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Abstract: Conventional pipeline corrosion assessment methods for failure pressure prediction do not
account for interacting defects subjected to internal pressure and axial compressive stress. In any
case, the failure pressure predictions are conservative. As such, numerical methods are required.
This paper proposes an alternative to the computationally expensive numerical methods, specifically
an empirical equation based on Finite Element Analysis (FEA). FEA was conducted to generate
training data for an ANN after validating the method against full scale burst test results from past
research. An ANN with four inputs and one output was developed. The equation was developed
based on the weights and biases of an ANN model trained with failure pressure from the FEA
of a high toughness pipeline for various defect spacings, defect depths, defect lengths, and axial
compressive stresses. The proposed model was validated against actual burst test results for high
toughness materials, with a R2 value of 0.99. Extensive parametric study was subsequently conducted
to determine the effects of defect spacing, defect length, defect depth, and axial compressive stress on
the failure pressure of the pipe. The results of the empirical equation are comparable to the results
from numerical methods for the pipes and loadings considered in this study.

Keywords: interacting defects; artificial neural network; Finite Element Analysis; corrosion
assessment method

1. Introduction
1.1. Overview of Pipelines in the Oil and Gas Industry

Pipelines are widely utilized for upstream oil and gas operations for the transportation
of hydrocarbon from the reservoir to onshore processing facilities. On average, a pipeline
stretches across hundreds of kilometers, operating at high pressures and temperatures.
This harsh environment results in pipe wall degradation, also known as corrosion [1]. In a
pristine pipe, the hoop stress is distributed evenly throughout the pipe. However, in the
presence of corrosion defects, the hoop stress distribution is nonuniform [2–4].

When fluid flows through a pipeline, internal pressure is exerted on the pipe wall
causing circumferential expansion which results in the contraction of the pipe in the
longitudinal direction due to Poisson’s effect [5–7]. This condition subjects the pipeline
to axial compressive stress. Strain builds up at the region of defect, making it the most
critical region in the pipeline [8,9]. In the region of defect, the deepest defect experiences
the highest stress. When the stress exceeds the true ultimate tensile strength of the pipe, the
pipe fails prematurely. The failure pressure of a pipeline is significantly influenced by the
length and depth of the corrosion defect when subjected to axial compressive stress [10–12],
especially in the presence of interacting defects. It is therefore crucial that the integrity of a
pipeline is assessed periodically to ensure a safe and efficient operation.
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1.2. Pipeline Integrity Assessment Methods

Developing a corrosion assessment method that is applicable for all types of corrosion
defects as well as pipeline grades is challenging due to the complexity of the corrosion
defect geometry and differences in tensile properties of materials [13–17]. As such, different
assessment methods are used for different scenarios. Furthermore, various assumptions
are made to simplify the assessment. As such, the failure pressure prediction of a pipe for
each corrosion assessment method differs due to these simplifications.

By redefining the Folias factor and flow stress equations of the ASME B31G method,
the Modified ASME B31G method was developed. In this method, an arbitrary shape
correction factor is applied instead of the parabolic area assumption. This enables the
method to be applied to corrosion defects that are longer than the limits given in the ASME
B31G method. The SHELL 92 method also utilizes the same Folias factor as the ASME
B31G method. However, this method produces predictions that are relatively conservative
due to the flow stress assumption of the method [16].

The RSTRENG method, also known as the effective area method, is used in assessing
defects up to 0.8 t. This method represents the corrosion defect region with a river bottom
profile that enables failure pressure prediction with greater accuracy using the discrete
method [16,18]. The Pipe Corrosion Criterion (PCORRC) method is based on a finite
element study that was validated using burst test results.

The ASME B31G, Modified B31G, SHELL 92, and RSTRENG methods were developed
based on the NG-18 as the fundamental equation. In these methods, it is assumed that
the tensile property of a pipe material determines the pipe failure mechanism [2,14,15].
However, the governing assumption of the DNV-RP-F101 code, which was also developed
based on the NG-18 equation, is that the failure of the pipe is due to plastic collapse (plastic
flow), where the ultimate tensile strength is the flow stress. This governing assumption
is also applied to the PCORRC method that was developed based on numerical studies.
In all these methods, the corrosion depth and longitudinal length are considered and are
independent of the width of the corrosion. The conservatism in these methods due to the
assumptions, simplifications, and safety factor leads to unwarranted repairs and premature
replacement of a pipeline, incurring unnecessary costs [9,19].

For pipes subjected to internal pressure and axial compressive stress, the DNV cor-
rosion assessment code is the most comprehensive code [2]. The DNV code allows for
failure pressure prediction of single and interacting corrosion defects subjected to internal
pressure only, and single defects subjected to internal pressure and axial compressive
stress [15]. The DNV code has been compared against actual full scale burst pressure tests
for medium toughness pipes with material grades ranging from API 5L X42 to API 5L
X65. Nevertheless, the failure pressure predictions based on this code are conservative.
This conservatism is primarily due to the use of the ultimate tensile strength, σUTS, rather
than the true ultimate tensile strength, σ×UTS, of the material [9], since the rupture point
of a material is represented by the true ultimate tensile strength of the material [2].

As this method is developed for medium toughness pipes, utilizing it for high tough-
ness pipes may result in inaccurate failure pressure predictions [9]. Hence, an alternative
failure pressure prediction method is necessary to overcome the limitations of this failure
pressure assessment method, which are summarized in the points below:

• The DNV code does not incorporate axial compressive stress for the failure pressure
assessment of interacting corrosion defects.

• The DNV code results in conservative failure pressure predictions.
• The DNV code results in inaccurate failure pressure predictions for high toughness pipes.

1.3. Finite Element Method (FEM) for Pipeline Failure Pressure Prediction

Due to the limitations of the assessment codes, numerical methods are utilized.
The American Society of Mechanical Engineers categorized numerical methods such as
FEM as a Level 3 assessment method, which is considered to be the most advanced assess-
ment level [14]. FEM considers the uniaxial true stress-strain curve of a material, important
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for structures that change in geometry due to large displacements. As the pipe undergoes
deformation, the equilibrium equations take into consideration the geometrical changes of
the pipe as well as the nonlinear stress-strain relationship of the material. Strain hardening
as well as elastic and plastic deformation of the material is accounted for in the assessment
process, resulting in good failure pressure prediction [3].

The complex geometries of corrosion defects are often idealized as simple shapes in
FEM for ease of assessment. The most common idealized defect shapes are rectangular,
elliptical, parabolic, and in some cases conical shape [19–22]. Wang et al. [23] investigated
the failure pressure difference between finite element models with rectangular defect and
elliptical defect. The study found that there is an insignificant difference in failure pressure
prediction between the two idealized defects. Conventional standards, such as the DNV
code, commonly idealize corrosion defects as rectangular-shaped defects [13,15,24].

However, the accuracy of the failure pressures obtained using FEM is highly de-
pendent on the proper choice of boundary conditions, material properties, and model
features [21]. The meshing size of the model also plays an important role in the accuracy of
the results. Smaller meshes result in high accuracy but consume longer simulation time.
Hence, the modeling of the pipe has to be optimized to reduce simulation time without
compromising the accuracy of the results [25]. The FEM results will be erroneous if any
of the components are poorly defined, resulting in wrong failure pressure predictions.
Hence, the FEM needs to be validated against actual burst test. This process can be very
time consuming, especially when it involves the incorporation of axial compressive stress.

Even if the FEM is correct, it is computationally expensive. Many researchers apply
the eXtended Finite Element Method (XFEM) in their studies to overcome the limitations
of FEM in the field of fracture mechanics. Since damage mechanics is mesh dependent,
XFEM allows pipeline failure prediction under various loading conditions without refining
the mesh closer to the region of interest [26]. Using this approach, the mesh conformance
of crack geometry is avoided [27]. Okodi et al. investigated the potential of XFEM to be
used in crack propagation analysis and burst pressure prediction of pipelines [28]. It was
found that XFEM can be effective in carrying out crack propagation analysis, as well
as predicting pipeline burst pressure, but it was recommended that further parametric
studies be done to come to a firm conclusion. Their study was further supported by Zhang
et al., who investigated the failure pressure prediction of cracks in corrosion defects [29].
It was concluded that XFEM is useful for crack propagation analysis, whereby if FEM was
applied, it would require extremely fine meshes. Hence, XFEM is suitable for problems
with interior boundaries, discontinuities, or singularities because of the need of remeshing
and high mesh densities [30]. In predicting the failure pressure of corroded pipelines using
a stress-based von Mises criterion, the entire surface of the model coincides with the edge
of the FEA [2,9,31,32]. In such cases, FEM is adequate [30].

FEM is widely utilized to analyze the stress distribution across pipes and identify
the pressure at which the point of failure occurs for corroded pipelines. Colindres et al.
investigated the effects of internal and external corrosion defects using the stress-based von
Mises criterion using FEM. In their paper, they recommended FEM be utilized for complex
corrosion defect cases in pipelines [31]. To reduce the computation time, quarter models are
usually utilized with symmetric boundary conditions that treat the pipe as a whole during
simulation. Despite this, a single simulation run can take hours to complete. As such, using
FEM for the failure pressure prediction of multiple corroded pipelines subjected to internal
pressure and axial compressive stress is not practical, especially in time critical situations.

To overcome this, a simple empirical solution with wide applicability, as an alternative
to the DNV-RP-F101 equations, that is as accurate as a Level 3 assessment method is
proposed. However, there is a nonlinear relationship between the geometry of a defect
and axial compressive stress with the failure pressure of the corroded pipe [9]. The defect
length, defect depth, and amount of axial compressive stress imposed on the pipe can occur
in various combinations. As such, it is not trivial to develop the empirical equation, as large
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data will be required to analyze this nonlinear relationship. As such, this nonlinearity can
be analyzed using FEM simulation and the data could be used to validate the equation [32].

An empirical equation, based on the weights and biases of an ANN trained using
results from FEA, can be used to provide failure pressure predictions within seconds.
Xu et al. [33] utilized FEA to generate training data for the development of an ANN to
predict the failure pressure of a corroded pipe with a relative error percentage of less
than 1%. A parametric study was conducted, and the data were used to train an ANN.
There was an insignificant error between the experimental values and results obtained from
the trained ANN. This approach was also followed by Lu and Liang [34], and Gholami
et al. [35], who studied the effects of defect geometry on the failure pressure of a corroded
pipe using FEM and used the data to train an ANN model. As such, FEM is a reliable
method for obtaining training data for the development of an ANN. Based on the weights
and biases of the trained ANN, an empirical equation can be developed with ease.

1.4. Artificial Neural Network (ANN) as a Pipeline Failure Pressure Assessment Method

Gurney [36] defined an ANN as an interconnected assembly of simple processing
elements called nodes and the processing ability of the network is stored in the interunit
connection strengths called weights which are obtained by learning a set of training patterns.
A neural network mimics the synapses in a human brain by employing weights and biases
to neurons in hidden layers of the neural network and reinitializes them until the neural
network produces accurate results [37]. When this is achieved, the neural network is said to
be trained. It is crucial that the training dataset consists of a sufficient number of inputs and
corresponding outputs to minimize the error in the output of the neural network [38–40].

An ANN has the ability to learn, recognize, and infer from complex nonlinear data
without requiring an explicit set of instruction [40,41]. A set of data that consists of one
or more inputs and outputs is analyzed by the neural network using specific algorithms
depending on the ANN type and purpose. An ANN is capable of learning directly from a
set of training data, and regaining as well as extracting information from noisy data is one
of the most important properties of it that has been proven to be very useful in the field of
mechanical failure analysis [41].

Various studies on fracture toughness and fracture parameters utilizing ANN have
been carried out by many researchers and this approach has shown promising results.
A trained ANN was able to produce results that were very close to the training data fed
to the ANN with an acceptable accuracy [41]. Furthermore, an ANN does not require
simplifications or assumptions to process and learn from the training data. Moreover, the
study conducted by Ince [42] to predict the fracture parameters of concrete using ANN
proved that ANNs can also be utilized to carry out parametric studies.

The architecture of an ANN also depends on the type of data and desired output.
Among the commonly used ANN architectures, a Feed Forward Neural Network (FFNN)
is mostly utilized in predicting the failure pressure of corroded pipelines. This type of
neural network paired with back propagation supervised learning algorithm is typically
utilized as it examines the training data and generates an inferred function that can be
applied to new scenarios [43–45]. This type of ANN architecture is modeled to learn from
paired datasets where the model learns from one or more inputs and the corresponding
output of the training dataset.

The utilization of ANN in the field of failure pressure assessment has improved over
the years, resulting in more practical applications. In early applications of ANN, researchers
took into account the physical, mechanical, operational, and environmental factors that
influenced the residual strength of a pipeline [46]. However, obtaining a large training
dataset for such cases is challenging. Shirzad et al. [47] and Senouci et al. [48] emphasized
in their paper that an ANN model with a reasonable accuracy and robustness cannot be
achieved with the lack of real-life data. Xu et al. conducted parametric studies using
FEM to generate a training dataset for an ANN model to accurately predict the failure
pressure of a high toughness pipe with a relative error of less than 2% [33]. Their results
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were supported by Lu and Liang [34] and Gholami et al. [35], who developed an ANN
model based on data generated from FEA. It was proven that an ANN is highly capable of
predicting the failure pressure of a corroded pipeline accurately.

This study aims to establish a correlation between defect geometries and failure pres-
sure of high toughness corroded pipelines and develop an empirical corrosion assessment
method for the failure prediction of high toughness corroded pipelines subjected to internal
pressure and axial compressive stress. The empirical equation was developed based on
the weights and biases of an ANN trained with values from parametric studies utilizing
FEA. The equation was then validated against FE models with single defect corrosion and
full-scale burst tests.

2. Methodology
2.1. Overview of Geometric Parameters, Assessment Factors, and Assumptions

In this study, four parameters, the defect length, defect depth, defect spacing, and
axial compressive stress, were considered for the prediction of failure pressure of a pipe
with interacting corrosion defects, with the defect width kept constant. These parameters
are represented as normalized values. For the pipe model, a diameter of 300 mm, wall
thickness of 10 mm, and length of 2000 mm were utilized. The corrosion defect geometry is
represented as normalized values as listed in Table 1. The output of the FEA is the failure
pressure of the corroded pipe.

Table 1. Corrosion defect geometry parameters.

Corrosion Defect Geometry Value(s)

Normalized defect width, w/t 10
Normalized defect spacing, s/

√
Dt 0.0, 0.5, 1.0, 2.0

Normalized defect depth, d/t 0.0, 0.2, 0.4, 0.6, 0.8
Normalized defect length, l/D 0.0, 0.2, 0.4, 0.6, 0.8

Normalized axial compressive stress, σc/σy 0.0, 0.2, 0.4, 0.6, 0.8

A calibrated safety factor approach (Part A) from the DNV-RP-F101 corroded pipeline
assessment manual was used for the calculation of the failure pressure of pipes with inter-
acting defect subjected to internal pressure and axial compressive stress. In this approach,
the size of the defect depth and material properties must be specified [7]. The model predic-
tion partial safety factor, γm, corrosion depth partial safety factor, γd, and usage factor, ξ,
was set to 1.00 to represent a perfect pipe inspection method, exact corrosion defect depth,
and a pristine pipe, respectively. The fractile value, εd, and relative depth accuracy, acc_rel,
was set to 0.00 to represent low tolerance and high confidence level corrosion inspection
method, and high corrosion depth inspection accuracy with zero tolerance, respectively.
The confidence level, conf, was set to 0.99 to represent 99% confidence level on corrosion
defect dimensions.

2.2. Development of the Finite Element Method

In this study, quarter models of the corroded pipes were used to reduce computation
time during FEA, without compromising the accuracy of the results, as illustrated in
Figure 1. The full length of the modeled pipe was set to 2000 mm to prevent end cap
effects, while the pipe external diameter and wall thickness were set to be 300 mm and
10 mm, respectively. The pipes were modeled with endplates of 20 mm to ensure an even
distribution of axial compressive stress across the pipe wall. A pair of rectangular-shaped
corrosion defects, as utilized in the DNV method, was employed as it allows for a safer
lower bound failure pressure prediction without compromising the accuracy [15,49–52].
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Figure 1. An annotated quarter pipe model used for FEA.

Solid elements were used for the meshing of the model instead of shell elements due
to the thickness of the pipe wall, as solid elements represent the solid structure throughout,
while shell elements are used to represent the outer surface of the object [23]. Hexahedral
SOLID185 elements were used for the meshing of the pipe body and defect region, while
tetrahedral SOLID186 elements were used for the rigid body. SOLID185 is defined by
8 nodes having three degrees of freedom while SOLID186 can tolerate irregular shapes
such as curved boundaries. Both these elements cater for high stress stiffening, creep, large
deflection, plasticity, swelling, and large strain [52]. The application of SOLID185 and
SOLID186 elements on a pipe model is illustrated in Figure 2.

Figure 2. (a) Hexahedral SOLID185 elements used to mesh the pipe body and defect region, and
(b) tetrahedral SOLID186 elements used to mesh the endplate.

A convergence test was conducted to determine the number of layers for the meshing
of the pipe model, as tabulated in Table 2. The number of layers at the defect region was
set to be 3 while the length and depth of the mesh were set to be 2 mm, in line with the
British Standards Institution (BSI) guidelines [53]. An aspect ratio of 0.5 was applied to the
elements moving away from the defect region, with a total of 80 divisions. Before finalizing
these mesh settings, a convergence test was conducted to ensure optimum computation
time without compromising the accuracy of the FEM.
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Table 2. Convergence test results for the optimum number of mesh layers at the defect region.

Number of Element Layers Normalized Failure Pressure, Pf/Pi

1 0.92
2 0.93
3 0.95
4 0.95
5 0.95

During FE simulations, appropriate boundary conditions were applied to ensure that
the quarter model is treated as a whole model. Symmetric boundary conditions were
imposed on each quarter model, as illustrated in Figure 3. To avoid unwanted rigid body
movements, degree of freedom (DOF) constraints were applied in the x, y, and z directions
at 4/5 of the quarter model length away from the region of interest (Figure 3). Internal
pressure and axial compressive stress were applied using incremental ramped loading on
the inner surface of the pipe and the outer surface of the rigid body, respectively (Figure 3).

Figure 3. Application of symmetrical boundary conditions, internal pressure, axial compressive
stress, and DOF constraints for quarter pipe models.

The failure pressures were obtained by employing a series of linear steps to obtain
an exact solution using the Newton–Raphson method. This method involves an iterative
process to achieve convergence for a nonlinear problem. Initially, a solution is assumed,
then the magnitude of the increment is determined. The trial solution is updated after
every iteration based on the determined increment value and the iteration is repeated until
convergence is achieved. A tolerance is set to terminate the solution procedure when the
convergence criterion is satisfied [3].

The internal pressure and axial compressive stress were applied using incremental
ramped loading on the inner surface of the pipe and the outer surface of the rigid body, re-
spectively (Figure 3) using transient analysis. These loads were controlled using timesteps.
For pipes subjected to internal pressure only, the internal pressure was applied incremen-
tally throughout the timestep, as illustrated by Figure 4. As for pipes subjected to internal
pressure and axial compressive stress, axial compressive stress was applied during the
first timestep and in the second timestep, the pipe was subjected to internal pressure, as
illustrated in Figure 5.

To determine the point of pipe failure, a stress-based criterion known as von Mises
theory was used to analyze the stress distribution across the pipe during FEA. The material
is said to have failed when the von Mises stress reaches the true ultimate tensile strength,
σ×UTS, of the material [54]. This scenario is illustrated in Figure 6, where it can be observed
that the region of defect is the most critical part of the pipe. The red region represents the
area at which the von Mises stress exceeds the σ×UTS of the material.
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Figure 4. Application of internal pressure during FEA.

Figure 5. Application of internal pressure and axial compressive stress during FEA.

Figure 6. Equivalent von Mises stress (MPa) map of the corroded pipe after failure.

The von Mises theory that was used to analyze the effective stress, σe, is a function of
hoop, σh, radial, σr, and axial stress, σl , as shown in Equation (1) [2]. When the effective
stress reaches the true ultimate tensile strength of the material, the time step of the simula-
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tion is recorded and the corresponding pressure is calculated and recorded as the failure
pressure of the pipe.

σe =

√
1
2

[
(σh − σr)

2 + (σh − σl)
2 + (σr − σl)

2
]

(1)

2.3. Development of the Artificial Neural Network

A feed forward neural network to model the relationship between the input and
output based on a set of training data was developed using MathWorks MATLAB R2019b.
The neural network was trained to receive four inputs, namely normalized defect spacing,
defect depth, defect length, and axial compressive stress. The output is the normalized
pipe failure pressure. The ANN was developed with two hidden layers. The first and
second hidden layer consist of four and three neurons respectively, as illustrated in Figure 7.
To optimize the number of hidden layers and neurons in each hidden layer, a convergence
test based on the coefficient of determination (R2) value of the ANN model was carried out.

Figure 7. Architecture of the ANN model.

The training data for the ANN model were obtained from the FEA. The failure pres-
sures of corroded pipes obtained using the FEM was normalized by the intact pressure of
the pipe before it was used to train the ANN model. The training data consist of 241 sets, as
tabulated in Table 3. The normalized defect spacing, effective depth, effective length, axial
compressive stress, and normalized failure pressure are represented by s/

√
Dt, (d/t)e,

(l/D)e, σc/σy, and Pn f ,FEA, respectively.
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Table 3. ANN training data.

s/
√

Dt (d/t)e (l/D)e

σc/σy

0.0 0.2 0.4 0.6 0.8

0.0 0.0 0.0 1.00

0.0

0.2

0.4 0.95 0.94 0.90 0.84 0.72
0.8 0.91 0.91 0.88 0.80 0.68
1.2 0.89 0.88 0.86 0.79 0.66
1.6 0.87 0.87 0.85 0.78 0.66

0.4

0.4 0.87 0.86 0.83 0.76 0.63
0.8 0.76 0.76 0.74 0.70 0.58
1.2 0.72 0.71 0.69 0.66 0.56
1.6 0.71 0.70 0.66 0.64 0.54

0.6

0.4 0.75 0.74 0.72 0.68 0.51
0.8 0.59 0.59 0.57 0.51 0.45
1.2 0.53 0.51 0.50 0.47 0.42
1.6 0.48 0.48 0.47 0.45 0.41

0.8

0.4 0.58 0.56 0.52 0.45 0.41
0.8 0.38 0.38 0.35 0.32 0.21
1.2 0.31 0.29 0.26 0.25 0.20
1.6 0.28 0.27 0.26 0.23 0.20

0.5

0.16 0.49 0.92 0.92 0.89 0.81 0.71
0.18 0.89 0.89 0.88 0.86 0.80 0.68
0.19 1.29 0.87 0.86 0.85 0.79 0.66
0.19 1.69 0.85 0.85 0.84 0.78 0.66

0.33 0.49 0.83 0.80 0.78 0.73 0.61
0.36 0.89 0.74 0.72 0.71 0.68 0.58
0.37 1.29 0.70 0.69 0.68 0.65 0.56
0.38 1.69 0.68 0.68 0.66 0.64 0.56

0.49 0.49 0.68 0.66 0.65 0.62 0.53
0.54 0.89 0.56 0.56 0.54 0.51 0.45
0.56 1.29 0.51 0.50 0.49 0.46 0.42
0.57 1.69 0.49 0.49 0.47 0.46 0.41

0.65 0.49 0.50 0.49 0.48 0.47 0.41
0.72 0.89 0.36 0.35 0.34 0.29 0.26
0.74 1.29 0.30 0.30 0.28 0.26 0.24
0.76 1.69 0.28 0.27 0.26 0.25 0.24

1.0

0.14 0.58 0.93 0.92 0.89 0.84 0.71
0.16 0.98 0.90 0.90 0.88 0.83 0.70
0.17 1.38 0.88 0.88 0.86 0.79 0.68
0.18 1.78 0.88 0.88 0.85 0.79 0.66

0.27 0.58 0.91 0.84 0.80 0.75 0.64
0.33 0.98 0.82 0.73 0.72 0.70 0.58
0.35 1.38 0.77 0.71 0.69 0.66 0.57
0.36 1.78 0.75 0.69 0.66 0.64 0.56

0.41 0.58 0.78 0.71 0.70 0.65 0.54
0.49 0.98 0.63 0.58 0.57 0.54 0.45
0.52 1.38 0.56 0.51 0.50 0.48 0.44
0.54 1.78 0.53 0.50 0.49 0.47 0.44

0.55 0.58 0.58 0.54 0.51 0.51 0.43
0.65 0.98 0.40 0.36 0.36 0.33 0.28
0.69 1.38 0.33 0.30 0.28 0.28 0.25
0.72 1.78 0.30 0.28 0.26 0.25 0.24
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Table 3. Cont.

s/
√

Dt (d/t)e (l/D)e

σc/σy

0.0 0.2 0.4 0.6 0.8

2.0

0.10 0.77 0.92 0.92 0.89 0.83 0.71
0.14 1.17 0.90 0.89 0.88 0.83 0.70
0.15 1.57 0.87 0.88 0.86 0.79 0.67
0.16 1.97 0.88 0.88 0.84 0.79 0.66

0.21 0.77 0.91 0.84 0.80 0.75 0.63
0.27 1.17 0.82 0.75 0.72 0.70 0.57
0.31 1.57 0.77 0.71 0.69 0.66 0.57
0.33 1.97 0.75 0.69 0.66 0.63 0.56

0.31 0.77 0.78 0.71 0.70 0.65 0.54
0.41 1.17 0.62 0.58 0.57 0.54 0.45
0.46 1.57 0.56 0.51 0.50 0.48 0.44
0.49 1.97 0.53 0.50 0.48 0.47 0.43

0.42 0.77 0.58 0.54 0.51 0.51 0.43
0.55 1.17 0.40 0.36 0.36 0.34 0.29
0.61 1.57 0.32 0.30 0.28 0.28 0.25
0.65 1.97 0.29 0.28 0.26 0.24 0.24

A convergence test was carried out to determine the optimum number of hidden
layers and neurons in each hidden layer. The convergence test was based on the regression
analysis of the ANN model, where the target was to achieve an R2 value of 0.99, with
a minimum number of hidden layers and neurons. A total of 12 ANN models were
developed and each of their coefficients of determination (R2) was recorded. Initially, the
ANN model was trained using one hidden layer with one node. For each subsequent
ANN model, the number of neurons in the first hidden layer was increased by 1. When the
number of neurons in a hidden layer reached 4, a new hidden layer with one node was
added to the subsequent model. As this model is designed to receive four inputs, the
maximum number hidden layers and neurons in each hidden layer was set at four, to
ensure that the empirical solution that was developed was not overly complex. Table 4
summarizes the R2 value obtained for each model developed.

Table 4. Performances of the developed ANN models based on their coefficient of determinant.

Model No. of Hidden
Layers

No. of Neurons in
Hidden Layer 1

No. of Neurons in
Hidden Layer 2

No. of Neurons in
Hidden Layer 3

R2

Value

1 1 1 - - 0.93
2 1 2 - - 0.93
3 1 3 - - 0.94
4 1 4 - - 0.94
5 2 4 1 - 0.95
6 2 4 2 - 0.98
7 2 4 3 - 0.99
8 2 4 4 - 0.99
9 3 4 4 1 0.97

10 3 4 4 2 0.96
11 3 4 4 3 0.93
12 3 4 4 4 0.91

Based on all the R2 values obtained, it was found that Models 7 and 8 resulted in the
most accurate failure pressure prediction. Both the models produced a R2 value of 0.99.
Model 7 consisted of four neurons in the first hidden layer and three neurons in the second
hidden layer, having one less neuron than Model 8. As such, Model 7 was utilized for the
development of an empirical solution to ensure the simplicity of the equations without
compromising the accuracy of the outcome.
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The regression plots of Model 7 extracted from MathWorks MATLAB R2019b that
represent the training, validation, testing, and the combination of all the three plots are
illustrated in Figure 8. The linear regression line of best fit of the output of the ANN is
represented by the solid lines in the plot, with dashed lines representing the training data.
Based on Figure 8, it was observed that the solid lines and dashed line in each plot almost
overlap completely, indicating that Model 7 is highly capable of producing results that are
similar to that of the training data.

Figure 8. Regression plots of Model 7.

The number of epochs or iterations which determines the number of times the learning
algorithm will learn from the entire training dataset was set to a maximum of 2000 with
1500 validation checks. Fifteen percent of the training dataset is reserved as the validation
dataset and is not introduced to the neural network during training. After each iteration,
the algorithm calculates the mean square error of the validation dataset, as illustrated
in Figure 9. The iteration is stopped upon reaching the maximum number of epoch or
validation checks. The weights and biases at the epoch that produces the best validation
performance is chosen and applied to the ANN.

The ability of the ANN to produce outcomes close to the training data is measured
using the coefficient of determination (R2) of the model. The R2 value ranges from 0.0 to 1.0,
with a greater R2 value indicating a better goodness of fit, which is the distance between
the fitted line of the ANN’s regression plot and the training data points.
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Figure 9. Validation performance of Model LID7.

2.4. Material Properties

A rate-independent plasticity model utilizing von Mises yield criterion and isotropic
hardening rule was employed in the non-linear structural analysis. A high toughness pipe
grade of API 5L X80 was utilized in this study and the mechanical properties of the pipe
body as well as the end cap are summarized in Table 5. In this analysis, the endplate was
assumed to be a rigid body that does not undergo deformation. The material properties
of the pipe body are represented by a nonlinear true stress-strain curve of the material,
as illustrated in Figure 10. To accommodate high material nonlinearity in the pipe body,
material stress stiffening, large strain, and displacements were considered.

Figure 10. True stress-strain curve for API 5L X80 steel [21].
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Table 5. Mechanical properties of the API 5L X80 [21].

Properties Pipe Body Pipe End Cap

Modulus of elasticity, E 210 GPa 210 TPa
Poisson’s ratio, υ 0.3 0.3
Yield strength, σy 531.0 MPa -

Ultimate tensile strength, σu 655.0 MPa -
True ultimate tensile strength, σ×u 718.2 MPa -

3. Validation of the Finite Element Method

Before carrying out FEA, the FEM was validated against an actual full scale burst
test to ensure its accuracy and reliability. The validation was carried out based on burst
tests conducted by Bjorney et al. and Benjamin et al. [55,56]. Table 6 summarizes burst test
results by Bjorney et al. for burst pressures of single corrosion defect subjected to internal
pressure only, and combined loading (internal pressure and axial compressive stress) [57].
Table 7 summarizes burst test results by Benjamin et al. for burst pressures of interacting
defects subjected to internal pressure only [56].

Table 6. FEM failure pressure validation against full scale burst tests by Bjorney et al. for single corrosion defect [55].

Grade Specimen d (mm) l (mm) w (mm) σl (MPa) Burst Pressure
(MPa)

FEA Failure
Pressure (MPa)

Percentage
Difference (%)

X52 Test 1 5.15 243 154.5 0.0 23.2 22.95 −1.08
Test 5 3.09 162 30.9 48.0 28.6 28.35 −0.87
Test 6 3.09 162 30.9 84.0 28.7 27.00 −5.92

Table 7. FEM failure pressure validation against full scale burst tests by Benjamin et al. for interacting corrosion defects [56].

Grade Specimen d l w (mm) sl(mm) sc(mm) Burst Pressure
(MPa)

FEA Failure
Pressure (MPa)

Percentage
Difference (%)

X80 IDTS 2 5.39 39.6 31.9 0.0 0.0 22.68 22.40 −1.23
IDTS 3 5.32 39.6 31.9 20.5 0.0 20.31 20.12 −0.94
IDTS 4 5.62 39.6 32.0 0.0 9.9 21.14 20.62 −2.46

For single defects, the largest percentage difference between the failure pressure
obtained using FEM and actual full scale burst tests was 5.92%. As for interacting defects,
the largest percentage difference was 2.46%. A positive percentage difference indicates
overestimation, while a negative value indicates conservatism. Based on the validation,
it was observed that this method results in a slight conservatism that is within the range
of 6%. Hence, it is evident that the FEM is reliable to be used as a failure pressure data
generation tool for the training of the ANN.

To ensure a good correlation between the intact pressure obtained using FEM and
theoretical calculations, the intact pressure, Pi, value was compared with the maximum
hoop stress theory represented by Equation (2) [2]. Based on this theory, the intact pressure
of the pristine pipe is 51.3 MPa and the intact pressure of the same pipe obtained using
FEM was 50.94 MPa, with a percentage difference of −0.70%. There is therefore a strong
correlation between these two methods.

Pi =
σUTS t

ri
(2)

where ri is the pipe internal radius.
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4. Results and Discussion
4.1. Comparison of Pipe Failure Pressure Prediction Using FEA and DNV Method

The DNV method was primarily developed to assess the integrity of medium tough-
ness pipelines, as the validation of this method was based on full-scale burst tests conducted
on pipes of grades API 5L X45 to API 5L X65. This method incorporates internal pressure
and axial compressive stress for the failure pressure prediction of pipelines with single
corrosion defects. However, only 7.25% of the validation tests considered axial compressive
stress. As such, it can be concluded that the validation of the method for corroded pipes
subjected to both internal pressure and axial compressive stress is not as comprehensive
as the validation of the method for the assessment of corroded pipes subjected to internal
pressure only [15].

As for interacting defects, this method considers internal pressure only. Based on
Figure 11, the DNV method results in conservative failure pressure predictions compared
to the FEM for API 5L X80 pipes with interacting corrosion defects subjected to internal
pressure only. It was observed that for defect depths of 0.20 to 0.60, the conservativeness of
the DNV method is more significant, with a percentage difference ranging from−14.29% to
−9.59%. As the defect depth is increased to 0.80, the conservativeness of the DNV method
reduces, with a percentage difference ranging from −11.34% to −5.11%.

Figure 11. Normalized failure pressure predictions of FEA and DNV for API 5L X80 pipe subjected
to internal pressure only for interacting defects with a normalized defect spacing of 0.5.

Theoretically, the failure pressure of a corroded pipe with two longitudinally aligned
corrosion defects in close proximity is lower than that of a pipe with single corrosion defect
of the same dimensions [57]. This is caused by the stress and strain disturbances that
occur in each corrosion defect. As each defect causes a disruption in the distribution of
stress and strain across the pipe, an overlap region of stress and strain concentration is
created [58,59]. This results in a significant decrease in failure pressure of the corroded pipe.
Based on Figure 12, for FEA, it is observed that there is an increase in the failure pressure
of the corroded pipe when the normalized defect spacing is increased from 0.0 to 1.2 for
normalized defect depths of 0.20 to 0.80. The failure pressure begins to increase as the
overlap region reduces in size, due to an increase in the defect spacing. When the overlap
region becomes smaller, the interaction between the defects reduces and the defects can be
treated as single defects.
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Figure 12. Normalised failure pressure predictions of FEA and DNV for API 5L X80 pipe subjected
to internal pressure only for interacting defects.

However, when the DNV method was used, it was observed that failure pressures
were conservative by a range of 14.4 to 18.9% for normalized defect depths of 0.2 to 0.8.
Above a normalized defect spacing of 0.8, the failure pressure begins to plateau. However,
based on FEA, the failure pressure begins to plateau only at a defect spacing of 1.2.
This shows the conservativeness of the DNV method when used to assess the failure
pressure of high toughness steels. Overly conservative predictions result in unwarranted
and premature pipe repairs that are costly [19].

4.2. Development of an Empirical Equation for the Failure Pressure Prediction of a
Corroded Pipeline

The development of the empirical equation to predict the failure pressure of a pipe
with corrosion defects was based on the weights and biases of the ANN model represented
by Equations (3)–(5).

h1,1
h1,2
h1,3
h1,4

 =


wi,1 wi,5 wi,9 wi,13
wi,2 wi,6 wi,10 wi,14
wi,3 wi,7 wi,11 wi,15
wi,4 wi,8 wi,12 wi,16



(
s/
√

D/t
)

n
(d/t)n
(l/d)n

(σc/σy)n

+


b1,1
b1,2
b1,3
b1,4

 (3)

 h2,1
h2,2
h2,3

 =

 w1,1 w1,4 w1,7 w1,10
w1,2 w1,5 w1,8 w1,11
w1,3 w1,6 w1,9 w1,12




a(h1,1)
a(h1,2)
a(h1,3)
a(h1,4)

+

 b2,1
b2,2
b2,3

 (4)

on =
[

w2,1 w2,2 w2,3
] a(h2,1)

a(h 2,2)

a(h 2,3)

+ [bo] (5)

The ANN model normalizes the input values so that the values fall within the range
of −1 to 1 before the values at the input neurons are multiplied by the respective weights
and transferred to the neuron in the next layer. The normalized input values, in, can be
calculated using Equation (6). Likewise, the output value, o, is also a normalized value.
Hence, it needs to be denormalized using Equation (7).

in =
(in, max − in, min)(i− imin)

(imax − imin)
+ in, min (6)

where

in, max is the maximum normalized input value,
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in, min is the minimum normalized input value,
i is the input value,
imin is the minimum input value of the training data, and
imax is the maximum input value of the training data.

o =
(on − on, min)(omax − omin)

(on, max − on, min)
+ omin (7)

where

on is the normalized output value,
on,min is the normalized minimum output value of the training data,
on,max is the normalized maximum output value of the training data,
omax is the maximum output value of the training data, and
omin is the minimum output value of the training data.

The steps involved in predicting the failure pressure of a pipeline with corrosion
defect(s) are summarized below:

Step 1: Calculation of the normalized effective length and depth of defect.

(l/D)e =
l1 + (s1 + l2)

t
(8)

(d/t)e =

(
d1l1+d2l2

l1,2

)
D

(9)

Step 2: Normalization of input parameters.

(
s/
√

D/t
)

n
=

2
(
s/
√

D/t
)

i
3

− 1 (10)

(l/D)en =
2(l/D)e

2.15
− 1 (11)

(d/t)en = 2.5(d/t)e − 1 (12)

(σc/σy)n = 2.5(σc/σy)i − 1 (13)

Step 3: Calculation of the normalized output value.

 h1,1
h1,2
h1,3
h1,4

 =

 −0.0830
(
s/
√

D/t
)

n + 0.2350(l/D)en + 1.4834(d/t)en − 1.9408(σc/σy)n + 2.2349
0.2086

(
s/
√

D/t
)

n − 0.1390(l/D)en + 0.1719(d/t)en + 0.0065(σc/σy)n − 0.2576
−0.07195

(
s/
√

D/t
)

n − 2.645(l/D)en − 0.50324(d/t)en − 0.1314(σc/σy)n − 1.6399
−0.2208

(
s/
√

D/t
)

n + 0.1131(l/D)en − 0.7073(d/t)en − 0.0425(σc/σy)n − 0.6017

 (14)

 h2,1
h2,2
h2,3

 =

 0.0208a(h1,1) + 1.0157a(h1,2)− 0.2254a(h1,3)− 2.2751a(h1,4)− 2.5736
0.3627a(h1,1) + 3.0005a(h1,2) + 0.0389a(h1,3) + 1.9307a(h1,4) + 1.7659
2.3000a(h1,1) + 0.6237a(h1,2) + 1.2367a(h1,3)− 1.7914a(h1,4)− 4.5105

. (15)

on = −2.5645a(h 2,1) + 0.9479a(h 2,2) + 1.1226a(h 2,3)− 1.2962 (16)

The values of a(h1,1) to a(h2,3) are calculated using Equation (17).

a
(
hx,y

)
=

2

1 + e−2(hx,y)
− 1 (17)

Step 4: Denormalization of output value, Pn f ,Eq

Pn f ,Eq = 0.385on + 0.615 (18)
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Step 5: Calculation of failure pressure, Pf ,Eq.

Pi =
σ×UTS t

ri
(19)

Pf ,Eq = Pn f ,Eq × Pi (20)

4.3. Evaluation of the New Corroded Pipeline Failure Pressure Assessment Method

Since the equations in the newly developed corrosion assessment method were ex-
tracted from the ANN, the R2 value of the new method is similar to that of the ANN,
which is 0.999. This indicates that the method results in failure pressure predictions that
are very close to the results obtained using FEA, which was used as the training data
for the ANN model. Based on the maximum hoop stress theory, the calculation of the
intact pressure of the pristine pipe model resulted in a value of 51.30 MPa, while the intact
pressure obtained using FEM was 50.94 MPa. The intact pressure of the pristine pipe
obtained from the newly developed failure pressure assessment method was calculated
to be 51.36 MPa. The comparison of the intact pressure values obtained using the three
methods are summarized in Table 8. There is good correlation between the three methods,
with the percentage difference between the failure pressure obtained using the maximum
hoop stress and the empirical equation is 0.12%, while the percentage difference between
the failure pressure obtained using FEM and the empirical equation is 0.84%.

Table 8. Comparison of the intact pressure values of the pristine pipe.

Maximum Hoop Stress
Theory (A) (MPa) FEM (B) (MPa) Newly Developed

Method (C) (MPa)
Percentage Difference

between (A) and (C) (%)
Percentage Difference

between (B) and (C) (%)

51.30 50.94 51.36 0.12 0.84

Figure 13 depicts the percentage difference between the failure pressure predicted us-
ing FEM and the empirical equation for the parameters used to train the ANN. The percentage
differences fall within−9.90% to 0.67%, with a standard deviation of 2.22. Since the percent-
age differences fall within 4.5 standard deviations of the mean, the probability of obtaining
a failure pressure with a percentage error greater than 9.99% is 1 in 147,160. Only 1.24% of
the 241 datasets resulted in overestimation with a maximum percentage difference of only
0.67%. Hence, it can be said that this method is reliable.

Figure 13. Probability distribution of the percentage error obtained using the newly developed
failure pressure prediction method and FEM based on the parameters of the ANN training data.
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Due to the lack of data on full scale burst tests of high toughness pipes subjected to
internal pressure and axial compressive stress for interacting defects, FEM was used to
further validate the new failure pressure prediction method based on a set of arbitrary
data for API 5L X80 material with a σ×UTS value of 718.2 MPa. Table 9 summarizes the
parametric details, the failure pressure predictions using FEM and the empirical equation,
and the percentage difference between the methods. A negative percentage difference
indicates a conservative prediction, while a positive value indicates overestimation.

Table 9. Comparison of the failure pressure obtained using FEA and the empirical equation.

s/
√

D/t d/t l/D σc/σy Pnf,FEA Pnf,Eq

Percentage
Difference

(%)

0.25 0.65 0.09 0.30 0.93 0.91 −2.28
0.25 0.65 0.09 0.60 0.84 0.84 0.02
0.25 1.45 0.10 0.30 0.91 0.89 −1.72
0.25 1.85 0.10 0.30 0.90 0.89 −1.05
0.25 1.85 0.10 0.60 0.83 0.81 −2.17
0.25 0.65 0.28 0.30 0.82 0.78 −4.51
0.25 0.65 0.28 0.60 0.72 0.73 0.35
0.25 1.45 0.34 0.60 0.68 0.66 −2.32
0.25 1.45 0.44 0.60 0.59 0.57 −3.21
0.25 1.45 0.48 0.30 0.58 0.55 −4.39
0.25 0.65 0.51 0.60 0.54 0.53 −1.32
0.25 1.45 0.53 0.60 0.51 0.48 −5.86
0.25 0.45 0.72 0.50 0.40 0.37 −7.54
0.25 0.65 0.74 0.60 0.31 0.28 −8.99
0.25 1.45 0.77 0.50 0.26 0.24 −8.02
0.25 1.45 0.77 0.60 0.26 0.23 −8.63
0.30 1.05 0.47 0.30 0.62 0.57 −7.34
0.30 0.65 0.27 0.30 0.83 0.79 −4.63
0.40 1.47 0.43 0.60 0.58 0.58 −0.39
0.40 1.87 0.53 0.50 0.52 0.49 −5.63
0.70 0.73 0.37 0.30 0.73 0.70 −4.28
0.70 1.53 0.50 0.60 0.53 0.50 −5.25
0.70 1.93 0.75 0.50 0.26 0.24 −5.90
0.90 0.76 0.43 0.50 0.63 0.61 −3.62
0.90 1.56 0.20 0.30 0.85 0.82 −3.58
1.00 0.58 0.40 0.20 0.71 0.71 −0.09
0.50 0.89 0.60 0.40 0.45 0.43 −4.09
0.80 1.75 0.30 0.70 0.66 0.64 −2.35
0.20 0.45 0.20 0.30 0.89 0.86 −3.46
0.30 0.65 0.40 0.60 0.68 0.63 −6.95
0.40 1.45 0.60 0.30 0.45 0.43 −5.47
0.80 1.05 0.30 0.60 0.72 0.69 −3.52
0.90 0.65 0.20 0.30 0.89 0.85 −4.72
1.00 1.47 0.40 0.60 0.60 0.59 −0.90
1.20 1.87 0.60 0.40 0.41 0.39 −4.94

Based on Table 9, the Root Mean Square Error (RMSE) of the regression analysis
conducted on the obtained results is 0.01, indicating that the predicted failure pressure value
is very close to the failure pressure obtained using FEA. The percentage difference between
these two methods falls between −8.99% and 0.35%. The predicted failure pressures
fall within the 4.5 sigma range of 9.99%. This is true for normalized defect spacings of
0.00 to 2.00, normalized effective defect lengths of 0.00 to 1.97, normalized effective defect
depths of 0.00 to 0.80, and normalized axial compressive stress of 0.00 to 0.80.
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4.4. Extensive Parametric Studies Using the Empirical Equation

The empirical equation was used to conduct an extensive parametric study to deter-
mine the effects of defect spacing, defect depth, defect length, and axial compressive stress
on an API 5L X80 corroded pipe with interacting corrosion defects. The parameters used in
this study and the results are represented in the graphs below. In this parametric study,
the failure pressure of pipes subjected to internal pressure only was used as reference data
to study the effects of normalized defect spacing, normalized defect length, normalized
defect depth, and normalized axial compressive stress on the normalized failure pressure
of a pipe when axial compressive stress was introduced.

4.4.1. Effects of Defect Spacing on the Failure Pressure of a Pipe with Interacting Defects

Based on Figure 14, at a constant normalized defect length of 1.00 and axial compres-
sive stress of 0.60, the normalized failure increases as the normalized defect spacing was
increased from 0.00 to 1.60. However, this increase is more significant for normalized defect
depths of 0.60 to 0.80. The maximum normalized pressure drop observed was 55.12% for a
normalized defect depth of 0.80. These results were expected as in the presence of interact-
ing defects, there is a region of stress overlap which causes the failure pressure to be lower
than that of a single defect. The normalized defect spacing has an increasingly significant
effect on the normalized failure pressure of a pipe with interacting corrosion defects as
the depth of the corrosion increases. This pattern was also observed for normalized defect
depths of 0.05, 0.20, 0.40, and 0.80.

Figure 14. Normalized failure pressure predictions based on the empirical equation against various
normalized defect spacing for multiple normalized defect depths at constant normalized defect
length of 1.00 and normalized axial compressive stress of 0.60.

4.4.2. Effects of Defect Depth on the Failure Pressure of a Pipe with Interacting Defects

Based on Figure 15, at a constant normalized effective defect length of 0.80 and
normalized defect spacing of 0.5, the normalized failure pressure decreases drastically
as the normalized effective defect depth was increased for normalized axial compressive
stress values of 0.00 to 0.80. The maximum normalized pressure drop observed based on
normalized axial compressive stress was 76.29% at a normalized axial compressive stress
value of 0.40. This indicates that the normalized effective defect depth has a high influence
on the normalized failure pressure of a pipe. As the normalized effective defect depth
approaches a value of 0.80, the normalized failure pressure begins to converge to a point.
This pattern was also observed for effective defect lengths of 0.05, 0.20, 0.40, 0.60, 1.00, and
1.20, as well as for normalized defect spacings of 1.00 and 2.0.
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Figure 15. Normalized failure pressure predictions of the new assessment method against various
normalized defect depth for multiple axial compressive stresses at a constant normalized defect
spacing of 0.5 and normalized defect length of 0.80.

Based on Figure 16, at a constant normalized defect spacing of 0.5 and normalized
axial compressive stress of 0.40, the influence of normalized effective defect depth on the
decrease in normalized failure pressure can be observed in more detail as the normalized
effective defect lengths are increased from 0.05 to 1.80. Generally, it was observed that
the normalized failure pressure decreases gradually as the normalized effective defect
depth was increased. The maximum normalized failure pressure reduction observed
based on normalized effective defect lengths of 0.00 to 1.80 was 74.73% for a normalized
effective defect length of 1.60. As the normalized effective defect depth is increased
from 0.0 to 0.8, the decrease in failure pressure is more drastic for increasing values of
normalized effective defect length. This indicates that the normalized effective defect
depth greatly influences the normalized failure pressure of a pipe under axial loading and
internal stress. This pattern was also observed for normalized axial compressive stress
values of 0.2, 0.6, and 0.8, as well as for normalized defect spacings of 1.00 and 2.00.

Figure 16. Normalized failure pressure predictions based on the empirical equation against various
normalized defect depths for multiple normalized defect lengths at constant normalized defect
spacing of 0.5 and normalized axial compressive stress of 0.40.

4.4.3. Effects of Defect Length on the Failure Pressure of a Pipe with Interacting Defects

Based on Figure 17, for normalized effective defect lengths of 0.05 to 1.80, the de-
crease in normalized failure pressure was observed to be more significant for normalized
axial compressive stress values of 0.00 to 0.60 for normalized effective defect lengths
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of 0.05 to 0.40. For increasing values of normalized effective defect lengths, it was ob-
served that the failure pressure decreased by a maximum of 15.31% for a normalized
axial compressive stress of 0.20. This pattern is similar for a normalized effective de-
fect depth of 0.05 and 0.40 with a maximum normalized failure pressure decrease of
8.16% and 30.85%, respectively.

Figure 17. Normalized failure pressure predictions based on the empirical equation against various
normalized defect lengths for multiple axial compressive stresses at constant normalized defect
spacing of 0.5 and normalized defect depth of 0.20.

This decrease is more significant as the normalized effective defect length is increased
for normalized effective defect depth values of 0.60 and 0.80. Under these conditions, the
maximum decrease in failure pressure was 48.86% and 67.57%, respectively, for normalized
axial compressive stress values of 0.00 to 0.80. A drastic decrease in the normalized failure
pressure for normalized effective defect lengths of 0.00 to 0.80 was observed indicating
that the normalized effective defect length significantly influences the failure pressure of a
pipe when the normalized effective defect depth ranges from 0.60 to 0.80. For the case of
normalized defect depth of 0.80, the decrease in failure pressure is illustrated in Figure 18.
Furthermore, it was also observed that the normalized failure pressure plateaus, as the nor-
malized effective defect length increases from 0.80 to 1.80, as depicted in Figures 17 and 18.
This pattern was also observed for normalized defect spacings of 1.00 and 2.00.

Figure 18. Normalized failure pressure predictions based on the empirical equation against various
normalized defect lengths for multiple axial compressive stresses at constant normalized defect depth
of 0.80.
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Based on Figure 19, at a constant normalized axial compressive stress of 0.40, the influ-
ence of normalized effective defect length on the decrease in normalized failure pressure is
more significant as the normalized effective defect depths are increased from 0.00 to 0.80.
Since the maximum decrease in normalized failure pressure was only 10.00% for normal-
ized effective defect depths of 0.05 to 0.20 when the normalized effective defect length was
increased from 0.00 to 1.80, it indicates that the influence of normalized effective defect
length is insignificant under these conditions. As the normalized effective defect length was
increased from 0.80 to 1.80 for each of the normalized effective defect depth values, it was
observed that its influence on normalized failure pressure was also insignificant. The maxi-
mum drop in normalized failure pressure in this region was only 9.65%. This indicates that
for normalized effective defect depths of 0.00 to 0.80, normalized effective defect lengths
of 0.00 to 0.80 significantly influence the normalized failure pressure. This pattern was
observed to be similar for all other values of normalized defect spacings and normalized
axial compressive stresses investigated in this parametric study.

Figure 19. Normalized failure pressure predictions of the new assessment method against various
normalized defect lengths for multiple normalized defect depths at constant normalized defect
spacing of 0.5 and normalized axial compressive stress of 0.40.

4.4.4. Effects of Axial Compressive Stress on the Failure Pressure of a Pipe with
Interacting Defects

Based on Figure 20, at a constant normalized defect spacing of 0.5 and normalized
effective defect length of 0.80, the normalized failure pressure decreases insignificantly for
normalized axial compressive stress values of 0.0 to 0.4 for normalized effective defect depth
values of 0.05 to 0.60. Under these conditions, the maximum normalized failure pressure
decrease was observed to be only 5.41% at a normalized effective defect depth of 0.40. For a
normalized effective defect depth of 0.80, this reduction in failure pressure was observed
to be comparatively higher with a 17.86% decrease in failure pressure for normalized axial
compressive stress values of 0.00 to 0.40. For normalized axial compressive stress values of
0.40 to 0.60, the normalized failure pressure drops significantly by a maximum of 22.09%
for a normalized effective defect depth of 0.40 at a normalized axial compressive stress of
0.80. This indicates that when a normalized axial compressive stress value of 0.4 to 0.8 is
imposed on a pipe, it causes a significant decrease in the normalized failure pressure of the
pipe. This pattern was also observed for all other normalized effective defect length values
as well as normalized defect spacings of 1.00 and 2.00.
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Figure 20. Normalized failure pressure predictions based on the empirical equation against various
normalized axial compressive stresses for multiple normalized defect depths at constant normalized
defect spacing of 0.5 and normalized defect length of 0.60.

4.5. Recommendations for Future Studies

The empirical equation is applicable for the prescribed range and material only.
Future studies using a greater number of ANN training datasets that consist of differ-
ent types of material and varying parameters of corrosion defects should be done to
increase the robustness and application of the equation.

5. Conclusions

An empirical equation for failure pressure prediction of corroded high toughness
pipelines with interacting defects subjected to internal pressure and axial compressive
stress was developed. The obtained results proved that ANNs are capable of accurately
predicting the failure pressure of a corroded pipeline, provided that it has been trained
sufficiently, and is suitable to be used as a tool to develop empirical equations based on its
weights and biases. By doing so, a level 3 corrosion assessment method can be reduced to
a level 1 assessment level complexity which allows the user to carry out failure pressure
calculations easily using a single spreadsheet.

The equation predicted failure pressures for API 5L X80 pipes with a R2 value of
0.99 for normalized defect spacings of 0.00 to 2.00, normalized effective defect lengths
of 0.00 to 1.97, normalized effective defect depths of 0.00 to 0.80, and normalized axial
compressive stress of 0.00 to 0.80, for API 5L X80 pipe grade. This equation is therefore
suitable for the failure pressure prediction of high toughness pipes ranging from API 5L
X80 material with normalized defect length, normalized defect depth, and normalized
axial compressive stress that are within the mentioned ranges.
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Nomenclature

ANSYS ANSYS 16.1 Structural Product of Mechanical ANSYS Parametric Design Language (APDL)
DNV DNV-RP-F101 corrosion assessment method
DOF Degrees of freedom
FE Finite element
FEA Finite element analysis
FEM Finite element method
UTS Ultimate tensile strength
D Pipe diameter
d Corrosion defect depth
de Effective defect depth
H1 Factor for longitudinal compressive stresses
L Pipe length
l Defect length
le Effective defect length
Pf ,Eq Failure pressure of corroded pipeline using the new corrosion assessment method
Pf i,DNV Failure pressure of pipe with interacting corrosion defects using DNV
Pf s,DNV Failure pressure of pipe with single corrosion defect using DNV
Pf n,Eq Normalized failure pressure of pipe using the new corrosion assessment method
Pf n,FEA Normalized failure pressure of corroded pipeline using finite element analysis
r Internal radius of pipe
StD(x) standard deviation of variable x
sc Circumferential defect spacing
sl Longitudinal defect spacing
t Thickness of pipe
(d/t)e Normalized effective defect depth
(d/t)meas Measured (relative) defect depth
(l/D)e Normalized effective defect length
εd Fractile value factor for the corrosion depth
γd Partial safety factor of corrosion depth
γm Model prediction partial safety factor

θ
Ratio of circumferential length of corroded region to the nominal outside
circumference of the pipe

σc Axial compressive stress
σe Effective von Mises stress
σh Hoop stress
σl Axial/longitudinal stress
σr Radial stress
σy Yield stress
σUTS Ultimate tensile strength
σ×UTS True ultimate tensile strength
ξ Pipe usage factor
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