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Abstract: Sleep plays an important role in neonatal brain and physical development, making its 
detection and characterization important for assessing early-stage development. In this study, we 
propose an automatic and computationally efficient algorithm to detect neonatal quiet sleep (QS) using 
a convolutional neural network (CNN). Our study used 38-hours of electroencephalography (EEG) 
recordings, collected from 19 neonates at Fudan Children’s Hospital in Shanghai, China (Approval 
No. (2020) 22). To train and test the CNN, we extracted 12 prominent time and frequency domain 
features from 9 bipolar EEG channels. The CNN architecture comprised two convolutional layers with 
pooling and rectified linear unit (ReLU) activation. Additionally, a smoothing filter was applied to hold 
the sleep stage for 3 minutes. Through performance testing, our proposed method achieved impressive 
results, with 94.07% accuracy, 89.70% sensitivity, 94.40% specificity, 79.82% F1-score and a 0.74 
kappa coefficient when compared to human expert annotations. A notable advantage of our approach 
is its computational efficiency, with the entire training and testing process requiring only 7.97 seconds. 
The proposed algorithm has been validated using leave one subject out (LOSO) validation, which 
demonstrates its consistent performance across a diverse range of neonates. Our findings highlight the 
potential of our algorithm for real-time neonatal sleep stage classification, offering a fast and cost-
effective solution. This research opens avenues for further investigations in early-stage development 
monitoring and the assessment of neonatal health. 
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1. Introduction 

Sleep is an important aspect of maintaining good health in humans, especially for neonates, as it 
plays a vital role in their brain and physical development. Neonates spend 80% of their time sleeping 
in a resting state. Therefore, monitoring neonatal sleep in a neonatal intensive care unit (NICU) is 
essential. Neonatal sleep is commonly classified into three stages: active sleep (AS), quiet sleep (QS) 
and intermediate sleep (IS). Currently, polysomnography (PSG) is the leading technique for classifying 
neonatal sleep stages. PSG involves continuous monitoring of overnight sleep using multiple bio-
physiological signals, including electrocardiography (ECG), electromyography (EMG), 
electrooculography (EOG), electroencephalography (EEG) and respiration. Professional neurologists 
then analyze and classify these signals into different sleep stages. 

PSG is effective, but it is costly and time-consuming, and it necessitates expert neurologists for 
manual analysis. In recent years, various research initiatives have explored the feasibility of sleep 
classification utilizing PSG signals, with EEG emerging as the most dependable signal for both 
adults [1,2] and infants [3–5]. The first human EEG was recorded by Hans Berger in 1924 [6]. The 
electrical activity of the brain takes place through electrical impulses and can be ascertained from the 
scalp. Neurologists have identified EEG patterns for sleep-wake cycles starting from 30 weeks 
postmenstrual age [7]. Loomis et al. published the first study on human sleep patterns using EEG 
in 1937 [8]. Since then, numerous algorithms have been suggested for adult sleep staging employing 
machine learning [9–12] and deep learning [13–17]. 

Neonates and adults have different sleep states. The neonatal sleep stages are mainly divided into 
two main types: active sleep (AS) and quiet sleep (QS). Frequently, sleep cannot be assessed as being 
either AS or QS and is termed intermediate sleep, which is, in fact, a “transitional sleep” [18]. 
Transitional sleep does not meet the requirements for AS and QS, but it happens for a short time during 
the transitional periods between these clearly defined states. Meanwhile, adult sleep stages are two-
pronged: rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is then 
further classified into NREM1, NREM2, NREM3 and NREM4. Recently, NREM3 and NREM4 have 
been combined to form the NREM3 stage. The primary differentiation is the sleep time: Neonates 
spend 17–18 hours (70%) sleeping in a resting state, whereas adults spend 7–9 hours (16–29%) in a 
sleeping state. Neonates do not exhibit circadian rhythms, whereas an adult’s EEG contains circadian 
rhythms which help them sleep during the night. A secondary contrast is sleep spindles, which are 
pertinent for memory consolidation, yet they are not apparent in neonates. Sleep spindles develop 
after 42 weeks of gestational age (GA) [19,20]. Another difference is the sleep cycle time: The neonate 
sleep cycle completes in 50–60 minutes, whereas the adult sleep cycle averages 80–110 minutes. 
Another difference is the percentage of sleep in REM and non-REM sleep. Figure 1 shows the 
distribution of AS and QS with respect to gestational age (GA). At 28 weeks of GA, 80% of the total 
sleep time (TST) constitutes AS, whereas 18% is in QS. The remaining 2% is transitional sleep or IS, 
which is the transitional sleep from AS to QS and vice versa. The percentage of AS decreases with an 
increase in GA, whereas QS increases. Finally, at 40 weeks of GA, the percentage of AS is 57%, 
whereas for QS, it is 32%, and the remaining 11% is transitional sleep [21]. 
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Figure 1. Percentages of AS and QS with respect to gestational age. 

This study proposes a novel algorithm based on convolutional neural networks (CNNs) for 
detecting neonatal quiet sleep (QS). By leveraging the power of deep learning and EEG signal analysis, 
the proposed model offers an automated and computationally efficient solution for accurately 
classifying neonatal sleep stages. The motivation behind our research lies in the potential impact it can 
have on neonatal care. An automated, fast, inexpensive and reliable sleep stage classification system 
can assist healthcare professionals in monitoring neonatal sleep patterns, evaluating brain maturation 
and identifying any deviations that may indicate underlying health issues. Moreover, by reducing the 
reliance on manual scoring methods, our proposed algorithm can improve efficiency and consistency 
in neonatal sleep stage assessment, ultimately enhancing the quality of care provided to newborns. The 
study holds promise for the development of real-time clinical applications that can benefit healthcare 
professionals, neonatal care units and families by facilitating accurate sleep stage monitoring and early-
stage development assessment. The main contributions of this paper are given below:  

• To the best of our knowledge, to date, there is no public dataset available online for 
neonatal sleep classification. Therefore, we used neonatal EEG data from Fudan children’s hospital 
Shanghai, China, involving multiple experienced neurologists for the annotation. 

• There is pre-processing of neonatal EEG using the latest signal processing tools and 
comparison with the already established schemes. 

• We design a novel dedicated CNN model to detect neonatal QS. 
The rest of the paper is arranged in the following manner: Section 2 presents the related work in 

the field of neonatal sleep classification, Section 3 proposes the methodology, Section 4 presents the 
results, and Section 5 discusses the overall scheme. Finally, Section 6 concludes the paper. 

2. Related work 

In 1937, Loomis et al. [8] put forth the preliminary EEG-based study of human sleep patterns. 
After the introduction of high-performance supercomputers, machine/deep learning algorithms grow 
exponentially in the biomedical field, classification, prediction, emotion recognition [22] and signal 
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processing. In 2001, Turnbull et al. [23] developed an automatic sleep state detection algorithm using 
discrete wavelet transform (DWT). Tracé alternant (TA) detection using DWT was carried out with six 
healthy neonates, within 3 days after birth. All 20 segments of TA were successfully detected using the 
proposed scheme. The DWT-based algorithm detected TA effectively; however, QS also includes trace 
discontinu (TD) and high voltage slow (HVS) signals. The proposed algorithm performs well for TA 
detection but cannot be used for entire QS detection over a wider range of neonates.  

Certain developmental changes can only be observed during QS. For this reason, Piryatinska et 
al. [24] proposed a supervised classical feature-based QS detection; 9 time and frequency domain 
features were extracted from 30-second neonatal EEG. Finally, support vector machine (SVM) with 
radial basis function (RBF) was applied for QS detection. The proposed algorithm achieved a mean 
kappa of 0.7. To further enhance the performance, multiple algorithms have been proposed for 
machine/deep learning-based QS detection. Koolen et al. [4] proposed an algorithm based on a greedy 
algorithm; 57 EEG features were extracted from 8-channel EEG using 10-minute epochs. However, 
an increased set of features can cause over-fitting, so a greedy algorithm was used to reduce the set of 
features. Finally, SVM was used for classification. The results demonstrated that the proposed network 
worked well with the greedy algorithm, reaching an accuracy of 85%. In 2017 [3], Dereymaeker et al. 
proposed an algorithm for automatic sleep stage classification using cluster-based adaptive sleep 
staging (CLASS); 9 EEG features were extracted from 89 preterm neonates. The CLASS-based algorithm 
can reach a ROC curve of 97% for preterm neonates. It outperformed existing algorithms for QS 
detection in preterm neonates but cannot be used as an overarching configuration for every neonate.  

Extracting complex features from multichannel EEG is a time-consuming process and may not 
be considered for real-time applications; therefore, a deep learning method using deep CNN was 
proposed by Ansari et al. in 2018 [25]. A total of 97 EEG recordings were collected, among which 54 
were used for training, and 43 were used for testing. EEG data were downsampled to 30 samples/sec 
to decrease the complexity of the neural network. Seven convolution layers were used to train the 
neural network. The network can reach a mean area under the curve of 92%. The proposed network 
outperformed existing networks for QS detection, yet there is still some need for improvement. An 
unsupervised QS-detection algorithm was proposed by [26] in 2019. In this method, the multichannel 
EEG data is processed using a comprehensive procedure. Initially, the EEG data undergoes a 
tensorization process utilizing multiscale entropy, followed by factorization through canonical polyadic 
decomposition (CPD) to yield a collection of rank-1 tensors. Through autocorrelation analysis, the 
most appropriate CPD component associated with sleep stages is automatically identified. 
Subsequently, the detection of QS intervals is accomplished by applying k-means clustering to the 
smoothed temporal pattern extracted from the selected component. The algorithm achieved an 
accuracy of 79%. However, it used core tensors; therefore, tensor reduction was not possible. To 
classify all three stages, Fraiwan et al. proposed an algorithm using deep autoencoders and a long 
short-term memory learning system in 2017 [27] and 2020 [28], respectively. The algorithms worked 
well for three stages but less for QS detection. 

Table 1 shows the literature survey of the already proposed neonatal QS detection algorithms, 
containing accuracy and their limitations. 
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Table 1. Literature review for automatic quiet sleep detection. 

Reference Year Algorithm Stages Evaluation Limitation 
[23] 2001 Discrete wavelet 

transforms 
Tracé alternant Acc = 100% Tracé discontinu / High voltage 

slow signals cannot be classified 
[24] 2009 FBD-SVM QS-detection Acc = 89% Less accuracy 
[4] 2017 Greedy algorithm QS-detection Acc = 85% Increased number of features 

increases the overfitting 
[3] 2017 CLASS QS-detection AUC > 90% Only classification for preterm 

infants 
[25] 2018 CNN QS-detection AUC > 92% Complex network 
[26] 2019 Multiscale entropy 

tensor decomposition 
QS-detection Acc = 79% Utilization of core tensor for 

classification 
[27] 2017 Autoencoders QS-detection Acc = 77.6% Less accuracy 
[28] 2020 LSTM QS-detection Acc = 94.6% Complex network 

3. Materials and methods 

This section will explain the dataset, feature extraction and classification algorithm in detail. 
Figure 2 presents the block diagram of the proposed study. 

 

Figure 2. Overview of the proposed study. 

3.1. Dataset and feature extraction 

Neonatal data from 19 preterm and term neonates were used for this experiment. The neonatal 
VEEG data was collected from a neonatal intensive care unit (NICU) at Fudan Children’s Hospital 
Shanghai, China [29–34]. Approval was granted by both the Internal Ethics Committee for Neonatal 
Experiments of the Children’s Hospital Psychological Ethical and the Test Committee of Fudan 
University, Shanghai, China (Approval No. (2020) 22). For data extraction and annotation, a 
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NicoletOne EEG IoT-based system was used. The video-EEG (VEEG) data was extracted from 9 
bipolar EEG channels (Fp1, Fp2, T3, C3, Cz, C4, T4, O1 and O2) with a sampling frequency of 500 
Hz. A concise summary of the dataset is provided in Table 2. From the table, it is apparent that the 
neonatal population under investigation does not exhibit any significant pathology or medical 
conditions that may impact their brain activity or sleep patterns.  

Table 2. Details of the subjects used for neonatal sleep stage classification. 

# Gender HD CC W H BP P R GA (wk+d) Reason for admission 
1 Girl 32.8 30.6 2.6 48 68/38 130 35 34+0 Preterm 
2 Boy 36 40 4.5 56 70/40 150 45 39+0 Fever 
3 Girl 33 30 2.6 49 64/45 122 70 36+4 Premature/Anhelation 
4 Boy 35 31.5 3.3 50 74/39 135 50 39+2 Cyanosis 
5 Boy 34 33 2.9 50 71/40 118 50 37+1 Jaundice 
6 Girl 29 28 2.2 45 65/40 150 45 35+3 Premature 
7 Girl 33 32.5 2.3 48 77/52 146 44 34+6 Premature & emesis 
8 Boy 33 29 2.8 46 66/36 140 47 38+5 Hypoglycemia 
9 Boy 35 34 3.7 50 70/40 150 45 37+5 Fever 
10 Boy 36 33 3.0 47 66/39 146 44 38+6 Fever 
11 Girl 32 31 2.7 49 70/40 140 40 40+4 Jaundice 
12 Girl 32 33 2.0 48 70/40 146 42 34+1 Jaundice 
13 Boy 30.5 28 2.2 46 70/40 140 52 35+3 Anhelation 
14 Girl 33 32 3.2 47 70/42 146 42 35+0 Preterm 
15 Boy 28.5 26 1.6 41 68/33 160 55 31+3 Preterm/Anhelation 
16 Girl 34 32 3.2 50 70/40 142 52 40+5 Jaundice 
17 Boy 33 33 3.1 50 70/40 140 40 36+1 Per-term/Jaundice 
18 Boy 34 33 3.5 50 70/40 140 40 39+2 Jaundice 
19 Girl 34 33 2.9 50 70/40 135 40 38+0 Jaundice 

Note: HD: Head circumference, CC: Chest circumference, W: Weight (kg), H: Height (cm), BP: Blood pressure, P: Pulse 
per minute, R: Respiratory per minute, GA: Gestational age (weeks). 

During recording and transmission, it is common for EEG recordings to become contaminated 
with various types of noise and artifacts. There are typically two main types of noise in EEG recordings: 
powerline noise and baseline noise. Powerline noise is caused by 50 or 60 Hz interference from 
electrical wiring, while baseline noise arises from poor contact between the electrodes and the scalp. 
In addition to noise, artifacts in EEG data can also be present, which refer to signals that are not of 
cerebral origin and can arise from various physiological sources, such as muscle activity, eye 
movements and ECG signals. These unwanted signals must be removed before performing feature 
extraction and classification. Figure 3 shows the 30-second EEG recordings of QS and non-QS stages. 

To address this issue, a finite impulse response (FIR) filter was utilized with cut-off frequencies 
of 0.3–35 Hz to remove the noise and artifacts. After applying the filter, 30-second epochs were separated, 
and each epoch was labeled with its respective state by professional neurologists using visual labeling. 
The epochs labeled as “AS” (active sleep) and “awake” were combined to form non-QS (quiet sleep) 
epochs. Epochs labeled as “artifacts” were manually removed from a total of 4560 segments. 
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Figure 3. Sample EEG recordings for neonatal QS (upper) and non-QS (lower). 

Table 3. Features extracted from neonatal sleep EEG epochs. 

Time domain features Frequency domain features 
Mean 
Median 
Peak-to-Peak distance 
Number of peaks 
Maxima 
Minima 
Number of zero crossings 
Zero crossing rate 
Frequency domain 

Skewness 
Kurtosis 
Standard deviation 
Variance 
Correlation 
Activity 
Mobility 
Complexity 
Entropy

Spectral power 
Relative power 
Peak frequency 
Mean frequency of: 

• Alpha band 
• Theta band 
• Delta band 
• Beta band 

Feature extraction is about dimensionality reduction, which transforms large raw data variables 
into numerical features. The proposed study extracted 25 features from bipolar neonatal EEG 
recordings. These features are mainly categorized into two types: time domain and frequency domain. 
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Time domain features of EEG refer to measures of the signal that describe the characteristics of the 
electrical activity over time, whereas frequency domain features of EEG refer to the analysis of the 
EEG signal in the frequency domain. These frequency domain features can provide information about 
the power, frequency content and organization of the electrical activity in the brain. Further 
classification of these features is given in Table 3. 

After extracting features from the EEG data, various feature selection techniques were utilized to 
reduce the complexity and dimensionality. Two methods, namely, the correlation-based feature 
selection technique and manual feature engineering, were employed to select the twelve most 
significant bipolar EEG features. These features were classified into two categories: eight time-domain 
features and four frequency-domain features. The time-domain features included mean, median, 
skewness, kurtosis, minimum, maximum, standard deviation and variance, while the frequency-
domain features consisted of the mean frequencies of alpha, beta, theta and delta bands. 

3.2. Methodology 

In this study, a CNN has been designed for automatic quiet sleep detection. As an artificial neural 
network (ANN), it is composed of interleaved Convolutional (Conv), Linear and Pooling layers. The 
Conv layer functions as an expanded version of the FIR filter bank. Since the hidden layers are 
nonlinear, a nonlinear operator (ReLU) has been employed after each Conv layer. ReLU operates as a 
conventional half-wave rectifier that retains positive values while replacing negative values with zero.  

The CNN proposed in this study involves three main operations: convolution, pooling and 
activation function. The convolution operation comprises sliding a filter over the input data to calculate 
the dot product between the filter and the input region. Mathematically, the convolution operation can 
be expressed as: 

 𝑦(𝑖, 𝑗) = 𝑓(𝑥(𝑖: 𝑖 + 𝑘 − 1, 𝑗: 𝑗 + 𝑘 − 1) ∗ 𝑤 + 𝑏) (1) 

Here, 𝑦(𝑖, 𝑗) is the output of the convolution operation, 𝑥(𝑖: 𝑖 + 𝑘 − 1, 𝑗: 𝑗 + 𝑘 − 1) is the input 
at the region (𝑖, 𝑗), 𝑤 is the weight, 𝑏 is the bias, and 𝑓 is the activation function. The output of 
the convolution operation is linear; therefore, a rectified linear unit (ReLU) is utilized to introduce 
nonlinearity. ReLU sets negative values to zero, thus eliminating noise and irrelevant information in 
the feature maps, making the features more distinct and easier to learn by the following layers. 
Mathematically, ReLU can be expressed as 

 𝑓(𝑥) = max(0, 𝑥). (2) 

The pooling operation is employed to decrease the dimensionality of the feature maps by 
aggregating neighboring values. In this study, maximum pooling is used, which is expressed 
mathematically as 

 𝑦(𝑖, 𝑗) = max൫𝑥(𝑖𝑠: 𝑖𝑠 + 𝑘 − 1, 𝑗𝑠: 𝑗𝑠 + 𝑘 − 1)൯ (3) 

Here, 𝑦(𝑖, 𝑗) represents the output of the pooling operation at location (𝑖, 𝑗), 𝑥(𝑖𝑠: 𝑖𝑠 + 𝑘 − 1,𝑗𝑠: 𝑗𝑠 + 𝑘 − 1) is the local region of the input, 𝑘 is the size of the pooling window, 𝑠 is the stride, 
and 𝑚𝑎𝑥 is the maximum function. It is noteworthy that these layers have been chosen by trial and 
error. The model that yields the highest mean accuracy and kappa has been reported.  
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The proposed CNN is composed of two Conv layers, two ReLU operators, 1 max pooling layer 
and 2 densely connected layers. Figure 4 shows the architecture of the proposed CNN network for QS 
classification. The input is a 9-channel EEG segment, each containing 12 features. The first Conv layer 
has 50 kernels of size 1 × 9, where the mode operates on channels. This process is followed by the 
ReLU operator for rectification. This proceeds to the second Conv layer with 30 kernels of size 1 × 4, 
followed by another ReLU and a max pooling layer of size 2 × 2. Finally, a flattening layer was used 
to arrange the feature map into a single vector. The features are then fed into a two-layer multilayer 
perceptron (MLP) for classification. The learning rate (LR) is set to 0.001 with 50 epochs. In addition 
to CNN, the proposed algorithm uses a smoothing filter as a post-processing step. From the literature, 
it is believed that a neonate spends at least 3 minutes in one sleep stage. For this reason, this filter halts 
the sleep state for 6 epochs, i.e., 6 × 30 seconds = 3 minutes. 

 

Figure 4. CNN architecture for QS detection. 

3.2.1. Evaluation 

Multiple evaluation parameters have been used to assess the performance of the proposed scheme. 
These metrics are mainly categorized into five types: 

3.2.1.1. Accuracy 

Accuracy is an important parameter to assess the performance of a classification model. It 
measures the percentage of correct predictions made by the classification model. Specifically, accuracy 
is defined as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்ುା்ಿ்ುା்ಿାிುାிಿ (4) 

where 𝑇௉ is true positives, 𝑇ே is true negatives, 𝐹௉ is false positives, and 𝐹ே is false negatives. 
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3.2.1.2. Kappa 

The kappa statistic is a measure of agreement between the classifications made by a classifier and 
the ground truth labels. It takes into account the expected accuracy of a random classifier and allows 
for control of chance agreement between the two sets of data. The classes of this study are unbalanced; 
therefore, kappa is an important parameter to validate the efficacy of the proposed classifier. 
Mathematically, Kappa is given as 

 𝐾𝑎𝑝𝑝𝑎 = ௉೚್ೞି௉೎೓ଵି௉೎೓  (5) 

The value of 𝑃௢௕௦ in Cohen’s kappa equation represents the proportion of observed agreement 
between two raters or classifiers. On the other hand, 𝑃௖௛ is the proportion of agreement that would be 
expected by chance alone. 𝑃௖௛ is mathematically given as  

 𝑃௖௛ = (𝑃௔ ∗ 𝑃௕) + ((1 − 𝑃௔) ∗ (1 − 𝑃௕)) (6) 

where 𝑃௔ and 𝑃௕ are the observations that were classified by each rater or classifier. 

3.2.1.3. Sensitivity 

Sensitivity is a measure of the ability of the classification model to predict the QS class. 
Mathematically, 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ்ು்ುାிಿ. (7) 

3.2.1.4. Specificity 

Specificity is a measure of the ability of the classification model to predict the non-QS class. 
Mathematically, 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ்ಿ்ಿାிು. (8) 
3.2.1.5. F1-score  

Another important parameter to assess the classification performance of unbalanced data is F1-
score. It is the measure of the harmonic mean of precision (P) and recall (R). Mathematically, 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ ௉∗ோ௉ାோ. (9) 

As the data is imbalanced, the key parameter to evaluate the proposed classifier is mean kappa. 
As this study contains an imbalanced dataset, the minority class may have a disproportionately smaller 
number of instances compared to the majority class, leading to problems in evaluating the classifier’s 
performance. For instance, a model that predicts the majority class for every sample may yield high 
accuracy but is not practical. Cohen’s Kappa considers the probability of chance agreement between 
two evaluators and produces a score between -1 and 1. A score of 0 indicates that the classifier’s 



17028 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 17018–17036. 

performance is no better than random chance, whereas a score of 1 represents a perfect match between 
the classifier’s predictions and the true labels. 

The performance of the classifier was first evaluated using a leave-one-subject-out (LOSO) cross-
validation approach, where the model was trained using data from 𝑛 − 1 neonates and evaluated on 
the data of the one neonate that was held out. This process was repeated for all 𝑛  folds. During 
training, a portion of the data from each training fold in the LOSO cross-validation was reserved for 
inner validation to avoid overfitting. Finally, stratified mean has been reported to summarize the results 
of the classifier’s performance evaluation. 

4. Results 

An Intel Core i5-8400 with 16 GB RAM and GTX 1050ti was used to train and test all networks. 
Keras and TensorFlow were used to implement the proposed neural network, and MATLAB 2019b 
was used to obtain the features. The proposed CNN can accurately detect neonatal QS with 94 ± 1.2% 
accuracy, as shown in Table 4, which displays the performance parameters, including kappa, 
sensitivity, specificity and accuracy. 

Table 4. Performance metrics of the proposed CNN. 

 Accuracy Kappa  Sensitivity Specificity F1-score Positive predictive 
value 

Negative predictive 
Value 

Proposed CNN 94.07% 0.74 89.70% 94.40% 79.82% 82.90% 95.98% 

In Figure 5, the test performance of the proposed network and the current state-of-the-art 
algorithm are compared. Kappa and other parameters were computed from test recordings to determine 
the effectiveness of the proposed CNN. The results of the proposed CNN were compared with other 
advanced methods to verify its efficacy. Figure 5 shows that the proposed approach outperformed the 
existing state-of-the-art networks for detecting QS.  

 

Figure 5. Performance comparison of the proposed algorithm with existing networks. 
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This study developed a classification model that can accurately identify neonatal sleep stages. It 
also provides additional evidence that brain activity varies during quiet and non-quiet sleep. It has been 
found that the accuracy of our sleep stage classifier was affected by postmenstrual age (PMA), which 
could be due to the maturation of the brain. Although sleep patterns begin to develop at 27 weeks, it is 
not until around 31 weeks of PMA that sleep-wake cycles can be distinguished [35]. Since this study 
did not include data from the extreme preterm group, our classifier may be biased toward other age 
groups that are more represented. Figure 6 shows the receiver operating characteristics curve of the 
proposed scheme. In this study, the distribution of subjects across the groups is as follows: For 
gestational age (GA) greater than 37 weeks, we have a total of 10 subjects. Conversely, for subjects 
with a gestational age below 37 weeks, there are 9 individuals. From the figure, it can be seen that the 
proposed scheme performs better for neonates with GA > 37 weeks. 

 

Figure 6. Receiver Operating Characteristic curves of the proposed scheme. 

A hypnogram shows the best results for classification. For this reason, the hypnogram of the 
proposed algorithm is presented and compared with the neurologist’s annotation. Figure 7 shows the 
histogram of the professional neurologist, whereas Figure 8 shows the result of the proposed CNN. 

 

Figure 7. Professional neurologist hypnogram. 
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Figure 8. The proposed CNN hypnogram. 

Multichannel EEG extraction devices may not be available in every NICU. As a result, Figure 9 
displays the outcomes of the proposed network when varying numbers of EEG channels are used. In 
each instance, the CNN was trained using distinct random initializations, and the most effective 
network is displayed in Figure 9. The proposed CNN network outperforms existing methods in each 
scenario. However, as the number of channels is reduced, accuracy declines. 

 

Figure 9. Performance of CNN with different numbers of EEG channels. 

There is a belief that machine learning algorithms work better with hand-crafted features. To 
demonstrate the efficiency of the suggested approach versus machine learning models, various 
algorithms were utilized and compared. Table 5 displays the comparison between the suggested 
approach and machine learning techniques.  

Table 5. Performance comparison of CNN vs machine learning algorithms. 

Models Kappa Accuracy 
KNN (K = 10) 0.61 89.77 
SVM 0.65 91.89 
Decision tree 0.55 85.10 
Proposed CNN 0.74 94.07 
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According to the literature [31,36], a subject spends at least three minutes in a specific sleep stage. 
Therefore, a smoothing filter is used to halt a specific sleep stage for 3 minutes, i.e., 6 epochs. This 
increases the accuracy of the proposed scheme by 2%. Table 6 shows the results of the proposed CNN 
model with and without a smoothing filter. However, this may be considered a drawback because this 
is a post-processing technique that limits an application that is to work in a real-time environment. 

Table 6. Performance of CNN with smoothing filter. 

 Kappa Accuracy 
With smoothing filter 0.74 94.07 
Without smoothing filter 0.71 91.79 

In this fast and emerging world, neural networks are used for easy and fast implementation. 
Computational time is one of the main aspects in determining the quality of the proposed model. To 
validate the minimum computational complexity of the proposed study, Figure 10 shows a bar graph 
illustrating the mean evaluation times for 2-hour EEG segments. The graph clearly demonstrates that 
our study surpasses existing schemes for neonatal QS detection in terms of computational efficiency. 

 

Figure 10. Mean computational time (seconds) for 2-hour EEG data classification. 

5. Discussion 

This study established a model for detecting neonatal QS. As stated in the introduction, certain 
maturational changes can only be observed during QS, making it critical to classify this sleep stage 
accurately. The proposed model employed a CNN model to classify QS. Indigenously developed 
features from 9 bipolar EEG channels were used to train the classification model. The model achieved 
an accuracy of 94.07% in identifying neonatal QS. 

While the performance is better as compared to the existing algorithms, this model possesses 
some important benefits. It is computationally inexpensive and uses only two convolutional layers for 
classification. For 2-hour data classification, the proposed scheme only requires 7.97 secs. This makes 
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it an efficient algorithm for real-time clinical applications. Also, the key challenge to classify the 
neonatal sleep stage is the fast alterations in the EEG patterns during sleep. The proposed network 
classified 30-second epochs with high accuracy. 

Our findings, which are consistent with previous research, demonstrate that the complexity of 
neural activity is contingent upon the sleep stage [36,37]. By creating a classification model that 
accurately detects neonatal sleep stages, our study provides further support for the notion that brain 
dynamics differ between quiet and nonquiet sleep patterns. Notably, this study observed that the 
performance of our sleep stage classifier was impacted by postmenstrual age (PMA), which may be 
attributed to maturation effects. Although sleep state organization commences at 27 weeks, it is not 
until approximately 31 weeks of PMA that sleep-wake cycles become distinguishable. Our study did 
not include data from the youngest age group, resulting in an underrepresentation of this population in 
the study. Therefore, the classifier may be biased toward other age groups that are more represented. 
Alternatively, it is possible to develop separate classifiers for different age groups, which may 
outperform the presented classifier.  

Typically, CNN necessitates a larger dataset for classification. However, effective feature 
extraction, along with the best model, results in successful neonatal sleep classification. Twelve EEG 
features from neonatal EEG were employed for both training and testing. Additionally, a post-
processing smoothing filter was employed to pause the sleep stage for 3 minutes following 
classification. This resulted in a 2% improvement in accuracy. While this smoothing filter can improve 
the proposed method, there may be some drawbacks associated with the post-processing step. 

The main limitation lies in multiple aspects. First, CNN performance can be increased by a larger 
dataset. In the proposed model, EEG data was extracted from 19 neonates. In the literature, it has been 
proved that by increasing the dataset, the performance of a CNN-based classifier can be improved. By 
having a larger dataset, the CNN may classify sleep stages from raw EEG. Another drawback of the 
proposed scheme is the use of wearable electrodes. These wearable electrodes can affect the sleep 
quality of the fragile neonate. 

6. Conclusions 

This study presented a CNN model for neonatal quiet sleep (QS) detection, achieving an 
impressive accuracy of 94% with a mean kappa coefficient of 0.74. Our model leveraged twelve 
prominent features extracted from nine bipolar EEG channels and employed a CNN architecture 
comprising two convolutional layers, pooling layers and ReLU activation. Additionally, a smoothing 
filter was applied to enhance the stability of sleep stage classification over six epochs. The results of 
our study demonstrate the efficacy of our proposed network in accurately classifying neonatal quiet 
sleep using EEG signals, which holds promising implications for clinical applications. By providing 
an automated and computationally efficient solution, our model can aid healthcare professionals in 
assessing neonatal sleep patterns and monitoring early-stage development. Building upon these 
findings, future work aims to develop an end-to-end deep learning model capable of classifying all 
three sleep stages using raw single-channel EEG signals. This advancement would eliminate the need 
for feature extraction and further streamline the classification process, enhancing the model’s 
practicality and efficiency in real-time clinical applications. In conclusion, our research contributes 
to the field of neonatal sleep analysis by presenting a robust CNN-based approach for QS detection. 
The achieved accuracy, combined with the potential for further advancements, paves the way for 
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improved monitoring of neonatal sleep and early-stage development. Our work serves as a foundation 
for future studies aiming to refine and expand upon the capabilities of automated sleep stage 
classification in neonates. 
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