
Citation: Al-Sarem, M.; Al-Asali, M.;

Alqutaibi, A.Y.; Saeed, F. Enhanced

Tooth Region Detection Using

Pretrained Deep Learning Models.

Int. J. Environ. Res. Public Health 2022,

19, 15414. https://doi.org/10.3390/

ijerph192215414

Academic Editors: Sreenivas Koka

and Kelvin I. Afrashtehfar

Received: 11 October 2022

Accepted: 17 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Enhanced Tooth Region Detection Using Pretrained Deep
Learning Models
Mohammed Al-Sarem 1,2 , Mohammed Al-Asali 1, Ahmed Yaseen Alqutaibi 3,4,* and Faisal Saeed 1,5

1 College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia
2 Department of Computer Science, Sheba Region University, Marib 14400, Yemen
3 Department of Prosthodontics and Implant Dentistry, College of Dentistry, Taibah University,

Al Madinah 41311, Saudi Arabia
4 Department of Prosthodontics, College of Dentistry, Ibb University, Ibb 70270, Yemen
5 DAAI Research Group, Department of Computing and Data Science, School of Computing

and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
* Correspondence: aqaid@taibahu.edu.sa

Abstract: The rapid development of artificial intelligence (AI) has led to the emergence of many
new technologies in the healthcare industry. In dentistry, the patient’s panoramic radiographic
or cone beam computed tomography (CBCT) images are used for implant placement planning to
find the correct implant position and eliminate surgical risks. This study aims to develop a deep
learning-based model that detects missing teeth’s position on a dataset segmented from CBCT
images. Five hundred CBCT images were included in this study. After preprocessing, the datasets
were randomized and divided into 70% training, 20% validation, and 10% test data. A total of six
pretrained convolutional neural network (CNN) models were used in this study, which includes
AlexNet, VGG16, VGG19, ResNet50, DenseNet169, and MobileNetV3. In addition, the proposed
models were tested with/without applying the segmentation technique. Regarding the normal teeth
class, the performance of the proposed pretrained DL models in terms of precision was above 0.90.
Moreover, the experimental results showed the superiority of DenseNet169 with a precision of 0.98.
In addition, other models such as MobileNetV3, VGG19, ResNet50, VGG16, and AlexNet obtained a
precision of 0.95, 0.94, 0.94, 0.93, and 0.92, respectively. The DenseNet169 model performed well at
the different stages of CBCT-based detection and classification with a segmentation accuracy of 93.3%
and classification of missing tooth regions with an accuracy of 89%. As a result, the use of this model
may represent a promising time-saving tool serving dental implantologists with a significant step
toward automated dental implant planning.

Keywords: pretrained deep learning; missing teeth; CBCT; DenseNet169 model; CNNs; image
segmentation; U-Net model

1. Introduction

The placement of dental implants to restore missing teeth is now recognized as a
standard dental procedure [1]. A priori dental implant planning is required to achieve
good treatment results because it helps to find the correct position of the implant and
eliminates surgical risks [2–4]. Generally, an implant placement plan is created using a
patient’s cone beam computed tomography (CBCT) image, which offers three-dimensional
(3D) information to surgeons instead of traditional methods [5]. Finding missing teeth
regions missing tooth areas is a critical step that the oral implantologist should determine
during implant placement planning [6,7].

With the widespread use of dental implants nowadays, automatic detection of missing
tooth areas is necessary to develop an automatic implant plan. Unfortunately, due to the
lack of automated technologies, clinicians had to plan to place dental implants manually,
which is not efficient as it requires more time and effort [6,7]. Therefore, several studies
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utilized the power of A.I. to improve the effectiveness and efficiency of clinical treatment
methods. In contrast to human intelligence, A.I. is known as machine intelligence [8],
where the machines can simulate human minds in the ability to learn and analyze and
then solve problems [9,10]. As A.I. technologies have rapidly developed, they has been
widely used in several fields, including healthcare. These technologies include the Internet
of Things (IoT), machine learning, deep learning, natural language processing, and robotics.
The A.I. technologies are successfully applied in the healthcare industry to improve clinical
treatment outcomes, enhance the performance of the decision-making process, and enhance
clinical diagnosis in various medical task domains [10,11].

One of the main types of machine learning based on artificial neural networks is
deep learning (DL), which uses multiple layers of processing to extract knowledge and
insight from the data. DL has been applied for several medical applications, such as
computer-aided diagnosis and surgical planning, disease classification, tumor detection,
and anatomic modeling [12]. In dentistry, it has been applied for tasks such as third-molar
extraction, caries detection, prediction of extraction difficulty for mandibular third molars,
mandibular canal detection, and tooth numbering [13–16].

This paper further extends the research of applying artificial intelligence and deep
learning in dentistry. It aims to enhance the 3D missing tooth area planning using pretrained
deep learning models by automatically detecting and classifying the CBCT images and
passing only those which need further planning.

2. Related Works

Nowadays, healthcare is one of the basic needs of all people, and smart healthcare has
become essential to provide efficient services for several healthcare sectors that improve
the quality of people’s lives. Different advanced technologies have been recently used
in smart healthcare, which includes artificial intelligence (A.I.), machine learning (ML),
deep learning (DL), Internet of Things (IoT), big data analytics, medical sensors, and
others [17]. For instance, the traditional diagnosis methods for conditions such as brain,
heart, kidney, and liver diseases were manual and error-prone. Unlike exclusive human
expertise, applying artificial intelligence methods provides auto diagnosis and reduces
detection errors [18]. In dentistry, artificial intelligence has been recently applied to provide
clinicians with high-quality patient care and prediction tools that simplify complicated
diagnosis protocols. For instance, deep learning methods can effectively detect caries using
radiographs as the input layer for these DL methods. Based on A.I. training, multiple
hidden layers of DL methods can be used to classify the radiographs into “caries” and
“no-caries” [19].

Another important application of A.I. in dentistry is the automated detection of teeth
and small edentulous regions. In these applications, cone beam computed tomography
(CBCT) images of different patients (such as fully and partially dentate patients) were used
for this purpose. Gerhardt et al. [20] used the A.I. tool (Virtual Patient Creator, Relu BV,
Leuven, Belgium) to train and test the model with 175 CBCT images. This A.I. tool was
used to label, segment, and detect the missing teeth. Based on the 3D U-Net architecture, a
deep learning method was used in this tool for detecting and segmenting the teeth in two
subsequent networks. The teeth were detected in the down-sampled image, and rough
segmentation was provided for the first network. The regions of interest (R.O.I.) can be
proposed using the rough segmentation that enabled the use of deep learning for multi-
class classification after cropping and down-sampling the images to a fixed resolution. The
automated tooth segmentations for all CBCT scans provided by this tool in the form of
individual 3D models were judged by an expert. If adjustments were needed, the tooth
segmentations were manually refined using this tool.

Similarly, Zhang et al. [21] and Chen et al. [22] conducted studies on automated
detection/labeling of 2D teeth, where CNN was applied to detect teeth in periapical
radiographs. The experimental results of these two studies showed that the obtained
precision rates were 95% and 90%, respectively. These findings ensured the importance of
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A.I. in providing accurate and efficient detection for proper surgical and treatment planning
and automated dental charting.

In [23], Liu et al. used an A.I.-based system to design the implant plan automatically.
They applied transfer learning using A.I. to guide implant placement in the posterior
mandible. These systems are known as single-shot multibox detectors (S.S.D.) and voxel-to-
voxel prediction network for pose estimation (V2V-PoseNet). The characteristic annotators
were detected, and the implant position was determined using this A.I. system. In this study,
the CNN model was trained using a dataset of 2500 different edentulous sites for CBCT
images. The experimental results showed that the A.I. system could use deep learning to
effectively detect the anatomy of the object region and generate the ideal implant plan.

Similarly, in [2], Kurt Bayrakdar et al. used an AI-based system for implant planning.
A dataset of 75 CBCT images was used in this study to train the deep convolutional
neural network for providing an automatic detection of canals/sinuses/fossae linked with
alveolar bones and missing tooth regions. The voxel-perfect segmentations were required
for predictions of crucial implant planning. The segmentation of missing teeth depends on
the segmentations of present teeth and jaws. Using the neighboring teeth location, tilt, and
placement, the missing tooth mask was extracted that can be used as a guide to a slicing
algorithm and helps predict a mesiodistal angle of implant placement. The outcomes of
A.I. methods were compared with the manual assessment using the Wilcoxon signed-rank
test and Bland–Altman analysis. The experimental results showed no significant difference
between these two methods for the bone height measurements obtained. However, it was
significant for bone thickness measurements in all regions of maxilla and mandible. The
detection accuracy obtained in this study was 95.3% for missing tooth regions, 72.2% for
canals, and 66.4% for sinuses/fossae.

Deep learning methods have recently been used for dental implant planning to detect
missing tooth regions. A dataset of 455 panoramic radiographic images was used in [6] to
annotate, segment, and detect the missing tooth regions. The tooth masks were generated
first during the image segmentation process based on the instance-by-instance method.
Mask R-CNN and ResNet-101 were used for the segmentation model. For the detection
of missing tooth region, the Faster R-CNN model was used. The backbone of this model
was ResNet-101. The experimental results showed that the detection model obtained an
average of 92.14% for tooth instance segmentation and 59.09% for missing tooth region
detection. In addition, deep learning has also been applied to perform different tasks in
dentistry, which include dental caries detection [24] and prediction of extraction difficulty
for mandibular third molars [25].

In this paper, several pretrained deep learning models were applied for enhanc-
ing 3D missing tooth area planning, including the AlexNet, VGG16, VGG19, ResNet50,
DenseNet169, and Mo-bileNetV3 models.

3. Materials and Methods
3.1. Study Design

In this study, deep learning models were trained to detect and classify the missing
teeth region from a dataset segmented from CBCT images of confidential patients who
regularly visited the Taibah University dental hospital. The experimental part of this study
was implemented jointly at the Faculty of Dentistry and the College of Computer Science
and Engineering at Taibah University, K.S.A. Generally, the proposed approach is divided
into three main stages: the data acquisition stage, the data preprocessing and segmentation
stage, and the feature extraction and classification stage. To ensure that the proposed model
was able to classify the images correctly, the collected images were of different patients
of different ages. As a result, 500 CBCTimages were collected. Since the images were in
3D dimension, an expert with more than 10 years of professional experience in dental
implant planning was to be responsible for slicing and extracting 2D X-ray images from
the original CBCT images. The professional dentist was also asked to manually annotate
the sliced/extracted images as well as manually segment the missing tooth regions and
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positions. As a result, the obtained images were used as ground-truth masks for training the
proposed deep learning models. In the second stage, the dataset along with the masks, were
fed to the segmentation stage, in which augmentation was also performed. In this study, we
designed two experiment types based on the presented segmentation techniques. For this
purpose, the U-Net model was used in the segmentation stage. In terms of classification
models, several deep learning architectures were implemented and tested, including the
AlexNet, VGG16, VGG19, ResNet50, DenseNet169, and MobileNetV3 models. These
models were used to classify the resulting binary masks from the segmentation stage well
as to classify the original images without segmentation. As the pretrained DL models are
originally capable of classifying up to 1000 different classes, the last fully connected layer
of these models was replaced so that it can be capable of classifying the binary classes of
the used dataset. We also compared the output of the proposed models to the ground-truth
dataset that was annotated by the domain expert. Figure 1 shows the whole process of the
followed methodology.
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3.2. Ethics Statement

• Generating a real dataset of images, which are more than confidential patients’ CBCT
images representing different missing tooth positions of patients with different age
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ranges, the CBCT images were officially obtained from patients between 16 and
72 years of age. The research ethics committee, College of Dentistry, Taibah University,
Madinah, Saudi Arabia, approved this study protocol (approval # 14032021, approved
on 21 March 2021). Due to the non-interventional retrospective design and anony-
mous analyzed data, the institutional review committee waived the requirement for
individual informed consent.

3.3. Data Acquisition

This study screened scans from patients who had visited Taibah University Dental
Hospital (TUDH) and had undergone CBCT imaging between 2018 and 2022. CBCT images
of patients between 16 and 72 years of age were included. Because image quality is an
important factor affecting the performance of deep neural networks in computer vision
tasks, poor-quality images were excluded from the collected dataset to avoid impacting
the effectiveness of the applied deep learning models and their results. Therefore, images
belonging to patients with a history of trauma, pathology, surgical intervention congenital
syndrome, fracture, or any other foreign body (which produced artifacts in the image)
were excluded from the study. Moreover, blurred images, such as those containing an
ill-defined and unclear definition of bony borders, were excluded from the study. Of
890 screened scans, 500 images fulfilled the eligibility criteria. Anonymous code was given
to each subject, all the data was saved in an excel sheet with a security password, and
the computer was secured with a password. Notably, visualizing anatomical structures
depends on technological parameters such as image resolution and CBCT reconstruction
time. In this study, all CBCT scans performed in the TUDH adhered to a standardized
scanning protocol with the same machine (KaVo 3D eXam; KaVo) at the same specified
device settings (i.e.,120 kVp and 5 mA using a field of view of 16×13 cm, voxel size of
0.25 mm, and 26.9 s of acquisition time) as a change in any of these factors may affect the
visualization of anatomical structures.

Images were reconstructed in C.S. 3D Imaging Software (Carestream Dent L.L.C.,
Atlanta, GA, USA). The head positions were standardized anteroposteriorly and sagittally
according to a standard method. From CBCT volumes, the panoramic images were recon-
structed by selecting a custom focal trough that passed through the lingual cusps of the
maxillary teeth and extended posteriorly to the condyles. (Figure 2).
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This conversion process is summarized in Algorithm 1.

Algorithm 1 Conversion of CBCTimages to X-ray Images

1. Input: 3D cone beam CBCTdataset
2. Output: X-ray images
3. Begin
4. X_ray_dataset = [ ] // empty dataset
5. for all img in dataset do:
6. if image_quality is poor Then:
7. valid_dataset = RemoveImage(img)
8. else:
9. SaveImage( ) // save images as DICOM
10. RecoImage( ) // reconstruct images using C.S. 3D Imaging Software
11. SliceImage(img) // slice images
12. X_ray_dataset = SaveImg(img) // Save images as PNG format
13. end for
Return X-ray images

3.4. Data Preprocessing and Segmentation

The X-ray images dataset obtained by applying algorithm 1 was passed to the next
stage. In the data preprocessing phase, the images were standardized, and all panoramic
dental X-ray images were resized to 512 × 512 pixels and normalized in the range of 0 to 1.

After preprocessing, the datasets were randomized and divided into 70% training,
20% validation, and 10% test data, as shown in Figure 1. Since there are two separate
experiments, the training set was also used to provide experience for segmentation models
regarding teeth segments. For this purpose, only 120 images were used for segmentation,
while the remaining data were used to evaluate the segmentation models.

3.5. Detection and Classification Using the Pretrained DL Models

A total of six pretrained CNN models were used in this study, which include AlexNet,
VGG16, VGG19, ResNet50, DenseNet169, and MobileNetV3. Each of these models is
described in detail in the following subsections.

3.5.1. AlexNet

AlexNet is a CNN model proposed by Krizhevsky et al. [26]. It has eight layers with
learnable parameters, including five convolutional layers, three fully connected layers, and
three max-pooling layers that are connected after the first, second, and fifth convolutional
layers, respectively. As an activation function, AlexNet model uses the Relu activation
function in all its layers except the output layer. The original AlexNet architecture and its
configuration settings are shown in Figure 3 and Table 1, respectively.
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Table 1. The original AlexNet model architecture.

Layer # of Filters/Neurons Filter Size Stride Padding Size of Feature Map Activation
Function

Input Layer - - - - 227 × 227 × 3 -

Conv (1) 96 11 × 11 4 - 55 × 55 × 96

ReLu
Conv (2) 256 5 × 5 1 2 27 × 27 × 256
Conv (3) 384 3 × 3 1 1 13 × 13 × 384
Conv (4) 384 3 × 3 1 1 13 × 13 × 384
Conv (5) 256 3 × 3 1 1 13 × 13 × 256

Max pooling (1) - 3 × 3 2 - 27 × 27 × 96
-Max pooling (2) - 3 × 3 2 - 13 × 13 × 256

Max pooling (3) - 3 × 3 2 - 6 × 6 × 256

Dropout 1 Rate = 0.5 - - - 6 × 6 × 256 -
Dropout 2 Rate = 0.5 - - - 4096 -

Fully
Connected (1) - - - - 4096 ReLu

Fully
Connected (2) - - - - 4096 ReLu

Fully
Connected (3) - - - - 1000 Softmax

3.5.2. VGG16 and VGG19

VGG16 is also a type of CNN model that consists of 21 layers. Out of these, there
are only 16 weight layers with learnable parameters. Precisely, the model consists of
13 convolutional layers, 3 fully connected layers, and 5 max pooling layers [27]. The VGG16
model uses small convolutional filters (3 × 3) with stride 1. In addition, the same padding
and max pool layer of a 2 × 2 filter of stride 2 are used.

This network has about 138 million parameters, which is quite large. The original
VGG16 architecture and its configuration settings are depicted in Figure 4.
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VGG19 is a variant of the VGG16 model in which three new convolutional layers
were added up to the previous VGG16 model. There are 19 layers (16 convolution layers
and 3 fully connected), 5 max-pooling layers, and 1 SoftMax layer. Figure 5 shows the
VGG19 architecture.
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3.5.3. ResNet50

ResNet50 is a variant of the ResNet model, which has 48 convolution layers along
with 1 MaxPool and 1 average pool layer. It has 3.8 × 109 floating point operations. Since
the vanishing gradient problem is common in CNN-based models during backpropagation,
the ResNet-based model uses a “skip connection” to overcome such a problem, as shown
in Figure 6.
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Figure 6. Architecture of the ResNet50 model, the black curved arrows show “skip connection”
among the layers.

3.5.4. DenseNet169

A dense convolutional network (DenseNet) is an expansion of the Residual CNN
(ResNet) architecture. Indeed, there are several DenseNets such as, DenseNet121,
DenseNet169, and DenseNet201. In this paper, the DenseNet169 was used. As indicated in
its name, the architecture of this model contains 169 layers. The reason for this choice is
due to the ability of DenseNet169 to handle the vanishing gradient problem compared to
the other versions [28]. In addition, it has a minimal number of parameters. In contrast
to ResNet and other convolution neural networks, DenseNet-based models provide an
immediate connection between each layer and all descendant layers, as shown in Figure 7.
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3.5.5. MobileNetV3

The MobileNetV3 proposed by Howard et al. [29] is an enhanced version of the original
MobileNetV1 and MobileNetV2. The MobileNetV3 uses a new network architecture search
algorithm called the NetAdapt algorithm for two reasons: (i) to search for the best kernel
size and (ii) to optimize the MobileNet architecture by fulfilling the hardware platforms in
terms of size, performance, and latency. The MobileNetV3 processes a new nonlinearity
version of a sigmoid function called hard swish (h-swish), which is used, on the one hand,
to reduce the overall model complexity and size and, on the other hand, to minimize the
number of training parameters:

h − swish(x) = x · σ(x) where, (1)

σ(x) =
ReLU 6(x + 3)

6
(2)

3.6. Experimental Setup

The proposed approach is implemented on a machine that meets the following speci-
fications: Intel(R) Core (T.M.) i9-10980HK CPU @ 2.40 GHz 3.10 GHz processor and a 32
GB RAM running Windows 11 with an NVIDIA GeForce MX graphics card. The Jupyter
Notebook provided with Anaconda distribution [30] and Keras 2.10.0 library with Ten-
sorFlow backend was used for implementing all the proposed DL models using Python
3.9 [31]. During the segmentation phase, a 10-fold cross-validation technique was applied,
and the sigmoid output of the network was directly binarized. In addition, the weights
were randomly initialized using a truncated normal distribution centered at zero. Then,
the weights were optimized using the Adaptive Moment Estimation (ADAM) optimizer
over 250 epochs with a batch size of four. We set the learning rate to 0.001. In terms of
data augmentation, various combinations of horizontal flipping, vertical flipping, and
rotations were applied. Table 2 shows the hyperparameters used for model training at the
segmentation and classification phase.

Table 2. The used hyperparameters for the model configuration.

Model Training Hyperparameters Values

Images Size 512 × 512 × 3
Epochs 250

Optimizer ADAM
Learning rate 1 × 10−3

Activation function Sigmoid
Batch Size 4

Loss function Binary Cross-entropy

3.7. Evaluation Metrics

Several metrics were used to evaluate the proposed models’ performance depending
on the model type [27]. Among all metrics, accuracy, precision, recall, and F1-score were
most used. These metrics are denoted by the following Equations (3)–(6) as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TN

TN + FP
(5)

F1 Score = 2 × Precision × Recall
Precision + Recall

(6)
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In addition, we use the Matthews correlation coefficient (MCC) to measure how
predictions match labels. The MCC is defined as follows:

CC =
TP/n − S̄P̄√

S̄P̄(1 − S̄)(1 − P̄)
(7)

where S̄ is the class label, P̄ is the prediction of the data, n is the total number of observations,
and TP is “True Positives”.

4. Experimental Results and Discussion

This section summarizes the findings of the experiments performed on the dataset by
applying the U-Net segmentation model and without segmentation.

4.1. Results Using Teeth Segmentation

The U-net model was trained and validated on a dataset of 120 images, and then the
test set was used to evaluate the overall performance. Table 3 shows the performance
results regarding the training, validation, and testing set. The results showed that the
model was stable and achieved an accuracy of 90.81% for the testing set. In addition, it is
notable that the training and validation results are closed, which means the model does
not fall into the overfitting problem. In addition, this is a good sign that the model was
generalized fine.

Table 3. U-Net best performing training, validation, and testing results.

Model Accuracy Precision Recall F1-Score Loss

U-Net Training 93.40 0.99 0.97 0.98 0.0118
U-Net Validation 92.92 0.93 0.98 0.96 0.0116

U-Net Testing 90.81 0.96 0.97 0.97 0.0580

The confusion matrix presented in Table 4 and Figure 8 show that the U-Net model
can predict the missing teeth (class 1) perfectly.

Table 4. Confusion matrix of U-net model.

Precision Recall F1-Score

Class 0 (Normal) 0.93 0.98 0.96
Class 1 (Missing teeth) 0.99 0.97 0.98

Macro avg. 0.96 0.97 0.97
Weighted avg. 0.97 0.97 0.97
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4.2. Classification Results of Pretrained DL Models

This section presents the performance of the pretrained DL models (AlexNet, VGG16,
VGG19, ResNet50, DenseNet169, and MobileNetV3) using various performance metrics. It
is important to mention that the obtained images from the segmentation stage were fed
to the DL classifiers. Table 5 shows the performance of the pretrained DL models where
the U-Net model was used as a backend segmentation tool. Table 5 also gives a fair idea
about the superiority of DenseNet169 implementation results. It shows that the AlexNet
model produced the worst results, with an accuracy of 67.75%, then MobileNetV3 with an
accuracy of 82.50%, while VGG16 and ResNet50 yielded an accuracy of 90%.

Table 5. Performance results of the deployed pretrained DL models with segmentation.

Model Accuracy Precision Recall F1-Score

DenseNet169 93.33 0.94 0.93 0.93
VGG16 90.00 0.90 0.90 0.90
VGG19 85.00 0.86 0.85 0.85
AlexNet 67.75 0.77 0.68 0.64

ResNet50 90.00 0.90 0.90 0.90
MobileNetV3 82.50 0.85 0.82 0.82

Since the main goal of this paper is to help dentists in future planning for placing dental
implants, we need models that can predict the missing position of teeth more accurately.
Thus, the highest F1-score of class 1 (the missing teeth class) indicates that the model
detects the position of missing teeth more accurately. Figure 9 shows the performance of
the pretrained models in terms of precision, recall, and F1-score. The recall of the models
shows how many times the model was able to detect a specific category. The DenseNet169
is still the winner among all the other models, with recall of 0.98. AlexNet shows an
interesting behavior with a recall of 0.97. Similarly, MobileNetV3 gives a recall of 0.97. The
worst value is obtained with VGG16, with a recall of 0.93. In terms of precision, where
the goal is to determine how good the model is at predicting the missing teeth class, the
DenseNet169 gives the best value with a precision of 0.89, while AlexNet gives the worst
value with a precision of 0.61. The performance of VGG16 is closer in terms of precision to
the performance of the DenseNet169 model, with a value of 0.88.
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(missing teeth class).

Regarding the normal teeth class, the performance of the proposed DL models in
terms of precision was above 0.90. Figure 10 shows the superiority of the DenseNet169
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with a precision of 0.98, followed by MobileNetV3 with a precision of 0.95 and VGG19 and
ResNet50 with a precision of 0.94 each. VGG16 and AlexNet followed with a precision
of 0.93 and 0.92, respectively. Figure 10 also shows that the AlexNet model yielded the
worst performance in terms of recall with a value of 0.38. In general, the recall values were
between 0.68 for MobileNetV3 and 0.88 for the DenseNet169 model.
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Figure 10. Performance of the models in terms of precision, recall, and F1-score with respect to class
0 (class of normal teeth).

The obtained results of these deep learning models (such as DenseNet169) show
that they overcome the performance of the models proposed in the previous studies. For
instance, the precision values of the detected missing tooth regions were 95%, 90%, and
59.09% in [6,18,22], respectively.

Table 6 shows the MCC values for all models. The higher the value, the higher
agreement between actuals and predictions. In our case, DenseNet169 is the best model
compared to the others. Figure 11 shows the normalized confusion matrices for all the
proposed models.

Table 6. MCC performance results of the deployed pretrained DL models with U-net segmentation.

Model MCC

DenseNet169 0.8710
VGG16 0.8351
VGG19 0.7144
AlexNet 0.4309

ResNet50 0.8040
MobileNetV3 0.6778
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4.3. Classification without Segmentation

This subsection summarizes the findings of the experiments performed on the dataset
without applying any segmentation model. The results in Table 7 show that VGG16 over-
comes all the remaining DL models. It achieved an accuracy of 79.17%. The performance of
DenseNet169 and VGG19 is the same in terms of accuracy, recall, and F1-score. However,
the DenseNet169 exceeds VGG19 in terms of precision, with a value of 0.81. The AlexNet
model gives the worst performance, with an accuracy of 52.50%.

Table 7. Performance results of the deployed pretrained DL models.

Model Accuracy Precision Recall F1-Score

DenseNet169 78.33 0.81 0.78 0.78
VGG16 79.17 0.80 0.79 0.79
VGG19 78.33 0.80 0.78 0.78
AlexNet 52.50 0.53 0.52 0.51

ResNet50 61.67 0.68 0.53 0.41
MobileNetV3 60.83 0.67 0.61 0.57

Figure 12 shows the performance of the pretrained models with respect to the missing
teeth class in terms of precision, recall, and F1-score. It shows that DenseNet169, VGG16,
and VGG19 achieved F1-scores of 0.81, whereas their precision and recall are different. The
ResNet50 model produced the best recall results, with a value of 0.98, whereas AlexNet
provided the worst results.
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Figure 12. Performance of the models in terms of precision, recall, and F1-score with respect to class 1
(class of missing teeth).

Figure 13 shows the performance of the DL models when the class of normal teeth
is considered. Among all the models, ResNet50 produced the worst results with F1-score
of 0.15 and recall of 0.08. DenseNet169 had a precision of 90% and recall of 63%. VGG16
achieved an F1-score of 77%.
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Figure 13. Performance of the models in terms of precision, recall, and F1-score concerning class 0
(class of normal teeth).

The Matthews correlation coefficient (MCC) shows that AlexNet, ResNet50, and
MobilenetV3 failed to predict the class label, whereas DenseNet169, VGG19, and VGG19
were, to some extent, capable of predicting the class label as shown in Table 8.

Table 8. MCC performance results of the deployed pretrained DL models.

Model MCC

DenseNet169 0.5940
VGG16 0.5900
VGG19 0.5828
AlexNet 0.0534

ResNet50 0.1529
MobileNetV3 0.2752

4.4. Statistical Analysis

The previous sections showed that DenseNetV3 could predict the teeth’s class label
more accurately than the other models. As a result, we chose it as the recommended
approach for predicting missing teeth. However, to show that the choice is statistically
significant, the statistical significance of the results was measured using the Mann–Whitney–
Wilcoxon test and the Wilcoxon signed-rank test. For this purpose, we formulated the null
hypothesis, h0, as follows: the metrics scores of DenseNet169 were achieved after applying
the U-Net model as a segmentation backend, and the metrics scores without segmentation
are the same. The p values from the Mann–Whitney–Wilcoxon test suggest that the null
hypothesis can be rejected due to the significance level below 0.05, and the null hypothesis
can be dismissed since the improvement is significant (See Table 9).

Table 9. The reported p values for DenseNet169.

Test Accuracy Precision Recall F1-Score

Mann–Whitney–Wilcoxon test
(Wilcoxon rank sum test) 0.01453 0.01453 0.01453 0.01453

Wilcoxon signed-rank test 0.04718 0.04718 0.04718 0.04718
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5. Conclusions and Future Research Directions

Several pretrained deep learning models were implemented in this study, including
AlexNet, VGG16, VGG19, ResNet50, DenseNet169, and MobileNetV3, and their perfor-
mance in detecting and classifying the missing tooth regions was also investigated in terms
of different performance evaluation metrics. In addition, two types of feature extraction
were investigated. The feature extraction was based on the U-Net model, and the other
type used the bare image without segmentation. A binary classification-based dataset was
obtained to facilitate the process of identification of the missing teeth bone area. For future
planning and implanting of the predicted missing tooth areas, a domain expert verified the
resulting dataset manually.

The experimental results showed that the segmentation process played an essential
role in enhancing the performance of the pretrained DL models. Among the proposed DL
models, the finding showed the superiority of DenseNet169, with an F1-score of 0.94 for
the missing teeth class and 0.93 for the class of normal teeth class. The use of this model
may represent a promising time-saving tool serving dental implantologists with a first
step toward automated dental implant planning. In addition, this study also constructed a
ground-truth dataset for tooth instance segmentation and missing tooth region detection in
panoramic radiographic images which were officially obtained, sliced, and extracted and
reviewed by an expert with more than 10 years of professional experience in dental implant
planning. The domain expert manually annotated the X-ray images to obtain ground-truth
masks using the well-known annotation tool called Label Studio (https://labelstud.io/,
accessed on 3 October 2022). An improved algorithm and more data will make implant
placement more automated in the future.
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