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Abstract: Machine learning tools are increasingly adopted in various industries because of their
excellent predictive capability, with high precision and high accuracy. In this work, analytical
equations to predict the failure pressure of a corroded pipeline with longitudinally interacting
corrosion defects subjected to combined loads of internal pressure and longitudinal compressive
stress were derived, based on an artificial neural network (ANN) model trained with data obtained
from the finite element method (FEM). The FEM was validated against full-scale burst tests and
subsequently used to simulate the failure of a pipeline with various corrosion geometric parameters
and loadings. The results from the finite element analysis (FEA) were also compared with the Det
Norske Veritas (DNV-RP-F101) method. The ANN model was developed based on the training data
from FEA and its performance was evaluated after the model was trained. Analytical equations
to predict the failure pressure were derived based on the weights and biases of the trained neural
network. The equations have a good correlation value, with an R2 of 0.9921, with the percentage
error ranging from −9.39% to 4.63%, when compared with FEA results.

Keywords: corroded pipeline; interacting corrosion defects; combined loadings; failure pressure;
finite element analysis; artificial neural network

1. Introduction

Pipelines are the most economical means of transport between gas wells, storage
facilities, refinery plants and power plants. Failure of pipelines may pose catastrophic
consequences to their surroundings, on top of economic losses from production interrup-
tion. Pipelines are susceptible to compressive longitudinal loads due to hoop stress from
internal pressure and thermal stress induced by thermal expansion and pipe–soil friction
resistance [1]. Corrosion is a significant cause of pipeline failure as it thins the pipe wall,
weakening the structural integrity of the pipeline by reducing the load-carrying capacity of
the pipeline due to stress concentration at the corrosion region [2].

Formation of corrosion in a pipeline is often irregular and unpredictable, with different
types of corrosion formation having different structural effects on a pipeline. A corrosion
defect disrupts the stress and strain field of a pipeline beyond the defect. A single corrosion
defect has zero or negligible interactions with other corrosion defects, provided that the
distance between these defects is outside of the interaction limit. Corrosion defects usually
occur as clusters of corrosion pits, with a complex defect geometry rather than a single
uniform defect. Interacting defects are more detrimental towards the structural integrity
of a pipeline than single defects, as they may interact with each other and reduce the
failure capacity of the pipeline [3]. Therefore, they need to be considered differently when
assessing corroded pipelines. Corrosion defects are commonly categorised and assessed by
the type of interaction. For example, longitudinally aligned groups of corrosion defects
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have a Type 2 interaction, where defects lie on the same axial line and are separated by a
length of pipe wall thickness. DNV defines the interaction limit of longitudinal interacting
defects as per Equation (1), as a function of the outer diameter D and thickness t of a
pipe [4]. Defect spacing s equal or greater than the interaction limit will be treated as a
single defect, due to the negligible interaction effect [5].

s = 2.0
√

Dt (1)

Residual strength assessment of a corroded pipeline can be assessed based on different
complexities. ASME B31G classifies the complexity of assessment from Level 0 to Level
3 [6]. Level 0 assessment relies on the tables of allowable defect depth and length. Level
1 assessment is a simple calculation based on defect depth and length, usually used by
personnel in the field. The Level 2 assessment method is a calculation that incorporates
a greater detail of information than Level 1 to produce a more accurate estimate of the
failure pressure. It relies on detailed measurements of the corroded surface profile and
involves repetitive calculations. The Level 3 assessment method requires the specifics of
the corrosion defects such as their geometries, loadings, boundary conditions, material
properties and failure criteria.

Considerable progress has been made recently to improve Level 2 and Level 3 assess-
ments. It is known that Level 2 assessments based on established standards and codes, such
as ASME B31G [6], RSTRENG Effective Area [7] and DNV RP-F101 [4], are conservative
in their estimation [8]. These assessment standards are limited in their capabilities and
most of them are applicable to a corroded straight pipeline with a single corrosion defect
subjected to internal pressure only. Numerous works have been conducted to improve their
predictions and expand their limited scope. Khalajestani et al. revised DNV’s equation and
expanded its capability to assess single-defect corrosion at the intrados, crown and extrados
of pipe elbows [9]. FEA results from Level 3 assessment were utilised to develop a new
assessment model that considered different defect geometries and configurations [10,11],
boundary conditions and loadings [12] and different material properties [13]. The relia-
bility of conventional assessment methods such as DNV was improved by redefining the
defect depth of DNV’s equations [14]. A new assessment model was developed by using
numerical tools such as Monte Carlo simulation (MCS) to establish and solve limit state
equations [15]. A proprietary program, PIPEFLAW, is able to quickly assess the integrity
of corroded pipelines. The programme is considered a Level 4 assessment method as it
can automatically generate and analyse corroded pipeline models subjected to internal
pressure and axial compressive force [16,17].

Of all the established residual strength assessment standards, DNV RP-F101 is the
most comprehensive method, as it is applicable to corroded pipelines with a single defect
(subjected to internal pressure and longitudinal compressive stress) and longitudinally
interacting defects (subjected to internal pressure only). Equation (2) from the DNV
guidelines is used to determine the failure pressure of a pipe with a single corrosion defect
under combined loads of internal pressure and longitudinal compressive stress. Equation
(2) is the product of Equations (3) and (4), where Equation (3) is used to determine the
failure pressure of a pipe with a single corrosion defect under internal pressure only and
Equation (4) gives the factor for longitudinal compressive stresses.

Pcorr,comp = γm
2t fu

(D− t)

(
1− γd(d/t)∗

)(
1− γd(d/t)∗

Q

) H1 (2)

Pcorr = γm
2t fu

(D− t)

(
1− γd(d/t)∗

)(
1− γd(d/t)∗

Q

) (3)
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H1 =
1 + σL

ξ fu
1

Ar

1− γm
2ξAr

(1−γd(d/t)∗)(
1− γd(d/t)∗

Q

) (4)

However, Level 2 assessment methods have varying degrees of accuracy in their
prediction of the failure pressure when compared to Level 3 assessment methods such
as numerical analysis using the finite element method [18]. Level 3 assessment methods
involve advance analysis techniques and require a higher level of information such as
boundary conditions and material properties for the analysis. Numerical methods such as
the finite element method (FEM) have been widely employed to verify and validate the
failure behaviour and failure pressure of corroded pipelines [17,19–21]. FEM is especially
useful for parametric studies with varying corrosion geometries, which otherwise would
be too costly to be carried out experimentally. Despite the advantages of Level 3 assessment
methods, numerical methods are computationally expensive. One FEM simulation with
upwards of thirty thousand nodes in a model may take up to two to three hours. A
comprehensive parametric study for varying corrosion defect geometries through FEM can
be computationally and time-intensive.

Machine learning has been increasingly adopted for assessing the integrity and reli-
ability of corroded pipelines. Machine learning models have been developed to predict
the burst pressure of corroded pipelines, trained with a database of corroded pipeline
burst pressures determined experimentally [22–24]. Machine learning techniques could
be used to develop a new assessment method that combines the advantages of both Level
2 and Level 3 assessment methods. Data-driven machine learning frameworks such as
artificial neural networks (ANNs) have been used in the past to predict the failure pressure
of straight pipes and pipe bends with a single corrosion defect [9,25], as well as interacting
corrosion defects [5,10]. The dataset used to train the ANN models was derived from the
FEM and full-scale burst test of pipelines with machined defects. These ANN models
were used to understand the non-linear relationship between the corrosion geometries and
failure pressure of corroded pipelines when subjected to internal pressure only. Tohidi and
Sharifi [26] found that the weights and biases from a trained ANN can be used to formulate
an equation for the ultimate strength of locally corroded plate girder ends. The formula
has a high degree of accuracy and can be used readily.

This paper proposes the application of an ANN together with the FEM to formulate an
equation to predict the failure pressure of a corroded pipeline with varying longitudinally
interacting corrosion defect geometries, subjected to internal pressure and longitudinal
compressive stress.

2. Materials and Methods

In this paper, finite element analysis (FEA) was conducted on an API 5L X65 grade
steel pipeline with longitudinal corrosion defects, subjected to combined loads of internal
pressure and longitudinal compressive stress. The FEM was validated with experimental
results from full-scale burst tests to ensure an accurate representation of the material
property, element types and mesh configurations. A database of FEA results was generated
with various corrosion geometric parameters and load applications and used to train an
ANN model. The weight and biases of the trained ANN were subsequently used as a basis
to formulate an equation to predict the failure pressure of a corroded pipeline with varying
longitudinally interacting corrosion defect geometries, subjected to internal pressure and
longitudinal compressive stress.

2.1. Finite Element Method

The FEA was conducted using ANSYS (19.1) Mechanical APDL. The base pipe model
had an external diameter De of 300 mm, a wall thickness t of 10 mm and a length L of
2000 mm. The shape of the corrosion defect was rectangular, with varying defect depths,
defect lengths and defect widths, as shown in Table 1. The corrosion defects were spaced
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longitudinally, as shown in Table 1. The range of longitudinal compressive stress (as a ratio
of API 5L X65’s yield strength) considered is shown in Table 1.

Table 1. Parameters of corrosion defect geometries and external load.

Parameters Range

Defect Depth, d/t 0.2, 0.4, 0.5, 0.6, 0.8
Defect Length, l/D 0.2, 0.4, 0.8, 1.2, 1.8
Defect Width, w/t 2, 6, 10, 14, 18
Defect Spacing, s 0, 0.5, 1, 2, 3, 4

Longitudinal Compressive Stress, σc/σy 0.2, 0.4, 0.5, 0.6, 0.8, 1.0

Only a quarter model was simulated in the FEA, as the pipe and corrosion defects were
assumed to be symmetrical, therefore reducing the computational time. Figure 1 illustrates
the quarter pipe and its dimensions. Internal pressure was applied on the inner surface of
the pipe and end cap, whereas longitudinal compressive stress was applied on the surface
of the end cap, as shown in Figure 2. The longitudinal compressive stress was applied
incrementally through ramped loading in ANSYS from the first timestep. An internal
pressure was then applied in the second timestep, while the longitudinal compressive
stress was maintained.

Figure 1. Dimensions of the quarter pipe model.

Figure 2. Loads applied on the pipe model.
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The pipe body was brick meshed with an 8-node SOLID185 element in ANSYS, while
the end cap was free meshed with a 20-node SOLID186 element. Both elements support
plasticity, stress stiffening, large deflection and large strain capabilities, and thus they are
suitable for simulating deformations of elastoplastic materials such as API 5L X65 steel
pipelines. However, SOLID186 is more suited for modelling irregular meshes of curved
boundaries at the end cap. Three layers of elements were meshed at the corrosion defect,
as per the British Standards Institution recommendation [27]. The model was constrained
in its position to prevent rigid motion during FEA. The movement of three nodes near
the end cap was restricted, as indicated in Figure 3 [28]. The corrosion defect was densely
packed with elements. The density of elements reduced gradually away from the corrosion
defect, as shown in Figure 3. Mesh convergence was performed to determine the optimal
mesh density.

Figure 3. Pipe model with a longitudinally interacting corrosion defect.

The material property of the API 5L X65 grade steel pipe from Baek et al.’s work [29]
was adapted for this study, as shown in Figure 4. The non-linear true stress–strain curve
of API 5L X65 was used as the material property of the pipe body in SOLID185 elements.
Static non-linear structural analysis (Newton–Raphson) was used in the FEM to account
for the non-linearity of API 5L X65. SOLID186 elements were used for the end cap, as a
rigid body to transfer the longitudinal compressive stress to the pipe body. The mechanical
properties of the pipe body and end cap are tabulated in Table 2. The high stiffness of the
end cap was to prevent unwanted deformation.
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Figure 4. True stress–strain curves of API 5L X65 steel pipe [29].

Table 2. Mechanical property of API 5L X65 steel pipe.

Pipe Body—API 5L X65 Steel
(SOLID185) Pipe End Cap—Rigid Body (SOLID186)

Modulus of elasticity, E 210 GPa 210 TPa
Poisson’s ratio, v 0.3 0.3
Yield strength, σy 464 MPa -

Ultimate tensile strength, σu 563 MPa -
True ultimate tensile strength, σu∗ 629 MPa -

The failure criterion was based on true ultimate tensile strength (UTS) of API 5L
X65. [12,30]. When the von Mises stress at the corrosion defect region reaches the ultimate
tensile strength (across the entire wall thickness), the steel pipe has undergone plastic
collapse. If the failure criterion is reached, the internal pressure applied at the timestep is
the failure pressure.

2.2. Finite Element Method Validation

Full-scale burst test results by Kim et al. [31] were used for validation of the FEM. The
burst test was conducted on an API 5L X65 pipe with a single corrosion defect subjected
to internal pressure only. The pipe had an outer diameter of 762 mm, a wall thickness of
17.5 mm and a pipe length of 2.3 m, enclosed with end caps. To ensure proper boundary
conditions and correct application of longitudinal compressive stress, the FEM was also
validated based on a full-scale burst test by Bjørnøy et al. [32]. Bjørnøy et al.’s burst tests
were conducted on API 5L X52 steel pipes with an outer diameter of 324 mm, a wall
thickness of 10.3 mm and a pipe length of 1.0 m. The pipe had a single corrosion defect and
was subjected to internal pressure and longitudinal compressive stress. The results of the
validation are tabulated in Table 3. The difference in failure pressure predicted in FEA and
failure pressure from burst tests was less than 5%. As such, the FEM accurately determined
the failure pressure of a corroded pipeline subjected to combined loads of internal pressure
and longitudinal compressive stress.
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Table 3. Failure pressure from burst tests compared with failure pressure predicted in FEA.

Specimen Failure Pressure from
Burst Tests (MPa)

Failure Pressure
Predicted in FEA

(MPa)

Absolute Percentage
Difference (%)

Validation for internal hydrostatic pressure only

LD 19.80 20.10 1.50
LF 15.00 15.50 3.67

Validation for internal hydrostatic pressure and longitudinal compressive stress

Test 5 28.60 29.20 2.10
Test 6 28.70 29.60 3.14

2.3. Machine Learning and Artificial Neural Network

Computer-programmed learning algorithms can learn to make predictions based on
information they were trained with. This method is commonly referred to as machine
learning (ML). An ML technique such as artificial neural networks (ANNs) can be used to
solve regression problems. An ANN can be used to correlate the non-linear relationship
between corrosion parameters and the failure pressure of a pipe. For supervised learning,
the dataset is labelled for training and the corrosion parameters are labelled with the target
failure pressure. The dataset was obtained from FEA of an API 5L X65 pipeline with
interacting corrosion defects. A supervised learning algorithm was employed in training
a feedforward neural network (FFNN). To prevent overtraining, the architecture of the
neural network was pruned through trial and error to improve the prediction accuracy.
Hyperparameters such as the number of hidden layers and the number of hidden neurons
were adjusted according to the error between the target failure pressure and the predicted
target failure pressure (MSE < 1 × 10−5). The ANN framework is illustrated in a flowchart
in Figure 5.

The Levenberg–Marquardt backpropagation (LMBP) algorithm was used to train
the neural network. The algorithm performs more efficiently when compared with other
learning algorithms, as LMBP uses a second-order convergence rate, which requires less
time and epochs for convergence [33]. The training process of the neural network is
illustrated in Figure 6. The inputs of FFNN were propagated forward through weights
and biases toward hidden layers and then an output layer. The performance of the neural
network was calculated by a cost function, in order to measure the error between the target
output and the predicted output. The LMBP then backpropagated to update the weights
and biases to minimise the cost function.

While the optimum numbers of hidden layers and hidden neurons are generally
determined through trial and error, as the architecture of the neural network is heavily
dependent on the size and shape (number of features and labels) of the database it is
trained with, Equation (5) was used to determine the number of hidden neurons [34]:

Nh =

(
4p2 + 3

)
(p2 − 8)

(5)

where Nh is the number of hidden neurons and p is the number of features of the neural
network. This equation was used as a reference to prune the hyperparameters, together
with a trial-and-error method.
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Figure 5. ANN framework.

Figure 6. Training process of the artificial neural network.



J. Mar. Sci. Eng. 2021, 9, 281 9 of 25

The performance of the trained ANN was evaluated through three measurements: co-
efficient of determination (R2), mean squared error (MSE) and mean absolute error (MAE).

R2 =

 ∑N
i=1(yi − yi)(ŷi − ŷi)√

∑N
i=1(yi − yi)

2 ∑N
i=1 (ŷi − ŷi)

2

2

(6)

MSE =
1
N

N

∑
i=1

(ŷi − yi)
2 (7)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (8)

where ŷi and yi are the actual and predicted output values for the ith output, respectively.
ŷi and yi are the average of the actual and predicted outputs, and N is the number of
samples. R2, or the squared correlation coefficient, is the evaluation of the goodness of fit
for the predicted value against the actual value, where an R2 value of 1.00 corresponds to a
perfect fit. The MSE is the sum of squared differences between the predictions and actual
values. The MAE is the average absolute error between predictions and actual values,
which measures the accuracy for the predictions.

3. Results and Discussion
3.1. Preliminary Finite Element Analysis

A preliminary study was conducted to investigate the effects of corrosion defects and
load parameters on the failure pressure of a corroded API 5L X65 pipe. The parameters and
their range for formulation of an equation to predict the failure pressure were subsequently
determined. A corroded pipe with single and longitudinally interacting corrosion defects
was studied to determine the effect of corrosion defect depth, length, width and spacing
and the effect of longitudinal compressive stress on the failure pressure of the pipe. Prior
literature studies considered the effect of corrosion defects subjected to internal pressure
only [35,36]. The FEAs for corroded API 5L X65 pipes with a single corrosion defect were
designated with the prefix SDOFAT, while the FEAs for corroded pipes with longitudinally
interacting corrosion defects were designated with the prefix LIDOFAT. The results of the
preliminary FEA were tabulated and compared with the failure pressure prediction by
DNV’s method in Table 4. The results are expressed as the normalised failure pressure
which is the ratio of the estimated failure pressure to the theoretical failure pressure of
the pristine pipe, Pf /Pi. The theoretical failure pressure of the pristine pipe is 44.93 MPa,
calculated with the hoop stress equation based on the true UTS failure criterion, expressed
in Equation (9):

σUTS∗ =
Piri

t
(9)

where σUTS∗ is the true UTS of API 5L X65, t is the thickness of the pipe and ri is the radius
of the inner pipe.

Table 4. FEA on a corroded pipeline with single and longitudinally interacting corrosion defects
subjected to internal pressure and longitudinal compressive stress with various defect parameters.

Test
Models Defect Parameters External

Load
Normalised Failure

Pressure

d/t l/D w/t s/
√

Dt σc/σy FEA DNV

SDOFAT14 0.2 0.8 10 - 0.5 0.74 0.75
SDOFAT15 0.4 0.8 10 - 0.5 0.64 0.55
SDOFAT16 0.5 0.8 10 - 0.5 0.56 0.45
SDOFAT17 0.6 0.8 10 - 0.5 0.46 0.35
SDOFAT18 0.8 0.8 10 - 0.5 0.26 0.16
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Table 4. Cont.

Test
Models Defect Parameters External

Load
Normalised Failure

Pressure

d/t l/D w/t s/
√

Dt σc/σy FEA DNV

SDOFAT19 0.5 0.2 10 - 0.5 0.69 0.75
SDOFAT20 0.5 0.4 10 - 0.5 0.62 0.58
SDOFAT21 0.5 1.2 10 - 0.5 0.53 0.40
SDOFAT22 0.5 1.8 10 - 0.5 0.52 0.38
SDOFAT23 0.5 0.8 2 - 0.5 0.56 0.45
SDOFAT24 0.5 0.8 6 - 0.5 0.57 0.45
SDOFAT25 0.5 0.8 14 - 0.5 0.54 0.44
SDOFAT26 0.5 0.8 18 - 0.5 0.53 0.44
SDOFAT27 0.5 0.8 10 - 0.2 0.58 0.53
SDOFAT28 0.5 0.8 10 - 0.4 0.57 0.52
SDOFAT29 0.5 0.8 10 - 0.6 0.53 0.38
SDOFAT30 0.5 0.8 10 - 0.7 0.46 0.31
SDOFAT31 0.5 0.8 10 - 0.8 0.37 0.24
SDOFAT32 0.5 0.8 10 - 0.9 0.20 0.17
SDOFAT33 0.5 0.8 10 - 1.0 0.17 0.10
LIDOFAT1 0.2 0.8 10 1 0.5 0.75 0.73
LIDOFAT2 0.4 0.8 10 1 0.5 0.64 0.53
LIDOFAT3 0.5 0.8 10 1 0.5 0.56 0.43
LIDOFAT4 0.6 0.8 10 1 0.5 0.46 0.34
LIDOFAT5 0.8 0.8 10 1 0.5 0.27 0.16
LIDOFAT6 0.5 0.2 10 1 0.5 0.69 0.66
LIDOFAT7 0.5 0.4 10 1 0.5 0.61 0.52
LIDOFAT8 0.5 1.2 10 1 0.5 0.53 0.40
LIDOFAT9 0.5 1.8 10 1 0.5 0.52 0.38
LIDOFAT10 0.5 0.8 2 1 0.5 0.57 0.43
LIDOFAT11 0.5 0.8 6 1 0.5 0.57 0.43
LIDOFAT12 0.5 0.8 14 1 0.5 0.54 0.43
LIDOFAT13 0.5 0.8 18 1 0.5 0.53 0.42
LIDOFAT14 0.5 0.8 10 0 0 0.48 0.53
LIDOFAT15 0.5 0.8 10 0.5 0 0.50 0.57
LIDOFAT16 0.5 0.8 10 1 0 0.52 0.58
LIDOFAT17 0.5 0.8 10 2 0 0.53 0.59
LIDOFAT18 0.5 0.8 10 3 0 0.53 0.59
LIDOFAT19 0.5 0.8 10 4 0 0.53 0.59
LIDOFAT20 0.5 0.8 10 0 0.5 0.53 0.38
LIDOFAT21 0.5 0.8 10 0.5 0.5 0.55 0.41
LIDOFAT22 0.5 0.8 10 2 0.5 0.56 0.45
LIDOFAT23 0.5 0.8 10 3 0.5 0.56 0.45
LIDOFAT24 0.5 0.8 10 4 0.5 0.56 0.45
LIDOFAT25 0.5 0.8 10 1 0.2 0.58 0.52
LIDOFAT26 0.5 0.8 10 1 0.4 0.57 0.49
LIDOFAT27 0.5 0.8 10 1 0.6 0.53 0.36
LIDOFAT28 0.5 0.8 10 1 0.7 0.45 0.30
LIDOFAT29 0.5 0.8 10 1 0.8 0.36 0.23
LIDOFAT30 0.5 0.8 10 1 0.9 0.20 0.17
LIDOFAT31 0.5 0.8 10 1 1.0 0.17 0.10

The preliminary FEA results are presented in Figure 7, where the various parameters
and the corresponding failure pressure of a corroded pipeline are plotted and the differences
between the predictions made by FEA and DNV for a corroded pipeline with longitudinally
interacting corrosion defects (LIDs) are compared. The trends from FEA on a pipeline with
a single corrosion defect (SD) were included as a control. The effect of combined loads of
internal pressure (IP) and longitudinal compressive stress (LCS) on the failure pressure of
a pipeline with corrosion is shown in Figure 7a. The FEA trends show a minor effect of
longitudinal compressive stress on the failure pressure of pipelines with an SD and LID
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when the load was less than 0.4 σc/σy. Longitudinal compressive stress beyond 0.4 σc/σy
has an adverse effect on the failure of corroded pipelines, with the failure pressure reducing
exponentially for SD and LID FEA trends and linearly for the LID DNV trend. Figure 7b
shows the trends for various defect depths on the failure pressure when subjected to
combined loads of IP and LCS. The plot shows that the failure pressure decreases linearly
when the defect depth increases. The ability of the pipeline to resist hoop stress was
reduced, as the pipe wall was thinned due to corrosion [2,37,38]. The effect of the defect
length on the failure pressure of a corroded pipeline is presented in Figure 7c. The failure
pressure dropped with increasing corrosion defect length up to 1.2 l/D. Beyond this, the
failure pressure remained relatively the same, even though the defect extended in length.
This result is consistent with the previous literature for a corroded pipeline with load
configurations of internal pressure only and combined loads [35,37]. The effect of the defect
width on the failure pressure of a corroded pipeline is negligible, as shown in Figure 7d.
The LID DNV trendline suggests that the failure pressure of a corroded pipeline remains
the same regardless of the defect width. Both SD and LID FEA trendlines showed a slight
decrease in failure pressure when the defect width increased, with a difference of 7.81% in
the normalised failure pressure for defect widths of 2.0 and 18.0 w/t.

Figure 7. FEA and DNV predictions of normalised failure pressure predictions versus normalised corrosion defect
parameters and load applied: (a) normalised failure pressure versus normalised longitudinal compressive stress, (b)
normalised failure pressure versus normalised defect depth, (c) normalised failure pressure versus normalised defect length,
(d) normalised failure pressure versus normalised defect width.
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For all the plots in Figure 7, the LID DNV trend shows the conservatism of the DNV
method for estimating the failure pressure of a corroded pipeline. The DNV method
predicted a lower failure pressure when compared with FEA trendlines of SD and LID. The
mean average percentage difference between the failure pressure from LID FEA and LID
DNV is −23.34% in Figure 7a, −21.82% in Figure 7b, −19.05% in Figure 7c and −22.44% in
Figure 7d. The DNV method generally underestimated the failure pressure by 20% when
compared with the more accurate FEA predictions.

In most of the plots of Figure 7, the SD FEA trendlines were slightly above the LID
FEA trendlines, which shows that an LID has a minimal effect on the failure pressure
when compared with an SD. The effect of LIDs becomes evident in Figure 8, with the
failure pressure affected the most when the defects were spaced closely together. As the
spacing between the defects increased in the longitudinal direction, the failure pressure
increased up to the failure pressure of single-defect corrosion. The trend was visible
in both FEA and DNV trendlines, where the spacing was sufficiently far apart and the
interaction between the defects became negligible. Defects spaced beyond the interaction
limit act as single corrosion defects, with the failure pressure determined by the most severe
corrosion defect [5]. From the FEA trendline, the interaction limit is at 1.0 s/

√
Dt, while

the interaction limit is 2.0 s/
√

Dt for the DNV trendline.

Figure 8. FEA and DNV predictions of normalised failure pressure predictions versus normalised
longitudinal defect spacing.

3.2. Further Finite Element Analysis

The preliminary FEA provided insights to select the appropriate parametric bound
for the formulation of an equation to predict the failure pressure for a pipeline with longi-
tudinal interacting corrosion defects. The significance of the effect of the corrosion defect
geometry and longitudinal compressive stress was ranked according to their trendline
gradient in Figure 7, where their influence on the failure pressure of the pipeline was
plotted. The corrosion defect depth has the most significance, with an average gradient of
−0.81 in Figure 7a, followed by longitudinal compressive stress with an average gradient
of −0.43, the corrosion defect length with an average gradient of −0.097, the corrosion
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defect spacing with an average gradient of 0.0062 and the corrosion defect width with an
average gradient of −0.0029. Only significant parameters and their limits were considered
for further FEA, as limits where the failure pressure starts to plateau were redundant. The
appropriate limits of the corrosion defect depth are 0.2 and 0.8 d/t and 0.2 and 0.7 σc/σy
for longitudinal compressive stress. Loads beyond these upper limits risk buckling failure.
Defect lengths from 0.2 to 1.2 l/D influence the failure pressure, and beyond this range, the
failure pressure plateaus. Defect spacing from 0 to 3.0 s/

√
Dt was selected, while the defect

width has a negligible influence on the failure pressure of corroded pipelines; therefore,
the parameter was excluded in further FEA. The parameters selected were investigated in
full factorial and the results of further FEA were tabulated in Tables 5–10.

Table 5. FEA on corroded pipeline with longitudinally interacting corrosion defect (LID) subjected to
internal pressure and 0 σc/σy longitudinal compressive stress.

σc/σy d/t l/D
s/
√

Dt

0 0.5 1.0 2.0 3.0

0

0.2

0.2 0.86 0.88 0.88 0.88 0.89
0.4 0.83 0.84 0.85 0.85 0.86
0.6 0.82 0.82 0.83 0.84 0.84
0.8 0.81 0.81 0.82 0.83 0.83
1.2 0.81 0.82 0.82 0.82 0.82

0.4

0.2 0.76 0.79 0.81 0.82 0.82
0.4 0.69 0.72 0.73 0.75 0.76
0.6 0.65 0.68 0.69 0.70 0.71
0.8 0.63 0.66 0.67 0.68 0.69
1.2 0.62 0.64 0.65 0.65 0.65

0.5

0.2 0.69 0.74 0.76 0.77 0.77
0.4 0.60 0.64 0.66 0.68 0.68
0.6 0.56 0.59 0.61 0.62 0.62
0.8 0.53 0.57 0.58 0.59 0.59
1.2 0.52 0.54 0.55 0.55 0.55

0.6

0.2 0.61 0.68 0.70 0.73 0.73
0.4 0.50 0.55 0.58 0.60 0.60
0.6 0.46 0.50 0.52 0.53 0.53
0.8 0.44 0.47 0.49 0.50 0.50
1.2 0.42 0.45 0.45 0.45 0.45

0.8

0.2 0.41 0.52 0.55 0.58 0.59
0.4 0.29 0.37 0.39 0.40 0.40
0.6 0.26 0.31 0.32 0.33 0.33
0.8 0.24 0.28 0.28 0.29 0.29
1.2 0.22 0.25 0.26 0.26 0.26

A full factorial design to investigate the relationship between the corrosion defect
parameters and load was performed and gave insightful results on the interaction limit
of the longitudinal interacting corrosion defects. When the spacing between interacting
corrosion defects was within the interaction limit, the failure pressure was lower than
single corrosion defects, as shown in Figures 9–11. The failure pressures of LIDs and
SDs with defect lengths for all longitudinal compressive stresses were considered for
different defect spacings, where Figure 9 shows the failure pressure at a defect spacing of
0.5, Figure 10 shows the failure pressure at a defect spacing of 1.0 and Figure 11 shows the
failure pressure at a defect spacing of 2.0. When the defects were close to each other (defect
spacing of 0.5 in Figure 9), the failure pressures of most LID trendlines were lower than
the failure pressures for SD trendlines. As the spacing increased between the defects, the
failure pressure of most LID trendlines increased, approaching the failure pressure of SD
trendlines, as seen in Figure 10. When the LID defect spacings were sufficiently far apart,
the failure pressures were the same as the failure pressures of SD trendlines, as seen in
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Figure 11. The interaction limit for the API 5L X65 pipeline with longitudinal interacting
defects is therefore 2.0 s/

√
Dt, consistent with DNV.

Table 6. FEA on corroded pipeline with LID subjected to internal pressure and 0.2 σc/σy longitudinal
compressive stress.

σc/σy d/t l/D
s/
√

Dt
0 0.5 1.0 2.0 3.0

0.2

0.2

0.2 0.85 0.86 0.86 0.87 0.87
0.4 0.82 0.84 0.84 0.85 0.85
0.6 0.81 0.81 0.82 0.83 0.83
0.8 0.80 0.81 0.81 0.81 0.81
1.2 0.80 0.80 0.81 0.81 0.81

0.4

0.2 0.75 0.78 0.79 0.80 0.80
0.4 0.68 0.71 0.73 0.74 0.75
0.6 0.65 0.68 0.69 0.70 0.70
0.8 0.63 0.66 0.67 0.68 0.68
1.2 0.61 0.63 0.64 0.65 0.65

0.5

0.2 0.68 0.73 0.75 0.77 0.77
0.4 0.59 0.63 0.65 0.67 0.68
0.6 0.55 0.59 0.61 0.61 0.61
0.8 0.53 0.56 0.58 0.59 0.59
1.2 0.52 0.54 0.54 0.55 0.55

0.6

0.2 0.59 0.67 0.69 0.71 0.72
0.4 0.49 0.54 0.57 0.59 0.59
0.6 0.45 0.50 0.52 0.53 0.53
0.8 0.44 0.47 0.48 0.49 0.49
1.2 0.42 0.45 0.45 0.45 0.45

0.8

0.2 0.40 0.51 0.54 0.55 0.59
0.4 0.28 0.37 0.39 0.40 0.40
0.6 0.25 0.30 0.31 0.32 0.32
0.8 0.23 0.28 0.28 0.28 0.28
1.2 0.22 0.25 0.25 0.25 0.25

Table 7. FEA on corroded pipeline with LID subjected to internal pressure and 0.4 σc/σy longitudinal
compressive stress.

σc/σy d/t l/D
s/
√

Dt
0 0.5 1.0 2.0 3.0

0.4

0.2

0.2 0.81 0.83 0.84 0.85 0.85
0.4 0.78 0.80 0.81 0.82 0.82
0.6 0.77 0.79 0.80 0.80 0.80
0.8 0.77 0.78 0.79 0.79 0.79
1.2 0.77 0.78 0.78 0.78 0.78

0.4

0.2 0.71 0.74 0.75 0.76 0.76
0.4 0.66 0.69 0.70 0.71 0.71
0.6 0.64 0.67 0.68 0.69 0.69
0.8 0.62 0.65 0.66 0.66 0.66
1.2 0.61 0.63 0.63 0.64 0.64

0.5

0.2 0.65 0.70 0.72 0.73 0.73
0.4 0.57 0.62 0.64 0.65 0.65
0.6 0.54 0.58 0.60 0.61 0.61
0.8 0.53 0.56 0.57 0.58 0.58
1.2 0.52 0.53 0.54 0.54 0.54

0.6

0.2 0.57 0.65 0.68 0.69 0.69
0.4 0.47 0.53 0.56 0.58 0.58
0.6 0.45 0.49 0.51 0.52 0.52
0.8 0.43 0.46 0.47 0.48 0.48
1.2 0.42 0.44 0.45 0.45 0.45

0.8

0.2 0.38 0.51 0.54 0.57 0.58
0.4 0.28 0.36 0.37 0.38 0.38
0.6 0.24 0.29 0.31 0.31 0.31
0.8 0.23 0.27 0.28 0.28 0.28
1.2 0.21 0.24 0.25 0.25 0.25
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Table 8. FEA on corroded pipeline with LID subjected to internal pressure and 0.5 σc/σy longitudinal
compressive stress.

σc/σy d/t l/D
s/
√

Dt
0 0.5 1.0 2.0 3.0

0.5

0.2

0.2 0.76 0.79 0.79 0.80 0.80
0.4 0.75 0.76 0.76 0.77 0.77
0.6 0.74 0.75 0.75 0.75 0.75
0.8 0.74 0.75 0.75 0.75 0.75
1.2 0.75 0.75 0.75 0.75 0.75

0.4

0.2 0.69 0.70 0.71 0.72 0.72
0.4 0.64 0.67 0.68 0.68 0.68
0.6 0.62 0.64 0.65 0.65 0.65
0.8 0.61 0.63 0.64 0.64 0.64
1.2 0.61 0.62 0.62 0.62 0.62

0.5

0.2 0.63 0.67 0.69 0.69 0.69
0.4 0.56 0.61 0.62 0.63 0.63
0.6 0.53 0.57 0.58 0.59 0.59
0.8 0.53 0.55 0.56 0.56 0.56
1.2 0.52 0.53 0.53 0.53 0.53

0.6

0.2 0.55 0.62 0.65 0.66 0.66
0.4 0.46 0.53 0.54 0.56 0.56
0.6 0.44 0.48 0.49 0.50 0.50
0.8 0.43 0.45 0.46 0.47 0.47
1.2 0.42 0.44 0.45 0.45 0.45

0.8

0.2 0.37 0.49 0.53 0.55 0.56
0.4 0.27 0.35 0.37 0.37 0.37
0.6 0.24 0.28 0.30 0.30 0.30
0.8 0.22 0.27 0.27 0.27 0.27
1.2 0.21 0.24 0.24 0.24 0.24

Table 9. FEA on corroded pipeline with LID subjected to internal pressure and 0.6 σc/σy longitudinal
compressive stress.

σc/σy d/t l/D
s/
√

Dt
0 0.5 1.0 2.0 3.0

0.6

0.2

0.2 0.69 0.71 0.72 0.72 0.72
0.4 0.69 0.70 0.70 0.69 0.69
0.6 0.69 0.69 0.69 0.69 0.69
0.8 0.69 0.69 0.69 0.69 0.69
1.2 0.67 0.67 0.67 0.67 0.67

0.4

0.2 0.62 0.65 0.66 0.66 0.66
0.4 0.60 0.62 0.62 0.62 0.61
0.6 0.59 0.61 0.61 0.60 0.60
0.8 0.58 0.59 0.59 0.59 0.59
1.2 0.58 0.58 0.58 0.58 0.58

0.5

0.2 0.59 0.62 0.63 0.64 0.62
0.4 0.53 0.57 0.58 0.58 0.57
0.6 0.52 0.54 0.54 0.54 0.54
0.8 0.51 0.53 0.53 0.53 0.53
1.2 0.51 0.52 0.52 0.52 0.52

0.6

0.2 0.53 0.58 0.60 0.61 0.61
0.4 0.45 0.51 0.52 0.53 0.53
0.6 0.43 0.46 0.47 0.47 0.47
0.8 0.42 0.45 0.45 0.45 0.45
1.2 0.41 0.43 0.43 0.43 0.43

0.8

0.2 0.35 0.47 0.51 0.53 0.53
0.4 0.25 0.34 0.36 0.36 0.36
0.6 0.23 0.28 0.28 0.28 0.28
0.8 0.22 0.26 0.26 0.26 0.26
1.2 0.21 0.23 0.23 0.23 0.23
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Table 10. FEA on corroded pipeline with LID subjected to internal pressure and 0.7 σc/σy longitudinal
compressive stress.

σc/σy d/t l/D
s/
√

Dt

0 0.5 1.0 2.0 3.0

0.7

0.2

0.2 0.62 0.65 0.66 0.65 0.65
0.4 0.62 0.63 0.62 0.61 0.61
0.6 0.62 0.62 0.61 0.61 0.61
0.8 0.62 0.62 0.61 0.61 0.61
1.2 0.61 0.61 0.61 0.61 0.61

0.4

0.2 0.56 0.58 0.59 0.59 0.58
0.4 0.53 0.56 0.55 0.54 0.53
0.6 0.54 0.53 0.53 0.53 0.52
0.8 0.53 0.53 0.53 0.52 0.52
1.2 0.52 0.52 0.52 0.51 0.51

0.5

0.2 0.52 0.57 0.57 0.57 0.53
0.4 0.48 0.52 0.51 0.50 0.49
0.6 0.47 0.48 0.47 0.47 0.46
0.8 0.47 0.46 0.46 0.45 0.45
1.2 0.45 0.45 0.45 0.45 0.45

0.6

0.2 0.46 0.53 0.53 0.53 0.53
0.4 0.41 0.45 0.45 0.45 0.44
0.6 0.40 0.41 0.41 0.41 0.41
0.8 0.40 0.40 0.39 0.39 0.39
1.2 0.39 0.38 0.38 0.38 0.38

0.8

0.2 0.29 0.42 0.45 0.45 0.45
0.4 0.23 0.30 0.30 0.29 0.29
0.6 0.21 0.25 0.25 0.25 0.25
0.8 0.21 0.23 0.23 0.23 0.23
1.2 0.20 0.22 0.22 0.22 0.22

Figure 9. Single corrosion defect (SD) and LID comparison of normalised failure pressure predictions
versus normalised longitudinal defect spacing across different longitudinal compressive stresses for
defect spacing of 0.5.
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Figure 10. SD and LID comparison of normalised failure pressure predictions versus normalised
longitudinal defect spacing across different longitudinal compressive stresses for defect spacing of 1.

Figure 11. SD and LID comparison of normalised failure pressure predictions versus normalised
longitudinal defect spacing across different longitudinal compressive stresses for defect spacing of 2.

The full factorial FEA also highlighted the detrimental effect of the corrosion defect
depth when a corroded pipeline with LIDs was subjected to a combined load of internal
pressure and longitudinal compressive stress. In Figure 12, the failure pressures of a
pipeline with shallow (0.2 d/t) and deep (0.8 d/t) defect depths are plotted against defect
depths for various longitudinal compressive stresses. From the figure, increasing defect
depth causes the failure pressure to increase significantly when the defect length increases.
The gradients of both defect depths’ trendlines remained relatively unchanged for various
longitudinal compressive stresses, with the trendline gradients for the deep defect being
greater than those for the shallow defect. The gradients show that the defect depth has a
greater effect on the failure pressure.
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Figure 12. Comparison of normalised failure pressure predictions versus normalised longitudinal
defect spacing across different longitudinal compressive stresses for defect depths of 0.2 and 0.8.

3.3. Development of New Assessment Equation Using ANN

The ANN model was developed with MathWorks MATLAB R2019b. The architec-
ture of the ANN model was based on the feedforward neural network (FFNN) with the
Levenberg–Marquardt backpropagation (LMBP) learning algorithm. The network structure
visualised in MATLAB is shown in Figure 13. Corrosion defect depth d/t, corrosion defect
length l/D, corrosion defect spacing s/

√
Dt and axial compressive stress σc/σy were used

as inputs for the ANN model and the target output was the failure pressure Pf /Pi. The
inputs and output were normalised to be between the range of −1 and 1 using Equation
(10), so that they were within the data range that the sigmoid activation functions lie in.

(y)n =
(ymax − ymin)(x− xmin)

(xmax − xmin)
+ ymin (10)

where y is the normalisation value ranging from −1 to 1 and x is the de-normalisation
value, which ranges according to its dataset.

Figure 13. Architecture of the ANN model as represented in MATLAB.

The database for training was based on the full factorial design of the FEA results.
The best performing neural network configuration was determined through trial and error.
After numerous prunings, the network with two hidden layers with five hidden neurons
in each hidden layer was finalised. Hyperbolic tangent sigmoid transfer functions were
utilised in the hidden layers, while a linear transfer function was applied in the output
layer. To formulate the failure pressure prediction equation, the trained neural network
was expressed in mathematical form.
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The components of the ANN model can be visualised as Figure 14, where the input,
hidden and output neurons are connected through links between their layers. The links
were weighted, and values passed from neurons to neurons were amplified or dampened
depending on the weights of the links. wi,x denotes weights linking the input layer to
hidden layer 1 h1,x. w1,x denotes weights linking h1,x to hidden layer 2 h2,x. w2,x denotes
weights linking h2,x to the output layer. Biases (bx,x) are constant non-zero values of hidden
neurons which were then summed with the product of inputs and weights. The result was
then transferred through the transfer function of the neuron as its output.

Figure 14. Architecture of FFNN model employed.

The weights and biases of the links were constantly updated until the training stopped
when the predictions from the ANN achieved the target error difference with an R2 of
0.9997, MSE of 7.067 × 10−5 and MAE of 0.0067. Weights and biases from the trained ANN
model were expressed in mathematical form from Equations (11)–(13) to formulate the
failure pressure prediction equation.

h1,1
h1,2
h1,3
h1,4
h1,5
h1,6
h1,7
h1,8
h1,9


=



−1.5299 −1.3802 0.4365 2.1981
0.5399 −0.0679 −2.3995 0.1293
0.3503 −0.4409 −0.0264 0.1623
0.3746 0.0112 −0.2018 0.1822
0.5514 0.0229 0.1189 0.0219
−0.7065 −0.0887 0.0563 0.1142
−0.4543 0.2713 0.0126 1.8142
0.0473 −1.9809 0.3476 −0.2248
1.4235 0.4813 −0.1411 −0.6316




(d/t)n
(l/D)n(
s/
√

Dt
)

n(
σc/σy

)
n

+



2.5919
−3.8258
−1.1326
−0.4265
−0.8102
0.1696
−3.2723
−3.5966
1.5589


(11)



h2,1
h2,2
h2,3
h2,4
h2,5
h2,6
h2,7
h2,8
h2,9


=



0.984 −2.155 2.0134 −1.2304 −1.7331 −2.2013 7.8006 −6.9641 −1.6738
−1.2317 3.3019 −2.6221 −0.6579 0.4452 −0.7431 −9.3556 −9.7479 0.378
−0.075 0.3337 −3.5604 2.4808 2.0504 1.9098 12.5083 −3.0678 0.3753
−0.1082 0.3436 −0.295 0.2776 0.53 −0.0329 −0.9555 1.9781 −0.1647
−19.2259 0.9237 −5.1126 −0.3845 2.8616 −4.1604 −19.5125 −11.7335 −0.5181

0.259 1.3167 1.5959 −3.6288 0.4681 0.2967 −0.7128 8.7098 0.6756
0.6021 −2.3456 3.5911 0.2891 −0.1993 2.1197 −3.2017 7.5048 0.3567
0.7837 −1.1201 2.7881 −1.5652 −1.5018 −2.5969 3.0406 −1.4207 1.2206
0.2534 1.3881 1.647 −3.5594 0.3793 0.2777 −0.5725 8.3185 0.6446





a(h1,1)
a(h1,2)
a(h1,3)
a(h1,4)
a(h1,5)
a(h1,6)
a(h1,7)
a(h1,8)
a(h1,9)


+



−0.0974
−15.4998
10.1448
1.8325
−9.1587
8.9085
2.5939
1.3177
8.7766


(12)
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[On] = f



[
−0.2449 0.455 −1.0893 −2.7872 −0.1518 3.2261 0.5856 −0.4632 −3.3811

]



a(h2,1)
a(h2,2)
a(h2,3)
a(h2,4)
a(h2,5)
a(h2,6)
a(h2,7)
a(h2,8)
a(h2,9)


+ [1.799]


(13)

where a(x) is the hyperbolic tangent sigmoid transfer function,

a(x) =
2

(1 + e−2x)− 1
or tan h(x)

and f (x) is the linear transfer function,

f (x) = x

The ANN model used to develop the equation was based on the results of FEA
on an API 5L X65 corroded pipeline with LIDs subjected to combined loads of internal
pressure and longitudinal compressive stress. Therefore, the equations are recommended
for parameters within the investigated range only.

3.4. Performance of New Assessment Equation

The newly developed equations were checked to ensure satisfactory performance. The
predictions from the new equations were compared with results from FEA, which were
the target outputs of the ANN. They were plotted as a regression plot in Figure 15. The
corresponding R2 value is 0.9997, the MSE is 8.335 × 10−6 and the MAE is 2.315 × 10−3.
The percentage error of the predictions from new equations ranged from −2.26% to 2.07%,
with a standard deviation of 0.49.

Figure 15. Regression plot of failure pressure predictions made by the new assessment equations
and FEA.
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For comparison, the predictions from the DNV assessment method were compared
with the results of the FEA as well, as shown in Figure 16. The R2 value for predictions
made with the DNV method is 0.9445, with an MSE of 8.973 × 10−3 and an MAE of
8.242 × 10−2. The conservatism of the DNV method is apparent through its lower failure
pressure predictions, with the percentage error ranging from −60.13% to 7.70%, with
a standard deviation of 13.90. The conservative predictions may result in premature
maintenance and shutdowns.

Figure 16. Regression plot of failure pressure predictions made using DNV method and FEA results.

The equations were tested with an unseen dataset for validation and to determine
their performance. Table 11 tabulates the unseen FEA results and the predictions from
the equations.

Table 11. Failure pressure predictions using FEA and predictions made based on the equations on
unseen dataset.

Defect Parameters External Load Normalised Failure Pressure Difference

d/t l/D s/
√

Dt σc/σy FEA New Equations %

0.1 0.3 0.25 0.3 0.8814 0.8320 −5.61
0.1 0.3 0.25 0.6 0.7512 0.6807 −9.39
0.1 0.7 0.25 0.3 0.8725 0.8271 −5.20
0.1 0.9 0.25 0.3 0.8725 0.8348 −4.32
0.1 0.9 0.25 0.6 0.7412 0.6717 −9.38
0.2 0.5 1.5 0.32 0.8280 0.8214 −0.80
0.2 0.7 1.7 0.45 0.7657 0.7762 1.38
0.3 0.3 0.25 0.3 0.7790 0.7742 −0.62
0.3 0.3 0.25 0.6 0.6588 0.6893 4.63
0.3 1.15 0.25 0.3 0.7300 0.7201 −1.37
0.3 1.15 0.25 0.6 0.6410 0.6490 1.24

0.35 0.7 0.25 0.6 0.6232 0.6269 0.59
0.4 0.5 1.5 0.32 0.7122 0.7032 −1.27
0.4 0.7 1.7 0.45 0.6588 0.6588 0.00

0.45 0.7 0.25 0.6 0.5609 0.5616 0.13
0.5 0.5 0.3 0.3 0.6054 0.5918 −2.25
0.5 0.7 0.25 0.3 0.5698 0.5593 −1.84
0.5 1.1 0.3 0.3 0.5431 0.5363 −1.25
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Table 11. Cont.

Defect Parameters External Load Normalised Failure Pressure Difference

d/t l/D s/
√

Dt σc/σy FEA New Equations %

0.55 0.3 0.25 0.6 0.5609 0.5532 −1.37
0.55 0.5 1.5 0.35 0.5965 0.5817 −2.47
0.55 0.7 0.25 0.6 0.4986 0.4876 −2.21
0.55 0.7 1.7 0.25 0.5520 0.5491 −0.52
0.55 1.15 0.25 0.6 0.4719 0.4710 −0.18
0.7 0.5 1.5 0.25 0.4540 0.4518 −0.50
0.7 0.7 1.7 0.35 0.4006 0.3969 −0.94
0.8 0.2 0.25 0.5 0.4897 0.4534 −7.41
0.8 0.3 0.25 0.6 0.3828 0.3579 −6.51
0.8 0.3 1.5 0.35 0.4719 0.4535 −3.89
0.8 0.3 1.7 0.35 0.4719 0.4565 −3.25
0.8 0.3 2.2 0.35 0.4719 0.4608 −2.34
0.8 0.3 2.5 0.35 0.4719 0.4613 −2.25
0.8 0.7 0.25 0.5 0.2760 0.2583 −6.40
0.8 0.7 0.25 0.6 0.2671 0.2505 −6.20
0.8 0.7 1.5 0.35 0.2938 0.2941 0.10
0.8 0.7 1.7 0.35 0.2938 0.2947 0.29
0.8 0.7 2.2 0.25 0.3027 0.2994 −1.09
0.8 0.7 2.5 0.35 0.2938 0.2964 0.90
0.8 1.1 0.25 0.5 0.2404 0.2352 −2.17
0.8 1.1 0.3 0.5 0.2448 0.2371 −3.16
0.8 1.1 1.5 0.35 0.2582 0.2550 −1.24
0.8 1.1 1.7 0.25 0.2582 0.2559 −0.88
0.8 1.1 2.2 0.25 0.2582 0.2567 −0.59
0.8 1.1 2.5 0.25 0.2582 0.2577 −0.19
0.8 1.2 0.25 0.6 0.2315 0.2260 −2.37
0.8 1.2 0.3 0.6 0.2315 0.2275 −1.72

The comparison of failure pressure predictions from the equations and unseen FEA
dataset are plotted as a regression plot in Figure 17. The R2 value is 0.9921, the MSE is
4.746 × 10−4 and the MAE is 1.374 × 10−2. The percentage error of the predictions based
on the equations ranges from −9.39% to 4.63%, with a standard deviation of 2.83. Based on
their performance, the predictions based on the equations are within ±10% of the failure
pressure predicted by FEA.

Figure 17. Regression plot of the predicted normalised failure pressures based on the equations and
FEA results from unseen dataset.



J. Mar. Sci. Eng. 2021, 9, 281 23 of 25

3.5. Recommendations on the Failure Pressure Prediction Equations

Predictions from an ANN depend greatly on the dataset it was trained with. There-
fore, the scope and range of its predictive ability could be expanded to include more
parameters such as the material’s UTS. A more robust equation could then be formulated
from the trained ANN. Nonetheless, the equations formulated in this study achieved
their intended goal of improving failure pressure prediction. They are comparable to the
DNV assessment method using the FEM based on the material’s true UTS as the failure
criterion. The equations could be used to calculate the failure pressure of corroded API 5L
X65 pipelines quickly when set up correctly in a spreadsheet. However, the equations are
recommended for parameters within the investigated range only. Nevertheless, all factors
should be considered when assessing corroded pipelines, including the failure pressure
prediction equations and established assessment method for a comprehensive pipeline
integrity management.

4. Conclusions

An equation for the failure pressure prediction of a corroded pipeline subjected to
combined loads was formulated from an ANN trained with a database generated by FEA.
FEA was performed on an API 5L X65 grade steel pipe with longitudinal interacting
corrosion defects and subjected to internal pressure and longitudinal compressive stress.
The pipe was considered to have failed when the von Mises stress of its wall exceeded
the true UTS in the FEA. The FEM was validated with burst tests to ensure an accurate
representation of an actual pipeline failure pressure. Preliminary FEA was conducted to
better understand the influence of the corrosion defect parameters and loading applied on
the failure pressure of a pipe. The results from this preliminary FEA were compared with
the DNV method, which revealed conservative failure pressure estimations by the DNV
method. Further FEA was carried out in full factorial design for significant parameters
only. Defect depth limits of 0.2 and 0.8 d/t; defect length limits of 0.2 and 1.2 l/D; defect
spacing limits of 0 to 3 s/

√
Dt; and longitudinal compressive stress limits of 0 to 0.7 σc/σy

were considered. In the full factorial design FEA, the interaction limit of longitudinally
interacting defects was found to be 2.0 s/

√
Dt.

The results from FEA were used to train an ANN to formulate a failure pressure
prediction equation. The training of the ANN was stopped when the error of its predictions
achieved a satisfactory level of MSE < 1 × 10−5. The weights and biases from the trained
ANN were expressed in mathematical form to formulate the failure pressure prediction
equations. The failure pressure equations were compared with the DNV method and
tested with an unseen FEA dataset. The predictions from the failure pressure prediction
equations were accurate with an R2 value of 0.9921, an MSE of 4.746 × 10−4 and an MAE
of 1.374 × 10−2, with the percentage error ranging from −9.39% to 4.63%, with a standard
deviation of 2.83. All factors should be considered when assessing the failure pressure
of a corroded pipeline, and the equations should complement, rather than replace, an
established assessment method for a comprehensive and rigorous pipeline assessment.
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