents the mean of the back-
ground pixels around the target; σb represents the standard deviation of that background;
and σout and σin represent the standard deviation between the output image and the input
image. BSF and SCR are calculated against the images before thresholding segmentation.
The larger the value, the better the target detection and background compression effects of
the algorithm.

False alarm rate (Fa) [34,46,47] is used to describe an algorithm’s capacity for making
correct detections. The calculation uses the result after thresholding segmentation. In this
paper, we adopted the definition of the falsely detected pixels:

Fa = N f /Nw (10)

where N f represents the number of pixels that are falsely detected and Nw represents the
total number of pixels of the whole image.

To evaluate an algorithm’s effect on a sequence of infrared frames, the average values
(SCR, BSF, and Fa) are defined as below:

SCR =
1
N ∑N

i=1SCRi (11)

BSF =
1
N ∑N

i=1BSFi (12)

Fa =
1
N ∑N

i=1Fai (13)

where N represents the total number of frames in the sequence; SCRi, BSFi, and Fai repre-
sent the values of SCR, BSF, and Fa of the ith frame.

The processing time of each frame was recorded to calculate the average processing
time of each image sequence.

4.2. Experimental Results: Results at Each Stage, in Four Typical Backgrounds

To better illustrate the workflow of the proposed method, four typical backgrounds,
i.e., (a) sky, (b) cloud, (c) land, and (d) sea, were selected from the SIRST dataset [48]. The
simulation results of each of the four steps are shown in Figure 7. Row one represents the
original infrared images, respectively, wherein the targets are circled with a blue rectangle.
Row two shows the low-rank-matrix image after image decomposition (i.e., ADMM),
wherein the background was preliminarily suppressed. Row three displays the images
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after the morphological filtering stage (i.e., the improved top-hat transformation), wherein
the targets were successfully separated. At this stage, the background suppression was
completed and most of the background noise was eliminated. While scatters of noise might
still exist, they were further removed at the adaptive threshold segmentation step. The
results are shown in row four, wherein the targets were identified with no concern for false
alarm points.
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Figure 8 shows the images after the morphological filtering step in three-dimensional
diagrams, in which the backgrounds were effectively suppressed. In all images, there was
no false alarm point observed.
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4.3. Experimental Results: Comparison to the State-of-Art Algorithms

To evaluate the effectiveness and adaptability of the proposed method, the compar-
isons were carried out in three aspects: visual observation, quantitative measurement, and
overall performance.

4.3.1. Visual Observation

The visual comparisons are shown in Figure 9 (the results before the adaptive threshold
segmentation step were used). In terms of background suppression, the effect of max-mean
was mediocre and most of the high-frequency background remained in all five sequences.
For the classic top-hat and the LCM methods, both effects were insufficient as a large
amount of continuous background clutter was left in every image. The RLCM method
produced much better results as compared to the three. However, due to the nature of
contrast enhancement, some noise points became more prominent, which were observed
in sequences 1, 2, and 5. For NWTH, IPI, and our method, the background suppression
effects were excellent.
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The blue rectangle represents the target, while the yellow box shows the false alarm point or the
unsuppressed background.
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In terms of detecting the correct targets, all six methods were able to highlight the target
regions, despite many also falsely highlighting noise points (however, those noise points
did not necessarily become false alarm points after adaptive threshold segmentation). For
the max-mean, the traditional top-hat, and both LCM methods, their detecting capacities
were restricted by their background suppression effects, i.e., the residual bright background
would mostly result in false alarm points. The NWTH method had bright points left in all
five sequences, which indicated the structuring element of the top-hat transformation could
be refined for the selected image sequences with complex backgrounds. The IPI method
produced the second-best outcomes with some potential false detections in sequences
4 and 5 which had fast-changing backgrounds with a tracking camera position. Our
method had the best visual representations with two minor noise points in sequence 5.

Figure 9 shows the most representative frame from each image sequence, aiming
to demonstrate the method’s overall performance on the given sequence. However, it is
worth pointing out that some methods did perform inconsistently on certain frames, which
resulted in a false alarm or nondetection. For example, the NWTH method did not detect
any target from frames 11 to 13 in sequence 3 (Figure 10); the RLCM method was not able to
detect any target from frames 11 to 15 in sequence 3 (Figure 10); the IPI method retained the
background components in nearly half of the frames (i.e., 1–6, 10–12, and 16) in sequence 1
(see Figure 9, column 1, row 7 for example), which resulted in low SCR values. Since the
image datasets did not provide any timestamp on each frame, we were not able to identify
the real time elapsed in those frames. Therefore, we could not evaluate to what extent those
inconsistent performances would affect the accuracy of monitoring or surveillance in the
real world.
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4.3.2. Quantitative Comparison

The results of the average SCR are shown in Table 3. Our method had three best
scores (seq 1, 2, and 4) and two second-best scores (seq 3, 5), which demonstrates that
our method was superior in highlighting the target. NWTH, RLCM, and IPI had similar
overall rankings, which were considerably better than max-mean, top-hat, and LCM. More
specifically, our method produced much better SCR values (240+) than all methods in
sequences 1 and 2. In sequence 3, the LCM had the best SCR value. Although our score
(490.00) came second, it was considered sufficient and showed a clear advantage over
both the NWTH and IPI results. In sequence 4, our method scored the best (35.26), while
most other methods had values around 10. In sequence 5, the IPI had a distinct SCR value
over others, but our result (20.68) was still much larger than the results (around 10) of the
remaining five methods.

The results of the average BSF are shown in Table 4. NWTH, IPI, and our method had
much better values than max-mean, top-hat, LCM, and RLCM in all five sequences, while
IPI and our method showed superior results to NWTH, especially in sequences 1 and 4. As
compared to the IPI algorithm, our method scored one best (seq 3) and four second-best
(seq 1, 2, 4, and 5). Such results were considered on par with IPI (four best and one second
best) as the differences in sequence 2 and sequence 5 were merely 2%.
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Table 3. Average SCR (notation: best result, second-best result).

Method Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Max-mean 10.48 26.91 4.10 9.67 14.87
Top-hat 6.77 6.89 24.96 7.28 10.27
NWTH 79.46 137.34 66.40 22.52 13.63

LCM 3.17 1.23 3.36 5.50 4.92
RLCM 65.23 136.16 886.35 14.49 12.72

IPI 21.24 146.91 142.91 9.95 72.37
Ours 265.84 240.54 490.00 35.26 20.68

Table 4. Average BSF (notation: best result, second-best result).

Method Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Max-mean 3.96 12.75 6.69 4.26 1.48
Top-hat 1.05 3.43 8.39 2.05 0.81
NWTH 5.65 13.20 20.07 11.92 3.29

LCM 0.92 0.93 0.95 1.54 0.54
RLCM 2.02 3.98 6.87 6.97 1.27

IPI 10.96 14.41 22.92 17.76 3.99
Ours 7.17 14.15 23.69 14.09 3.98

For the processing time, the results of three methods (NWTH, IPI, and our method)
are shown in Table 5. NWTH was an algorithm using the morphological approach that had
a very short processing time due to the simplicity of matrix operations. It yielded the best
processing times in milliseconds, with an average time of 0.016 s across all five sequences.
IPI was an algorithm adapting RPCA, which required a significant amount of processing
time due to the complexity of the sliding steps. It had the worst processing time among
the three, with an average of 29.28 s. Although our method combined both the RPCA and
morphological approach, it did not require a small patch in image decomposition, i.e., it
had a much smaller time complexity than IPI. Our method had an average processing time
of 2.25 s, which was a huge improvement (92% less) from IPI and could be considered as
near-real-time detection.

Table 5. Average processing time of a single frame (notation: best result, second-best result).

Method Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Average

NWTH 0.015 0.014 0.016 0.017 0.016 0.016
IPI 17.39 13.03 60.62 31.93 23.45 29.28

Ours 1.32 0.77 2.60 3.70 2.86 2.25

The false alarm rates over threshold levels are shown in Figure 11, which indicated
that NWTH, IPI, and our method were superior to max-mean, top-hat, LCM, and RLCM in
all sequences (except IPI in sequence 1). More specifically, when compared to NWTH, our
method achieved negligible better false alarm rates in sequences 1–3 but clear better results
in sequences 4 and 5, in which the background became more complex and/or the targets
were smaller. When compared to IPI, our method had better rates in sequences 1–3, and 5,
while IPI was better in sequence 4. It is worth pointing out that the IPI method showed
poor false alarm rates at low thresholds in sequences 1–3 and such results were considered
due to its inconsistent background suppression performance, as discussed in the previous
visual observation section.
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4.3.3. Overall Comparison

Based on the comparisons above, all NWTH, IPI, and our method exhibited a clear
superior performance to max-mean, top-hat, LCM, and RLCM in both visual observations
and quantitative (SCR, BSF, and Fa) comparisons. Despite showing clutter and noise in the
visual observation, NWTH was able to eliminate most of them via threshold segmentation,
thus achieving much better false alarm rates than the other four algorithms. However,
NWTH was inferior to both IPI and our method in almost every aspect except for processing
time. When compared to IPI, our method showed better visual and SCR results and
similar results in BSF, which might suggest that both methods possess similar target
detection performances. However, the IPI method showed poor Fa rates at low thresholds
in sequences 1–3 due to its unstable background suppression effects in certain situations.
In addition, the main drawback of IPI is the high processing times required, whereas our
method had a clear advantage, using approximately 8% of IPI’s processing time on average.
In a nutshell, our method showed the best overall performance and had wider applications
than IPI thanks to its relatively low processing time (2.25 s on average).

4.4. Additional Experimental Results: Effectiveness of Our New Top-Hat Structuring Element

In the morphologic filtering step of our method, we proposed a threefold structuring
element (see Figure 4) as an improvement to NWTH. To further evaluate its effectiveness, an
additional experiment was run using the improved transformation TiNW (see Equation (6))
on all five sequences in which both BSF and SCR were captured. Figures 12 and 13 showed
the ratios of the differences between our improved transformation and the original NWTH
for both SCR and BSF.
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For SCR, our new structuring element showed overall better results in sequence 1–3,
except for in a few frames (i.e., frames 17–22, sequences 2 and 3), and much better results
(mostly 100% better) in sequences 4 and 5 for all frames, which indicates that our solution
is superior for dealing with complex backgrounds. For BSF, our structuring element did
yield better performances in sequences 1–3, but the differences were small (around 10%). In
sequences 4 and 5, the performances were mixed, and no clear winner could be identified.
In other words, there was no clear advantage of our specifically designed structuring
element over the original element from NWTH when being used solely. However, our
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structuring element became more effective when combined with image decomposition in
the proposed algorithm. As shown in Tables 3 and 4, our combined approach achieved
better scores in both SCR and BSF for all sequences.
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5. Conclusions

In this paper, we presented a combined approach to detect small targets in infrared
images which contained two key separate steps. The first was to convert small-target
detection problems into optimization problems of low-rank sparse matrix recovery, where
ADMM (without sliding steps) was used for preliminary background suppression. The
second key step was to process the obtained interim images via an improved NWTH
transformation with a specifically designed threefold structuring element, where the targets
were further separated from the noise and clutter. The method was described in a workflow
of four stages: (1) Image input; (2) image decomposition; (3) morphological filtering;
and (4) thresholding segmentation. The outcomes of the workflow at each stage showed
the effectiveness of the combined approach, which was conducted through four images
with typical backgrounds (i.e., sky, cloud, land, and sea). In the evaluation against other
state-of-art methods, our method showed superior results in both visual and quantitative
comparisons. When compared to the baseline max-mean method, two top-hat-based
methods (i.e., classical top-hat and NWTH), and two HVM-based methods (i.e., LCM and
RLCM), our approach outperformed them in all SCR, BSF, and false alarm rate results. In
addition, the effectiveness of the improved threefold structuring element against the one
from NWTH was further demonstrated in the head-to-head comparisons of SCR and BSF. In
addition, when compared to IPI, our method requires significantly less processing time and
more consistent detection performances among the five different types of image sequences.
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