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Abstract: Determining and modeling the possible behaviour and actions of molecules requires
investigating the basic structural features and physicochemical properties that determine their
behaviour during chemical, physical, biological, and environmental processes. Computational
approaches such as machine learning methods are alternatives to predicting the physiochemical
properties of molecules based on their structures. However, the limited accuracy and high error rates
of such predictions restrict their use. In this paper, a novel technique based on a deep learning
convolutional neural network (CNN) for the prediction of chemical compounds’ bioactivity is
proposed and developed. The molecules are represented in the new matrix format Mol2mat, a
molecular matrix representation adapted from the well-known 2D-fingerprint descriptors. To evaluate
the performance of the proposed methods, a series of experiments were conducted using two standard
datasets, namely the MDL Drug Data Report (MDDR) and Sutherland, datasets comprising 10
homogeneous and 14 heterogeneous activity classes. After analysing the eight fingerprints, all the
probable combinations were investigated using the five best descriptors. The results showed that a
combination of three fingerprints, ECFP4, EPFP4, and ECFC4, along with a CNN activity prediction
process, achieved the highest performance of 98% AUC when compared to the state-of-the-art ML
algorithms NaiveB, LSVM, and RBFN.

Keywords: activity prediction model; biological activities; bioactive molecules; convolutional neural
network; deep learning

1. Introduction

Extraction of the structural activity relationship (SAR) [1,2] information from chemi-
cal datasets relies on the pairwise structural comparison of all toxicophore features and
small molecules, which highlights the degree of the structural relationship between the
compounds [3–6]. The Quantitative Structure–Activity Relationship (QSAR) can correlate
the compound’s chemical and structural features with its physicochemical or biological
properties. The molecular descriptors are applied for encoding the features, while the
QSAR model identifies the mathematical relationship between the descriptors and the
biological features or other relevant properties of the known ligands for predicting the
unknown ligands. These QSAR studies are able to reduce the failure costs of potential drug
molecules, as they easily identify the promising lead molecules and reduce the number
of expensive experiments. These are considered important tools in the pharmaceutical
industry since they have identified many high-quality leads during the early stages of
drug discovery.
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A great deal of information is contained in the molecular structure of a compound:
For example, it indicates the number of elements or describes its shape and electrostatic
field [7,8]. The collection of atoms that constitute a molecule can be symbolically represented
in many ways. It is not easy to determine the optimum approach that represents the
molecular structure that is suited for all applications [9–11].

Generally, molecules are represented using their molecular or structural formulae and
line drawings, which indicate the number of atoms for various elements present in the
single molecule of a compound, for example, H2O indicates the presence of two hydrogens
and one oxygen atom in a water molecule. In many cases, the molecular formula alone
cannot represent the chemical structure. For instance, in isomers, molecules with a similar
molecular formula show a different atomic arrangement. The structural formula depicts
the molecular structure and represents the individual bonds between all atoms as lines.

Many chemoinformatics methods are based on numerical descriptors that include
a description of the molecular structure and properties. These descriptors are used as
input data for various statistical and data mining techniques. The other types of property
descriptors are generally used in the diversity analysis, selection of the representative
compound subsets, combinatorial library design, and QSAR studies. Thus, the fingerprint
X of molecule A is represented using a sequence of numbers:

XA = {x1, x2, x3, . . . , xn}

where xi refers to the i-th structural unit in molecule A, i.e., bonds, atoms, or frag-
ments. The value n represents the length or size of all fingerprints, i.e., the number of
molecular properties.

The 2D fingerprint descriptors are also used to provide a rapid screening step during
substructure and similarity searches [1,10]. These 2D fingerprints are categorised based on
the methods used, for example, the fragment dictionary and hashed methods illustrated
in Figure 1. The fingerprints are generated using a fingerprinting process that converts a
chemical structure into a binary form (i.e., a string of 0 s and 1 s). The binary form depicts
the chemical shorthand, which indicates the presence/absence of the structural features in
a molecule.
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The molecule-based fingerprints are represented by dividing the molecules into frag-
ments of specific substructures and structural features. In this kind of representation, the
fingerprint length is based on the number of fragments present in the dictionary, where
every bit position in the binary string is assigned to one particular sub-structural feature in
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the dictionary. Thus, the bits can individually or in combination represent the presence or
absence of the features [10,12].

The state-of-the-art 2D fingerprint technique used in the present study was based on
QSAR, which can predict and measure all biological activities of the compounds. In this
study, eight different 2D fingerprints were investigated for bioactivity prediction, which
was generated using the PaDEL descriptor software. Here, the 2D fingerprint descriptors
were used with the CNN model for predicting the biological activities and studying the
combination and the integration of various fingerprints in the CNN architecture. The next
sections describe the background and design of the novel technique. The performance of
the proposed technique was evaluated after conducting several experiments based on the
structure or bioactivity prediction.

2. Results

The proposed code was implemented in public DL software, Keras [13], based on
Theano [14]. The experiments were conducted using the Dell Precision T1700 CPU system
with 16 GB memory and the professional-grade NVIDIA GeForce GTX 1060 6 GB graphics.

The proposed novel CNN model for predicting the molecular bioactivities was a
ligand-based activity prediction or target-fishing technique that could be used for unknown
chemical compounds. It was a deep learning system consisting of an adapted molecular
matrix representation, “Mol2mat”, which incorporated all the substructural data on the
molecules based on their fingerprint features for predicting their activities. This proposed
CNN method was then compared to three different ML algorithms described in the WEKA-
Workbench, NaiveB, LSVM, and RBFN, using optimal parameters obtained from previous
work using the same datasets [15], as previously explained in Section 4.4.

We also determined the computing prediction accuracy of this deep learning system by
applying the technique described in Section 4.2, using eight fingerprint representatives. The
results derived from these fingerprints were then compared using the Analysis of variance
(ANOVA) technique as a significance test and a violin-plot with boxplot charts. The five
fingerprint representatives that showed the best CNN configuration were further chosen as
the best representatives. This encompassed Stage 1 of the analysis and is described in detail
below. In Stage 2, these five representatives were assessed using all probable combinations,
such as 2, 3, 4, or 5. The results acquired from Stage 2 were further compared using their
violin-plot charts, and the best fingerprint combination was noted. Stage 2 is described in
more detail below. In Stage 3, all results were compared for the best combination derived
from the previous stages with three known ML algorithms, NaiveB, LSVM, and RBFN. The
proposed CNN model in this paper will be henceforth referred to as CNNfp.

2.1. Benchmarking

The proposed technique was evaluated by comparing it with three other machine
learning methods using WEKA-Workbench [16] methods, including a Naive Bayesian
classifier (NaiveB) [17], LibSVM [18], and a Radial basis function network (RBFN) [19].
Finding the best values for the classifier’s parameters is a difficult task. However, the
best probable setup for the LSVM classifier was identified by the WEKA-Workbench. In
this paper, the linear kernel was used for SVM, and the values of 0.1, 1.0, and 0.001 were
used for the Gamma, Cost, and Epsilon parameters, respectively. For the NaiveB classifier,
a supervised discretisation technique was used to convert the numeric attributes to the
nominal attributes, while the minimal standard deviation limit for the RBFN classifier
was 0.01. All the remaining parameters of the classifiers used the default values in the
WEKA-Workbench.

2.2. Stage 1

In this stage, the prediction accuracies of the 24 activity classes present in an MDDR1,
MDDR2, and Sutherland datasets were determined and compared using eight fingerprint
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representatives. Figure 2 summarises the CNN configuration, which used the Mol2mat
molecular representation.

1 
 

 
Figure 2. A summary of the proposed CNN configuration that uses the Mol2Mat representation.

In Stage 1, the eight fingerprints described above were studied based on two parame-
ters. The first parameter included the accuracy response vs. the number of iterations, while
the second parameter included the MSE response vs. the number of epochs. These were
studied in a 2D graph consisting of the training data results.

Figure 3a presents a graphical result for the number of iterations vs. the accuracy. It
also presents eight lines of the different fingerprints. The ECFC4 fingerprint displayed
a speed augmentation in their prediction accuracy from the third epoch, whereas the
EPFP4 fingerprint showed better accuracy in 17 epochs. However, the AlogP and the MDL
fingerprints displayed the lowest prediction accuracy values. The mean squared error or
loss value showed similar results to the accuracy performance, as shown in Figure 3b. The
novel CNN model could accurately predict biological activities with an average MSE value
of 0.0054 for ECFC4 and 0.002 for the ECFP4 fingerprints.

Figure 4 shows the comparison of the prediction accuracy values for Stage 1 experi-
ments that were conducted using the CNN model for eight fingerprint representatives using
the violin-plot charts. The construction of violin-plot charts is shown on the right-hand
side of this figure.



Int. J. Mol. Sci. 2022, 23, 13230 5 of 24

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 28 
 

 

novel CNN model could accurately predict biological activities with an average MSE 
value of 0.0054 for ECFC4 and 0.002 for the ECFP4 fingerprints. 

  

(a) (b) 

Figure 3. Evaluation of eight fingerprints based on their (a) accuracy and (b) MSE performance. 

Figure 4 shows the comparison of the prediction accuracy values for Stage 1 experi-
ments that were conducted using the CNN model for eight fingerprint representatives 
using the violin-plot charts. The construction of violin-plot charts is shown on the right-
hand side of this figure. 

 
Figure 4. Prediction accuracy values of the CNN model for the eight fingerprint representatives 
using the violin-plot charts. 

The violin-plot charts are able to remove the conventional boxplot elements and plot 
each activity class as a single point. Figure 2 indicates that the eight fingerprint represent-
atives showed a clear difference in their average prediction accuracy values. The ECFC4 
showed the best average accuracy of 90.17. The graph fingerprint came next with a value 
of 74.84, closely followed by the CDKFp and ECFP4 fingerprints, which showed similar 
average accuracy values of 72.28 and 71.97, respectively. The worst average accuracy val-
ues were displayed by PubChem (53.88), MDL 26.25, and AlogP, with an accuracy value 

Figure 3. Evaluation of eight fingerprints based on their (a) accuracy and (b) MSE performance.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 28 
 

 

novel CNN model could accurately predict biological activities with an average MSE 
value of 0.0054 for ECFC4 and 0.002 for the ECFP4 fingerprints. 

  

(a) (b) 

Figure 3. Evaluation of eight fingerprints based on their (a) accuracy and (b) MSE performance. 

Figure 4 shows the comparison of the prediction accuracy values for Stage 1 experi-
ments that were conducted using the CNN model for eight fingerprint representatives 
using the violin-plot charts. The construction of violin-plot charts is shown on the right-
hand side of this figure. 

 
Figure 4. Prediction accuracy values of the CNN model for the eight fingerprint representatives 
using the violin-plot charts. 

The violin-plot charts are able to remove the conventional boxplot elements and plot 
each activity class as a single point. Figure 2 indicates that the eight fingerprint represent-
atives showed a clear difference in their average prediction accuracy values. The ECFC4 
showed the best average accuracy of 90.17. The graph fingerprint came next with a value 
of 74.84, closely followed by the CDKFp and ECFP4 fingerprints, which showed similar 
average accuracy values of 72.28 and 71.97, respectively. The worst average accuracy val-
ues were displayed by PubChem (53.88), MDL 26.25, and AlogP, with an accuracy value 

Figure 4. Prediction accuracy values of the CNN model for the eight fingerprint representatives using
the violin-plot charts.

The violin-plot charts are able to remove the conventional boxplot elements and
plot each activity class as a single point. Figure 2 indicates that the eight fingerprint
representatives showed a clear difference in their average prediction accuracy values. The
ECFC4 showed the best average accuracy of 90.17. The graph fingerprint came next with
a value of 74.84, closely followed by the CDKFp and ECFP4 fingerprints, which showed
similar average accuracy values of 72.28 and 71.97, respectively. The worst average accuracy
values were displayed by PubChem (53.88), MDL 26.25, and AlogP, with an accuracy value
of only 22.45. Using these results, and based on the ANOVA significant test results, a small
p-value of 0.04 was noted, which highlighted the difference between all the fingerprints.

Furthermore, the AlogP, MDL, and PubChem fingerprints were regarded as the worst
contenders as they showed a higher variance between all the biological activity classes.
Thus, CDK, ECFP4, ECFC4, EPFP4, and graph were some of the best fingerprints and could
be forwarded to Stage 2 to improve all the results based on the probable combination cases
of two, three, four, or five of the best fingerprints. The combinations were based on the
fusion of the extracted feature levels.
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In this stage, we used better techniques to combine the various sources of knowledge
available in the area of deep learning [20–22]. Firstly, we proposed a feature extraction step
to present each selected molecular fingerprint. This combination significantly improved
the models, since they could benefit from every molecular fingerprint and combine all
the extracted features from various sources after a flattened layer, which followed the
max-pooling layer. This helped them convert the 2D matrix data into the vector. As a result,
they could process the output data using the fully connected layers, known as the dense
layers. This section described the CNN architecture utilised in this study and how many
CNN architectures can be combined into a single model. The next section will describe the
performance evaluation.

2.3. Stage 2

In this stage, the prediction accuracies for the different combination cases of the
five fingerprint representatives were determined. Table 1 presents 26 possible combinations
for these five fingerprints, including combinations of two, three, four, and five combinations
of the CDK, ECFP4, ECFC4, EPFP4, and graph fingerprints. Henceforth, each combination
case will be based on its name (A–Z), and each row will represent one combination case.
Case A consists of two combinations, while Case Z consists of five fingerprint combinations.

Table 1. Probable combination cases for the five best fingerprints.

Labels Combination CDK ECFP4 EPFP4 Graph ECFC4

A 2
√ √

B 2
√ √

C 2
√ √

D 2
√ √

E 2
√ √

F 2
√ √

G 2
√ √

H 2
√ √

I 2
√ √

J 2
√ √

K 3
√ √ √

L 3
√ √ √

M 3
√ √ √

N 3
√ √ √

O 3
√ √ √

P 3
√ √ √

Q 3
√ √ √

R 3
√ √ √

S 3
√ √ √

T 3
√ √ √

U 4
√ √ √ √

V 4
√ √ √ √

W 4
√ √ √ √

X 4
√ √ √ √

Y 4
√ √ √ √

Z 5
√ √ √ √ √

The colors are used to differentiate between each level. Combination of 2 blue; Combination of 3 orange;
Combination of 4 yellow; Combination of 2 green.
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The 26 combinations of the five fingerprints were investigated, as shown in Table 1.
Figures 5 and 6 summarise the CNN configuration for the combination case between the
CDK, ECFP4, and EPFP4 fingerprints, referred to as “K”, as an example using the Mol2mat
molecular representation. As seen in both figures, the model has three branches, with
a matrix (32 × 32) as the input and two Conv. layers and max-pooling for each branch
concatenate layer to merge all extracted features into one array. Finally, there are two
hidden layers with 256 and 128 neurons and an output layer with 10 outputs. Rectified
linear activation functions are used in each hidden layer, and a SoftMax activation function
is used in the output layer. 

2 

 
Figure 5. A summary of the CNN configuration for a combination case named “K” using a
Mol2mat representation.
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The results in Figure 7 show a p-value of 0.031 based on the ANOVA significance test
results, indicating that the difference between all the combination cases is significant. The
violin-plot charts plotted each activity class as the point. It was seen that the D, O, R, and T
combination cases displayed the highest prediction accuracy, >80%, and a low variance
amongst all the activity classes. The combination cases were plotted in different boxplot
charts to determine the distribution of the activity classes based on the low- and high-
diversity values noted for each activity class. Figure 8 compares the prediction accuracies
for all experiments in Stage 2 for the D, O, R, and T combination cases, which were plotted
using the Boxplot charts.
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Based on the violin-plot charts presented in Figure 7 and the Boxplot chart shown in
Figure 8, a p-value of 0.048 was calculated based on the ANOVA significance test results.
This indicated the significance of the difference between all the models. The R combination
displayed the best average prediction accuracy of 99.17, indicating that a combination of
the three fingerprints, ECFP4, EPFP4, and ECFC4, showed good performance compared to
the other combinations.

The R combination also showed a lower variance of 5.52 compared to the other cases.
Furthermore, this combination showed higher stability even when placed in a high- or
low-diversity class. Meanwhile, the D, O, and T combinations displayed a mean prediction
accuracy of 97.45, 97.03, and 97.72, respectively. They also displayed higher variance than
the R combination. These combination cases showed a variance prediction accuracy of
12.62, 17.97, and 10.81, respectively, indicating that R was the best fingerprint combination
seen in Stage 2.

2.4. Stage 3

In Stage 3, the authors compared the results for the best combination of ECFP4, EPFP4,
and ECFC4, as established in Stage 2, with those obtained from the standard ML algorithms
existing in a WEKA-Workbench: NaiveB, LSVM, and RBFN.

Tables 2–4 show the sensitivity, specificity, and AUC values for all the datasets used
here. A visual inspection of all tables could be used to compare the performance of the
prediction accuracies of all four algorithms. However, the authors applied a quantitative
boxplot chart to compare these algorithms. This process quantifies the agreement level
between all the multiple sets and ranks the different objects.
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Table 2. Sensitivity, specificity, and AUC values for all the prediction models using an MDDR1 dataset.

Activity
Index

CNNfp NaïveB RBFN LSVM
Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC

7707 1.00 1.00 1.00 0.99 1.00 0.99 0.63 1.00 0.82 0.93 0.95 0.94
7708 1.00 1.00 1.00 0.97 1.00 0.99 0.51 1.00 0.75 0.96 0.96 0.96

31420 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.96 0.92 0.99 0.96
42710 0.99 0.99 0.99 0.94 1.00 0.97 0.43 1.00 0.72 0.95 0.99 0.97
64100 0.97 0.99 0.98 0.95 1.00 0.97 0.97 0.90 0.94 0.96 0.99 0.98
64200 0.96 0.99 0.98 0.87 0.95 0.91 0.43 1.00 0.71 0.94 1.00 0.97
64220 1.00 1.00 1.00 0.97 0.99 0.96 0.95 0.97 0.96 0.92 1.00 0.96
64500 1.00 1.00 1.00 0.91 0.93 0.92 0.44 1.00 0.72 0.84 0.95 0.90
64350 1.00 1.00 1.00 0.94 0.96 0.95 0.80 1.00 0.90 0.90 0.94 0.92
75755 1.00 1.00 1.00 0.94 0.98 0.96 0.76 1.00 0.88 0.94 0.97 0.96
mean 0.98 0.99 0.99 0.94 0.98 0.96 0.69 0.98 0.84 0.93 0.97 0.95

Table 3. Sensitivity, specificity, and AUC values for the prediction models using an MDDR2 dataset.

Activity
Index

CNNfp NaïveB RBFN LSVM
Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC

9249 1.00 1.00 1.00 0.91 0.99 0.95 0.82 0.98 0.90 0.95 0.97 0.96
12455 1.00 1.00 1.00 0.88 0.97 0.92 0.66 0.98 0.82 0.93 0.96 0.94
12464 1.00 1.00 1.00 0.85 0.99 0.92 0.75 0.95 0.85 0.89 0.97 0.93
31281 1.00 1.00 1.00 0.94 1.00 0.97 0.53 1.00 0.76 0.95 0.97 0.96
43210 0.99 0.99 0.99 0.84 0.99 0.91 0.78 0.97 0.87 0.93 0.96 0.94
71522 1.00 1.00 1.00 0.82 0.99 0.91 0.75 0.97 0.86 0.91 0.97 0.94
75721 1.00 1.00 1.00 0.91 0.99 0.95 0.86 0.98 0.92 0.96 0.97 0.96
78331 0.98 0.99 0.99 0.81 0.96 0.89 0.79 0.93 0.86 0.81 0.96 0.88
78348 0.99 0.99 0.99 0.65 0.99 0.82 0.74 0.96 0.85 0.88 0.97 0.92
78351 0.99 0.99 0.99 0.82 0.94 0.88 0.59 0.96 0.78 0.91 0.95 0.93
mean 0.99 0.99 0.99 0.84 0.98 0.91 0.73 0.97 0.85 0.91 0.97 0.94

Table 4. Sensitivity, specificity, and AUC values for the prediction models using a Sutherland dataset.

Activity Class CNNfp NaïveB RBFN LSVM
Sens Spec AUC Sens Spec AUC Sens Spec AUC Sens Spec AUC

Estrogen receptor 1.00 1.00 1.00 1.00 1.00 1.00 0.62 0.70 0.64 0.98 1.00 0.99
Dihydrofolate reductase 0.99 0.99 0.99 0.99 1.00 0.99 0.86 0.80 0.84 0.90 0.98 0.94

Cyclooxygenase-2 inhibitors 1.00 1.00 1.00 1.00 0.99 1.00 0.93 0.76 0.84 1.00 0.99 0.99
Benzodiazepine receptor 1.00 1.00 1.00 0.94 0.61 0.78 0.99 0.65 0.82 0.95 0.92 0.93

mean 0.99 0.99 0.99 0.98 0.90 0.94 0.85 0.73 0.79 0.95 0.97 0.96

Boxplot charts were used to assess the performance of a set of fingerprints, ECFP4,
EPFP4, and ECFC4, using three algorithms (RBFN, NaiveB, and LSVM).

Here, MDDR1, MDDR2, and the Sutherland datasets, with their activity classes de-
scribed in Tables 5–7, were regarded as judges. In contrast, parameters such as sensitivity,
specificity, and AUC, measured using different prediction algorithms, were regarded as
objects. The outputs of this test included p-value, median, and variance. Figure 9 shows
the results of the boxplot chart, where the sensitivity values of the six algorithms were
compared. The results show a p-value of 0.008 based on the ANOVA significance test re-
sults, which revealed a significant difference between all algorithms. The CNNfp algorithm
showed a high sensitivity of 0.985, while the NaiveB and LSVM ML algorithms showed
a high variance of 0.15 and 0.23, respectively, compared to the CNNfp. Diversity in all
sensitivity values was especially seen in the algorithms that displayed a variance of 10−4.
Furthermore, these models showed a mean sensitivity of 0.90 and 0.74, respectively.
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Table 5. MDDR activity classes for DS1 dataset.

Activity Index Activity Class Active
Molecules Pairwise Similarity

07707 Adenosine agonists A1 207 0.229
07708 Adenosine agonists A2 156 0.305
31420 Rennin inhibitors 1130 0.290
42710 CCK agonists 111 0.361
64100 Monocyclic_-lactams 1346 0.336
64200 Cephalosporins 113 0.322
64220 Carbacephems 1051 0.269
64500 Carbapenems 126 0.260
64350 Tribactams 388 0.305
75755 Vitamin D analogues 455 0.386

Table 6. MDDR activity classes for DS2 dataset.

Activity
Index Activity Class Active

Molecules Pairwise Similarity

09249 Muscarinic (M1) agonists 900 0.111
12455 NMDAreceptor antagonists 1400 0.098
12464 Nitric oxide synthase inhibitor 505 0.102
31281 Dopamine hydroxylase inhibitors 106 0.125
43210 Aldose reductase inhibitors 957 0.119
71522 Reverse transcriptase inhibitors 700 0.103
75721 Aromatase inhibitors 636 0.110
78331 Cyclooxygenase inhibitors 636 0.108
78348 Phospholipase A2 inhibitors 617 0.123
78351 Lipoxygenase inhibitors 2111 0.113

Table 7. Sutherland activity classes.

Activity Class Active Molecules Pairwise Similarity

Estrogen receptor 141 0.468
Ddihydrofolate reductase 393 0.502

Cyclooxygenase-2 inhibitors 303 0.687
Benzodiazepine receptor 306 0.536
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CNNfp, NaiveB, RBFN, and LSVM.

Figure 10 shows the boxplot chart results after comparing the specificity values of
the CNNfp, NaiveB, RBFN, and LSVM algorithms. The NaiveB and RBFN ML algorithms
showed a higher variance of 0.01 and 0.04, respectively, compared to the CNNfp. This
diversity in all specificity values was especially seen in the algorithms that displayed a



Int. J. Mol. Sci. 2022, 23, 13230 12 of 24

variance of 2.5 × 10−5. Furthermore, the CNNfp algorithm showed a high specificity value
of 1.0, whereas the NaiveB and the RBFN algorithms displayed average specificity values of
0.99 and 0.98, respectively. The results showed a small p-value of 3.5 × 10−5, highlighting a
significant difference between all algorithms.
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CNNfp, NaiveB, RBFN, and LSVM.

Figure 11 describes the Boxplot chart results after comparing the AUC values of
the CNNfp, NaiveB, RBFN, and LSVM algorithms. The LSVM, NaiveB, and RBFN ML
algorithms showed a higher variance of 0.125, 0.083, and 0.033, respectively, compared
to CNNfp. This diversity in all AUC values was especially seen in the algorithms that
displayed a variance of 4.13 × 10−5. A combination of the Mol2mat with the CNNfp
algorithm showed an AUC value of 0.99, whereas the LSVM, NaiveB, and RBFN algorithms
displayed higher average AUC values of 0.96, 0.99, and 0.85, respectively. The results
showed a p-value of 4.2× 10−3, highlighting a significant difference between all algorithms.
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CNNfp, NaiveB, RBFN, and LSVM.

The boxplot chart results (Figures 9–11) showed that the use of CNNfp was very effi-
cient and convenient and presented less severe outliers in comparison to the NaiveB, RBFN,
and LSVM algorithms, thereby indicating the effectiveness of this prediction approach. The
results presented in Tables 2–4 for all three datasets show that the combination of ECFP4,
EPFP4, and ECFC4 fingerprints with a CNN activity prediction method resulted in the low-
est variance for the sensitivity, specificity, and AUC values for all activity classes compared
to the traditional NaiveB, RBFN, and LSVM algorithms. These results suggest that a deep
learning technique could be a promising, novel, and effective method of predicting the
activities of a range of chemical compounds.
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3. Discussion
3.1. Similarity Searching

Comparing unknown molecules to known chemical compounds allows us to predict
the activities of targets that are unknown compounds. Thus, the target compounds will
exhibit the activities of similar compounds. Several successful target prediction techniques
have been proposed in the literature [11,23,24]. For example, the authors in [25] imple-
mented a method for activity prediction using the Multi-level Neighbourhoods of Atoms
(MNA) structural descriptor. This descriptor is generated based on the connection table
and the table of atoms that represent each compound. A specific integer number is given to
each descriptor according to its dictionary. The Tanimoto coefficient was effectively used
to calculate the molecular similarity. The target compound activities were then predicted
based on the activities of the most similar known compound.

A number of machine learning techniques have been used for activity prediction
(target), including Binary Kernel Discrimination (BKD), Naive Bayesian Classifier (NBC),
Artificial Neural Networks (ANN), and Support Vector Machines (SVM). The authors
of [26] predicted five different ion channel targets using BKD and two different types
of activity data. They found that the effectiveness of the model increased using highly
similar activity classes. However, if this similarity was too low, the models would not
work. As it is simple to build a network to include many sources of significant information
about molecular structure, the authors of [27] used data fusion to aggregate the results
of BIN searches using multiple reference structures. The authors in [28] presented a new
classifier of Kinase Inhibitors using the NBC model. One advantage of this method that
was noted is finding compounds that are structurally unrelated to known actives or novel
targets for which there are inadequate data to develop a specific kinase model. In [29],
the authors summarised how networks could conduct the equivalent of discriminant and
regression analyses and underlined how initial overtraining and overfitting could lead to
poor prediction performance. According to their predictions, the next revolution in QSAR
will focus on developing better descriptors for connecting chemical structure to biological
activity. The authors of [30] created a set of SVM classifiers that collectively account for
100 different forms of drug molecule action.

In their study, the multilabel-predicted chemical activity profiling was successfully
accomplished by SVM classifiers, and they suggest that the proposed approach can forecast
the biological activities of unidentified chemicals or signal negative consequences of drug
candidates. In [11,31], the Bayesian belief network classifier was applied to predict the com-
pound’s target activities. The authors applied a novel technique to extend previous work,
based on a convolutional neural network that uses the 2D fingerprint representation to
predict the possibly bioactive molecules. The proposed CNN model for activity prediction
also included the substructural information of the molecule.

3.2. Convolutional Neural Network for Biological Activity Prediction

In [32], the authors used Merck’s drug discovery datasets and showed that Deep
Neural networks (DNN) could obtain better prospective predictions than the existing
machine learning methods. In addition, The Multi-Task Deep Neural Network (MT-DNN)
model [33] demonstrated good performance by training the neural network with a number
of output neurons, where the input molecule’s activity is predicted by every neuron
using different assays. In addition, [34–36] demonstrated how MT-DNN may be scaled to
incorporate big databases such as PubChem Bioassays [37] and ChEMBL [38].

However, several issues and limitations still exist with the current methods. For
instance, these methods work with targets that already have more available data and,
thus, they cannot predict novel targets. Additionally, the current DL approaches rely
on fingerprints, such as ECFP [39], which limit feature discovery to the composition of
the particular chemical structures identified by the fingerprinting process [10,34,40]. This
reduces their ability to discover arbitrary features. Moreover, the existing DL methods are
blind to the target, as they are not able to elucidate the potential molecular interactions.
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Another commonly used method is applying the similarity principle [41], which claims
that substances with similar structures have similar biological characteristics. However, the
authors in [42] discovered that it frequently fails because minor structural modifications
can diminish the ligand’s pharmacological activities that describe the molecular similarity
within the substructures.

In order to address these issues and limitations, a novel Convolutional Neural Net-
work (CNN)-based model using a 2D Fingerprint was proposed in this study for bioactivity
prediction. This technique can be used for several applications such as bioactivity predic-
tion, molecular searching, molecular classification, and virtual screening. The next section
provides a description of how the suggested strategy was developed.

4. Materials and Methods

This section explains how this model is used for identifying and predicting the bioac-
tivities of chemical compounds. First, we describe how various experimental benchmarks
can be built and then utilised for system testing. Next, we discuss the systems for input
representation and data encoding and deep convolutional network architecture.

4.1. Data Sets

The proposed prediction model was experimentally evaluated using multiple
datasets. This study used three datasets (Tables 5–7), which were described earlier
in [43,44] and used in several studies for validating the ligand-based virtual screening
methods [7,11,24,31,45,46].

The datasets used are disparate, including a structurally homogeneous dataset, as
shown in Figure 12, and a structurally diverse dataset, as shown in Figure 13 [3].

The original version of the MDDR database includes 707 distinct activity classes. The
mean pair-wise similarity (MPS) was then computed for each activity class. The mean
pair-wise similarity (MPS) of each set of active molecules was used to estimate the diversity.
The mean pairwise similarity (MPS) for 102,000 compounds selected randomly from MDDR
was 0.200. Figure 14 presents how the MPS can divide the dataset into high- and low-
diversity active classes, so that the cut-off point between the high- and low-diversity groups
is equal to 0.200. This method is briefly explained and demonstrated in [3].

These datasets, MDDR1 and MDDR2, comprise 10 homogeneous and heterogeneous
activity classes; the Sutherland dataset comprises four activity classes each. Tables 5–7 list
the activity classes, molecules in each class, and diversity between classes. These tables
were created using ECFP4 to estimate the mean pairwise Tanimoto similarity across all of
the chemical pairs within each class (extended connectivity).

As noted above, the MPS values identify the diversity of activity classes that are used
to evaluate the similarity search methods and biological activity prediction. Thus, the MPS
values were used to compare the three used databases, as shown in Figure 15.
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Figure 14. The average pairwise similarity (MPS) across each set of active molecules.

Box plots are the chart type that is used to visually present the distribution of all
numerical data based on their average values and quartiles (or percentiles). Generally,
box plots are applied in descriptive statistics since they help in overviewing the set of
distributed data along with its range. The right-hand side of Figure 15 depicts the creation
of a box, while the median MPS value is represented by the medium segment in the box.
The first and third quartiles’ MPS values are shown in the lower quartile and the upper
quartile, while an empty circle represents the outlier.
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4.2. Input Representation

One of the major issues affecting chemoinformatics and QSAR applications is the need
for good input features. The general graph-based storage format for chemical compounds’
numerical properties can be calculated using a variety of techniques. Fingerprints are a
specific type of complex descriptor that detects the feature distribution from the bit string
representations [3]. However, a feature extraction step was necessary to analyse the data in
the machine learning technique. The performance of all learning algorithms is enhanced by
this stage, which aids in expressing the interpretable data in the machines. Even the best
algorithms may perform poorly if the wrong features are used, while simple techniques
also perform well if suitable features are applied. Feature extraction techniques can be
unsupervised or manually conducted. Here, the authors have presented a new molecular
representation, Mol2mat (molecule to matrix), used to reshape each fingerprint molecule
representation into a 2D array malleable for use in deep learning architecture.

In this study, the authors investigated eight different 2D fingerprints that were gener-
ated using Scitegics Pipeline Pilot software [47]. These included the 120-bit ALOGP, 1024-bit
CDK (CDKFP), 1024-bit Path Fingerprints (EPFP4), 1024-bit ECFP4, 1024-bit ECFC4, 1024-
bit Graph-Only Fingerprints (GOFP), 881-bit PubChem Fingerprints (PCFP), and the 166-bit
Molecular Design Limited (MDL) fingerprints. Table 8 describes the storage of the finger-
print representatives for every molecule in a 2D array, with the help of the row-major order,
and also describes every matrix representation Mol2mat size for each fingerprint.

Table 8. Details of every matrix size for every fingerprint.

Fingerprint Features Size
√

Features Size Mol2mat Size n × n

ALOGP 120 10.95 11 × 11
CDK 1024 32 32 × 32

ECFC4 1024 32 32 × 32
ECFP4 1024 32 32 × 32
EPFP4 1024 32 32 × 32
GOFP 1024 32 32 × 32
PCFP 881 29.68 30 × 30
MDL 166 12.88 13 × 13

To show the difference between different 2D fingerprint representations used in this
paper, the authors plotted the scatter graphs in Figure 16 using 5083 molecules (from the
MDDR dataset) that are grouped into ten activity classes. These scatter plots were used to
establish the relationships between the various compounds belonging to the same class.
The molecules were represented by different individual 2D fingerprints and descriptors. In
addition, to represent their features, the representation was reduced to a 3D structure using
the Principal Component Analysis (PCA) method.
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As shown in Figure 16, the ECFP4 2D fingerprint representation can be easily observed
and was not overlapping. In addition, the molecules’ biological activities can be segregated.
This shows that the suggested 2D fingerprint representation may be successfully used for
predicting the biological activity of various chemical substances.

After the generation of the eight fingerprints, the molecular fingerprints were stored
in a 2D array using the row-major order, as shown in Algorithm 1.

Algorithm 1 is A summary of the storage of the fingerprints in a 2D array to yield the
Mol2mat presentation.

Algorithm 1: Storing fingerprint in a 2D array
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After evaluating each fingerprint, the authors assessed all the probable combinations
based on the five best descriptors. The combinations were based on the fusion of the
extracted feature levels. The combination of multi-CNN can be performed as illustrated
in [48,49]. Initially, the combination cases for 2, 3, 4, and 5 were generated by selecting
two fingerprints, then three, followed by four, and finally, all five. Thereafter, the best
combination was chosen.

4.3. Convolutional Neural Network

The default architecture was seen to be a convolutional architecture with fully con-
nected layers. The authors used the Krizhevsky principles [50] for designing the CNN
model configuration that was used for viewing the source code [51]. This configuration
followed the earlier generic design [50]. Figure 18 presents the general CNN configuration,
where the image was passed through the stack of convolutional (conv.) layers. The convo-
lution step employed a max-pooling layer. It was observed that this combination improved
the accuracy model and enhanced the CNN configuration.
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The flattened layer came after the max-pooling layer. This transformed the 2D matrix
data into a single vector, assisting in processing the output that had dense layers, i.e., fully
connected layers. The final layer was made of the classification Softmax layer [52,53].

Although CNN displayed good results for the feature learning and the prediction tasks,
recent studies have shown a better performance by fusing different CNNs [20,21,54,55].
These combinations can be implemented using feature concatenation or by computing the
average or output prediction scores derived from various CNNs.

Some studies [48,49] described the combination of 3 CNN models, as shown in Figure 19.
These models were based on the fusion of the information level. Fusion could be performed
early in the network after modifying the 1st-layer convolution filters for an extension of
time, or it could be performed later, after placing 2 different single-frame networks and
then fusing their outputs after the processing. The yellow, green, red, and blue boxes depict
the fully connected, normalisation, convolution, and pooling layers, respectively. In a Slow
Fusion model, the highlighted columns share the parameters.

In this stage, we used better techniques to combine the various sources of knowledge
available in the area of deep learning [20–22]. Firstly, we proposed a feature extraction
step for presenting every selected molecular fingerprint. This combination significantly
improved the models, since they could benefit from every molecular fingerprint and then
combine all the extracted features from various sources after a flattened layer, which
followed the max-pooling layer. This helped them convert the 2D matrix data into the
vector. As a result, they could process the output data using the fully connected layers,
called the dense layers. In this section, we described the CNN architecture used in this
research and how we can combine multi CNNs in one model. In the next section, we will
describe the performance evaluation.
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4.4. Network Architecture

As mentioned above, eight fingerprint representatives were generated using the
Scitegics Pipeline Pilot software [47]. They were further stored in the 2D array with a
row-major order for deriving a novel matrix representation Mol2mat, which used the
above-mentioned algorithm.

As previously stated, a few fingerprints complemented one another, and their combi-
nation yielded good results. This indicated that different fingerprints generated differing
results with regard to biological activity prediction or similarity searches. This further indi-
cated that the different QSAR models could be developed based on different fingerprints
with similar accuracy. Currently, researchers tend to combine and merge all fingerprints
and descriptor sets, which comprise various types of fingerprints [3]. After evaluating
each fingerprint, the authors assessed all the probable combinations based on the five best
descriptors. The combinations were based on the fusion of the extracted feature levels.

In the present study, we used better techniques for combining the various sources of
knowledge available in the area of deep learning [20–22]. Firstly, we proposed a feature
extraction step for presenting every best molecular fingerprint in which all molecules
were passed through 2 conv. layers, using a (3 × 3) feature map size for convolution and
one max-pooling layer. This combination significantly improved the models since they
could benefit from every molecular fingerprint and combine all the extracted features from
various sources after a flattened layer. As a result, they could process the output data using
the fully connected layers. The first two fully connected layers were built using a different
number of nodes in every combination. Table 9 presents these node numbers in detail in
every combination. The combination cases for 2, 3, 4, and 5 were generated by selecting
two fingerprints, then three, followed by four, and finally, all five. The best combination
was then chosen.

Table 9. Details of the first and second fully connected layers for every combination.

Combined Case Combined
Layer Size

Number of Nodes in 1st
Fully Connected Layer

Number of Nodes in 2nd
Fully Connected Layer

2 Fingerprints 6272 128 64
3 Fingerprints 9408 256 128
4 Fingerprints 12,544 512 256
5 Fingerprints 15,680 1024 512

The final layer included the Softmax layer [50,52,53]. Figure 20 describes the configu-
ration of the combined CNN, which was used to assess 3 fingerprints.

The target was as follows: to predict if the specific chemical compound, i, showed
activity for target, t. These data could be encoded in the binary form, yit, where yit = 1
for the active compound and yit = 0 for the inactive compound. This also included the
prediction of the compound’s behaviour from targets, simultaneously. In the training stage,
a general back-propagation algorithm was used to determine the CNN and decrease the
cross-entropy of all targets and the activation of the output layer.
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5. Conclusions

This study has investigated the use of molecular fingerprinting in the Convolution
Neural Network model to predict the activities of ligand-based targets. The results indicate
that the combination of the ECFP4, EPFP4, and ECFC4 fingerprints with a CNN activity
prediction method produced the lowest variance for the sensitivity, specificity, and AUC
values for all the activity classes, when compared to the three traditional ML algorithms of
NaiveB, LSVM, and RBFN, available in the WEKA-Workbench. The paper described a novel
Mol2mat process, which showed low overlap and was able to segregate all the biological
activities of the chemical compounds. A combination of three fingerprints with CNN was
used on some popular datasets, and the performance of this combination was compared to
that of three traditional ML algorithms. The proposed algorithm achieved good prediction
rates (where the low- and high-diversity datasets displayed a 98% AUC value). The
results also showed that combining the ECFP4, EPFP4, and ECFC4 fingerprints with CNN
improved the performance of both the heterogeneous and homogeneous datasets. In this
study, the authors have shown that this combination of fingerprints with the CNN technique
is a convenient and stable prediction process, which could be used for determining the
activities of unknown chemical compounds. However, this field needs to be investigated
further, and better accuracy prediction processes must be developed for high-diversity
activity compounds.
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