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Abstract

The retrieval of important information from a dataset requires applying a special data mining

technique known as data clustering (DC). DC classifies similar objects into a groups of simi-

lar characteristics. Clustering involves grouping the data around k-cluster centres that typi-

cally are selected randomly. Recently, the issues behind DC have called for a search for an

alternative solution. Recently, a nature-based optimization algorithm named Black Hole

Algorithm (BHA) was developed to address the several well-known optimization problems.

The BHA is a metaheuristic (population-based) that mimics the event around the natural

phenomena of black holes, whereby an individual star represents the potential solutions

revolving around the solution space. The original BHA algorithm showed better performance

compared to other algorithms when applied to a benchmark dataset, despite its poor explo-

ration capability. Hence, this paper presents a multi-population version of BHA as a general-

ization of the BHA called MBHA wherein the performance of the algorithm is not dependent

on the best-found solution but a set of generated best solutions. The method formulated

was subjected to testing using a set of nine widespread and popular benchmark test func-

tions. The ensuing experimental outcomes indicated the highly precise results generated by

the method compared to BHA and comparable algorithms in the study, as well as excellent

robustness. Furthermore, the proposed MBHA achieved a high rate of convergence on six

real datasets (collected from the UCL machine learning lab), making it suitable for DC prob-

lems. Lastly, the evaluations conclusively indicated the appropriateness of the proposed

algorithm to resolve DC issues.

1 Introduction

The past few decades have seen various nature-inspired algorithms being highlighted to

resolve numerical optimization issues. These algorithms are key players in unravelling a multi-

tude of engineering optimization problems due to worldwide investigation and their exploit-

ability. They are characterised by their mimicry of living organisms’ behaviour in nature, like
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the general fauna living on land or in water, respectively. As such, metaheuristic searching

optimization has recently gained a huge interest in being utilised in a wide range of well

known optimization problems and engineering applications. It has applications in various

fields, such as power optimization [1–5]; text clustering [6]; smart traffic management [7];

robotic [8]; networking [9–11]; data security [12, 13], engineering [14–16]; and machine learn-

ing [17–25].

Regardless of the different concepts and natural inspirations behind the approaches for

meta-heuristic searching optimization, they have one common fundamental structure. That is

the utilisation of a heuristic-based selective search method in the solution space to find the

best solution that optimizes a given objective function. In the case of a multi-optimization

problem, a set of objective functions are applied as long as the set of constraints is preserved.

The factors that have attracted researchers in recent times to these algorithms are the rapid

advancement of hardware performance and their ability to solve numerous problems in the

engineering field; they are also attractive due to the simplicity of their objective function and

constraints. Several nature-inspired searching optimization frameworks have been proposed

based on the multitude of natural occurrences seen worldwide; some of these natural occur-

rences include the particle swarms, krill herds hunting behaviour of bats, black holes, bee food

searching behaviour, ant colonies, improvisation process of jazz musicians, and evolutionary

algorithms such as genetic algorithm, and differential evolution [26–35].

There were several attempts for modifying and enhancing the performance of the nature-

inspired algorithms by updating the architecture of the algorithms for handling different case

studies. In [36] the authors introduced an improved version of the Harmony Search (HS) algo-

rithm, called the Improved Harmony Search (IHS) algorithm. The IHS algorithm combines

the power of HS with fine-tuning capabilities of mathematical techniques to achieve high-qual-

ity solutions with fewer fitness function evaluations. The authors demonstrated the effective-

ness of the proposed approach in several test problems, where it outperforms other

evolutionary and mathematical programming techniques reported in the literature. The work

by [37] proposed a discrete variation of the Grey Wolf Optimizer (GWO) called the Discrete

GWO (DGWO) for scheduling dependent tasks in cloud computing environments. The

scheduling process in DGWO is formulated as a minimization problem for computation and

data transmission costs. The algorithm utilizes the largest order value (LOV) method to con-

vert the continuous candidate solutions produced by GWO to discrete candidate solutions.

On the other hand, the island model is another way to enhance the nature-inspired algorithms

is a commonly used technique in nature-inspired algorithms, such as genetic algorithms and

Cuckoo Search Algorithm evolutionary algorithms. It involves partitioning the population

into multiple sub-populations or islands and applying the optimization algorithm indepen-

dently to each island [38, 39].

Data clustering (DC) refers to classifying similar objects into a group whose content dif-

fered significantly from the objects contained in another group. DC is an unsupervised learn-

ing process as the objects are placed in unspecified and predetermined clusters. In contrast,

classification is a method of learning with supervision, whereby objects are classified into pre-

determined groups (clusters). However, clustering is associated with the issue of the absence of

antecedent knowledge of the dataset provided, as well as the challenging selection of various

input parameters like the number of clusters, the number of nearest neighbours, and more.

Wrongly selected parameters would inevitably result in bad outcomes. Moreover, below-par

precision has also bogged down the algorithms in the case of datasets that host clusters of dis-

similar complex shapes, densities, sizes, noise, and outliers [40].

Various real-world applications have implemented DC methods widely. The main aim of

this approach is to partition data objects such that the accumulated distances between data
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objects and their respective centroids are minimized. By clustering, objects within a cluster

should have as much similarity as possible while being significantly different from objects in

other clusters. In other words, DC can be viewed as an optimization problem where the objec-

tive is to partition a given set of data points into a fixed number of clusters such that the

within-cluster similarity is maximized and the between-cluster similarity is minimized.

Among the common approaches to solving DC, problems are to formulate it as a meta-heu-

ristic optimization problem [41–46]. The study by [27] recently devised one of the meta-heu-

ristic optimization methods known as a "black hole," which replicates the natural action of a

black hole (BH) of drawing in neighbouring stars. The concept of BHA and its interaction

with the neighbouring stars formed the basis of the BHA algorithm. In this regard, the work

presented by [27] has flaws in terms of exploration as the process of obtaining an optimal reso-

lution necessitates too many reiterations. The BHA and its enhanced versions have been uti-

lised to tackle several well known optimization problems recently [47–61].

Recently, several metaheuristics have been enhanced by incorporating a multi-swarm or

multi-population approach, including Genetic Algorithm (GA) [62], Artificial Bee Colony

(ABC) [63], and Particle Swarm Optimizer (PSO) [15, 64–66], and Nomadic People Optimizer

(NPO) [33] due to their capability to use different populations with their parameters set and

they can simultaneously implement search space. As a result, they have significantly enhanced

the performance of the original metaheuristic [67, 68]. This paper proposed multiple BHA

optimization as a generalization to BHA optimization, in which the algorithm no longer

depended on one best resolution. Instead, a set of best solutions were generated and called

MBHA, which was maintained for some time in the search process. Furthermore, the algo-

rithm’s objective function was replaced with an objective function of higher effectiveness to

resolve the clustering issue. Additionally, it was also compared with the original BHA algo-

rithm according to several datasets.

The rest of this article is organised as follows: The Section 2 will focus on some earlier

reported data clustering methods, while Sections 3 and 4 focus on BHA and the proposed

MBHA, respectively. Finally, Section 5 summarizes the experimental results, while Section 6

summarises the work.

2 Background

This section aims to offer an overview of the data clustering optimization problem and the

black hole optimization algorithm. First, the section explains data clustering as an optimization

problem, providing the necessary mathematical formulation. Additionally, the section presents

a review of the most significant related works. The second subsection explains the original ver-

sion of Black Hole Algorithm (BHA), and discusses its advantages and drawbacks.

2.1 The problem of data clustering

Clustering is a crucial approach to unsupervised data classification that involves grouping a set

of vectors or patterns (such as data items, observations, or feature vectors) in a multi-dimen-

sional space [69–71]. The process of DC is determined by the dataset categorization concept

using a specific number of clusters while reducing the intra-object distance within each cluster.

The rearrangement of a given set of data patterns is referred to as cluster analysis; it is usually

represented by one of two things: 1) a vector of measurements; or 2) a point in a multi-dimen-

sional space. The procedure is conducted to create clusters that are differentiated by similarity

attributes [72]. Some of the common application areas of DC are image processing, analysis of

medical images, as well as statistical data analysis. They are also useful in various science and

engineering fields and are sometimes used interchangeably with statistical data analysis. The
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differences across clusters can be attributed to their sizes, shapes, and densities, as seen in

Fig 1.

Nevertheless, noise present in the data presented may pose a challenge for cluster detection,

whereby the ideal cluster is fundamentally designated as “a set of points that is compact and

solitary. Although humans are commonly ascribed to their cluster seeking proficiency in prob-

ably three dimensions, automatic algorithms remain as the go-to for high-dimensional data.”

This fact, alongside the undesignated number of clusters that are yet to be described for a pro-

vided dataset, has consistently generated thousands of clustering algorithms underlined in

publications [73]. Meanwhile, the learning task can be described in pattern recognition, in

which the data analysis section is commonly linked with predictive modelling. In this case, the

training data is allocated to predict the unknown test data behaviour. Assessment of the data

similarity may require the use of “distance measures; the problem may be designed thus: given

N records data, each record is assigned to only one of the K clusters. After that, clustering is

done using several criteria that serve as the process objective function (OF). The minimizing

of the sum of squared ED between each record and the center of the related cluster” is one of

the commonly observed features. This is shown below.

FðO:ZÞ ¼
XN

i¼1

XK

j¼1
kOi � Zjk

2
; ð1Þ

where kQi−Zjk is the Euclidian Distance (ED) between a data record Oi and the cluster center

Zj. N and K are the numbers of data records and the number of clusters, respectively.

Combining a nature-inspired optimization algorithm with a clustering algorithm has led to

the generation of optimal solutions. The study by [74] has displayed the method of adaptive

time-dependent transporter ant for clustering (ATTA-C), which underlines alterations to the

standard “Ant Colony Optimizer (ACO)” Ant-based clustering algorithm. It aims to subject

high dissimilarities to a penalty, enhance the spatial separation between clusters, and facilitate

clustering procedures. Achieving this requires the calculation of the fitness value for each clus-

tering solution, which is carried out using a neighbourhood function (NF). Meanwhile, the

study [75] has underlined a novel Particle Swarm Optimizer (PSO) approach for clustering

issues, which is implementable in the case of a known or unknown number of clusters. The

algorithm is termed CPSO and proceeds according to the gbest neighborhood topology,

Fig 1. (I) and (II) the difference between the data before and after performing the clustering. I. Before, II. After.

https://doi.org/10.1371/journal.pone.0288044.g001
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encoding cluster centroids in particles and possibly generating new partitions during optimi-

zation. This occurs either by the removal or splitting of these clusters, until the allocated num-

ber of clusters is yielded.

Furthermore, an improved version of the Firefly Algorithm (FA) was proposed by [76] for a

given dataset, in which the FA is employed and implemented for the training set to obtain the

cluster centre via random selection of 75% of the dataset provided. Meanwhile, the remaining

25% dataset is termed a test dataset and utilized to investigate the FA algorithm performance

[77]. The Krill Herd Algorithm (KHA) is mostly used to display a simulated herding pattern of

each krill individual. The density-based approach utilized allows the discovery of clusters, sub-

sequently undermining the region of adequately high density into clusters of krill individuals

arbitrarily shaped in the climate. The objective goal of the krill movement is the minimum dis-

tance between individual krill from the food source and highly-dense herds. That is considered

via foraging movement and random diffusion. In the case of a density-based cluster, it can be

described as a set of density-linked objects of maximum concerning density-reach capability

and noisy objects. The study [44] has previously suggested an artificial bee colony (ABC) clus-

tering approach be subjected to categorical data. A one-step k-modes procedure is first devel-

oped for this particular approach before it is incorporated with the ABC to yield a categorical

data cluster. Meanwhile, the study by [78] introduced C-ESA as a hybridization of the K-

means clustering algorithm and Elephant Search Algorithm (ESA) for data clustering and

obtaining the best centroid location and clustering precision enhancement.

In [79], a map/reduce programming for the ABC algorithm has been designed, capable of

configuring and incorporating data in a multi-node environment. The ABC allowed the speed-

iest completion time during execution, displaying its high efficiency for all types of data due to

the parallelism attribute it offers. It also provides the amalgamation of local and global search

techniques to achieve a trade-off between exploration and exploitation capabilities in obtaining

optimized clusters. Similarly, the designed map/reduce programming utilizing ABC mecha-

nisms is incorporated in a single node and multi-mode Hadoop platform, whereby the mapper

phase generates the best fitness value by mimicking the behaviour of the employed bee. Mean-

while, the reducer phase achieves the probability value for cluster optimization by mimicking

the onlooker and employed bees. The resulting experimental outcomes have predicted consec-

utively run times of varying dataset sizes in single-node and multi-node climates. Upon evalu-

ating the performance displayed by the ABC scheme alongside the conventional Differential

Evolution (DE) and PSO schemes, the ABC method was found to show superior results for

optimal cluster selection compared to the remaining options. Furthermore, it also minimized

the time for execution and errors in classification in the optimal cluster selection for multi-

node Hadoop cluster architecture.

Meanwhile, fresh heuristic gravitational-based for data clustering has been described by

[80], which answers to the excess centroid movement. Owing to the excess of centroid velocity

history in the gravitational clustering algorithm, this serves as a way of improving the balance

between exploration and exploitation capabilities. The technique includes an initialization

phase that uses the variance and median approach so to avoid random initialisation effects.

Following that, the centroid’s accumulated velocity history is removed, leaving only the force

of the data points in the cluster associated with the centroid to influence its position through-

out any iteration.

Besides, an alternative clustering method that is effective and superior shown by [81] has

opted for the application of a nature-inspired krill herd algorithm. The problem is translated

into an optimization search problem via objective function minimisation to distinguish the

optimum centre of each cluster. Then, multiple real and synthetic databases are reviewed, with

comparison studies undertaken to elucidate the purpose of the ESKH-C technique. The
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technique is specifically implemented to attain quality clustering using dissimilar dimensional

real data and synthetic databases alike. The predicted outcome of confidence results from the

simulation studies also indicated that the technique could group optimal cluster groups having

different data shapes, sizes, dimensions, and densities. In [82], modified Bee Colony Optimiza-

tion (MBCO) has been implemented, with its hybridization with k-means serving as a way of

its application to data clustering. The technique is synonymous with bees’ traits of forgiveness

and a fair chance, which is seen for trustworthy bees or their opposite alike. It is also associated

with the probability-based selection (Pbselection) approach that allocates unassigned data

points in every iteration. The paper by [83] has revealed a semi-supervised K clustering frame-

work, whereby a K-means clustering framework is initially used for the gene data. Following

this, an enhanced semi-supervised K means clustering is implemented for greedy iteration to

identify the K mean clustering and obtain improved outcomes. Simulations have subsequently

proven that a global semi-supervised K clustering algorithm offers superior capacity for opti-

mization and cluster effect in comparison with MDO algorithm.

Overcoming the issue of local optimum in K-Means also resulted in [84], in which a new

clustering framework is designed via hybridized Crow Search Optimization (CSA). A novel

population-based metaheuristic optimization algorithm is rooted in the crows’ intelligent

behaviour. Similarly, a K-Means clustering algorithm called CSAK means has also been sug-

gested, whereas [43] has recently designed an Elephant Herding Optimization suited for clus-

tering tasks. In this method, intra-cluster distance and cost function are reduced.

2.2 Black Hole Algorithm

Based on the black hole phenomena, the BHA is based on the core premise of an expanse of

space housing a large volume of mass. The mass is concentrated within, making it impossible

for any adjacent object to escape its gravitational pull. If one were to fall victim to the event,

one would be obliterated from the cosmos, including light. The method is made up of two

parts: 1) star movement and 2) star re-initialization upon entering the D-dimensional hyper-

sphere around the BH (i.e., the event horizon). It functions as follows: the first step is the ini-

tialization of the N+1 stars, xi2RD, i = 1,. . .,N+1 in the search space, where N = population

size. The best value after subjection to a fitness evaluation is then recognized as the black hole

xBH. Because it is known to be static, no movement is visible until other stars reach a higher

resolution. As a result, the number of individuals searching for the best value is equal to N, and

in each generation, a star is shifting towards the BH as seen in the following equation [27]:

xiðt þ 1Þ ¼ xiðtÞ þ rand� ðxBH � xiðtÞÞ

i ¼ 1; 2; 3; � � � ;N;
ð2Þ

where rand is a random number in the range [0,1].

Furthermore, the BHA suggests that a star that comes too close to the BHA and passes

through the event horizon would be removed. The following equation describes the radius of

the event horizon (R) [27]:

R ¼
fBH
PN

i¼1
fi

; ð3Þ

where fi and fBH are the BH’s and ith star’s fitness values, respectively. N represents the number

of stars considered as the candidate solutions.

When R is greater than the distance between a potential solution and the BH (the best solu-

tion), the related candidate is automatically collapsed, causing the formation of a new possible

solution that is distributed arbitrarily over the search space. The BHA is characterized by a
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simple structure requiring no parameters and can be easily implemented. Compared to the

other heuristics, the BHA converges to the global optimum in all iterations, unlike the other

heuristics that can be trapped in locally optimal solutions [27, 85]. Although using BHA as a

clustering method is associated with outstanding results, it has drawbacks due to a lack of bal-

ance between exploration and exploitation capabilities. Finding a better solution than the exist-

ing BHA will alter the direction of a star, thereby changing the star’s orientation into a new

BH. Furthermore, the event horizon must be conceptualized due to the stars’ possible rapid

convergence for the solution space to be absorbed by the BH. This problem is caused by the

lack of exploration capabilities by the BHA. It does not, however, provide intensified processes

for exploration or information collection regarding previously found solutions; instead, it is

just a restart approach that is applied to each star [86].

3 Multi-population Black Hole Algorithm

The weakness in the exploration capability of the Black Hole Algorithm (BHA) stems from its

low diversity population. The algorithm tends to converge too quickly to local optima, which

limits its ability to explore the search space and find global optima [87]. Therefore, in case of

the exploitation capabilities are being performed more than the exploration capabilities, the

chances of being trapped in a local optimum are increased. In this paper, an enhanced version

of the BHA algorithm was proposed and called the “Multi-Population Black Hole (MBH)

Algorithm” for the problem of data clustering. MBHA is based on the original BHA algorithm

but uses multiple populations instead of a single one. Each population comprises several candi-

date solutions (stars) that undergo random generation in the search space. Then, the popula-

tions are initialised and each of their fitness values is assessed, whereby the best candidate

having the best fitness value is chosen as the black hole. At the same time, the rest reverts to

becoming normal stars. As the black hole can absorb stars around it, such a process of star

absorption occurs after the black hole and stars are initialised, at which the stars move. The

absorption process has been formulated as seen below:

xiðt þ 1Þ ¼ xiðtÞ þ c� rand� ðxBH � xiðtÞÞ

i ¼ 1:2: � � �N;
ð4Þ

where xi(t+1) and xi(t) are the location of the ith star at iteration t and t+1, xBH is the location

of the black hole in the search space, c is a constant, rand is a random number in the interval

[0, 1], and N is the number of stars (candidate solutions) in the population. The constant c is

utilized to restrict solutions scattering in the space, as well as to yield a higher convergence

speed for the algorithm.

While running the algorithm, a star (or the BH) in a population may arrive at a location

offering lesser cost compared to the current black hole or not reach it. This results in the con-

cept of Search Counter (SC), which defines the number of times a population evolves without

finding an improved fitness value. Therefore, if a star reaches a better location, there will be a

probability of generating a new star for that population (probgenerating_star), and this probability

is formulated as follows:

probgenerating star ¼ 1 �
SC

SCmax
ð5Þ

where SCmax is the maximum value of SC.

After checking the probability of generating a new star, the SC will be reset to zero. This

probability helps the population that loses many stars due to the cessation of evolution for

some time to acquire new stars and give them a longer life span. A population loses some of its
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stars due to crossing the event horizon in case of the limitations of a black hole in space shaped

as a sphere. The black hole will suck in every star that ventures into its event horizon, whereby

every star death is characterized by a new replacement star of probability (probreplace) that is

arbitrarily distributed in the search space. The probreplace is formulated as probgenerating_star,

which will help the progressing population to keep its number of stars as large as possible. The

calculation for the radius of the event horizon in the BHA algorithm is done using Eq (3).

A population must be omitted if the number of its stars becomes less than the minimum

allowed a number of stars in a population. At each iteration, there will be a probability of gen-

erating a new population (probgenerating_population), which will help to explore the entire search

space and avoid the local minima at a minimum number of iterations (speed up the conver-

gence to global optima in early iterations).

probgenerating population ¼
rand

number of populations
; ð6Þ

where rand is a random number in the interval [0.1]. The solutions of the new population are

generated in two ways: 1) arbitrarily in the search space, and 2) arbitrarily chosen from other

populations. The ratio rg is used to mix between the two ways and is formulated as follows:

rg ¼
itr

max iterations
; ð7Þ

where itr is the iteration of generating the new population and max iterations refers to the total

number of iterations. Therefore, the search process during the early iterations is considered to

be a global search (rg) is small, and the solutions are arbitrarily generated in the search space.

As the iterations continue, it becomes a local search (rg) is become larger and the solutions are

taken from other populations. Note that the value of rg can be also selected as a constant. Thus,

to generate a new population, there are two cases: if rg is less than 50% of the total number of

iterations then generate a new random population, otherwise, generate the population based

on the position of the global best black hole (BHG) as shown in the following equations:

Pop ðPÞ
rg � 0:5 then genearet a random population

otherwise; generate based on BHG via eq ð9Þ
ð8Þ

(

PopðPÞ:Xi ¼ PopðPÞ:Xi þ ðBHG � Popðr1Þ:Xr2
Þ∗rand ð9Þ

where Xi represents a new star in the population P, while r1 and r2 represent a randomly

selected population, and a randomly selected star from that population, and rand is a random

number in the range [0,1]. This work can overcome BH’s weaknesses and make a good balance

between global search and local search. The key processes for the enhanced BHA algorithm

are subsequently summarised using the following pseudocode in Fig 2, while the flowchart is

given in Fig 3.

4 Results and discussion

MBHA performance was assessed by carrying out two sets of experiments. Firstly, several

mathematical objective functions with multiple local minima were used to further evaluate the

developed algorithm and to compare it with the original BHA and other related works. Sec-

ondly, MBHA algorithm has been validated and tested based on six benchmark datasets, and

compared to other powerful state-of-art algorithms.
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4.1 Evaluation on benchmark test functions

To highlight MBHA for superior exploration compared to the standard BH, further verifica-

tion has been carried out via a set of multi-model types of objective functions in a multi-

Fig 2. The Pseudocode of MBHA algorithm.

https://doi.org/10.1371/journal.pone.0288044.g002
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dimensional space. Table 1 has succinctly outlined elements like the functions and their key

features such as the “Name, Dimensions (D), Upper and Lower Boundaries (UB, LB),” the

optimal solution (Opt) values are also stated in Table 1 while the parameter setting is in

Table 2. These parameter settings were utilized in their default values as specified in the origi-

nal versions. Moreover, each function is also associated with the generation of the convergence

curve of the search, which is then differentiated from the actual BHA algorithm. The

Fig 3. The flowchart for the MBHA algorithm.

https://doi.org/10.1371/journal.pone.0288044.g003
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simulation was done using Matlab 2018a on a PC with the following specifications: Core i7, 16

GB RAM, 3.6 GHz, 64-bit Windows 10 OS.

The performance of the new MBHA was benchmarked against 9 popular metaheuristics

which are Genetic Algorithm (GA) [88], Arterial Bee Colony (ABC) algorithm [89], Particle

Swarm Optimization (PSO) [90], Levy Firefly Algorithm (LFFA) [91], Grey Wolf Optimizer

(GWO) [92], Ant Colony Optimization Algorithm (ACO) [30], Bat algorithm (BA) [93],

Flower Pollination Algorithm (FPA) [94], and Blackhole (BH) [27]. The assessments and

experiments were carried out accordingly, with MBHA and BHA being subjected to 30

Table 1. Benchmark test functions.

Fun Name Test D LB UB Opt

f1 Sumsquare f1ðxÞ ¼
PN

i¼1
x4

i
30 -10 10 0

f2 Rastrigin f2ðxÞ ¼
PN

i¼1
fx2

i � 10 cosð2pxiÞ þ 10g 30 -5.12 5.12 0

f3 Quartic f3ðxÞ ¼
Pn

i¼1
ix4

i þ randomð0; 1Þ 30 -1.28 1.28 0

f4 Ackley

f4ðxÞ ¼ � 20e
� 0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 1
PD

i¼1
x2

1

q

� eD� 1
PD

i¼1
cosð2pxiÞ þ 20þ e

30 -32 32 0

f5 Alpine No.1 f5ðxÞ ¼
PD

i¼1
jxi sinðxiÞ þ 0:1xij 30 -10 10 0

f6 Griewank f6 xð Þ ¼
PDim

i¼1

y2
i

4000
�
QDim

i¼1
cos yiffi

i
p

� �
þ 1 30 -600 600 0

f7 Penalized f7ðxÞ ¼
PDim� 1

i¼1
ðyi � 1Þ

2
� ð1þ sin2Þð3pyiþ1Þ þ ðyDim � 1Þ

2
ð1þ sin2ð2pyDimÞÞ þ sin2ð3py1Þ 30 -50 50 0

f8 Zakharov f8 xð Þ ¼
Pn

i¼1
x2

i þ
1

2

Pn
i¼1

ixi

� �2
þ 1

2

Pn
i¼1

ixi

� �4 30 -5 10 0

f9 Sphere f9ðxÞ ¼
PN

i¼1
x2

1
30 -100 100 0

https://doi.org/10.1371/journal.pone.0288044.t001

Table 2. Parameter setting.

Method Parameters Value

General Swarm/Colony/Population Size 25

Iterations 250

No. of Runs 30

FA β0 1.0

γ 1.0

α 0.2

δ 0.96

PSO ω 0.742

c1, c2 1.42

GA Migration Fraction 0.2

Crossover Fraction 0.8

BA Pulse Rate (r) 0.9

Min Frequency (fmin) 0

Max Frequency (fmax) 2

Decrease Sound Loudness (a) 0.9

Weighting Value (δ) 0.9

Weighting Value(F) 0.1

ABC No. of Source Size / 2

Limit 50

GWO a (2 –> 0.1)

FPA Levy flight λ 1.5

Switch Probability P 0.8

https://doi.org/10.1371/journal.pone.0288044.t002
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different runs each. As a result, the best mean, error rate, and standard deviation were calcu-

lated, as seen in Table 3 for each algorithm.

Although the statistical results presented in Table 3 provides a first insight into the perfor-

mance of MBHA, a Wilcoxon Signed-Rank Test pair-wise statistical test with a statistical sig-

nificance value/ = 0.05 is utilized for a better comparison. A Wilcoxon signed rank test is

needed to compare the performance of MBHA against standard BHA and PSO individually.

The null hypothesis (H0) for Wilcoxon signed Rank test is that there is no significant

median difference between the mean pair of samples. The results are compared to other meth-

ods at a 95% level of confident. Here, if the Wilcoxon statistic is less or equal to the alpha (α =

0.05), then H0 will be rejected. To perform the statistical calculations, the SPSS statistics Soft-

ware Version. In Table 4, the statistical results of BHA, PSO, GA, ABC and ACO algorithms

compared to MBHA are given.

The convergence curve was also generated for the searching pattern of the 6 functions and

compared with that of the original BHA. As can be seen from Figs 4 to 9 the MBHA has shown

faster convergence curves. For the test problems, MBHA showed a better fitness value than

BHA during all the optimization processes. This means the MBHA is more efficient than BHA

and more suitable for the optimization problem.

Table 3. The results of the standard and modified Black Hole Algorithm.

Fun Statistics GA ABC PSO LFFA GWO ACO BA FPA BHA MBHA

f1 Best 4.14580 2.79E-16 2.13485 0.00774 0.00000 0.00156 2.267E+06 4.97E-04 3.34E-04 0.00000

Mean 5.94750 2.72E-16 4.98451 0.21006 0.00000 0.02943 2.318E+06 0.00105 0.00348 0.00000

Std. Div 2.13540 8.51E-12 3.94512 0.34752 0.00000 0.08790 5.125E+04 4.41E-04 3.12E-03 0.00000

f2 Best 2.10490 1.40E-11 0.02448 4.94E-10 0.00000 0.90001 3.91E-09 0.00000 0.00845 0.00000

Mean 3.30850 8.83E-13 2.15168 2.06E-07 0.00000 1.00043 4.24528 0.00000 0.08394 0.00000

Std. Div 3.54780 2.76E-12 1.07664 5.18E-08 0.00000 0.90536 3.47563 0.00000 0.01945 0.00000

f3 Best 3.458920 0.11531 1.3389 0.00409 0.00284 0.06348 0.10786 0.01741 0.02348 1.43E-04

Mean 5.489530 0.19593 6.9606 0.02542 0.00379 0.08815 0.15314 0.02845 0.03154 9.15E-04

Std. Div 0.832110 0.05549 0.6477 0.02312 0.00134 0.04413 0.00984 0.00148 0.00284 5.38E-04

f4 Best -199.58290 -200 -199.9877 -200 -200 -200 -199.9900 -199.8449 -199.7399 -199.5829

Mean -199.83310 -200 -199.9439 -199.9994 -200 -200 -199.9989 -199.9545 -199.6224 -199.8331

Std. Div 1.042200 0.000000 0.0371910 0.00013675 5.49E-10 0.5563240 0.04977150 0.0241990 0.0194490 1.04220

f5 Best 0.000640 0.000420 0.004250 0.000240 0.001160 0.004930 1.02E-040 5.82E-050 0.004810 4.91E-05

Mean 1.063090 0.285680 2.675700 0.000290 0.107970 0.021710 0.336930 2.48E-030 0.087410 2.48E-04

Std. Div 1.793080 0.624730 12.34900 0.000370 0.257690 0.009280 0.040300 0.000480 0.038470 0.000310

f6 Best 0.000000 4.261E-060 0.156760 3.20E-070 0.000000 0.000000 3.33E-090 0.000190 0.0015840 0.000000

Mean 0.000000 0.00350 0.242080 1.51E-060 0.000000 0.000000 1.65E-050 0.000480 0.0096120 0.000000

Std. Div 0.000000 0.00670 0.093740 1.88E-060 0.000000 0.000000 1.99E-050 0.000820 0.0841230 0.000000

f7 Best 0.897650 0.479890 5.523E+080 0.000000 0.137320 15.37690 0.816750 0.145480 0.122450 0.000000

Mean 0.564320 0.449980 7.899E+080 0.000000 0.237520 32366.200 1.342110 1.164730 0.266400 0.000000

Std. Div 0.003180 0.004780 1.439E+080 0.000000 0.056760 59623.510 0.006710 0.407210 0.057890 0.000000

f8 Best 1112.2050 7726.2470 3.554120 1021.3090 1337.8030 2214.4670 3.556760 0.000000 13234.2410 0.000000

Mean 2673.2490 8094.7050 4.777460 2777.6890 2035.7420 3457.8990 4.787670 0.000000 4.409E+160 0.000000

Std. Div 189.74560 246.11360 0.854470 171.73270 3506.2020 189.78670 0.897870 0.000000 1.5E+160 0.000000

f9 Best 2.124610 0.004320 1.29450 0.001280 0.000000 0.048710 0.578430 0.000940 0.017450 0.000000

Mean 3.984520 0.006450 2.77070 0.003000 0.000000 0.066430 0.767410 0.008450 0.044780 0.000000

Std. Div 2.648710 0.031840 1.08310 0.001050 0.000000 0.003840 0.688170 0.054910 0.006480 0.000000

https://doi.org/10.1371/journal.pone.0288044.t003
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4.2 Evaluation on benchmark dataset

To ensure a fair comparison with existing methods, the same datasets used in the original ver-

sion of the black hole algorithm and related works were utilized. Using different datasets

would make it difficult to compare performance. Although testing on multiple datasets is

important, consistency in dataset selection was prioritized. Six datasets were utilised to evalu-

ate the performance of the suggested algorithm for data clustering: Iris, Wine, Glass, Cancer,

Contraceptive Method Choice (CMC), and Vowel. Table 5 has outlined each of their specific

attributes, whereby the datasets were all obtained from the UCI ML laboratory.

1. Iris dataset. Consisting of 150 arbitrary samples of flowers, the dataset’s samples possessed

four features of the iris flower and were grouped into 3 groups that were made up of 50

instances.

Table 4. The Wilcoxon signed rank test.

fn MBHA vs GA MBHA vs ABC MBHA vs BH MBHA vs PSO MBHA vs ACO

P-value Decision P-value Decision P-value Decision P-value Decision P-value Decision

f1 0.033895 Reject H0 0.000094 Reject H0 0.000053 Reject H0 0.000067 Reject H0 0.000113 Reject H0

f2 0.000053 Reject H0 0.000065 Reject H0 0.000273 Reject H0 0.000112 Reject H0 0.000051 Reject H0

f3 0.000051 Reject H0 0.000067 Reject H0 0.000053 Reject H0 0.000066 Reject H0 0.000054 Reject H0

f4 0.000048 Reject H0 0.000049 Reject H0 0.000080 Reject H0 0.000051 Reject H0 0.000012 Reject H0

f5 0.000043 Reject H0 0.000053 Reject H0 0.000050 Reject H0 0.000070 Reject H0 0.000064 Reject H0

f6 0.000053 Reject H0 0.000065 Reject H0 0.000078 Reject H0 0.000061 Reject H0 0.000036 Reject H0

f7 0.000064 Reject H0 0.000053 Reject H0 0.000053 Reject H0 0.000012 Reject H0 0.000075 Reject H0

f8 0.000053 Reject H0 0.000043 Reject H0 0.000036 Reject H0 0.000049 Reject H0 0.000053 Reject H0

f9 0.000066 Reject H0 0.000094 Reject H0 0.000012 Reject H0 0.000059 Reject H0 0.000067 Reject H0

https://doi.org/10.1371/journal.pone.0288044.t004

Fig 4. The convergence of (f1).

https://doi.org/10.1371/journal.pone.0288044.g004
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Fig 5. The convergence of (f2).

https://doi.org/10.1371/journal.pone.0288044.g005

Fig 6. The convergence of (f3).

https://doi.org/10.1371/journal.pone.0288044.g006
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Fig 7. The convergence of (f4).

https://doi.org/10.1371/journal.pone.0288044.g007

Fig 8. The convergence of (f5).

https://doi.org/10.1371/journal.pone.0288044.g008
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2. Wine dataset. For this dataset, the quality of the wine was depicted according to its physi-

cochemical attributes, as they were originally harvested from an identical Italian region but

of 3 different cultivars. The three wine types were associated with 178 instances each, with

13 numeric features representing the number of 13 components in each wine type.

3. CMC dataset. This dataset is a subset of the 1987 National Contraceptive Prevalence Survey

carried out in Indonesia. The sample size was made up of married women who, during the

interview period, were either not pregnant or unknown of their pregnancy. It underlined

the problem of anticipating recent choices of contraceptive techniques (i.e. no use, short-

term use, or long-term use) per a woman’s socioeconomic and demographic attributes.

4. Cancer dataset. This dataset is representative of the Wisconsin breast cancer database; it is

made up of 9 components with 683 instances; the 9 components are “Clump Thickness,

Cell Size Uniformity, Cell Shape Uniformity, Marginal Adhesion, Single Epithelial Cell

Size, Bare Nuclei, Bland Chromatin, Normal Nuclei, and Mitoses.” Every instance was

attributed to being possibly benign or malignant, respectively.

Fig 9. The convergence of (f6).

https://doi.org/10.1371/journal.pone.0288044.g009

Table 5. Main characteristics of the test datasets.

Datasets No. of classes No. of features No of instances Size of classes

Iris 3 4 150 50,50,50

Wine 3 13 178 59,71,48

CMC 3 9 1473 629,334,510

Cancer 2 9 683 444,178

Glass 6 9 214 70,17,76,13,9,29

Vowel 6 3 871 72,89,172,151,207,180

https://doi.org/10.1371/journal.pone.0288044.t005
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5. Glass dataset. This dataset is made up of 214 objects with 9 features that included “refrac-

tive index, silicon, potassium, sodium, calcium, magnesium, aluminium, barium, and

iron.” Meanwhile, six types of glass were used in the data sampling process; these are “non-

float processed building windows, float processed building windows, containers, tableware,

float-processed vehicle windows, and headlamps.”

6. Vowel dataset. This dataset is made up of 871 Indian Telugu vowel sounds; the dataset also

has 3 attributes that correspond to the 1st, 2nd, and 3rd vowel frequencies, as well as 6 over-

lapping classes.

The comparison stage was conducted by calculating four statistical values after executing

the algorithms for 30 run times; the output was the sum of intra-cluster distances. These four

values are (Best, Average, Worst, and Standard deviation). Additionally, all algorithms have

been compared based on the value of the error rate. These two measurements can be defined

as follows:

1. The sum of the distances between the clusters as a measure of internal quality: The calcula-

tion and summing up of the intra-cluster distances between the data centre and each data

object is shown in Eq 1. A higher cluster quality is typically correlated to a smaller sum of

intra-cluster distances, in which the sum of the distances between the clusters was one of

the fitness components evaluated in this study.

2. Error Rate (ER) as an external quality measure: The equation below displays the percentage

of misplaced data objects:

ER ¼
Number of misplaced objects

total number of objects within dataset
� 100 ð10Þ

Several metaheuristic methods were compared with the performance of the proposed algo-

rithm, such as K-means [72], PSO [35], ACO [95], KH [77], GSA [41], BB-BC [41], CS [96],

TS [97], and BHA [27]. In addition, MBHA was also subject to a comparison with 9 of the

recently modified hybrid meta-heuristics reported in the literature; these metaheuristics

included: K-means++ [98], IKH [98], BSF-ABC [99], ACPSO [66], H-KHA [81], K-MCI, MCI

[100], and NM- PSO, K-NM-PSO [99]. The results of the comparison based on the standard

meta-heuristics clustering frameworks and the modified hybrid meta-heuristic for a better

benchmarking of the MBHA are shown in Tables 6 and 8.

A summary of error rate and intra-cluster distances is shown in Table 6. Each of the algo-

rithms was implemented for 30 runs, and after the simulation runs, the values for the best,

average, worst, standard deviation and error rate were for each algorithm. In the Table, the val-

ues in bold were the best-derived values using algorithms for each dataset. The results of the

experiments showed that MBHA outperformed BHA and K-means. Further comparisons

showed that the suggested technique achieved the least standard deviation compared to the

other algorithms, implying that the MBHA is always at its minimum value.

Furthermore, the Iris dataset depicted MBHA algorithms having a convergence of 96.522

for each run. In contrast, the wine dataset indicated that the MBHA revealed the superior solu-

tion for worst 16,294.230, average 16,293.400, and standard deviations 0.7623. Moreover, the

CMC dataset also showed the best, worst, and mean solutions obtained by MBHA of 5528.800,

5531.220, and 5530.000, with a standard deviation of 0.3466. On the other hand, the K-means,

PSO, ACO, KH, GSA, BB-BC, CS, TS, and BHA failed to result in the best solutions.
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Besides, the Cancer dataset via MBHA algorithm resulted in the best solution of 2961.950,

whereas the glass dataset obtained 208.760 as its best optimum value. Meanwhile, MBHA

showed the worst value of 211.569, in comparison with the algorithms K-means, PSO, ACO,

KH, GSA, BB-BC, CS, TS, and BH, attaining the worst values over 30 runs were 227.350,

283.52, 280.08, 247.085, 248.367.21, 243.208, 227.022, 280.080, 213.956, respectively, for the

glass dataset.

Similarly, the MBHA also obtained the best optimum value for the vowel dataset, which

was 148,941.00. Therefore, it could be conclusively stated that the MBHA algorithm had

achieved the near-best value in all runs and reassured its capacity to yield superior optimal

solutions, notwithstanding a small standard deviation in a minimum number of iterations.

The algorithms were further compared statistically to check for significant differences in

their performances; the statistical comparison was made using the Friedman and Iman–Dav-

enport tests. Table 7 presents the performance of the algorithms based on the employed statis-

tical tests.

Table 8 compared the average instar-cluster distances and error rate of various clustering

algorithms; MBHA yielded the best performance and conclusively revealed superior

Table 6. The sum of intra-cluster distances and error rate obtained by MBHA and STANDARD algorithms on different datasets.

DS Criteria K-means PSO ACO KH GSA BB-BC CS TS BHA MBHA

Iris Best 97.32590 96.89428 97.10070 97.43300 96.68794 96.67648 97.98364 97.36590 96.65589 96.51300

Average 106.57660 97.23280 97.17150 103.03600 96.73105 96.76537 102.51332 97.86800 96.65681 96.52200

Worst 123.96950 97.89733 97.80840 108.87000 96.82463 97.42865 106.76087 98.56940 96.66306 96.53200

standard 12.938 0.347168 0.367 3.410 0.02761 0.20456 2.18224 0.530 0.00173 0.00010

Error rate 13.42 12.58 10.00 10.78 10.04 10.05 09.80 10.74 10.02 9.27

Wine Best 16,555.68 16,345.97 16,530.53 16,391.46 16,313.87 16,298.67 16,363.12 16,666.22 16,293.41 16,289.340

Average 17,251.35 16,417.47 16,530.53 16,606.90 16,374.30 16,303.41 16,420.81 16,785.45 16,294.31 16,293.400

Worst 18,294.85 16,562.32 16,530.53 17,160.39 16,428.86 16,310.11 16,525.72 16,837.53 16,300.22 16,294.230

standard 874.148 85,497.4 0 237.740 34,671.22 2,661.98 45,540.86 52.073 512.70 0.7623

Error rate 31.14 28.52 28.76 28.92 29.15 28.52 29.10 29.56 28.47 28.25

CMC Best 5703.200 5700.985 5701.920 5671.526 5542.276 5534.094 5778.453 5701.920 5532.883 5528.800

Average 5705.370 5820.965 5819.130 5802.144 5581.945 5574.751 5962.096 5819.130 5533.631 5530.000

Worst 5704.570 5923.249 5912.430 5966.190 5658.762 5644.702 6205.930 5912.430 5534.777 5531.220

standard 1.033 46.95969 45.6340 88.219 41.13648 39.43494 115.239 45.634 0.59940 0.346

Error rate 54.48 54.49 57.68 56.00 55.67 54.52 57.18 56.89 54.39 53.12

Cancer Best 2988.43000 2973.50000 2970.49 3021.483000 2965.76394 2964.38753 3089.77652 2970.49 2964.38878 2961.950

Average 2988.99000 3050.04000 3046.06 3107.125000 2972.66312 2964.38798 3200.79638 3046.06 2964.39539 2963.900

Worst 2999.19000 3318.88000 3242.01 3250.525000 2993.24458 2964.38902 3476.06894 3242.01 2964.45074 2988.430

standard 315.145 110.801 90.500 77.110 8.918 0.00048 102.964 90.500 0.00921 0.0072

Error rate 04.39 05.25 05.30 03.79 03.74 03.70 04.94 03.65 03.70 3.60

Glass Best 215.730 270.570 269.72 232.007 224.984 223.894 220.125 269.720 210.515 208.760

Average 218.700 275.710 273.46 241.916 233.543 231.230 225.198 273.460 211.498 210.971

Worst 227.350 283.520 280.08 247.085 248.367 243.208 227.022 280.080 213.956 211.569

standard 2.456 4.557 3.584 5.059 6.139 4.650 5.662 3.584 1.182 0.997

Error rate 38.44 30.58 38.67 40.56 41.39 41.37 41.89 40.90 36.51 30.19

Vowel Best 149,398.66 148,976.01 149,395.60 155,163.59 151,317.56 149,038.51 149,417.31 149,395.6 148,985.61 148,941.00

Average 151,987.98 148,999.82 159,458.14 147,411.21 152,931.81 151,010.03 150,186.12 159,458.14 149,848.18 148,943.00

Worst 162,455.69 149,121.18 165,939.82 160,783.94 155,346.69 153,090.44 150,841.40 165,939.82 153,058.98 148,949.00

standard 3425.250 2881.346 3485.381 3001.824 2486.702 1859.323 1576.369 3485.381 1306.953 799.890

Error rate 43.57 41.92 42.87 42.55 42.26 41.89 42.41 43.90 41.65 41.53

https://doi.org/10.1371/journal.pone.0288044.t006
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performance for all six datasets. The Iris dataset resulted in a 0.00010 standard deviation for

the proposed algorithm, which was a value that was remarkably less in comparison with the

remaining clustering algorithms. However, its best solution of 96.51300 and worst solution of

96.53200 was both superior compared to the remaining.

For the Wine dataset, the proposed MBHA algorithm obtained an average value of

16,293.400 outperforming the rest of the algorithms, excluding ACPSO. Meanwhile, the CMC

dataset obtained exceedingly superior performance for the proposed algorithm; the worst solu-

tion of 5531.220 was relatively better compared to the remaining algorithms by a wide margin.

The Cancer dataset revealed that the proposed MBHA depicted the best solution of

2961.950 and an average solution of 2963.900. Its standard deviation was 0.0072 and

Table 8. The sum of intra-cluster distances and error rate obtained by MBHA and modified algorithms on different datasets.

DS Criteria K-means++ IKH BSF-ABC ACPSO H-KHA K-MCI NM-PSO K-NM-PSO MCI MBHA

Iris Best 97.52590 96.65550 N/A 96.66000 96.55400 96.63620 96.66000 96.66000 96.65540 96.51300

Average 98.58170 96.65550 97.1612547 96.66000 96.52400 96.66640 100.72000 96.67000 96.65540 96.52200

Worst 122.27890 96.65550 N/A N/A 96.98900 96.69190 N/A N/A 96.65540 96.53200

standard 5.578 9.872 0.225 0.001 N/A 0.01055 5.82 0.008 0 0.00010

Error rate 10.101 9.78 10.45 9.80 9.000 11.23 11.13 10.07 10.9 9.27

Wine Best 16,555.680 16,292.210 N/A 16,292.180 16,350.150 16,293.900 16,292.000 16,292.000 16,295.160 16,289.340

Average 16,816.550 16,294.300 16,786.04 16,292.310 16,410.140 16,295.600 16,303.000 16,293.000 16,296.510 16,293.400

Worst 18,294.850 16,292.840 N/A N/A 16,961.140 16,296.940 N/A N/A 16,297.980 16,294.230

standard 637.140 0.706742 90.660 0.03 N/A 1.002372 4.28 0.46 0.907 0.7623

Error rate 30.54 28.90 29.80 28.23 29.650 28.73 28.48 28.37 28.98 28.25

CMC Best 5703.200 5693.720 N/A 5532.190 5586.532 5699.218 5537.300 5532.400 5694.280 5528.800

Average 5704.190 5693.779 5882.847 5532.200 5601.681 5705.148 5563.400 5532.700 5694.580 5530.000

Worst 5705.370 5693.735 N/A N/A 5666.943 5721.177 N/A N/A 5694.890 5531.220

standard 0.955 0.007975 2.200 0.01 N/A 1.268 30.270 0.230 0.198 0.346

Error rate 54.00 55.90 57.12 54.38 53.21 54.47 54.47 54.38 55.68 53.12

Cancer Best 2986.960 2964.387 N/A 2964.390 2975.191 2962.420 2965.590 2964.500 2964.400 2961.950

Average 2988.430 2964.393 N/A 2964.420 2982.437 3022.810 2977.700 2964.700 2964.410 2963.900

Worst 2987.990 2964.389 N/A N/A 2990.493 3150.150 N/A N/A 2964.430 2988.430

standard 0.689 0.001258 N/A 0.03 N/A 0.396 13.73 0.15 0.007 0.0072

Error rate 3.95 3.69 N/A 3.51 3.86 4.27 4.28 3.66 3.78 3.60

Glass Best 215.360 210.2520 N/A N/A 213.105 199.860 N/A N/A 213.030 208.760

Average 217.560 222.8000 290.877 N/A 215.665 202.410 N/A N/A 214.080 210.971

Worst 223.710 215.9355 N/A N/A 217.355 209.770 N/A N/A 215.620 211.569

standard 2.455 2.737 13.731 N/A 1.832 0.26 N/A N/A 0.923 0.997

Error rate 45.123 33.90 32.56 N/A 32.242 32.61 N/A N/A 30.89 30.19

Vowel Best 149,394.00 148,967.00 N/A 148,970.00 149,123.00 149,201.00 149,240.00 149,005.00 148,985.00 148,941.00

Average 151,445.00 158,600.00 156,343.15 149,051.00 149,565.00 161,431.00 151,983.00 149,141.00 149,039.00 148,943.00

Worst 161,845.00 150,172.00 N/A N/A 149,999.00 165,804.00 N/A N/A 149,102.00 148,949.00

standard 3119.751 1732.451 971.037 67.270 N/A 2746.041 4386.430 120.380 43.735 799.890

Error rate 15.364 41.56 41.90 41.69 40.10 41.98 41.96 41.94 43.0 41.53

https://doi.org/10.1371/journal.pone.0288044.t008

Table 7. The results of the statistical analysis tests.

Test Value p-value Results

Friedman test 11.9000 0.02481 Rejected

Iman-Davenport 5.16551 0.00334 Rejected

https://doi.org/10.1371/journal.pone.0288044.t007
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reassuringly superior compared to K-means++, IKH, BSF-ABC, ACPSO, H-KHA, K-MCI,

NM-PSO, K-NM-PSO, and MCI. In contrast, the Glass dataset obtained the best solution of

199.860 using the K-MCI algorithm, while the final dataset of Vowel yielded 148,943.00 of the

best average solution by MBH. Hence, this conclusively highlighted the effectiveness of MBHA

to resolve complex optimization problems, simply due to the best results generated by almost

all of the datasets and upon comparison with the remaining comparative algorithms. The out-

comes were specifically achieved by adding the element of new operators.

5 Conclusion

Black Hole Algorithm (BHA) is a newly developed optimization method that offers a promis-

ing solution for addressing complex global optimization problems. However, one of the limita-

tions of the BHA algorithm is that the lack of balancing between the exploration and

exploitation, which increases the chances of trapping in local minima, thereby preventing it

from finding the optimal solution. To overcome this issue, an enhanced version of the BHA

based on a new multi-population architecture, has been employed in this work by applying

effective enhancements including a global exploration operator that facilitates the rapid con-

vergence of the algorithm towards optimal solutions. The proposed algorithm is called “Multi-

Population Black Hole Algorithm (MBHA)”.

Simulation results demonstrate that the proposed algorithm is able to significantly reduce

computation time and achieve its set objectives, thereby prompting further evaluation on data

clustering problems. Furthermore, the outcomes confirm the suitability of the proposed algo-

rithm for resolving clustering problems as compared with previous reports. Despite the

numerous advantages of the MBHA algorithm, several aspects require further elucidation and

investigation in future research. Firstly, the algorithm was only benchmarked on nine test

functions, thus necessitating the use of more benchmark problems to provide a comprehensive

assessment of its capabilities. Secondly, the issue of number of populations and their sizes pres-

ents a fascinating research area that deserves in-depth exploration. Lastly, improving the con-

vergence of the MBHA algorithm represents a crucial research topic that warrants further

investigation.

In conclusion, the proposed MBHA represents an effective optimization method that offers

a viable alternative for solving complex global optimization problems. Nevertheless, further

research is necessary to investigate the ability of the algorithm to handle different hard optimi-

zation problems, such as, feature selection, hyperparameters tuning for Support Vector

Machine (SVM), and training artificial neural networks (ANN).
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