
Citation: Abbas, A.; Gaber, M.M.;

Abdelsamea, M.M. XDecompo:

Explainable Decomposition

Approach in Convolutional Neural

Networks for Tumour Image

Classification. Sensors 2022, 22, 9875.

https://doi.org/10.3390/s22249875

Academic Editor: Loris Nanni

Received: 15 November 2022

Accepted: 12 December 2022

Published: 15 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

XDecompo: Explainable Decomposition Approach in
Convolutional Neural Networks for Tumour
Image Classification
Asmaa Abbas 1 , Mohamed Medhat Gaber 1,2 and Mohammed M. Abdelsamea 1,3,*

1 School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7AP, UK
2 Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
3 Department of Computer Science, Faculty of Computers and Information, University of Assiut,

Assiut 71515, Egypt
* Correspondence: mohammed.abdelsamea@bcu.ac.uk

Abstract: Of the various tumour types, colorectal cancer and brain tumours are still considered
among the most serious and deadly diseases in the world. Therefore, many researchers are inter-
ested in improving the accuracy and reliability of diagnostic medical machine learning models.
In computer-aided diagnosis, self-supervised learning has been proven to be an effective solution
when dealing with datasets with insufficient data annotations. However, medical image datasets
often suffer from data irregularities, making the recognition task even more challenging. The class
decomposition approach has provided a robust solution to such a challenging problem by simplifying
the learning of class boundaries of a dataset. In this paper, we propose a robust self-supervised model,
called XDecompo, to improve the transferability of features from the pretext task to the downstream
task. XDecompo has been designed based on an affinity propagation-based class decomposition to
effectively encourage learning of the class boundaries in the downstream task. XDecompo has an
explainable component to highlight important pixels that contribute to classification and explain
the effect of class decomposition on improving the speciality of extracted features. We also explore
the generalisability of XDecompo in handling different medical datasets, such as histopathology for
colorectal cancer and brain tumour images. The quantitative results demonstrate the robustness of
XDecompo with high accuracy of 96.16% and 94.30% for CRC and brain tumour images, respectively.
XDecompo has demonstrated its generalization capability and achieved high classification accuracy
(both quantitatively and qualitatively) in different medical image datasets, compared with other
models. Moreover, a post hoc explainable method has been used to validate the feature transferability,
demonstrating highly accurate feature representations.

Keywords: explainable artificial intelligence; convolutional neural networks; medical images classification;
unsupervised pre-training; data irregularities

1. Introduction

In recent years, both colorectal cancer (CRC) and brain tumour are considered among
the most dangerous types of cancer, affecting both men and women around the world [1–4].
Deep learning has shown great potential as a diagnostic tool in handling various complex
problems that automate the feature engineering process of the medical image analysis
pipeline [5,6]. Convolutional neural networks (CNNs) are among the most effective deep
learning algorithms, where impressive achievements have been made in the field of medical
imaging [7–9]. The effectiveness of CNNs comes from their ability to detect local features
within an image in a hierarchical manner. More precisely, CNN’s low-level layers are
designed to encode generic representations for most vision tasks, while the high-level
layers can learn more complex features. There are two different scenarios for training
a CNN model: full training and transitional training. Training a model from scratch
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requires the initialisation of the whole network from end-to-end. This strategy is a less
common approach and requires a large amount of annotated training data that are not
typically available in the field of medical imaging [10]. Rather, transitional learning refers
to extracting the knowledge gained from a pre-trained network and applying it to another
(un)related task, making it faster and more practical with small datasets [11]. Traditionally,
transitional training (or as commonly known as transfer learning) can be achieved by one
of the following scenarios [12–14]: (a) “shallow tuning”, which aims at modifying only
the network’s classification layer to handle the domain-specific task [15]; (b) “deep tuning”
refers to retraining the weights of the whole network in an end-to-end fashion [16]; or (c)
“fine-tuning” mode, which starts to retrain weights of the last layer and gradually retraining
weights of more layers until the desired performance is reached [17].

Although transfer learning can contribute to the problem of data scarcity, the feature
transferability process might be affected when domain-specific images are different from
generic images used in CNN’s initial training. Thanks to the huge availability of unlabelled
data, many researchers designed self-supervised learning solutions to cope with the lack of
labelled training data, especially in the medical imaging domain [18]. In self-supervised
learning, a pretext training model that is learned from a large amount of unlabelled data is
utilised to generate useful feature representations that can be used to solve a new task called
the downstream task. In [19], we previously developed a self-supervised model, called
Self-Supervised Super Sample Decomposition (4S-DT), where a large number of unlabelled
chest X-ray images were used in the pretext training task. Then, a fine-tuning strategy based
on an ImageNet pre-trained network was employed to achieve coarse transfer learning to
detect samples of new classes in a small dataset with data irregularity problems. 4S-DT
could deal with datasets with irregularities in their distributions. However, the downstream
recognition component has been designed in a semi-automated way based on a pre-defined
parameter to identify the number of sub-classes. More importantly, the quality of the
sub-classes can affect the transferability capability of the model based on the underlying
statistical distribution of the data. Motivated by these issues, in this paper, we propose
a new model, called (XDecompo), where class decomposition is guided by the affinity
propagation (AP) method [20]. XDecompo has a more generalisation capability, compared
to 4S-DT, due to the non-parametric nature of its class decomposition. Specifically, AP
has shown more stable clustering results over k-means with a lower mean squared error
when applied to greyscale images, even when compared to the best out of 100 runs of
k-means [20]. Motivated by this experimental observation, we hypothesised that clear class
boundaries between pairs of sub-classes have a positive effect on the transferability of
features in the downstream task. As a consequence, the explainability of the model can be
enhanced. Thus, the contributions of this work can be summarised as follows:

• Propose a new model, XDecompo (the developed code is available at (https://github.
com/Asmaa-AbbasHassan/XDecompo accessed on 14 November 2022)), using an
affinity propagation-based class decomposition mechanism to robustly and automati-
cally learn the class boundaries in the downstream tasks.

• Investigate the generalisation capability of XDecompo in coping with different medical
image datasets.

• Demonstrate the effective performance of XDecompo in feature transferability.
• Validate the robustness of XDecompo using a post hoc explainable AI method for

feature visualisation, compared to state-of-the-art related models.

The paper is organised as follows: Section 2 reviews the state-of-the-art approaches
in medical image classification with an overview of explainable AI in medical imaging.
Section 3 discusses the main components of the XDecompo model. Section 4 describes our
quantitative and qualitative experiments on two different medical image datasets. Section 5
discusses and concludes our work.

https://github.com/Asmaa-AbbasHassan/XDecompo
https://github.com/Asmaa-AbbasHassan/XDecompo
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2. Related Work

Deep convolutional neural networks (DCNNs) are widely used in several diagnostic
applications. For example, in [21], a CNN was used to classify colonic polyp into two classes;
they are normal and abnormal based on patch images and several data augmentation
processes. The adapted CNN consisted of three convolutional layers with different kernel
sizes, each one followed by max-pooling layer. In [22], a CNN model was used to classify
digitised images of colorectal cancer cases as benign hyperplasia, intraepithelial neoplasia,
and carcinoma. The proposed architecture consisted of two convolution layers, max-pooling
and ReLUs layers, and the training was based on stochastic gradient descent. In [23], the
authors modified different pre-trained networks by replacing the classification layer with a
global average pooling for colonic polyps detection. Moreover, CNN was used as a feature
extractor in many works. For instance, in [24], a comparative study between a transfer
learning from VGG-16 pre-trained network and a CNN architecture as a feature extractor,
with a support vector machine (SVM) as a classifier to classify a large number of images
patches into three histological categories; healthy tissue, adenocarcinoma, or tubulovillous
adenoma. The results showed that the transfer learning techniques from a pre-trained
network outperform the other method in terms of accuracy and time consumption. Similar
to colorectal cancer, brain tumour is a common disease between adults and the elderly
that severely affects the function of the body. There are numerous types of brain tumour,
some benign, while others malignant. The most frequent types are glioma, meningioma,
and pituitary tumours. Thus, early tumour detection plays a significant role in improving
treatment outcomes and increasing patient survival. In [25], three dense layers with
softmax activation function were combined at the inception of ResNet v2 to classify the
brain tumour into three classes. In [26], transfer learning based on GoogleNet pre-trained
network was used to extract features from brain MRI images and fed them into SVM
and KNN as classifiers, separately, to classify the input image into three classes; glioma,
meningioma, and pituitary tumours. In [27], a CNN architecture has been evaluated based
on various pre-processing techniques. The architecture consisted of 18 layers divided into
four convolution layers, each one followed by batch normalisation, Relu, max-pooling
layer, and fully connected layer with softmax activation function to classify brain cancer
into three types of tumour. In [28], a differential deep CNN model was proposed to classify
MRI images into two classes (normal and abnormal). In [29], the authors used different
sizes of the brain tumour region with several processing techniques of data augmentation
to evaluate the performance of CNN based on the VGG-19 pre-trained network.

Although the transfer knowledge from a pre-trained network has superior outcomes, it
sometimes fails when a dataset has data irregularity problems or imbalance classes [30–32].
Decomposition mechanisms can handle this issue by detecting the boundaries between
classes and learning the local patterns of a dataset [33]. The basic idea of the decomposition
mechanism is to break down the original classes in a dataset into simpler sub-classes.
Then, each sub-class is given a new label associated with its original class and treated as
an individual new class. Then, after training, those sub-classes are recollected again to
compute the error correction of the final prediction. We argue that this can improve the
classification performance of a dataset with irregularity distribution classes, which was
clear from the experimental results in [34] that class decomposition was used in medical
image classification for transfer learning, in a method called the Decompose, Transfer,
and Compose (DeTraC) approach. In [35], self-supervised learning is used with several
deep convolution neural networks for many image and video analysis applications. For
example, in [36], a self-supervised learning approach based on context distortion was
used in different problems in medical imaging; such as segmentation, classification, and
localisation. In classification tasks, the method achieved classification progress when
used to detect scan planes in 2D fetal ultrasound images. In [19], a self-supervised model
based on sample decomposition (called 4S-DT model) was proposed to capture complex
features with highly nonlinear mapping between input and output data using stacked
autoencoder (SAE) and density-based spatial clustering of applications with the noise
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(DBSCAN) method in the pretext task. 4S-DT model has demonstrated its capability in
coping with both data scarcity and irregularity problems.

3. Explainability AI in Medical Imaging

Although machine learning and deep learning models have achieved impressive
prediction results, it is not clear what the model has learnt from the input data, leading to
its decisions; these models are called black boxes. The explainability AI methods [37–39]
give solutions to break down these black boxes and provide evidence to give confidence
in the results in a way that experts in the field can understand. Different applications
have widely depended on transparent techniques to introduce the results, such as face
recognition [40], medical imaging [41,42], text translation [43], speech understanding, and
generate human responses [44]. These techniques are important in healthcare to provide
the community with models that are more trustworthy to match human experience. This is
done by having the ability to indicate the significant pixels that drive the model to make its
decisions and decide which class the patient belongs to (e.g., healthy or unhealthy) [45,46].
The visualisation of an explainable AI can be accomplished through various attention
mechanisms such as: trainable, post hoc, soft, and hard attention scenarios [47,48]. A
trainable attention mechanism is trained while the model is in the learning process to help
the network focus on the important pixels of the image, while the post hoc attention method
is applied after completing the training process with fixed weights to create a heatmap of
occlusion [37], saliency [49], CAM [50], or Grad-CAM [51] maps. On the other hand, soft
attention can be trained with the standard backpropagation method that is described by
continuous variables, while hard attention is depicted by discrete variables; hence, it is
non-differentiable and uses the crop method to focus on specific areas in the image. In
this work, we adopted the Grad-CAM algorithm as a post hoc explainable method on
top of the XDecompo model to quantify the contribution of each pixel of input images in
the final prediction of the model and to explain the robustness of the feature speciality
and transferability.

XDecompo Model

XDecompo model is composed of the following four main stages, see Figure 1:

1. Pseudo-Labels: Extraction of deep local features from a huge number of unlabelled
images using convolutional neural networks with a sample decomposition approach.
We used the density-based spatial clustering of applications with the noise (DBSCAN)
method [52] as a clustering algorithm for the annotation of pseudo-labels. DBSCAN
is an unsupervised clustering algorithm that can cluster any type of data containing
noise and outliers, without prior knowledge of the number of clusters.

2. Pretext Training: Using an ImageNet pre-trained network, such as ResNet-50, to
classify pseudo-labelled images and achieve coarse transfer learning; where all layers
were learnt as a deep-tuning mode to construct the feature space. The CNN model
was trained with a cross-entropy loss function based on a mini-batch of stochastic
gradient descent (mSGD) [53] to optimise the model during training.

3. Downstream Training: Utilisation of learned convolutional features with a novel
class decomposition approach to solve a new task (i.e., downstream training) in a
small dataset.

4. Feature Visualisation: Explanation and demonstration of the speciality of features
learned/transferred by XDecompo, we used the Grad-CAM algorithm [51] as one of
the most efficient interpretation techniques for computer vision tasks. It estimates
the location of particular patterns in the input image, which guides the prediction of
the XDecompo model, and highlights the patterns through an activation heatmap [54].
Grad-CAM is a generalisation of CAM that does not require a particular CNN archi-
tecture, contrary to CAM which requires an architecture that applies global average
pooling to the final convolutional feature maps.
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Figure 1. The framework of the XDecompo model.

More precisely, we (a) use the convolutional autoencoder (CAE) [55] for the feature
extraction in the pretext task; and (b) adopt the Affinity propagation (AP) [20] clustering
method for the downstream task. CAE works by applying squared convolutional filter
scans over the whole image to extract local features by compressing the image into a low
dimension (e.g., encoder process), and then reconstructing the original values back (e.g.,
decoder process). The encoder process begins with several blocks, and each block consists
of a convolution layer with a nonlinear activation function such as ReLU, and a pooling
layer that downsamples the input image. The 2D convolution operation can be defined as:

A(i, j) =
2 f+1

∑
u=−2 f−1

2 f+1

∑
v=−2 f−1

x(i− u, j− v)w(u, v) + bij, (1)

where A(i, j) is the output activation map in position (i,j), x is the input image, and w is
the weights of square convolution filter with dimension (2 f + 1, 2 f + 1). For d depth, the
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generated activation maps are the encoding of the input x in a low-dimensional space,
which can be defined as:

Ad = σ
(

x×Wd + bd
)

, (2)

where σ is an activation function, bd is the bias for d-th activation maps. Since our aim is
to reconstruct the input x from the generated activation maps, we need to up-sample the
compressed image. The reconstructed image x̂ is obtained by:

x̂ = σ

(
∑

d∈H
Âd × Ŵd + b

)
, (3)

where Ŵ defines the inversion process on both dimensions of the weights and H is a group
of activation maps. The cost function to minimise the error between x̂ and x with the mean
squared error (MSE) is defined as:

MSE(θ) =
1

2n

n

∑
i=1

(xi − x̂i)
2 (4)

Once the training of the CAE is accomplished, DBSCAN was used to generate the
pseudo-labels. Let an image xi (encoded as hi) be density-connected to an image xj (encoded
as hj) with respect to Eps (the neighbourhood radius) and MinPts (the minimum number
of objects within the neighbourhood radius of the core object) if there exists a core object
xk such that both xi and xj are directly density-reachable from xk with respect to Eps and
MinPts. Moreover, an image xi is directly density-reachable from an image xj if xi is located
within the Eps-neighbourhood of NEps(xj), and xj is a core object. The Eps-neighbourhood
can be defined as:

NEps(xj) = {xi ∈ X|dis(xi, xj) ≤ Eps}. (5)

DBSCAN results in c clusters, where each cluster is generated by maximising the
density reachability relationship among images. The c cluster labels will be assigned to the
n′ unlabelled images (and will be presented as pseudo-labels) for the pretext training task
of the self-supervision mechanism. The pseudo-labelled image dataset from the pretext
task can be defined as X′ = {(xi, yc)|c ∈ C}.

For the downstream task, the distribution of the image data X is broken down using
the AP method into some classes c based on the extracted features Ad. The AP algorithm is
an unsupervised clustering algorithm that does not require an initial number of clusters,
and it depends on the idea of how messages are passed between data points; for example,
how well the j-th point is appropriated to become an exemplar for the i-th point. Let the
image dataset X = x1, x2, ...xn, and the function sE represents the similarity of two points
(i, j) that can be described as a negative squared Euclidean distance as below:

sE(i, j) = −
∥∥xi − xj

∥∥2, (6)

where xi and xj are the positions of data points i and j in 2D space. The algorithm proceeds
by alternating between two message-passing steps, which update two matrices as below:

ρ(i, k) = sE(i, k)−max
{

α
(
i, k′
)
+ sE

(
i, k′
)
∀k′ 6= k

}
, (7)

a(i, k) = min

0, ρ(k, k) + ∑
i′/∈{i,k}

max
(
0, ρ(i′, k)

)i 6= k, (8)

where ρ(i, k) refers to the “responsibility” matrix that quantifies how suitable xk is to serve
as the exemplar for xi in comparison to other potential exemplars for xi, and a(i, k) is
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the “availability” matrix that depicts how “proper” it would be for xi to choose xk as its
exemplar, taking other points’ preferences for xk as an exemplar into account.

Here, in this work, we used the cosine similarity measure for AP to learn the boundary
between certain features within each class. Cosine similarity is a structural similarity
measure based on the idea that two vectors (Xi, Xj) are supposed to be similar if they have
many neighbours in common, where a similarity of 0 indicates that the vector orientation is
completely different, while a similarity of 1 indicates that the vector orientation is the same.

Dcosine(i, j) =

∣∣Xi ∩ Xj
∣∣√

|Xi||Xj|
. (9)

As a fine transfer learning stage, XDecompo employs a fine-tune mode in the pre-trained
model that has already been trained in the pretext stage to address the new downstream
task (of the small annotated samples). Additionally, a class decomposition layer was
adapted in XDecompo to split each class within the downstream dataset (denoted as dataset
A) into c sub-classes, resulting in a new dataset (denoted as dataset B). Then, the new
sets are given new labels, where each subset is treated as an individual class. Another
important step is to reduce the feature space of a high dimension to a lower dimension
using a principal component analysis (PCA) process [56], which is important for class
decomposition to produce more homogeneous classes, reduce memory requirements, and
improve framework efficiency. The class decomposition process can be defined as

A = (A|L) 7→ B = (B|C) (10)

where the number of examples in both A and B are equivalent, while C encodes the new gen-
erated labels associated with the sub-classes (e.g., C = {l11, l12, . . . , l1c, l21, l22, . . . , l2c, . . . lnc}).
These sub-classes are then integrated back into the original classes in the dataset (the composi-
tion stage) and the final prediction is calculated accordingly.

Finally, we used the Grad-CAM algorithm to locate specific patterns in the input image,
which informs the XDecompo model’s prediction, and emphasises the patterns using an
activation heatmap. The basic idea behind Grad-Cam is that the weights of a convolutional
layer are calculated using a gradient of the classification score ∂xc of a particular class c,
for the feature activation map ∂Ad on the d-th feature map. Then, the importance of the
associated neuron of each feature map d is calculated by taking the global average pool of
gradients at position (i, j) as follows:

ϕc
d =

1
m ∑

i
∑

j

∂x
c

∂Ad
ij

, (11)

where m is the number of pixels in Ad. Finally, the sum of the product of the ϕc
d with the

corresponding feature map is performed under the ReLU activation function to obtain the
final Grad-CAM heatmap as follows:

Hc
Grad−CAM = ReLU

(
∑
d

ϕc
d Ad

)
(12)

4. Experimental Setup and Results

This section discusses the experimental results, as well as the datasets used to validate
the generality and explainability of XDecompo.

4.1. Datasets Description

In our work, we used two different medical image datasets, they are colorectal cancer
histology dataset and brain tumour dataset (see below). These datasets have been selected
due to (a) the presence of several data irregularity problems, including class overlap in
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terms of the morphological structure of objects within the images and the class imbalance
problem; and (b) the huge availability of unlabelled related images [57].

• Colorectal cancer images dataset, the labelled and unlabelled datasets were used
from [58]; from the NCT Biobank, (National Center for Tumor Diseases, Heidelberg,
Germany), and the UMM pathology archive (University Medical Center Mannheim,
Mannheim, Germany). The dataset “NCT-CRC-HE-100K” [58] was used as unlabelled
samples. With a total of 100,000 samples of (CRC) and normal tissue, all images are
224×224 pixels at 0.5 microns per pixel, the dataset divides into nine classes: Adipose
tissue, background, debris, tumour epithelium, smooth muscle, normal colon mucosa,
cancer-associated stroma, mucus, and lymphocytes.

• The dataset “CRC-VAL-HE-7K” [58] was used as a labelled dataset, a set of 7180 image
patches divided into nine unbalanced classes, and all images are 224 × 224 pixels
at 0.5 microns per pixel. In our experiment, we only used three classes, Adipose
(ADI), stroma (STR) and tumour epithelium (TUM), which contain 1338, 421, and
1233, respectively. Then, the dataseet was divided into three groups: 60% for training,
20% for validation, and 20% for testing, see Table 1. Figure 2 shows example images
from the test set. Note that there is no overlap with the cases in the unlabelled images,
NCT-CRC-HE-100K.

• Brain tumour images dataset, we have used a public brain tumour dataset as unla-
belled samples that contains a total of 253 images and divided into two classes: 155 tu-
mours and 98 without tumours. The dataset is available for download at: (https://
www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection ac-
cess on 14 November 2022). We applied many data-augmentation techniques to gen-
erate more samples in each class, such as reflection, shifting, wrapping, and rotation
with various angles. This process resulted in 45,960 brain tumour images.

• For the labelled dataset, we have used a set of 3064 brain tumours from Nanfang and
General Hospitals, Tianjin Medical University, China: 1426 glioma, 708 meningiomas,
and 930 pituitary tumour, available from [59], all images with size 400 × 400 pixels.
The training set was randomly divided into 60% to fit the model, 20% for validation,
and 20% as a test set, see Table 2. Figure 3 shows examples of images from the test set.

Table 1. The distribution of Colorectal cancer dataset.

Class Name Training Validate Test Total

ADI 856 214 268 1338
STR 270 67 84 421

TUM 789 197 247 1233

Figure 2. Example images from colorectal cancer test set: (a) ADI, (b) STR, and (c) TUM.

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection


Sensors 2022, 22, 9875 9 of 24

Table 2. The distribution of Brain tumour dataset.

Class Name Training Validation Test Total

glioma 855 285 286 1426
meningioma 424 141 143 708

pituitary_tumour 558 186 186 930

Figure 3. Example images from Brain tumour test set: (a) glioma, (b) meningioma, (c) pituitary tumour.

To quantitatively and qualitatively evaluate the performance of XDecompo, we utilised
ResNet-50 ImageNet [60] as a backbone network. We used a fine-tuning mode by gradually
training more layers and tuning the learning parameters until a significant high perfor-
mance is achieved. Here, we consider freezing the lower layers and updating only the
weights of upper layers (i.e., the last four layers), see Table 3. All experiments have been
implemented in MATLAB 2021a on a desktop machine with an Intel(R) Core(TM) i3-6100
Duo processor @ 3.70 GHz, NVIDIA Quadra P5000GPU, and with a RAM capacity of
16.00 GB.

Table 3. Fine-tuned ResNet-50 architecture that we used in our experiments.

Layer Name ResNet-50 Filter Size Stride Padding # Filter

Conv5-1 res5c-
branch2a 1 × 1 × 2048 1 0 512

Conv5-2 res5c-
branch2b 3 × 3 × 512 1 1 512

Conv5-3 res5c-
branch2c 1 × 1 × 512 1 0 2048

FC Fully
Connected 1 × 1 - - 2048

4.2. Self-Supervised Training on Unlabelled Images

For the 4S-DT, we used the SAE model with 600 neurons in the first hidden layer,
400 neurons in the second hidden layer, and 200 neurons for the latent space representation
to train a randomly selected 50,000 unlabelled CRC images. In addition, the same SAE
architecture was used for the 45, 960 unlabelled brain tumour images, see Figure 4.

For XDecompo, we applied CAE on the same selected unlabelled images dataset. Here,
we used two convolutional layers with a kernel size of 3 pixels and ReLU as an activation
function. For the histological dataset, the number of filters in the first layer was set at
a value of 64, and the second layer at a value of 32. Regarding the brain tumour image
dataset, the number of filters in the first and second layers was set at a value of 32 and 16,
respectively; see Figure 5.

Then, the extracted features obtained by the latent representation were used to con-
struct the clusters (and hence generate the pseudo-labels) using the DBSCAN clustering
algorithm. The k-nearest neighbour (k-NN) [61] was used to choose the ideal value (Eps).
This is done by calculating the average of the distances of every point in the input data to
its neighbours, corresponding to MinPts. The optimal value (Eps) and pseudo-labels for
SAE and CAE are summarised in Table 4. The autoencoder (AE) models were trained with
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a 0.001 learning rate, with a mini-batch size of 128 and a minimum of 100 epochs. Finally,
we used the ResNet-50 pre-trained CNN model for the coarse transfer learning stage (of the
pretext task). The model was trained with a learning rate of 0.0001 and a drop learning rate
of 0.9 every 10 epochs.

Figure 4. The SAE for unlabelled images; first row: the original images of the dataset, second row:
the reconstructed images.

Figure 5. The CAE for unlabelled images; first row: the original images of the dataset, second row:
the reconstructed images.

Table 4. The classification performance of ResNet-50 pre-trained model on the pseudo-labelled
Colorectal cancer and Brain tumour datasets.

AE Model Dataset (Eps) # Labels ACC (%)

SAE Colorectal
cancer 4.5 8 75.80

Brain tumour 4.2 6 79.12

CAE Colorectal
cancer 4 4 87.36

Brain tumour 2 3 92.79

4.3. Downstream Class-Decomposition of 4S-DT and XDecompo

To decompose the labelled samples of the downstream dataset, we applied AlexNet [62]
pre-trained network-based with a shallow-tuning mode to extract discriminative features
from images of the original classes on each dataset. The learning rate was set at 0.0001,
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which was gradually reduced by 0.9 after every 3 epochs, the batch size of the training set
was set at 128 with a minimum of 100 epochs, and the weight decay was set at 0.0001 to
avoid overfitting and 0.9 for the momentum speed. The gradient descent (SGD) method
was adopted to minimise the loss function. At this point, 1000 attributes had been collected;
therefore, we utilised Principal Component Analysis (PCA) to make the feature space less
dimensional. For the CRC dataset, we obtained 23, 3, and 16 for adipose, stroma, and
tumour epithelium, respectively; see Figure 6. Regarding the brain tumour dataset, we
obtained 6, 5, and 14 features for glioma, meningioma, and pituitary_tumour respectively,
see Figure 7. For the class decomposition process, we used k-means algorithm [63]. k-
means is one of the most popular unsupervised machine learning algorithms that divides a
given dataset into a fixed number of clusters. The number of clusters is represented by a
predetermined parameter k. The clusters are then placed as points, and all observations
or data points are connected to the closest cluster that has similar properties. The proce-
dure is then repeated with the new adjustments until the desired result is achieved (no
or limited changes in cluster assignment). For 4S-DT model, we used k = 2 (where the
choice was based on the high performance obtained by the models DeTraC and 4S-DT as
indicated in [19,34]), and therefore, each class in (L) is divided into two sub-classes, each
was assigned as a new label to the new dataset.

On the other hand, in XDecompo, the AP algorithm was used with the measure of
cosine similarity. The damping factor value was set at 0.9 and 0.85 for the CRC and brain
tumour dataset, respectively, with a value of 1000 for the maximum iteration and 50 for the
convergence iteration parameter. The results of this process are reported in Tables 5 and 6.

Figure 6. The explained variance of the principal components for each class in the CRC dataset:
(a) ADI, (b) STR, and (c) TUM.

Figure 7. The explained variance of the principal components for each class in the Brain tumour
dataset: (a) glioma, (b) meningioma, (c) pituitary tumour.
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Table 5. The number of instances in original classes and after class decomposition of the colorectal
cancer dataset using k-means and AP clustering algorithms.

k-means clustering Dataset A ADI STR TUM
# instances 1070 337 986
Dataset B ADI_1 ADI_2 STR_1 STR_2 TUM_1 TUM_2

# instances 666 404 171 166 406 580

AP clustering Dataset B ADI_1 ADI_2 ADI_3 ADI_4 STR_1 STR_2 TUM_1 TUM_2 TUM_3
# instances 377 270 222 201 171 166 381 371 234
data set B ADI_1 ADI_2 ADI_3 ADI_4 STR_1 STR_2 TUM_1 TUM_2 TUM_3

# instances 420 374 127 149 171 166 189 394 403

Table 6. The number of instances in original classes and after class decomposition of the brain tumour
dataset using k-means and AP clustering algorithms.

k-means clustering Dataset A glioma meningioma pituitary tumour
# instances 1140 565 744
data set B GLI_1 GLI_2 MEN_1 MEN_2 PIT_1 PIT_2

# instances 577 563 298 267 426 318

AP clustering Dataset B GLI-1 GLI-2 GLI-3 MEN-1 MEN-2 PIT-1 PIT-2 PIT-3
# instances 455 529 156 290 275 214 322 208
Dataset B GLI-1 GLI-2 GLI-3 MEN-1 MEN-2 PIT-1 PIT-2 PIT-3

# instances 547 308 285 298 267 311 313 120

4.4. Classification Performance on CRC Dataset

First, we used ResNet-50 on the 599 test images to investigate the performance of
the proposed method, based on the fine-tuning strategy. ResNet-50 consists of 16 residual
blocks with a depth of three layers, a 3 × 3 Max-Pooling layer, and a 1 × 1 Average-Pooling
layer before the classification layer. Table 3 illustrates the adopted architecture used in our
experiment. The model was trained with a learning rate of 0.0001 for CNN layers, 0.01
for FC layer, and the drop learning rate was set to 0.95 every 5 epochs with a minimum of
50 epochs and a mini-batch size of 50. The weight decay was set at 0.01 to avoid overfitting
and 0.9 for the momentum. We also compared the performance of XDecompo with the 4s-DT,
DeTraC, and ResNet-50 ImageNet pre-trained network. For a fair comparison, we used
the same parameter settings for each pre-trained model during the training process. The
results obtained are summarised in Table 7. As demonstrated by Table 7, the best overall
accuracy has been achieved by XDecompo with 97.44% and 90.87% for sensitivity and 97.82%
for specificity, for classification test images into three classes compared to other models.
Furthermore, Figure 8 shows the confusion matrix of the results obtained. Moreover, we
compared the Area Under the receiver Curve (AUC) for each class between the true-positive
rate (sensitivity) and false positive rate (1 specificity) obtained by ResNet-50 pre-trained
network, DeTraC, 4S-DT and XDecompo, see Figure 9. As shown in Figure 9, XDecompo
has the highest AUC value in each class on the testing set of the CRC dataset. Figure 8
illustrates the confusion matrix obtained by each model for each class in the dataset.

Table 7. Overall classification performance of each model on testing set of the CRC dataset.

Layer ResNet-50 Pre-Trained DeTraC 4S-DT XDecompo
ACC SN SP ACC SN SP ACC SN SP ACC SN SP
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)) (%) (%)

FC 90.81 78.17 94.79 91.48 80.34 95.17 92.82 82.93 95.92 95.49 89.28 97.44
Conv5-3 90.65 77.67 94.69 92.15 81.34 95.54 92.32 81.74 95.64 94.82 87.97 97.06
Conv5-2 90.65 77.67 94.69 91.65 80.51 95.26 92.98 83.33 96.02 94.99 88.36 97.15
Conv5-1 90.31 76.98 94.50 91.31 79.63 95.07 92.65 82.54 95.83 96.16 90.87 97.82
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Figure 8. The confusion matrix results of CRC dataset obtained by: (a) ResNet-50 pre-trained network,
(b) DeTraC, (c) 4S-DT, and (d) XDecompo.

Figure 9. ROC analysis of the CRC test set obtained by: (a) ResNet-50 pre-trained network, (b) DeTraC,
(c) 4S-DT, and (d) XDecompo.
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4.5. Classification Performance on Brain Tumour Dataset

For further investigation and to evidence the method’s generalisation and explain-
ability, we evaluate the performance of XDecompo with ResNet-50 (where the fine-tuning
mode was used) on the brain tumour test set, see Table 6. All images were resized to
224 × 224 pixels to be suitable for ResNet-50. XDecompo was trained for 50 epochs, 50 mini-
batch sizes with a learning rate of 0.0001 for CNN layers, and 0.01 for FC layer. The drop
learning rate schedule was set to 0.95 every 4 epochs, a value of 0.001 was set for the
regularisation term, and 0.9 for the momentum. For a fair comparison, we used the same
parameter settings for each pre-trained model during the training process. Table 8 shows
the comparison results obtained by XDecompo, 4S-DT, DeTraC, and the pre-trained network.
Figure 10 shows the (AUC) for each class in the test set obtained by each model. As shown
by Table 8, XDecompo has the highest overall accuracy with 96.21%, 93.28% for sensitivity,
and 97.04% for specificity for classification test images into three classes compared to 4S-DT,
DeTraC, and the original classes based on the ResNet-50 pre-trained network. Figure 11
illustrates the confusion matrix obtained by each model for each class in the test set.

Table 8. Overall classification performance of each model on the testing set of the Brain tu-
mour dataset.

Layer ResNet-50 Pre-Trained DeTraC 4S-DT XDecompo
ACC SN SP ACC SN SP ACC SN SP ACC SN SP
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

FC 87.31 86.16 93.74 89.91 88.84 94.97 91.70 90.95 95.82 92.52 91.62 96.15
Conv5-3 86.29 87.01 93.75 90.24 90.21 95.36 92.52 91.99 96.32 92.19 91.71 96.03
Conv5-2 86.67 86.71 93.62 89.26 89.66 95.01 93.00 92.12 96.43 92.84 91.52 96.15
Conv5-1 87.96 86.57 93.84 89.91 90.14 95.19 92.84 92.05 96.40 94.30 93.27 97.04

Moreover, we demonstrated the high quality of the decomposed classes of the AP-
based class decomposition of XDecompo, where we used the same number of classes
obtained by XDecompo in the downstream task as in the 4S-DT model, see the third row in
Tables 5 and 6. The results obtained by 4S-DT are reported in Table 9 to support and confirm
the importance of the proposed class decomposition of the XDecompo model. Figure 12
illustrates the confusion matrix results obtained in the test sets using the AP-based class
decomposition of XDecompo instead of the decomposition component of the 4S-DT model.

Having demonstrated experimentally and quantitatively the effectiveness of XDecompo
on two datasets with variations in data irregularities, it is important to demonstrate that
such a boosted performance is the result of the effective transferability of features. This
can be best demonstrated visually to qualitatively assess the transferred features and their
relationship to the predicted class.

Table 9. Overall classification performance of the 4S-DT model on the CRC and brain tumour
testing sets.

Layer CRC Dataset Brain Tumour Dataset
ACC SN SP ACC SN SP
(%) (%) (%) (%) (%) (%)

FC 95.49 89.28 97.44 87.31 83.50 93.20
Conv5-3 96.49 92.47 98.04 88.45 85.61 93.91
Conv5-2 96.66 92.06 98.10 89.10 86.24 94.42
Conv5-1 96.68 92.06 98.20 92.03 90.84 95.88
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Figure 10. ROC analysis of the Brain tumour test set obtained by: (a) ResNet-50 pre-trained network,
(b) DeTraC, (c) 4S-DT, and (d) XDecompo.

Finally, we made a comparison between our results obtained by XDecompo model and
different approaches that used the same labelled dataset for the classification of CRC and
brain tumour datasets, see Tables 10 and 11. Please note that the results were obtained by
fine-tuning mode and only the weights of the last four layers were updated, see Table 3.

Table 10. Comparison between the result obtained by XDecompo and different approaches that used
the same labelled dataset for the classification of CRC images.

Ref. Method ACC (%)

[64] Multitask ResNet-50 95.0
[64] CNN-ResNet-50 93.60
[65] Ensemble DNN 92.83
[66] CNN-Xception 94.4
[67] CNN-VGG19 94.3

XDecompo 96.16
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Table 11. Comparison between the result obtained by XDecompo and different approaches that used
the same labelled dataset for the classification of brain tumour images.

Ref. Method ACC (%)

[68] 7-layered CNN 84.19
[69] BoW + SVM 91.28
[70] CNN + KELM 93.68
[71] CNN-transfer learning 92.00
[72] CapsNet 90.89

XDecompo 94.30

Figure 11. The confusion matrix results of Brain tumour dataset obtained by: (a) ResNet-50 pre-
trained network, (b) DeTraC, (c) 4S-DT, and (d) XDecompo.
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Figure 12. The confusion matrix results obtained in the test sets by using the AP-based class decom-
position of XDecompo instead of the decomposition component of 4S-DT model: (a) CRC dataset,
(b) Brain tumour dataset.

4.6. Feature Visualisation

We generate the attention/heatmap of a post hoc explainable model for each model
to better understand their behaviour. Here, we used Grad-CAM explainable model for
each class in the CRC and brain tumour datasets, where the last convolutional layer was
used to extract relevant rich features from the images and generate the final heatmap.
In the heatmap, the areas where the CNN model has influenced to are highlighted in
red and yellow colours, while the areas in blue colour are less related to the prediction.
Figures 13–15 show the heatmaps for ADI, STR, and TUM classes, respectively, in the test
set of the CRC dataset for each model. Furthermore, Figures 16–18 show the heatmaps
for glioma, meningioma, and pituitary tumours, respectively, in the test set of the brain
tumour dataset for each model. The black arrow refers to the correct region in which the
model was able to attend during training, while the red and white arrows refer to the false
misleading region and missing detection of the important region in the image, respectively.

As shown, XDecompo can localise more accurate pixels/regions for each class in the
images compared 4S-DT model, fine-tuned ResNet-50 network, and DeTraC. More precisely,
in Figure 13, XDecompo was able to highlight all the adipose tissue regions (black arrows)
compared with other models that failed to find all the adipose tissue regions (white arrows)
and attended to other misleading regions (red arrows). Figures 14 and 15 showed the
ability of all models to find most of the stromal and epithelial cells, respectively. However,
XDecompo outperformed other models in accurately detecting the whole epithelium in the
images and avoiding misleading regions (red arrows). Similarly, in the brain tumour test
set, XDecompo was able to attend accurately to the specific locations of the different tumour
regions in all three classes, while other models attended to false regions (red arrows) and
failed to accurately localise the whole tumour regions (white arrows). This experiment
validates the highly accurate transferability capability of the proposed model and the high
speciality of the features learnt by the model.

5. Discussion and Conclusions

Convolution neural network is one of the most successful approaches in deep learning
and can be trained with various strategies. The transfer learning technique considers a
practical solution to achieve a significant performance, especially in the medical image
domain due to the limitation of the annotated samples. However, the irregularities in
the dataset distribution remain the main challenge to providing a robust solution. In [19],
4S-DT has demonstrated its effectiveness in coping with such challenging problems using
a self-supervised mechanism (to generate pseudo-labels for a pretext task) with class
decomposition method (to classify effectively samples in a downstream task). In this
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paper, we investigate the effectiveness and generalisation capabilities of a more robust
version of 4S-DT, which we call the XDecompo model in handling different medical image
datasets. Unlike 4S-DT, we used a self-supervised sample decomposition method with a
convolutional autoencoder to generate the pseudo-labels in the pretext task. Moreover, in
the downstream tasks, we proposed an automated class decomposition mechanism based
on the affinity propagation approach. XDecompo’s class decomposition mechanism showed
better performance (and hence a better transferability of the features) in comparison with
4S-DT’s class decomposition. For the CRC dataset, the XDecompo model has achieved an
overall accuracy of 97.44% with 90.87% for specificity and 97.82% for sensitivity to classify
the test set into three classes. Furthermore, for the brain tumour dataset, XDecompo has
achieved the highest overall accuracy of 96.21% with 93.28% for specificity and 97.04% for
sensitivity. Qualitatively, the Grad-CAM map showed that XDecompo can accurately localise
the most important textures (and regions of interest) in an input image, contributing to
accurate predictions. To summarise, XDecompo achieves high classification accuracy (both
quantitatively and qualitatively) in different medical image datasets based on fine-tuning
mode, compared with the ResNet-50 pre-trained network, DeTraC, and 4S-DT models.

Figure 13. Visualisation of deep features for class ADI of CRC test set images obtained by each model:
(a) original image with the region of interest covered in a blue rectangle, (b) ResNet-50 pre-trained
network, (c) DeTraC, (d) 4S-DT, and (e) XDecompo.
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Figure 14. Visualisation of deep features for class STR of CRC test set images obtained by each model:
(a) original image, (b) ResNet-50 pre-trained network, (c) DeTraC, (d) 4S-DT, and (e) XDecompo.

Figure 15. Visualisation of deep features for class TUM of CRC test set images obtained by each model:
(a) original image, (b) ResNet-50 pre-trained network, (c) DeTraC, (d) 4S-DT, and (e) XDecompo.
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Figure 16. Visualisation of deep features for class glioma of brain tumour test set images obtained by
each model: (a) original image, (b) ResNet-50 pre-trained network, (c) DeTraC, (d) 4S-DT, and (e)
XDecompo.

Figure 17. Visualisation of deep features for class meningioma of brain tumour test set images
obtained by each model: (a) original image, (b) ResNet-50 pre-trained network, (c) DeTraC, (d) 4S-DT,
and (e) XDecompo.
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Figure 18. Visualisation of deep features for class pituitary tumours of brain tumour test set images
obtained by each model: (a) original image, (b) ResNet-50 pre-trained network, (c) DeTraC, (d) 4S-DT,
and (e) XDecompo.
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