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Abstract
The emergence of medical image analysis using deep learning techniques has

introduced multiple challenges in terms of developing robust and trustworthy sys-
tems for automated grading and diagnosis. Several works have been presented to
improve classification performance. However, these methods lack the diversity of
capturing different levels of contextual information among image regions, strate-
gies to present diversity in learning by using ensemble-based techniques, or uncer-
tainty measures for predictions generated from automated systems. Consequently,
the presented methods provide sub-optimal results which is not enough for clinical
practice. To enhance classification performance and introduce trustworthiness, deep
learning techniques and uncertainty quantification methods are required to provide
diversity in contextual learning and the initial stage of explainability, respectively.

This thesis aims to explore and develop novel deep learning techniques escorted
by uncertainty quantification for developing actionable automated grading and di-
agnosis systems. More specifically, the thesis provides the following three main
contributions. First, it introduces a novel entropy-based elastic ensemble of Deep
Convolutional Neural Networks (DCNNs) architecture termed as 3E-Net for classi-
fying grades of invasive breast carcinoma microscopic images. 3E-Net is based on a
patch-wise network for feature extraction and image-wise networks for final image
classification and uses an elastic ensemble based on Shannon Entropy as an uncer-
tainty quantification method for measuring the level of randomness in image predic-
tions. As the second contribution, the thesis presents a novel multi-level context and
uncertainty-aware deep learning architecture named MCUa for the classification of
breast cancer microscopic images. MCUa consists of multiple feature extractors and
multi-level context-aware models in a dynamic ensemble fashion to learn the spatial
dependencies among image patches and enhance the learning diversity. Also, the
architecture uses Monte Carlo (MC) dropout for measuring the uncertainty of image
predictions and deciding whether an input image is accurate based on the gener-
ated uncertainty score. The third contribution of the thesis introduces a novel model
agnostic method (AUQantO) that establishes an actionable strategy for optimising
uncertainty quantification for deep learning architectures. AUQantO method works
on optimising a hyperparameter threshold, which is compared against uncertainty
scores from Shannon entropy and MC-dropout. The optimal threshold is achieved
based on single- and multi-objective functions which are optimised using multiple
optimisation methods.

A comprehensive set of experiments have been conducted using multiple med-
ical imaging datasets and multiple novel evaluation metrics to prove the effective-
ness of our three contributions to clinical practice. First, 3E-Net versions achieved
an accuracy of 96.15% and 99.50% on invasive breast carcinoma dataset. The sec-
ond contribution, MCUa, achieved an accuracy of 98.11% on Breast cancer histology
images dataset. Lastly, AUQantO showed significant improvements in performance
of the state-of-the-art deep learning models with an average accuracy improvement
of 1.76% and 2.02% on Breast cancer histology images dataset and an average accu-
racy improvement of 5.67% and 4.24% on Skin cancer dataset using two uncertainty
quantification techniques. AUQantO demonstrated the ability to generate the opti-
mal number of excluded images in a particular dataset.
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Chapter 1

Introduction

1.1 Overview

Computer Vision (CV) is a field that aims to develop strategies to assist computers
in seeing and understanding the content of visual data, such as photographs and
videos. CV seeks to comprehend the content of digital images. Generally, this en-
tails the creation of methods that seek to replicate human vision systems. Extracting
a description from a digital image, which could be some objects in a scene, is one
way to understand the content of the image(s) [14]. CV is a multidisciplinary field
that includes elements from image processing, pattern recognition, and artificial in-
telligence. It commonly uses a combination of specialised techniques and general
learning algorithms to analyse and comprehend visual data.

Machine learning is the use of computer systems that can learn and adapt with-
out explicit instructions or guidelines. This is done by using algorithms and statisti-
cal models to analyse and predict data in an input [13]. Generally speaking, machine
learning methods are categorised as supervised learning and unsupervised learning.
For supervised learning, the machine learning model uses an algorithm that learns
to map between an input variable x and an output variable y. This is based on a
training dataset in which the algorithm learns the correct labels of the training sam-
ples (where labels of input samples are available). Unsupervised learning is where
a machine learning model learns and distinguishes patterns from unlabelled sam-
ples (where labels of input samples are not available). The other class of machine
learning techniques uses semi-supervised learning, which can deal with a limited
number of labelled samples [87].

Image classification is considered as one of the fundamental tasks for CV es-
corted by supervised learning technique where unstructured data (e.g. images) are
categorised into predefined classes (i.e. labels) that are available during the train-
ing process. Traditionally, image classification approaches were based on manually
engineered features, which require a high level of domain knowledge while demon-
strating poor cross-domain adaptability. In recent years, deep learning has been em-
ployed to address real-world problems. Deep learning is a type of machine learning
approach in which several stages of non-linear information processing in hierarchi-
cal structures are used to classify patterns and learn features [25]. Deep learning uses
Artificial Neural Network (ANN), which is an attempt to mimic the human brain, to
learn complex features and patterns from input data.

Deep Convolutional Neural Network (DCNN) is one of the deep learning ap-
proaches that mainly specialise in processing inputs of unstructured data (e.g. im-
ages and videos). A DCNN consists of an input layer, hidden layers, and an output
layer. Hidden layers of DCNN contain: (1) convolutional layers which apply the
mathematical convolution operation using image kernels (filters) applied to all re-
gions in an image. This operation results in the generation of a feature map that
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captures salient features from the input image; and (2) Pooling layers which are
mainly used to decrease the variance and computational complexity by reducing
dimensions of features data [32].

In the medical sector, cancer is a serious health concern that affects people around
the world. According to the American Cancer Society, by the end of 2021, there was
an estimate of 1.8 million new cancer cases and 608,570 cancer deaths that were
projected to occur [99]. Despite significant improvements in medical research, the
analysis of digital medical images remains the most widely employed sector for
identifying various forms of diseases. Early diagnosis can vastly enhance the effi-
cacy of treatment. One of the critical issues that affect the medical diagnosis process
is the difficulty of manual investigation as there could be some complex samples
that are challenging to analyse. Furthermore, manual investigation is considered a
time-consuming process.

Advances in computer-aided diagnosis (CAD) have a significant influence on im-
proving disease detection accuracy and lowering the amount of time medical prac-
titioners spend on manual investigations. Deep learning is one of the approaches
that has been widely employed for automated diagnosis. Deep learning algorithms
have made significant progress and produced outstanding results, urging many aca-
demics to develop fair and automated solutions for a variety of medical image anal-
ysis applications. In contrast to the traditional image classification approach which
relies mainly on handcrafting features, deep learning leverages the power of using
DCNNs for the target of learning multi-level representations and patterns from un-
structured data using numerous linear and non-linear layers. DCNNs can explore
extensive statistical data structures without the need for handcrafted characteristics,
making them useful in a variety of fields.

1.2 Motivation

Considerable work for medical image analysis using deep learning approaches has
been proposed [65]. DCNNs showed high performance in terms of automated di-
agnosis. However, digitised medical images bring special challenges different from
large-scale images. One of the challenges in dealing with medical images (such as
histopathology images) is the high similarity of the morphological structures of mul-
tiple classes. Morphological structure in biology indicates the study of the shape,
size, and structure of microorganisms and the relationship between their different
components. In breast cancer histopathology images (which are digitised images
generated based on the microscopic examination of biological tissues of the breast),
the morphological structures in terms of nuclei distribution between benign and car-
cinoma images are too similar. This issue is challenging, as it introduces inter-class
similarity, making it difficult for automated diagnosis systems based on DCNNs to
establish and distinguish different class boundaries.

Another challenge appears for medical images is the intra-class fluctuations where
the variation of image structures within particular class is very high. For instance,
for a certain class, we can have samples showing different morphological structures
(in case of histopathology images). This adds more difficulty for the automated diag-
nosis systems to clearly classify images and provide high level of confidence for the
generated prediction. Based on the two challenges described above, a robust auto-
mated diagnosis system that provides different learning perspectives and a measure
of classification confidence is required to handle medical imaging challenges.
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Besides the challenges of medical images stated above, another problem occurs
when we deal with a single DCNN for automated diagnosis. The ability of a single
DCNN model to obtain discriminatory features is limited and usually results in sub-
optimal solutions [73]. This is due to the lack of different learning perspectives for
image features, which may aid in boosting the accuracy of diagnosis. As a result, an
ensemble of DCNN models for automated diagnosis systems is required to preserve
image description from recognised views to more exact prediction [120]. Ensemble
learning is a machine learning technique that combines the predictions of separate
classifiers using a combination strategy to give a more accurate final prediction of
the input sample than a single classifier.

More crucially, previously proposed DCNN-based automated diagnosis systems,
to the best of our knowledge, lacked a predefined measure of uncertainty, which is
a critical first step toward an explainable medical image analysis. Developing an
uncertainty measure component can help to identify several areas of ambiguity that
could be therapeutically useful. It also allows pathologists and medical practitioners
to prioritise images for annotations by rating them.

All the above-mentioned challenges motivate the need for robust and reliable
automated diagnosis systems that are based on DCNNs and uncertainty measures.

1.3 Problem Statement

When building sturdy and trustworthy automated diagnosis systems, the following
essential elements should be taken into account.

• Context-awareness: One of the important features that is crucial to build a
high-performance automated diagnosis system is to introduce contextual learn-
ing for different image regions. Contextual feature information refers to the
relationships, interactions, and dependencies between different elements of
an image, and this information helps to understand the image content in a
broader sense, including objects, their relationships, and the semantic meaning
behind them. Medical images are usually high-resolution images that need to
be divided into small patches (tiles) to be processed by a deep learning model.
The process of sectioning images into small patches allows only learning of
local representations of image patches making no place for structural and con-
textual information to be learned by deep learning models [35, 73, 98, 109].
Contextual information is vital for building spatial dependencies between dif-
ferent image patches [9, 27, 42, 119]. This learning information builds a better
vision for different image regions and their context and yields higher diagno-
sis performance for automated systems. Figure 1.1 presents an example of
how context learning is conceptualised to build spatial dependencies among
different image patches.

• Uncertainty measure: The trustworthiness of an automated system is mea-
sured by its ability to be confident in image predictions. Uncertainty mea-
sure is another important feature that needs to be introduced for systems that
mainly deal with medical images [33, 72, 79]. The sensitivity of the medical
field in terms of the importance of the existence of reliable decisions for pa-
tient disease necessitates the existence of a system that introduces a measure
of uncertainty for image predictions. This kind of measure aids in introducing
an initial stage of explainability. Explainability is a way of stating or explaining
the reason behind giving a particular diagnosis for a patient’s digitised sample.
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• High accuracy and robustness: One of the main targets of automated diag-
nosis systems (medical image classification models) is to reach a high level of
performance and improve classification accuracy. One of the issues resulting
in sub-optimal performance by deep learning models is the lack of learning di-
versity and variety of feature extraction from different perspectives. Ensemble
learning is one of the techniques used to improve system performance [20, 46,
74, 120]. In our work, we developed a novel dynamic ensemble strategy for
building an automated system based on an ensemble of DCNNs which utilise
different learning perspectives. The concept of dynamic ensemble lies in the
partial use of learners (classifiers) towards the final classification instead of us-
ing all classifiers to contribute to the final prediction. This depends mainly on
both the input sample and its prediction confidence. Figure 1.2 presents an
example of an ensemble model which applies the idea of a dynamic ensemble
where only the accurate models are chosen for final image classification.

• Actionability: Creating an automated diagnosis system to take decisions based
on the certainty of an input image is crucial, especially for medical image anal-
ysis and clinical practice [5, 70]. This step identify images that have high un-
certainty to be investigated by medical professionals. This means that an auto-
mated system takes the decision whether to give a final classification for a par-
ticular image based on a high confidence level of output prediction or to avoid
classifying the image (exclude image) based on a low confidence score of the
output prediction. Figure 1.3 presents a workflow pipeline for actionability
and how can be used to take decisions and introduce level of explainability.

Accordingly, a deep learning model for automated diagnosis can ideally be in-
troduced based on a dynamic ensemble learning strategy, a context-awareness ap-
proach that enhances diagnosis accuracy, and an uncertainty-aware component which
measures the quality of image predictions.
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FIGURE 1.1: An example of context-aware learning. The figure il-
lustrates the concept of context learning applied to a histopathology
image divided into 12 patches. As stated above, most deep learn-
ing models learn local information of image patches without taking
into consideration the spatial dependencies of these patches. This
type of dependency is essential for enhancing the learning process
conducted by deep learning models, and hence improving diagnosis
performance. Our conceptualisation for context-aware learning in-
cludes learning multi-level combinations of patches. For instance, on
the left side of the figure, context learning can be introduced between
two patches of the bottom left corner of the image (Low-level context
learning). In addition, a context learning of 3 patches can be applied
to the 3 patches in the top right corner of the image. The context
learning level could be designed by also including all 12 patches of

the image (high-level context learning).
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FIGURE 1.2: An example of an ensemble model consisting of 6 mod-
els which takes an input image and applies dynamic ensemble strat-
egy. As shown in the figure, each model produces image prediction
which is then used to identify the uncertainty score. Based on a pre-
defined condition or threshold, models with low uncertainty scores
are used for the final combination stage. Otherwise, the models are
neglected. For simplification and clarification, we used a bar of red
blocks to indicate the level of uncertainty in each model’s prediction,
and the models with an uncertainty score of less than or equal 2 are
considered accurate models, which generate accurate predictions. For
instance, Model 5 is considered a certain model, while Model 2 is con-
sidered a highly uncertain model. The accurate models’ predictions
are aggregated to produce the final image prediction. The dynamic
process of model selection depends mainly on the input image and
the measure of uncertainty introduced by each model in the ensem-
ble architecture. In other words, the number of selected models in the
combination stage varies depending on the input image and its un-

certainty level.
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FIGURE 1.3: Overview of the actionability workflow. It is impor-
tant to process predictions derived from an automated deep learning-
based model to introduce actionability for medical images. For il-
lustration, the figure depicts the workflow for an automated deep
learning-based model that receives a digitised image as an input and
generates image prediction (e.g. probability distribution including
probability values for each class label). The generated image predic-
tion is then used by an actionability stage, which serves as an active
learner and takes the action of producing automated image predic-
tion or excluding image from classification and returning it to a med-
ical professional for further manual investigation. The action taken
by the actionability stage depends on a particular criterion or condi-

tion.
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1.4 Aim and Objectives

The aim of this thesis is to provide medical image classification systems that have
design characterises of context-aware learning, trustworthiness feature using uncer-
tainty quantification, generalisation and robustness using a novel dynamic ensemble
strategy, and automated actionability by optimising uncertainty quantification.

The objectives of this research work have been established to fulfil the above aim.
The objectives of this thesis are to:

1. develop a novel contextual information stage for automated diagnosis systems
that improves diagnosis performance;

2. develop different uncertainty quantification techniques for measuring the level
of uncertainty and randomness of input samples;

3. introduce generalisation and robustness by developing a novel ensemble learn-
ing strategy that combines different learning perspectives for automated diag-
nosis systems and provides an exclusion mechanism to exclude poor input
samples that require investigation by medical professionals; and

4. develop a novel automated actionable technique for optimising uncertainty
quantification that can be used by any deep learning model for the classifica-
tion task.

1.5 Contributions

This thesis presents three contributions to achieving the above-mentioned objectives
by introducing automated classification models of histopathological microscopic im-
ages accompanied by uncertainty measurements and an actionable model-agnostic
method to optimise uncertainty quantification. The contributions of this thesis can
be described as follows:

• Entropy-based elastic ensemble of DCNNs model (3E-Net): This model has
been designed, developed, and implemented for the automated classification
of invasive breast carcinoma histopathology samples into different grades. 3E-
Net introduces different image-wise learning perspectives in an ensemble tech-
nique and provides a measure for uncertainty quantification based on the pre-
diction extracted from the input medical sample. The model introduces an ex-
clusion mechanism which is beneficial for dealing with samples that are uncer-
tain from the perspective of the deep learning model. The model starts by tak-
ing an input microscopic image and then divides the image into small patches.
The extracted patches are then passed to a patch-wise network that acts as a
feature extractor for extracting useful features of the input patches. The fea-
ture maps extracted from the patch-wise network are then used by a number
of image-wise networks which are mainly developed to learn spatial depen-
dencies between different image patches. Each prediction extracted from an
image-wise network is inserted into an uncertainty quantification component
based on Shannon Entropy [93]. This component generates an uncertainty
value, which is mainly used to decide whether the image is certain. Having
a low uncertainty score means that the model is accurate in the prediction of
an input image, while a high uncertainty score means that the image is un-
certain from the model prediction perspective. To introduce an ensemble of
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all models, an elastic ensemble strategy is used that only takes into account
certain models in the final image prediction [90].

• Multi-level contextual and uncertainty aware model (MCUa): This model
has been designed, developed, and implemented for automated classification
of breast cancer histopathology microscopic images. The model learns multi-
level contextual information among feature maps extracted from patches of
input sample and applies an intelligent mechanism to measure the level of
ambiguity of image classification by implementing the Monte-Carlo dropout
[29] technique. The usage of Monte-Carlo dropout results in different versions
of image prediction, which aids in identifying variations in the list of image
predictions and as a result helps in introducing a measure of uncertainty. The
model works by taking an input image which is resized into multiple scales.
The multiple image scales are then divided into smaller patches, which are
passed into multiple feature extractors to learn salient features from different
learning perspectives. The extracted feature maps from feature extractors are
then inserted into multi-level context-aware networks which learn different
levels of contextual information between image feature maps. The lowest level
learns contextual information between multiple pairs of feature maps (two fea-
ture maps), while the highest level learns contextual information among all
feature maps in a particular image. Finally, the Monte-Carlo method is ap-
plied to measure the uncertainty of the model’s prediction where it is applied
to the context-aware networks by activating the dropout layers during the test-
ing phase of the architecture. This process aids in generating a list of predic-
tions with some variations based on the randomness of dropping some of the
neurons in context-aware networks. The standard deviation of the list of pre-
dictions is used as a measure of uncertainty to identify the level of randomness
introduced in the image prediction. Based on the uncertainty measures intro-
duced by the Monte-Carlo for all context-aware networks, a dynamic ensemble
technique is utilised to identify the confident models to combine them towards
the final image prediction. This is done using a predefined threshold that de-
cides which models to be selected for final image predictions. If a particular
image has no certain model from the group of all models in the ensemble ar-
chitecture, then this image is excluded from the final image classification and
returned to medical professionals for further investigation [91].

• Actionable uncertainty quantification optimisation in deep learning archi-
tectures (AUQantO): This method has been designed, developed, and imple-
mented for optimising uncertainty quantification of deep learning models for
medical image classification. The method relies on using different uncertainty
quantification methods accompanied by the use of optimisation methods to
minimise single- and multi-objective functions. The objective functions aim
to minimise the number of excluded images that are highly uncertain and in
need of manual investigation by medical professionals. The method is model-
and dataset-agnostic, which means that it is a pluggable component that can
be used by any deep learning model that generates probability distribution
(predictions). The method starts with taking an input image into a deep learn-
ing model for image classification. Then, using two uncertainty quantification
methods (Shannon Entropy and Monte-Carlo), the uncertainty measurement
is calculated. The uncertainty value is then checked against a threshold value
which is optimised using single- and multi-objective functions that mainly
minimise the number of excluded images in a dataset [89].
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1.6 Publications

The following papers have been either submitted or published towards building the
work conducted in this thesis:

• Senousy Z., Abdelsamea M., Mohamed M. M., and Gaber M. M., 3E-Net:
Entropy-based Elastic Ensemble of Deep Convolutional Neural Networks for
Grading of Invasive Breast Carcinoma Histopathological Microscopic Images,
Entropy, 2021, MDPI. [Impact Factor = 2.738, h5-index = 58, ranked 13th in top
publications of Physics & Mathematics (general)]

• Senousy Z., Abdelsamea M. M., Gaber M. M., Abdar M., Acharya U. R., Khos-
ravi A. and Nahavandi S., MCUa: Multi-level Context and Uncertainty aware
Dynamic Deep Ensemble for Breast Cancer Histology Image Classification,
IEEE Transactions on Biomedical Engineering, IEEE press [Impact factor: 4.756,
h5-index: 74, ranked 3rd in top publications of Biomedical Technology]

• Abdelsamea M. M., Zidan U., Senousy Z., Gaber M. M., Rakha E., Ilyas M.,
A Survey on Artificial Intelligence in Histopathology Image Analysis, WIREs
Data Mining and Knowledge Discovery, 2022 [Impact factor: 7.558, h5-index:
54]

• Senousy Z., Gaber M. M., and Abdelsamea M. M., AUQantO: Actionable Un-
certainty Quantification Optimization in Deep Learning Architectures for Med-
ical Image Classification [Under review in Applied Soft Computing, Elsevier]

1.7 Thesis Organisation

The rest of this thesis is organised in the following manner.
Chapter 2 provides a detailed background and theoretical explanation of the im-

portant methods and techniques required to build our automated grading and classi-
fication systems. The concepts of machine learning, deep learning, neural networks,
and issues of neural networks and how to deal with are introduced in the chapter.
Moreover, a detailed description of DCNN layers has been presented. Finally, an
explanation of transfer learning strategies along with the utilised pre-trained deep
learning models for our contributions have been introduced.

Chapter 3 reviews the related work of histopathology image classification mod-
els and methods which utilised context-aware learning in building models and used
uncertainty measurements. Furthermore, different models used as benchmarks for
comparison against our contributions have been explained in different sections of
the chapter. Finally, a detailed description of deep learning applications has been
introduced in the context of our contributions along with chapter discussion and
summary.

Chapter 4 presents our entropy-based elastic ensemble 3E-Net model for classi-
fying grades of histopathology images as the first contribution in this thesis. The
chapter introduces the experimental methodology of the model starting from build-
ing a single patch-wise network as the first stage and image-wise networks as the
second stage to establish an ensemble model. Also, the chapter goes through the
development of entropy-based method for introducing uncertainty measurements
to the input image samples. Furthermore, we present our metrics for evaluating the
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performance of the model and comparing our work against state-of-the-art mod-
els from the literature. We evaluated our model on two datasets for breast cancer
microscopic histopathology images.

Chapter 5 goes through the multi-level context and uncertainty-aware model for
automated classification of histopathology images as our second contribution. The
chapter introduces the experimental methodology of context-awareness between
image patches by presenting in details how we build contextual information among
feature maps generated from image patches and the use of Monte-Carlo dropout
for applying uncertainty quantification to the model. The chapter presents different
evaluation metrics to prove how effective our model in outperforming models from
literature. We evaluated our model on two datasets for breast cancer microscopic
histopathology images.

Chapter 6 introduces our last contribution in this thesis which is an actionable
uncertainty quantification method to optimise deep learning architectures for med-
ical image classification. The chapter presents experimental methodology for the
method and how it can be applied to any deep learning model which generates
probability distribution (prediction) for an input sample. The method works by mea-
suring uncertainty for input image and it decides whether to exclude image from
final classification based on the measured uncertainty compared against a thresh-
old which is optimised using single and multi-objective functions to minimise the
number of excluded images in a particular dataset. Furthermore, we used four deep
learning models from literature evaluated using two medical datasets to show how
effective our model in optimising the number of excluded images.

Chapter 7 presents a discussion of the contributions in this thesis and reflection
on research aim and objectives. The chapter concludes the work with highlighting a
few important observations to be considered as future directions for research.
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Chapter 2

Background

In the previous chapter, we presented an introduction for the thesis that included a
problem statement along with the aims and objectives of the research work and a
general explanation of the contributions of this thesis. This chapter covers the nec-
essary background and concepts required to comprehend our developed methods
(contributions) presented in chapters 4, 5, and 6.

2.1 Overview of Deep Learning

Deep learning is a subset of machine learning which uses multiple stages of non-
linear information processing in hierarchical structures for pattern categorisation
and feature learning. It has also been linked to representation learning, which in-
corporates a hierarchy of features or concepts where higher-level concepts are de-
termined by lower-level concepts and where the exact lower-level notions aid in
defining higher-level concepts. Prior to deep learning techniques, machine learning
approaches employed the structure of shallow neural network architectures. These
types of architectures mainly contain only one non-linear layer, which applies fea-
ture transformations with no usage of multiple layers of non-linear features. The
relatively basic design of these shallow learning models comprises a single layer
(hidden layer) capable of converting raw data input or attributes into a problem-
specific feature space [25].

To further explain the idea of a shallow architecture, we can take neural networks
as an example. The neural network is one of the common architectures to present the
approach of machine learning. Neural networks consist of three layers: input, hid-
den, and output layer. The input layer processes the raw input data inserted into the
architecture, while the output layer generates the architecture output in the form of a
prediction. The hidden layer is responsible for applying non-linear transformations
between the input and output layers. In deep learning, we can have deep architec-
tures, such as deep neural networks (DNN), which have multiple hidden layers in-
stead of only one. DNN is a type of deep learning algorithm which involves training
artificial neural networks with multiple layers (more than one hidden layer), allow-
ing them to learn highly complex representations and abstract features of input data.
Figure 2.1 presents the workflow for a DNN architecture that takes a medical tissue
image as input (two-dimensional (2D) unstructured data). Then, a non-linear trans-
formation is applied for the input to extract features using N hidden layers, which
are stacked together. Each hidden layer passes feature information to the next hid-
den layer until an output in the form of prediction is generated to decide the final
class of the input image as tumour or no tumour.
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FIGURE 2.1: Generic scope of a DNN architecture which includes in-
put data, a number of hidden layers to represent the deep architec-

ture, and an output layer to represent two-class label predictions.

2.2 Deep Neural Networks (DNNs): A Deeper Look

In this section, we explain in detail the building blocks to form a DNN and the learn-
ing process conducted to train a DNN on training samples. Moreover, we listed the
common problems encountered while training DNNs and how to fix them.

2.2.1 DNN: Building Blocks

At this stage, it is known that machine/deep learning generally is about having
shallow/deep architectures which map inputs (such as images) to targets (such as
class labels). Shallow architectures represent a machine learning approach with one
single hidden layer, whereas deep architectures represent a deep learning approach
that can have two or more hidden layers. In this subsection, we aim to have a deeper
look at DNNs and introduce in detail the building blocks to establish a deep archi-
tecture of input, hidden, and output layers. A common DNN with an input layer,
multiple hidden layers, and an output layer is called a feed-forward deep neural net-
work (FF-DNN) or, in other words, a fully connected, dense, multi-layer perceptron
(MLP). The smaller unit in a FF-DNN is called a neuron which mimics the biological
neuron of human’s brain. A neuron is considered the basic unit of a neural network.
It works by taking an input value, performing some mathematical calculations and
generating one output value. Then, for instance, to build a single hidden layer, it
has to include a number of artificial neurons. The human brain learns by altering
the strength of interconnected neurons as a result of frequent stimulation with the
same signals. In artificial neural networks, we can refer to the strength of connecting
linkages between various neurons as weights. Figure 2.2 represents a single neuron
(a perceptron model), which is the main building block of DNNs.

As can be seen from Figure 2.2, the simple schematic representation for the per-
ceptron model is comprised of: (1) input data values, (2) weights, (3) bias, (4) ag-
gregation point, and (5) activation function (which acts as a threshold unit). The
figure presents a number of inputs (x1 to x3), weights associated with the inputs (w1
to w3), b which is bias, f is the activation function applied to the weighted aggre-
gation of the inputs and ŷ is the output of the neuron. Weights in neural networks
are parameters that help in transforming the input values within the hidden layers
of the network. In other words, a weight determines how much of an impact the
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FIGURE 2.2: A single neuron is the basic unit of a neural network.
It mimics the functionality of the biological neuron and learns the
weights of the input data values to build a linear decision boundary

that can differentiate between two different classes.

input has on the output. Bias is an additional parameter in neural networks which
is used to control the output and the weighted sum of the neuron’s inputs. The last
important part of a perceptron model is the activation function, which is responsi-
ble for identifying whether or not a neuron should be triggered. This implies that
it will use simple mathematical operations to determine whether the neuron’s input
to the network is essential or not throughout the prediction phase. The purpose of
an activation function is to introduce non-linearity to the neural network. We can
represent the following mathematical formula to depict the full operation:

ŷ = f

(
N

∑
i=1

xiwi + b

)
, (2.1)

where N represents the number of input samples. x and w depict the input and
weights of the neuron. f represents the activation function used by the neural net-
work. There are different types of activation functions that are used for hidden lay-
ers. The most common types are sigmoid, tanh, and Rectified Linear Unit (ReLU).
Figure 2.3 represents the three common types of activation functions used in neural
networks.

FIGURE 2.3: Common activation functions of neural networks.

Now, it is possible to represent a DNN architecture that includes input layer,
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hidden layers, and output layers using neurons. Figure 2.4 presents the DNN archi-
tecture where each unit (neuron) is a simple function, but together they can create
complex classification boundaries. It can be seen from the figure that each layer is
formed using a group of neurons.

FIGURE 2.4: DNN architecture from a detailed scope including neu-
rons where a group of neurons form a layer.

2.2.2 DNN: Learning Process

A DNN performs mapping from input to output through a series of data transfor-
mations. These transformations are learnt through various input samples as an ex-
ample for training. Weights and bias are the learnable parameters in a DNN. Before
learning begins, a teachable DNN randomises both the weight and bias values. Both
parameters are modified as training progresses until the required values and the cor-
rect output are reached. The amount to which the two parameters impact the input
data differs. Simply described, bias is the distance between the predicted value and
the desired value. The discrepancy between the network’s output and its desired
output is made up of biases. A low bias indicates that the network is generating
fewer assumptions about the output form, while a high bias value indicates that the
network makes more assumptions about the output form. A model with high bias
cannot capture the key features of dataset samples and cannot perform effectively on
new data. As stated above, weights can be represented as the strength of the linkage
between neurons. The degree of effect that a variation in the input has on the output
is determined by its weight. A low weight value will have little effect on the input,
whereas a higher weight value will have a greater impact on the output. Figure 2.5
presents how a transformation implemented by a layer in a DNN is parameterised
by its weights.

To be able to manage the output of DNN, it is crucial to observe and monitor
how much it differs from the desired output (ground truth prediction). This process
is the responsibility of the loss function. The loss function computes the distance
score, which is the difference between the network’s prediction and the true target
(the expected network’s output). This distance score reflects how well the network
performed on a specific task. The main objective in deep learning is to utilise this



2.2. Deep Neural Networks (DNNs): A Deeper Look 17

FIGURE 2.5: Data transformation of DNN layers is parameterised by
network weights. Adapted from [21].

score as a feedback signal to tune the values of weights slightly in a way to enhance
the performance of the network and reduce the loss value. To alter weights and
achieve a minimum loss score, an optimiser is utilised, which uses Backpropaga-
tion algorithm as the fundamental approach responsible for weight correction and
loss function minimisation. Figure 2.6 presents how the loss value is utilised as a
feedback signal to modify the weights of the network. Learning rate is one of the
important parameters used by optimiser which needs to be tuned during the learn-
ing process of a DNN. It controls how fast the model is adapted to the problem (e.g.
classification problem). A small learning rate requires more updates until reaching
the minimal point, which gives the minimal loss value, while a high learning rate
indicates rapid changes which lead to divergent behaviour. One of the common
optimisers used for DNN is the Adam optimiser [48].

As stated before, DNN weights are given random values at the beginning of the
training process, resulting in a sequence of random transformations. The output
of DNN is far from optimum and the loss function reflects this. However, when
the network processes more examples, the weights are modified slightly in the cor-
rect track, and the loss score starts in decreasing. This is the learning loop (training
iterations), which produces weight values that minimise the loss function after a suf-
ficient number of iterations. A trained network must have outputs that are as close
to the desired target as possible [21]. One learning loop is called an epoch where it
can be defined as the unit which indicates one complete forward and backward pass
through the entire dataset. It is considered one of the important hyperparameters
during training of a neural network.

In summary, two essential phases occur during the neural network training pro-
cess. The first is a feed-forward phase that describes the movement of information in
the forward direction from the input layer passing through data transformation (hid-
den layers) until generating prediction from the output layer. During feed-forward
propagation, the activation function can be considered as a gate between the input
inserted into the network neurons and the output to the upcoming layer. The second
is the backpropagation phase, which aims to minimise the loss function by adjust-
ing network weights and biases. This leads to minimising the distance between the
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FIGURE 2.6: A deep learning flow of optimising a network using
an optimiser with the loss function score used as a feedback signal.

Adapted from [21].

actual output and the target (desired output).

2.2.3 Overcoming the Challenges of DNNs: Strategies for Improvement

When we train a DNN, we optimise the weights and biases so that the network can
perform a mathematical mapping of input values to output values based on a given
objective. Aside from the given objective, we also want to build a model that can
generalise successfully from training samples to other samples from the problem
domain. In other words, once the training process is done for a neural network, we
aim to have a model which performs well on samples that have not been seen as well
as the training samples. However, we can encounter a case where the performance
on unseen samples is much worse, although the performance on training samples
was good. This case is called overfitting.

Overfitting is a problem in DNNs where the model performs well on the training
data but poorly on unseen data from the problem domain due to excessive memori-
sation of training data rather than generalisation. Overfitting occurs for two major
reasons: (1) the training data samples contain noise and volatility and (2) the model
has high complexity. The training data comprises noise and random volatility. A
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high-complexity model can detect randomness and fluctuations in the data and un-
derstand them as underlying concepts and patterns. These noise and volatility are
unique to the training set. When the model encounters new data, the wrongly learnt
patterns and concepts no longer apply to the new data, and performance suffers
significantly. This notion also applies to neural networks and any other machine
learning model. That is, overfitting limits the ability of neural networks to gener-
alise.

Underfitting is another problem that may be encountered during training DNNs.
It is the opposite of overfitting. Underfitting indicates that a model cannot perform
well on either the training samples or new unseen samples from the problem do-
main. The reason for this is due to the complexity of the model once again. However,
the complexity is too low this time for the neural network to learn the mathematical
mapping of input values to output labels. If the model is too simple to fit given data,
the performance of that model will be poor.

Practically, a phenomenon known as a bias-variance trade-off will be encoun-
tered. This trade-off indicates that increasing the complexity of neural network
model results in a smaller bias error on one hand, but a bigger variance error on
the other. Therefore, it is crucial to find the optimal model with suitable parameters
that result in the best bias-variance and to be located somewhere between overfitting
and underfitting (see Figure 2.7).

Overfitting and underfitting are undesirable cases that occur while building deep
learning models. Overfitting is by far the most prevalent problem in DNNs and a
significantly greater concern. This concern comes because evaluating deep learning
models on training samples is a bit different from evaluating the model on unseen
samples, which is what we really care about (testing set). There are different tech-
niques that can be utilised to avoid overfitting. Good practice can be by reducing
the number of neurons in the DNN to make the model less complex. Also, using
regularisation techniques such as L1, L2, and dropout which are three prominent
and effective methods that we examine below.

Regularisation is a collection of techniques to reduce the complexity of DNN
models during the training phase and to avoid overfitting. Simply, regularisation
works by adding a penalty term to the loss function in order to lower the complex-
ity of a DNN model and hence avoid overfitting. The key difference between L1 and
L2 regularisation techniques is in the penalty term. The L2 regularisation approach,
also known as weight decay or Ridge Regression, is the most popular of all regular-
isation techniques. It adds squared magnitude of coefficient (sum of model weights
squared) as a penalty term to the loss function. While L1 regularisation is named
Lasso Regression and it adds an absolute magnitude of coefficient (sum of the abso-
lute values of the weights). We can represent the formulation for the loss function
using L1 and L2 regularisation as follows:

Loss = Error(y, ŷ) + λ
N

∑
i=1
|wi| (2.2)

Loss = Error(y, ŷ) + λ
N

∑
i=1

w2
i (2.3)

where Equations 2.2 and 2.3 represent loss equation using L1 and L2 regularisation,
respectively. Error represents the loss score between the prediction of DNN model
ŷ and ground truth prediction y. λ determines the amount of regularisation that is
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FIGURE 2.7: This diagram depicts the trade-off between bias and vari-
ance. Training data (green line) may not always accurately represent
testing phase outcomes. Underfitting data is less variable, yet it has
a high error rate and a high bias (blue box). Overfitting data, on the
other hand, results in low bias and high variance (yellow box). The
optimum region exists between overfitting and underfitting of data
and may not be ideal until multiple testing trials have been performed

(red line). Adapted from [80].

manually tuned and it has to be greater than zero to represent a loss function with
regularisation.

Dropout is another popular technique to avoid overfitting. It applies a dropping
(deactivating) operation to some random neurons from the DNN during the training
phase. This process aims in reducing the complexity of the DNN model to avoid
overfitting. Figure 2.8 represents a diagram of the neural network architecture which
uses the dropout technique to reduce complexity.

Another important method to handle overfitting is data augmentation. In some
particular cases, the dataset used is small in the number of samples and may cause
overfitting. Data augmentation is an approach to greatly increasing the diversity of
available data samples for training models without acquiring additional data. In-
creasing the number of samples without collecting new data is a good strategy as
it alleviates the process of collecting new samples especially in the medical domain
which is a bit difficult to collect. Data augmentation works by using the current sam-
ples available in a particular dataset, and it applies some operations to the current
samples such as rotation by multiple degrees, flipping either horizontally and/or
vertically, and applying colourisation operation.
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FIGURE 2.8: Neural network architecture before applying dropout
(left) and after applying dropout (right).

Underfitting is a simple and uncomplicated process. As mentioned before, un-
derfitting occurs due to a less complex model. Therefore, to reduce underfitting,
we have to add more parameters to the neural network (weights and biases). These
parameters can be added by increasing the number of neurons and layers in the
network.

2.3 Deep Convolutional Neural Networks (DCNNs)

DNNs are used for a wide variety of applications. In addition to MLP, which is
a class of FF-DNNs (explained above), there are different types of DNN that are
commonly used for different tasks such as speech recognition, machine translation,
text-to-speech processing, sentiment analysis, image processing, and computer vi-
sion (CV). For example, Recurrent neural networks (RNNs) are one of the common
DNNs that can be used for any task relevant to text processing. Our focus in this
research work is to develop novel deep learning models for the task of image clas-
sification (diagnosis systems). This task is one of the common tasks for CV and a
popular type of DNNs which is performing very well for such tasks is Deep Convo-
lutional Neural Networks (DCNNs) [52].

In this section, we cover all the concepts and building blocks for establishing
DCNNs as well as explaining two common DCNNs that have been used to build
our models in the upcoming chapters.

DCNN is a type of deep neural network that excels in processing input with
a grid-like structure, such as images. A digital image is a two-dimensional repre-
sentation of visual information created using discrete digital (pixel) values [31]. It
consists of a grid-like arrangement of pixels where pixel values indicate how bright
and what colour each pixel should be. DCNN takes input images and then presents
importance in terms of learnable weights and biases to different parts in images
(e.g. important objects). This aids in discriminating between multiple objects in im-
ages. DCNNs require substantially less pre-processing compared to pre-deep learn-
ing methods which were based on hand-engineered features. DCNNs can learn fil-
ters/characteristics with sufficient training. A DCNN design is similar to the connec-
tivity structure of neurons in the human brain and was inspired by the organisation
of the visual cortex. Particular neurons only react to stimuli in a small region of the
visual field called the receptive field. A group of similar fields will encompass the
full visual region if they overlap [32].
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DCNN design typically consists of three types of layers: convolutional layer,
pooling layer, and fully connected layer. Figure 2.9 presents a CNN design that takes
an image as input and then it applies a series of convolution and pooling layers.
Then, it flattens the features extracted from the last pooling layer to be inserted into
a fully connected layer and softmax output layer. The softmax function is utilised
as the activation function in the output layer of CNN models. It aids in generating
probability distribution, which represents the model’s prediction. At this point, the
generic scope of a CNN is clear with its design and the layers used. Next, We explain
in more detail how each layer works and what are the operations done.

FIGURE 2.9: A CNN architecture consists of a convolutional layer,
a pooling layer, and a fully connected layer followed by a softmax
layer to generate image prediction. We can represent CNN for image
classification into two stages: (1) the feature extraction stage, which
takes input image and applies convolution and pooling operations
to extract features from input image, and (2) the classification stage,
which has a fully connected layer and an output softmax layer to gen-

erate the final classification of the image.

2.3.1 Convolutional Layer

The main building block of CNN is the convolutional layer. It handles most of the
computational burden on the network. Convolution is an operation coming from
the field of signal processing. In the field of deep learning, it essentially performs a
dot product (matrix multiplication) between two matrices. The first matrix is a spe-
cific portion of the input image known as the receptive field and the second matrix
is a set of learnable parameters known as filter or kernel. This matrix multiplication
process (dot product) occurs by sliding the kernel over different image regions (slid-
ing the kernel over the image’s height and width). The kernel has a smaller spatial
size compared to the image (smaller height and width) but it is equivalent to image
depth. For instance, if an image has three (RGB) channels, the kernel’s height and
width will be smaller than the image’s height and width, but the depth will span all
three channels. Figure 2.10 presents an example of a 2D convolution operation that
occurs when a convolution operation is applied on an input image.
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FIGURE 2.10: 2D Convolution operation occurs in the convolutional
layer between different image regions (receptive fields) and the ker-
nel. The output matrix is called a convolved feature map, which con-
tains the salient features of different parts of the image. Adapted from

[32].

The kernel moves across all image parts passing through image’s height and
width, generating an image representation of all receptive regions. The image rep-
resentation generated is a two-dimensional description of the image known as an
activation feature map, which contains the kernel’s reaction at each spatial place in
the image. A hyperparameter named stride is used to decide the stepping of the
kernel over the image (sliding size).

The objective of the convolution operation is to extract high-level features from
input images. Typically, a CNN design should have multiple convolutional layers.
The first convolutional layer is mainly responsible for producing low-level features
such as edges. Then, with the addition of more convolutional layers, the network
captures high-level features.

The output size of a convolved feature map depends on the kernel size, the stride
value, and another hyperparameter called padding. Padding refers to the insertion
of empty pixels around the borders of an image to preserve the original size of an
input image. This is done to allow the kernel to execute full convolutions on the im-
age’s edge pixels. There are two types of padding: valid padding and same padding.
Valid padding requires setting the padding value to zero (which means no padding
is applied), while same padding indicates that the padding is applied so that the
input is equivalent to the output in size provided that stride value is assigned to
one. The following formula is used to calculate the output size of the feature map
(Outw ×Outh) given the size of the input image W × H, kernel fw × fh, stride s, and
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padding p:

Outw =

⌊
W − fw + 2p

s

⌋
+ 1 (2.4)

Outh =

⌊
H − fh + 2p

s

⌋
+ 1 (2.5)

The motivation behind using the concept of convolution, instead of the normal
process of having fully connected hidden layers as present in FF-DNN, lies in three
crucial factors that motivated researchers to use DCNN: sparse interaction, shared
parameters, and equivariance of representations. Basic neural networks apply ma-
trix multiplication to represent the parameters’ matrix characterising the connection
between the input and output units. This implies that each output unit communi-
cates with each input unit. On the other hand, CNNs have the feature of sparse
interaction where the kernel (which has a smaller spatial size compared to the input
image) aids in detecting salient information of hundreds of pixels from an image
that has thousands of pixels. This indicates that we need to keep fewer parame-
ters, which not only decreases the model’s memory demand but also enhances the
model’s statistical efficiency [32].

Parameter sharing is another important aspect that helps in reducing the number
of parameters and computational cost. The idea behind this is that features learned
in one part of an image can also be applicable to another part of the same image.
Hence, instead of having separate kernels for each region of an image, a single kernel
is used to convolve the entire image. This leads to parameter sharing and the reuse
of the same set of parameters throughout the image [32].

Another feature of CNNs that is related to parameter sharing is equivariance
to translation. This refers to the ability of the layers in a CNN to adapt to transla-
tions in the input image. The shared parameters allow the network to be robust to
small translations in the input, without having to learn separate parameters for each
possible translation. This results in the network being equivariant to translations,
meaning that if the input is shifted, the output also changes accordingly [32].

2.3.2 Pooling Layer

The next common stage after the convolutional layer is the pooling layer. The pool-
ing layer is mainly responsible for lowering the spatial size of convolved feature
map generated from the convolutional layer. This stage aids in reducing computa-
tional power necessary for processing data via dimensionality reduction. It is also
beneficial for capturing dominating characteristics that are rotational and positional
invariant, allowing the model to be efficiently trained.

There are two forms of pooling: maximum (max) pooling and average pooling.
Max pooling retrieves the maximum value from the portion of the image contained
by the kernel. While average pooling retrieves the average of all values from the
region covered by the kernel. Figure 2.11 presents the two forms of the pooling
layer. As can be seen in the figure, max pooling works by picking the maximum
value of the receptive field (image portion covered by kernel - identified by different
colours). While average pooling works by calculating average of all values covered
in the receptive field.

The convolutional and pooling layers utilised in a DCNN can process the in-
put image and capture image features. Moving forward to the upcoming stage, the
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FIGURE 2.11: An example of maximum pooling and average pooling
applied to feature maps produced from the convolutional layer by

using a kernel size of 2× 2 and a stride of 2.

output extracted from successive convolutional and pooling layers is flattened and
inserted into a standard neural network block to classify an input image.

2.3.3 Fully Connected Layer

The final block in a DCNN design is the fully connected layer. The fully connected
layer is mainly responsible for learning non-linear representations of high-level fea-
tures as introduced by the output generated by the last combination of convolutional-
pooling layers. This is done by flattening the shape of high-level features learnt in
the previous stage (which is the shape that suits a standard neural network). The
flattened form of the features is then connected to a fully connected layer, which
helps to map the representations between input and output. When all the building
blocks of DCNN are joined together, the network is able to discriminate between
different levels of features in an input image and to classify the image into a certain
class using softmax classification. Figure 2.12 depicts the last stage of a CNN design.

2.3.4 Non-Linearity Layers

As the convolutional layer is based on linear operation, non-linearity layers are com-
monly placed just after the convolutional layer to provide non-linearity to the output
feature map. We introduced above the frequently used activation functions that can
be used to introduce non-linearity (see Figure 2.3).
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FIGURE 2.12: An example of the fully connected layer. As illustrated
by the figure, the output generated from the last pooling layer is flat-
tened and fed into a fully connected layer to map the generated fea-
tures from the image into an output that presents the final image clas-

sification.

2.4 Transfer Learning using Pre-trained DCNN Models

Medical imaging datasets are limited in size and are categorised as small datasets.
DCNN models that are trained on medical imaging samples are prone to overfitting
due to the limited number of samples. In addition, training a DCNN model from
scratch is time-consuming and can lead to inaccurate performance. Therefore, the
transfer learning approach has been considered one of the important techniques that
aid in building our developed models to generate accurate results and save time
during the training process.

Transfer learning is a prominent approach in CV since it helps us to create accu-
rate models in a timely manner. It is a machine learning approach in which we reuse
a previously trained model as the foundation for a new model on a new problem.
Instead of starting the learning process from scratch (e.g. using randomly initialised
weights), transfer learning begins with patterns learnt in one domain for the pur-
pose of addressing a problem in another domain. This allows us to build on existing
knowledge rather than starting from scratch. In other words, transfer learning is a
machine learning technique where a model which is trained on one task is reused
on another related task [32]. For instance, in our situation, we use models trained on
ImageNet dataset prepared for ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [86] for other domains, such as medical imaging datasets. The intuition
behind this approach is that a model trained using large-scale images will have sim-
ilar low-level features to images from any other domain. Therefore, a model trained
on low-level features can be used as the starting point instead of applying training
from scratch. This means that the general features learnt from large-scale images
(one domain) can be utilised by small medical imaging datasets (another domain).

Transfer learning can be seen as an optimisation method that facilitates quick
progress while modelling the second task from a model learnt on one task. It can
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yield considerably greater performance than training models with a little amount
of data from scratch [75]. Researchers prefer to start with a pre-trained model that
already understands how to identify objects and has learnt general properties like
edges and shapes in images. In CV, transfer learning is typically introduced through
the usage of pre-trained models. A pre-trained model depicts the concept of transfer
learning as they are a type of model that is trained on a large benchmark dataset that
can be used to handle a problem comparable to the one we have at hand (medical
image classification task). It is important to note that transfer learning can be used
in case the features initially gained from a model trained on one task are generic
and can be used on another task [122]. Various cutting-edge image classification
techniques rely on transfer learning solutions [37, 52, 100].

2.4.1 Transfer Learning Strategies

As explained above, a DCNN typically has two main stages: (1) the feature extrac-
tion stage, which is responsible for generating salient features from input images.
This stage is mainly constructed from successive convolutional and pooling layers,
and (2) the classifier stage is responsible for generating image prediction based on
the detected features. It consists of fully connected layers. Figure 2.13 presents a
simplified version of a CNN architecture showing the two stages for an image clas-
sification task.

FIGURE 2.13: Workflow stages of CNN architecture.

As a part of re-purposing pre-trained DCNNs, it is important to highlight that
DCNNs can learn hierarchical feature representations. This indicates that features
learnt by the first convolutional layer are generic while features learnt by the last
convolutional layer are specific to the problem domain. Generic features learnt by
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lower convolutional layers can be transferred and reused across other problem do-
mains.

To reuse a pre-trained model, it is crucial to change the number of neurons in the
classifier’s output layer to the number of classes of the classification task. Then, we
have to follow a fine-tuning process based on one of the following strategies:

1. Full training for the model: In this strategy, the full architecture (feature ex-
tractor and classifier stages) of the pre-trained model is utilised for training on
a particular dataset. It is recommended with this strategy to use a large dataset
as the model will be trained from scratch.

2. Partial training for the model: In this strategy, some layers will be trained,
while other layers will be left untrained (frozen). As mentioned earlier, the
lower layers of the network present generic features, and the higher layers
present specific layers. In this case, it is crucial to experiment with different
scenarios of training some layers and freezing others. A frozen layer indicates
that the weights in this particular layer remain unchanged during training.
Based on experimentation, it is a good practice to keep more layers frozen
when training a model with a high number of parameters on a small dataset.
On the other hand, if we have a large dataset with few parameters, it is recom-
mended to increase the model’s complexity by adding more layers as overfit-
ting is not going to be a problem.

3. Freeze feature extractor: In this case, we freeze all the convolutional and pool-
ing layers that are responsible for the feature extraction stage. The fundamen-
tal concept, in this case, is to preserve the feature extractor in its original state
(all the weights of the feature extractor remain unchanged). The classifier takes
the output generated from the feature extraction stage. This scenario is ideal
when computational capacity is limited, the used dataset is small, or the pre-
trained model is solving a problem similar to the problem which was trained
on before. Figure 2.14 presents a diagram with possible scenarios for applying
fine-tuning to pre-trained models (transfer learning strategies).

2.4.2 Overview of the used Pre-trained DCNN Architectures

Here, we describe the pre-trained DCNN architectures that have been used as the
backbone of our automated diagnosis systems. These architectures are based on the
CNN design explained above (feature extraction and classifier stages). There are
many DCNN architectures that showed promising performance for image classifi-
cation task: Xception [22], VGG [100], ResNet [37], DenseNet [41], MobileNet [40],
Inception [106], and EfficientNet [107].

Throughout time, DCNN architectures become deeper by adding more layers to
learn more complex patterns, enhance performance, and make architectures robust
for complex image recognition and classification tasks. However, it is found that
increasing the number of layers (i.e. architectures become deeper) beyond a partic-
ular extent leads to a vanishing gradient issue where it becomes increasingly harder
to train the architecture, and the architecture’s accuracy begins to saturate and sub-
sequently declines. The vanishing gradient problem occurs during the training of
DNNs with gradient-based learning techniques. Stochastic gradient descent is one
of the gradient-based learning methods. It is an optimisation method for finding
the optimal model parameters that lead to a minimised error function to reflect the
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FIGURE 2.14: Transfer learning strategies for deep learning tech-
niques.

optimal fit between predicted and ground truth outputs. In gradient-based learning
techniques, specifically during backpropagation, the weights of a DNN are adjusted
proportionally to the gradient value. The issue is that in some scenarios the gra-
dient shrinks exponentially, thereby the weights are not updated and the learning
stops [12]. In our research work, we utilised two popular DCNN architectures that
showed good performance and the ability to solve the issue stated above:

1. ResNet: Deep Residual network is one of the popular DCNNs that has been
introduced by researchers from Microsoft Research in 2015 [37] to fix the is-
sue of vanishing gradient. Deep Residual Networks are nearly identical to
networks that contain convolution, pooling, activation, and fully-connected
layers piled one on top of the other. The identity connection (skip connection)
between the layers is a unique modification to the basic network that makes it
a residual network. The skip connection bypasses training from a few levels
and links directly to the output. So instead of having layers learning the un-
derlying mapping, we let the network fit the residual mapping. The residual
block utilised in the network is shown in Figure 2.15. The identity connection
is represented by the curving arrow that comes out from the input and goes to
the summation point of the residual block.

The benefit of including this sort of skip connection is that if any layer degrades
the performance of the DCNN model, this will be bypassed by regularisation.
As a result, very deep networks can be trained without the issues caused by
vanishing gradients.

2. DenseNet: Densely connected convolutional neural network is another promis-
ing architecture proposed by Huang et al. [41] to alleviate the problem of van-
ishing gradients, improve feature propagation, and significantly reduce the
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FIGURE 2.15: Building block in residual learning. Adapted from [37].

number of parameters. DenseNet works in a feed-forward style by connecting
each layer to every other layer. Unlike traditional CNNs, which have L con-
nections (one connection between a particular layer and the following layer),
DenseNet has L(L + 1)/2 direct connections. For a current layer, the feature
maps generated from all previous layers are used as input, and the feature
maps generated from the current layer are then used by all subsequent layers.
Figure 2.16 presents a schematic layout of DenseNet. Unlike ResNet, which
combines features using summation, the features combined from previous lay-
ers are concatenated together.

FIGURE 2.16: Schematic layout of DenseNet. Adapted from [41].
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In our work, we utilised pre-trained ResNet-152 and DenseNet-161 networks
which are particular versions of ResNet and DenseNet architectures, respectively.
These pre-trained networks have been used for the feature extraction of an input
image in our contributions presented in chapters 4 and 5.

2.5 Summary

In this chapter, we provided an overview of deep learning. We explained the build-
ing blocks, the learning process, and the problems of DNNs. Then, we explained
DCNNs and its building blocks. Lastly, we presented transfer learning strategies
and an overview of the utilised pre-trained DCNN architectures in our contribu-
tions. In the next chapter, we conduct a literature review of the recent methods
applied to histopathology image analysis.
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Chapter 3

Literature Review in
Histopathology Image Analysis

In the previous chapter, we went through the main concepts of deep learning and
DCNN architectures that are important building blocks in our work. Here, we de-
scribe the related work conducted in the field of histopathology image analysis.

3.1 Overview

DCNNs have shown tremendous performance for image classification and other re-
lated Computer Vision (CV) tasks. As mentioned in chapter 2, DCNN design mainly
have two important stages: (1) feature extraction which is mainly responsible for the
extraction of features from the input image, and (2) classifier which presents the
final prediction (class label) of the input image. In this chapter, we thoroughly ex-
amine various image classification methods used in histopathology, which is the
study of tissues at a microscopic level. The methods we cover are based on both
single and ensemble learning techniques, and we delve into their key principles and
techniques, analysing their performance in classifying histopathology images.

We then turn our attention to recent context-aware models that preserve con-
textual information among different regions of an input image, which can lead to
improved accuracy in diagnosis. In addition, we review image classification models
that incorporate uncertainty measures, providing a way to quantify the degree of
uncertainty associated with a prediction. This information is particularly important
in medical imaging, where a misdiagnosis can have severe consequences. We also
examine the applications of deep learning in medical image analysis. The chapter
concludes with a discussion and summary of the key findings and insights, includ-
ing an examination of the research gaps in the field and potential solutions to address
these gaps.

3.2 Histopathology Image Classification Methods

Recent methods have been proposed to enhance the performance of classification for
histopathology image sections. For example, Nazeri et al. [73] proposed a two-stage
CNN model for the classification of breast histopathology images. Their model has
two stages: (1) patch-wise CNN, which takes image patches as input and extracts
salient features, and (2) image-wise CNN, which generates an image-level class pre-
diction for a particular input image. A work introduced by Koné et al. [51] presented
a CNN hierarchy system that categorises images from general pathological groups,
such as carcinoma and non-carcinoma, and then into the four normal, benign, in
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situ carcinoma and invasive carcinoma. A transfer learning approach has been de-
veloped by Vesal et al. [109] for the classification of breast histopathology images.
They used pre-trained versions of Inception-V3 and ResNet-50 CNN architectures
for extracting features from input image patches and classification. The CNN ar-
chitectures are pre-trained on the ImageNet dataset. Gupta et al. [35] proposed
a sequential framework for breast histopathology image classification which uses
multi-layered deep features that are generated from a fine-tuned DenseNet. Their
framework captures different magnifications for image regions that can include dis-
criminative features at different levels. A sample is taken from a certain deep layer
if it passes a particular confidence threshold.

Shi et al. [98] devised a pairwise-based deep ranking hashing (PDRH) tech-
nique for skeletal muscle and Lung cancer histopathology image classification and
retrieval that can extract features from images while also learning their binary rep-
resentations. Furthermore, their model retains the intra-class relevance order for
image retrieval while preserving the inter-class difference for image classification.
To accomplish these aspects, they created a pairwise matrix based on image labels
and their associated relevance order within the same class. Then, they developed an
objective function to learn binary image descriptions. Lastly, they created a super-
vised deep learning approach using the created objective function to learn features
and associated binary codes. To avoid the lack of annotated training samples in
histopathology images, Xia et al. [114] proposed a framework based on GoogLeNet
DCNN for the classification of histopathology data with minimal training datasets.
They suggested a method for classifying tumour patches from Whole Slide Images
(WSIs). Their method employs WSI from different cancer types in plenty to train a
CNN to discover the image representation of cellular components, which can then
be transferred and tuned for tumour identification in WSI histopathology images
in scarcity. Roy et al. [85] developed a patch-based classifier (PBC) that uses CNN
to classify breast histopathological images. The suggested method operates in two
modes: one patch in one decision (OPOD) and all patches in one decision (APOD).
The proposed PBC predicts the patch’s class label using OPOD mode. If the class
label for all extracted patches matches the class label for the image, the result is con-
sidered an accurate classification. In the other mode, APOD, the class label of each
extracted patch is extracted as in OPOD, and the class label of the image is deter-
mined using a majority vote process.

The work introduced by Li et al. [61] proposed a histopathology image classifi-
cation model which extracts small- and large-sized patches from image and applies
ResNet-50 to extract different levels of patch features (considering features at the
cell and tissue levels). They designed a patch screening method and a CNN which
filters out patches of a particular image that lack enough and useful information
that relate to image label and picks discriminative patches. The screening method
used is based on a clustering algorithm that groups image patches according to their
phenotypes. They employed SVM for final image-wise classification. The work in-
troduced by [58] has presented a self-interpretable invasive breast cancer diagnosis
approach due to the variability of cancer progression as well as the variety of be-
nign tissue generative lesions in breast cancer histopathology images. The method
employs contrasting characteristics and features between normal and malignant im-
ages in a weak-supervised style with limited annotation information, generating a
probability map of anomalies to evaluate its reasoning. To discover the main struc-
tural patterns among normal image patches, a fully convolutional auto-encoder is
utilised. A one-class support vector machine and a one-layer neural network are
employed to recognise and evaluate patches that do not share the features of this
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normal population. Sun et al. [104] suggested a deep learning approach for cat-
egorisation of liver histopathology images that utilises global labels only. Due to
the complexity of features and the scarcity of annotated training instances for liver
histopathology images, patch-level features are collected and employed by transfer
learning in conjunction with multiple-instance learning to produce image-level fea-
tures for final classification. Alom et al. [4] proposed a hybrid architecture named In-
ception Recurrent Residual Convolutional Neural Network (IRRCNN) that has been
used for the classification of breast cancer histopathology images. Their model com-
bines Inception-V4, ResNet, and Recurrent Convolutional Neural Network (RCNN)
introduced in [63]. The IRRCNN model consists of stacks that has convolutional
layers, inception recurrent residual units (IRRU), transition blocks, and a softmax
output layer.

Rui et al. proposed DenseNet121-AnoGAN [68] for the classification of breast
histopathology images as benign or malignant. Their proposed architecture has
two stages: (1) patch screening method, which applies screening to mislabelled
patches with unsupervised anomaly detection utilising generative adversarial net-
works (AnoGAN) and (2) multi-layered feature extraction from discriminative patches
using (DenseNet). Another work proposed by Hirra et al. [39] employed Deep Belief
Network (DBN) to construct a patch-based deep learning system called Pa-DBN-BC
to identify and classify breast cancer histopathology images. The Pa-DBN-BC model
includes four main stages: preprocessing, patch production, DBN, and classification.
To extract features from input image patches, an unsupervised pre-training and su-
pervised fine-tuning phase is performed. The patches of the histopathology images
are then categorised using logistic regression. The model’s output is presented in
the form of a two class probability distribution where probability values differenti-
ate between cancer samples (positive) or non-cancer samples (negative). Jiayun et al.
[55] developed a multi-resolution multiple instance learning (MIL) model for fine-
grained grade prediction that employs significant feature map representations to
detect suspicious image areas. Their model can be trained end-to-end utilising slide-
level annotations only, rather than region- or pixel-level annotations. The model is
evaluated on WSI large-scale prostate biopsy dataset.

Sornapudi et al. [101] introduced a Deep Learning (DL)-based nuclei detection
technique, which is based on collecting localised information through super-pixels
generation using a basic linear iterative clustering algorithm and training with a
CNN. Their framework detects nuclei and classifies them into one of squamous ep-
ithelium cervical intraepithelial neoplasia (CIN) grades. The work introduced by
Li et al. [56] proposed a DCNN architecture based on Xception network for fine-
grained classification in breast cancer histopathology images. Their architecture has
three stages. First, they integrated multi-class recognition and verification tasks of
image pairs into the representation learning process. Second, a piece of prior knowl-
edge is developed during the feature extraction process, where the variance in fea-
ture outputs between different sub-classes is significantly large while the variance
within the same subclass is minimal. Finally, the feature extraction method incor-
porates prior knowledge that histopathological images with various magnifications
belong to the same classification. Awan et al. [10] introduced a metric called Best
Alignment Metric (BAM) to measure the shape of the glands in colon cancer. They
showed a correlation between the glandular shape metric and class grade of the tu-
mour class. Their model is based on a DCNN for detecting gland boundaries and
a support vector machine (SVM) classifier is used for deciding the grade of can-
cer. Arvaniti et al. [8] presented a DL approach for automated gleason grading of
prostate cancer tissue micro-arrays with hematoxylin–eosin staining. Their system
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was trained using detailed Gleason annotations.
The work presented by [2] proposed a classification model for breast cancer im-

ages. They utilise a patch selection method to classify histopathology images us-
ing transfer learning. They first extract patches from WSIs then Efficient-Net is
used to generate patch features which are then used to by SVM classifier for final
classification. Kanavati et al. [45] introduced a deep learning model for identify-
ing transbronchial lung biopsy (TBLB) WSIs as adenocarcinoma (ADC), squamous
cell carcinoma (SCC), small-cell lung cancer (SCLC), or non-neoplastic. Their ap-
proach is made up of a CNN and a Recurrent Neural Network (RNN) to acquire
patch predictions and aggregate patch predictions into a single WSI classification,
respectively. Jiahui et al. [54] proposed that integrating pixel-level and image-level
annotation can lead to even greater improvements. In computational pathology,
this is problematic since the high resolution of WSIs makes end-to-end classifica-
tion model training challenging. To address this, they created a hybrid supervised
learning approach for gastric histopathology high-resolution images that included
sufficient image-level coarse annotations as well as a few pixel-level fine labels. With
the use of coarse image-level labels, this strategy can enhance generated pixel-level
pseudo-labels when used for training patch models.

Due to challenges of achieving acceptable classification performance with few
labelled samples, [112] proposed a deep transferable semi-supervised domain adap-
tation model (HisNet-SSDA) for classification of histopathology WSIs. Their method
is based on information being transferred from a highly labelled source domain to a
partially labelled target domain via semi-supervised domain adaptation. To begin,
a pre-trained network known as HisNet is used to extract high-level characteristics
from randomly selected patches in the source and target domains. The properties
of the two domains are then matched using a multiple-weighted loss functions cri-
terion with a new manifold regularisation term in semi-supervised domain adapta-
tion. Finally, the estimated probabilities of the sampled patches are added together
to get the final image-level categorisation. A multi-layer hidden conditional random
fields (MHCRFs)-based cervical histopathology image classification (CHIC) model
[53] is employed with a weakly supervised learning approach to detect good, inter-
mediate, and poorly differentiated stages of cervical cancer. Their strategy begins
with the extraction of deep learning features from histopathological image patches.
The collected features are then utilised to produce patch-level classification proba-
bilities via neural network, support vector machine, and random forest classifiers.
Effective classifiers are then chosen to create unary and binary potentials. Finally,
using the potentials generated, the MHCRF model predicts image-level classifica-
tion results. The work introduced by Xiang et al. [115] indicated that WSI analysis
can be performed efficiently by merging data at both local and regional levels. They
expressed local information by auto-encoding the visual signals in each patch of
WSI into a latent embedding vector, while regional information was represented by
a down-sampled WSI with several scales. The WSI label is then predicted using a
Dual-Stream Network (DSNet), which takes as input updated local patch embed-
dings and multi-scale thumbnail images. This input helps in training their model by
using image-level annotations only.

Despite the success of single CNNs, several computer vision challenging prob-
lems (such as the limited availability of training images, high-level of noise, and high
variability of the morphological architecture of region of interest in images) still per-
sist. Multiple CNN models (ensemble models) are required to introduce diversity in
learning and cope with complicated cases.
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Due to the challenging problems stated above concerning histopathology im-
ages, researchers proposed the adoption of the ensemble approach. This approach
is based on the combination of multiple DCNN models with different learning per-
spectives, which consequently improves diagnosis accuracy. For example, Chen-
namsetty et al. [20] proposed an ensemble of three CNNs trained on various pre-
processing normalisation settings. The goal of this work was to demonstrate that no
single architecture or pre-processing setting can deliver superior performance. The
work introduced by Yang et al. [120] suggested an Ensemble of Multi-Scale Net-
work (EMS-Net) CNN ensemble model for classifying hematoxylin-eosin stained
breast histopathology images. EMS-Net can extract features at several scales by em-
ploying several pre-trained CNN models and selecting the best subset of fine-tuned
deep models. Kassani et al. [46] developed an ensemble of deep learning models for
automated binary categorisation of breast histopathology images. The suggested
model is built using three pre-trained CNNs: VGG19, MobileNet, and DenseNet.
The ensemble model was utilised to extract features, which were then inserted into
a multi-layer perceptron classifier for the classification task.

Nguyen et al. [74] developed a feature concatenation and ensemble approach
to combine numerous CNNs with varying depths and architectures to increase the
accuracy of biomedical image classification, including images of cervical cancer. The
proposed model comprises three pre-trained transfer learning models (Inception-v3,
ResNet152, and Inception-ResNet-v2) plus a fourth model that operates as a multi-
feature-extractors model. This feature extraction module concatenates the three fea-
ture maps taken from the three basic models into a larger feature vector. The four
feature maps are produced using an ensemble learning approach (three from the
base models and one from the multi-feature descriptor). Marami et al. [69] pro-
posed an automated classification method for identifying the micro-architecture of
tissue structures in breast histopathology images. Their proposed architecture is
based on ensembling multiple inception networks which are trained using different
data subset sampling and image perturbation. Their inception network is modi-
fied by using adaptive pooling, which increases the practical utility of their trained
network, as it can be applied to images with minor scale changes from the input
training images. Hameed et al. [36] introduced an ensemble model for the classifi-
cation of non-carcinoma and carcinoma breast cancer histopathology images. They
used different models based on pre-trained VGG16 and VGG19 architectures. Then
they followed an ensemble strategy by taking the average of predicted probabili-
ties. The work introduced in [30] proposed an ensemble of DCNNs for multi-class
classification and textural segmentation of histopathology colorectal cancer tissues.
The work presented by Xue et al. [117] introduced an Ensemble Transfer Learning
(ETL) framework to classify cervical histopathology images that are well, moderate,
or poorly differentiated. They used TL structures based on Inception-V3, Xception,
VGG-16, and Resnet-50. Then, to improve classification performance, a weighted
voting EL technique is implemented.

Guo et al. [34] proposed a hybrid CNN based on GoogLeNet to merge local and
global information. They introduced a patch-level CNN to capture local information
and an image-level CNN to generate global features. Both local classification scores
and global classification scores are combined to pick the optimal match for each in-
put image. They also introduced a bagging approach and a hierarchical voting strat-
egy. To apply this, multiple models are trained initially using various data splitting
and sampling methods, and then image classification is done via hierarchical (patch-
level and image-level) voting. Similar work introduced by Zhu et al. [126] proposed
a hybrid CNN for the classification of breast histopathology images by assembling
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multiple compact CNNs. Their architecture is built using a local model, which cap-
tures local information from image patches extracted from the input image, and a
global model, which takes a down-sampled version of the input image and extracts
global information. The predictions generated from both models are then weighted
to generate the final prediction. In the work introduced by Hongdou et al. [121], they
proposed a parallel structured framework which uses CNN and RNN in a parallel
fashion style for the classification of breast histopathology images. They extract im-
age features using both networks, and then using a perceptron attention mechanism
they merge the features extracted from the two networks. The work proposed by
Vang et al. [108] presents a deep learning model that performs patch-level categori-
sation using Inception-V3. The model works by extracting patch-level predictions
using Inception-V3, then these predictions are then inserted into an ensemble fusion
architecture which includes majority voting, gradient boosting machine (GBM), and
logistic regression. A fully convolutional auto-encoder is then used to identify the
dominant structural patterns among normal image patches. To recognise and assess
patches that do not share the characteristics of the normal population, a one-class
support vector machine and a one-layer neural network are utilised.

All the mentioned work using ensemble learning has shown different methods to
improve the performance of diagnosis using the standard ensemble approach which
combines all the models in the ensemble architecture. However, they lack the usage
of contextual information strategy which is of importance as it is used to build spa-
tial dependencies among different image regions specifically with high-resolution
histopathology images. This approach helps to improve the performance of diag-
nostic models.

3.3 Context-aware Methods for Histopathology Image Clas-
sification

In histopathology image analysis, the importance of learning contextual information
using DCNN has been introduced for the image classification task. The contextual
information aids in preserving the spatial dependencies of a particular image region
to cover a large tissue region (i.e. the surroundings of a region). The results shown
from different studies indicate that contextual information plays a vital role in re-
ducing anomalies in heterogeneous tissue structures.

Ruqayya et al. [9] presented a two-stage context-aware technique consisting of
two major steps: (1) a patch-based deep CNN based on ResNet-50 to extract signif-
icant features from image patches, (2) a separate SVM classifier to perform image-
based classification using the features generated from overlapping patches. Their
model is developed to acquire contextual information between image patches. Simi-
larly, Ehteshami et al. [27] proposed a context-aware stacked CNN model to classify
breast WSIs. They built their model in two stages: first, they trained a CNN to pre-
serve the cellular-level information from image patches, and then placed a Fully
Convolutional Network (FCN) on top of that to allow for the merging of global
inter-dependency of structures to encourage predictions in neighbouring regions.
Likewise, Huang et al. [42] proposed a deep fusion network to capture the spatial
relationship among histology image patches. This is by adopting a residual network
to learn visual features from cellular-level to large tissue organisation. Consequently,
a deep fusion network has been developed to model the inconsistent construction of
distinctive features over patches and rectify the predictions of the residual network.
Yan et al. [119] proposed a hybrid model by integrating convolutional and recurrent
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deep neural networks for breast cancer histology image classification. It considers
the short-term and long-term spatial correlations between image patches using a
Bidirectional Long Short-Term Memory (LSTM) network. This is done by extract-
ing feature representations from image patches of a histopathology image and then
feeding the extracted features into the bidirectional LSTM to preserve the spatial
correlations among the feature representations.

The work presented in [113] developed a weakly supervised technique for the
classification of WSIs of lung cancer. They used patch-based FCN for discriminatory
block retrieval and also introduced context-aware feature selection and aggregation
to generate an all-encompassing holistic WSI description. Shaban et al. [92] pro-
posed a two-stacked CNN for colorectal image classification. This is done by inte-
grating a larger context by using a context-aware neural network. To make a final
prediction, the model transforms the local representation of a histopathology image
into high-dimensional features and then combines the features by perceiving their
spatial arrangement. Zhou et al. [125] introduced a new cell-graph convolutional
neural network (CGC-Net) for grading of colorectal cancer. Their network trans-
forms each large histopathology image into a graph, with each node represented by
a nucleus within the input image and cellular associations denoted as edges among
these nodes based on node similarity. The network uses local features of the nuclei
and spatial dependencies of the nodes to enhance the model performance.

The work presented by Pati et al. [77] has suggested a hierarchical cell-to-tissue
graph (HACT) representation to improve the structural description of histopathol-
ogy tissue. Their method consists of two sorts of graph. First, a low-level cell-graph
that shows cell morphology and interconnections. Second, a high-level tissue-graph
that captures the morphological properties and spatial distribution of tissue sections.
Moreover, their method captures cells-to-tissue hierarchies that integrate the rela-
tive spatial patterns of cells in relation to tissue distribution. A hierarchical graph
neural network (HACT-Net) is also developed to translate HACT presentations into
histopathological breast cancer subtypes. HistoGAN has been suggested by Xue et
al. [118] to improve the categorisation of histopathology images. It employs con-
ditional Generative Adversarial Networks (GAN) to generate realistic histopathol-
ogy image patches based on class labeling. They devised a synthetic augmenta-
tion method that includes HistoGAN-generated synthetic image patches selectively
rather than increasing the training set directly using synthetic images. The frame-
work maintains the quality of synthetic augmentation by selecting synthetic images
based on the reliability of their assigned labels and their feature similarity to actual
labelled images. They showed that employing HistoGAN-generated images with
selective augmentation increases classification performance considerably.

The work introduced by Li et al. [59] developed HCRF-AM (Hierarchical Condi-
tional Random Field based Attention Mechanism) for gastric histopathology image
categorisation. The HCRF-AM model consists of two components: an Attention
Mechanism (AM) and an Image Classification module (IC). In the AM component,
an HCRF model is developed to capture attention regions. The IC component trains
a CNN using the provided attention regions and then uses an ensemble learning
approach based on probability distribution to produce image-level results from the
patch-level output of the CNN. Chen et al. [19] created an interactive WSI diagnosis
method for thyroid frozen sections based on pathologists’ selected suspicious spots.
Their technique is based on producing feature patterns for suspect locations by ac-
quiring and fusing patch features using DNNs. The feature representations are then
used to evaluate four classifiers and three supervised hashing algorithms for region
classification and retrieval. Sharma et al. [95] proposed Cluster-to-Conquer (C2C),
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an end-to-end architecture that separates a WSI’s patches into k-groups, selects k’s
patches from each grouping for training and applies an adaptive attention method
to provide final slide prediction. They demonstrated that partitioning a WSI into
clusters helps model training by presenting it to a range of discriminative properties
extracted from patches. The study published in [97] proposed a Deformable Condi-
tional Random Field (DCRF) model to learn the offsets and weights of neighbouring
patches of WSIs in a spatially adaptive manner. They also employed adaptive ad-
justed offsets in a WSI to locate patches with more robust feature representations
rather than overlapping patches.

Shao et al. [94] developed a framework named correlated MIL to solve the issue
of ignoring the connection between distinct instances. They designed a Transformer-
based MIL (TransMIL) which focused on both morphological and contextual infor-
mation. The proposed TransMIL can handle unbalanced/balanced and binary/multiple
classifications. Another work proposed by [18] provided a broad approach for au-
tonomously diagnosing various types of WSIs using unit stochastic selection and
attention fusion. A single unit on a histopathology slide could be a cell on a cy-
topathology slide. Their method starts with training a unit-level CNN to achieve
two goals: building feature extractors for the units and determining the non-benign
probability of each unit. Then, based on CNN’s findings, they use a stochastic se-
lection approach to choose a small segment of non-benign units known as Units
Of Interest (UOI). After then, the attention mechanism is employed to combine the
UOI representations into a fixed-length description for the WSI’s diagnosis. Cam-
panella et al. [15] introduced a DL technique based on MIL that uses the provided
diagnoses only as labels for training, avoiding costly and time-consuming pixel-by-
pixel manual annotations. MIL is utilised in the built framework to train DNNs,
resulting in tile-level feature representation. These representations are then used by
RNN to integrate the information throughout the whole slide and provide the final
classification result. The study reported in [111] proposed the use of Graph Convo-
lutional Networks (GCNs) to model the spatial organisation of cells as a graph in
a weakly-supervised approach for grade classification in tissue microarrays (TMA).
Changjiang et al. [123] introduced a framework that integrated features from dif-
ferent magnifications of WSIs to achieve classification and localisation of colorectal
cancer using only global labels. Haoyuan et al. [17] presented the IL-MCAM frame-
work for colorectal histopathology image classification, which is based on attention
processes and interactive learning. The framework is divided into two stages: auto-
matic learning (AL) and interactive learning (IL). The AL stage contains three inde-
pendent attention mechanism channels and CNNs to extract multiple channel fea-
tures for classification. For the IL stage, the system employs an interactive approach
to continuously include misclassified images into the training set, hence improving
the model’s classification performance.

The context-aware approach proved to be improving the performance of DL-
based models for histopathology image diagnosis. However, nowadays, it is crucial
to enhance trust in models by introducing a measure of confidence in the developed
models. Therefore, clinical practice needs to present models that measure the uncer-
tainty of samples’ predictions and as well aid in increasing the level of reliability of
automated diagnosis systems.
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3.4 Uncertainty Quantification for Medical Image Analysis

As an important initial step to explainable classification and segmentation models, it
is required to measure the uncertainty of the predictions obtained by machine learn-
ing and deep learning methods [1]. A few recently proposed image segmentation
and classification approaches have adopted an uncertainty quantification compo-
nent for medical image analysis. For example, Simon et al. [33] used a measure of
uncertainty in a CNN-based model using an instability map to highlight zones of
equivocalness. Fraz et al. [28] proposed a framework for micro-vessel segmentation
with an uncertainty quantification component for H&E stained histology images. A
calibration approach [62] has been designed in a way to preserve the overall classifi-
cation accuracy as well as improve model calibration. It provides an Expected Cali-
bration Error (ECE), which is a common metric for quantifying miscalibration. Their
approach can be easily attached to any classification task and showed the ability to
reduce calibration error across different neural network architectures and datasets.
Mobiny and Singh [72] proposed a Bayesian DenseNet-169 model, which can acti-
vate dropout layers during the testing phase to generate a measure of uncertainty for
skin-lesion images. They investigated how Bayesian deep learning can help the ma-
chine–physician partnership perform better in skin-lesion classification. In another
research, Raczkowski et al. [79] proposed an accurate, reliable and active Bayesian
network (ARA-CNN) image classification framework for classifying histopathology
images of colorectal cancer. The network was designed based on residual network
and variational dropout.

The methods presented in this section lack either standard ensemble or the elas-
ticity of ensemble of multiple DNN models based on uncertainty measures. A dy-
namic ensemble based on a measure of confidence in image predictions is crucial
to increase the trust in an automated diagnosis system by (1) making sure that only
models with a pre-defined degree of confidence contribute to the final image predic-
tion, and by (2) flagging out cases that are hard to classify confidently by the model
for further inspection (excluding the untrustable samples from the perspective of
uncertain predictions). Table 3.1 presents characteristics of all the medical image
analysis methods presented in this chapter.

TABLE 3.1: Characteristics of histopathology image classification
methods.

Method Object type Feature type Multi-scale Ensemble Uncertainty Accuracy
Two-Stage
CNN [73]

Breast Local &
global

No No No 95%

Hybrid CNN
[34]

Breast Local &
global

No Yes No 87.5%

Hierarchical
CNN [51]

Breast Contextual No No No 96%

Inception and
ResNet [109]

Breast Local No No No 97.5%

Multi-layered
framework
[35]

Breast Local Yes No No 94.71%

Continued on next page
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Table 3.1 – continued from previous page
Method Object type Feature type Multi-scale Ensemble Uncertainty Accuracy

PDRH [98] skeletal
muscle &
Lung

Local No No No 97.49%

Parallel
CNN-RNN
[121]

Breast Local No Yes No 89%

multiple com-
pact CNNs
[126]

Breast Local &
global

No Yes No 87.2%

Ensemble Fu-
sion Architec-
ture [108]

Breast Local No Yes No 87.5%

Patch-level
tumour clas-
sification
[114]

Lymph
node
metastases
& Prostate

Local No No No 84.3%

PBC [85] Breast Local No No No 90%
Patch screen-
ing method
[61]

Breast Local &
global

Yes No No 88.89%

Pattern Min-
ing Auto-
encoder [58]

Breast Local No No No 76%

Liver Cancer
classifier [104]

Liver Local No No No 98%

IRRCNN [4] Breast Local No No No 96.76%
GCNs [111] Prostate Contextual No No No 96.59%
DenseNet121-
AnoGAN [68]

Breast Local No No No 99.38%

HACT-Net
[77]

Breast Contextual No No No 62.89%
(F1-
Score)

HistoGAN
[118]

Cervical
& Lymph
node
metastases

Contextual Yes No No [94.8%,
82.1%]

Pa-DBN-BC
[39]

Breast Local No No No 86%

Multi-
resolution
model using
MIL [55]

Prostate Local &
global

Yes No No 92.7%

HCRF-AM
[59]

Gastric Contextual No Yes No 91.4%

Super-pixels
nuclei detec-
tion [101]

Cervical Local No No No 95.97%

Continued on next page
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Table 3.1 – continued from previous page
Method Object type Feature type Multi-scale Ensemble Uncertainty Accuracy

Multi-task
Xception [56]

Breast Local No No No 94.8%

BAM-DCNN-
SVM [10]

Colorectal Local &
global

No No No 91%

Unit Stochas-
tic Selection
[18]

Thyroid
frozen,
Colonoscopy,
and Cervi-
cal

Contextual No No No [98.3%,
85.1%,
83%]

Global labels
framework
[123]

Colorectal Contextual Yes No No 94.6%

MobileNet
gleason grade
classification
[8]

Prostate Local &
global

No No No 75%

Context CNN
[92]

Colorectal Contextual No No No 95.7%

CGC-Net
[125]

Colorectal Contextual No No No 97%

Inception En-
semble [69]

Breast Local No Yes No 84%

VGG Ensem-
ble [36]

Breast Local No Yes No 95.29%

Tumour
detection
Ensemble [30]

Colorectal Local No Yes No 96.16%

MIL + RNN
[15]

Breast &
Prostate

Contextual No No No [99.1%,
93%
(AUC)]

EfficientNet +
SVM [2]

Breast Local &
global

No No No 96.99%

Patch fusing
+ classifica-
tion [19]

Frozen
section
thyroid

Contextual No No No 96.1%

Hybrid su-
pervised
learning ap-
proach [54]

Gastric Local No No No 97.05%

Cluster-to-
Conquer
(C2C) [95]

Breast &
gastroin-
testinal
disease

Contextual No No No [91.12%
(AUC),
86.2%]

HisNet-SSDA
[112]

Colon Local No No No 94.32%

MHCRFs [53] Cervical Local No No No 93%
DSF-Net [42] Breast Contextual No No No 95%

Continued on next page
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Table 3.1 – continued from previous page
Method Object type Feature type Multi-scale Ensemble Uncertainty Accuracy

Hybrid LSTM
[119]

Breast Contextual No No No 91.3%

DSNet [115] Breast &
Lung

Local &
global

Yes No No [93%,
69.6%]

CNNs En-
semble
(different
Normalisa-
tion settings)
[20]

Breast Contextual No Yes No 87%

EMS-Net
[120]

Breast Local Yes Yes No 91.75%

TransMIL [94] Breast &
Lung &
Renal

Contextual No No No [94.66%,
88.37%,
88.35%]

VGG19, Mo-
bileNet, and
DenseNet En-
semble [46]

Breast Local No Yes No 95%

Three CNNs
and multi-
feature-
extractors
model [74]

Cervical Local &
global

No Yes No 93.04%

ResNet-50 +
SVM [9]

Breast Contextual No No No 83%

Wide ResNet
+ FCN [27]

Breast Contextual No No No 81.3%

DCRF model
[97]

Colorectal Contextual No No No 94.68%

IL-MCAM
[17]

Colorectal Contextual No No No 98.98%

MILD-Net
[33]

Colon Local &
global

No No Yes 91.4%
(F1-
Score)

FABnet [28] Oral Local &
global

No No Yes 96.3%

Expected
Calibration
Error (ECE)
Method [62]

4 medical
datasets

Local No No Yes [94.1%,
88.41%,
87.96%,
71.06%]

Bayesian
DenseNet-169
[72]

Skin lesion Local No No Yes 90%

Continued on next page
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Table 3.1 – continued from previous page
Method Object type Feature type Multi-scale Ensemble Uncertainty Accuracy

Bayesian
network
(ARA-CNN)
[79]

Colorectal Local No No Yes 92.44%

ETL frame-
work [117]

Cervical Local No Yes No 97.03%

3.5 Applications of Deep Learning for Medical Image Anal-
ysis

DL-based methods have been very effective by introducing applications for multi-
ple purposes that showed tremendous performance. It is important to highlight here
two types of applications that are used for medical image analysis: diagnosis appli-
cations and grading applications. Diagnostics of medical images are considered the
basic level of differentiation between different class boundaries. For instance, cancer
images could be divided into benign and malignant images. The DL-based auto-
mated diagnosis applications which use this type of approach work on extracting
features from input images and then these features are used to differentiate between
the morphological structures of tissues in benign samples and malignant ones. Sim-
ilarly, MCUa diagnosis model [91] works in differentiating between different classes
of breast cancer samples: normal tissue, benign lesion, in situ carcinoma, and inva-
sive carcinoma (multi-class classification task). MCUa is considered as a diagnosis
application which can be applied to either binary or multi-class classification tasks.
On another level, as a more challenging task, DL-based automated grading appli-
cations are mainly based on differentiating between different grades of cancer. This
type of grading application is important to identify suitable treatment plans based
on the level of cancer and how far is the cancer spreading in a particular body’s or-
gan. For instance, the 3E-Net grading model [90], which is our first contribution in
the thesis, works on differentiating between (i.e. classifying) different grade levels
of invasive breast carcinoma samples (three grades).

3.6 Discussion

The related work mentioned in this chapter showed different methods to improve
classification performance. Single architectures have been proposed to introduce a
simple design for a deep learning model. However, these single architectures lack
learning diversity, which is paramount for improving classification performance to
higher levels. Single architectures usually show poor performance when compared
to standard ensemble architectures [35, 51, 73, 98, 104, 109, 114]. The existence
of multiple models in an ensemble structure with various learning strategies aims
to have different analysis perspectives for the features extracted from input data.
This consequently helps in generating more accurate classification decisions and en-
hances performance. Ensemble learning is one of the strategies used to combine pre-
dictions from different learners. This method aims to introduce diversity in learning.
However, combining all learners in an ensemble architecture may show sub-optimal
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results when we have some learners that are less confident about a particular predic-
tion [20, 30, 69, 74, 120, 126]. Therefore, the elastic ensemble is an effective strategy
for using only the most confident learners for the final model prediction.

A drawback noticed in single and ensemble architectures is that they lack multi-
level learning for contextual information, which builds spatial dependencies among
different image regions. This type of information helps to build a better contex-
tual vision for the whole image instead of working on separate image regions. The
context-based methods mentioned in this chapter showed improvement in the per-
formance. However, they lack an uncertainty quantification method that is crucial
for clinical practice and to show how confident a generated prediction is. Although
uncertainty quantification-based methods mentioned in this chapter showed the im-
portance of presenting uncertainty measures, they either lacked the usage of elastic
ensemble which is pivotal for model actionability (decision making for uncertain
images) or applying contextual information for the input medical samples.

The drawbacks presented in the related work mentioned in this chapter moti-
vated us on taking advanced steps and reduce the gap of the challenges presented
in medical image analysis. This has been done by providing effective automated
grading/diagnosis applications which feature: (1) usage of diverse learning strate-
gies for input images by utilising multiple image scales, (2) diversity in the extrac-
tion of image features using multiple pre-trained CNNs, (3) applying multi-level
contextual information for different image regions, and (4) the usage of uncertainty
quantification using different methods.

3.7 Summary

In this chapter, we reviewed different histopathological image analysis methods
from different perspectives (i.e. single architectures, ensemble architectures, context-
based architectures, and uncertainty-based methods). The challenges we found in
the related work as described in Section 3.6 motivated us to develop robust and ef-
fective systems that are beneficial for clinical practice. First, we developed 3E-Net
model for classifying invasive breast carcinoma images into different grades. 3E-Net
includes the development of elastic ensemble of deep learning models which learn
contextual information among input image patches and uncertainty quantification
using Shannon Entropy. Second, we developed MCUa model for the classification
of breast cancer histopathology images. This model includes the development of
advanced multi-level context-aware models for learning multi-level contextual in-
formation among image patches and a flexible uncertainty quantification method
using MC dropout. 3E-Net and MCUa have been used for two different applications:
grading and diagnosis, respectively. They filled the gap of introducing models that
have diversity in contextual learning and usage of uncertainty measure. Moreover,
they introduced robust design and actionability by having elasticity in the ensem-
ble architecture developed and an exclusion mechanism that excludes images based
on their high uncertainty. Third, we developed an automated actionable method
for optimising deep learning models. This method aids in introducing automated
actionability for the developed deep learning models when dealing with uncertain
samples. In the next chapter, we present our first contribution 3E-Net model [90].
The chapter includes 3E-Net model’s methodology and the comprehensive experi-
mental study conducted.
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Chapter 4

3E-Net: Entropy Elastic Ensemble
Model for Classifying Grades of
Invasive Breast Carcinoma Images

In the previous chapter, we reviewed the literature work conducted in the field of
medical image analysis and we discussed the drawbacks of the proposed methods
in the literature and how those drawbacks motivated us to develop the contributions
presented in this thesis. In this chapter, our first contribution, 3E-Net for classifica-
tion of invasive breast carcinoma histopathology image grades is explained in detail.
The chapter includes the datasets used, the model methodology and the compre-
hensive experimental study conducted. Findings reported in this chapter have been
published in [90].

4.1 Overview

Automated grading systems using deep convolution neural networks (DCNNs) have
proven their capability and potential to distinguish between different breast cancer
grades using digitised histopathological images. In digital breast pathology, it is
vital to measure how confident a DCNN is in grading using a machine-confidence
metric, especially with the presence of major computer vision challenging problems
such as the high visual variability of the images. Such a quantitative metric can be
employed not only to improve the robustness of automated systems, but also to as-
sist medical professionals in identifying complex cases. In this chapter, we present
Entropy-based Elastic Ensemble of DCNN models (3E-Net) for classifying grades of
invasive breast carcinoma microscopy images which provides an initial stage of ex-
plainability (using an uncertainty-aware mechanism adopting entropy). Our model
has been designed in a way to (1) exclude images that are less sensitive and highly
uncertain to our ensemble model, and (2) dynamically grade the non-excluded im-
ages using the certain models in the ensemble architecture. We evaluated two vari-
ations of 3E-Net on an invasive breast carcinoma dataset and we achieved grading
accuracy of 96.15% and 99.50%.

The chapter is organised as follows. Section 4.2 presents detailed introductory of
the background and the developed work. Section 4.3 discusses, in detail, the archi-
tecture of our developed 3E-Net model. Section 4.4 describes the dataset used, our
experimental results, and discusses our findings. Section 4.5 discusses the impact of
3E-Net and the motivation for the upcoming contribution.
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4.2 Introduction

Breast cancer is a major public health concern around the world, where its preva-
lence rate is the second-highest rate for women (excluding lung cancer) among all
forms of cancer [99]. The study of histopathological images remains the most com-
monly used tool for diagnosing and grading breast cancer, even with the substantial
advances in medical science. Early diagnosis can dramatically improve the effec-
tiveness of therapy. The symptoms and signs of breast cancer are numerous, and the
diagnosis encompasses physical analysis, mammography, and confirmed by core
needle biopsy tissue (CNB) from the suspicious breast area. The sample tissue ex-
tracted from the CNB process demonstrates the cancerous cells and the grade of can-
cer associated with them. Pathologists typically look for certain characteristics that
can help them predict disease prognosis during the visual inspection of the biopsy
specimen of the tissue (i.e. what is the likelihood of cancer spreading and growing?).

For tumour grading, pathologists usually use the Nottingham scoring system
that depends on morphological changes including glandular/tubular formation, nu-
clear pleomorphism, and mitotic count [3]. Due to the high visual variability of the
samples in terms of their morphological structure, visual qualitative grading assess-
ment is a time-consuming and laborious process [83]. In the context of histopatho-
logical image analysis, grading of invasive breast cancer provides many challenging
problems. First, there are variations in subjective criterion evaluation between ob-
servers when it comes to diagnosis/grading. Second, it is difficult to capture the
proper combination of features and the morphological heterogeneity within the tu-
mour regions [50, 83]. Such challenges usually lead to substantial effort and exhaus-
tive manual qualitative study from pathologists. Thanks to computational pathol-
ogy which helped in alleviating this burden in recent years. In computational pathol-
ogy, deep learning (DL) approaches have made tremendous progress and achieved
outstanding results, leading many researchers to provide automated and unbiased
solutions for several different histopathological image analysis applications includ-
ing breast cancer grading and tissue classification [65]. Deep convolution neural
networks (DCNNs) are the most commonly used type of DL approaches, demon-
strating outstanding performance in extracting image salient features for the differ-
ent computational pathology applications [96].

Despite the prevalence of DCNNs in several histopathological image analysis
applications including grading, the ability of a single DCNN model to obtain dis-
criminatory features is constrained and usually results in sub-optimal solutions [9,
42, 73]. As a consequence, an ensemble of DCNN models has been proposed to con-
serve the description of histopathological images from recognisable perspectives to
a more precise classification [120]. More importantly, to the best of our knowledge,
previously proposed DCNN-based diagnosis tools lack a preliminary measure of
uncertainty, which is an initial important step towards an explainable computational
pathology. Developing an uncertainty quantification component can contribute to
the recognition of multiple regions of ambiguity that may be clinically instructive.
It also allows pathologists and medical professionals to rate images that should be
prioritised for pathology annotations. Despite the existence of DCNN models and
their high potential in minimising the workload burden from pathologists, a limited
number of microscopy images would require pathologists’ assistance.

In this chapter, we introduce a novel Entropy-based Elastic Ensemble of DCNN
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models (3E-Net) 1 for the automated classification of grades of breast carcinoma us-
ing histopathological images. 3E-Net has an elasticity capability in allocating dif-
ferent classifiers (e.g. DCNNs) for each particular image. To put it differently, the
term "elastic" implies that the number of classifiers selected in the ensemble archi-
tecture to contribute to the final image prediction can differ for each image. Our
model is supported by an uncertainty quantification component which helps pathol-
ogists to refine annotations for developing more robust DCNN models that can meet
their needs. Conversely, in this work, we first extract patches from the input im-
age. Then, we designed a patch feature extractor network (i.e. pre-trained and
fine-tuned DenseNet-161 [41]) to learn salient features from image patches. The ex-
tracted feature maps are then fed into multiple image-wise CNN models which are
designed to capture multi-level spatial dependencies among the patches. Eventu-
ally, an uncertainty-measure ensemble-based component is introduced to select the
most certain image-wise models for the final image grading. The performance of our
model is evaluated on the Breast Carcinoma Histological Images dataset [26], which
consists of 300 high-resolution hematoxylin-eosin (H&E) stained breast histopatho-
logical images, divided into three invasive grades.

The contributions of this chapter are summarised as follows: (1) a novel uncertainty-
aware component adapted by an entropy formula to measure how confidence DCNN
models of our automated breast cancer classification system on input images. This
uncertainty-aware mechanism assists pathologists in identifying the complex and
corrupted images which are hard to be graded by automated systems; (2) an auto-
matic exclusion of poor histopathological images for manual investigation; (3) a new
elastic ensemble mechanism is developed using most certain DCNN models, where
each input image will be classified by a pool of models, but only confident ones con-
tribute toward the final prediction using a dynamic ensemble modeling mechanism;
and (4) quantitative and qualitative analysis study have been conducted using our
automated system on breast carcinoma dataset. To the best of our knowledge, this
is the first attempt to introduce an entropy-based uncertainty quantification met-
ric to achieve an elastic-based ensemble of DCNN models in automated grading of
invasive breast carcinoma from histopathological microscopic images.

4.3 3E-Net Model

In this section, we describe, in detail, our 3E-Net model. Given a histopathological
image section with a high-resolution (1280 × 960 pixels) as an input, the main target
is to classify the image into one of three invasive grades of breast cancer: grade 1,
grade 2, or grade 3. As illustrated by Figure 4.1, our model consists of several DC-
NNs which are designed and implemented based on the input size of the image and
the number of patches extracted from the image. First, the input image is divided
into many smaller patches which are then inserted into a pre-trained and fine-tuned
DCNN which acts as patch-wise feature extractor network. Second, the extracted
feature maps are fed into image-wise networks which encode different levels of con-
textual information. As a final and prominent step, the final image predictions (i.e.
grades) from image-wise models are then inserted into an elastic ensemble stage
which is mainly based on measuring the uncertainty of predictions in each model.
This uncertainty measure of predictions is designed using the Shannon entropy [93]
which measures the level of randomness in the model’s final prediction. More pre-
cisely, Shannon entropy values of different models in our ensemble architecture were

1The code is available at https://github.com/zakariaSenousy/3E-Net-Model.
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used to select the most accurate/certain models (i.e. the models which have a small
entropy value) to improve the elasticity capability of 3E-Net in allocating different
classifiers and improving diversity. Using a pre-defined threshold, only models with
a high degree of certainty are included in the final elastic ensemble of the image.

4.3.1 Patch-wise Feature Extraction

Due to the scarcity of annotated training data in the medical field, transfer learning
[122] has emerged as a prominent approach to cope with the problem. Transfer
learning is a mechanism that uses machine learning models (e.g. CNNs) which are
pre-trained on large datasets (e.g. large-scale images of ImageNet dataset) to be
adapted and used in different domain-specific tasks (e.g. breast cancer grading).
In such mechanisms, the network configuration is preserved, and the pre-trained
weights are used to configure the network for the new domain-specific task. During
the fine-tuning stage, the initialised weights are continuously updated, allowing the
network to learn hierarchical features relevant to the desired task. Fine-tuning is
effective and robust for various tasks in the medical domain [9, 119, 120].

As stated earlier, the patch-based paradigm proved to be effective when it comes
to high-resolution histopathological images [9, 73, 119, 120]. In this work, we utilise
a pre-trained and fine-tuned DenseNet-161 to act as feature extractor networks for
image patches. DenseNet-161 has demonstrated a superb performance for ILSVRC
ImageNet classification task [24]. Moreover, DenseNet-161 has shown a great suc-
cess in several histopathological image analysis pipelines [16, 43, 49, 57, 60, 76, 82,
120, 124]. In order to supply the patch-wise feature extractor network with image
patches, we extract a number of patches k based on the following equation [73]:

k =

(
1 +

⌊
W − w

s

⌋)
×
(

1 +
⌊

H − h
s

⌋)
(4.1)

where W and H are width and height dimensions of the input image, respectively.
While, w and h are width and height dimensions for the image patch, respectively
and s is the stride used over the input image.

To improve variety (in the training data) and alleviate overfitting for the patch-
wise feature extractor network, we extracted and used partially overlapped patches.
Furthermore, we applied data augmentation techniques by transforming each patch
using rotation and reflection operations. For example, random color alterations in-
troduced by [66] has been applied to each patch as it aids in minimising the visual
diversity of the patches. Our model learns rotation, reflection, color invariant char-
acteristics, and makes pre-processing color normalisation [67]. The patch-wise fea-
ture extractor network is then trained using categorical cross-entropy loss based on
image-wise labels. The loss equation is defined as:

L(y− ŷ) = −
c

∑
i=1

yi log ŷi (4.2)

where yi and ŷi represent the ground truth label and the prediction of each class i in
c classes, respectively.

4.3.2 Image-wise Grading

Once the feature extraction is accomplished, feature maps are fed into multiple
image-wise networks to encode multi-level contextual information. The main pur-
pose of the image-wise network is to grade images based on local and contextual
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FIGURE 4.1: Overview of 3E-Net. The model starts by taking a
histopathological image section as input. Several small patches are
extracted from the image where Pi,j is one of the extracted patches.
All patches are then fed into a patch-wise CNN for feature extrac-
tion, where Fi,j is one of the extracted feature maps. Feature maps are
then inserted into N image-wise CNN models to learn multiple lev-
els of spatial dependencies information. Finally, Shannon entropy H
is adopted in our uncertainty-aware component to measure the sen-
sitivity of the input image to the N image-wise models. According to
a pre-defined threshold β, the most certain models were selected for
final grading prediction. In case of having zero certain models, the
input image is returned to medical professionals for manual explo-

ration and further investigation.

features captured from image and spatial dependencies information between differ-
ent patches, respectively.

During the training stage of an image-wise network, we extract non-overlapping
patches from the input image, where they are used to form newly concatenated fea-
ture maps that are designed based on neighboring feature maps only. This criterion
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helps in building the intended contextual information. In our model, we build var-
ious image-wise networks that are based on multi-levels of contextual information.
Each patch in the image has its own feature map. The number of image-wise net-
work models depends on the number of feature maps extracted from the image and
the possible formed shapes of neighbor feature maps. The contextual levels have
low-level context which builds contextual feature maps among 2 original neighbor-
ing feature maps only, and high-level context builds contextual feature maps among
all the original feature maps extracted from the image. For instance, having q feature
maps extracted from the input image helps in generating image-wise models which
learn contextual information among 2 feature maps (low-level) to q feature maps
(high-level). Furthermore, for each level of contextual information (except for the
highest level), a number of image-wise models can be generated based on different
shapes of the neighbor feature maps. The formation and concatenation of any two or
more feature maps can have different shapes. Likewise in the patch-wise network,
the data augmentation process is applied to dataset images by applying rotation,
reflection, and color alterations. Also, categorical cross-entropy loss is used in the
training process against the corresponding image-level labels.

Image-wise CNN is composed of two blocks for context-aware feature learning.
Each block has two 3 × 3 convolutional layers followed by a 2 × 2 convolution
layer with a stride of 2 for down-sampling. Batch normalisation and ReLU activa-
tion function were attached after each layer. Batch normalization helps to stabilise
the training process and improve convergence, while the ReLU activation function
replaces negative activations with zeros, making the network more robust. The first
block uses 64 channels, while the second block uses 128 channels. The number of
channels represents the number of filters used in the convolutional layers. A 1 × 1
convolutional layer is used after the feature learning blocks and before the classifier
to obtain the spatial average of feature maps. As a final block for classification, the
network ends with 3 fully connected layers and a log softmax classifier. The softmax
activation function is defined as:

S (zi) =
ezi

∑c
j ezj

(4.3)

where zi represents output element i of the last fully connected layer.

4.3.3 Elastic Ensemble using Uncertainty Quantification

In this section, we describe our elastic ensemble of the constructed image-wise mod-
els. As a crucial step in this work, we transform the standard ensemble-based model
into an elastic ensemble model which dynamically selects models based on the un-
certainty of models as a measuring factor. In other words, for each image, a dynamic
number of models is selected and combined towards the final image prediction. To
measure uncertainty for our ensemble model, we adopted Shannon entropy for each
image-wise model. Shannon entropy is a mathematical concept that measures un-
certainty or information content in a probability distribution. This method is often
used to quantify uncertainty or randomness in deep learning models. A high en-
tropy value indicates a more uncertain or random prediction, while a low entropy
value indicates a more certain or precise prediction. It can be used to measure the
diversity of the model’s output, making it a useful tool for improving reliability of
Deep learning models. The formula for Shannon entropy is represented as:
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H(X) = H (p1, . . . , pc) = −
c

∑
i=1

pi log2 pi (4.4)

where H(X) represents Shannon entropy for input image X and p1, . . . , pc is proba-
bility distribution for image X on c class categories.

During the testing stage, the input image is classified using all the image-wise
models in an ensemble-based model. Each model generates the grade classification
of the image in the form of a probability distribution for c class categories. Then,
these probability distributions are evaluated using Shannon entropy (based on an
uncertainty threshold value (β)) to measure uncertainty. According to the calculated
uncertainty measure, a dynamic number of image-wise models will be selected for
each image.

The selection process of image-wise models in the elastic ensemble process works
by comparing the Shannon entropy measure evaluated for a particular model against
a pre-defined threshold value β, as defined in the experimental study. If the entropy
value is less than β, then the model will be chosen and included in a list of chosen
models for a particular image. In the end, each image in the dataset should have a
dynamic number of chosen models to produce the final prediction. In case of having
images with zero chosen models, we prioritise these images for pathology annotat-
ing by medical professionals. After selecting the most certain image-wise models,
the class predictions of these models are aggregated to produce the final class pre-
diction distribution.

Algorithm 1 provides a detailed description of 3E-Net model. The input image is
divided into smaller patches. Then, using patch-wise CNN, many feature maps are
extracted. These feature maps are then inserted into image-wise CNN models. Each
image-wise model produces a probability distribution of the input image. In the end,
the Uncertainty-aware component is utilised to measure the level of uncertainty for
each image-wise model’s prediction. The models with uncertainty values less than
a threshold β are chosen and their predictions are aggregated for final classification
grade ŷ. If the input image has no chosen models, medical professionals are involved
in the final grading decision.
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Algorithm 1: 3E-Net Model
Input: histopathological Input Image X
Output: Image Label ŷ or Uncertainty Decision
/* Image X is inserted into a function to extract smaller

patches represented as Pm,n where m and n are the patch row and
column index in the image X, respectively. */

1 Pm,n = PatchExtraction(X)
/* Extract feature maps from image patches */

2 for i ∈ m do
3 for j ∈ n do
4 Fi,j = PatchWiseFeatureExtraction(Pi,j)

5 V = [ ] // Empty List to store models’ predictions
/* Insert Feature maps Fm,n into N Image-wise Models */

6 for i ∈ N do
/* Image-wise Models learn different levels of contextual

information */
7 Predi = ImageWiseModeli(Fm,n)
8 V.append(Predi)

/* Elastic Ensemble using Shannon Entropy */
9 selectedModels = [ ] // Empty list to store the most certain models’

predictions
10 for i ∈ N do
11 UncertaintyValue = −∑c

i=1 Vi log2 Vi // where c is the number of
classes

/* Check if Uncertainty measure is less than a pre-defined
threshold β */

12 if UncertaintyValue < β then
/* Append prediction of the model which has small

uncertainty */
13 selectedModels.append(Vi)

/* Check if a dynamic number of models are chosen for final
prediction */

14 if selectedModels ̸= 0 then
/* Aggregate the probability distributions of selected models

and produce the final image grade label */
15 G = Aggregate(selectedModels)
16 ŷ = arg max G

/* If no models are chosen, this means all models in the ensemble
architecture are uncertain about the final grade of the input
image */

17 else
/* Uncertainty decision */

18 Exclude image from grading
19 Return image to medical pathologists
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4.4 Experimental Study

We evaluated the performance of our work on the Invasive Breast Carcinoma dataset.
The utilised dataset in this experimental study has 300 images which all are used
for training the ensemble model using 5-fold cross-validation. Cross-validation en-
ables us to overcome the limited availability of annotated images, making sure that
the model is well-trained. For training patch-wise networks, we used microscopy
patches extracted from training images. These patches are augmented using rota-
tion, flipping, and colourisation methods. Similarly, in image-wise networks, the
same training process is conducted, but using the image-level dataset instead of
patches. In the experimental study, we designed and implemented two standard
ensemble models. First, the baseline ensemble model which has DenseNet-161 as
the patch-wise feature extractor CNN will be denoted by Standard Ensemble Model
(Version A). Second, we applied a modification by using the patch-wise CNN intro-
duced in [73] as the feature extractor of the ensemble model. The modified ensemble
model will be denoted by Standard Ensemble Model (Version B). Finally, our con-
tribution has two 3E-Net models: 3E-Net Version A & 3E-Net Version B, where we
apply elastic ensemble approach to the standard ensemble models.

4.4.1 Dataset Description

Breast carcinoma histological images [26] were used for this work. The dataset con-
tains cases of breast carcinoma histological specimens collected in the department
of pathology, “Agios Pavlos” General Hospital of Thessaloniki, Greece. The dataset
is composed of 300 H&E stained breast histopathological microscopy sections with
the size of 1280 × 960 pixels. The dataset is mainly categorised into three grades of
invasive carcinoma: grade 1, grade 2, and grade 3 (See Figure 4.2).

FIGURE 4.2: Three H&E stained breast histopathological microscopy
images from different invasive carcinoma grades.

The categories are divided as 107 images for grade 1, 102 images for grade 2, and
91 images for grade 3. These images are associated with 21 different patients with
invasive ductal carcinoma of the breast. The image frames are from tumour regions
taken by a Nikon digital camera connected to a compound microscope with a 40X
magnification objective lens.

4.4.2 Hyperparameter Settings

As we have DenseNet-161 as the patch-wise feature extractor of the baseline ensem-
ble model (Standard Ensemble Model (Version A)), we extracted patches of size 224
× 224 from the input image. Consequently, a number of 20 non-overlapped patches
can be generated (where the original size of the input image is 1280 × 960) to extract
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high-level contextual information. However, due to the limited GPU memory, we
down-sampled the input images to a smaller scale of 896 × 672.

For training data extraction, we set the stride to s = 112 to extract partially over-
lapped patches for both versions (A & B). This stride value helps in increasing the
training patch samples for patch-wise CNN and prevents the network from overfit-
ting. We applied data augmentation by rotating the training patches by 90 degrees
with horizontal and vertical flipping. To fine-tune the patch-wise CNN for Standard
Ensemble Model (Version A) to our grading task, we modified the number of output
neurons from 1000 to only 3 (as we have three grades). We used Adam optimiser [48]
for minimising the cost function and we set the learning rate to 0.0001 for 5 training
epochs and batch size to 32 for both patch-wise CNNs in versions A & B.

The extracted feature maps from patch-wise CNN are then inserted into image-
wise models. For training image-wise model, we extracted non-overlapped patches
from the new image scale giving us 12 patches by using s = 224. This means that
we have a total number of 12 feature maps represented as a matrix of size (3× 4)
(as shown in Figure 4.1) to be used for the training process of image-wise models.
Different levels of contextual information have been learned by combining all the
original feature maps to form multi-level contextual feature maps. For example,
the lowest-level contextual feature maps are generated by combining 2 neighboring
feature maps while the highest-level contextual feature maps are generated by com-
bining the 12 feature maps of the image. As mentioned earlier, different shapes of
neighbor feature maps can be generated from each contextual level (except for the
high-level as we combine all the 12 feature maps). Once the different levels of con-
textual feature maps are constructed, a number of DCNNs will be set up to learn
the multi-level contextual information. This results in an arbitrarily chosen number
of 17 image-wise models to form our ensemble architecture. Image-wise CNNs are
trained on augmented image-level samples by applying rotation of 180 degrees with
flipping. The remaining settings are the same as patch-wise CNN except that each
image-wise CNN is trained for 10 training epochs and a batch size of 8.

Finally, we design and implement an elastic ensemble approach (3E-Net Versions
A & B) for the standard ensemble models. This is accomplished using Shannon en-
tropy to measure the uncertainty of the 17 image-wise models. Each input image can
have a dynamic number of models less than 17 based on the pre-defined β which ex-
cludes the models with high uncertainty values. We used a wide range of β values
from 10−8 to 2 to demonstrate the capability of 3E-Net versions to provide high per-
formance.

4.4.3 Quantitative Evaluation

We adopted accuracy, precision, recall, and F1-score metrics to evaluate the perfor-
mance of our model. Precision is the classifier’s capability to not mark a result as
positive if it is negative, the classifier’s recall is its ability to locate all positive sam-
ples, and F1-score can be expressed as the harmonic mean of the precision and recall.
The accuracy, precision, recall, and F1-score were determined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.5)

Precision =
TP

TP + FP
(4.6)
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Recall =
TP

TP + FN
(4.7)

F1− score = 2 · Precision× Recall
Precision + Recall

(4.8)

where TP and TN represent the correct predictions by our elastic ensemble mod-
els for the occurrence of a certain class or not, respectively, while FP and FN are the
incorrect model predictions for all cases.

Performance of Standard Ensemble-based Models

Tables 4.1 and 4.2 illustrate precision, recall, F1-score and grading accuracy of stan-
dard ensemble of DCNNs (i.e. ensemble of the total 17 models) for Version A and
Version B, respectively. Tables 4.1 and 4.2 show that both ensemble models can
effectively differentiate grade 2 from the two other grades (grade 1 and grade 3).
Moreover, Version A and Version B have achieved an average precision of 93.04%
and 90.98%, respectively, while they achieved average grading accuracy of 93% and
90.68%, respectively.

TABLE 4.1: Grading performance (mean) of standard ensemble
model (Version A) on Invasive Breast Carcinoma dataset using 5-fold

cross-validation.

Grade Precision Recall F1-score Accuracy

Grade 1 89.86% 90.65% 90.25% 93.00%

Grade 2 99.05% 99.05% 99.02% 99.33%

Grade 3 90.05% 89.00% 89.51% 93.67%

Total 93.04% 93.00% 93.01% 93.00%

TABLE 4.2: Grading performance (mean) of standard ensemble
model (Version B) on Invasive Breast Carcinoma dataset using 5-fold

cross-validation.

Grade Precision Recall F1-score Accuracy

Grade 1 85.83% 88.83% 87.21% 90.68%

Grade 2 98.09% 95.14% 96.48% 97.68%

Grade 3 89.04% 87.89% 88.39% 93.00%

Total 90.98% 90.68% 90.72% 90.68%

Performance of 3E-Net Models

To evaluate the performance of the uncertainty-aware component, we further in-
vestigate the grading accuracy of the elastic ensemble approach. Moreover, for a fair
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comparison with the standard ensemble-based models, we introduced two new met-
rics: (1) Weighted Average Accuracy (WAA), which measures the average of grading
accuracies for the 5 folds in the dataset weighted by the number of the included im-
ages in each fold; and (2) Abstain percentage (AP): measures the percentage of the
excluded images to the total number of images in the dataset. The formulation of
the two metrics are determined as follows:

WAA =
1

∑t
i=1 di

t

∑
i=1

Accuracyi ∗ di (4.9)

AP =

(
∑t

i=1 Ri

DS

)
× 100 (4.10)

where di and Accuracyi represent the number of included images and grading ac-
curacy in fold i over a total number of t folds, respectively, Ri is the count of the
excluded images in fold i, and DS is the total number of images in the dataset

Table 4.3 demonstrates the capability of our elastic ensemble approach in pro-
viding higher grading accuracies for both 3E-Net model variations (Version A & B)
when compared to the standard ensemble models. Moreover, such improvement
in the grading accuracies indicates that the excluded images are difficult to clas-
sify by the DCNN models, where a manual investigation is required for such im-
ages. It can be noticed that 3E-Net models achieve the highest accuracies of 96.15%
(β = 5× 10−7) and 99.50% (β = 5× 10−6) for Version A and Version B, respectively.
As illustrated by Table 4.3, the other threshold β values yield grading accuracy of
∼ 95% for Version A and ∼ 99.40% for Version B.

TABLE 4.3: WAA and AP of 3E-Net Model variations (Version A &
Version B) on different β values.

Model β Accuracy AP

3E-Net (Version A)

5× 10−7 96.15% 4.67%

9× 10−7 95.82% 4.33%

5× 10−6 94.86% 2.67%

10−5 94.56 % 2.00%

3E-Net (Version B)

5× 10−6 99.50% 33.00%

10−6 99.43% 42.00%

9× 10−7 99.42% 43.00%

5× 10−7 99.38 % 46.33%

Figure 4.3 depicts AP of the excluded images from the dataset over different
values of β for 3E-Net models (Version A & Version B). The curves show that AP
decreases when we increase β. Also, starting from β = 0.75, the number of excluded
images reaches zero for both models. Figure 4.4 depicts the ROC curves for both
model versions using the standard and elastic ensemble-based approaches, see also
Figure 4.7 for the confusion matrices obtained by our models.

Figure 4.5 and Figure 4.6 demonstrate the output visualisations of multiple filters
applied to the first and last convolutional layers of the patch-wise network of the
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standard ensemble model (version B). Note how the feature maps are distinctive in
terms of their morphological structures.
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FIGURE 4.3: AP of excluded images for 3E-Net Version A (Blue) and
3E-Net Version B (red) over a range of threshold β values using elastic

ensemble on Invasive Breast Carcinoma Dataset.

Comparison with different Methods

To demonstrate the effectiveness of our solution, we applied ablation study by com-
paring the performance of a state-of-the-art single DCNN model, standard ensemble-
based models, and our elastic ensemble approach. In Table 4.4, we compare our
3E-Net models with the state-of-the-art models in digital breast pathology, namely
DCNN+SVM model [9], deep spatial fusion CNN model [42], two-stage CNN model
[73], and ensemble of multi-scale networks (EMS-Net) [120]. As demonstrated by Ta-
ble 4.4, our 3E-Net model outperformed both the recent models in the literature and
the standard ensemble models.

Performance of 3E-Net on BreakHis Dataset

To confirm the effectiveness of 3E-Net model, we applied 3E-Net model (version A)
on the Breast Cancer Histopathological Database (BreakHis) [102]. BreakHis has a
total number of 7909 breast cancer histopathological images taken from 82 patients
using different magnifying factors (40X, 100X, 200X, and 400X). The dataset is di-
vided into 2480 benign and 5429 malignant microscopic images with a resolution of
700 x 460 pixels. We use 40X magnification images which has 625 benign and 1370
malignant samples.

Here, we down-sampled the images to around 80% of the original scale (448 x
336). This image scale produces 6 image-wise CNNs to be used in the ensemble pro-
cess. We also used the same hyperparameter settings except for patch-stride values,
where we used s = 28 for training the backbone network (DenseNet-161) and s =
112 for training the 6 image-wise CNNs. Finally, as the BreakHis dataset contains
only two classes (benign or malignant), we fine-tuned DenseNet-161 by updating
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FIGURE 4.4: ROC curves for the standard and elastic versions of our
models (A & B).

TABLE 4.4: Comparison between different methods on Invasive
Breast Carcinoma Dataset using 5 fold cross-validation.

Method Precision Recall F1-score Accuracy

DCNN + SVM [9] 87.64% 87.38% 87.38% 87.38%

Deep Spatial Fusion CNN [42] 92.67% 92.65% 92.62% 92.65%

Two-stage CNN [73] 93.07% 92.69% 92.70% 92.69%

EMS-Net [120] 93.04% 93.00% 93.00% 93.00%

Standard Ensemble Model (Version A) 93.04% 93.00% 93.01% 93.00%

Standard Ensemble Model (Version B) 90.98% 90.68% 90.72% 90.68%

3E-Net (Version A) (β = 5× 10−7) 96.23% 96.15% 96.16% 96.15%

3E-Net (Version B) (β = 5× 10−6) 99.54% 99.50% 99.50% 99.50%

the number of neurons from 1000 to only 2 neurons in the last fully connected layer.
As shown in Table 4.5, our model has proved to be effective on both standard and
elastic ensemble. We applied 5-fold cross-validation and achieved a classification
accuracy of 99.80% using standard ensemble technique. Also, the results show the
validity of our novel elastic method of 3E-Net on different beta values by improving
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FIGURE 4.5: Examples of feature maps obtained by multiple filters
learned within the first convolutional layer of the patch-wise network
of standard ensemble (version B). The colored image is the original,

while the gray-scale images are the output maps.

the performance, where an accuracy of 99.95% has been achieved on (β = 9× 10−6).

4.4.4 Qualitative Evaluation

To quantitatively evaluate the performance of our model on the excluded images,
we set β to a high value to find images that are less sensitive and highly uncertain
to the 17 image-wise models in the ensemble of DCNN models. Figure 4.8 shows
the images, for which all the image-wise models in the ensemble agree on the un-
certainty decision based on the high uncertainty values resulted from these models.
Figure 4.8(c) shows two images from the selected excluded images which are agreed
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FIGURE 4.6: Examples of feature maps obtained by multiple filters
learned within the last convolutional layer of the patch-wise network
of standard ensemble (version B). The colored image is the original,

while the gray-scale images are the output maps.

on their uncertainty by both 3E-Net model variations (Version A and Version B).
Moreover, it can be noticed that the highly uncertain images come from grade 1 or
grade 3, which proves trustworthy of our results in Tables 4.1 and 4.2 to show how
it is slightly hard to differentiate between grade 1 and grade 3.

Based on the sample of the excluded images shown in Figure 4.8, we returned
to a domain expert to further investigate the possible reason behind the high uncer-
tainty of the excluded images. The uncertainty may be due to usage of datasets from
heterogeneous populations [47], or reduced sample size used in the study [88]. In
this regard, additional information depending on the staining of specific biomarkers
for breast cancer grading such as Ki67 [64] could be used to resolve the diagnostic
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(A) Standard Ensemble Model (Version A)
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(B) 3E-Net (Version A) (β = 5× 10−7)
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FIGURE 4.7: Confusion matrices for our developed models.

TABLE 4.5: Performance (mean) of standard and elastic ensem-
ble models (Version A) on BreakHis dataset using 5-fold cross-

validation.

Model β Accuracy AP

Standard Ensemble Model NA 99.80% NA

3E-Net Model

9× 10−6 99.95% 1.10%

5× 10−4 99.90% 0.50%

3× 10−2 99.85% 0.10%

uncertainty in CNN.
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FIGURE 4.8: Highly uncertain excluded images from the grading pro-
cess of our dynamic ensemble-based models. The excluded images
come from three perspectives: (a) 3E-Net Model (Version A), (b) 3E-
Net Model (Version B), and (c) Versions A & B combined. Each image
in the figure has a caption that presents the ground truth label (G1:

grade 1 and G3: grade 3).
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4.5 Summary

In this chapter, we introduced 3E-Net model to classify invasive breast carcinoma
using histopathological images into three grades: grade 1, grade 2, and grade 3. Our
model has the capability to learn different levels of contextual information using
image patches through various image-wise CNN models. Moreover, our ensem-
ble model has been designed in a way to measure the level of randomness (using
a novel entropy-based formula) in the input images and quantify the challenges in
grading images. We evaluated 3E-Net on Invasive Breast Carcinoma Dataset from
‘Agios Pavlos’ General Hospital of Thessaloniki, Greece. Our elastic ensemble model
has two variations that achieved a grading accuracy of 96.15% and 99.50% in the
five-fold cross-validation on training images and outperformed standard ensemble-
based models and a state-of-the-art method. 3E-Net demonstrated its capability in
excluding the uncertain microscopy images to be investigated and explored by med-
ical professionals.

3E-Net proved its effectiveness in terms of performance and the selection of un-
certain images to be excluded and investigated by medical professionals. The effec-
tiveness of 3E-Net came from its ability to be used for grading task (i.e. classify
different grades) which is a very challenging task. The grading task usually in-
cludes fuzziness and overlap between class boundaries making it a difficult task.
Moreover, 3E-Net features a simple strategy of building an automated model for
grading/diagnosis. This simplicity of design make 3E-Net a light-weight model that
can be applied to resource constrained environment where it can perform better in
terms of space and time requirements (e.g. a tablet PC). This helps hospitals to have
models developed on portable devices which ease the process of grading and intro-
ducing immediate treatment plans for patients based on fast inference results from
3E-Net.

In the next chapter, we present, our second contribution, MCUa model for clas-
sification of breast cancer histopathology images. MCUa has the characteristic of
capturing different size/scale variations of nuclei objects in histopathology images
by introducing multi-scale input and multi-architecture usage for feature extraction.
This characteristic aids in providing diversity in scales and features, which conse-
quently enrich the automated model by detailed information to enhance the per-
formance. In addition, MCUa introduces a flexible uncertainty-aware component
which generates multi-scalar predictive probability distributions for measuring un-
certainty of image prediction. This aids in introducing a reliable method which ac-
curately select the uncertain samples.
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Chapter 5

MCUa: Multi-level Context and
Uncertainty aware Model for
Classification of Breast Cancer
Images

In the last chapter, we explained in detail 3E-Net for classifying grades of invasive
breast carcinoma histopathology images as the first contribution of the thesis. 3E-Net
showed simplicity in the design making it suitable to be deployed for resource con-
strained environments (portable edge devices) as it generates inference in short time.
Moreover, 3E-Net demonstrated high performance for a very challenging task such
as grading task which is usually characterised by high overlapping between class
boundaries. 3E-Net combines simplicity in design and efficiency for difficult tasks
making it an important advancement for medical image analysis. In this chapter,
we introduce MCUa model for classification of breast histopathology microscopic
images where it utilises a deep learning strategy to build an automated diagnosis
system. Unlike 3E-Net, MCUa has the ability to (1) capture different size/scale vari-
ations of nuclei objects in histopathological images by introducing multi-scale input
and multi-architecture usage for feature extraction, (2) learns multi-scale and multi-
level context-aware information, and (3) provide an uncertainty-aware component
based on Monte-Carlo (MC) dropout [29], which generates predictive probability
distributions instead of a single scalar. All these characteristics help to provide a
highly developed system that benefits clinical practice. Findings reported in this
chapter have been published in [91].

5.1 Overview

Breast histology image classification is a crucial step in the early diagnosis of breast
cancer. In breast pathological diagnosis, Convolutional Neural Networks (CNNs)
have demonstrated great success using digitised histology slides. However, tissue
classification is still challenging due to the high visual variability of the large-sized
digitised samples and the lack of contextual information. In this chapter, we in-
troduce a novel CNN, called Multi-level Context and Uncertainty aware (MCUa)
dynamic deep learning ensemble model. MCUa model consists of several multi-
level context-aware models to learn the spatial dependency between image patches
in a layer-wise fashion. It exploits the high sensitivity to the multi-level contextual
information using an uncertainty quantification component to accomplish a novel
dynamic ensemble model. MCUa model has achieved a high accuracy of 98.11% on



68
Chapter 5. MCUa: Multi-level Context and Uncertainty aware Model for

Classification of Breast Cancer Images

a breast cancer histology image dataset. Experimental results show the superior ef-
fectiveness of the presented solution compared to the state-of-the-art histology clas-
sification models.

The chapter is organised as follows. Section 5.2 presents detailed introductory
of the background and the research work. In section 5.3, we discuss in details the
architecture of our model. Section 5.4 describes our experimental results obtained.
Finally, Section 5.5 discusses our findings by presenting the summary of our work
and introducing few potential future research directions.

5.2 Introduction

Breast cancer is the driving sort of cancer in women, coming about in 1.68 million
modern cases and 522,000 passings in 2012 around the world. It has been accounted
for 25.16% of all cancer cases and 14.71% of cancer-related passing [103]. Precise
determination of breast cancer is pivotal for suitable treatment and prevention of
further progression. A few symptomatic tests have been utilised, counting physical
examination, mammography, magnetic resonance imaging (MRI), ultrasound, and
biopsy. Histology image examination resulted from biopsy considered as a crucial
step for breast cancer diagnosis. In the diagnosis process, pathologists evaluate the
cellular areas of hematoxylin-eosin (H&E) stained histology images to decide the
predominant type of breast tissues, including normal tissue, benign lesion, in situ
carcinoma, and invasive carcinoma. Histology images are large in size with a com-
plex morphological structure. Therefore, identifying carcinoma regions based on
the manual investigation conducted by medical professionals is a challenging and
time-consuming process.

Traditionally, histology imaging in clinical practice is focused primarily on pathol-
ogists’ manual qualitative analysis. However, there are three main issues with such
practice. One, there is shortage of pathologists around the world, especially in de-
veloping countries and small hospitals. This scarcity of resources and unequal allo-
cation is a pressing issue which need to be addressed. Second, the pathologist’s ex-
tensive scientific expertise and long-term diagnostic experience determine whether
the histopathological diagnosis is accurate or not. This subjectivity may cause in a
slew of diagnostic errors. Finally, pathologists are vulnerable to fatigue and inatten-
tion while reading the complex histology images. In order to address these issues, it
is crucial to establish automated and precise histological image classification tasks.
Thanks to the advancement of computer aid diagnosis (CAD) frameworks that have
made the difference in reducing the workload and improved the detection accuracy
[44].

There are two challenging perspectives in the classification of H&E stained breast
histology images. First, there are colossal intra-class fluctuations and inter-class like-
nesses in microscopy images, e.g., the difficult mimics from benign which has a com-
parative morphological appearance with carcinoma. Figure 5.1(a) shows benign and
carcinoma microscopy images with a similar morphological structure, in terms of the
nuclei distribution. Second, in histology image analysis, structural and contextual
information is usually lost due to the sectioning process of high resolution images
into small patches. To put it differently, the loss of structural and contextual infor-
mation is due to the fact that histological image is divided into sections and dealing
with only local representation of image patches makes it difficult to preserve the
spatial dependencies of different image patches. Therefore, learning contextual in-
formation is crucial by integrating important information from different image parts
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and hence improving the classification performance. Figure 5.1(b) depicts the shape
of image patches used as an input to patch-based deep convolutional neural network
(DCNN) models. Several different feature engineering [11, 110] and feature learn-
ing [6, 71, 73] models have been previously developed to classify digitised breast
histology tissues. Feature Learning showed great success in addressing numerous
issues within the field of digital pathology, including the above-mentioned challeng-
ing problems. As of lately, deep convolutional neural networks (DCNNs) have been
broadly recognised as one of the foremost capable tools for histology tissue clas-
sification. In spite of their predominance, a single DCNN model has constrained
capacity to extract discriminative features and results in lower classification accu-
racy [9, 73]. Hence, an ensemble of DCNN models has been developed to memorise
the representation of histology images from distinctive view-points for more precise
classification [120]. However, accommodating contextual information in the archi-
tecture of CNNs is a requirement to cope with the huge size of histology images
[9, 27]. Consequently, ensemble CNNs should allow for the contextual representa-
tion to be learned. Moreover, despite the prevalence of DCNN models in providing
high classification performance and alleviating the workload encountered by pathol-
ogists, a number of histological images might need assistance in diagnosis by profes-
sional medical expertise due to their complexity. Such images have to be excluded
from automated image classification and to be presented for pathologists for man-
ual investigation. Consequently, we introduce an uncertainty quantification method
which measures the level of image prediction’s randomness using DCNN models.
This approach aids in the identification of various ambiguous regions which can be
clinically useful. It also helps pathologists and medical practitioners to prioritise
images for annotations.

In this chapter, we present a novel dynamic ensemble CNN with terming Multi-
level Context and Uncertainty aware (MCUa) model1 for the automated classifica-
tion of H&E stained breast histology images. First, we resize input images into two
different scales to capture multi-scale local information. Then we designed patch
feature extractor networks by extracting patches and feed them to pre-trained fine-
tuned DCNNs (i.e. DenseNet-161 and ResNet-152). Unlike the work conducted in
[120], the extracted feature maps are then used by our context-aware networks to
extract multi-level contextual information from different pattern levels. Finally, a
novel uncertainty-aware model ensembling stage is developed to dynamically se-
lect the most certain context-aware models for the final prediction. We evaluated the
performance of our model on BreAst Cancer Histology Images (BACH) challenge
dataset [7], which consists of 400 high-resolution H&E stained breast histology im-
ages and divided into four categories, namely normal, benign, in situ carcinoma, and
invasive carcinoma. MCUa model alleviates the bias that might be caused during the
traditional workload of histological image analysis by introducing an automated im-
age classification model which captures the spatial dependencies among patches of
high-resolution images. Additionally, it presents a measure of uncertainty which
helps in providing a more robust predictions using a dynamic ensemble mechanism
that improves the diversity of the model by coping with different network architec-
tures and multi-level contextual information. This can be achieved by (1) introduc-
ing effective pre-trained and fine-tuned DCNN models which learn to explore hier-
archical discriminative features and differentiate between different class categories
and (2) learn spatial dependencies among image patches to preserve contextual in-
formation between feature maps.

1The code is available at https://github.com/zakariaSenousy/MCUa-Model.
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FIGURE 5.1: (a) An example of similar morphological structures be-
tween benign and carcinoma sections. (b) Patches of a high section,
which are used by DCNN models to learn the spatial dependencies

information.

The contributions of this chapter are summarised below:

• introduced a multi-scale input and multi-architecture stage for feature extrac-
tion which exploits the granularity in encoding multi-level features and in-
crease the diversity of the extracted features. Multi-scale and multi-architecture
mechanism helps in capturing different sizes and scales for nuclei and tissue
structures;

• developed a novel context-aware model to learn multi-scale and multi-level
contextual information by encoding the spatial dependencies among patches
in histology images;

• introduced a novel dynamic ensemble strategy by selecting the most certain
models for each particular image based on an uncertainty-aware mechanism.
The developed mechanism has been designed by measuring the level of ran-
domness of all models in the ensemble architecture, and consequently a dy-
namic number of accurate models is chosen and combined to obtain the final
prediction; and
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• conducted a thorough experimental study on the BACH image dataset, and
obtained better performance than state-of-the-art computational pathology mod-
els.

5.3 MCUa Model

In this section, we describe our Multi-level Context and uncertainty aware (MCUa)
dynamic deep learning ensemble model in details. As illustrated in Figure 5.2, the
MCUa model consists of an arbitrary number of multi-level context-aware models,
where each model consists of two components: a) a patch-wise feature extractor
component, to extract the most prominent features from image patches; and b) a
context-aware component, aims at capturing the spatial dependencies among the
extracted patches. MCUa starts by taking the original image and then resizing the
image to m scales to get various and integral visual features from the multi-scale
image feature. A number of patches are extracted from each image scale to be in-
serted into a pre-trained feature extractor. Several salient feature maps are extracted
from the pre-trained feature extractor, which are then inserted to multi-level context-
aware models. Each context-aware model has a certain contextual information level
that can be learned from a group of feature maps. As a final stage, MC-dropout is
applied to each context-aware model to produce a measure of uncertainty. This is
done by applying a number of test passes for each input image through the context-
aware network. Each test pass produces a class probability for the image, using this
information, we calculate the mean and standard deviation to provide image class
label and uncertainty measure, respectively. A dynamic process of model selection,
based on an uncertainty measure value and a pre-defined threshold, is utilised to
pick up the most certain models and then produce the final class label.

5.3.1 Multi-scale Feature Extraction

Multi-scale image feature extraction is pivotal for having diverse and complemen-
tary visual features in H&E stained breast histopathological microscopy. To extract
multi-scale features, we first resize the original image to different scales. Then, im-
age patches are extracted from each scale using a sliding window of size pw× ph and
a stride s. Therefore, the total number of patches extracted from the resized image
can be represented by

a =

(
1 +

⌊
IW − pw

s

⌋)
×
(

1 +
⌊

IH − ph

s

⌋)
, (5.1)

where IW and IH are width and height dimensions of the resized image, respectively.
The images at the different scales are then divided into partially overlapped

patches using different stride values for training and testing data extraction. This
increases the level of locality information and the number of training patches. More-
over, to increase the diversity of training data and, at the same time, alleviate the
overfitting of DCNN models, several data augmentation methods have been ap-
plied. For instance, each patch has been transformed using a rotation operation and
with/without vertical reflections. Also, random color perturbations recommended
by [66] has been applied to each patch to alleviate the high visual variability of the
patches. The data augmentation process makes our model learn rotation invariant,
reflection invariant, color invariant features and make pre-processing color normal-
isation [67].
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FIGURE 5.2: Overview of MCUa model. Our model takes the orig-
inal image and resizes it into multiple scales. For each scale, sev-
eral patches are extracted which are then inserted into patch-wise
networks (i.e. pre-trained DCNNs) to extract salient features. The
extracted features are then inserted into multi-level context-aware
models to learn spatial dependencies between image feature maps.
Context-aware models work on extracting contextual information be-
tween feature maps based on different levels (L1 to Ln). L1 is consid-
ered as low level context which builds contextual information among
two original feature maps, while Ln is considered as high level con-
text which builds contextual information among all the original fea-
ture maps extracted from the image. Finally, a dynamic model se-
lection is applied to select the most certain models based on uncer-
tainty quantification and a combination of selected models is applied
to produce the final prediction. For each image, a number of test
passes is applied using MC-dropout to produce a list of probability
distributions which are then used to generate mean and standard de-
viation. The mean is used for identifying the class label of a single
model, while standard deviation is utilised for measuring the level
of randomness and uncertainty. In a dynamic way, each image in
the dataset has a number of accurate models which are chosen based
on low value of uncertainty determined using a pre-defined thresh-
old. These selected models’ mean predictions are aggregated for final

class prediction.

5.3.2 Fine-tuning the Backbone Networks

The pre-trained DCNN models (namely, ResNet-152 [37] and DenseNet-161 [41])
are fine-tuned to be used as the backbone feature extractors of MCUa model. We
adapted the pre-trained DCNN models to a four-category image classification prob-
lem, by modifying the number of neurons in the last fully-connected layer from 1000
neurons (where ResNet-152 and DenseNet-161 are pre-trained models on ImageNet
[86]) to only 4 neurons. Consequently, the fine-tuned DCNN models can take input
of microscopy image patches (i.e. augmented versions of the patches extracted from
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resized versions of microscopy images) and produce an output of softmax proba-
bilities belonging to the 4 cases (Normal, Benign, In situ carcinoma, and Invasive
carcinoma) of the BACH dataset.

During the fine-tuning process, we used Adam optimiser [48] to minimise the
categorical cross-entropy loss function which is presented in equation 4.2. Softmax
activation function (as shown in equation 4.3) is applied to the DCNN model’s pre-
dictions of the last fully connected layer.

Once the training of the pre-trained DCNN models is accomplished, the last con-
volutional layer is used to construct our feature space or to extract a number of fea-
ture maps (equivalent to the number of patches in each image).

5.3.3 Multi-level Context-aware Models

To capture the spatial dependencies among image patches, MCUa has been designed
in a context-aware fashion to learn different possible multi-level contextual informa-
tion. Here, we used the output of feature extractor of each pre-trained DCNN model
and fed it into several multi-level context-aware models. The level of contextual
information learned by MCUa is determined by a pattern of neighborhood criteria.
More precisely, we encode the spatial relationship information among patches based
on the neighborhood of patches that form some random shape. In other words, our
context-aware models have been designed based on a pattern tuple Pg,Si = (g, Si),
where g is the number of patches used in the context-aware process and Si is the set
of shape indices (where each index i is associated to a unique set of shape indices).
To identify a shape index, the starting patch and g − 1 directions should be speci-
fied. Figure 5.3 clarifies an example of how different pattern levels work to extract
contextual information. For instance, P2,S1 has a value of g = 2 and two shapes.
Moreover, P4,S2 has a value of g = 4 and a set of shapes where the shapes are built
using a number of feature maps (e.g. 3, 6, 5, and 4). More precisely, the process of
building contextual information for the shape index represented in P4,S2 works by
identifying the starting feature map location (i.e. feature map number 3), then all
the possible directions in the matrix of the feature maps has to be defined, where
direction 1 is for the down direction to pick feature map number 6, then directions
2 and 3 are for the le f t directions to pick feature maps 5 and 4, respectively, (Please
see Figure 5.3). Each feature map utilises the pattern tuple mechanism to bring the
spatial dependencies information with other neighboring feature maps.

The feature patterns have been designed by taking into account the image-level
labels for the final classification during the minimisation of loss function. Context-
aware networks are mainly image-wise networks which take concatenated feature
maps generated from the original neighbor feature maps (extracted from the input
image). These concatenated feature maps are fed into context-aware networks to
classify the images based on local and contextual features extracted from images.
Context-aware networks are trained against image-level labels. More precisely, we
minimise the loss function of different patterns of feature maps inserted as an input
to the final class label associated to the image as an output.

Each Context-aware CNN consists of a sequence of 3 × 3 convolutional layers
followed by a 2 × 2 convolution with stride of 2 for down-sampling. Batch normali-
sation and ReLU activation function were used at the end of each layer. To obtain the
spatial average of feature maps, a 1 × 1 convolutional layer is used before the clas-
sifier. The network ends with 3 fully connected layers and a log softmax classifier.
The full description of the architecture is presented in section 4.3.2.
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FIGURE 5.3: The extraction process of the contextual information
(i.e. context modeling) with different pattern levels using six feature
maps. The original feature maps (highlighted in orange) are used
to encode different levels of contextual information. For instance,
P2,S1 represents the contextual information of a pattern that is com-
posed of 2 neighbor feature maps, while P4,S1 and P4,S2 represent the
process of building contextual information for four neighbor feature
maps with different set of shapes, respectively. The blue highlighted
feature maps represent the maps chosen to build contextual informa-

tion.

During the training of MCUa, a partly overlapped patches are extracted from the
image by using different stride values. The stride value for each scale is chosen to
increase the number of patches and hence improve the contextual representation of
MCUa. We found in our experiments that using high stride decreases the accuracy
for a single context-aware model on a validation set.

The context-aware CNN has been trained using categorical cross-entropy loss
and learns to classify images based on the local features of image patches and spatial
dependencies among the different patches. Like pre-trained DCNN, data augmen-
tation has been applied.

In algorithm 2, we describe the implementation flow of a single context-aware
model. We start by resizing the image to multiple scales to extract smaller patches.
We then pass the extracted patches to a pre-trained DCNN model to extract feature
maps. After that, we iterate over each feature map and get the indices of all possible
feature maps that can build possible pattern of neighborhood relationships. The
related feature maps are then concatenated and inserted in a set which holds all the
concatenated feature maps. Finally, we pass the concatenated feature maps set to the
context-aware CNN. This is to learn spatial dependencies among the related feature
maps and produce the network output. As a consequence, the feature maps will
be fed into the log softmax function to produce the probability distribution of the
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image.

Algorithm 2: Single Context-aware Model
Input: Original image X to be classified

Output: class label ŷ

1 X
′ ← X // resize original image to m scales

2 // extractPatches is a function which takes image and patch dimensions as

an input and outputs n patches {x(1), x(2), ..., x(n)}
3 {x(1), x(2), ..., x(n)} ← extractPatches(X

′
, pw, ph)

4 // featureExtractor network takes n patches as an input and outputs n

feature maps { f m(1), f m(2), ..., f m(n)}
5 { f m(1), f m(2), ..., f m(n)} ← featureExtractor({x(1), x(2), ..., x(n)})
6 F← { f m(1), f m(2), ..., f m(n)} // store all the extracted feature maps to set F

7 T, Y← {} // define and initialise two empty sets

8 for f m ∈ F do

9 // getPatternIndices is a function which takes a feature map f m and

returns the indices of all possible neighbor feature maps which form a

pattern

10 {i1, i2, ..., in} ← getPatternIndices( f m)

11 // concatenate f m with possible neighbor feature maps which form a

pattern

12 Y← f m ∥ ki1 ∥ ki2 ∥ ... ∥ kin ; where ki1 , ki2 , ..., kin ∈ F ∧ ki1 , ki2 , ..., kin ̸= f m

13 // append the newly concatenated feature maps Y to T

14 T← T ∥ Y

15 end

16 // contextAwareCNN is the network responsible for learning the spatial

dependencies of all feature maps and their formed patterns

17 O← contextAwareCNN(T)

18 // logSoftmax function is used to map the output of contextAwareCNN O

to probability distribution V

19 V ← logSoftmax(O)

20 ŷ← arg max V

5.3.4 Dynamic Model Selection and Combination

The final stage of MCUa model is to dynamically ensemble the most certain models
for each image. To this end, we adapted an ensemble-based uncertainty quantifica-
tion component to allow for a dynamic selection of context-aware models to produce
the final prediction for an input image. To measure the uncertainty of the individual
context-aware models in MCUa, we adopted MC Dropout [29] for each model. MC
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dropout is a technique used in deep learning to measure the uncertainty of predic-
tions made by neural network models. The basic idea behind MC dropout is to use
dropout, a regularisation technique that randomly drops out connections/neurons
in the network during training, as a means of approximating a Bayesian approxi-
mation of the model’s posterior distribution. In each testing iteration, MC dropout
activates a random subset of neurons, causing changes in the output probability dis-
tribution or predictions for the input image. By introducing this random neuron ac-
tivation during testing, MC dropout enables the network to estimate the level of un-
certainty in its predictions. We applied MC dropout for each context-aware model,
in the test phase, to produce a list of probability predictions for each class of the in-
put image. Then, we calculated the mean and standard deviation for each class. The
mean is used to produce the final class label (ŷ) of the image, while standard devi-
ation is considered as a measure of uncertainty for the context-aware model. Based
on such uncertainty measures, a dynamic number of context-aware models will be
selected (based on uncertainty threshold value (δ)) for each particular image.

More precisely, each input image will be sensitive to a certain number of context-
aware models to form the final model ensemble. A context-aware model will be
selected if its uncertainty measure value is less than a pre-defined δ, as described in
our experimental study. More importantly, images with zero chosen models during
this dynamic selection process can be provided to medical professionals (patholo-
gists) for reviewing and annotating. Once the context-aware models are selected,
the mean class predictions is aggregated to produce the final class prediction distri-
bution. Here, we formulate the mean prediction and standard deviation as

µ =
1
z

z

∑
i=1

β (Φi(X); W) , (5.2)

σ =
1
z

z

∑
i=1

(β (Φi(X); W)− µ)2 , (5.3)

where µ represents the mean prediction, σ defines the uncertainty and z defines the
number of MC dropout test passes. The function β represents the context-aware
CNN with input X and W denotes the network weights, while Φi defines a MC
dropout test pass i to the input image X.

Algorithm 3 provides a detailed description of the ensemble process of MCUa
model. Each model produces a single probability distribution. We applied some
MC dropout test passes to generate a list of probability distributions for each model.
Then, to get the final class prediction and the measure of uncertainty for each model,
we computed the mean and standard deviation of the generated list of probability
distributions, respectively. Finally, using a δ value, we include only the most certain
models and we aggregate the mean of probability distributions for these models to
produce ŷ.
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Algorithm 3: MCUa Model
Input: Original image X to be classified

Output: Class label ŷ

1 Xscale1, Xscale2, ..., Xscalem ← X // resize original image to m scales

2 {x(1)m , x(2)m , ..., x(n)m } ← extractPatches(Xscalem, pw, ph)

3 FFeatureExtractorm ← FeatureExtractor({x(1)m , x(2)m , ..., x(n)m })
4 for f m ∈ FFeatureExtractorm do

5 i1, i2, ..., in ← getPatternIndices( f m)

6 Y← f m ∥ ki1 ∥ ki2 ∥ ... ∥ kin

7 T← T ∥ Y

8 end

9 Tall ← {TM1, TM2, ..., TMn} // output Tall of context-aware stage from n

context-aware models {M1, M2, ..., Mn}
10 for j ∈ MCdropoutTestPasses do

11 {OM1, OM2, ..., OMn} ← contextAwareCNN({TM1, TM2, ..., TMn})
12 // probability distribution V from n context-aware models

13 {VM1, VM2, ..., VMn} ← logSoftmax({OM1, OM2, ..., OMn})
14 Vtotal .append({VM1, VM2, ..., VMn})
15 end

16 // get model-wise mean and uncertainty of probability distributions

17 {µ1, µ2, ..., µn} ←mean(Vtotal)

18 {σ1, σ2, ..., σn} ← standardDeviation(Vtotal)

19 chosenModels← {}

20 for j ∈ contextAwareModels do

21 if σj < δ then

22 chosenModels.append(µj)

23 end

24 end

25 // aggregate the mean probability distributions of chosen models

26 B← aggregate(chosenModels)

27 ŷ← arg max B

5.4 Experimental Study

In this section, we present our comprehensive experimental study along with the
datasets used for evaluation. Moreover, we introduce an ablation study to show
how effective each block in our developed MCUa model.
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5.4.1 Dataset

In this experimental study, we used BACH dataset which is part of ICIAR 2018 chal-
lenge for classification of H&E stained breast cancer histology images. The dataset
is composed of two parts (namely Part A and Part B). Part A of the dataset is com-
posed of 400 sections of microscopy images that are equally distributed among four
classes (normal, benign, in situ, and invasive). On the other hand, Part B is com-
posed of 10 high-resolution whole slide images, where the annotations are provided
for a semantic segmentation task. In this work, we focused on Part A of the dataset
to evaluate the performance of the classification models. The dataset was annotated
by two medical experts and all microscopy images are relevant to different patients.
The total number of patients involved in the production of the dataset was 39. The
anonymisation process of the dataset does not allow to retrieve the origin of all im-
ages. All the microscopy images have the same size of 2048 × 1536 pixels at 20X
magnification level (where, the pixel resolution of the images is 0.42 µm).

We evaluated the performance of MCUa model using 400 training images with
stratified five-fold cross-validation. To train and fine-tune patch-wise networks (i.e.
pre-trained DCNNs), we used microscopy patches extracted from training images
which are augmented using different rotations and reflections. We evaluated the
performance of the ensemble of patch-wise networks using the validation set before
stacking context-aware networks on the top of patch-wise networks. Likewise, for
context-aware models, which are stacked on the top of patch-wise networks, we
followed the same training process conducted in patch-wise networks.

5.4.2 Hyperparameter Settings

For multi-scale image features, we managed to try different images scales including
the scale of the original image. Based on a comprehensive experimentation as well
as the recommendation of the work conducted in [120], we decided to resize the
original image (of the size 2048 x 1536) to 448 x 336 (scale 1), and 296 x 224 (scale
2). To extract image patches from the multi-scale resized images, we utilised sliding
window technique of size pw = ph = 224. Also, we set the stride (at scale 1) to
28 and 56 for training data extraction and testing data extraction, respectively. For
scale 2, we set the stride to 9 and 18 for training data extraction and testing data
extraction, respectively. In this work, for a fair comparison, we followed the same
hyperparameter settings as pointed out in [120], where the same backbone networks
were used.

The overlapped extracted patches are then fed into the pre-trained DCNN mod-
els. We used DenseNet-161 for scale 1 and 2, while ResNet-152 is utilised for scale
1 only. This gives three ensemble pre-trained feature extractors. The choice of these
three pre-trained DCNNs with the associated image scales was aligned with the con-
clusion that has been drawn from the work conducted in [120]. An ablation study
was conducted in [120] using several different ImageNet pre-trained networks. The
study has included different image scales (2048 x 1536, 1024 x 768, 448 x 336, and
296 x 224) for the BACH dataset and different pre-trained networks (DenseNet-161,
ResNet-101, and ResNet-152). They also considered different combinations of the
fine-tuned DCNN models (with different image scales) for the ensemble modeling.
Our work utilised the optimal combination recommended by their study, which is
using DenseNet-161 for scale 1 and 2, while using ResNet-152 for scale 1. In the
training process, we applied data augmentation for each patch by applying rotation
operation of 90 degrees with/without vertical flipping. This results in eight versions
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of a single patch. We set the learning rate to 0.0001 for 5 training epochs with a batch
size of 32.

The feature maps extracted from each pre-trained DCNN are then inserted into
multi-level context-aware models which present different levels of contextual in-
formation. We utilised six multi-level context-aware models for each pre-trained
DCNN giving us a total number of 18 context-aware models. Based on initial exper-
imentation, we designed our MCUa model in a constructive way by experimenting
a group of 3 context-aware models until reaching the total number of context-aware
models represented in this work. In our experiments, we considered the amount of
GPU memory available and, at the same time, covering different prominent levels
of spatial dependencies, different pre-trained DCNN models, and different image
scales when choosing the total number of context-aware models.

For context-aware networks, we utilised stride s = 112 for scale 1 and s = 9 for
scale 2. The stride values are chosen after comprehensive experimentation to pick up
the suitable values which give higher accuracy as well as improving the contextual
assumption for MCUa model. The settings for a context-aware network are exactly
like the pre-trained DCNN settings except that we used 10 training epochs and batch
size equals to 8. For data augmentation, we used same transformations applied for
pre-trained DCNN models, but using rotation operation of 180 degrees. Moreover,
as overfitting is a major problem in this network, dropout was used with 0.7 rate.

As a final stage, for each image, the most certain models have been selected and
combined, in a dynamic way. To implement this, we utilised MC-dropout with a
total number of 50 test passes (which is sufficient to generate a statistically valid
distribution) for each image. Based on the mean and standard deviation of the 50
distributions, we used the mean to produce the final prediction, while standard de-
viation was used as a measure of uncertainty. The dynamic picking of context-aware
models is performed using δ threshold which ranges from 0.001 to 1.75.

5.4.3 Performance Evaluation

We adopt accuracy, precision, recall and F1-score. Precision is intuitively the ability
of the classifier not to label as positive a sample that is negative, recall is the ability
of the classifier to find all the positive samples and F1-score can be interpreted as a
weighted average of the precision and recall. We computed the accuracy, precision,
recall and F1-score as shown in equations 4.5, 4.6, 4.7, and 4.8, respectively.

Performance of a Single Context-aware Model

Table 5.1 presents the classification accuracy for our individual context-aware mod-
els that have been designed on the top of three pre-trained DCNNs (e.g. DenseNet-
161 using two image scales 448× 336 (scale 1) and 296× 224 (scale 2) and ResNet-152
using image scale 1). The context-aware models are implemented based on different
pattern levels and shape indices (P2,S1 , P3,S1 , P4,S1 , P4,S2 , P5,S1 , P6,S1 and P8,S1). Based on
trial and error experiments, we excluded P7,S1 as it gives lower accuracy compared
to the other pattern levels. Also, to demonstrate the idea of using different shapes
within the same pattern level, we experimented P4,S1 and P4,S2 , where each one of
them has a unique set of shape indices. As illustrated by Table 5.1, the highest clas-
sification accuracies are obtained by P2,S1 , P4,S2 and P5,S1 with the three pre-trained
DCNNs. Moreover, most of the context-aware models for image scale 1 achieved
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a classification accuracy which varied between 93% and 94.75%, while the context-
aware models for image scale 2 achieved less accuracy ranging between 88.75% and
90.25%.

Static MCUa Model

We have presented the accuracy, precision, recall, and AUC of the static ensemble
context-aware architecture (i.e. ensemble of the total 18 models) to distinguish each
category of images and overall classification accuracy in Table 5.2. As illustrated by
the table, invasive carcinoma tissues and benign tissues can be differentiated clearly
from other classes. We achieved an average precision of 95.90% ± 2.40% and an
overall classification accuracy of 95.75% ± 2.44%, which illustrates the viability of
our architecture in classifying breast histology images.

Static vs. Dynamic MCUa Model

To demonstrate the sensitivity of MCUa to the uncertainty quantification compo-
nent, we studied the performance of the static ensemble of context-aware models
and our dynamic ensemble mechanism. For a fair comparison, we utilised two
other metrics: (1) Weighted Average Accuracy (WAACC), which computes accuracy
for each fold of the 5 folds weighted by the number of included images in that fold
and after that it averages the weighted accuracies of 5 folds over the total number
of included images all over the dataset; and (2) abstain percentage (Abs), which cal-
culates the percentage of excluded images in the dataset through different δ values.
We formulated WA-ACC and Abs as:

WAACC =
1

∑r
i=1 wi

r

∑
i=1

Accuracyi × wi, (5.4)

Abs =

(
∑r

i=1 ∑h
j=1 X

′′
ij

Dall

)
× 100, (5.5)

where Accuracyi represents classification accuracy i over r folds, wi is the weight
of the included images in fold i, X

′′
ij represents excluded image j over h excluded

images in fold i, and Dall is the total number of images in BACH dataset.
Table 5.3 illustrates the effectiveness of MCUa by improving the classification

accuracy obtained by static ensemble mechanism. As demonstrated by Table 5.3,
MCUa has achieved WAACC of 98.11% with δ of 0.001 and around 97.70% with δ
values of 0.002, 0.003, 0.006 and 0.02.

Figure 5.4 depicts WAACC curve for included images, Abs, and WAACC curve for
excluded images on BACH dataset, respectively, over δ ranges from 0.001 to 1.75.
The WAACC curve for the included images shows that the best WAACC is achieved
when the δ value is low and the accuracy starts to decrease with increasing δ values
until it reaches 0.1. Moreover, as shown by the same figure, the accuracy increases
until settling at 95% with δ value of 0.5 to 1.75. On the other hand, Abs curve shows
that the percentage of abstained images decreases when we use higher δ values, and
starting from 0.25, the number of excluded images dropped to zero. Finally, the
WAACC curve for excluded images shows the performance of MCUa model using
static ensemble, where the accuracy was around 80% for small δ and then the ac-
curacy starts to drop until reaching 50% at δ of 0.1. The accuracy is zero when the
number of excluded images equals to zero. This demonstrates that excluded images



5.4. Experimental Study 81

TABLE 5.1: Classification Accuracy for context-aware models based
on different pattern levels using stratified five-fold cross-validation

on BACH dataset (%).

Pre-trained DCNN
(Image Scale)

Context-aware Pattern Levels - Accuracy

P2,S1 P3,S1 P4,S1 P4,S2 P5,S1 P6,S1 P8,S1

DenseNet-161 (Scale 1) 93.75 93.00 93.50 93.25 93.50 93.25 –

DenseNet-161 (Scale 2) 89.00 89.75 – 90.25 89.75 88.75 90.25

ResNet-152 (Scale 1) 94.00 93.25 93.50 94.75 94.75 93.75 –

TABLE 5.2: Performance (mean ± standard deviation) of MCUa
(static ensemble) on BACH Dataset with stratified five-fold cross-

validation (%).

Category Precision Recall F1-score Accuracy

Normal 93.32 ± 5.34 95.00 ± 5 94.07 ± 4.10 97.00 ± 2.09

Benign 96.00 ± 4 95.00 ± 5 95.45 ± 4.15 97.75 ± 2.05

InSitu 95.28 ± 4.68 96 ± 2.24 95.56 ± 1.98 97.75 ± 1.04

Invasive 99.00 ± 1 97 ± 2.74 97.97 ± 2.10 99.00 ± 1

Total 95.90 ± 2.40 95.75 ± 2.44 95.77 ± 2.42 95.75 ± 2.44

TABLE 5.3: Accuracy (%) of MCUa model with both static and dy-
namic ensemble on BACH dataset.

Method δ Accuracy

MCUa (Static Ensemble) NA 95.75

MCUa (Dynamic Ensemble)

0.001 98.11

0.002 97.93

0.003 97.60

0.006 97.65

0.01 97.53

are typically harder to classify, and may well require a pathologist to make an expert
judgment.

Comparison with Recent Methods

In Table 5.4, we compare the performance of our model with the following state-of-
the-art recent methods: (1) a two-stage CNN proposed by Nazeri et al. [73], which
consists of patch-wise network for feature extraction and image-wise network for
image level classification, (2) a context-aware learning strategy using transferable
features, which is based on a pre-trained DCNN and SVM for classification [9], (3)
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TABLE 5.4: Performance (mean ± standard deviation) comparison of
the MCUa model and recent methods on BACH Dataset (%).

Method Precision Recall F1-score Accuracy

Two-Stage CNN [73] 86.35 ± 2.70 85.50 ± 3.38 85.49 ± 3.25 85.50 ± 3.38

DCNN + SVM [9] 86.88 ± 1.52 85.75 ± 1.90 85.58 ± 1.92 85.75 ± 1.90

Bayesian DenseNet-169
[72]

89.28 ± 4.71 88.50 ± 5.03 88.45 ± 5.05 88.50 ± 5.03

Deep Spatial Fusion
CNN [42]

89.93 ± 4.11 89.00 ± 3.89 88.93 ± 4.02 89.00 ± 3.89

Variational Dropout
ARA-CNN [79]

90.25 ± 2.87 89.50 ± 3.14 89.48 ± 3.13 89.50 ± 3.14

ScanNet + Feature Ag-
gregation [113]

90.90 ± 3.87 90.50 ± 3.81 90.46 ± 3.86 90.50 ± 3.81

Hybrid DNN [119] 91.79 ± 3.50 91.00 ± 3.46 90.98 ± 3.45 91.00 ± 3.46

EMS-Net [120] 95.23 ± 2.13 95.00 ± 2.17 94.98 ± 2.13 95.00 ± 2.17

3E-Net [90] 95.68 ± 3.15 95.46 ± 3.22 95.45 ± 3.24 95.46 ± 3.22

MCUa (Static Ensem-
ble)

95.90 ± 2.40 95.75 ± 2.44 95.77 ± 2.42 95.75 ± 2.44

MCUa (Dynamic En-
semble (δ = 0.001))

98.25 ± 1.58 98.11 ± 1.77 98.10 ± 1.78 98.11 ± 1.77

Bayesian DenseNet-169 proposed by Mobiny and Singh [72], which generates uncer-
tainty measure for input images, (4) deep spatial fusion CNN introduced by Huang
and Chung [42], which uses patch-wise residual network for feature extraction and
deep spatial fusion network that has been designed to capture the spatial relation-
ship among image patches using the spatial feature maps, (5) ARA-CNN introduced
by Raczkowski et al. [79], which uses variational dropout during the testing phase
to measure the uncertainty of input images, (6) ScanNet with feature aggregation
method of [113], which applies feature extraction and concatenation towards the
final classification, (7) Hybrid DNN introduced by Yan et al. [119] which uses incep-
tion network for feature extraction of image patches along with bi-directional LSTM
network which learns contextual information among feature maps generated from
inception network, (8) EMS-Net proposed by Zhanbo et al. [120], which applies
an ensemble of pre-trained DCNNs, and (9) 3E-Net Version A [90] which builds an
ensemble of image-wise networks with a measure of uncertainty using Shannon en-
tropy to pick the most certain image-wise models for the final image classification.
As demonstrated by Table 5.4, our model outperformed other models when both
static and dynamic ensemble mechanisms are used. Moreover, Figure 5.6 illustrates
ROC curves for MCUa (with both dynamic and static ensemble) to confirm the supe-
riority of our presented solution. Consequently, the importance of integrating multi-
level contextual information into DCNNs, to alleviating the high visual variability
in breast histology images, has been emphasised and experimentally proofed.
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Performance of MCUa on BreakHis Dataset

To confirm the effectiveness of our solution, we applied MCUa model on the Breast
Cancer Histopathological Database (BreakHis) [102]. BreakHis has 7909 breast can-
cer histology images collected from 82 patients, obtained with different magnifica-
tion levels (40X, 100X, 200X, and 400X). The dataset consists of 2480 benign and 5429
malignant microscopic images with resolution of 700 × 460 pixels each. We used
images with a magnification level of 40X, which included 625 benign and 1370 ma-
lignant samples (1995 microscopic samples in total).

In this study, we used the same hyperparameter settings that we used for the
BACH dataset. For example, we down-sampled the original input image (700 ×
460) to two image scales (scale 1: 448 × 336 and scale 2: 296 × 224). These image
scales are fed as input to the pre-trained DCNN models (DenseNet-161 and ResNet-
152) for extraction of features from image patches. The extracted features are then
inserted into 18 context-aware models to learn the spatial relationships among the
image patches. We used the same patch stride and data augmentation settings (that
has been applied to the BACH dataset) for both feature extraction and context-aware
modeling networks. As BreakHis dataset has 2 classes (Benign and Malignant), we
fine-tuned the pre-trained DCNN models by modifying the number of neurons of
the last fully connected layer to only two neurons. As shown in Table 5.5, MCUa
demonstrated to be effective in both static and dynamic techniques. Using 5-fold
cross-validation, we achieved a classification accuracy of 99.80% using the static
ensemble technique. The model has achieved exceptional classification accuracies
of 100%, 99.95%, and 99.90% using dynamic ensemble on δ values of 0.001, 0.003,
and 0.03, respectively. Figure 5.5 depicts the WAA and Abs curves for MCUa using
BreakHis dataset.

Ablation Study

In this work, we describe the ablation study that we conducted to reach the final
version of the building components of our MCUa model. All the conducted exper-
iments in this ablation study are validated with BACH dataset. As an initial step
towards our final version of MCUa, we implemented a single DCNN with a tar-
get to learn multi-scale and multi-level feature patterns. This is accomplished by
using multiple patch scales (224 x 224, 112 x 112, 56 x 56, and 28 x 28) to identify
different nuclei sizes in histology images. Then, we utilised all the feature maps ex-
tracted from the aforementioned patch scales by applying fusion for the multi-scale,
multi-level feature maps for final classification. The single DCNN was built using
a sequence of 3 x 3 filters in the convolutional layers, followed by a pooling layer,
with the number of channels doubled after each down-sampling. We used 2 x 2 fil-
ters in the convolutional layers with stride of 2 for down-sampling the feature maps.
Batch normalisation and ReLU activation were used after all convolutional layers.
Finally, a fully connected layer followed by softmax layer are used to produce the
final image classification. We applied stratified 5-fold cross-validation and achieved
classification accuracy of 87.50%.

In another trial, we implemented single DCNNs to extract feature maps from
image patches, learn spatial dependencies among image patches arranged in a cer-
tain pattern, and generated the final image classification. We used DenseNet-161
with image scales (scale 1: 448 × 336 and scale 2: 296 × 224) and ResNet-152 with
image scale (scale 1: 448 × 336) as the single DCNNs in this study. We applied strat-
ified 5-fold cross-validation, and we achieved a classification accuracy of 93.00%
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FIGURE 5.4: Weighted average accuracy (WAACC) for the included
images (top), abstain percentage (Abs) (middle) and (WAACC) (bot-

tom) for the excluded images on BACH dataset.
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FIGURE 5.5: WAACC for the included images (top), abstain percentage
(Abs) (bottom) for the excluded images on BreakHis dataset.

TABLE 5.5: Accuracy (%) of MCUa model with both static and dy-
namic ensemble on BreakHis dataset.

Method δ Accuracy

MCUa (Static Ensemble) NA 99.80

MCUa (Dynamic Ensemble)

0.001 100

0.003 99.95

0.03 99.90

0.04 99.85

and 88.50% for DenseNet-161 with scales 1 and 2, respectively, while, ResNet-152
using scale 1 yielded a classification accuracy of 94.50%. Although the aforemen-
tioned methods are straightforward and easy to implement, we argue that single
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FIGURE 5.6: Receiver Operating Characteristic (ROC) curves for the
static and dynamic methods of MCUa Model using 5-fold cross-

validation on BACH dataset.

DCNNs lack diversity in generating discriminative features which is vital in the us-
age of ensemble strategy. This helps to generate features from multi-scale and multi-
architecture perspectives to help in representing multi-level haematological objects
(such as nuclei and glands) within the histology images.

Consequently, we applied an ensemble of three pre-trained single DCNNs with
two image scales and achieved a classification accuracy of 95.00%. Furthermore, in-
stead of using the pre-trained DCNNs for classification task, we used them for fea-
ture extraction of image patches, then we stacked 18 context-aware models over the
three pre-trained DCNNs. The ensemble process of 18 context-ware models yielded
a classification accuracy of 95.75% (MCUa static ensemble).

In the final stage of MCUa, we evaluated the contribution of uncertainty-aware
component, which is stacked over 18 context-aware models. This strategy intro-
duces the machine-confidence in the automated prediction of histology images. The
full version of MCUa (based on the uncertainty-aware component) yielded a classifi-
cation accuracy of 98.11%. This justifies the effectiveness of using multi-scale input,
multi-architecture feature extraction, multi-level context-aware modeling, and un-
certainty quantification for the dynamic ensemble mechanism.
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5.5 Summary

In this chapter, we introduced a novel dynamic ensemble of context-aware mod-
els, we called Multi-level Context and Uncertainty aware (MCUa) model, to clas-
sify H&E stained breast histology images into four classes including normal tis-
sue, benign lesion, in situ carcinoma and invasive carcinoma. MCUa model has
been designed in a way to learn the spatial dependencies among the patches in a
histology image by integrating multi-level contextual information into the learning
framework of deep convolutional neural networks. Capturing spatial relationships
among image patches has been accomplished using a pattern of neighbourhood cri-
teria through multiple context-aware models. MCUa model has also an uncertainty
quantification component that allows for a dynamic ensemble of the context-aware
model to not only improve the performance (by improving the learning diversity
of the model) but also quantify the difficulties in classifying images. MCUa has
achieved high accuracy of 95.75% and 98.11% with both static ensemble and dy-
namic ensemble mechanisms, respectively, on the BACH dataset, and outperformed
other related state-of-the-art models.

MCUa model reflects a robust development of a deep learning architecture that
can be used as a reliable diagnostic tool. This model is considered a heavy-weight
model compared to 3E-Net as it requires more time during inference and needs more
resources. Consequently, MCUa can be deployed on a server-based device making it
highly efficient in terms of generating accurate predictions and actionable decisions.
MCUa model distinguishes itself from the 3E-Net model in several key ways. For
instance, it has the capability to accurately detect nuclei objects of diverse dimen-
sions in histopathological images by employing multi-scale inputs and employing
a variety of architectural designs for feature extraction. Furthermore, MCUa model
is capable of learning contextual information at multiple scales and levels. Lastly,
it incorporates an uncertainty component, based on MC dropout, which generates
list of predictive probability distributions, instead of a single predictive probability
distribution as introduced in 3E-Net.

3E-Net and MCUa proved their effectiveness on two different types of deep learn-
ing applications: grading and diagnostics, respectively. The selection process of un-
certain images which is based on either Shannon Entropy (3E-Net) or MC dropout
(MCUa) are being managed by manual actionability (i.e. manual tuning for thresh-
old value to identify a margin for certain and uncertain images) which is good prac-
tice to identify how our models behave when we utilise different values of threshold.
This process may lead in excluding lower or higher number of images based on the
manual value of threshold set. Therefore, in the next chapter, we introduce an auto-
mated actionable method for optimising uncertainty quantification for deep learning
architectures (AUQantO) that utilises multiple optimisation methods for optimising
single and multi-objective functions that aim to find the optimal number of excluded
images based on searching for the optimal threshold. This method can be applied
to any deep learning architecture that produces probability distribution as sort of
output prediction.
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Chapter 6

AUQantO: Actionable Uncertainty
Quantification Optimisation for
Medical Image Classification

In the last chapter, we explained in detail MCUa for classification of breast histopathol-
ogy microscopic images as the second contribution of the thesis. MCUa utilised a
detailed strategy for building automated diagnosis system. This strategy proved to
be highly effective for clinical practice, as it introduces advanced method for un-
certainty quantification along with diversity for image scales, feature extraction and
context-aware information. The selection process of uncertain images in 3E-Net and
MCUa is managed manually by setting a threshold to identify a margin for certain
and uncertain images. While this is a good practice to understand the models’ be-
haviour under different threshold values, it may lead to excluding a higher number
of images based on the manual value setting. Therefore, in this chapter, we present
a model agnostic method for optimising uncertainty quantification for image clas-
sification in deep learning models. This method features a fully automatic mecha-
nism to select optimal hyperparameter settings (threshold) for identifying the opti-
mal number of images to be excluded from a particular dataset based on uncertainty
quantification methods. Findings reported in this chapter is to be published in [89].

6.1 Overview

Deep learning algorithms have the potential to automate the examination of medi-
cal images obtained in clinical practice. Using digitised medical images, convolution
neural networks (CNNs) have demonstrated their ability and promise to discrimi-
nate among different image classes. As an initial step towards explainability in clini-
cal diagnosis, deep learning models must be exceedingly precise, offering a measure
of uncertainty for its predictions. Such uncertainty-aware models can help medi-
cal professionals in detecting complicated and corrupted samples for re-annotation
or exclusion. In this chapter, we introduce a novel model and data agnostic mech-
anism, we called Actionable Uncertainty Quantification Optimisation (AUQantO),
for optimising deep learning architectures’ performance for medical image classifi-
cation. This is by optimising the hyperparameter of entropy-based and Monte-Carlo
(MC) dropout uncertainty quantification techniques escorted by single and multi-
objective optimisation methods, abstaining classification of images with a high level
of uncertainty. AUQantO has been validated with four deep learning architectures
on two medical image datasets. The results show significant improvements in the
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performance of the state-of-the-art deep learning approaches with the ability in gen-
erating the optimal number of excluded images based on their level of prediction’s
confidence.

The chapter is structured as follows. In section 6.2, we give an introductory
about the background and the developed work. Section 6.3 discusses, in detail, our
AUQantO method. Our experimental results and findings are explained in Section
6.4. Section 6.5 summarises our work.

6.2 Introduction

Advances in computer-aided diagnosis (CAD) have a substantial impact on reduc-
ing the strain of medical practitioners doing manual investigations and enhancing
detection accuracy for various diseases. One of the methods that has been used ex-
tensively for automated diagnosis is deep learning. Deep learning approaches have
gained gigantic headway and accomplished exceptional outcomes, driving numer-
ous researchers to give automated and fair solutions for a few diverse medical image
analysis applications. For the image classification task, Deep Convolutional Neural
Networks (DCNNs) are considered as one of the deep learning approaches that have
been commonly used to extract prominent image features for several medical image
analysis applications [96].

Despite the capability of DCNNs to demonstrate outstanding performance for
image classification tasks [42, 73, 120], an initial stage of explainability is required
to measure the level of uncertainty in the input samples for medical image analysis
applications. Building an uncertainty-aware model can help in identifying any am-
biguity that could be therapeutically useful. Uncertainty awareness is also beneficial
in terms of actionability to medical samples which could be possibly confusing and
challenging to automated diagnosis systems. It additionally permits clinical experts
to rate images that ought to be focused on for manual examination.

In this chapter, we present a model agnostic mechanism, coined Actionable Un-
certainty Quantification Optimisation (AUQantO), to optimise the performance of
deep learning architectures for medical image classification. AUQantO is guided
by uncertainty measurements which assist clinical experts with refining annotations
for developing more reliable DCNN models. AUQantO employs either an entropy-
based mechanism [93] or a Monte-Carlo (MC) dropout [29] technique to measure
uncertainty in images, where a new hyperparameter (i.e. a threshold) is introduced
and optimised. Our motivation stems from the notion that, despite the abundance of
deep learning architectures and their significant potential for reducing the workload
strain on medical experts, a small percentage of low quality or indecisive medical
images would necessitate the aid of medical experts. The performance of AUQantO
has been validated using state-of-the-art deep learning architectures (with several
optimisation methods) on two medical image datasets.

The contributions of the chapter can be summarised as below:

• introduced an optimised automated actionability component to deep learning
architectures, which guides medical experts in identifying contaminated sam-
ples for re-annotation or exclusion;

• developed a model and dataset agnostic uncertainty-aware method to improve
the usage of deep learning models in clinical practice; and
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• conducted a comprehensive experimental study using different deep learning
models escorted by two uncertainty measures applied to two publicly avail-
able medical imaging datasets.

6.3 AUQantO Method

We explain our developed approach (AUQantO) for optimising uncertainty quan-
tification in deep learning architectures in this section. As illustrated by Fig. 6.1,
an input image is fed into the deep learning architecture for the classification. As
a pre-stage to our method, AUQantO requires deep learning architectures that can
generate probability distributions for their input samples. This requirement helps
AUQantO to generate an uncertainty score for the image’s probability distribution
and decides the poor medical samples that need to be manually investigated by
medical experts. Consequently, AUQantO (as an uncertainty-aware method) has
been designed based on Shannon Entropy [93] or MC Dropout [29]. Shannon En-
tropy is based on the image predictions (or the probability distribution of the out-
put, where each value is associated with a class in the training set) generated by the
deep learning architecture. Shannon Entropy is adopted to generate an uncertainty
score for how confident the model is in classifying the input image. On the other
hand, MC dropout uses dropout layers in the deep learning architecture network
for image classification and activates them during the testing phase, resulting in a
list of probability distributions whose mean prediction determines the image’s final
classification while the standard deviation provides a measure of uncertainty. To
automatically exclude the poor image samples and keep the confident ones for final
classification, AUQantO introduces a new hyperparameter, we called threshold (λ).
In this work, the optimal threshold value is explored by single and multi-objective
optimisation methods. AUQantO can quantify uncertainty in medical image sam-
ples and automatically tune the threshold hyperparameter against uncertainty val-
ues to exclude the highly uncertain images.

6.3.1 Uncertainty Measure

Image predictions generated by the deep learning architectures of AUQantO are
used for quantifying the uncertainty of the predictions. This is by adopting uncer-
tainty quantification methods, such as Shannon Entropy and MC dropout, to mea-
sure the level of uncertainty in classifying an input image. Our choice of Shannon
Entropy and MC dropout comes from the fact that we deal with probability distri-
butions and the need to measure the level of randomness in the obtained image’s
predictions. These uncertainty measures help in the excluding process of poor sam-
ples by indicating the ambiguity occurring in either a probability distribution of an
input image (Shannon Entropy method) or a generated list of probability distribu-
tions from an input image (MC dropout method).

Shannon Entropy

This uncertainty quantification method works by receiving the image prediction
generated from a deep learning architecture as an input and generating an uncer-
tainty score. This uncertainty score reflects the level of confusion that comes from
the probability values produced for every class label in the training set. A low un-
certainty score is obtained when the deep learning architecture is highly confident
(in terms of the prediction) with a high probability value associated with a certain
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FIGURE 6.1: The workflow of AUQantO method. Our method deals
with two different uncertainty-awareness techniques. AUQantO
deals with two types of image predictions. First, AUQantO processes
a single probability distribution associated with an input image by
applying Shannon entropy to generate an uncertainty score. Second,
AUQantO processes a multi-scalar probability distribution associated
with the MC dropout technique. In other words, our method pro-
cesses a list of probability distributions generated from activating
dropout layers throughout the testing process of a deep learning ar-
chitecture associated with the image classification task. A calculated
standard deviation from the list of generated probability distributions
for a particular input sample is considered as the measure of uncer-
tainty. Then, for both uncertainty measures, AUQantO optimises a
hyperparameter or threshold value (λ), of the developed uncertainty
quantification component. The importance of λ comes from its effec-
tiveness in selecting whether an image would be included in the final
classification (as a strong candidate) or to be excluded as a poor sam-

ple which needs further investigation by medical experts.

class label, while a high uncertainty score refers to the conflict that can occur when
multiple probability values are quite similar. The formulation of Shannon Entropy
is presented in equation 4.4. Detailed description of Shannon Entropy is present in
section 4.3.3.

Bayesian Approximation using MC Dropout

Unlike Shannon entropy quantification method, MC dropout works by applying
dropout layers to the deep learning architectures and activating these layers during
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the testing phase. MC dropout method features a key hyperparameter that regu-
lates the number of times the network is tested (test passes). During each testing
pass, MC dropout randomly activates a subset of neurons, leading to alterations in
the output probability distribution (or predictions) associated with the input image.
This random activation of neurons during testing provides a means of measuring
uncertainty in the predictions made by the network. As a consequence, a list of
probability distributions for each input image is generated where their average is
used to produce the final class prediction and their standard deviation reflects the
level of uncertainty. The formulation of mean prediction and standard deviation are
presented in equations 5.2 and 5.3, respectively. Detailed description of MC dropout
is present in section 5.3.4.

The uncertainty score generated by any of the two above-mentioned uncertainty
quantification methods is then verified by a hyperparameter (e.g. λ). The optimal
threshold value (which aids in excluding the optimal number of poor samples) is
calculated by the minimisation of our objective function(s).

6.3.2 Objective Function

Single-objective Function

A new hyperparameter (λ) has been introduced by our objective function, to be
tuned based on the generated uncertainty scores. This is by checking if the input
image has an uncertainty score greater than the λ then the image will be excluded
from the final classification process, otherwise, the image will be classified by the
model. More precisely, to calculate the optimal threshold value (λ), we introduce a
single-objective function to be minimised. Our objective function has two terms that
have been designed to encode the confidence of probability distributions for both
included and excluded images. We used cross-entropy for the probability distribu-
tions against the ground truth labels. For example, we customised the cross-entropy
equation by multiplying the probability distribution of a given image by the one hot-
encoding labelling for the same image. Consequently, we formulated Hexc and Hinc
to present a summation of cross-entropy values for excluded and included images,
respectively. Hexc and Hinc can be represented as:

Hexc =
n

∑
i=1

c

∑
j=1

pij × qij (6.1)

Hinc =
m

∑
i=1

c

∑
j=1

pij × qij (6.2)

where pij represents the probability value j over c class probability values, while qij
represents the one hot-encoding value j over c class categories of image i over either
n excluded images or m included images.

The average cross-entropy for both excluded and included images is then calcu-
lated by dividing Hexc and Hinc by n excluded images and m included images, re-
spectively. Using single-objective optimisation methods, the main target is to reach
an optimal λ which minimises the summation of the two terms of the objective func-
tion. For example, a possible scenario to minimise the cross-entropy of excluded
images Hexc is to have cases where images are misclassified with high confidence.
This means that the evaluation of cross-entropy equation (assuming we have a clas-
sification problem of two classes) will have a very small probability value p (tends
to zero) for the correct class multiplied by q = 1 to represent the one hot-encoding of
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correct class. While, for incorrect class, a very high probability value p is multiplied
by q = 0. A similar scenario could happen for the maximisation of the cross-entropy
of included images Hinc by having images that are correctly classified with high con-
fidence and by subtracting this term from a value of one, we convert it into a term
to be minimised instead. Both scenarios for included and excluded images lead to
a very small value for the output of the objective function and hence we can reach
high level of trustworthiness for included images that are classified by a deep learn-
ing architecture and exclude images that are truly uncertain with high confidence
for further annotation and investigation by medical experts. The single-objective
function can be defined as:

F(λ) = argmin(SE|σ<λ||SE|σ≥λ)

((
Hexc

n

)
+

(
1− Hinc

m

))
(6.3)

where F(λ) is the output of the single-objective function and λ is the optimal thresh-
old value. λ is verified by Shannon Entropy SE or MC dropout’s standard deviation
σ to differentiate between included and excluded image groups and measure the
average cross-entropy.

Multi-objective Function

As can be noticed from the above-mentioned single-objective function, that we have
two terms to work on both included and excluded images. The two terms can be
presented in two separate objective functions that can be optimised simultaneously
to reach the optimal threshold which achieves the selection of (1) highly certain im-
ages to be included in the final classification and (2) highly uncertain images to be
excluded from classification and to be returned to medical experts for manual ex-
ploration. In that sense, we introduce a multi-objective function with the target of
maximising the rate of included images and minimising the rate of excluded images
based on their uncertainty and confidence of deep learning architecture’s predic-
tions.

Our multi-objective function can be defined as:

min {Fexc(λ), Finc(λ)} (6.4)

where:
Fexc(λ) = Hexc/n
Finc(λ) = 1− (Hinc/m)

subject to:
n ≥ 1
λ ≤ SE|σ f or Fexc(λ)
m ≥ 1
λ > SE|σ f or Finc(λ)
λmin ≤ λ ≤ λmax,

where Fexc(λ) and Finc(λ) represent the objective functions which are based on the
average cross-entropy of excluded and included images, respectively. The number
of excluded images n and included images m in the multi-objective function are sub-
ject to number of images not less than value of one. Moreover, λ value is subject to a
pre-defined range (λmin to λmax) while using a multi-objective optimisation method.
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6.3.3 Optimisation methods

Our optimisation problem is based on a non-convex objective function. Non-convex
optimisation refers to the optimisation problems where the objective function to be
minimized or maximized is not a convex function. A convex function is a mathemat-
ical function that is always above its tangent, meaning that its slope does not change
abruptly, resulting in a single global minimum. In contrast, non-convex functions
have multiple local minima, meaning that they can have multiple regions where
the function value is the lowest. In the context of the given explanation, the exclu-
sion rate of images can affect the accuracy of the deep learning architectures in a
non-linear and unpredictable manner. This means that increasing or decreasing the
exclusion rate may not always lead to higher accuracy. As a result, the objective
function that represents the relationship between the exclusion rate and accuracy is
non-convex and has multiple local minima. In this case, the search for the optimal
threshold hyperparameter will be conducted randomly within a search space, which
means that different solutions will be explored randomly in the hope of finding the
global optimum (stochastic objective function). However, due to the non-convex
nature of the objective function, there is no guarantee that the optimum found will
be the global optimum, but rather a local optimum. All the optimisation methods
adopted in this work are known to be effective when applied to non-convex optimi-
sation problems [105].

Bayesian Optimisation using Gaussian Processes (GP)

For function spaces with domains that are continuous, discontinuous, mixed, or
even hierarchical, Bayesian optimisation using GP [81] provides a rich and versatile
collection of non-parametric statistical models. The aim is to use GP to approximate
the objective function. More precisely, the values of the functions are developed to
follow a multivariate Gaussian distribution. GP is considered as stochastic process
defined on a continuous domain X ⊂ Rn. A function F is considered as a GP if for a
finite tuple of hyperparameter values λtuple = (λ1, · · · , λk) ⊂ X k the random vector
Y = [F (λ1) , · · · , F (λk)]

T is a multivariate Gaussian random variable. A GP is char-
acterised by two functions: mean function µ(λ) and a covariance function k(λ, λ

′
).

Then, we can present the multivariate probability density as:

P(Y) =
1

(2π)k/2|Σ|1/2 exp
[
−1

2
(Y− µ)TΣ−1(Y− µ)

]
, (6.5)

where µ = [µ (λ1) , · · · , µ (λk)]
T , Σ =

[
Σij
]
=
[
k
(
λi, λj

)]
.

Constrained Optimisation by Linear Approximation (COBYLA)

COBYLA is a derivative-free simplex method introduced by [78]. In general, the
simplex technique aims to minimise the objective function by employing simplices,
with simplex referring to the convex hull of s+ 1 points in s-dimensional space and s
indicating the number of variables. The objective function is evaluated at the vertices
of an initial simplex, and the simplex is then changed so that the objective function
obtains generally smaller values at the vertices of the new simplex than at the ver-
tices of the prior simplex. Let the initial value of λ be required and let’s assume we
have function values F(λi), i = 0, 1, · · · , s, where F (λ0) ≤ F (λ1) ≤ · · · ≤ F (λs).
An iteration of original simplex method evaluates the next function F (λ), where the
next point is λ̂
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λ̂ = (2/s)
s−1

∑
i=0

λi − λs (6.6)

If F(λ̂) < F (λs−1) has been reached, then λ̂ takes place λs as a vertex of the
simplex. Otherwise, a contraction is recommended by retaining λ0, but λi being
replaced by 1

2 (λ0 + λi) for i = 1, 2, . . . , s, and then s more function values have to
be evaluated for the upcoming iteration. In both conditions, the new set of function
values has to be arranged into an ascending order style.

Dual Annealing

Dual Annealing is a stochastic global optimisation method. It is a generalised sim-
ulated annealing algorithm [116], which is an extension of simulated annealing. In
addition, it is associated with a local search algorithm, which runs automatically at
the end of the simulated annealing process. This optimisation is designed for ob-
jective functions that have a nonlinear response surface. The algorithm mimics the
slow cooling of metals, which is characterised by a progressive decrease in atomic
movements, which lowers the density of lattice distortion until the smallest energy
state is reached. Similarly, the simulated annealing algorithm generates a new fea-
sible solution to the optimisation problem by modifying the existing state according
to a specified criterion at each virtual annealing temperature. The newly reached
state is approved if it meets the Metropolis criterion, and the procedure is repeated
until convergence is reached. Let’s consider the objective function F(λi) with a set
of λ = λ1, · · · , λn. Each new candidate point λi+1 was approved throughout the
annealing process with a temperature-dependent probability Pt determined by

Pt =

1 if F(λi+1) ≤ F(λi),

e
( F(λi)−F(λi+1)

k×t

)
if F(λi+1) ≥ F(λi),

(6.7)

where t is the current temperature, k is the Boltzmann constant, and F(λi) and
F(λi+1) are the function values for the current and new point to check.

Non-dominated Sorting Genetic Algorithm (NSGA-II)

NSGA-II was first introduced in [23] as a multi-objective optimisation method. NSGA-
II is an evolutionary algorithm that can overcome the drawbacks of traditional direct
and gradient-based methods when dealing with non-linearities and complicated in-
teractions. NSGA-II utilises an elitist principle (a population’s elites are allowed to
pass down to the following generation). It uses an explicit mechanism for maintain-
ing diversity (crowding distance) and focuses on non-dominant solutions.

NSGA-II algorithm starts by applying a non-dominated sorting in the pair of
parent and offspring populations and classifying them by fronts (sorted based on
ascending level of non-domination). Then, front-ranking is used to generate a new
population. Crowding distance sorting is then applied when one front is partially
taken where the sorting is relevant to the density of solutions around each solu-
tion. Then the less dense ones are chosen. Finally, crowded tournament selection,
crossover, and mutation are performed to create offspring population from the gen-
erated new population.
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6.4 Experimental Study

We validated AUQantO with 16 different case studies, where the case studies are
associated with four different deep learning architectures on two medical datasets
using both Shannon-entropy and MC dropout uncertainty quantification methods.
A 5 x 4 nested cross-validation has been used to evaluate the performance of the
methods in all the case studies.

6.4.1 Datasets

In this work, we used two medical image datasets. Fig. 6.2 depicts samples of the
used datasets along with different class categories.

Breast Cancer Dataset

BreAst Cancer Histology images (BACH) dataset [7] of hematoxylin & eosin stained
breast cancer histology images divided into two parts (A and B). Images of Part B
were provided for pixel-wise classification tasks. Consequently, in this work, we
used images of part A of the dataset which is composed of 400 microscopy images
of size 2048 x 1536 pixels and 20X magnification level. The 400 images are divided
into four groups (normal, benign, in situ, and invasive).

Skin Cancer Dataset

Skin cancer dataset [84] is introduced by the International Skin Imaging Collabora-
tion (ISIC). Over 2,000 individuals contributed 33,126 dermoscopic images of benign
and malignant skin lesions. For computational and memory efficiency, we utilised
a smaller version of the dataset 1 which comprises of 3297 image samples (with 224
x 224 pixels) distributed between the two classes of skin lesions as 1800 images for
benign and 1497 for malignant.

6.4.2 Deep Learning Architectures

In this section, we explain in detail the deep learning architectures used in the ex-
perimental study. The choice of the deep learning models was based on two dif-
ferent classes of architectures: First, single deep learning architectures, where the
input image is transformed into small patches and fed into a feature extraction net-
work (patch-wise network). Then, the extracted feature maps are then fed into an
image-wise networks for the final classification. The second class of architectures is
the ensemble architecture of deep learning models. In general, ensemble architec-
tures have a number of deep learning models to learn image features using different
learning perspectives and hence introduce diversity in the final ensemble of image
prediction.

Two-stage CNN

Two-stage CNN [73] is a single deep learning architecture that works by taking an
input image then dividing the image into smaller patches of equal size. Then, the
image patches are inserted into a custom patch-wise network which acts as a feature
extractor. The network made up of a set of 3 x 3 filters in the convolutional layers,

1https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
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FIGURE 6.2: Overview of the used datasets. Breast dataset has 4
classes while skin cancer dataset has 2 classes. Breast dataset is clas-
sified by three tumour classes and one class to represent normal sam-
ples. For skin cancer, the samples are classified as benign and malig-

nant cases.

succeeded by a pooling layer. After each down-sampling, the number of channels
is doubled. The feature maps are down-sampled using 2 x 2 filters in the convolu-
tional layers with a stride of 2. After each convolutional layer, ReLU activation and
batch normalisation were utilised. The feature maps extracted from the patch-wise
network are used by an image-wise network that produces the final image classi-
fication. The image-wise network follows a similar architecture to the patch-wise
network. The network has a series of 3 x 3 convolutional layers accompanied by a
pooling layer with a stride of 2 for down-sampling. ReLU activation and batch nor-
malisation have been used after each layer. A 1 x 1 convolutional layer is then used
for the spatial average of activation maps followed by 3 fully connected layers with
a softmax classifier.

Deep Spatial Fusion CNN (DSF-CNN)

Deep Spatial Fusion CNN (DSF-CNN) introduced by [42] as a single deep learning
architecture that can capture spatial dependencies among image patches, where it
takes an image as input then divides the image into patches to be inserted into a
patch-wise residual network. The extracted feature maps are inserted into a deep
spatial fusion network to learn the spatial relationship between image patches. The
spatial fusion network consists of a sequence of fully connected layers, where a
dropout layer has been used after each fully connected layer.

Hybrid LSTM

Hybrid Long short-term memory (LSTM) [119] follows the same architecture as the
two previously described single architectures. Image patches extracted from the in-
put image are inserted to the inception patch-wise network for extracting rich multi-
level features then the extracted features are inserted to bi-directional LSTM which
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learns spatial information between feature maps extracted from the inception net-
work.

EMS-Net

For ensemble deep learning architectures, we utilised an Ensemble of Multi-Scale
Network (EMS-Net) [120]. The architecture takes an input image, then resizes the
image into two image scales. The ensemble architecture consists of three pre-trained
deep learning models. The first two models use DenseNet-161 on the two images
scales, while the third model uses ResNet-152 on one of the two image scales. Then,
using the ensemble process, image predictions extracted from the three models are
combined to produce the final image classification.

6.4.3 Experimental setup

For evaluating the single architectures (Two-stage CNN, DSF-CNN, and Hybrid
LSTM) on skin dataset, we used the resized images of 224 ×224 pixels. During the
training of a patch-wise network of single architectures, we extracted overlapped
image patches of size 112 × 112 pixels from input images using a patch stride of 56.
For the image-wise network of single architectures, we extracted non-overlapped
image patches using a patch-stride of 112. We used data augmentation to rotate the
training patches 90 degrees while flipping them horizontally and vertically. Adam
optimiser [48] has been used to reduce the loss function of the networks. Patch-wise
and image-wise networks are trained using a learning rate of 0.0001 and a batch-size
of 32.

In the BACH dataset, we used the original image size (2048 × 1536 pixels) as an
input to the single architectures (Two-stage CNN, DSF-CNN, and Hybrid LSTM).
We extracted overlapped image patches of size (512× 512 pixels) using a patch stride
of 256 to train the patch-wise network. Non-overlapped image patches are used for
the image-wise network of the single architectures (using patch stride 512).

Lastly, we employed an ensemble architecture (EMS-Net) to the two datasets
(BACH and skin). We utilised the exact hyperparameter settings for the BACH
dataset as described in [120]. This is by utilising two image scale levels (scale 1:
448 × 336, scale 2: 296 × 224) for the three pre-trained DCNN models. We ex-
tracted patches of size 224 × 224 pixels and we fine-tuned the pre-trained DCNN
models based on the BACH dataset. We changed the number of neurons in the last
fully connected layer of the pre-trained models to 4 (where BACH has 4 classes).
Moreover, during the training, we used patch-strides of 28 and 9 for scales 1 and 2,
respectively, while during testing, we used patch strides of 56 and 18 for scales 1 and
2, respectively. Finally, we followed the same augmentation settings similar to the
single architectures and we used Adam optimiser with learning rate of 0.0001 and
batch-size of 32.

We applied a similar strategy to the one used for the EMS-Net on the BACH
dataset to skin dataset. We utilised two image scales (scale 1: 224 × 224, scale 2:
112 × 112) for the three pre-trained DCNN models. we extracted patches of size
112 × 112 and 56 × 56 for scales 1 and 2, respectively. We modified the number
of neurons in the last fully connected layer of the pre-trained models to 2 (where
skin dataset has 2 classes). We used patch strides of 56 for scale 1 and 28 for scale
2 during the training and testing phases. Finally, the remaining settings in terms of
data augmentation and Adam optimiser are the same as EMS-Net on BACH dataset.
As can be seen from the settings, we employed to evaluate the AUQantO method
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using different dataset image settings (e.g. image scales) and different deep learning
architectures including pre-trained DCNN models.

We employed the four optimisation methods explained earlier (Bayesian optimi-
sation using GP, COBYLA, dual annealing, and NSGA-II) to all case studies. In the
single-objective optimisation methods (Bayesian optimisation using GP, COBYLA,
and dual annealing), we set the λ range from 1× 10−9 to 2 while the evaluation step
is set to 50. In COBYLA, the initial search point is set to 0.01. Finally, in the multi-
objective optimisation method (NSGA-II), we set the number of variables to 1 as we
optimise only one hyperparameter (e.g. λ), number of objectives to 2, number of
generations to 50, population size to 1, and we utilised the same λ range as in the
single-objective optimisation.

To perform the uncertainty measure using Bayesian approximation with MC
dropout to the deep learning architectures, we employed 50 test runs (which has
been proved to be adequate to establish a valid distribution) for each image.

6.4.4 Results and Analysis

In this work, we introduce three different metrics to measure the effectiveness and
robustness of AUQantO. First, we introduce Weighted Average Accuracy (WAA),
which measures average classification accuracy weighted by the included images
in each test fold. Second, Accuracy Difference (AD) measures the difference be-
tween the accuracy of included images and the accuracy of excluded images. Third,
The Abstain Percentage (AP) calculates the proportion of excluded images in each
dataset compared to the total number of images. The three metrics are formulated
as follows:

WAA =
1

∑r
i=1 Li

r

∑
i=1

Acci × Li (6.8)

AD = WAAinc −WAAexc (6.9)

AP =

(
∑r

i=1 Vi

D

)
× 100 (6.10)

where Li is the number of images (whether they are included or excluded images) in
fold i. Acci is the classification accuracy in fold i over a total number of r folds. Acc
equals to (TP + TN)/(TP + TN + FP + FN), where TP and TN represent the cor-
rect predictions by our model, while FP and FN represent the incorrect predictions.
WAAinc and WAAexc are the weighted average accuracy for included and excluded
images, respectively. Vi is the number of excluded images in fold i, while D is the
total number of images in each dataset.

Performance of Deep Learning Architectures

Table 6.1 shows the average test accuracy for all case studies before applying AUQantO
method to exclude images. After evaluating the deep learning models on each
dataset, it can be noticed that EMS-Net has higher test accuracy on BACH (94.00%)
and skin (91.30%) datasets among all deep learning architectures. This is because
of the usage of an ensemble architecture that applies diversity in learning variety of
image features. While, in terms of single deep learning architectures, we can see that
DSF-CNN and Hybrid-LSTM have high average test accuracy comparable to EMS-
Net. DSF-CNN achieved average test accuracy of 91.25% and 90.14% on BACH and
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skin datasets, respectively, while Hybrid-LSTM achieved average test accuracy of
90.25% and 90.02% on BACH and skin datasets, respectively.

TABLE 6.1: Average test accuracy (without image exclusion -
AUQantO method) for all case studies.

Architecture Dataset

BACH Skin

Two-stage CNN 88.25% 83.90%

DSF-CNN 91.25% 90.14%

Hybrid-LSTM 90.25% 90.02%

EMS-Net 94.00% 91.30%

Uncertainty measure - Shannon Entropy

Table 6.2 demonstrates the performance of AUQantO (in terms of the weighted aver-
age test accuracy of included images) using Shannon Entropy with four optimisation
methods (Bayesian optimisation using GP, COBYLA, Dual Annealing, and NSGA-
II). AUQantO shows a significant improvement in all case studies using the four
optimisation methods. Also, this improvement showed the capability of AUQantO
in automatically excluding poor samples that are misclassified or even the uncertain
images that are correctly classified. Moreover, NSGA-II demonstrated the highest
average test accuracy among other optimisation methods for all case studies except
for two case studies (EMS-Net and Hybrid-LSTM on BACH dataset) which have the
highest improvement reported by dual annealing (94.78%) and COBYLA (92.65%),
respectively. NSGA-II achieved highest test accuracy of 90.29% for Two-stage and
97.61% for DSF-CNN on BACH dataset, while NSGA-II on skin dataset reported
93.46% for Two-stage, 99.06% for DSF-CNN, and around 96% for both Hybrid-LSTM
and EMS-Net. In terms of single architectures, DSF-CNN has shown higher perfor-
mance for all optimisation methods on BACH and skin compared to Two-stage CNN
and Hybrid-LSTM.

In Table 6.3, we present the performance of AUQantO on the excluded poor sam-
ples along with the abstain percentage (which presents the number of excluded im-
ages to the total number of images). As shown in Table 6.3, the excluded image
accuracy (in all case studies) varies between 20% to 74% which indicates how ef-
fective our method is on excluding poor samples. Moreover, the Hybrid-LSTM ex-
cluded the least number of images with the lowest abstain percentage for all opti-
misation methods among all architectures except in one case (e.g. Hybrid-LSTM on
skin dataset using NSGA-II) where EMS-Net on skin dataset showed the lowest ab-
stain percentage (17.65%). Also, the evaluation of Hybrid-LSTM on BACH dataset
showed very low excluded images accuracy of 25%, 42.11%, 20%, and 25% for GP,
COBYLA, dual annealing, and NSGA-II, respectively. This proves that AUQantO
is effective and successful in minimising the exclusion rate by excluding the most
challenging and poor samples that need manual investigation by medical experts.

To further demonstrate the effectiveness of our method in excluding poor im-
age samples, Fig. 6.3 shows (1) Accuracy Improvement which presents the level
of improvement (in terms of accuracy) reported after using AUQantO by excluding
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TABLE 6.2: Average test accuracy of included images using AUQantO
method (Uncertainty measure: Shannon Entropy) for all case studies.

Architecture (Dataset) Optimisation Method

GP COBYLA Dual
Annealing

NSGA-II

Two-Stage (BACH) 89.34% 88.99% 89.16% 90.29%

DSF-CNN (BACH) 94.57% 93.35% 93.58% 97.61%

Hybrid-LSTM (BACH) 91.58% 92.65% 91.14% 92.27%

EMS-Net (BACH) 94.75% 94.44% 94.78% 94.68%

Two-Stage (Skin) 91.01% 90.79% 91.74% 93.46%

DSF-CNN (Skin) 95.58% 93.88% 94.12% 99.06%

Hybrid-LSTM (Skin) 93.75% 93.51% 93.36% 96.67%

EMS-Net (Skin) 96.25% 96.64% 95.60% 96.69%

the uncertain samples and (2) Accuracy Difference (AD) which represents the dif-
ference between average test accuracy of included and excluded images. Figs. 6.3
(a) and (b) show the accuracy improvement in all deep learning models on BACH
and skin datasets using the four optimisation methods, confirming the effectiveness
of AUQantO. Also, the NSGA-II optimisation method showed the highest level of
accuracy improvement for all deep learning architectures on skin dataset (Fig. 6.3
(b)), where an accuracy improvement of approximately 10% has been achieved by
Two-stage and DSF-CNN, almost 7.5% by Hybrid-LSTM, and 5% by EMS-Net. Figs.
6.3 (c) and (d) show the accuracy difference between included and excluded images
in all deep learning models on BACH and skin datasets using the four optimisation
methods. Hybrid-LSTM showed the highest accuracy difference with all optimisa-
tion methods on the BACH dataset (Fig. 6.3 (c)) by achieving accuracy difference of
around 70% for GP, dual annealing, and NSGA-II and 50% for COBYLA. In the skin
dataset, the obtained accuracy differences among all deep learning architectures and
optimisation methods look the same with accuracy difference varies between 22%
and 38% (Fig. 6.3 (d)).

Uncertainty measure - MC Dropout

Here, we describe the experimental study conducted to the case studies using MC
dropout as an uncertainty quantification measure. Table 6.4 presents the average
test accuracy of the images included to the final classification. NSGA-II showed
the highest average test accuracy among other optimisation methods for the follow-
ing 3 case studies: Two-stage on BACH dataset (89.72%), Two-stage on skin dataset
(89.54%), and DSF-CNN on skin dataset (96.39%). The other 5 case studies have
comparable records (varies between approximately 92% and 97%) among single-
objective optimisation methods. In terms of single architectures, DSF-CNN showed
high accuracy with all optimisation methods (97.92%, 94.97%, 96%, and 96.76% for
GP, COBYLA, dual annealing, and NSGA-II, respectively) on BACH dataset. Also,
DSF-CNN achieved higher accuracy for all optimisation methods except GP on skin
dataset, where accuracy measures of 93.23%, 93.93%, 96.39% have been reported
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TABLE 6.3: Average test accuracy of excluded images and (Abstain
percentage of dataset images) using AUQantO method (Uncertainty

measure: Shannon Entropy) for all case studies.

Architecture (Dataset) Optimisation Method

GP COBYLA Dual
Annealing

NSGA-II

Two-Stage (BACH) 71.85%
(13.25%)

72.49%
(10.50%)

72.46%
(11.25%)

74.24%
(27.50%)

DSF-CNN (BACH) 68.00%
(12.50%)

71.79%
(9.75%)

71.43%
(10.50%)

73.83%
(26.75%)

Hybrid-LSTM (BACH) 25.00%
(2.00%)

42.11%
(4.75%)

20.00%
(1.25%)

25.00%
(3.00%)

EMS-Net (BACH) 57.90%
(4.75%)

63.64%
(5.50%)

58.82%
(4.25%)

66.67%
(6.00%)

Two-Stage (Skin) 56.10%
(20.38%)

56.30%
(19.99%)

57.37%
(22.84%)

63.46%
(31.88%)

DSF-CNN (Skin) 68.90%
(20.38%)

60.54%
(11.22%)

57.42%
(10.83%)

77.16%
(40.79%)

Hybrid-LSTM (Skin) 57.27%
(10.22%)

57.76%
(9.77%)

56.95%
(9.16%)

68.26%
(23.42%)

EMS-Net (Skin) 65.27%
(15.89%)

66.12%
(17.65%)

64.77%
(13.86%)

66.14%
(17.65%)

by COBYLA, dual annealing, and NSGA-II, respectively. For GP on skin dataset,
Hybrid-LSTM showed an accuracy of 95.44%.

Table 6.5 demonstrates the performance of our method on excluded images and
the associated abstain percentage of datasets for all case studies using MC dropout.
Hybrid-LSTM showed the lowest excluded image accuracy for all optimisation meth-
ods on BACH dataset with excluded images accuracy of 27%, 43.22%, 22%, and
26% for GP, COBYLA, dual annealing, and NSGA-II, respectively. While for skin
dataset, Hybrid-LSTM showed the lowest excluded image accuracy for all optimi-
sation methods except GP, where excluded images accuracy measures of 56.22%,
57.40%, and 61.09% have been achieved by COBYLA, dual annealing, and NSGA-II,
respectively. For GP on skin dataset, DSF-CNN showed lowest excluded image ac-
curacy of 63.80%. Moreover, generally, the least abstain percentage was obtained by
Hybrid-LSTM on BACH and skin datasets.

Fig. 6.4 confirms the effectiveness of our method with MC dropout, where the
accuracy has been improved in all case studies (Figs. 6.4 (a) and (b)). For BACH
dataset, DSF-CNN showed the highest accuracy improvement among the other deep
learning architectures by achieving accuracy improvement of approximately 5% for
all optimisation methods. The other deep learning architectures (Two-stage, Hybrid-
LSTM, and EMS-Net) reported improvement of around 1% for all optimisation meth-
ods. The accuracy improvement for skin dataset is approximately 5% for all deep
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(D) Accuracy Difference on Skin Dataset

FIGURE 6.3: Accuracy Improvement using AUQantO method and ac-
curacy difference (AD) between included and excluded images for all
deep learning architectures on the two medical datasets using Shan-

non Entropy as uncertainty measure.

learning architectures and all optimisation methods. Figs. 6.4 (c) and (d) for the ac-
curacy difference (AD) between included and excluded images). Moreover, Hybrid-
LSTM, generally, reported highest accuracy difference on BACH dataset with accu-
racy difference varies between almost 50% and 70% for all optimisation methods.
Two-stage and DSF-CNN show accuracy difference of around 20%, while EMS-Net
has achieved accuracy difference of around 30% for all optimisation methods. For
skin dataset, the accuracy difference has comparable records for all deep learning ar-
chitectures using all optimisation methods, where an accuracy difference of around
30% has been achieved.
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TABLE 6.4: Average test accuracy of included images using AUQantO
method (Uncertainty measure: MC Dropout - 50 test passes) for all

case studies.

Architecture (Dataset) Optimisation Method

GP COBYLA Dual
Annealing

NSGA-II

Two-Stage (BACH) 89.10% 88.81% 89.12% 89.72%

DSF-CNN (BACH) 97.92% 94.97% 96.00% 96.76%

Hybrid-LSTM (BACH) 91.32% 92.23% 91.16% 92.03%

EMS-Net (BACH) 94.63% 94.24% 94.68% 94.59%

Two-Stage (Skin) 88.07% 87.92% 89.33% 89.54%

DSF-CNN (Skin) 94.73% 93.23% 93.93% 96.39%

Hybrid-LSTM (Skin) 95.44% 93.14% 93.63% 94.62%

EMS-Net (Skin) 94.82% 94.82% 94.82% 94.82%

TABLE 6.5: Average test accuracy of excluded images and (Abstain
percentage of dataset images) using AUQantO method (Uncertainty

measure: MC Dropout - 50 Test Passes) for all case studies.

Architecture (Dataset) Optimisation Method

GP COBYLA Dual
Annealing

NSGA-II

Two-Stage (BACH) 69.86%
(11.25%)

71.45%
(9.25%)

71.57%
(10.50%)

72.67%
(22.50%)

DSF-CNN (BACH) 74.10%
(28.00%)

70.97%
(15.50%)

70.67%
(18.75%)

72.52%
(22.75%)

Hybrid-LSTM (BACH) 27.00%
(2.50%)

43.22%
(5.00%)

22.00%
(1.75%)

26.00%
(3.25%)

EMS-Net (BACH) 62.90%
(4.50%)

67.50%
(5.00%)

61.24%
(4.50%)

65.67%
(5.20%)

Two-Stage (Skin) 61.40%
(13.83%)

62.36%
(13.86%)

61.97%
(18.11%)

61.23%
(18.23%)

DSF-CNN (Skin) 63.80%
(14.83%)

59.46%
(9.13%)

60.95%
(11.50%)

73.03%
(26.66%)

Hybrid-LSTM (Skin) 64.30%
(17.50%)

56.22%
(8.52%)

57.40%
(10.04%)

61.09%
(13.80%)

EMS-Net (Skin) 66.14%
(11.65%)

66.14%
(11.65%)

66.14%
(11.65%)

66.14%
(11.65%)
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FIGURE 6.4: Accuracy Improvement using AUQantO method and ac-
curacy difference (AD) between included and excluded images for
all deep learning architectures on the two medical datasets using MC

dropout as uncertainty measure.
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6.5 Summary

In this chapter, we introduced a model and a data agnostic method, we called Ac-
tionable Uncertainty Quantification Optimisation (AUQantO) for optimising uncer-
tainty quantification in deep learning architectures. AUQantO can measure uncer-
tainty level in medical images and exclude poor samples based on a hyperparame-
ter (e.g. threshold) that is optimised using single and multi-objective optimisation
methods. We validated and evaluated the performance our method on 16 different
case studies using two commonly used uncertainty measures. Experimental results
showed a favorable performance in the exclusion of highly uncertain images, con-
firming its automated actionability with different deep learning architectures.

The developed method in this chapter adds a very important characteristic by
providing an automated actionability for deep learning models specialised for clas-
sification task. We experimentally showed that this method aids in excluding the
highly uncertain images and optimises the number of excluded images to be checked
by medical professionals for manual investigation. Showing how to benefit clinical
practice has been achieved in the three contributions listed in this thesis by provid-
ing automated systems that are able to not only show high performance in classifi-
cation, but also to prove the ability of taking actions for samples that are uncertain
as an important step in explainability. The main aim here is to reduce the workload
for manual investigation of medical samples and to assist professionals in taking
decisions.
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Chapter 7

Conclusion and Future Work

7.1 Overview

This thesis studies the impact of applying context-aware learning techniques and
uncertainty quantification to improve medical image analysis and introduce benefits
for clinical practice. The aim and objectives presented in this thesis focus mainly on
the development of novel deep learning models for medical image analysis, specif-
ically for grading and diagnosis applications. The developed methods: (1) utilise
context-aware learning techniques to improve performance and (2) offer trustwor-
thiness by applying uncertainty quantification to identify the level of uncertainty
introduced by the predictions of deep learning models. In addition, the objectives
include the introduction of an actionable method to optimise uncertainty quantifica-
tion for deep learning models. This method aims to accelerate deep learning mod-
els using an actionable strategy to decide on the quality of a particular input im-
age based on the uncertainty measure reported. This measure is supported by a
threshold hyperparameter which has been optimised using optimisation methods
for single- and multi-objective functions.

Chapter 1 presents an introduction to computer vision, supervised classification
tasks, and deep learning along with the main challenges in medical image analysis.
Then, motivation has been highlighted to address the research gap available in the
area and aim and objectives have been identified for the work conducted in this the-
sis. Chapter 2 introduces the necessary background and theoretical explanation of
the important concepts and methods required to build the contributions stated in the
thesis. Chapter 3 reviews the literature work conducted in the field of histopatho-
logical image analysis including single and ensemble image classification methods,
context-aware methods, and uncertainty quantification methods conducted for med-
ical imaging.

Chapter 4 discusses the first contribution, which addresses the first three objec-
tives in Section 1.4. The chapter presents the 3E-Net model for classifying grades
of invasive breast carcinoma microscopic images. 3E-Net has the feature of us-
ing image-wise models, which learn contextual information in an elastic ensem-
ble fashion and apply Shannon Entropy for uncertainty measure. Chapter 5 dis-
cusses the second contribution which addresses also the first three objectives in an
advanced and high-level approach. The chapter presents the MCUa model for the
classification of breast cancer microscopic images which uses multi-scale images,
multi-architectures for feature extraction, dynamic ensemble strategy, and uncer-
tainty quantification using MC dropout. Finally, chapter 6 introduces an automated
actionable method for optimising uncertainty quantification to address the fourth
objective in Section 1.4. The method presents a strategy for finding the optimal num-
ber of excluded images from a particular dataset based on uncertainty quantification



110 Chapter 7. Conclusion and Future Work

measures. In the next section, a reflection on how the objectives of this work have
been accomplished is presented.

Overall, we conclude the thesis by introducing two sections. Initially, we dis-
cuss how we developed our three contributions presented in the thesis to achieve
our research objectives and fulfil our aim. This also includes a discussion of pos-
sible prospects and views of the contributions in the thesis. Lastly, possible future
directions have been proposed.

7.2 Research Summary

Medical image analysis using deep learning techniques has been a growing field in
research for several years. Deep learning techniques have been shown to be effec-
tive in improving the performance of automated systems for medical image analysis
[65]. Due to the large size of medical images, deep learning techniques encounter
problems in processing high-resolution images in one pass. Therefore, dividing an
image into small patches is a common approach for dealing with high-resolution
images. One of the main challenges is that most patch-based deep learning mod-
els focus on local information of image patches without considering the contextual
information among different feature maps extracted from these patches. Contextual
information is paramount for enriching deep learning models by more context of the
spatial dependencies of patch locations and hence improving the vision of the whole
image rather than focusing on local regions (patches) in the image.

Another important factor that deep learning models lack is the existence of trust-
worthiness and a measure of predictions’ reliability. This factor is essential for clin-
ical practice, as it reflects how confident a model is in its predictions and whether
to count on the predictions of that model on certain input samples. It is crucial to
escort automated grading/diagnosis models with uncertainty quantification tech-
niques that introduce a level of explanation on how accurate the prediction gener-
ated from DNNs is. The uncertainty measure brings up the notion of introducing
actionability to deep learning models. This notion indicates that, on the basis of
the uncertainty measures generated from predictions of medical samples, an action
can be generated by the automated system. This action is either to produce an au-
tomated prediction for a particular sample or to exclude the sample due to high
uncertainty. To the best of our knowledge, this approach has not been applied to
any deep learning model for grading/diagnosis applications.

Another factor that improves the performance of medical image analysis is the
use of an ensemble learning strategy which aims in designing an automated system
with many deep learning models. This approach can be utilised to develop multiple
models that learn different levels of contextual information (different learning per-
spectives) that boost performance when we combine predictions generated from all
models. As an enhancement for the ensemble learning strategy, a dynamic ensem-
ble strategy based on uncertainty quantification is required. This dynamic ensemble
strategy works on selecting only the confident models to contribute to the final im-
age prediction in an automated system that includes many deep learning models.
In other words, an image that is inserted into an ensemble architecture with n deep
learning models may have a dynamic number of models (less than n) to contribute
to the final prediction rather than having all n models contributing to the final pre-
diction.
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We achieved our research objectives stated in section 1.4 by introducing three
research contributions. We designed, developed, and implemented our first con-
tribution in this thesis which is presented in Chapter 4. We developed "3E-Net:
Entropy Elastic Ensemble Model for Classifying Grades of Invasive Breast Car-
cinoma Images" to address the first three objectives in section 1.4 which are (1) in-
troducing context-aware learning, (2) using uncertainty quantification method, and
(3) introducing generalisation and robustness by developing an elastic ensemble
learning strategy which combines the only confident models each time we have a
new input sample and provide exclusion for uncertain input samples. 3E-Net is
mainly designed and used for grading task where it classifies different grades of in-
vasive breast carcinoma samples. 3E-Net takes a histopathological image and then
divides it into small patches that are inserted into a single DCNN which acts as a fea-
ture extractor to extract salient features. These features are then passed to multiple
image-wise CNNs, that learn contextual information and generate image-wise pre-
dictions (probability distributions) for the input image. Image-wise predictions are
then inserted into a new uncertainty quantification stage based on Shannon Entropy
to generate uncertainty scores for the input image. These uncertainty scores are then
compared against a threshold value to identify image-wise CNNs with low uncer-
tainty scores that contribute to the final image prediction. The predefined threshold
and the uncertainty scores generated for a particular image indicate the number of
image-wise CNNs used in the ensemble, and here comes the elasticity of our ensem-
ble approach.

Developments motivated us to introduce the second contribution in this thesis
are:

• For histopathology images, having multiple image scales enriches an auto-
mated diagnosis/grading system with a vision of different nuclei sizes and
distributions.

• The availability of multiple feature extractors can lead to a variety of extracted
features, which can increase performance.

• The usage of flexible uncertainty quantification method can generate multi-
scalar predictions which can introduce high level of confidence and reliability
for an automated diagnosis/grading system.

Therefore, we designed, developed, and implemented "MCUa: Multi-level Con-
text and Uncertainty aware Model for Classification of Breast Cancer Images" as
our second contribution in Chapter 5 to achieve the first three objectives in sec-
tion 1.4 which are specifically about (1) introducing different levels of context-aware
learning, (2) using multi-scalar uncertainty quantification method, and (3) introduce
generalisation and robustness by developing a dynamic ensemble learning strat-
egy which combines the confident models based on MC dropout and provide ex-
clusion mechanism for excluding poor image samples. MCUa has been designed
and used for diagnosis task that differentiates between breast cancer samples: nor-
mal, benign, in situ carcinoma, or invasive carcinoma class categories. MCUa ap-
plies pre-processing to an input histopathology image by capturing multiple im-
age scales. The multiple image scales are divided into small patches, which are
then passed to two different DCNN (DenseNet and ResNet) for feature extraction.
Then, the extracted features from the previous stage are inserted into a more de-
veloped multi-level context-aware stage which has different levels of context-aware
networks. This context-aware stage introduces multi-level feature maps’ combina-
tions and builds spatial dependencies information among image patches. Finally,
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MC dropout has been used in context-aware networks to introduce an uncertainty-
aware component to measure the uncertainty of image predictions. MC dropout
works by randomly deactivating different neurons in the neural network during the
testing phase. Therefore, a particular image can have many predictions based on
the variation of the deactivated neurons during the testing phase. A particular im-
age can have a list of image predictions based on network variations. The mean
of the image prediction list represents an aggregated probability distribution for all
class categories that indicates the final class label. While the standard deviation of
the image predictions list indicates an accurate uncertainty measure. Based on the
MC-dropout uncertainty measure, a dynamic ensemble of multi-level context-aware
models is introduced which works on selecting the most confident models in the en-
semble architecture for generating the final image prediction.

MCUa model has been compared with other deep learning models from the lit-
erature in Table 5.4 in Chapter 5. The results prove that MCUa has surpassed all
the models and showed that the development conducted in terms of multi-scale im-
ages, multi-architecture for feature extraction, multi-level context-aware modeling,
and uncertainty quantification method using multi-scalar probability distribution
enhanced the performance.

3E-Net and MCUa provide novel ensemble strategies, which are based on a hy-
perparameter threshold to identify whether an image is automatically classified or
excluded from automated classification to be manually investigated due to high un-
certainty. Both architectures succeeded in excluding uncertain images and classi-
fying certain images only. Some observations motivated us to introduce the third
contribution in this thesis:

• The threshold hyperparameter used in 3E-Net and MCUa is manually tuned.
This may lead to setting the threshold value to low/high value which indicates
high/low levels of image exclusion, respectively.

• The actionability of including/excluding images for/from the classification is
a manual process based on the threshold.

Therefore, based on the above observations, we designed, developed, and im-
plemented a model agnostic method named "AUQantO: Actionable Uncertainty
Quantification Optimisation for Medical Image Classification" presented in Chap-
ter 6. This contribution achieves the fourth objective in section 1.4 which are about
developing an automated actionable technique for optimising uncertainty quantifi-
cation in deep learning architectures. AUQantO is a model and dataset agnostic
method which can be utilised for any deep learning model that generates probabil-
ity distribution for input predictions. The method works on probability distributions
generated from deep learning models. The method uses Shannon Entropy for single-
scalar probability distributions and MC dropout for multi-scalar ones. The gener-
ated uncertainty scores from both Shannon Entropy and MC dropout uncertainty
quantification techniques are then compared against a hyperparameter threshold.
This threshold is optimised using single- and multi-objective functions to achieve
the minimised number of excluded images of a particular dataset. We used four
optimisation methods and two datasets to prove how effective our method is in ex-
cluding the optimal number of highly uncertain images.

Based on all these objectives, we fulfilled our aim which was about developing
automated classification systems that have characteristics of context-aware learning,
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trustworthiness using uncertainty quantification, generalisation and robustness us-
ing a novel dynamic ensemble strategy, and automated actionability by optimising
uncertainty quantification.

7.3 Future Directions

The methods described in this thesis pave the way for further advances that should
be theoretically investigated and empirically evaluated in the future. To name a few
possibilities for future work, consider the following.

• The developed models can be extended to cope with the semantic segmenta-
tion problem of whole-slide images and study the effect of multi-level contex-
tual information on the robustness of the segmentation.

• Attention mechanism in transformers can be utilised to provide context-aware
information for different regions of a histopathology image, resulting in im-
proved accuracy and effectiveness in diagnoses [38].

• An explainability component using the post-hoc method can be added to the
developed models to understand the decision and internal working mecha-
nism of the developed model. Also, for the aid of action taking through visual
explanation on the classified image.

• Our solution can be applied to different histopathological tissues, such as prostate
and colorectal cancer.

• 3E-Net and MCUa models can be extended by using the Bayesian-based dy-
namic ensemble method and comparing the performance with current set-
tings.

• AUQantO can be extended by including the trial of other optimisation meth-
ods.

• The adoption of machine teaching as the next level for developing useful au-
tomated systems for clinical practice.

In conclusion, this thesis advances the field of medical image analysis by de-
veloping sophisticated deep learning architectures for applications of grading and
diagnosis, accompanied by uncertainty quantification and actionability via the dy-
namic ensemble technique.
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