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A B S T R A C T

Transformer models have recently become the dominant architecture in many computer vision tasks, including
image classification, object detection, and image segmentation. The main reason behind their success is the
ability to incorporate global context information into the learning process. By utilising self-attention, recent
advancements in the Transformer architecture design enable models to consider long-range dependencies. In
this paper, we propose a novel transformer, named Swin Transformer with Cascaded UPsampling (SwinCup)
model for the segmentation of histopathology images. We use a hierarchical Swin Transformer with shifted
windows as an encoder to extract global context features. The multi-scale feature extraction in a Swin
transformer enables the model to attend to different areas in the image at different scales. A cascaded up-
sampling decoder is used with an encoder to improve its feature aggregation. Experiments on GLAS and CRAG
histopathology colorectal cancer datasets were used to validate the model, achieving an average 0.90 (F1
score) and surpassing the state-of-the-art by (23%).
1. Introduction

Colorectal cancer (CRC) is currently one of the most significant
public health issues. The main pathway to diagnose CRC is through a
pathology slide examination. Pathology is the space where a disease
is detected or diagnosed using a series of microscopic slide images.
These images exhibit a variety of characteristics and patterns. A key
differentiator of these images is their sense of scale in comparison to
normal natural images. A typical workflow would see a pathologist
examine a tissue on a slide image, navigating through multiple regions
to identify different tissue types. This navigation process is happening
frequently per slide image, assessing the intrinsic details of single
tissues and zooming out to get the general context of the patterns a
tissue group is forming.

Processing microscopic images digitally facilitated many research
opportunities in the field of computer-aided image analysis (Abdel-
samea et al., 2022). This digitisation effort enabled the development of
computational techniques for tissue segmentation, biomarker quantifi-
cation, and tissue type classification in histology images. Fig. 1 shows
example patches from different Whole Slide Images (WSIs) with very
different characteristics and colour profiles. These images present a
distinct series of challenges that differ from those found in standard
image recognition problems. Utilising recent breakthroughs in image
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analysis and applying them directly to WSI proved challenging due
to the high resolution of WSI in comparison to natural images (WSI
can be 1000 times larger). As a result, the majority of approaches use
a patch-based approach, extracting smaller patches from a WSI and
classifying them on a smaller scale. A smaller patch image, on the other
hand, contains less context of a wide range of texture patterns that may
be beneficial for classification. A downsampled version of the input
image is generally iterated through to enhance the receptive field while
still maintaining image size constraints. Consequently, spatial resolu-
tion diminishes as a result of this approach. Therefore, segmentation
performance from an input patch image is deemed challenging due to
the trade-off between the extent of the field of vision and the resolution
of the input image.

Even though the number of papers about machine learning (ML)
methods used in CAD systems is growing, there are no many papers
about detecting and classifying colorectal lesions from WSI at the same
time. This puts colorectal cancer (CRC) behind diseases like breast and
prostate cancer.

Despite the limited number of publications on colorectal WSI diag-
nosis, there are a variety of different articles focusing on CRC classi-
fication, leveraging information from smaller tissue patches that may
be used as the foundation for comprehensive diagnostic methods. The
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Fig. 1. Histology images show various complex Histopathological structures. As a result, developing learning algorithms for WSI presents unique challenges. WSI’s huge gigapixel
images constrained CNNs to widen their local bias. (a) different patches of colorectal cancer at stages T3 and T4. (b) H&E stained tissue from different organs with multiple nuclei
scattered throughout the patch.
algorithms used to handle medical imaging tasks were based on math-
ematical models built by hand by subject matter experts. The convo-
lution operator has long been dominant in the image processing field.
Convolutional Neural Networks (CNNs) represent complicated images
by stacking convolutional layers. With encoder–decoder architecture,
CNNs can be used for semantic segmentation (Hussain et al., 2021;
Ronneberger, Fischer, & Brox, 2015). However, these models lack a
global understanding of local features. Several attempts to construct
long-range associations by fusing intermediate features or employing
a dilated convolutional kernel (Chen, Papandreou, Schroff, & Adam,
2017; Kushnure & Talbar, 2021; Zhou, Siddiquee, Tajbakhsh, & Liang,
2018). The use of CNNs for CRC diagnosis has been explored in the lit-
erature with varying degrees of detail. For instance, Iizuka et al. (2020)
proposed a network based on the Inception-v3 model to classify H&E
colorectal WSI into non-neoplastic, adenoma, and adenocarcinoma. A
slide is divided into patches and classified using the network. Then,
all patches are aggregated using an RNN to arrive at a final diagnosis.
Song et al. (2020) produced an approach for segmenting colorectal
adenomas using a modified DeepLab-v2 network. They introduced a
series of skip connections that combine the upsampled lower layers
with the higher layers. These results show impressive accuracy and
high potential, yet they still suffer from shortcomings that need to
be addressed. In medical imaging, image-processing experts have long
tried to accommodate many of the challenging aspects that an image-
processing pipeline encounters when images from the medical domain
are the target. These include pre-training strategies to allow for the
best transfer of knowledge to specific loss functions to supervise the
boundaries of cells in an input image. CNNs still remain applicable
to a subset of medical imaging where there is an availability of large
labelled datasets. Moreover, CNN-based techniques are typically more
difficult to interpret and frequently serve as ‘‘black box’’ solutions.
Therefore, the medical imaging community has increased its efforts to
combine the capabilities of hand-crafted and CNNs-based approaches,
resulting in information-guided CNNs models. These efforts still fail to
establish global structure relationships, which are critical for medical
image segmentation.

Attention models have been widely used in a variety of domains
in recent years, including image processing, speech recognition, and
natural language processing. The primary idea behind the attention
mechanism is to teach the network how to dismiss irrelevant informa-
tion while focusing on vital information. The advances made possible
by the attention mechanism enable neural networks to focus on im-
portant input features by leveraging their feature representations and
2

focusing on task-relevant features. Additionally, by examining the at-
tention maps, they enable us to interpret the world as seen by the neural
network. Due to the widespread popularity of the attention mechanism,
current research has focused on ways to improve its utilisation. The
primary objective of attention is to locate features in images using
an additional layer of weights that change the current representation.
Then, through the process of learning, a neural network can determine
which regions of the image demand attention. Numerous models have
effectively improved performance by utilising this mechanism in a vari-
ety of ways. As an example of attention models, Attention U-net (Oktay,
Schlemper, et al., 2018) introduced the incorporation of attention gates
(AGs) to overcome the lack of global information. These gates can
generate soft attention that suppresses irrelevant areas in the feature
maps and focus on the salient features that are helpful to the task.
Their light computational cost and ability to improve the sensitivity and
accuracy of the model make them a useful addition to any model for
dense label prediction. Yang and Yang (2023) recently showed a fusion
of a CNN and Swin transformer model combined in a pyramid network
for breast lesion segmentation. They designed an interactive channel
mechanism to fuse the features from CNN layer and transformer layer,
focusing only on the tumour-related regions and assigning high weights
to these features. Their approach showed high boundary detection of
breast lesions and high segmentation performance.

While several recent approaches have attempted to bridge the gap
between local feature modelling and global context awareness in a
variety of ways, the primary pitfalls that such models fall into are either
an extension in the complexity dimension or a decrease in performance.
When applied to the healthcare system, the major purpose of these
models is to aid in the efficient and successful diagnosis of the target
region. Models will need to be simple in architecture and very accurate
in order to provide meaningful help to medical practitioners.

To alleviate the insufficiency of CNNs in global context modelling,
this work offers a novel transformer-based model for the segmen-
tation of histopathological structures in colon images, termed Swin
Transformer with Cascaded UPsampling (SwinCup), to address the
limitations of CNNs in global context modelling. SwinCup was designed
to encode multi-scale global information while also incorporating a
self-attention mechanism to handle the significant visual diversity of
Histopathological features in colon images. SwinCup’s encoder–decoder
architecture is based on Swin Transformers and includes a cascaded
upsampling decoder. We illustrate the performance of the model on
two histology datasets as well as the effects of training on similar prob-
lem domains. SwinCup outperformed the state-of-the-art in segmenting



Expert Systems With Applications 216 (2023) 119452U. Zidan et al.

v
e
f
t
s

2

e
i
S
t
b
c

i
a
t
s
t
t
a
m
K
p
c
d
e
d
b
t
i
c
a
i
G
v
r
l
b
o

f
T
p

Histopathological structures, thanks to the global context represented
by our model. In addition, we investigate the effects of supervised and
self-supervised pipelines on the model’s segmentation performance. We
demonstrate an improvement in performance compared to previous
supervised approaches, demonstrating the ability and performance of
extracting labels to supervise self-supervision techniques and the im-
portance of having pseudo labels during the self-supervision process.
In summary, our main contributions are as follows:

• We build a Swin Transformer encoder block to model the global
context of tumour-related regions

• We design a cascaded upsampler that utilises the supervised
multi-scale features from the encoder to aid in the detection of
the boundary of the tumour region

• We study the effects of different pre-training recipes and their
effects on transformer-based methods using test downstream his-
tology datasets.

• We demonstrate a modified self-supervised pipeline for training
on WSI data

The paper is organised as follows: Section 2 discusses current ad-
ances in medical image analysis. Section 3 details the approaches
mployed, with a particular emphasis on the framework established
or colorectal cancer segmentation. Finally, Sections 4 and 5 present
he findings of this work, followed by a description of both the self-
upervised and fully supervised pipelines.

. Related work

Before the introduction of deep learning-based techniques, hand-
ngineered filers were used to segment and aggregate information from
mages. These techniques have shown great results (Dash et al., 2022;
ubhan et al., 2022) yet are error-prone, time consuming and difficult
o build with new or different datasets. Transformers have recently
een able to challenge the state-of-the-art methodology of utilising
onvolutional layers to achieve the highest accuracy.

The Transformer architecture (Vaswani et al., 2017), which was
nitially used for natural language processing (NLP) tasks, has recently
ttracted considerable interest in the field of computer vision. An au-
omatic cancer diagnosis is vitally important for physicians. Despite its
ignificance, it is a particularly difficult task because of the lack of con-
rast between tumour and healthy tissues and the varying shape of the
umour during its progression. With the progress of imaging technology
nd machine learning algorithms, however, automatic diagnosis of
alignant regions has become more practical. ViT (Dosovitskiy, Beyer,
olesnikov, et al., 2021) models are especially well-suited for image
rocessing due to their capacity to capture global relationships and dis-
riminate numerous organs. Transformer-based network architectures
esigned for vision applications require extensive training data to be
ffective. In contrast to datasets for visual applications, the amount of
ata samples for medical imaging is significantly smaller. Studies have
een made to utilise the locality of CNNs and the global awareness of
ransformers, leading to hybrid models. TransUNet (Chen et al., 2021)
s one of the first transformer-based medical image segmentation ar-
hitectures proposed. The encoder employs a CNN-Transformer hybrid
rchitecture, with numerous upsampling layers in the decoder provid-
ng the final segmentation mask. Other models such as nnformer (Zhou,
uo, & Zhang, 2021) utilised a mix of two intertwined stems of con-
olution and self-attention to capitalise on the capabilities of both. By
eversing the order of the convolutional embedding and transformer
ayers, they can exploit a low-level, high-resolution embedding created
y a convolutional block and the long-range dependencies of high-level
bjects created by a transformer block.

TransBTS (Wang et al., 2021) is another attempt to exploit Trans-
ormer in 3D CNNs to aid in MRI brain tumour segmentation. The
ransBTS model utilised a CNN as a feature extractor as a downsam-
ling block that results in compact volumetric feature maps. These
3

features capture a local context in the volume. A transformer block pro-
cesses the features as tokens for global feature modelling. Combining
the capabilities of Transformers and CNNs, hybrid architecture-based
techniques adequately represent the global context and capture local
information for precise segmentation. Although TransBTS is among
the state-of-the-art transformer-based models, a direct comparison with
SwinCup is not possible since TransBTS has been designed to segment
3D images.

Other methods process the input image information at one scale
only and have seen widespread applications in medical imaging. For
instance, a Transformer based network architecture has been proposed
in Valanarasu, Oza, Hacihaliloglu, and Patel (2021), where Gated-Axial
attention is used to train the model effectively on medical images.
The authors propose parallel branches where each branch operates in
a different context. Local patches can be attended to using a deeper
branch while the global features can be captured using another branch.
The Medical Transformer (MedT) utilities gated axial self-attention in
the encoder for medical image segmentation without the need for pre-
training. A key modification to the self-attention mechanism is the use
of gates in the attention module to allow it to decide whether the
learned positional encoding is informative about the current task based
on how much data is available. The authors’ two-branch approach
processes images both on a local and global scale which intuitively
mirrors a pathologist’s workflow. The trade-off here lies in the model’s
requirement of a larger set of data to train it from scratch and given the
large sizes of histological images, feeding it as an input to this network
will prove difficult due to the huge overhead needed to downscale large
resolution images to the required image size for this model.

2.1. Swin transformer

Vision transformer (ViT) (Dosovitskiy et al., 2021), while novel
and versatile, suffers from two setbacks. Visual entities vary greatly
across different scenes, leading to inconsistent performance. It also
introduces quadratic complexity as the image resolution increases, as
does the complexity of the model. Therefore, benefiting from a design
that has worked for ages, authors of the Swin Transformer (Liu, Lin,
Cao, et al., 2021) fitted the transformer block into the familiar deep
CNNs architecture. The Swin Transformer proposes non-overlapping
windows and a hierarchical architecture as an attempt to tackle the
issues with the original ViT transformer.

Similarly to the beginning of ViT, the image is split into non-
overlapping patches and embedded through a patch embedding layer.
With 4 stages, the input resolution is downsampled at each stage and
the number of patches inside each window is increased to form a
hierarchical design, a mechanism that adds locality to the attention
mechanism. To allow for global feature interaction, the windows are
shifted at each transformer block, maintaining a context of the whole
image. Moreover, the hierarchy allows the model to gain a better
receptive field the deeper the depth of the network.

By iterating through the image on different, downsampled, scales
and applying self-attention on local windows, the authors were able
to model images in a similar style that convolutions do. Furthermore,
Shifted Windowed Multi-headed Self-attention (SW-MSA) allows for
local window interaction, giving the model both local attention to
fine-grained features and global contextual awareness of the whole
image.

DS-TransUNet (Lin et al., 2022) improved Swin-UNet (Cao et al.,
2021) by adding an additional encoder to accommodate multi-scale in-
puts and introducing a fusion module to efficiently construct global de-
pendencies between features of multiple scales using the self-attention
method.

Swin Transformer model approaches the image problem from a
different point of view than usual CNNs by working from ‘outside-to-
inside’, capturing the global context, and narrowing attention layer by
layer to capture the fine details. These contributions produce models
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that work well on medical images, specifically histology images. A
sub-domain where the pathologists usually start the examination by
viewing slides globally and zooming in for details on the cellular level.

Hybrid architecture-based approaches (Chen et al., 2021; Lin et al.,
2022; Yang & Yang, 2023) combine the strengths of transformers and
CNNs to effectively model global context and capture local features
for accurate segmentation. Yan et al. (2022) propose an Axial Fusion
Transformer UNet (AFTer-UNet) that contains a computationally effi-
cient axial fusion layer between the encoder and decoder. Zhou, Guo,
and Zhang (2021) proposed nnFormer which surpasses Swin-UNet by
over 7% (dice score) on the Synapse dataset (Landman et al., 2015).
They interleaved convolutional layers with transformer layers in one
encoder, fusing features at each block.

3. Methodology

Attention mechanisms have been utilised in many ways over the
past few years, but recently, transformers are new neural network
architectures that heavily rely on the concept of attention, specifically
self-attention. A transformer layer contains a self-attention module and
a feed-forward network. Each input token is multiplied by three weight
matrices to produce the Query (𝑞), Key (𝑘), and Value (𝑣) vectors. By
taking the dot product of the query and the key vectors we attend the
query vector to each feature in the key vector. We divide by the square
root of the embedding dimension (C) and then apply a softmax layer.
The result is a probability representing each token’s contribution to the
current token. The final step is to multiply the softmax result by the
Value vector to get the new token representation. Thus, self-attention
can be formulated as:

𝑆𝐴(𝑞.𝑘, 𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞 ⋅ 𝑘𝑇
√

𝑑𝑘
)𝑣 (1)

where
√

𝑑𝑘 is the dimensionality of the query/key–value sequence.
ultiple heads of attention project the current embedding differently,

esulting in distinct representations of the image, each with a unique
ttention result. This is done using by dividing the input sequence
nto different sub-groups, and performing attention operations on each
ub-group. This multi-headed attention mechanism allows for global
ontext between distinct features of the input sequence, as a result of
he continual interaction between tokens. One issue with employing
uch a pipeline is the lack of order in the network. Before applying
ttention, transformers add a positional embedding. The model learns
pattern from these vectors that helps it determine the position of each
ord or the distance between words in a sequence.

Our framework’s initial stage includes parsing WSIs and segment-
ng them into distinct patches. The patching process is preceded by
utomatic tissue segmentation to identify where in the WSI to start
he patch extraction process. The WSI is reduced to low resolutions
nd converted to HSV colour space. A binary mask is produced for
issue areas by thresholding saturation of H&E stain. A few hyperpa-
ameters are required, most notably the size of the image patch and
he number of patches to generate. The next step begins by segmenting
ach slide’s tissue region and dividing it into several smaller patches
e.g. 256 × 256 pixels) that may be used directly as inputs to a fully

convolutional autoencoder. Our primary pre-training datasets comprise
around 250,000 images.

3.1. SwinCup architecture

The final model used in the downstream task is our proposed Swin-
Cup model consisting of a classic encoder–decoder architecture where
the main building blocks are an encoder, decoder, and skip connections.
The encoder layers are all based on the Swin Transformer layers. These
layers begin by splitting an image into small non-overlapping patches,
each size of 4 × 4. The dimension of one patch then becomes 48
(4 × 4 × 3). The patches are then passed through a linear layer to
4

Table 1
Comparison results with state-of-the-art models on colorectal cancer segmentation
datasets. Models were pre-trained using Imagenet weights. SwinCup shows great
performance in segmenting colorectal cancer from slide patches.

Dataset CRAG GLAS

Model F1 Recall Precision F1 Recall Precision

DeepLab 0.71 0.73 0.77 0.84 0.89 0.83
AttUnet 0.51 0.62 0.47 0.83 0.88 0.82
TransUnet 0.78 0.78 0.47 0.88 0.89 0.85
SwinUnet 0.67 0.63 0.63 0.79 0.71 0.71
SwinCup 0.89 0.90 0.89 0.92 0.92 0.792

project them in an arbitrary dimension (C). The standard transformer
block attends each token to all other tokens, leading to quadratic com-
plexity. However, in the Swin block of SwinCup, the flattened patches
are re-projected to an image plane and a self-attention mechanism is
applied in localised windows, each with M × M patches. This is known
as window multi-head self-attention (W-MSA) and can be computed as:

𝑧′𝑙 = W-MSA (𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1,

𝑧𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧′𝑙)) + 𝑧′𝑙
(2)

Interaction between windows through shifting windows is what
llows the features representation to be learned in a global context.
he window layout in shifted window multi-head self-attention (SW-
SA) is shifted towards the upper-left of the image. This modifies the
indow layout so that each window can be made up of several other

ub-windows while still retaining the same number of patches. The
utput of SW-MSA can be formulated as:

𝑧′𝑙+1 = W-MSA (𝐿𝑁(𝑧𝑙)) + 𝑧𝑙 ,

𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧′𝑙+1)) + 𝑧′𝑙+1
(3)

A patch merging mechanism is then used to downsample the input
y reducing the number of tokens as the network goes deeper and
ncreases the dimension of the feature maps, leading through multiple
ayers to a hierarchical feature representation. This process merges each
roup of 2 × 2 neighbouring patches followed by a linear layer on
he concatenated features. Therefore, downsampling of 2x is achieved
hrough patch merging.

The final product of the encoder is multi-level feature maps each
n a smaller resolution than the one before but richer in higher-level
eatures. These feature maps are fed into the decoder that processes
hem to get the final prediction of the network.

The decoder is a cascaded upsampler (CUP) which consists of mul-
iple upsampling steps to decode the hidden feature and get the final
egmentation mask. The decoder starts by cascading multiple upsam-
ling blocks that start with the lowest resolution feature map, up-
ampling it, and concatenating it with the coming skip concatenating
rom the encoder. Each block consists of a 2x upsampling operator,

3 × 3 convolutional layer, and a ReLU layer. Similarly to U-Net,
e concatenate the decoder’s features with a skip connection. Using
NNs, the cascaded upsampling approach is employed to recover the
esolution from the previous layer. The encoder, for example, produces
eature maps with the dimensions 𝐻

16 × 𝑤
16 ×𝐷. Then, to attain the full

resolution, we use cascaded multiple upsampling blocks. Each block
has two 3 × 3 convolution layers, a batch normalising layer, a ReLU
layer, and a resolution of H × W as well as an upsampling layer.
The combined performance of both the encoder and decoder form
the traditional u-shaped architecture, enabling feature aggregation at
different resolution levels via skip-connections, as seen in Fig. 2.

Our framework’s last component includes running our pre-trained
backbone on downstream tasks. We conducted this test using the GlaS
and CRAG datasets. To test the effectiveness of our model on WSI
colorectal datasets, we devised two pre-training schemes. We tested
the model in a supervised fashion on the target dataset. We then
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Fig. 2. An encoder divides an input image into tokenized patches that are recombined by the transformer layers. Each level applies self-attention in distinct windows that permit
token interaction and accumulation. We employed a depth of [2, 2, 18] and a number of [4, 8, 16] attention heads. The last layer downsamples the image to fit within one
self-attention window. The final segmentation mask is constructed by upsampling feature maps in a cascaded fashion.
Fig. 3. Assuming an input size of 224 × 224 and a window size of 7 × 7. Each red square represents a window. Each window contains 49 patches. The patch merge mechanism
downsamples the image and expands the field of attention to encompass the whole image. Cyclic window-attention moves the windows each layer to allow for cross attention
between image regions.
experimented with different pre-training schemes and propose a new
modified self-supervised pipeline that beats state-of-the-art techniques,
evident in the downstream task (Table 3).

3.2. Pre-training

Self-supervised learning (SSL) is a class of unsupervised learning
that has recently gained significant attention. SSL does not require
labelled data but uses an auxiliary task to learn from unlabelled data. In
particular, we employed a self-supervised pretraining scheme to learn
from unlabelled data. We used the Swin Transformer architecture as the
backbone for our model, and we pretrained the model on unlabelled
data. We then fine-tuned the model on the downstream task of col-
orectal cancer histopathological structure segmentation. We transferred
the parameters from the online branch of the self-supervised work-
flow to the SwinCup model and evaluated the model’s performance
with and without the pre-training procedure (Table 1). Additionally,
comparisons with various self-supervised procedures were conducted.
5

We employed the swin transformer as our primary backbone in the
self-supervision pipeline. We utilise Momentum Contrast v2 (MoCo
v2) (Chen, Fan, Girshick, & He, 2020), a self-supervised learning tech-
nique that employs contrastive loss to create an embedding space
that contains many augmented representations of the same image. A
batch of augmented tiles is processed by two encoders. The contrastive
loss then brings adjacent pairs of matching tiles closer together and
separates adjacent pairs of differing tiles. Only the first of these two
encoders are used to back-propagate gradients. The second encoder’s
weights are updated using an exponential moving average (EMA) of
the weights of the first encoder. We modified the loss function to take
into account the generated labels from the previous step. These labels
allow the model to recognise that some samples outside the current
image are of the same class and thus have to be mapped to a similar
location in the embedding space. The original MoCo implementation
lacks this aspect, as it assumes all data points in training are separate
objects and need to be mapped separately. In Histopathology data,
however, this assumption does not apply as different non-adjacent
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Fig. 4. An overview of the framework for pre-training models for histopathology images. The pre-training datasets used in this work are formed of large H&E stained slides which
are used as initial training. The pipeline begins with acquiring WSI data and extracting patches. Then a clustering algorithm is applied to generate pseudo labels that are then fed
into a self-supervised training process (pre-training phase). The downstream task begins with the pre-trained weights and fine-tunes them based on the new data.
patches can look different but be classified under the same class. To
accommodate for this limitation, our loss function takes into account
the augmented versions of the input, in addition to, a queue filled
with other representations that are of similar (positive) tiles or other
(negative) tiles. The model then learns an embedding space that has
images of the same objects in the same cluster as their positive samples
but apart from all the negative samples. (see Fig. 3).

4. Experiments

All models were implemented using the deep learning toolbox Py-
Torch (Paszke, Gross, Massa, et al., 2019), and all experiments were run
on a single RTX 8000 GPU with 48 GB memory. The network is trained
for 60 and 150 epochs, on GlaS and CRAG datasets, respectively, with
a batch size of 8. Adam optimisation was used with 𝛽 1 and 𝛽 2 set to
0.99. A cyclic learning rate with a maximum learning rate of 0.00001
was used to facilitate convergence. The objective function used is a
combination of Dice loss and Binary Cross-Entropy weighted equally.
During training, data augmentations were used to prevent overfitting
and improve the model’s generalisation. The following augmentations
were used: flipping, rotation, and changes in contrast and intensity, a
binary mask was the output of the network with argmax applied to get
the highest probability for each pixel.

4.1. Datasets

To evaluate the performance of our model, we utilised multiple
Histopathological microscopy image datasets, both for pre-training and
downstream testing. (see Figs. 5 and 6).
6

4.1.1. GlaS
GlaS (Sirinukunwattana, Pluim, Chen, et al., 2016) is a colon histol-

ogy dataset created as part of the MICCAI’2015 challenge to advance
automated techniques for quantifying gland morphology. It consists of
16 Histopathological slides of colorectal cancer at stage T3 or T4 from
which 165 patch images were generated. Due to the fact that each sam-
ple is processed independently in the laboratory, significant variation
in stain dispersion and tissue structures exists between subjects. The
GlaS dataset is divided into two subsets into our studies: 132 images
for training and 33 images for testing.

4.1.2. GRAG
Colorectal Adenocarcinoma Grading (CRAG) dataset contains 38

WSIs scanned with an Omnyx VL120 scanner with a pixel resolution
of 0.55 μm/pixel (20 × objective magnification). The 38 WSIs are from
different patients and are mostly of size 1512 × 1516 pixels, with the
corresponding ground truth at the instance level. During training, the
CRAG dataset (Awan et al., 2017) is split into 173 training images and
40 test images.

4.1.3. Pre-training data
During the pre-training phase, two different H&E stained datasets

were used. The PESO (Bulten et al., 2019) dataset consists of 62
prostate cancer (PCa) whole-slide images at a pixel resolution of
0.48 mu/pixels, resulting in a total of 62 slides. Since the resolution of
these slides is significantly higher than natural images, patch extraction
is performed at a resolution of 1024 × 1024 of the whole slide. This
was done to alleviate the computational cost and to have enough
training images. The final version consisted of 15,000 image patches.
We evaluate the patches based on their tissue percentage and colour
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Fig. 5. Qualitative results of the different methods used tested on CRAG dataset. Differences can be seen between the convolution-based networks and the attention Transformers.
CNNs perform well on similar-looking structures such as the ones in the first 2 rows but deteriorate as the gland shape changes dramatically. Global context-aware models can
aggregate information properly given current and further context, as seen in the SwinCup results.
Fig. 6. Qualitative results of the different methods used tested on GlaS dataset. Similar differences can be seen between the convolution-based networks and the attention
Transformers. Homogeneous gland shapes are easily captured but more complex shapes require a global awareness of the boundaries.
profile. Depending on the threshold in the algorithm, we may change
how much tissue is in the patches, giving us more control over the
number of images to generate. Tupac (Veta, Heng, et al., 2019) is
a tumour proliferation dataset consisting of 500 breast cancer cases
from The Cancer Genome Atlas. Each case is represented with one
whole-slide image and is annotated with a proliferation score based on
mitosis counting by pathologists, and a molecular proliferation score.
We randomly selected 10 WSIs from the archive and began ‘patch-
extraction’ to extract 256 × 256 patches from each slide. This resulted
in around 249 thousand patches from training.

5. Discussion

The advantage of the transformer-based neural network is that
its global self-attention mechanism enables the learning of a more
flexible attention structure. It allows models to have a more nuanced
understanding of the relationships between the tokens in the sequences
on which they are training. When one token attends to another in
the context of a specific sequence, it indicates that they are closely
7

linked and have influence on one another. The effectiveness of utilising
transformer models on medical images can be shown in the results of
the experiments presented in this study. This contributes to current
efforts to apply image transformers to the vision domain and enables
us to investigate image transformer-based modelling.

Global awareness is critical in medical image analysis. Histopathol-
ogy images contain a high degree of variability in terms of patterns,
which necessitates that models be exposed to a vast quantity of data
in order to learn parameters that are invariant to subtle changes and
more aware of the general structure of objects in the image. Individual
cells may not reflect a great deal of information, but when grouped
together, they can highlight a more general pattern that is picked up
by a pathologist and given a label to describe their state.

Windowed-Multi Head Self Attention (W-MSA) solves the inherit
complexity problem in self-attention by reducing the computation to
equally sized regions in the image. This is done using two critical
aspects in Swin transformers. In the beginning, self-attention computes
attention interaction between various tokenized patches in fixed-size
windows. This method makes information aggregation more dynamic
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in specific areas and makes the attention computations linear as the
number of patches within a given window is constant. Furthermore, dy-
namically learning region-specific weights allows for greater problem-
specific adaptation. Second, sliding windows enable models to attend
to many regions simultaneously, aggregate information from other
locations on the image, and assign weights based on these aggregated
values.

To demonstrate the effectiveness of our proposed architecture on
colorectal semantic segmentation, we report results on gland segmen-
tation in Table 1. In general, SwinCup demonstrated competitive per-
formance against a mixture of convolution-based and hybrid models in
testing. Additionally, we verified our method’s efficacy on the CRAG
dataset, demonstrating overall higher performance in contrast to other
approaches and emphasising our method’s strong generalisation capac-
ity across diverse datasets. The multi-scale self-attention mechanism
iterates through the image, interacting with many windows at each
level to capture the image’s long-range patterns. Transformer-based
networks benefit from this process since they require fewer layers to
attain global context-awareness.

The purpose of attention is to accumulate information that is per-
tinent to the current point of view. Utilising such mechanisms on a
pixel-by-pixel basis provides the advantage of being aware of surround-
ing structures and their effect on the current representation. This results
in a high computational complexity, which is addressed by windowed
attention calculations. By focusing attention on a small number of win-
dows, we imitate the convolutional process and emphasise local feature
details. Shifted-window attention enables inter-window interaction, re-
inforcing the learning process with global awareness. At each step, the
windows expand to encompass a larger portion of the image, providing
a more complete perspective of the growing structures. Given that
attention is capable of estimating the convolutional kernel, SwinCup
benefits from the ability to learn local and global characteristics that
are relevant to the present task. This notion is shown in Fig. 1, where
several cellular architectures are depicted. A local context is required
to distinguish the border of the gland from other cellular structures,
while a global view is required to assess the overall shape of the gland.

Previous studies (Zeiler & Fergus, 2014) have demonstrated that
features in a network have a hierarchical structure, with lower levels
capturing local characteristics such as corners or edge/colour patterns,
while higher layers tend to capture more complicated patterns that
can an object or parts of an object. Although the use of high-level
features can help identify glands and other cellular structures, it does
not contribute much to low-level attributes such as texture.

Fig. 5 shows qualitative results of the test set in the CRAG data set. A
notable difference is seen in the DeepLab network as it performs well
on the similar-looking structures such as the ones in the first 2 rows
but deteriorates as the gland shape changes dramatically. This supports
the notion that a more global context-aware model can aggregate
information properly given the current and further context.

To confirm the effectiveness of our model, we used the Paired t-test
as a statistical significance assessment to determine if there is a sta-
tistically significant difference between the test results obtained before
and after the application of our model. The paired t-test determines
the significance of the difference between two populations when the
distribution of the differences between the samples is not normal. In
the first test dataset (CRAG), a 𝑝-value of 0.0101 was obtained in the F1
metric, a 𝑝-value of 0.0066 in the recall metric, and a 𝑝-value of 0.0129
in the precision metric. Furthermore, we observed a 𝑝-value of 0.0026
in F1, a recall 𝑝-value of 0.0195, and a precision 𝑝-value of 0.0012 in
the GLAS dataset. All reported 𝑝-values are less than 0.05, indicating
that we reject the null hypothesis. This indicates that the true mean
of the test findings between the two populations is not equivalent. In
other words, SwinCup significantly increases the effectiveness of the
8

underlying model.
Table 2
Downstream results of the self supervised pipeline. Multiple Histopathology datasets
were used to examine the impact of the size of data in pre-training on the downstream
CRAG dataset.

Dataset Dice Precision F1 Recall #Classes

ImageNet (200) 0.76 0.86 0.85 0.84 200
Medmnist (32k) 0.71 0.83 0.81 0.80 91
Medmnist (290k) 0.71 0.82 0.81 0.79 91
ImageNet 0.69 0.82 0.80 0.79 1000
TUPAC 0.69 0.82 0.80 0.78 4
PESO 0.67 0.81 0.79 0.77 3
Medmnist (15k) 0.67 0.80 0.78 0.76 15

Table 3
Comparing SwinCup performance when pre-trained using other self-supervised pipelines
and the proposed pipelines in Section 3.2. Our proposed pipeline shows great
improvements owing to the modified loss function and model architecture.

Model GLAS CRAG

F1 Recall Precision F1 Recall Precision

Byol 0.58 0.65 0.74 0.61 0.64 0.73
Random 0.60 0.67 0.60 0.60 0.66 0.60
MOCO V2 0.75 .78 0.80 0.75 0.76 0.79
SimCLR 0.74 0.75 0.81 0.74 0.75 0.80
SwinCup 0.77 0.77 0.82 0.77 0.80 0.81

5.1. Supervised pre-training on similar data

Table 4 demonstrates the effects of pre-training pipeline layout in
Fig. 4. Using weights from a model trained on the ADE20k dataset
gives a performance boost (20%) compared to random initialisation
(71%), although the ADE20k dataset is a scene parsing dataset that has
been highly annotated (Table 4). Despite the fact that these weights are
learned from a completely different application area with drastically
different patterns than histology, it performs fairly well when compared
to the random initialisation. This supports the notion that more fine-
grained datasets lead the model to develop a diverse array of feature
extractors that can transfer to other tasks. Furthermore, this is also
supported when high modality similarity between the pre-training
and target datasets exist, which is the case with the PESO dataset
(92%) (Taher, Haghighi, Feng, Gotway, & Liang, 2021; Wen, Chen,
Deng, & Zhou, 2021).

5.2. Self-supervising swin transformers

To show the efficacy of our self-supervised pipeline, we pre-trained
various swin transformer models on the PESO and TUPAC dataset and
evaluated performance on a downstream task of colorectal semantic
segmentation (Table 3). The transformer model is trained during pre-
training to map matching inputs to the same space in the embedding
dimension. The mechanism through which this mapping occurs varies
among all evaluated frameworks. This enables us to evaluate the abil-
ity of various mapping mechanisms and determine if the addition of
pseudo labels improves the pre-training process.

Table 3 shows the average results from cross-validation runs on all
pre-trained models on the CRAG dataset. We see an improvement in
using our pseudo-labels in the pre-training manifest in the downstream
task. Other self-supervised pipelines rely on mapping single images and
their augmentation to the same representation.

Self-supervision enables the ability to learn low-level task-agnostic
features that can be easily adapted to multiple tasks without requiring
large amounts of annotations. Even though compared to supervised
techniques self-supervision does not fair well, we hypothesise that
this is due to the directly learned high-level features, in supervised
pipelines, that are more domain-specific.

Fine-grained datasets have been shown to aid self-supervised pipe-
lines in learning more adaptable parameters. The key differentiating
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Fig. 7. Self-supervised pre-training on multiple medical image datasets of different sizes compared to ImageNet. Generally, ImageNet pre-training is still the best option but, as
seen above, the full ImageNet can be a deterrent to performance. This can be due to the very high number of classes making the transferable weights outside of the downstream
task domain.
Table 4
A summary of the effects of different pre-training datasets in the supervised pipeline.
Downstream GlaS data.

Pre-training dataset F1 Recall Precision

None 0.71 0.74 0.78
ADE20K 0.89 0.9 0.9
PESO 0.92 0.92 0.92

aspect between histology images and natural images, such as the ones
in ImageNet, is the variability in the ‘scene’ in which common objects
are found in the image. While natural images are composed of different
objects interacting together with various coarse details apparent in
the images that make the boundaries between objects more clear,
medical images emphasise a more subtle pattern behaviour where
visual differences between subordinate classes are often subtle and
deeply embedded within local discriminative parts. These patterns are
usually small and coupled with local variations in texture which is
what a pathologist is trained to recognise. These subtle patterns make it
harder for the model to recognise without enough exposure to diverse
datasets that allow the model the ability to learn descriptive feature
extractors that can detect more diverse and subtle patterns. We can see
an improvement in performance with more diverse data added. Fig. 7
illustrates the performance changes when changing the pre-training
dataset. ImagNet still remains the most impactful on results when
fine-tuning the model. We can also report that more diverse medical
data improve performance, with more classes contributing mainly to
the difference in performance. The full ImageNet dataset contains
1K+ classes and performs worse than the 200-class counterpart. This
suggests a cutoff threshold where too much out-of-domain data can
result in ‘over-fit’ features that do not contribute to the downstream
task.

5.3. Ablation study

During the process of this study different decoders were tested to
evaluate the feature aggregation of the Swin transformer extracted
features. Table 5 shows a summary of different decoders experimented
with.
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Table 5
A summary of the effect of different decoders used with the Swin Transformer encoder.
Tested on GlaS datasets.

Model F1 Recall Precision

SwinCup w/UpperNet 0.83 0.84 0.85
SwinCup w/Cup 0.90 0.91 0.89

5.3.1. UPerNet decoder
UpperNet head is designed based on a Feature Pyramid Network

(FPN) (Lin, Dollar, Girshick, et al., 2017), which exploits a top-down
architecture to extract multi-level feature representations in an inherent
and pyramidal hierarchy. The FPN module has shown great perfor-
mance in scene-parsing datasets yet when it comes to medical image
segmentation, it seems that the complexity of the module hinders its
performance.

5.3.2. Cascaded UPsampler
The efficiency of cascaded upsampler is remarkable given its sim-

plicity, with feature maps simply being upsampled through bilinear in-
terpolation rather than time-consuming deconvolution or transformer-
based modules that add additional computational complexity. Its ef-
fectiveness and simplicity inspired this design for SwinCup. Using
the cascaded upsampler boosts the performance by 2% over the FPN
module.

5.3.3. Size of pre-training data
Table 2 shows the results of self-supervised pre-training on different

datasets and their effect on the downstream task. We observe an in-
crease in performance when using diverse datasets (such as ImageNet).
MedMnist (Yang et al., 2021) also demonstrates an advantage over
pure histology datasets (PESO & TUPAC). This is in line with work
in literature (Wen et al., 2021) where more fine-grained data sets in
the pre-training allow more transferable weights to be learned by the
model.

These results illustrate a narrowing gap between self-supervised and
supervised learning. It remains to be seen what effects these modifica-
tions will have on other medical domains and modalities. There is an
obvious limitation here due to domain gabs and a difference in input
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data configurations such as CT. Thus, this remains a potential direction
that can be studied in the future.

5.4. Conclusion

Medical tasks are accompanied by a lack of huge amounts of la-
belled data, due to the expensive nature of such endeavours. Ma-
chine learning pipelines that can harness other resources to allow
for a more robust implementation in a clinical workflow are essen-
tial. This work attempts to bridge the gap between the clinical and
technical world of machine learning by presenting a framework for
training transformer-based models on challenging medical datasets.
In this work, we present SwinCup, a hierarchical Swin Transformer
encoder–decoder-based pipeline for histological Structures Segmenta-
tion in colorectal cancer. We demonstrate the effect of a global context
approach to medical images and emphasise the impact of pre-training
on similar domains for pathology-related problems. Experiments on
colorectal slide images show that SwinCup outperforms other state-of-
the-art methods in gland segmentation. The simple cascaded decoder
used in this work demonstrates the effective results of hierarchical
feature extraction derived from self-attention in the medical domain.
In our experiments, we show how self-supervised learning boosts per-
formance by 20% compared to random initialisation without a need
for expert labelling. In-domain pre-training (92%) has been found to
give better results compared to out-of-domain pre-training (89%). It
should be noted that the models developed in this study can be easily
extended to other medical datasets and will be left for future work
to investigate the implementation of SwinCup in different modalities.
SwinCup provides a framework that integrates multi-level local features
with global awareness of the learned structures. The experimental
results and performance on the test datasets demonstrate the model’s
performance. This methodology helps medical practitioners diagnose
target locations in a quick and accurate manner. By applying the model
in both supervised and self-supervised pipelines, we also demonstrate
a recently developed direction in the literature on learning techniques.
In conclusion, we presented a model capable of learning distinctive
characteristics from histological slides with great performance and
efficient architecture. Furthermore, we introduced a modification to
the learning strategy that pushes self-supervised learning closer to
supervised learning performance.
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