
Detection of JavaScript Injection Eavesdropping on
WebRTC communications

Ahmed Osman, Raouf Abozariba, A. Taufiq Asyhari, Adel Aneiba, M. Ben Farah,
School of Computing and Digital Technology, Birmingham City University, UK

E-mail: {ahmed.osman, raouf.abozariba, taufiq.asyhari, adel.aneiba, mohamed.benfarah}@bcu.ac.uk

Abstract—WebRTC is a Google-developed project that allows
users to communicate directly. It is an open-source tool supported
by all major browsers. Since it does not require additional
installation steps and provides ultra-low latency streaming, smart
city and social network applications such as WhatsApp, Facebook
Messenger, and Snapchat use it as the underlying technology on
the client-side both on desktop browsers and mobile apps. While
the open-source tool is deemed to be secure and despite years
of research and security testing, there are still vulnerabilities in
the real-time communication application programming interface
(API). We show in this paper how eavesdropping can be en-
abled by exploiting weaknesses and loopholes found in official
WebRTC specifications. We demonstrate through real-world
implementation how an eavesdropper can intercept WebRTC
video calls by installing a malicious code onto the WebRTC
webserver. Furthermore, we identify and discuss several, easy
to perform, ways to detect wiretapping. Our evaluation shows
that several indicators within webrtc-internals API traces can be
used to detect anomalous activities, without the need for network
monitoring tools.

Index Terms—WebRTC, XSS, SSH.

I. INTRODUCTION

Web real-time communication is a set of protocols and
APIs that enable real-time communication over peer-to-peer
connections. In 2012, google released a browser-based We-
bRTC to allow video conferencing, file transfer, and screen
sharing without the need to install external applications or
plugins on the browser [1]. Since the inception of WebRTC,
adoption in the tech community has increased dramatically.
Google, Facebook, and Amazon are among larger technology
companies that utilize WebRTC as the underlying technology
in their products and services [2]. Furthermore, because this
technology is an open-source tool, anyone can leverage it.
Many university lectures, business meetings, and social events
take place online, largely thanks to WebRTC-enabled browsers
technology [3]. Thanks to its offered ultra-low latency stream-
ing, WebRTC enables many applications and use cases in the
smart city ecosystem as it does not only facilitate surveillance
tasks and video calls, but various machine learning tools,
essential for many detection solutions [4]. For example, smart
city applications use WebRTC for transmitting videos to cloud
servers where ML algorithms perform detection tasks [5].
An increasing number of these applications use simplified
versions of WebRTC by developers, which increases the risk
of exposure of vulnerable users, leading to the need for further
studies and analysis. Confidentiality violations through covert

channels and IP leaks were discussed in [6]. A description of
end-to-end WebRTC security is given-in [7]. Many mitigation
strategies were developed to tackle various threat models but
eavesdropping threats remain largely understudied, both from
theoretical and practical standpoints.

WebRTC-based applications can run through peer-to-peer
communication and without intermedia servers [8]. However,
often these applications will require WebRTC servers for many
reasons. For example, when using WebRTC for many-to-many
communication, the caller needs to know where to find the
callee to create a connection, and this is where the signalling
server is required. The signalling server sits in the middle of
both peers, and it allows them to exchange session description
protocol (SDP), a block of text that will enable the peers
to establish a connection [9]. After this exchange, peers will
know how to find each other and communicate without an
intermedia server.

WebRTC’s servers can be compromised like any other server
through code injection [10]. For example, law enforcement
or sophisticated hackers could attack the server or hire an
insider in the host company, gaining access to the source code
and injecting a malicious file that will allow them to create
undetectable connections.

This study shows how one can intercept WebRTC communi-
cations. In our solution, the eavesdropper joins the intercepted
call as a hidden third party when a WebRTC session is
initiated through the webserver. Our attack model allows the
eavesdropper to intercept without access to customers’ end
devices, which are harder to break into [11]. We use a standard
unmodified WebRTC platform to implement our interception
approach [12]. We exploit a loophole in the WebRTC specifi-
cation, which allows us to set up a second connection to the
eavesdropper (Eve) and duplicate the stream of user 1 (Alice)
and user 2 (Bob), before sending it to Eve [13]. This paper’s
eavesdropping technique is based on unsolicited source code.
Such attacks can lead to serious consequences such as loss of
personal information and identity theft.

Many of eavesdropping attacks are unobservable through
user interfaces (web browser or android applications), offering
the opportunity to an attacker to eavesdrop on private data of
WebRTC communications without drawing attention. On the
other hand, WebRTC used in Machine-to-Machine communi-
cations on a large number of devices deployed remotely cannot
be physically observed by administrators. Moreover, WebRTC

API does not offer auto-detection of eavesdropping features
by default. Detecting the mentioned unauthorized eavesdrop-
ping requires access and examination of internal underlying
processes and mechanisms of networks and devices.

An eavesdropper detector can be an essential building block
of a secure connection. Unfortunately, to date, there has been
a limited number of methods to detect eavesdroppers listening
on WebRTC communications. Recent studies suggest the use
of sniffing tools [14]. But such passive approaches involve
monitoring network traffic and inferring outcomes based on
those observations. A limitation in monitoring tools such as
Tcpdump is that it is difficult to group and apply filters once
starting to capture traffic, making it harder to create efficient
dynamic eavesdropper detectors. Other notable problems with
these methods include the need for middleboxes to sniff
traffic, which introduces financial, power, and memory costs,
unsuitable for many low power devices such as lightweight
IoT terminals and single-board computers, commonly used in
smart city applications. Putting ourselves in users’ shoes, we
propose three low-power browser-based WebRTC eavesdrop-
per detection techniques. The key idea is based on the number
of WebRTC connections and the observation that the data-rate
of duplicated video is higher than that of unintercepted traffic.
Through experiments, we analyze these detection techniques
and provide an insight into their advantages and disadvantages.

Our main contributions are (i) developing a testbed in a
form of a attack surface to demonstrate eavesdropping on
real WebRTC communication involving two peers, enabling
extraction of valuable data (ii) and using the observations
from experiments to recommend new eavesdropping detection
methods, different from the ones proposed in the literature.

The remainder of the paper is organised as follows. Sec-
tion II details the state of the art of WebRTC. Section III
provides a rigorous assessment of the vulnerabilities within
WebRTC. Section IV presents the aim of our study while Sec-
tion V focuses on the steps of the implementation. Section VI
details our results. Conclusions and future work are drawn in
Section VII.

II. LITERATURE REVIEW

In only a few years, WebRTC became one of the most
popular video streaming tools, emerging to become a common
attack vector for hackers [15]. Many studies were published
in the area of WebRTC security and contributed greatly to the
API design [10], [16]–[18]. However, most of these studies
primarily focus on providing an overview of WebRTC security
threats without describing the implantation processes.

[10] introduced a model that allows governments to in-
tercept WebRTC communications between two clients. The
model provided in this study makes use of the client applica-
tion to duplicate invitations sent through the webserver. For
example, when Alice sends an invitation to Bob, the client
application creates another invitation using RTCPeerConnec-
tion [13] and sends it to the law enforcement agencies (LEA).
[10] discusses the model’s limitations. It explains how users
can detect interception using network monitoring tools such

as Wireshark. However, the detection method presented in
this paper has limitations. For example, while the tools are
useful for analysing network packets, they are insufficient for
analysing WebRTC packets such as Session Initiation Protocol
(SIP). There are specialised analysers that are easier to use and
can perform a comparative analysis of multiple calls to deter-
mine whether or not a WebRTC call is being eavesdropped on.
This paper presents new methods for detecting eavesdropping
on WebRTC communication using a specialised SIP analyser
that includes the Google Chrome browser as a default. The
benefits of our solution compared to the ones presented in [10]
are, (1) if the user already has the Google Chrome browser
installed, there is no need for them to install a third-party
application, (2) Since the tools we use for our detection only
focus on WebRTC packets, our solution consumes less CPU,
memory, and costs compare to other network monitoring tools.
(3) The solution we are using for detection allows further
analysis of data gathered in graphs and tables. This does not
include a lot of other network monitoring tools.

[16] discusses the threats to WebRTC components. It first
describes the powerful WebRTC security protocols such as
DTLS-SRTP and HTTPS then it explains how WebRTC is still
vulnerable to client-side and server-side attacks. For example,
the potential of WebRTC application users and servers can
be hackable with cross-site scripting (XSS). The paper then
explains the possible outcomes of these attacks, including what
data hackers can obtain and actions they can do; while they
have unauthorized access to the server.

Interceptions based on Voice over IP (VoIP) were discussed
in [18]. In this study, the authors propose various methods of
Lawful Interception based on the H.323 standard. As explained
in the paper, the benefits of those methods are scalability,
large traffic support, and flexibility to various configurations
but the quality of experience is significantly degraded. Our
method does not impact the QoE which makes it more difficult
to detect by users. In this study, we implement the model
described in [10] to perform tests and show other simple ways
this model can be detected. Furthermore, we use the attacks
mentioned in [16] to understand how to take over the client
application and install the model described in [10].

III. BACKGROUND

A. WebRTC

The two main WebRTC communication stages are (1) the
signalling stage, which uses servers to connect peers, and (2)
the communication stage, which is serverless and allows direct
video and voice chat. There are other stages in WebRTC API
(e.g., gateways, relays), however, this study focuses on simple
WebRTC architecture involving only two users and a signalling
server.
The signalling server facilitates the exchange of metadata
between end-users [19]. It uses SDP to share the configuration
between clients [19]. The signalling server can be set up using
server technologies such as WebSocket, Socket.io, and SIP.
The general process of exchanging metadata between end-
users is shown in figure 1 and explained below.

1) Alice and Bob authenticate with the signalling server and
wait for a response. If the authentication is successful,
a communication process is initiated.

2) Alice creates and sends an SPD offer to the signalling
server to communicate with Bob.

3) The signalling server receives Alice’s SPD offer and
forwards it to Bob.

4) Bob stores the SPD offer from Alice and creates SPD
Answer in response to Alice.

5) The signalling server forwards the SPD Answer from
Bob to Alice.

6) After completing the previous steps, Alice and Bob are
aware of each other’s media configuration. However,
they are still unsure of how to connect. In this step,
they exchange network information of each other (e.g.
IP addresses and ports).

7) Using the network information from the previews step,
direct communication is opened between Alice and Bob.

Fig. 1: WebRTC communication steps (simplified)

Communication stage: Following the signalling stage, the
two users begin re-validating each other. This process is
achieved by re-sending the metadata obtained from previous
signalling steps (e.g. ICE metadata) [20]. Unlike browser-
based communication where a mediaserver is required, adding
delay to the message delivery time, WebRTC is a server-
less-based system and allows nodes to communicate directly
without a server in the middle [21]. This approach eliminates
the need to send your sensitive data to another company server,
which may or may not protect it.

B. Cross-Site Scripting Attacks (XSS)

Cross-Site Scripting or XSS is a type of injecting attack
in which the attacker exploits vulnerabilities in a website to
execute malicious code on a visitor’s browser. Attackers use
XSS to force web browser interpreters from a data context to

a code context [22]. For example, if a page has HTML input
form, a hacker can use that form to enter a JavaScript code
using the ⟨script⟩ tag [23]. If the form does not filter such
tags, an attacker will be able to obtain the local and remote
stream of the victims. As shown in figure 2, a malicious third-
party JavaScript code can set up a hidden WebRTC connection
to the Eve, then duplicate the stream of Alice and Bob before
sending it to Eve. This type of attack allows the eavesdropper
to listen in on Alice and Bob’s conversations without their
knowledge.

Fig. 2: A practical XSS attack on the server-side.

There are three main types of XSS attack, reflected, Dom-
based, and stored [24]. Both reflected and Dom-based attacks
are less severe than stored attacks because they require tricking
the victim into clicking a vulnerability (e.g., link). However,
in-store attack, the hacker injects a malicious code into a
webserver through data inputs, such as chat or comment box.
Every time a user requests this data, the injected malicious
code will execute on the victim’s browser. This type of
attack is more severe because it allows the hacker to execute
malicious code without tricking the victim into clicking a
vulnerability [25].

The most common mitigation against XSS attacks is to use
a good coding practice that validates and checks inputs. For
example, if the input box asks for age, the user should only
enter numbers. If they input anything else, the server should
refuse to save the data. Another method of defending against
XXS attacks is telling the web browser that the input data
should only be viewed as data and not be interpreted in any
other way (e.g., HTML rendering) [22].

C. SSH brute force attack

A hacker can use Secure Shell (SSH) brute force attack
[26] to compromise WebRTC servers and perform actions such
as altering the data stream, cloning it, and sending it to an
invisible user in a video conference [16]. This method allows
the hacker to attempt all the combinations for a password until
he or she obtains the administration password for the server
[27].

It may seem they are unlikely to ever succeed. However,
suppose the site is not configured correctly, and a poor

password is used. In that case, many advanced programs like
John the Ripperand and Coin & Abel will increase the success
rate of brute force attacks [28], [29]. After the hacker obtains
the administration password, they can use it to log in to the
WebRTC server and edit the application source code in a
way that will enable them to duplicate calls without the user
noticing.

The most common defence against brute force attacks is to
do host level detection such as checking log files, number of
incorrect tries and SSH port [30]. New studies, such as [27],
use machine learning to detect SSH brute force attacks on
the network level. It achieves this by training a model using
24 hours of real-world network data labelled as “brute force
attack” and “not a brute force attack”. The result of this paper
shows that machine learning can successfully detected brute
force attacks with a high detection rate and a low false alarm
rate.

IV. METHODOLOGY

This study aims to demonstrate that, even though WebRTC
is a secure project, it still has some weaknesses today. To show
this, we first developed a WebRTC application that allows two
users on different laptops to communicate. Then, we place a
malicious code on the webserver, allowing an eavesdropper
to intercept calls made through it. How the malicious code is
placed on the webserver is out of the scope of this study.
However, in the background section, We discussed how a
hacker can use XSS and SSH brute force attacks to install
malicious code on a server.

Our application uses WebRTC API components to deliver
communications between users. GetUserMedia, PeerConnec-
tion, and RTCSessionDescription are some of the WebRTC
components we used. The GetUserMedia API is responsible
for providing access to the video, audio, or both from the
local devices to the peer-to-peer communication. The other
two APIs are responsible for sending and receiving media.
They also handle SDP negotiation, packet losses, and other
network problems.

Our malicious code is JavaScript code-based, and it allows
the hacker to receive media from victims while not sending
media to them. This allows the hacker to be in the video
conference but remains undetected, at least for non-expert
users. For example, when someone logs in to the site, the
GetUserMedia API accesses their camera and sends it through
the PeerConnection API. However, when a hacker logs in
as Eve, they will only get streams from the victims without
sending them on their own. This process is explained in more
detail in the following section.

V. SYSTEM IMPLEMENTATION

A. Requirements

Functional requirements: The main functional requirement
for this system is to allow users to log in using their names.
If the login name is not Eve, the GetUserMedia API should
access their camera and send it to the other users who are
already logged in. However, If the login name is Eve, the

GetUserMedia API access should not be granted, and com-
munication should be one-way (e.g. from victims to hackers).
Also, any reference to the connection made with Eve should
be removed from the victim’s dashboard.
Non-Functional Requirements: Our non-functional require-
ments include: (1) allowing up to 4 users to communicate at
the same time, (2) ensuring Eve can intercept all calls made
through the webserver, and (3) taking steps to make sure that
the overall call acts the same when intercepted and when it is
not.

B. Code implementation

Our main JavaScript code is placed on the client-side. We
use this code to establish and intercept calls between Alice
and Bob. When the home page loads, the user is prompted
to enter their login name. If the name is not Eve, a random
ID is assigned. However, if it is Eve, a static ID is issued.
Next, we grab the local video stream from all users except
Eve (Eve is an eavesdropper, so they do not need to share
their video). Once we have a successful local video stream,
we send a message to connected users, informing them that
we have joined the video conference. The following simplified
steps take place after this.

Alice will send an invitation to Bob. However, instead of
only sending one invite to bob, our malicious code sends two
invites, one to Bob and the other one to Eve. When Bob
receives the invitation from Alice, he will create a response
to Alice’s offer while simultaneously inviting Eve. When Eve
receives both of Alice’s and Bob’s offers, it confirms and sends
responses without including her video stream. Following this,
the video conference begins, and Eve joins as a hidden user.

C. System components

The core components of the proposed system are the sig-
nalling server and webserver.
Signalling server: To initialize a new WebRTC connection,
a handshake or signalling process is required. During this
phase, nodes exchange connection information to reach each
other. During the call setup, Alice, Bob, and Eve share through
signalling server the SDP offer, SDP answer, and Interactive
Connectivity Establishment (ICE) candidates. These messages
are exchanged in plain text and can be sent using any transport
protocol. WebSocket was chosen for this study since it is faster
than HTTPS [31]. Another reason we pick WebSocket is that
it enables us to send data to users without them requesting it.
This is important for WebRTC applications because the client
needs to know quickly when a change in WebRTC session
information occurs. The connecting steps are described in [17].
Webserver: The webserver frontend comprises JavaScript,
HTML, and CSS, while Node.js host the backend with Ex-
press. The primary function of the webserver is to enable
WebRTC communication. However, it also used to allow Eve
to intercept calls made through this server. For example, the
source code allows users to communicate without hidden users
in the call. When the source code is replaced with a malicious
code, calls made through this server are duplicated.

Fig. 3: Example of system user interface for both interceptor and victims.

Our WebRTC interception technique assumes that this
server is unsolicited. If steps are taken to check the source
code, an experienced programmer will notice that there is
malicious code that is duplicating the calls. To avoid this, we
take steps such as placing the malicious code in a hidden folder
rather than inside the source code file. The HTML file is then
linked to the malicious code file instead of the source code
file. This reduces the likelihood of detection, but it can still
be detected if the programmer takes a careful look at HTML
file script links, as we will show later.

D. System interface

We use a node.js signalling server to implement a simple
WebRTC application. We started with this application to allow
users to perform real-time communication, such as video
and audio conferencing. After achieving this, we investigated
whether we could hack the calls made through this application
without the users knowing. Figure 3a shows the user interface,
which includes a local and remote video stream. The local
stream is the user’s camera, while the remote stream is the
person the user is communicating with. As more users join
the call, there will be more remote streams. In this study, we
only use two peers per connection.

Figures 3b and 3c show the eavesdropper’s interface. Figure
3b shows a case where no call is made through the server. In
this situation, the eavesdropper interface will be empty, and
no streams will be sent from victims. However, as soon as
someone makes a call, the eavesdropper receives the stream
of that call (Figure 3c). The user interface does not provide
indications to the users that their call is being listened to by
another user.

VI. RESULTS AND DISCUSSION

A. Number of active connections

Our malicious code allows us to duplicate every invitation
sent through the client application. For example, when Alice
sends an invitation to Bob, our malicious code creates another
invite and sends it to Eve, thereby creating a hidden connec-
tion. An experienced user can detect this leak by looking at
how many WebRTC connections are created in the call. There
are several ways a user can achieve this. As described in [10],
network mentoring tools such as Wireshark can be used to
find the hidden connection. However, these tools do not come
as default, and they require a user to download it before they
can use it. Also, they demand more CPU and memory while
monitoring the network.

In this paper, we show easy to perform and accurate meth-
ods for detecting a hidden WebRTC connection. We explore
webrtc-internals, which is built-in API. It can simply be
accessed by opening up a new tab and entering the following
protocol and URL (chrome://webrtc-internals). If Alice uses
this tool while communicating with Bob and her call is not
intercepted, this tool will show her that only one connection
has been created, which is from Alice to Bob (figure 4a).
However, if her call is intercepted with the malicious code,
there will be two connections: one to Bob and the other one to
Eve (figure 4b). This method is only useful when the number
of connections is known to the user a priory. In situations
where there are many peers on the link, with users entering
and leaving the call, the number of legitimate users can not
be an indication of eavesdropping activity. Furthermore, this
tool is only available in the Chrome browser; Firefox has a
similar tool [32], but it is not as detailed as webrtc-internals.

Fig. 4: WebRTC peer connection indicator.

B. SDP offer
As explained in the background section, every time a new

user joins a call, an SDP offer and answer is exchanged
between them and other users on the call. In this test, we
investigate how a victim might detect eavesdropping activities
by looking at how many SDP offers are sent over the network.
Our results show that if the victim observes WebRTC-internals
tool, they will see how they are sending more SDP offers
than they are supposed to. For example, suppose they are just
calling one person; instead of sending one offer to that person
(fig. 5), they will see how they are sending another one to
a hidden user (fig. 6). Again, this detection method is not
valid when there are numerous peers on the link with users
randomly entering and leaving the call.

C. Source code
According to our results, a user can detect eavesdropping

by right-clicking the page and selecting the Inspect option.

Fig. 5: An example of an SDP offer without malicious code.

Fig. 6: An example of an SDP offer with malicious code,
presenting two simultaneous offers.

This will enable them to see the HTML and JavaScript code
that makes up the page, and if experienced, they will be
able to differentiate the malicious JavaScript code from the
source code JavaScript. For example, they will notice how
the localUID2 variable creates a new user statically every
time a user logs in. They will also notice an if statement
that sends the stream of one user (the victims) but does not
send the stream of the other user (the eavesdropper). As we
explained in the System components subsection, steps such as
separating the malicious and source code can help to reduce
the detection of the malicious code. However, the malicious
code must be linked to the source code through script links,
which can be used to detect the malicious code. Snippet of
the malicious code is shown figure 7.

D. Video Bit-rate

An expert user can detect the existence of eavesdropping by
looking at how much data is sent. Using the webrtc-internals,
we can compare the bitrate with and without the malicious
code. According to our results, when two users communicate
around 5 minutes without the malicious code, the total bitrate
sent was 472,041 Kbits, with an average of 1,627 Kbits per
second. During the same period, when the interception was
used, this increased to 966,184 Kbits total and 3,233 Kbits
per second average. As shown in figure 8, when the malicious
code is not used, only one outbound connection is made to the
other person, i.e., from victim to User1 (see Fig.8a). However,
if the malicious code is used, two outgoing connections are
created (cf. Fig.8b): one connection is from victim to User1;
and the other connection is to eavesdropper. While other
factors such as video quality links can increase and decrease
the bitrate, machine learning tools with labeling services such
as VirusTotal, utilizing historical data, can be used to detect

function start(){
localUID = createUID();
localUID2= "398472984729847284"}
........
if(localDisplayName == "Eve"){
localluid = localuuid2
var remove div =

document.getElementById("localVid↪→

eocontainer");
remove div.remove();
}
.........
if(localuuid == localuuid2){
} else{
peerConnections

(peerluid).pc.addStream(localStream);↪→

}

Fig. 7: Snippet of the malicious code

this eavesdropping attack. The impact of classification changes
over time which introduces what is known as label shift can
be handled by delaying labeling until a steady ground-truth is
present, minimizing performance degradation.

VII. CONCLUSION

This research aimed to demonstrate that while WebRTC
offers many features when it comes to privacy and secu-
rity, it is not immune to direct attacks on its components
and vulnerabilities in its underlying host applications. To
show these vulnerabilities, we created a real-world prototype
application that allows a hacker or government agency to
intercept WebRTC calls while remaining undetected by the
victim, provided he or she does not use any network WebRTC
monitoring tools.

Another aim of this paper was to show WebRTC users
how they can detect when their calls are being eavesdropped
on. We tested various detection methods against the system
implemented in this paper. Our results show that the proposed
system can be detected if the intercepted user is experienced
with monitoring tools. For example, if they know how to
use the WebRTC tools included in Google Chrome, they will
see how they are connected to more connections than they
are supposed to. Furthermore, they can use these tools to
investigate SDP offers, allowing them to detect when they are
sending more SDP offers than they are supposed to. We also
demonstrated in this study how Chrome DevTools such as
inspect can be used to detect eavesdropping by analyzing the
HTML and JavaScript that comprise the page which contains
the malicious code. Leveraging these indicators, one can create
effective auto-detection tools.

This work can be extended in many directions. For example,
we plan to use machine learning to detect when WebRTC calls
are intercepted. Currently, we are using multiple tools to do the
detection. This is time-consuming and nonuser-friendly. Our

Fig. 8: Example of Bitrate with and without Malicious Code.

future detection solution includes aggregating data from all
these tools and using machine learning to determine whether
the call is intercepted. Other future work can also include
actions. For example, suppose the ML detects that a call
is being intercepted. In that case, it can be programmed
to remove the hidden connection, blocking the hacker’s IP
address, among other actions.

REFERENCES

[1] C. Alexandru, “Impact of webrtc (p2p in the browser),” Internet Eco-
nomics VIII, vol. 39, 2014.

[2] “WebRTC — The technology that powers Google Meet/Hangout,
Facebook Messenger and Discord,” https://medium.com/swlh/webrtc-
the-technology-that-powers-google-meet-hangout-facebook-messenger-
and-discord-cb926973d786, accessed Dec. 20, 2021.

[3] P. M. D. Faye, A. D. Gueye, and C. Lishou, “Virtual classroom solution
with webrtc in a collaborative context in mathematics learning situation,”
in Innovation and interdisciplinary solutions for underserved areas.
Springer, 2017, pp. 66–77.

[4] A. Hussain, B. Barua, A. Osman, R. Abozariba, and A. T. Asyhari, “Low
latency and non-intrusive accurate object detection in forests,” in 2021
IEEE Symposium Series on Computational Intelligence (SSCI), 2021,
pp. 1–6.

[5] A. Osman, R. Abozariba, A. T. Asyhari, A. Aneiba, A. Hussain,
B. Barua, and M. Azeem, “Real-time object detection with automatic
switching between single-board computers and the cloud,” in 2021 IEEE
Symposium Series on Computational Intelligence (SSCI), 2021, pp. 1–6.

[6] D. McMeekan, Securing WebRTC. Western Illinois University, 2021.
[7] R. L. Barnes and M. Thomson, “Browser-to-browser security assurances

for webrtc,” IEEE Internet Computing, vol. 18, no. 6, pp. 11–17, 2014.
[8] C. Vogt, M. J. Werner, and T. C. Schmidt, “Leveraging webrtc for p2p

content distribution in web browsers,” in 2013 21st IEEE International
Conference on Network Protocols (ICNP). IEEE, 2013, pp. 1–2.

[9] “SDP: Session Description Protocol,”
https://datatracker.ietf.org/doc/html/rfc4566, accessed Jan. 10, 2022.

[10] A. Wagner and R. Puzis, “Lawful interception in webrtc peer-to-
peer communication,” in International Symposium on Cyber Security
Cryptography and Machine Learning. Springer, 2021, pp. 153–170.

[11] “Is hacking getting harder?” https://www.sciencefocus.com/science/is-
hacking-getting-harder/, accessed Feb. 28, 2022.

[12] S. Dutton et al., “Getting started with webrtc,” HTML5 Rocks, vol. 23,
2012.

[13] “RTCPeerConnection ,” https://developer.mozilla.org/en-
US/docs/Web/API/RTCPeerConnection, accessed Feb. 28, 2022.

[14] W. De Groef, D. Subramanian, M. Johns, F. Piessens, and L. Desmet,
“Ensuring endpoint authenticity in webrtc peer-to-peer communication,”
in Proceedings of the 31st Annual ACM Symposium on Applied Com-
puting, 2016, pp. 2103–2110.

[15] C. Alexandru, “Impact of webrtc (p2p in the browser),” Internet Eco-
nomics VIII, vol. 39, 2014.

[16] B. Feher, L. Sidi, A. Shabtai, and R. Puzis, “The security of webrtc,”
arXiv preprint arXiv:1601.00184, 2016.

[17] A. Reiter and A. Marsalek, “Webrtc: your privacy is at risk,” in
Proceedings of the Symposium on Applied Computing, 2017, pp. 664–
669.

[18] A. Milanovic, S. Srbljic, I. Raznjevic, D. Sladden, I. MatoSevic, and
D. Skrobo, “Methods for lawful interception in ip telephony networks
based on h. 323,” in The IEEE Region 8 EUROCON 2003. Computer
as a Tool., vol. 1. IEEE, 2003, pp. 198–202.

[19] H. Bhardwaj, A. Lunthi, H. Bhat, K. S. Rawat, and A. Chabbra, “Real
time information and communication center based on webrtc,” 2020.

[20] B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology
overview and signaling solution design and implementation,” in 2015
38th international convention on information and communication tech-
nology, electronics and microelectronics (MIPRO). IEEE, 2015, pp.
1006–1009.

[21] A. Andujar and C. Medina-López, “Exploring new ways of etandem
and telecollaboration through the webrtc protocol: Students’ engagement
and perceptions.” International Journal of Emerging Technologies in
Learning, vol. 14, no. 5, 2019.

[22] M. Johns, “Code-injection vulnerabilities in web applica-
tions—exemplified at cross-site scripting,” 2011.

[23] “The Script element,” https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/script, accessed Jan. 10, 2022.

[24] Z. Jingyu, H. Hongchao, H. Shumin, and L. Huanruo, “A xss attack
detection method based on subsequence matching algorithm,” in 2021
IEEE International Conference on Artificial Intelligence and Industrial
Design (AIID). IEEE, 2021, pp. 83–86.

[25] J. Kaur and U. Garg, “A detailed survey on recent xss web-attacks
machine learning detection techniques,” in 2021 2nd Global Conference
for Advancement in Technology (GCAT). IEEE, 2021, pp. 1–6.

[26] “The Secure Shell (SSH) Transport Layer Protocol,”
https://www.ietf.org/rfc/rfc4253.txt, accessed Jan. 20, 2022.

[27] M. M. Najafabadi, T. M. Khoshgoftaar, C. Kemp, N. Seliya, and
R. Zuech, “Machine learning for detecting brute force attacks at the
network level,” in 2014 IEEE International Conference on Bioinformat-
ics and Bioengineering. IEEE, 2014, pp. 379–385.

[28] “John the Ripper password cracker,” https://www.openwall.com/john/,
accessed Jan. 20, 2022.

[29] “Password cracking using Cain & Abel,”
https://resources.infosecinstitute.com/topic/password-cracking-using-
cain-abel/, accessed Jan. 20, 2022.

[30] J. Owens and J. Matthews, “A study of passwords and methods used in
brute-force ssh attacks,” in USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), 2008.

[31] V. Pimentel and B. G. Nickerson, “Communicating and displaying real-
time data with websocket,” IEEE Internet Computing, vol. 16, no. 4, pp.
45–53, 2012.

[32] “New Tool for Debugging WebRTC,”
https://blog.mozilla.org/webrtc/new-tool-debugging-webrtc/, accessed
Feb. 28, 2022.

