

An IoT Raspberry Pi-based Parking Management System For Smart
Campus

Waheb A. Jabbar*, Chong Wen Wei, Nur Atiqah Ainaa M. Azmi, a n d Nur Aiman Haironnazli

Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
This work was supported by Universiti Malaysia Pahang (UMP), under the grant scheme number RDU190304.
*Corresponding author: Waheb A. Jabbar (waheb@ieee.org)

ARTICLE INFO ABSTRACT
Keywords:
Blynk
 IoT
Parking Management
Pi camera
Raspberry Pi
Smart Campus
Ultrasonic Sensor.

 Parking slots have become a widespread problem in urban development. In this context,
the growth of vehicles inside the university’s campus is rapidly outpacing the available
parking spots for students and staff as well. This issue can be mitigated by the introduction
of parking management for the smart campus which targets to assist individually match
drivers to vacant parking slots, saving time, enhance parking space utilization, decrease
management costs, and alleviate traffic congestion. This paper develops an IoT
Raspberry Pi-based parking management system (IoT-PiPMS) to help staff/students to
easily find available parking spots with real-time vision and GPS coordinates, all by
means of a smartphone application. Our system composes of Raspberry Pi 4 B+ (RPi)
embedded computer, Pi camera module, GPS sensor, and ultrasonic sensors. In the IoT-
PiPMS, RPi 4 B+ is used to gather and process data input from the sensors/camera, and
the data is uploaded via Wi-Fi to the Blynk IoT server. Ultrasonic sensors and LEDs are
exploited to detect the occupancy of the parking spots with the support of the Pi camera
to ensure data accuracy. Besides, the GPS module is installed in the system to guide
drivers to locate parking areas through the Blynk App. that discovers parking spaces
availability over the Internet. The system prototype is fabricated and tested practically
to prove its functionality and applicability. According to the results, the IoT-PiPMS can
effectively monitor the occupancy of outdoor parking spaces in the smart campus
environment, and its potency in terms of updating the data to the IoT server in real-time
is also validated..

1. Introduction
The growing number of automobiles is rapidly

outpacing the parking lots availability in urban areas;
thus, parking has become a widespread challenge in
metropolises development [1]. This problem can be
observed clearly in cities, especially centers, shopping
malls, open markets, government offices, hospitals,
schools, and universities [2]. There are two main types of
parking lots, indoor and outdoor. In conventional parking
management systems, the information about parking spots
cannot be efficiently collected and updated to the
management platform [3, 4]. In such systems, many
parking spaces exist as local data silos, but their parking
spot information cannot be shared remotely with drivers
[5]. Additionally, data of isolated parking cannot be
transmitted to a unified platform for city parking
management.

A smart parking concept has been introduced to
mitigate the difficulties of parking spot management in a
smart environment like the smart city [3, 6, 7]. Smart
parking systems have been given considerable attention in
the literature to assist individually match drivers to
parking slots, enhance the utilization of parking spaces,

reduce the cost of management, and alleviate congestion
of traffic [8-10]. However, the existing smart parking
systems still possess many constraints related to
architecture, connectivity, and deployment. Existing
systems that are deployed for smart parking use different
types of wireless networks for communication between
sensor nodes and a management platform server [11].
This requires additional gateways, thus increases system
complexity and makes it hard to maintain and impedes the
scalability of smart parking. This severely constrains the
deployments of smart parking systems in most areas when
necessary. The foliage effect on path loss, shadowing, and
multipath dispersion.

Due to the increasing number of students/staff who
drive to the university campus, the number of vehicles
inside the campus also grows. Therefore, parking spaces
are getting more occupied than ever. This problem poses
a daily challenge to both students and staff alike, as they
have to make many rounds just to find a vacant parking
space. As a result, drivers would waste their precious time
and energy where they might be late for their work or
classes. The parking management system based on the
Internet of Things (IoT) technology has great potential to
overcome the stated issues faced by the conventional
systems of parking management. Owing to the

characteristics of the university campus with regard to
size, the Internet infrastructure, and the existence of open
spaces as outdoor parking lots, Raspberry Pi-based IoT
system is a potential candidate to enable parking
management for the smart campus. Recently, universities
including our university (Universiti Malaysia Pahang)
have devoted more focus to the smart campus paradigm
in particular with the emergence of the Fourth Industrial
Revolution (IR 4.0). Several initiatives have been started
under the smart campus project, smart parking
management is one of them. Thus, discovering parking
spots around the university campus in real-time is
essential for the convenience of staff, students,
administrations, and even visitors. Furthermore, not only
for convenience purposes, but such a smart system can
help vehicles owner within the campus in time-saving,
pollution reduction, and efficient resource utilization. In
this context, the use of IoT networks will allow sharing of
data about the outdoor parking slots of the campus over
the Internet; thus, helps both drivers and security
management.

Since parking monitoring needs detection of vehicle
existence, multiple sensors should be deployed in parking
spaces. For the sake of system accuracy, different sensor
types should be combined depending on the desired data
to be measured, such as distance, coordinates, and vision.
Three sensors are exploited, which are ultrasonic, GPS,
and Pi camera for video streaming as an add-on system
function. One ultrasonic sensor can be placed per each
parking spot, while one GPS sensor and one Pi camera can
cover several parking slots, depending on components
features and the measured parameters. Raspberry Pi as a
single board computer would provide both higher
efficiency and lower cost, especially for large-scale smart
campus deployments. The Raspberry Pi with the
embedded Wi-Fi interface can be used to easily connect
to widespread hotspot internet coverage inside the campus
and performs as the gateway of the IoT system. The
collected data from various sensors will be uploaded to
the Blynk IoT server and can be accessed via mobile apps.

In this work, an IoT Raspberry Pi-based parking
management system (IoT-PiPMS) for smart campus or
any similar environments is developed as a solution for
monitoring and managing outdoor parking slots in real-
time. We have also proposed and integrated three
algorithms that gather the required measurements from
the sensors to detect the occupancy of the parking spots.
The developed IoT-PiPMSA system is attached to a
parking space prototype that has been designed and
fabricated for testing and validation purposes. The IoT-
PiPMS is applicable for outdoor parking facilities
including, but not limited to universities, schools,
colleges, markets, hospitals, and shopping malls. The key
benefits of the proposed system include detection
accuracy enhancement of the system with an ultrasound

sensor and Raspberry Pi Camera, simplicity of
microcontroller system, can be operated in areas within
Wi-Fi coverage, and the GPS support enables ease of
locating parking facility. The number of available parking
slots will be detected by placing an HCSR04 ultrasonic
sensor on each parking slot and also using the Pi camera
for visual detection. The available parking slot will be
updated to the Blynk IoT server and can be accessed by
both users and the management office. The major
contribution of the current study includes four aspects:

i) We design an IoT-based parking management system
using Raspberry Pi 4 B+ (RPi) to detect the occupancy
of the outdoor parking space and update the
information to an IoT platform for the smart campus
use case.

ii) We fabricate the developed system as a prototype to
emulate the real situation of outdoor parking lots for
testing and validation purposes by implementing
several sensing nodes with one Pi camera and a GPS
sensor.

iii) We integrate three Python algorithms to gather data
from the deployed sensors and send them to the Blynk
IoT server in real-time. The status of parking slots will
be displayed in a mobile-based IoT dashboard to be
used by staff, students, visitors, and management as
well.

iv) We report the results of the field trial experiments
conducted using a real environment with end devices.
The obtained results provide an insight into the system
functionality and applicability in a smart campus.

The remaining part of this paper is organized as
follows: Section II presents background and related
works. Section III describes system design and
fabrication. Section IV presents system implementation.
System functionality testing and results are explained in
Section V. The conclusions are drawn up in Section VI.

2. Background and Related Works

With the development of the suburban area, the spaces
around the cities and rural areas are being used up to build
commercial zones and skyscrapers. However, even with
the increase in the size of the city, the available parking
slots are always scarcity. Because of this development,
many issues were raised in terms of transportations in the
city, such as traffic congestion, limited car parking
facilities, and road safety. Due to these problems, many
smart parking systems are established in the market.

Most of the parking systems over the past few years
in the literature provided solutions to the design and
development of parking availability information system,
parking reservation system, occupancy detection, and
parking lot management. However, few works emphasize
on the authentication of the vehicle’s clearance to access
the parking space in the first place. The idea of creating
parking management for the smart campus is becoming

possible with the emergence of the IoT paradigm. In the
last two decades, modern communication technologies
and micro controllers have promoted a smart living style
that looked practically inconceivable. IoT is one of the
main drivers of future smart spaces. The term IoT has
been more inclusive, covering a wide range of
applications like healthcare, utilities, transport, and so on
[12]. The IoT enables new operational technologies of
different applications and also offers environmental
benefits. With IoT, spaces are evolving from being just
‘smart’ to become intelligently connected. IoT can be
applied in many ways, such as smart campus, traffic
control, smart vehicles, smart cities, home automation,
and healthcare monitoring.

In fact, a smart campus concept came out with the
same principles of smart city applications. The smart
campus is developed on the basis of digital campuses.
Compared with the traditional digital campus, the smart
campus provides services in a timely manner, reduces
effort, and cuts operational costs. Smart campus implies
that the institution will adopt advanced technologies to
automatically control and monitor facilities on campus
and provide high-quality services to the campus
community [13]. This application of smart campus will
lead to an increase in efficiency and responsiveness of the
campus; thus, better space utilization, decision making,
and campus community experience. In the past decade,
many initiatives have been placed on improving campus
services. For instance, many universities worldwide
invested a lot of money in campus development as part of
a smart campus scheme involving multiple sites and
structures to saving energy consumption, reducing CO2
emissions, and increasing sustainability and interaction.

Basically, searching for parking space more painful
than ever for drivers and prompts to develop traffic
congestion and excess consumption of fuel [14]. Smart
parking solutions to provide information about the
available parking lot have attracted considerable attention
from both academia and industry. These systems work by
collecting real-time data on the available slots in a parking
area using the sensors scattered in the parking lot. That
information will then be updated continuously, and the
result will be displayed in the software application
regarding the availability status of the parking lot and the
location of it. For example, there are 3 parking lot.
Sensors are deployed in the parking lot to scan the vehicle
that enters the parking lot. The total amount of vehicles in
the parking lot is revealed on the board. Next, the
information will be processed by the system that provides
information to the users about the available parking lot
[15]. In this section, we review some recently published
relevant studies on IoT-based smart parking systems.

In [16], an automatic smart parking system based on
IoT is proposed. An 8-bit PIC16F73 CMOS FLASH-
based microcontroller is used to read the data and send it

to the IoT web page through Wi-Fi. An Espressif Systems
Smart Connectivity Platform (ESCP) Wi-Fi module is
used to connect the microcontroller to the Internet. An IR
proximity sensor is used to detect parking occupancy. The
microcontroller complexity is the main limitation. It needs
an extra module for Wi-Fi connection. Moreover, a
limited number of sensors can be connected to the
controller. Ref. [17] proposed an IoT-based smart parking
system using ultrasonic sensors that are connected
wirelessly to an RPi via ESP8266 Wi-Fi chip. The RPi is
used for processing sensor data and transmitting it to the
IBM MQTT Server. The server maintains information
including parking entry time, parking duration, payment
required, and payment mode so that users could access the
information through their mobiles. However, the system
relies on one sensor type which may affect data accuracy.
Besides, it requires a subscription to the IBM MQTT
server.

In [18], the authors proposed a smart parking
prototype by utilizing ultrasonic distance sensors and a Pi
camera that is connected to Raspberry Pi. The system
aimed to identify plate numbers of vehicles, and the
details are sent to the central parking system mediator. A
smart parking mobile client application is used to fetch
details over the cloud. The system is locally operated and
used for management only where the users cannot access
the information about available parking. Another smart
parking for occupancy monitoring and visualization was
suggested by [19]. The authors used Arduino Uno as a
microcontroller to collect data from ultrasonic sensors
that were equipped with XBee modules for internet
connectivity and deployed at each parking slot. The
sensors were wirelessly connected to a local XBee
gateway that provided with an Internet connection and
allowed the sensors to report their status to the remote
MySQL database.

The authors of [20] built a prototype that allows users
authentication for a valid booking parking slot. An
infrared IR sensor was used to detect the vehicle while
Raspberry Pi was utilized as an embedded controller. The
Amazon web server was exploited as the IoT server to
maintain the database. An Android-based mobile
application was developed for booking parking and a DC
gear motor was used to control the operation of the
parking gate according to the entered booking ID. LEDs
were installed as in the conventional indoor parking on
top of the parking slots to indicate whether the parking
slot is available. The system was not practically
implemented or tested. A similar study in [21] allows
guaranteed reservation by using QR Code authentication.
The system supported the optimal allocation concept,
where it allocates the nearest parking slot to the user on
the mobile. IR sensor and LED are used to detect the
presence of the vehicle and to indicate the availability of
a slot, respectively. A Raspberry Pi Model 2B is used to

sending parking slot data to the NoSQL database.
In [22], a parking system with an authentication

feature for reserving parking slots by integrating RFID
and IEEE 802.15.4-based WSN technologies was
introduced. The system also allows the payment of
parking fees through NFC from the user’s smartphone.
The system could be used by traffic policemen who may
be alerted to improper use of reserved parking space or
the expiration of purchased time via an Android app. Ref.
[23] proposed a smart parking system by combining the
Cloud-based computation and Raspberry Pi. The system
used Raspberry-Pi to communicate with the NoSQL
database hosted on MongoDB. An RFID module was
used to identify the user’s information and to map a user
to a certain parking slot. An Arduino Uno R3 acts as a
bridge between the RFID module and Raspberry Pi. An
ultrasonic sensor was used to detect the vehicle in a
parking slot and the Google Distance Matrix API was
used to get the distance between the user’s location and
all parking slots by sorting according to distance.
Although the system has improved accuracy, the
utilization of an additional Arduino microcontroller for
each node will increase the system implementation cost.

Ref. [24] proposed an IoT-based E-parking system for
smart cities. The proposed system aimed to detect
improper parking and automatically collect parking
charges using an integrated component called ‘Parking
Meter’. It consists of an ultrasonic sensor node, LED,
camera module to snap the plate number, alarm module
for warning in case of wrong parking, and a Wi-Fi module
for communicating with the local parking management
server, which calculates the parking charges and sends
SMS with payment option to the user if payment is due.
The authors of [25] constructed a prototype of an
automatic smart parking system using IoT. The system is
Raspberry Pi-based and contains a Pi camera for sensing
the parking lot. The administrator can add/remove the
number of parking slots on the central server. The system
also integrates a navigation system that guides the user to
the exact location of the parking slot.

For the sake of brevity, smart parking-related studies
have been summarized and compared in Table 1. The
proposed IoT-PiPMS system is also included in the
comparison to emphasize its main features with respect to
the existing systems. As it is presented in the table, the
proposed system aims at overcoming the limitations of the
existing systems and is supported with a real
implementation scenario for validation purposes. Overall,
most of the available smart parking system consists of a
microcontroller, a sensing unit with communication
capability, and a server. An on-site deployment sensing
unit is used to monitor and signalize the state of
availability of each single parking space. In some systems,
a mobile application is also provided that allows an end-
user to check the availability of parking space and book a

parking slot accordingly. From the literature, most of the
existing smart parking systems had limitations in terms of
the full utilization of the new IoT technology. Even the
concept of wireless sensor networks is applied, the
integration of the Internet to allow data updating to the
cloud is not yet considered. Thus, most of the existing
smart parking systems are locally operates. Other than
that, several studies focused on applying the IoT concept
for parking monitoring and management. However, the
existing systems have some limitations in terms of
connectivity range, microcontroller type, sensing
capabilities, system complexity, energy consumption,
cost, and accuracy. As for the improvement, this paper
proposes the use of Raspberry Pi as a single board
computer with multiple sensors to improve processing
capabilities. The utilization of a single microcontroller
will result in reducing the overall power consumption
comparing to other systems that used multiple controllers,
as shown in Table 1. The Wi-Fi support of our IoT-PiPMS
system comes to overcome the short communication
range of some systems that use Bluetooth, NFC, and
reduce the complexity of systems that are mainly based
on wired networks. Our system also combines sensors and
camera to increase data accuracy and improve the overall
system performance

3. System Design and Modeling

In this section, the adopted methodology, research
materials, system design, and fabrication are described. In
the first phase, the problem statement and limitations of
the existing systems were identified. After that
components selection phase starts by reviewing the
utilized materials in previous studies such as
microcontrollers, sensors, actuators, and IoT platforms
and comparing their pros and cons. Next, the system
architecture is proposed and the parking system design
and implementation are carried out. After that, prototype
design by using Siemens NX 10 software is taken place
prior to the fabrication process which followed by the
functionality testing phase. System enhancement and
optimization also conducted before the system
finalization and performance validation. The concept that
we came up with this paper is the integration of IoT-
PiPMS with the concept of smart campus. Our priority in
this paper is to ensure the system is functioning well both
in the fabricated prototype and real deployment in the
campus environment

Table 1. Summary and comparison of related studies.
Sources Multiple

Sensors
Vision
Monitoring

Microcontroller Communication
Interface

Local
Indicator

Remote
Indicator

Support
Payment

Localization
Support

IoT Platform

[24] YES YES Arduino MEGA Wi-Fi YES NO YES NO NO

[26] NO NO PIC16F73 CMOS
FLASH based 8-bit
microcontroller

Wi-Fi YES NO NO NO NO

[17] YES NO Raspberry-Pi Board Wi-Fi NO YES NO NO IBM MQTT Server

[18] NO YES Raspberry-Pi Board Wi-Fi NO YES NO NO Restful Web Service

[27] YES YES Raspberry-Pi Board and
Arduino

Wi-Fi NO YES NO NO NO

[20] NO NO Raspberry-Pi Model 3B Wi-Fi YES YES NO NO Amazon Web Server

[28] NO NO Raspberry-Pi Model 2B Wi-Fi YES NO NO NO NO

[29] YES NO Raspberry- Pi Board ZigBee& Wi-Fi &
NFC & GPRS

YES NO YES YES NO

[23] NO NO Raspberry-Pi Model
2B+, Arduino Uno

Wi-Fi & RFID NO YES NO YES Amazon Web Service

[30] NO NO Raspberry-Pi, Arduino
Uno

Wi-Fi & RFID & sub-
GHz CC1101
transceiver

NO YES YES NO NO

[31] YES NO Raspberry Pi 2 Model B ZigBee& Wi-Fi &
NFC & GPRS

YES YES YES NO NO

[32] NO NO Raspberry Pi B+ Wi-Fi NO YES NO YES NO
[33] NO YES Raspberry Pi 2 Model B Wi-Fi NO NO NO NO NO

[34] YES NO Raspberry Pi Wi-Fi NO YES NO YES ThingSpeak

[15] YERS YES N/A RFID NO YES NO NO Cloud Application,
Management Centre

[35] YES NO NodeMCU Wi-Fi NO YES NO YES Amazon Web, Services,
MQTT

[36] NO YES Raspberry Pi Wi-Fi NO NO NO NO Amazon Web Services
[37] NO NO NodeMCU, Raspberry

Pi 3, Scanning barcode
Wi-Fi NO YES NO NO Online database

[38] NO YES Computer Wired NO NO NO NO NO

[39] NO YES Raspberry Pi 3 Wi-Fi NO NO NO NO NO
IoT-PiPMS YES YES Raspberry Pi 4 Wi-Fi YES YES Can

extend
YES Blynk IoT server

3.1. Components Selection
The materials and components are chosen based on

necessities and compatibility based on the conducted
literature review. While conducting the review of related
studies, we have surveyed multiple variations of designs
and components used and also their respective function in
smart parking systems. The hardware and software are
decided during the component selection phase. The
hardware components that are chosen are Raspberry Pi 4
Model B, Pi Camera v2.0, HSC-SR04 ultrasonic sensor,
LED lights. The software tools that are chosen are
Raspbian Operating System, Python, Fritzing, Siemens
NX 10, Proteus Design Suite, Blynk IoT platform, and
VNC. Once the component selection has been completed,
the system architecture is figured out. In this subsection,
an overview of the selected components is introduced.

3.1.1. Raspberry Pi 4 Model B
Raspberry Pi 4 Model B has been chosen for this

project mainly due to its powerful processing capabilities
as a single-board embedded computer and its ability to
connect to the Internet either via Ethernet port or
wirelessly using Wi-Fi or Bluetooth. Ease to connect to
the Internet is one of the RPi advantages over Arduino,
and it also supports a huge variety of programming
languages such as Python, Java, C, C++, Perl, Ruby,
BASIC; whereas Arduino, however, only accepts either
Arduino or C/C++. Raspberry Pi 4 Model B is a direct
upgrade over the Raspberry Pi 3 Model B+. It has
Broadcom BCM2711 1.5 GHz quad-core 64-bit CPU with
a Cortex-A72 processor, which is more efficient and
much more powerful than Pi 3’s 1.4 GHz processor. The
GPU of Pi 4 is capable of running comfortably compare
to Pi 3 due to Pi 4 improved clock speed: 500 MHz
compared to Pi 3’s 400 MHz. The RPi 4 Model B has a
better CPU and GPU compared to Model 3 B, which is
essential when we have decided on a visual-based
detection method using the Pi camera. The Pi camera
requires significant processing speed to be able to capture
and process the images. Therefore, Raspberry Pi 4 is
overall more suitable for our system and also able to give
better performance in terms of video capturing and
streaming.

3.1.2. Pi Camera
The pi camera is selected for the proposed system

since it is a camera that is built specifically for Raspberry
Pi. It is very suitable to use in a situation whose light is
low because of its NoIR filter. Users could just plug in the
camera onto the Pi board, run a few commands then the
camera is active and ready to use. The Pi camera connects
directly to the GPU, which is capable of 1080p30 HD
video encoding. It is also capable of snapping pictures of
5MP resolution. Due to its attachment to the GPU, it does
not draw any resources from the CPU, leaving it available

for other processes. USB Webcams, on the other hand,
drain resources from the CPU, lowering the performance
of the entire system. As for the prices, this camera only
costs around 25 USD, which is a great deal in terms of
features and performances it provides.

3.1.3. HSC-SR04 Ultrasonic Sensor
The ultrasonic sensor is a sensor that transmits sound

waves between 25 to 50kHz to the surrounding by
detecting transmitted energy, which is reflected back to
the sensor. The reflection of the ultrasonic wave, together
with a signal processing module, the wave will be
analyzed to detect the presence or absence of an object in
the surrounding every 60 milliseconds. This sensor can be
utilized by detecting vehicles and assessing the occupancy
of the parking space. The ultrasonic sensor is easy to
install without the need for facility closure. In the parking
management system, a huge number of distance sensors
are required (one sensor for each slot). The ultrasonic
sensor is chosen due to its cost-effectiveness when
considering the number of the required sensors. It only
costs about 1 USD each, and it is still able to provide
reliable results compared to other proximity sensors. In
the deployed prototype, we have used four ultrasonic
sensors. This sensor can utilize for detecting vehicles and
assessing the occupancy of the parking space. The
ultrasonic sensor is easy to install without the need for
facility closure.

3.1.4. NEO-6M GPS Module
NEO-6M GPS Module is a GPS module capable of

supporting microcontrollers. It is user-friendly and uses
up only a little space on board. It is a very useful device
for locating device location. This module is chosen to
allow the positioning of the parking lot location.

3.1.5. Green LEDs
LEDs are very efficient in energy usage; it consumes

only 10% of the power of what a normal incandescent
bulb would normally consume. This, in turn, reduces the
power costs due to low operating power. The LED is used
in this project to indicate whether a parking spot is
occupied or vacant by switching its light: ON green for
vacant and OFF for occupied. One LED is used for each
parking slot.

3.1.6. Raspbian
Raspbian is a free operating system that is used for

modifying or program all models of Raspberry Pi.
Raspbian is pre-installed with other applications for
general use, programming, and educational purposes. It
supports language for Python, Java, Scratch, and more.
One would install Raspbian onto a PC or Micro SD and
plug it into RPi, then connect a monitor to the Pi board,
allowing the Pi board to run like a normal PC. Raspbian
lets users install plenty of software from its open-source

software repository for free. In this study, Python is used
to develop the required coding for gathering data from
various sensors to the RPi and upload it to the IoT cloud.

3.1.7. Blynk
Blynk is an IoT platform that enables the development and
implementation of smart IoT devices with ease and speed. Tree
major components that make Blynk a perfect candidate for our
project: apps, server, and library. The apps offered by Blynk
allows user to customize the widgets shown on the interface.
Once the interface is done designed, the apps would then
connect to an open-source Blynk server. The server acts as a
centralized cloud service that would allow communications
between the devices. Other than that, Blynk provides a variety
of libraries that supports multiple hardware devices such as
RPi, Arduino, and ESP8266. The server allows communication
through Wi-Fi, Bluetooth, BLE, USB, and GSM.

3.1.8. Proteus Design Suite
Proteus is software that allows design engineers and
technicians to create a sheet of electronic prints and schematics.
Other than that, it also allows simulation of microcontrollers
such as Atmel AVR, Arduino, or Microchip Technologies.
Since there is no hardware required to use the simulation, it is
convenient as a teaching tool or designing for mini-projects.
We have simulated our system using Proteus to confirm the
correctness of our circuit design before the real
implementation.

3.1.9. Siemens NX 10
NX 10 is software designed for CAD/CAM/CAE. It is

mainly used for designing prototypes by direct
solid/surface modeling, perform engineering analysis like
stress testing the prototype and also manufacture the
finished design using included machining modules. The
NX 10 is a direct competitor against Catia, SolidWorks,
Autodesk Inventor, and Creo. The NX 10 is chosen
because it has its own module for CAD, CAM, and CAE;
users could transfer their project between the modules
immediately with no data loss.

3.1.10. VNC Viewer
VNC Viewer is a client system that simply allows

simultaneously access to many devices from one screen
using the IP address. The VNC provides home computing
environments access from everywhere on the public Web
server. Thus, providing application sharing on the
computer. It is usually used with RPi to access its desktop
from other screens to increase the portability and mobility
of Raspberry Pi. The VNC viewer is installed by default
within Raspberry Pi allows users to see and operate the
Raspberry Pi board desktop on their own laptop as if it is
on the display monitor. Users just have to connect the
Raspberry Pi and the laptop onto the same network and
login to VNC on both devices.

3.2. System Architecture
We have decided about the layout of the system

architecture as shown in Figure 1 based on the selected
components. The signal flow and the interlinks between
various components are suggested. In the developed
system, Raspberry Pi is the main controller that collects
data from the implemented sensing units and Pi camera.
The GPS module provides the location for the parking
area. Then the ultrasonic sensors, which sense the vehicle
presence inside the parking spot where will trigger the
data of the parking slot status to the Raspberry Pi, which
uploads data to the IoT server with the embedded Wi-Fi
module. Thus, drivers with Internetconnected devices
such as smartphones and tablets can access the
information about parking slots occupancy. The users can
observe and monitor the parking area through the Pi-
camera that provides visual monitoring via video
streaming as an add-on function when required.
Alternatively, the Pi camera is acting as a security
surveillance monitor to the parking area to increase the
security of the users. A real-time condition of the parking
area is streaming to the cloud for monitoring, and it can
be used by the management office for security purposes.

Figure 1. Raspberry Pi Based Smart Parking Management System
architecture

3.3. IoT-PiPMS Design
Once the system architecture is confirmed, the

electrical circuit diagram of the designed system is initiated
using the Fritzing tool as shown in Figure 2. Raspberry Pi
GPIO pins are connected to the input/output pins of the
three sensors (ultrasonic sensor, GPS sensor, and Pi
camera. In this design, only one ultrasonic is shown.
However, in the testing prototype, more sensors are used.
The HSC-SR04 is used to detect the presence of a car in the
slot and accordingly, the RPi will change the LED status
ON/OFF that indicates the parking slot is already occupied
or not. The components are installed on the breadboard to
ensure that the system works successfully before
transferring the component onto the solder circuit panel.
The Pi camera will trigger as the parking slot is occupied or
not via visual streaming. The suggested design is then

simulated using Proteus software to check the compatibility
of the components. Figure 3 shows the stimulation of RPi
with GPS module, Pi camera, and ultrasonic sensor in the
Proteus software. After the electronics stimulation in
Proteus simulation, all the electrical and electronic
components were assembled and connected to the
microcontroller and programmed using Python in the
Raspbian OS. However, the Proteus software not fully
utilized because some of the component libraries were not
found in the software, as well as on the Internet. Therefore,
the sensors and components had to be tested experimentally
using RPi.

Figure 2. Component circuit diagram.

Figure 3. Proteus simulation of the control circuit.

3.4. Model Design
In order to emulate the functionality of the developed

system, we need to design and fabricate a proper outdoor
parking space model. Siemens NX 10 software is utilized
to design the prototype with a measurement of 500×600
mm and a thickness of 15 mm, as shown in Figure 4. The
reference of measurement is taken from the basic size of a
square table. The purpose of this design is to visualize how
the prototype will be created and where to put all the
components. This model is designed with the exit and entry
gate along with 8 parking slots to make it a clearer view
on how the parking slot is. Among the 8-parking slots,
there are four parallel parking slots and four perpendicular
parking slots. As for the Pi camera and GPS Module, it
will be placed at a higher place which is at the pole that is
located at the corner of the parking space. Thus, one Pi

camera can cover a wider space and streams video about
the situation of the covered parking lot. Also, the GPS
sensor will be placed on the same pole close to the
microcontroller; thus, mitigating the required wiring. On
the other hand, the ultrasonic sensors will be placed facing
in front of the parking slot so it can immediately detect the
car as the distance between the sensor and the car becomes
closer.

Figure 4. Design and dimensions of the prototype model

Figure 5. Design of components for system model

The RPi support pole is designed as shown in Figure
5. We measured every edge and corner of RPi to make the
box fit to it. During the design process, we left some space
around the designated box to provide space for some of
the wiring parts. The designed RPi box also has a hole for
the Pi camera. For the space for the wiring part, the pole
was designed with the hole inside the RPi box and along
with it. In order to place the GPS module on the same
support, the RPi box cover is designed together with the
GPS Module hole. The function of the GPS module
installed there is to help drivers locate unoccupied parking

slots. This cover box will close the upper side of the RPi
box to protect the components that are put inside the box.
Since we also use ultrasonic sensors to detect the presence
of the car, the ultrasonic sensor box is also being designed
with an LED hole. The ultrasonic sensor boxes have been
specifically designed for the HC-SR04 sensor. The box
has two holes at the front of the box for the transmitter
and receiver of the sensor and one hole on top of the box
for placing LED. The function of the LED light is to
indicate the presence of the car.

3.5. Model Fabrication
Once the simulation is completed, the fabrication

process is beginning. During the manufacturing process,
the materials are assembling according to the simulated
design. First of all, the process of measuring and cutting
plywood takes place. Plywood is used as the base of the
car parking model to strengthen the design. Next, the
canvas board was used as the next base of the design. It
was glued on the plywood. Both of them act as the base
of the design. The function of the canvas board was to
make it easier to put the hardware components in it
without causing any scratch to the components. After both
of the bases were glued, the other components were
assembled. The next step is to create space for the car
parking slots. To realize our model, the Styrofoam board
and plastic board are used. To make the parking looks
livelier and realistic, some fake trees and carpet grass
were added. A hole was made at each parking slot for the
wire to go through under the prototype. 3D printing is
used to fabricate the part components of the smart parking
model by using materials of PLA Filament. We
successfully fabricate the model’s components, including
the Raspberry Pi pole, ultrasonic sensor box, RPi box
cover, entry and exit parking signs using 3D printing. The
fabricated model of the proposed system is shown in
Figure 6.

Figure 6. The fabricated system model

4. System Development and Implementation
4.1. System Setup

In this stage of research, setup and initialization of the
system components (controller, sensors, actuators) are
conducted. Each component has been locally tested and
configured to work with the microcontroller. Raspberry Pi
4 Model B is a single board computer, meaning it does not
have the plug, program, and play abilities like the Arduino
board. It has to go through the setup and initialization
phase in order to install the operating system into the
Raspberry Pi. The RPi runs on an OS called Raspbian,
which is a version of Linux specifically tweaked and
modified for use on Raspberry Pi. Since Raspberry Pi is a
computer board, it requires an output monitor screen to
see the operations running inside it and also requires a
storage device to save its OS and other software included
within the Raspbian itself. Nonetheless, it also requires a
USB mouse, keyboard, and also HDMI cable, which
would output the content onto an HDMI compatible
screen. All of the components above are needed to
perform the initialization phase successfully. The Internet
connection can be obtained either through Wi-Fi or using
an Ethernet cable. It is as simple as connecting to the Wi-
Fi hotspot on a desktop computer: simply chooses a
hotspot and key in the hotspot password. VNC is used for
operating it without a display monitor is required. We
could perform our coding even using a laptop through
VNC viewer into the Raspberry Pi desktop without ever
needing an external display monitor. The RPi is
configured by identifying its IP address so that it would
automatically connect to the hotspot every time it is
booted up, and we directly access the RPi through VNC
Viewer.

The next step in developing the smart parking system
is to test out the HC-SR04 ultrasonic sensor with the
Raspberry Pi. The ultrasonic sensor is connected to the
breadboard, which then is connected to the GPIO pins of
the RPi. Since Python is a powerful and new
programming language, it has been selected to develop
the required coding to build our system. The RPi GPIO
pins and sensor pins are defined according to the coding
performed. In this case, Pin 3 is the Trigger, Pin 5 is the
Echo, and Pin 7 controls the state of the LED. The VCC
and GND pin of ultrasonic sensors are connected to Pin 2
and Pin 6, respectively. We have developed an algorithm
using Python to enable the RPi to collect data from
ultrasonic sensors. The algorithm measures the time taken
for the ping to bounce back from the object in front back
to the echo chamber, then it calculates the distance based
on the time taken and multiplies it with the speed of
sound. The result is the value of the distance between the
object, and the HC-SR04 sensor will be displayed
continuously on the terminal of the Raspberry Pi board. A
predefined time interval delay between measurement
updates. This is to allow the pulse from the previous

measurement to dissipate before the next measurement is
taken so that the results stay consistent and do not get
interference from the previous measurement. The sensor
is configured so that if the measured distance is more than
50 cm, it means the parking slot is empty, then the green
LED will be ON; otherwise, the LED will be OFF. The
condition is later changed to 8 cm to accommodate the
size of the prototype model. This testing step is repeated
for each of the ultrasonic sensors to ensure all of the
sensors are working and gives accurate result. The testing
is further expanded by connecting multiple ultrasonic
sensors to the RPi. Thus, a new script has been written to
accommodate multiple ultrasonic sensors and able to
display the distance measured from each sensor and
update to the RPi terminal. Figure 7 depicts a side of the
conducted tests for ultrasonic sensors with RPi and the
displayed results on the screen.

After the testing phase of ultrasonic sensors has been
completed, we conduct the testing of the GPS module.
The GPS module used in this project is the Ublox Neo 6M
GPS Module. The GPS module allows the user to track
down the location of the parking facilities. When the GPS
module is connected to the Raspberry Pi, it requires a
script to display and send its data to the terminal. Thus,
we have used a Python-based algorithm to perform this
task. The collected data is the longitude and latitude of the
module’s location. Figure 8 displays the connection of the
GPS module to the RPi and the output results that show
the location longitude & latitude. The python script
involved would periodically check and display those data
onto the terminal.

The next step is the setup and configuration of the Pi
camera. The purpose of the Pi camera is used to detect the
occupancy of the parking slot. The camera will check if it
is a vehicle that is parked at the parking slot. If any other
object is occupying the parking slot, then the camera
would update the status to the RPi. The camera will be
detecting objects using an algorithm called TensorFlow
Algorithm. The TensorFlow Object Detection API has a
database of samples for its algorithm to compare so that
any general vehicle detected can be classified as a vehicle
and then further classified as either a car, a motorcycle, a
truck, etc. Both the TensorFlow and Open CV are
installed and setup into the Raspberry Pi. The Pi camera
has its own port and can be plugged into the RPi directly.
We have to enable the option for displaying the Pi camera
in the Raspberry Pi configuration and run Open CV to see
the live stream of the footage captured by the RPi. The Pi
camera can detect the vehicles and identify their type of
cars/motorcycles; the range is severely limited
underground. Thus, a pole is designed and fabricated to
allow the camera to capture footage from a height. The
obtained outputs on the RPi are shown in Figure 9.

Figure 7. Ultrasonic sensor configuration

Figure 8. GPS Module configuration

Figure 9. Pi camera objects detection and classification

In order to update the collected data from the sensor
to the cloud, and IoT platform is required. Blynk platform
is selected in our system, which is a user-friendly
freemium IoT platform with multiple widgets to allow
users to do and test all kinds of interesting features. The
Blynk has been successfully installed into the RPi, and its
features are tested. The virtual pins of the Blynk platform
are configured to receive the data from the RPi. Blynk
libraries for Python are used to enable information
exchange between the developed system and the IoT
platform, and the data will be displayed on a mobile App.
Widgets. Multiple display widgets can be added for each
sensor. Authorization token from Blynk App. is included
in the developed Python script. In this project, we utilize
the ability of Blynk App. to change its Widget’s properties
to indicate whether the parking slot is occupied or not. In
the early phase, the widgets are shown to display an LED

and the distance measured from the ultrasonic sensor. The
green indicator on the dashboard would turn OFF when
the distance measured is below the threshold value and
turn ON when it is above it. This is first used to test out
the Python script and its compatibility with Blynk. When
the return value of the Python script has been successfully
sent to the Blynk App., the widget will update the status
according to the received value. Besides, the information
received from the GPS module is received by the Blynk
virtual pin, and the map widget displays location data as a
dot on the map widget. This would allow the users to
locate the parking slot when they are driving towards the
location. Blynk App. could also stream the footage of the
camera, but it does not include the TensorFlow Algorithm
in its live stream. Therefore, the live streaming on the
Blynk App. would act as a CCTV instead of detecting and
identifying vehicle types. However, on the management
server, the output of the TensorFlow Algorithm can be
accessed on the RPi screen by using the VNC viewer for
mobile devices or desktops.

4.2. System Implementation
During the design phase, a draft design of the overall

circuit is simulated using the Proteus software until the
desired outcome is achieved. In the previous section, all
components have been configured and tested locally by
using the RPi, and no data is sent to the IoT server. In this
phase, all components are composed to represent the
proposed system which is implemented by connecting
ultrasonic sensors, Pi camera vision detection, and GPS
module to Raspberry Pi to send and/or receive data and
update it in real-time to the IoT server. Firstly, these
components are connected on a breadboard, as shown in
Figure 10, and then implemented in the developed model
when the circuit worked properly.

Figure 10. Connection of the sensor, GPS module, and Pi camera on the
breadboard.

The entire system is tested where the Raspberry Pi
collects the data from ultrasonic sensors, Pi camera, and

GPS sensor and uploads it to the Blynk IoT server; thus,
we manage to access the data on Blynk App. using
smartphones. Three Python scripts are developed to
receive the data from the sensor simultaneously. In the
first algorithm, the ultrasonic sensor detects the distance
between the sensor and vehicle in the parking spot.
According to Algorithm 1, whenever the trigger becomes
LOW, it will send a pulse from the open front of the
ultrasonic sensor. When the pulse is being bounced back
by the object, it will be received by the Echo receiver,
which will make the Echo pin on the ultrasonic sensor to
go HIGH. The distance between the object and the
ultrasonic sensor is calculated by multiplying the time
taken for the pulse to shoot out of the sensor and bounced
back to be received by the speed of sound. A threshold
distance value is defined to identify how close the vehicle
is from the sensor, and accordingly, the status of the LED
will be updated. The obtained data from these sensors can
be monitored in real-time using the Blynk App.

Figure 11. Raspberry Pi with sensors embedded to the prototype

The TensorFlow algorithm is used for the real-time Pi
camera to display the captured video on OpenCV. This
algorithm is included as a part of the developed Algorithm
2 to retrieve the visual information from the Pi camera to
the RPi to be upload to the IoT cloud. The Pi camera is set
up to one frame per second to avoid overheating to the
Raspberry Pi’s GPU, which will cause a shutdown to the
system. The same video is streamed to the Blynk App. as
well. We need to ensure identical information about the
parking slots occupancy from both the ultrasonic sensor
and Pi camera. Another Python-based algorithm
(Algorithm 3) is used to enable the GPS module to send
data to the RPi. A Pynmea2 library is installed to the

Raspberry Pi for parsing the NMEA protocol for
transmitting and receiving the signal from the satellite to
access the location data. From the Pynmea2, the specific
location such as longitude and latitude data is obtained.
Then, the data obtained will be updated through the
Raspberry Pi to the IoT server.

Algorithm 1 Ultrasonic sensing algorithm for Raspberry Pi-based smart
parking system
Require: Real-time monitoring to identify parking slot status
Ensure: Distance to vehicles less than a predefined threshold
1: define HC-SR04 library
2: include Blynk libraries
3: define RPI.GPOI for HC-SR04 Ultrasonic sensor pins (Trigger, Echo, Vcc, and
GND)
4: define RPI.GPOI for LED outputs
5: set Dth The threshold distance to identify vehicle existence
6: D(t) ← Distance measured by the ultrasonic sensor at a time, t
7: initialize HC-SR04 at t = 0
8: acquire the state (Trigger, Echo) of HC-SR04 Start and Stop state
9: TimeElapsed = stopTime – startTime Time difference between Trigg. and Echo
10: D(t) = (TimeElapsed * 34300) / 2 Where 34300 is sonic speed
11: for each round do
12: get D(t)
13: if D(t) >= Dth then
14: switch ON Green LED
15 update the LED status in Blynk to Green “unoccupied”
16: else
17: switch OFF Green LED
18 update the LED status in Blynk to Red “occupied”
19 return distance
20: end if
21: Send data to Blynk Server over the Internet of RPi
22: Retrieve data in Blynk App using Smartphone
23 end for

Algorithm 2 Visual monitoring algorithm for Pi camera with Raspberry Pi
Require: Vehicle detection and video streaming of parking lot
Ensure: Real-time vision monitoring and surrounding conditions
1: define Pi camera module for in RPi
2: import the required packages (TensorFlow, OpenCV, Blynk) into RPi
3: Initialize Pi camera
4: get the vision of the covered area
5: set camera resolution and framerate
6: Initialize TensorFlow model
7: For each round (do)
8: identify the object in the parking slot
9: classify the object type
10: decide about the slots occupancy (occupied/unoccupied)
11: visualize the results
12: Live Stream of the captured vision to the RPi
13: Update camera vision on OpenCV, Blynk, and VNC
14: end for

Algorithm 3 Location data acquisition algorithm for NEO-6M GPS
Module and Raspberry Pi
Require: Providing drivers with the location of the parking lot via Blynk
Ensure: Real-time update of GPS coordinates for the parking area
1: define Raspberry Pi GPIO for the GPS module
2: include the required libraries (Blynk, Pynmea)
3: for each round (do)
4: read the positioning data from NMEA using (NEO-6M GPS Module)
5: GPSdata = pynmea2.NMEAStreamReader()
6: get Latitude and Longitude information
7: write the location data to the Blynk server
8: Update the location of the parking lot into the Blynk App. widget
9: end for

Once the implemented system on the breadboard is

functioning as proposed, we integrate the IoT-PiPMS to
the fabricated model, as shown in Figure 11. The GPS
module and Pi camera are installed into the

microcontroller box for protection and tidy purpose where
the GPS module is mounted onto the cover. The Pi camera
also is attached with a fisheye lens for a wide range view
of the camera. Wires to connect the deployed ultrasonic
sensors to the microcontroller box are installed as well.
All the wiring connections have been checked by doing
testing with a digital multimeter for each connection. The
wire has been specific and renames to easily verify the
type of wire connection. The ultrasonic sensors would be
assembled and connected underneath the prototype.
model. The wires for each sensor are connected and ran
from the sensors into a hole opening on the top left. The
holes on the top left lead into the inside of the pole and
then in turn lead the wires onto the Raspberry Pi board on
top. Each ultrasonic sensor shares the same Pin of 5V VCC
and GND, so all of the VCC pins and GND pins are
soldered together so that they would form a parallel
connection. Each of the trigger pins for all ultrasonic
sensors is soldered onto the donut board and labeled
accordingly so that later on it would be easier to connect
the wires onto the Raspberry Pi. A final testing phase of
the developed system starts after the implementation of
the developed system into the finalized prototype. If there
are errors while testing the prototype, further
enhancements and optimization are carried out. This
phase is important as it helps to improve system
performance and allows error detection.

4.3. System Workflow
The general workflow of the developed smart parking

system is described in the flowchart of Figure 12. The
Raspberry Pi should be connected to the Wi-Fi network
when the power of the microcontroller is turned on. The
Raspberry Pi’s Wi-Fi connection can be checked through
the system monitor or cloud system network. The user
must access the Internet through a smart portable device
or laptop to discover and access the vacant parking slot in
the smart parking system. The system starts working by
checking and updating the detection of the ultrasonic
sensor, Pi camera, and GPS module. The detection
reading by the ultrasonic sensor sometimes fluctuates due
to surrounding presence. The Pi camera will then monitor
the parking slot to detect any physical presence that
appeared in the parking slot. The GPS module updates the
location of the parking area to the cloud system. Users can
run the Blynk App. on their smartphones and get updates
about the outdoor parking lot status. The notification can
be seen whether the parking slot is occupied or still
vacant. When the parking slot status meets the condition
from the ultrasonic sensor and Pi camera, the result
condition is uploaded to the cloud server to be displayed
into the server application. The user can also view the
parking area’s real-time condition through server
applications

Figure 12. Flowchart of the system

5. Experimental Results

In this section, we present the system validation and
discuss the results. As a result, we have successfully
implemented the IoT-based smart parking system into the
prototype model. The finalized prototype can be seen in
Figure 13. Our smart parking system consists of four
ultrasonic sensors, four green LEDs, one GPS module,
one Pi camera, and one Raspberry Pi 4 board. The
ultrasonic sensors would sense the presence of the vehicle
in front of it, with a green LED mounted on top of it to
indicate the occupancy of the parking slot. The GPS
module is used to locate the parking facility, and the Pi
camera is used to detect and classify objects detected
using TensorFlow Algorithm. Each ultrasonic sensor has
its dedicated number according to the slot number. The
numbering helps tracking down the corresponding
number of sensors and also its location. The mini car
model is used to simulate a real car in the parking facility.

The Raspberry Pi board is placed inside the designated
box on top of the pole. A Pi camera is placed facing
towards the prototype to cover the view of the whole
model. The GPS module is mounted on top of the box
cover to broadcast the location data so that users can track
the location of the parking facility. The wires connecting
the sensors with the Raspberry Pi board runs underneath
the prototype model and are covered up using plastic
pipes. The wires then run through the hollow content of
the pole then reach the Raspberry Pi board inside. When
the system is turned on, the operation of the IoT-PiPMS
will start eventually. The Blynk automatically connected
through Wi-Fi and received data from Raspberry Pi to
Blynk cloud and updated it in the Blynk App. Graphical
User Interface (GUI) as shown in Figure 14. The GPS
module will automatically detect the location of the
parking lot and shown on the map as shown in the figure.
Next, the Pi camera stream the video of the parking area
and displays it in the live streaming widget of the Blynk
App dashboard.

Figure13. Finalized Prototype.

Figure14. IoT-PiPMS user interface on Blynk.

Users could check the occupancy of the parking slot
on the Blynk App. on their smart devices. Other than that,
they also could locate the location of the parking facility
by looking at the map widget. The map widget displays
the location data that it received from the GPS module.
Users could also watch the camera footage live stream on
the Blynk dashboard to confirm the capacity of the
parking slot. When the ultrasonic sensor has detected a
vehicle close to it, it would then update the user interface
to show ‘Occupied’ on the Blynk App. The green LED
will also be changed to a red LED on the Blynk
dashboard. This will let the user know that the parking slot
is currently occupied. On the real LED in the site, the
green LED will turn OFF instead. When the vehicle starts
leaving the parking slot, the ultrasonic sensor would no
longer detect an object in front of it; thus, it would then
update the user interface by changing the red LED back

to green LED, and also the occupation status from
‘Occupied’ to ‘Unoccupied’. Each of the parking slots is
tested by placing a mini car model in front of the
ultrasonic sensor. We confirm that our system is
functioning well and the data transmitted in real-time to
update the parking slots status to the cloud and can be
accessed from anywhere at any time over the Internet via
the Blynk App. Our system functionality and applicability
in the real scenario of outdoor parking are proved as well.

In the meantime, the TensorFlow algorithm runs to
detect the parking slot availability and identify the
existing vehicle to be updated to the VNC Viewer and the
Blynk dashboard, as shown in Figure 15. It identifies the
occupied/unoccupied parking slots and displays the status
as text with the number of the parking spot. This vision
monitoring is used as a backup to support the ultrasonic
sensor data that is displayed as LED indicators in the local
parking and the Blynk dashboard as well. The
programmed TensorFlow algorithm detects any object
inside the rectangular shape, which indicates the parking
slot. The TensorFlow was customized to specify the type
of object to be detected, which in this case, the vehicle
type (car, motorcycle, etc.). If a vehicle occupies a
parking slot and is located inside the detection area, it will
be detected and update the slot status to occupied. Any
object other than vehicle type will not be detected for
occupying the park. As in the figure, parking Slot 2 is
occupied with a vehicle, while parking Slot 1 is
unoccupied. The status of the ultrasonic sensor of Slot 2
is a red LED, and Slot 1 is a green LED, thus it is in
agreement with the obtained information from the Pi
camera. This double confirmed information increases our
system reliability and it is among its advantages. In
addition, this interface of the VNC Viewer can be
accessed by the management office of the parking area.
For the user, it is enough to get information from the
ultrasonic sensors and access live streams of the parking
area through the Blynk App. Besides, a GPS attached to
the Raspberry Pi connected to the Blynk App. The ability
of the TensorFlow algorithm with the Pi camera to
classify the vehicle type is proved via a practical test.
When the detection from the Pi camera is updated, the
Blynk will also update the data in the Blynk IoT server
and mobile.

Figure 15 Pi camera object detection vs. LED status

6. Conclusion
An IoT-based smart parking system using Raspberry Pi 4 B+ has
been designed and fabricated by utilizing ultrasonic sensors, Pi
camera, GPS module, LEDs, and the Blynk IoT platform. The
developed system has been tested and validated to be used in the
smart campus environment or similar outdoor parking lot. The
system’s reliability has been improved by using multiple sensors
to detect the existence of vehicles. Staff/students/visitors can
easily monitor the parking lot around the campus via a GUI over
the Blynk App. by accessing the system dashboard on their
smartphones. The GPS sensor allows drivers to easily access the
parking lot. The developed IoT-PiPMS provides accessibility,
intelligence, comfortable, and improves the driver user
experience. For practical implementation, our system can be
extended to include multiple RPi and Pi cameras. The parking lot
can be divided into several sections; each can be covered by one
RPi and one Pi camera. The number of ultrasonic sensors will be
increased to cover the entire parking area. The camera captions
and video streaming function can be specified for management
only rather than users to reduce data usage and improve system
privacy and safety.

References

[1] C. G. Hoehne, M. V. Chester, A. M. Fraser, and D. A. King, “Valley

of the sun-drenched parking space: The growth, extent, and
implications of parking infrastructure in Phoenix,” Cities, vol. 89,
pp. 186-198, 2019.

[2] J. Arellano-Verdejo, F. Alonso-Pecina, E. Alba, and A. Guzmán
Arenas, “Optimal allocation of public parking spots in a smart city:
problem characterisation and first algorithms,” Journal of
Experimental & Theoretical Artificial Intelligence, vol. 31, no. 4,
pp. 575-597, 2019.

[3] F. Al-Turjman and A. Malekloo, “Smart parking in IoT-enabled
cities: A survey,” Sustainable Cities and Society, p. 101608, 2019.

[4] R. Ke, Y. Zhuang, Z. Pu, and Y. Wang, “A Smart, Efficient, and
Reliable Parking Surveillance System with Edge Artificial
Intelligence on IoT Devices,” arXiv preprint arXiv:2001.00269,
2020.

[5] J. Liu, J. Wu, and L. Sun, “Control method of urban intelligent
parking guidance system based on Internet of Things,” Computer
Communications, vol. 153, pp. 279-285, 2020.

[6] F. Bock, S. Di Martino, and A. Origlia, “Smart parking: Using a
crowd of taxis to sense on-street parking space availability,” IEEE
Transactions on Intelligent Transportation Systems, 2019.

[7] J. Lin, S.-Y. Chen, C.-Y. Chang, and G. Chen, “SPA: Smart Parking
Algorithm Based on Driver Behavior and Parking Traffic
Predictions,” IEEE Access, vol. 7, pp. 34275-34288, 2019.

[8] J. J. Barriga et al., “Smart Parking: A Literature Review from the
Technological Perspective,” Applied Sciences, vol. 9, no. 21, p.
4569, 2019.

[9] A. Mackey, P. Spachos, and K. N. Plataniotis, “Smart Parking
System Based on Bluetooth Low Energy Beacons With Particle
Filtering,” IEEE Systems Journal, 2020.

[10] P. Misra, A. Vasan, B. Krishnan, V. Raghavan, and A.
Sivasubramaniam, “The Future of Smart Parking Systems with
Parking 4.0,” GetMobile: Mobile Computing and Communications,
vol. 23, no. 1, pp. 10-15, 2019.

[11] R. Iqbal, T. Maniak, and C. Karyotis, “Intelligent Remote
Monitoring of Parking Spaces Using Licensed and Unlicensed
Wireless Technologies,” IEEE Network, vol. 33, no. 4, pp. 23-29,
2019.

[12] H. Sundmaeker, P. Guillemin, P. Friess, and S. J. C. o. E. R. P. o. t.
I. o. T. Woelfflé, European Commision, “Vision and challenges for
realising the Internet of Things,” vol. 3, no. 3, pp. 34-36, 2010.

[13] A. Abuarqoub et al., “A survey on internet of things enabled smart
campus applications,” in Proceedings of the International
Conference on Future Networks and Distributed Systems, 2017:
ACM, p. 50.

[14] E. C. Thangam, M. Mohan, J. Ganesh, and C. J. I. J. o. A. E. R.
Sukesh, “Internet of Things (IoT) based Smart Parking Reservation
System using Raspberry-pi,” vol. 13, no. 8, pp. 5759-5765, 2018.

[15] M. W. Sari, P. W. Ciptadi, and R. H. Hardyanto, “Study of Smart
Campus Development Using Internet of Things Technology,” in
IOP Conference Series: Materials Science and Engineering, 2017,
vol. 190, no. 1: IOP Publishing, p. 012032.

[16] A. Kianpisheh, N. Mustaffa, P. Limtrairut, and P. Keikhosrokiani,
“Smart parking system (SPS) architecture using ultrasonic
detector,” International Journal of Software Engineering and Its
Applications, vol. 6, no. 3, pp. 55-58, 2012.

[17] A. Khanna and R. Anand, “IoT based smart parking system,” in
2016 International Conference on Internet of Things and
Applications (IOTA), 2016: IEEE, pp. 266-270.

[18] P. Ramaswamy, “IoT smart parking system for reducing green
house gas emission,” in 2016 International Conference on Recent
Trends in Information Technology (ICRTIT), 2016: IEEE, pp. 1-6.

[19] R. Grodi, D. B. Rawat, and F. Rios-Gutierrez, “Smart parking:
Parking occupancy monitoring and visualization system for smart
cities,” in SoutheastCon 2016, 30 March-3 April 2016 2016, pp. 1-
5, doi: 10.1109/SECON.2016.7506721.

[20] B. Mahendra, S. Sonoli, N. Bhat, and T. Raghu, “IoT based sensor
enabled smart car parking for advanced driver assistance system,”
in 2017 2nd IEEE International Conference on Recent Trends in
Electronics, Information & Communication Technology (RTEICT),
2017: IEEE, pp. 2188-2193.

[21] F. I. Shaikh, P. N. Jadhav, S. P. Bandarkar, O. P. Kulkarni, and N.
B. J. I. J. o. C. A. Shardoor, “Smart parking system based on
embedded system and sensor network,” vol. 140, no. 12, 2016.

[22] L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, and R.
Vergallo, "Integration of RFID and WSN technologies in a Smart
Parking System," in SoftCOM, 2014, pp. 104-110.

[23] A. Gupta, P. Rastogi, and S. Jain, “Smart Parking System using
Cloud based Computation and Raspberry Pi,” in 2018 2nd
International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC), 2018 2nd International Conference
on, 2018: IEEE, pp. 94-99.

[24] P. Sadhukhan, “An IoT-based E-parking system for smart cities,”
in 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2017: IEEE, pp. 1062-
1066.

[25] M. B. J. I. J. o. S. SR and R. Publications, “Automatic smart parking
system using Internet of Things (IOT),” p. 628, 2015.

[26] F. Bock, S. Di Martino, and A. Origlia, “Smart parking: Using a
crowd of taxis to sense on-street parking space availability,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 2,
pp. 496-508, 2019.

[27] D. Kanteti, D. Srikar, and T. Ramesh, “Intelligent smart parking
algorithm,” in 2017 International Conference On Smart
Technologies For Smart Nation (SmartTechCon), 2017: IEEE, pp.
1018-1022.

[28] F. I. Shaikh, P. N. Jadhav, S. P. Bandarkar, O. P. Kulkarni, and N.
B. Shardoor, “Smart parking system based on embedded system and
sensor network,” International Journal of Computer Applications,
vol. 140, no. 12, 2016.

[29] L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, and R.
Vergallo, “Integration of RFID and WSN technologies in a Smart
Parking System,” in 2014 22nd International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM), 2014: IEEE, pp. 104-110.

[30] O. Orrie, B. Silva, and G. P. Hancke, “A wireless smart parking
system,” in IECON 2015-41st Annual Conference of the IEEE
Industrial Electronics Society, 2015: IEEE, pp. 004110-004114.

[31] L. Mainetti, L. Patrono, M. L. Stefanizzi, and R. Vergallo, “A
Smart Parking System based on IoT protocols and emerging
enabling technologies,” in 2015 IEEE 2nd World Forum on Internet
of Things (WF-IoT), 2015: IEEE, pp. 764-769.

[32] N. R. N. Zadeh and J. C. D. Cruz, “Smart urban parking detection
system,” in 2016 6th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE), 2016: IEEE, pp.
370-373.

[33] G. Amato, F. Carrara, F. Falchi, C. Gennaro, and C. Vairo, “Car
parking occupancy detection using smart camera networks and deep
learning,” in 2016 IEEE Symposium on Computers and
Communication (ISCC), 2016: IEEE, pp. 1212-1217.

[34] S. Shinde, A. Patil, S. Chavan, S. Deshmukh, and S. Ingleshwar,
“IoT based parking system using Google,” in 2017 International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud)(I-SMAC), 2017: IEEE, pp. 634-636.

[35] H. Bandara, J. Jayalath, A. Rodrigo, A. Bandaranayake, Z.
Maraikar, and R. Ragel, “Smart campus phase one: Smart parking
sensor network,” in 2016 Manufacturing & Industrial Engineering
Symposium (MIES), 2016: IEEE, pp. 1-6.

[36] X. Ling, J. Sheng, O. Baiocchi, X. Liu, and M. E. Tolentino,
“Identifying parking spaces & detecting occupancy using vision-
based IoT devices,” in 2017 Global Internet of Things Summit
(GIoTS), 2017: IEEE, pp. 1-6.

[37] D. Vakula and Y. K. Kolli, “Low cost smart parking system for
smart cities,” in 2017 International Conference on Intelligent
Sustainable Systems (ICISS), 2017: IEEE, pp. 280-284.

[38] H. Al-Kharusi and I. Al-Bahadly, “Intelligent parking management
system based on image processing,” World Journal of Engineering
and Technology, vol. 2014, 2014.

[39] E. R. Buhus, D. Timis, and A. Apatean, “Automatic parking access
using openalpr on raspberry pi3,” Acta Technica Napocensis, vol.
57, no. 3, p. 10, 2016.

 WAHEB A. JABBAR (M’11--SM’18), was born in
Taiz, Yemen in 1978. He received the B.Sc. in
Electrical Engineering from the University of Basrah,
Iraq, in 2001, the M.Eng. in Communication &
Computer and the Ph.D. in Electrical, Electronics, and
System Engineering from Universiti Kebangsaan
Malaysia (UKM), Bangi, Selangor, Malaysia, in 2011
and 2015 respectively. He is currently a Senior
Lecturer in the Faculty of Electrical & Electronics
Engineering Technology, Universiti Malaysia Pahang

(UMP), Pekan, Pahang, Malaysia. His research interests include Routing
Protocols in Ad Hoc Networks, Mobile Communications, Wireless
Networking, Advanced Electronics, and Automation. He also has a keen
interest in the Internet of Things (IoT) applications and Smart City.

Chong Wen Wei studies Bachelor of Electrical and
Electronics Engineering Technology at the College of
Engineering Technology, University Malaysia Pahang,
Malaysia. His research interests include IoT and Control
Systems

Nur Atiqah Ainaa B. M. Azmi studies Bachelor of
Manufacturing and Mechatronic Engineering
Technology at the College of Engineering
Technology, University Malaysia Pahang, Malaysia.
His research interests include Robotics, 3D Design,
and Mechatronics.

Nur Aiman B. Haironnazli studies Bachelor of
Electrical and Electronics Engineering Technology
at the College of Engineering Technology,
University Malaysia Pahang, Malaysia. His research
interests include embedded systems and image
processing.

	1. Introduction
	2. Background and Related Works
	3. System Design and Modeling
	3.1. Components Selection
	3.1.1. Raspberry Pi 4 Model B
	3.1.2. Pi Camera
	3.1.3. HSC-SR04 Ultrasonic Sensor
	3.1.4. NEO-6M GPS Module
	3.1.5. Green LEDs
	3.1.6. Raspbian
	3.1.7. Blynk
	3.1.8. Proteus Design Suite
	3.1.9. Siemens NX 10
	3.1.10. VNC Viewer

	3.2. System Architecture
	3.3. IoT-PiPMS Design
	3.4. Model Design
	3.5. Model Fabrication

	4. System Development and Implementation
	4.1. System Setup
	4.2. System Implementation
	4.3. System Workflow

	5. Experimental Results
	6. Conclusion
	References

