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a b s t r a c t

Deep learning algorithms have the potential to automate the examination of medical images ob-
tained in clinical practice. Using digitized medical images, convolution neural networks (CNNs) have
demonstrated their ability and promise to discriminate among different image classes. As an initial
step towards explainability in clinical diagnosis, deep learning models must be exceedingly precise,
offering a measure of uncertainty for their predictions. Such uncertainty-aware models can help
medical professionals in detecting complicated and corrupted samples for re-annotation or exclusion.
This paper proposes a new model and data-agnostic mechanism, called Actionable Uncertainty
Quantification Optimization (AUQantO) to improve the performance of deep learning architectures
for medical image classification. This is achieved by optimizing the hyperparameters of the proposed
entropy-based and Monte Carlo (MC) dropout uncertainty quantification techniques escorted by single-
and multi-objective optimization methods, abstaining from the classification of images with a high
level of uncertainty. This helps in improving the overall accuracy and reliability of deep learning
models. To support the above claim, AUQantO has been validated with four deep learning architectures
on four medical image datasets and using various performance metric measures such as precision,
recall, Area Under the Receiver Operating Characteristic (ROC) Curve score (AUC), and accuracy. The
study demonstrated notable enhancements in deep learning performance, with average accuracy
improvements of 1.76% and 2.02% for breast cancer histology and 5.67% and 4.24% for skin cancer
datasets, utilizing two uncertainty quantification techniques, and AUQantO further improved accuracy
by 1.41% and 1.31% for brain tumor and 4.73% and 1.83% for chest cancer datasets while allowing
exclusion of images based on confidence levels.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Advances in computer-aided diagnosis (CAD) have a substan-
ial impact in reducing the strain on medical professionals per-
orming manual investigations and improving the detection accu-
acy of various diseases. One of the methods that has been used
xtensively for automated diagnosis is deep learning. Deep learn-
ng approaches have gained massive amounts of headway and
chieved exceptional outcomes, driving numerous researchers to
rovide fair and automated solutions for a few diverse medical
mage analysis applications. For the image classification task,
eep neural networks (DCNN) are considered one of the deep
earning approaches that have been commonly used to extract
rominent image features for various medical image analysis
pplications [1].
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Medical image classification is the process of categorizing
medical images into different classes based on their visual fea-
tures. It is a complex task due to variability in image characteris-
tics, the complexity of medical conditions, the limited availability
of labeled data, and the need for explainable predictions. An
example of medical image classification is the use of histopatho-
logical images to identify benign and malignant breast tumors.
DCNNs can be trained on labeled images to learn the visual
characteristics of different types of tumors. The trained models
can then be used to classify new images accurately and efficiently.

Despite the ability of DCNNs to demonstrate outstanding per-
formance in image classification tasks [2–4], an initial stage of
explainability is required to measure the level of uncertainty in
the input samples for medical image analysis applications. Build-
ing an uncertainty-aware model can help in identifying any ambi-
guity that could be therapeutically useful. Uncertainty awareness
is also beneficial in terms of actionability to medical samples
which could be possibly confusing and challenging to automated
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2023.110666
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110666&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mohammed.abdelsamea@bcu.ac.uk
https://doi.org/10.1016/j.asoc.2023.110666
http://creativecommons.org/licenses/by/4.0/


Z. Senousy, M.M. Gaber and M.M. Abdelsamea Applied Soft Computing 146 (2023) 110666

d
i
T
f
e
u
a
i
i
a
t

A
t
m
m
d
e
t
p

a
m
q
w
e
d
q
s
t
i
t
c
m

t
m
m
c
d
f
t
l
t
p
m
w
p
s
k
a
s
v
s

iagnosis systems. It additionally permits clinical experts to rate
mages that ought to be focused on for manual examination.
he motivation for this work is to provide a robust method
or image classification models that can help medical practition-
rs in automated diagnosis. The proposed method includes an
ncertainty-aware model to identify ambiguous samples and an
utomated actionability component to guide medical experts in
dentifying contaminated samples. By improving the accuracy and
nterpretability of medical image classification models, this work
ims to reduce the strain on medical practitioners and enhance
he detection accuracy of various diseases.

In this paper, we propose a model agnostic mechanism, coined
ctionable Uncertainty Quantification Optimization (AUQantO),1
o optimize the performance of deep learning architectures for
edical image classification. AUQantO is guided by uncertainty
easurements that help clinical experts refine annotations to
evelop more reliable DCNN models. AUQantO employs either an
ntropy-based mechanism [5] or a Monte-Carlo (MC) dropout [6]
echnique to measure uncertainty in images, where a new hyper-
arameter (i.e., a threshold) is introduced and optimized.
Our approach focuses on determining whether a deep learning

rchitecture is reliable for sample prediction. AUQantO maxi-
izes the image confidence score rather than focusing on sample
uality uncertainty, and this is done in an automated frame-
ork. In other words, our sample exclusion mechanism works on
xcluding samples based on high uncertainty scores of image pre-
ictions generated from deep learning architectures rather on the
uality of the image itself during image acquisition (e.g., issues in
ample preparation, noises, and artifacts). Based on the aforemen-
ioned claim, it is important to highlight that our method does not
ntegrate any relevant information to the quality of images in the
raining process. The aim of this research work is to maximize the
onfidence score of deep learning architectures and to generate
aximum certainty.
Unlike the work presented in [7] and [8], which are based on

raining uncertainty-aware models that require specific experi-
ental settings, our method does not require training as it is a
odel agnostic approach which is utilized as a post-prediction
omponent (i.e., a wrapper method) that can be applied on pre-
ictions generated from deep learning models. Moreover, the
lexibility of our approach comes from its ability to be applied
o any dataset (dataset-agnostic). This makes AUQantO a fast and
ight method compared to stand-alone trainable models. Based on
he aforementioned claim, it is worth mentioning that the work
roposed in [7] and [8] can be wrapped using AUQantO as our
ethod can be utilized to optimize a threshold hyperparameter
hich is compared against uncertainty measures used by the
roposed work in the literature. Therefore, a direct compari-
on with the proposed work is not possible. To the best of our
nowledge, AUQantO is the first method to introduce automated
ctionability based on uncertainty awareness as a model/data
et-agnostic approach. The performance of AUQantO has been
alidated using state-of-the-art deep learning architectures (with
everal optimization methods) on four medical image datasets.
The contributions of the paper can be summarized as follows:

• Introduced a wrapper method accompanied by different
uncertainty-aware techniques to measure the uncertainty of
predictions generated from deep learning architectures.

• Proposed an optimized automated actionability component
for deep learning architectures, which guides medical ex-
perts in identifying contaminated samples for re-annotation
or exclusion.

1 https://github.com/zakariaSenousy/AUQantO-Method
2

The paper is structured as follows. Section 2 presents the
relevant background knowledge required for our method. In Sec-
tion 3, we review related work on uncertainty quantification
for medical images. Section 4 discusses, in detail, our proposed
AUQantO method. Our experimental results and findings are ex-
plained in Section 5. Section 6 concludes our work.

2. Background

Deep learning has emerged as a powerful paradigm in the
field of artificial intelligence, enabling significant advancements
in various domains such as computer vision, natural language
processing, and speech recognition. At its core, deep learning
involves training neural networks with multiple layers to learn
hierarchical representations of data, leading to state-of-the-art
performance in complex tasks [9].

Deep learning architectures play a crucial role in the exper-
imental study, encompassing two distinct classes of architec-
tures. The first class comprises single deep learning architec-
tures, including the two-stage CNN [2], the deep spatial fusion
CNN (DSF-CNN) [3], and the hybrid LSTM [10]. In this class,
the input image is segmented into small patches and processed
through a feature extraction network known as the patch-wise
network. The extracted feature maps are subsequently fed into
an image-wise network for the final classification. The second
class encompasses ensemble architectures, such as EMS-Net [4],
which involve multiple deep learning models working together to
learn image features from different perspectives, thus introducing
diversity in the final ensemble of image predictions.

While deep learning models have shown impressive perfor-
mance, quantifying and managing uncertainty in predictions is
crucial for many real-world applications. Uncertainty quantifica-
tion techniques aim to provide measures of confidence or reliabil-
ity in deep learning models’ predictions. These techniques enable
decision-making under uncertain conditions, robustness to noisy
or out-of-distribution inputs, and model calibration [11]. Uncer-
tainty quantification techniques, such as Shannon entropy [5]
and Bayesian approximation using MC dropout [6], are used in
AUQantO to measure the confidence and uncertainty levels of
deep learning image predictions. Shannon Entropy quantifies am-
biguity by analyzing the probability distribution of predicted class
labels, while MC Dropout generates multiple probability distribu-
tions for each input image to compute the mean prediction and
standard deviation. These techniques help identify and exclude
uncertain samples, improving the reliability of the overall system.

Optimization methods are essential for training deep learning
models by minimizing the loss function and optimizing their pa-
rameters. Gradient-based optimization algorithms, like stochastic
gradient descent (SGD) and its variants, are widely used in deep
learning [12,13]. These methods efficiently update the model
parameters by computing gradients through backpropagation and
iterative adjustment of the weights.

The optimization methods utilized in this study aim to solve
the non-convex objective function associated with the exclusion
rate of images and their impact on the accuracy of the deep
learning architecture. Due to the stochastic nature of the objective
function, finding the optimal threshold hyperparameter involves
a random search within a search space that may contain mul-
tiple local minima. To tackle this, effective optimization meth-
ods for nonconvex problems are employed. These methods in-
clude Bayesian Optimization using Gaussian Processes (GP) [14],
which approximates objective functions using non-parametric
statistical models. Furthermore, Constrained Optimization by Lin-
ear Approximation (COBYLA) [15] employs a simplex-based ap-
proach, and Dual Annealing [16] applies a generalized simu-
lated annealing algorithm combined with local search. Finally,

https://github.com/zakariaSenousy/AUQantO-Method
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he Non-dominated Sorting Genetic Algorithm (NSGA-II) [17] is
sed for multi-objective optimization, addressing complex inter-
ctions and non-linearities through an evolutionary approach.
hese methods ensure the exploration of the solution space to
ind the optimal threshold hyperparameter for image exclusion
n the context of uncertainty quantification.

. Related work

Several papers propose various algorithms and frameworks for
he processing and analysis of medical data [18–24]. Uncertainty
uantification methods are essential to reduce the effect of uncer-
ainties during the decision-making process (actionability). They
ave been used to solve a wide range of real-world scientific and
ngineering problems including computer vision, autonomous
riving control, risk uncertainties and medical image diagnosis.
or instance, various methods have been proposed to introduce
ncertainty quantification for computer vision applications such
s image/video retrieval [25], semantic segmentation [26], and
bject detection [27]. Additionally, uncertainty quantification has
een used to guarantee safety measures for autonomous driving
ontrol where various uncertainty measures can be calibrated for
he collision avoidance task [28]. Moreover, risk measures and
ncertainty estimates have been studied for deep learning in [29].
In medical image diagnosis, uncertainty quantification is a

ritical step towards explainable Artificial Intelligence (XAI) [30,
1]. In other words, the uncertainty estimates can provide valu-
ble information about the model’s confidence in its predictions,
llowing for more transparent and trustworthy explanations of
ts behavior. This can lead to better understanding and trust
n the model’s decision-making process, ultimately resulting in
mproved explainability. A few recently proposed image classi-
ication models have been developed in a way to be aware of
he uncertainty of the final decision. For instance, an instability
ap has been used to show regions of ambiguity in a CNN-based
odel as a measure of uncertainty in the research published

n [32]. Fraz et al. [33] has developed a system for micro-vessel
egmentation that contained an uncertainty quantification block
or histopathological images.

A Bayesian DenseNet-169 has been proposed in [34] for skin
esion images. To create uncertainty measurements, the model
riggers dropout layers during the testing phase. Ablation re-
earch was carried out to demonstrate how Bayesian deep learn-
ng may help diagnostic systems and medical professionals col-
aborate in the classification of skin lesions. Similarly, a reliable,
ccurate and active Bayesian network termed (ARA-CNN) for
mage classification has been presented to categorize colorectal
ancer images [35]. For evaluating the uncertainty of the input
ata, the model is built on residual networks (ResNets) and vari-
tional dropout. Another work applied quantitative comparison
f MC dropout uncertainty measures for multi-class predictions
or medical image analysis [36]. The work introduced in [37]
roposed a deep learning model that can handle uncertain inputs.
he work uses entropy values and a non-dominant sorting algo-
ithm to identify candidates with the highest entropy value from
he dataset.

Although these methods have shown their effectiveness in
ntroducing uncertainty measures in input samples, they lack (1)
ctionability in identifying the images to be classified/excluded
ased on the uncertainty of the predictions, and (2) accurate
earning strategy to improve model performance (for example,
nsemble learning).
Recently, an entropy-based elastic ensemble of DCNNs (3E-

et) has been introduced [38] for breast cancer grading. The 3E-
et model builds an ensemble of image classification networks
upported by a patch-wise network (DenseNet-161 [39]) for fea-
ure extraction. The model uses entropy to determine the amount
3

of ambiguity in image predictions. Similarly, a model called
Multi-level Context and Uncertainty-aware model (MCUa) [40]
has been introduced, which employs different levels of spatial
feature learning to generate an ensemble of models which sup-
port different image scales and architectures for breast cancer
histopathology classification. MCUa generates a series of prob-
ability distributions using Monte Carlo dropout [6] to determine
the amount of ambiguity in the input data. The work presented
by Abdelsamea et al. [41] studied actionability in computational
pathology applications using uncertainty quantification methods.

Despite the success of recent models in introducing uncer-
tainty-aware components to deep learning models, an automated
actionable method that can automatically exclude an optimal
number of poor samples is required. This is important in clinical
practice to minimize the workload of the medical professional
and improve the trust in deep learning models.

4. AUQantO method

In this section, we explain our proposed (AUQantO) approach
for optimizing uncertainty quantification in deep learning archi-
tectures. As illustrated in Fig. 1, an input image is fed into the
deep learning architecture for classification. As a pre-stage to our
method, AUQantO requires deep learning architectures that can
generate probability distributions for their input samples. This
requirement helps AUQantO to generate an uncertainty score for
the image probability distribution and decides on the poor med-
ical samples that need to be manually investigated by medical
experts.

Consequently, AUQantO (as an uncertainty-aware method) has
een designed based on Shannon Entropy [5] or MC dropout [6].
hannon Entropy is based on the image predictions (or the prob-
bility distribution of the output, where each value is associated
ith a class in the training set) generated by the deep learn-

ng architecture. Shannon entropy is adopted to generate an
ncertainty score to indicate how confident the model is in clas-
ifying the input image. On the other hand, MC dropout uses
ropout layers in the deep learning architecture network for
mage classification and activates them during the testing phase,
esulting in a list of probability distributions whose mean predic-
ion determines the image’s final classification while the standard
eviation provides a measure of uncertainty. To automatically
xclude poor image samples and keep confident ones for final
lassification, AUQantO introduces a new hyperparameter, which
e call threshold (λ). In this work, the optimal threshold value

(which aids in excluding the optimal number of poor samples) is
explored by single and multi-objective optimization methods.

AUQantO can quantify the uncertainty in medical image sam-
ples and automatically tune the threshold hyperparameter against
uncertainty values to exclude highly uncertain images. A well
optimized threshold in this context would depend on the specific
characteristics of the dataset and the deep learning architecture
used in the study. It should be set in such a way that it maximizes
the trade-off between the accuracy and the robustness of the
model. That is, it should be low enough to filter out samples
with high uncertainty and reduce the risk of misclassification,
but not too low that it excludes informative samples that could
contribute to improving model performance.

4.1. Objective function

Here, we explain in detail the single- and multi-objective func-
tions utilized to build our AUQantO method. The main purpose
of introducing both functions comes from the aim of developing
an actionable method that can work on minimizing the number
of excluded images from a particular dataset. This is done by
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Fig. 1. The AUQantO method employs two uncertainty quantification techniques, one using Shannon Entropy on a single probability distribution and the other
processing a list of distributions from the dropout layer, to optimize a threshold value for image classification and expert review, with training represented by a red
block and testing by a blue block.
t

considering the levels of certainty of the included and excluded
images. In other words, we aim to develop objective functions
that work on selecting an optimal hyperparameter threshold for
maximizing the rate of highly certain included images to be
classified and minimize the rate of excluded samples that are
highly uncertain based on probability values generated from deep
learning models.

4.1.1. Single-objective function
Our objective function has introduced a new hyperparameter

(λ) has been introduced by our objective function, to be tuned
based on the generated uncertainty scores. This is by checking if
the input image has an uncertainty score greater than the λ then
the image will be excluded from the final classification process,
otherwise, the image will be classified by the model. More pre-
cisely, to calculate the optimal threshold value (λ), we introduce a
single-objective function to be minimized. Our objective function
has two terms that have been designed to encode the confi-
dence of probability distributions for both included and excluded
images. We used cross-entropy for the probability distributions
against the ground-truth labels. For example, we customized the
cross-entropy equation by multiplying the probability distribu-
tion of a given image by the one hot-encoding labeling for the
same image. Consequently, we formulate Hexc and Hinc to present
summation of cross-entropy values for excluded and included

mages, respectively. Hexc and Hinc can be represented as:

Hexc =

n∑
i=1

c∑
j=1

pij × qij (1)

Hinc =

m∑
i=1

c∑
j=1

pij × qij (2)

where pij represents the probability value j over c class proba-
bility values, while qij represents the hot encoding value j over
class categories of image i over either n excluded images or m

ncluded images.
4

The average cross-entropy for both excluded and included
images is then calculated by dividing Hexc and Hinc by n ex-
cluded images and m included images, respectively. Using single-
objective optimization methods, the main target is to reach an
optimal λ which minimizes the summation of the two terms of
the objective function.

For example, a possible scenario to minimize the cross-entropy
of excluded images Hexc is to have cases where images are mis-
classified with high confidence. This means that the evaluation
of the cross-entropy equation (assuming we have a classification
problem of two classes) will have a very small probability value
p (tends to zero) for the correct class multiplied by q = 1 to
represent the one hot encoding of the correct class. While, for an
incorrect class, a very high probability value p is multiplied by
q = 0. A similar scenario could happen for the maximization of
the cross-entropy of included images Hinc by having images that
are correctly classified with high confidence and by subtracting
this term from a value of one, we convert it into a term to
be minimized instead. Both scenarios for included and excluded
images lead to a very small value for the output of the objective
function, and hence we can reach high level of trustworthiness for
included images that are classified by a deep learning architecture
and exclude images that are truly uncertain with high confidence
for further annotation and investigation by medical experts. The
single-objective function can be defined as:

F (λ) = argmin(SE|σ<λ∥SE|σ≥λ)

((
Hexc

n

)
+

(
1 −

Hinc

m

))
(3)

where F (λ) is the output of the single-objective function and λ is
he optimal threshold value. λ is verified by Shannon Entropy SE
or MC dropout’s standard deviation σ to differentiate between
included and excluded image groups and measure the average
cross-entropy.

4.1.2. Multi-objective function
As can be noticed from the above-mentioned single-objective

function, that we have two terms to work on both included and
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xcluded images. The two terms can be presented in two separate
bjective functions that can be optimized simultaneously to reach
he optimal threshold which achieves the selection of (1) highly
ertain images to be included in the final classification and (2)
ighly uncertain images to be excluded from classification and to
e returned to medical experts for manual exploration. In that
ense, we introduce a multi-objective function with the target of
aximizing the rate of included images and minimizing the rate
f excluded images based on their uncertainty and confidence of
eep learning architecture’s predictions.
Our multi-objective function can be defined as:

in {Fexc(λ), Finc(λ)} (4)

where:
Fexc(λ) = Hexc/n
Finc(λ) = 1 − (Hinc/m)

subject to:
n ≥ 1
λ ≤ SE|σ for Fexc(λ)
m ≥ 1
λ > SE|σ for Finc(λ)
λmin ≤ λ ≤ λmax,

where Fexc(λ) and Finc(λ) represent the objective functions which
are based on the average cross-entropy of excluded and included
images, respectively. The number of excluded images n and in-
cluded images m in the multi-objective function is subject to the
number of images not less than the value of one. Moreover, λ
value is subject to a pre-defined range (λmin to λmax) while using
a multi-objective optimization method.

Algorithm 1 presents a description of the workflow of our
AUQantO method. As described in the algorithm, our method
works on the probability distributions of input images gener-
ated from the deep learning architectures used in the study. The
probability distribution(s) is/are used by either Shannon Entropy
or MC dropout to generate uncertainty measures. To prepare
for the optimization stage, we use either single- or multi-mode
for applying single- or multi-objective functions. Once we reach
the optimal threshold using various optimization methods, we
compare the uncertainty scores generated for all dataset images
with the optimal threshold. The highly uncertain images are
automatically excluded from the final classification.

4.2. Computational complexity

The computational complexity of our method depends on
some important stages: the uncertainty measure, and the opti-
mization methods associated with the objective functions. For
the uncertainty measure, we used the Shannon entropy which
has the complexity of O(n) independent of the number of classes
associated with the classification problem. In MC dropout, as
described in the background section, we apply a number of test
passes over the CNN network to generate a number of probability
distributions that are used later for measuring the uncertainty.
This indicates that the complexity depends on the time spent
t processing the number of test passes used and the settings
associated with the CNN used. Hence, we present the complexity
for the MC-dropout method as O(t∗hwcfl) where h and w indicate
the height and width of the input sample, c represents channels,
represents the number of filters, and l represents the number of
ayers. In our study, we used four optimization methods for two
bjective functions (single- and multi-objective functions). The
our optimization methods have complexity order of: O(n3) for
aussian processes [42], O(n ∗ k2) per iteration for COBYLA [15],
(n) for dual annealing [43] (where n is the number of variables
nd k is the number of constraints), and O(MN2) for NSGA-II
where M is the number of objectives and N is the population

ize) [44].

5

Algorithm 1: AUQantO Method
Input: Images from Dataset D
Output: Decision of automated classification/exclusion based on uncertainty
D = x1, x2, ..., xn // n images from Dataset D
/* Deep Learning Architecture stage */
Predictions = [ ] // Empty list to store all probability

distributions generated for all dataset images
for x ∈ D do

// DeepLearningModel is a model function which takes image x as an input
and generates probability distribution p

pi = DeepLearningModel(xi)
Predictions.append(pi)

nd
* Uncertainty measure stage */
/ UncertaintyMeasure is a function that uses either Shannon Entropy or
Monte-Carlo dropout for generating uncertainty scores
cores = UncertaintyMeasure(Predictions)
hresholdRange = λ1, λ2, ..., λn // A list of threshold values (λ) range
that is initialized to be used by the optimization methods for
finding for the optimal threshold based on objective functions

* Objective functions */
f Mode == "Single" then

/* Use the Single-objective function */
F (λ) = argmin(SE|σ<λ||SE|σ≥λ) ((Hexc/n) + (1 − Hinc/m))

nd
lse

/* Use the multi-objective function */
F (λ) = min {Fexc (λ), Finc (λ)} // check equation 10

end
/* Optimization method */
// OptimizationMethod function uses either single or multi-objective function,
the threshold range list, and the optimization method algorithm (e.g., NSGA-II)

OptimalThreshold = OptimizationMethod(F , ThresholdRange, algorithm)
* Comparison of optimal threshold against uncertainty scores of
dataset images */

or score ∈ Scores do
if scorei > OptimalThreshold then

automatically Exclude image xi from final classification due to high
uncertainty

Return to a medical professional for further investigation
end
else

Generate final image classification for included image xi
end

nd
valuate the performance of Included images
valuate the performance of Excluded images

5. Experimental study

We validated AUQantO with 16 different case studies, where
the case studies are associated with four different deep learn-
ing architectures on two medical datasets using both Shannon-
entropy and MC dropout uncertainty quantification methods.
Also, we used the best performing AUQantO version to be applied
on two other datasets. A 5 × 4 nested cross-validation has been
used to evaluate the performance of the methods in all the case
studies. A 5 × 4 Nested cross-validation indicates that we divide
a particular dataset into 5 folds. Four out of the five folds are
treated as a smaller dataset with 4-fold cross-validation where
3 folds are used for training and 1-fold used for validation. This
process is repeated among the 4 folds until we have each fold as
validation set. Then, the optimal model hyperparameter which
achieves the highest validation accuracy is selected to be applied
on the testing fold. Each fold of the 5 folds is selected as the
testing fold and the remaining 4 folds as training-validation folds
until we evaluate the average testing accuracy of the 5 folds.
The 5 × 4 nested cross-validation makes the splitting process
of the utilized datasets as follows: 20% for testing and 80% for
training-validation (60% training and 20% validation).

5.1. Datasets

In this work, we applied the following main medical image
datasets to the 16 case scenarios of AUQantO:
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Table 1
Description of the utilized datasets.
Dataset Cancer type # of samples # of classes Classes

distribution

Histopathology
microscopic

Breast 400 4 Normal: 100
Benign: 100
InSitu: 100
Invasive: 100

Dermoscopic Skin 3297 2 Benign: 1800
Malignant:
1497
5.1.1. Breast cancer dataset
BreAst Cancer Histology images (BACH) dataset [45] of hema-

oxylin & eosin stained breast cancer histology images divided
nto two parts (A and B). Images of part B were provided for
ixel-wise classification tasks. Consequently, in this work, we
sed images of part A of the dataset which is composed of
00 microscopy images of size 2048 × 1536 pixels and 20×
agnification level. The 400 images are divided into four groups

normal, benign, in situ, and invasive).

.1.2. Skin cancer dataset
Skin cancer dataset [46] is introduced by the International Skin

maging Collaboration (ISIC). More than 2000 people contributed
3,126 dermoscopic images of benign and malignant skin lesions.
or computational and memory efficiency, we utilized a smaller
ersion of the dataset2 which comprises of 3297 image samples
with 224 × 224 pixels) distributed between the two classes of
kin lesions as 1800 images for benign and 1497 for malignant.
able 1 presents a description of the utilized datasets.

.2. Experimental setup

To evaluate the single architectures (Two-stage CNN, DSF-
NN, and Hybrid LSTM) on a skin dataset, we used resized images
f 224 ×224 pixels. During the training of a patch-wise network
f single architectures, we extracted overlapped image patches
f size 112 × 112 pixels from input images using a patch stride
f 56. For the image-wise network of single architectures, we
xtracted non-overlapped image patches using a patch-stride of
12. We used data augmentation to rotate the training patches
0 degrees while flipping them horizontally and vertically. Adam
ptimizer [13] has been used to reduce the loss function of the
etworks. Patch-wise and image-wise networks are trained using
learning rate of 0.0001 and a batch size of 32. We used 7 and 4
pochs for training patch-wise and image-wise networks of Two-
tage CNN, respectively. While for the other single architectures
DSF-CNN and Hybrid LSTM), we used 2 and 4 epochs for training
atch-wise and image-wise networks, respectively.
In the BACH dataset, we used the original image size (2048 ×

536 pixels) as input to the single architectures (two-stage CNN,
SF-CNN, and hybrid LSTM). We extracted overlapping image
atches of size (512 × 512 pixels) using a patch stride of 256
o train the patch-wise network. Non-overlapped image patches
re used for the image-wise network of the single architec-
ures (using patch stride 512). For single architectures except
or Two-stage CNN, we utilized 2 epochs for the training of
atch-wise networks and 4 epochs for the training of image-
ise networks. While for Two-stage CNN, we utilized 8 training
pochs for patch-wise networks of Two-stage CNN and 6 epochs
or training image-wise networks.

Lastly, we employed an ensemble architecture (EMS-Net) for
he two datasets (BACH and skin). We utilized the exact hy-
erparameter settings for the BACH dataset as described in [4].

2 https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
6

This is by utilizing two image scale levels (scale 1: 448 × 336,
scale 2: 296 × 224) for the three pre-trained DCNN models. We
extracted patches of size 224 × 224 pixels and fine-tuned the pre-
trained DCNN models based on the BACH dataset. We changed
the number of neurons in the last fully connected layer of the pre-
trained models to 4 (where BACH has 4 classes). Moreover, during
the training, we used patch strides of 28 and 9 for scales 1 and 2,
respectively, while during testing, we used patch strides of 56 and
18 for scales 1 and 2, respectively. Finally, we followed the same
augmentation settings similar to the single architectures and we
used Adam optimizer with learning rate of 0.0001 and batch size
of 32. We utilized 2 epochs for training the pre-trained models of
the ensemble architecture.

We applied a similar strategy to the one used for the EMS-Net
on the BACH dataset to the skin dataset. We utilized two image
scales (scale 1: 224 × 224, scale 2: 112 × 112) for the three pre-
trained DCNN models. we extracted patches of size 112 × 112
and 56 × 56 for scales 1 and 2, respectively. We modified the
number of neurons in the last fully connected layer of the pre-
trained models to 2 (where the skin dataset has 2 classes). We
used patch strides of 56 for scale 1 and 28 for scale 2 during
the training and testing phases. We used 2 epochs for training
pre-trained models applied on scale 1 and 6 epochs for training
the pre-trained model applied on scale 2. Finally, the remaining
settings in terms of data augmentation and Adam optimizer are
the same as EMS-Net on BACH dataset. As can be seen from the
settings, we employed to evaluate the AUQantO method using
different dataset image settings (e.g., image scales) and different
deep learning architectures including pre-trained DCNN models.

We employed the four optimization methods explained earlier
(Bayesian optimization using GP, COBYLA, dual annealing, and
NSGA-II) to all case studies. In the single-objective optimiza-
tion methods (Bayesian optimization using GP, COBYLA, and dual
annealing), we set the λ range from 1 × 10−9 to 2 while the
evaluation step is set to 50. In COBYLA, the initial search point
is set to 0.01. Finally, in the multi-objective optimization method
(NSGA-II), we set the number of variables to 1 as we optimize
only one hyperparameter (e.g., λ), number of objectives to 2,
number of generations to 50, population size to 1, and we utilized
the same λ range as in the single-objective optimization.

To perform the uncertainty measure using the Bayesian ap-
proximation with MC dropout to the deep learning architectures,
we employed 50 test runs (which has been proved to be adequate
to establish a valid distribution) for each image.

5.3. Results and analysis

In this work, we introduce three different metrics to measure
the effectiveness and robustness of AUQantO. First, we introduce
Weighted Average Accuracy (WAA), which measures average clas-
sification accuracy weighted by the included images in each test
fold. Second, Accuracy Difference (AD) measures the difference
between the accuracy of included images and the accuracy of
excluded images. Third, The Abstain Percentage (AP) calculates
the proportion of excluded images in each dataset compared to

https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
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Table 2
Average test performance (without image exclusion — AUQantO method) for
case studies conducted on the BACH dataset.
Architecture Precision Recall AUC Accuracy

Two-stage CNN 88.50% 88.25% 93.39% 88.25%
DSF-CNN 91.50% 91.25% 98.78% 91.25%
Hybrid-LSTM 90.60% 90.25% 98.97% 90.25%
EMS-Net 93.42% 93.25% 97.07% 93.25%

Table 3
Average test performance (without image exclusion — AUQantO method) for
case studies conducted on the Skin dataset.
Architecture Precision Recall AUC Accuracy

Two-stage CNN 84.01% 83.90% 83.89% 83.90%
DSF-CNN 90.26% 90.14% 90.21% 90.14%
Hybrid-LSTM 90.14% 90.02% 90.10% 90.02%
EMS-Net 91.41% 91.30% 91.36% 91.30%

the total number of images. The three metrics are formulated as
follows.

WAA =
1∑r
i=1 Li

r∑
i=1

Acci × Li (5)

AD = WAAinc − WAAexc (6)

AP =

(∑r
i=1 Vi

D

)
× 100 (7)

where Li is the number of images (whether they are included or
excluded images) in fold i. Acci is the classification accuracy in
fold i on a total number of r folds. Acc equals to (TP + TN)/(TP +

TN+FP+FN), where TP and TN represent the correct predictions
by our model, while FP and FN represent the incorrect predic-
tions. WAAinc and WAAexc are the weighted average accuracy for
included and excluded images, respectively. Vi is the number of
images excluded in fold i, while D is the total number of images
in each dataset. Furthermore, we use other metrics such as preci-
sion, recall, and Area Under the Receiver Operating Characteristic
(ROC) Curve score (AUC). Similar to WAA, these metrics are also
weighted by the number of included images in each test fold.

5.3.1. Performance of deep learning architectures without AUQantO
Tables 2 and 3 show the average test performance for all case

studies before applying the AUQantO method to exclude images.
After evaluating the deep learning models on each dataset, it
can be noticed that EMS-Net has higher test accuracy on BACH
(93.25%) and skin (91.30%) datasets among all deep learning
architectures. This is due to the usage of an ensemble architecture
that applies diversity in learning the variety of image features.
While, in terms of single deep learning architectures, we can
see that DSF-CNN and Hybrid-LSTM have high average test accu-
racy comparable to EMS-Net. DSF-CNN achieved an average test
accuracy of 91.25% and 90.14% on BACH and skin datasets, re-
spectively, while Hybrid-LSTM achieved an average test accuracy
of 90.25% and 90.02% on BACH and skin datasets, respectively.

5.3.2. Performance of AUQantO method on BACH dataset
Table 4 demonstrates the performance of AUQantO (in terms

of the weighted average test precision, recall, AUC, and accuracy
of included images) using Shannon Entropy and MC dropout
with four optimization methods (Bayesian optimization using
GP, COBYLA, Dual Annealing, and NSGA-II). AUQantO shows a
significant improvement in all case studies applied in the BACH
data set using the four optimization methods. Also, this im-
provement showed the capability of AUQantO in automatically
7

excluding poor samples that are misclassified or even the un-
certain images that are correctly classified. Moreover, NSGA-II
demonstrated the highest average test accuracy among other
optimization methods for three case studies: Two-stage (90.29%)
and DSF-CNN (97.61%) using Shannon Entropy and Two-stage us-
ing MC dropout (89.72%). Dual annealing and COBYLA showed the
highest test accuracy performance on EMS-Net (Entropy: 94.78%
and MC: 94.68%) and Hybrid-LSTM (Entropy: 92.65% and MC:
92.23%), respectively. GP showed the highest accuracy on DSF-
CNN using MC dropout (97.92%). In terms of the performance of
single architectures, DSF-CNN showed higher performance for all
optimization methods on BACH dataset compared to Two-stage
CNN and Hybrid-LSTM.

The results presented in Table 4 showed the performance of
the included images using the AUQantO method. To show how
effective our method is in excluding poor samples, we present
the test results of the excluded images by AUQantO using the
four optimization methods in Table 5. This aids in linking the
high performance of our method resulting from including certain
images and the low performance resulting from the excluded
uncertain images.

In Table 5, as described above, we present the performance of
AUQantO on the excluded poor samples along with the abstain
percentage (which presents the number of excluded images to
the total number of images). As shown in Table 5, the excluded
image accuracy (in all case studies) varies between 20% to 74%
which indicates how effective our method is in excluding poor
samples. Moreover, Hybrid-LSTM excluded the least number of
images with the lowest abstain percentage for all optimization
methods among all architectures using the two uncertainty mea-
sures (entropy and MC dropout). Furthermore, the evaluation of
Hybrid-LSTM on BACH dataset showed very low excluded images
accuracy for both uncertainty measures: 25%, 42.11%, 20%, and
25% were reported for GP, COBYLA, dual annealing, and NSGA-
II, respectively, using Shannon Entropy. While for MC dropout,
accuracy of 27%, 43.22%, 22.00%, and 26.00% were reported for GP,
COBYLA, dual annealing, and NSGA-II, respectively. This shows
that AUQantO is effective and successful in minimizing the ex-
clusion rate by excluding the most challenging and poor samples
that require manual investigation by medical experts.

To further demonstrate the effectiveness of our method in
excluding poor image samples, Fig. 2 shows (1) Accuracy Im-
provement, which presents the level of improvement (in terms
of test accuracy) reported after using AUQantO by excluding the
uncertain samples and (2) Accuracy Difference (AD), which rep-
resents the difference between average test accuracy of included
and excluded images.

Figs. 2(a) and (b) show the accuracy improvement reported
in all deep learning models in the BACH data set using the four
optimization methods by Shannon Entropy and MC dropout, re-
spectively, which confirms the effectiveness of AUQantO. As seen
in Figs. 2(a) and (b), our method succeeded in improving the accu-
racy of all deep learning models using both uncertainty measures.
DSF-CNN reported the highest level of accuracy improvement for
both uncertainty measures, where accuracy values of around 2%
to almost 7% were achieved using optimization methods. The
other deep learning architectures (Two-stage, Hybrid-LSTM, and
EMS-Net) reported an improvement of less than 2.5% for all
optimization methods in both uncertainty measures. Figs. 2(c)
and (d) show the difference in accuracy between included and
excluded images in all deep learning models on the BACH dataset
using the four optimization methods by Shannon Entropy and
MC dropout, respectively. Hybrid-LSTM showed the highest ac-
curacy difference with all optimization methods (Figs. 2(c) and
(d)) achieving an accuracy difference of around 65% to 70% for GP,
dual annealing, and NSGA-II and 50% for COBYLA. The other deep
learning architectures reported an accuracy difference of almost
20% to 30% for the optimization methods used.
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Table 4
Average test performance of included images using AUQantO method for case studies conducted on BACH dataset using Shannon Entropy and MC dropout as
uncertainty measures.
Architecture (uncertainty
measure)

Optimization method

GP COBYLA Dual annealing NSGA-II

Precision Recall AUC Accuracy Precision Recall AUC Accuracy Precision Recall AUC Accuracy Precision Recall AUC Accuracy

Two-Stage (Entropy) 89.72% 89.34% 94.57% 89.34% 89.23% 88.99% 94.22% 88.99% 89.53% 89.16% 94.42% 89.16% 90.64% 90.29% 95.10% 90.29%
DSF-CNN (Entropy) 94.79% 94.57% 99.22% 94.57% 93.70% 93.35% 99.17% 93.35% 93.88% 93.58% 99.18% 93.58% 97.84% 97.61% 99.60% 97.61%
Hybrid-LSTM (Entropy) 92.00% 91.58% 99.15% 91.58% 92.91% 92.65% 99.26% 92.65% 91.41% 91.14% 99.04% 91.14% 92.60% 92.27% 99.20% 92.27%
EMS-Net (Entropy) 94.95% 94.75% 97.04% 94.75% 94.69% 94.44% 96.93% 94.44% 94.92% 94.78% 97.66% 94.78% 94.90% 94.68% 97.09% 94.68%

Two-Stage (MC) 89.34% 89.10% 94.21% 89.10% 89.02% 88.81% 94.05% 88.81% 89.29% 89.12% 94.08% 89.12% 89.94% 89.72% 94.32% 89.72%
DSF-CNN (MC) 98.12% 97.92% 99.61% 97.92% 95.15% 94.97% 99.26% 94.97% 96.24% 96.00% 99.28% 96.00% 97.03% 96.76% 99.40% 96.76%
Hybrid-LSTM (MC) 91.56% 91.32% 99.24% 91.32% 92.47% 92.23% 99.47% 92.23% 91.34% 91.16% 99.06% 91.16% 92.29% 92.03% 99.36% 92.03%
EMS-Net (MC) 94.81% 94.63% 97.32% 94.63% 94.47% 94.24% 97.07% 94.24% 94.88% 94.68% 97.47% 94.68% 94.76% 94.59% 97.21% 94.59%
Table 5
Average test accuracy of excluded images and (abstain percentage of dataset images) using AUQantO method for case studies
conducted on BACH dataset.
Architecture
(uncertainty measure)

Optimization method

GP COBYLA Dual annealing NSGA-II

Two-Stage (Entropy) 71.85% (13.25%) 72.49% (10.50%) 72.46% (11.25%) 74.24% (27.50%)
DSF-CNN (Entropy) 68.00% (12.50%) 71.79% (9.75%) 71.43% (10.50%) 73.83% (26.75%)
Hybrid-LSTM (Entropy) 25.00% (2.00%) 42.11% (4.75%) 20.00% (1.25%) 25.00% (3.00%)
EMS-Net (Entropy) 57.90% (4.75%) 63.64% (5.50%) 58.82% (4.25%) 66.67% (6.00%)

Two-Stage (MC) 69.86% (11.25%) 71.45% (9.25%) 71.57% (10.50%) 72.67% (22.50%)
DSF-CNN (MC) 74.10% (28.00%) 70.97% (15.50%) 70.67% (18.75%) 72.52% (22.75%)
Hybrid-LSTM (MC) 27.00% (2.50%) 43.22% (5.00%) 22.00% (1.75%) 26.00% (3.25%)
EMS-Net (MC) 62.90% (4.50%) 67.50% (5.00%) 61.24% (4.50%) 65.67% (5.20%)
Fig. 2. Accuracy Improvement using AUQantO method and Accuracy Difference (AD) between included and excluded images for all deep learning architectures on
BACH dataset using Shannon Entropy (a & c) and MC dropout (b & d) as uncertainty measures.
5.3.3. Performance of AUQantO method on skin dataset
Here, we describe the experimental study of the case studies

conducted on the Skin dataset using Shannon Entropy and MC
dropout as uncertainty quantification measures. Table 6 presents
the average test performance (precision, recall, AUC, and accu-
racy) of the images included in the final classification. NSGA-II
showed the highest average test accuracy among other optimiza-
tion methods for the following 5 case studies: Two-stage (En-
tropy: 93.46% and MC: 89.54%), DSF-CNN (Entropy: 99.08% and
MC: 96.39%) and Hybrid-LSTM using Entropy of accuracy equals
8

to 96.67%. GP showed the highest level of accuracy for Hybrid
LSTM using MC (95.44%). EMS-Net on both uncertainty measures
have comparable records (varies between approximately 94% and
almost 97%) among all optimization methods.

In terms of single architectures, DSF-CNN showed high accu-
racy with all optimization methods using the entropy method
(95.58%, 93.88%, 94.12%, and 99.08% for GP, COBYLA, dual anneal-
ing, and NSGA-II, respectively). Also, DSF-CNN achieved higher
accuracy for all optimization methods except for GP using MC
dropout, where accuracy measures of 93.23%, 93.93%, and 96.39%
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Table 6
Average test accuracy of included images using AUQantO method for case studies conducted on Skin dataset using Shannon Entropy and MC dropout as uncertainty
measures.
Architecture (uncertainty
measure)

Optimization method

GP COBYLA Dual annealing NSGA-II

Precision Recall AUC Accuracy Precision Recall AUC Accuracy Precision Recall AUC Accuracy Precision Recall AUC Accuracy

Two-Stage (Entropy) 91.18% 91.01% 91.17% 91.01% 90.95% 90.79% 90.94% 90.79% 91.88% 91.75% 91.87% 91.75% 93.56% 93.46% 93.50% 93.46%
DSF-CNN (Entropy) 95.62% 95.58% 95.60% 95.58% 93.96% 93.88% 93.90% 93.88% 94.16% 94.12% 94.12% 94.12% 99.08% 99.08% 99.08% 99.08%
Hybrid-LSTM (Entropy) 93.83% 93.75% 93.81% 93.75% 93.60% 93.51% 93.60% 93.51% 93.44% 93.36% 93.42% 93.36% 96.70% 96.67% 96.66% 96.67%
EMS-Net (Entropy) 96.28% 96.25% 96.28% 96.25% 96.71% 96.69% 96.72% 96.69% 95.63% 95.60% 95.63% 95.60% 96.71% 96.69% 96.72% 96.69%

Two-Stage (MC) 88.19% 88.07% 88.11% 88.07% 88.03% 87.92% 87.89% 87.92% 89.48% 89.34% 89.44% 89.34% 89.66% 89.54% 89.54% 89.54%
DSF-CNN (MC) 94.79% 94.73% 94.71% 94.73% 93.29% 93.23% 93.20% 93.23% 93.99% 93.93% 93.90% 93.93% 96.39% 96.39% 96.23% 96.39%
Hybrid-LSTM (MC) 95.49% 95.44% 95.48% 95.44% 93.23% 93.14% 93.19% 93.14% 93.68% 93.63% 93.65% 93.63% 94.65% 94.62% 94.60% 94.62%
EMS-Net (MC) 94.85% 94.82% 94.84% 94.82% 94.85% 94.82% 94.84% 94.82% 94.85% 94.82% 94.84% 94.82% 94.85% 94.82% 94.84% 94.82%
Table 7
Average test accuracy of excluded images and (abstain percentage of dataset images) using AUQantO method for case studies
conducted on SKIN dataset.
Architecture
(uncertainty measure)

Optimization method

GP COBYLA Dual annealing NSGA-II

Two-Stage (Entropy) 56.10% (20.38%) 56.30% (19.99%) 57.37% (22.84%) 63.46% (31.88%)
DSF-CNN (Entropy) 68.90% (20.38%) 60.54% (11.22%) 57.42% (10.83%) 77.16% (40.79%)
Hybrid-LSTM (Entropy) 57.27% (10.22%) 57.76% (9.77%) 56.95% (9.16%) 68.26% (23.42%)
EMS-Net (Entropy) 65.27% (15.89%) 66.12% (17.65%) 64.77% (13.86%) 66.14% (17.65%)

Two-Stage (MC) 61.40% (13.83%) 62.36% (13.86%) 61.97% (18.11%) 61.23% (18.23%)
DSF-CNN (MC) 63.80% (14.83%) 59.46% (9.13%) 60.95% (11.50%) 73.03% (26.66%)
Hybrid-LSTM (MC) 64.30% (17.50%) 56.22% (8.52%) 57.40% (10.04%) 61.09% (13.80%)
EMS-Net (MC) 66.14% (11.65%) 66.14% (11.65%) 66.14% (11.65%) 66.14% (11.65%)
were reported by COBYLA, dual annealing, and NSGA-II, respec-
tively. For GP using MC dropout, Hybrid-LSTM showed an accu-
racy of 95.44% which is slightly higher than the one reported by
DSF-CNN. From Table 6, we can conclude that NSGA-II of multi-
objective optimization showed the highest performance levels for
almost all case studies. Similarly to the evaluation conducted on
the BACH dataset, we introduce in Table 7 the performance of
the excluded images by AUQantO from the Skin dataset to link
between the included and excluded images.

Table 7 demonstrates the performance of our method on ex-
cluded images and the associated abstain percentage of datasets
for all case studies on the skin dataset. For entropy as an uncer-
tainty measure, the two-stage and hybrid-LSTM interchangeably
showed the lowest excluded image accuracy for all optimization
methods with an excluded image accuracy of around 56% to
68%. For MC dropout as an uncertainty measure, Hybrid-LSTM
showed the lowest excluded image accuracy for all optimization
methods except GP, where excluded image accuracy measures of
56.22%, 57.40%, and 61.09% have been achieved by COBYLA, dual
annealing, and NSGA-II, respectively. For GP on the skin data set,
DSF-CNN showed the lowest excluded image accuracy of 63.80%.
Moreover, generally, the least abstain percentage was obtained
by Hybrid-LSTM on the skin dataset.

Fig. 3 confirms the effectiveness of our method on Skin dataset,
where the accuracy improved in all case studies (Figs. 3(a) and
(b)). The accuracy improvement for the skin dataset using the
two uncertainty measures varies between almost 4% to 10% for
all deep learning architectures and all optimization methods.
Figs. 3(c) and (d) show the accuracy difference (AD) between
included and excluded images for Shannon Entropy and MC
dropout uncertainty measures, respectively. The obtained accu-
racy differences among all deep learning architectures and all
optimization methods have comparable records with accuracy
difference varies between 22% and 38% (Figs. 3(c) and (d)).

5.3.4. Statistical significance measurement of AUQantO
To confirm the effectiveness of AUQantO, we utilized Paired

t-test and Wilcoxon Signed-Rank as statistical significance mea-
surements to test whether there is a significant difference in test

results before and after using AUQantO. Paired t-test measures
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the significant difference between two populations when the
distribution of the differences between the two samples accounts
for non-normality. Wilcoxon is the non-parametric version of
paired t-test. Table 8 presents the p-value on the four metrics
used in our study (precision, recall, AUC, and accuracy). It can be
seen from the table that all reported p-values are less than 0.05
which means that we reject the null hypothesis. This reflects that
the true mean of test results is not equivalent between the two
populations (Results before and after AUQantO). In other words,
AUQantO improves the effectiveness of the underlying model with
statistical significance.

5.3.5. AUQantO against literature methods
In this section, we compare our AUQantO method against liter-

ature methods using the two main datasets applied in this study
(BACH and skin datasets). For BACH dataset, we compared our
method against the following: (1) DCNN + SVM model [47] which
uses a pre-trained DCNN for contextual feature extraction and
SVM for classification and (2) InceptionV3 + Ensemble model [48]
which uses InceptionV3 as a feature extractor where these ex-
tracted features are then passed to a second layer of ensemble
prediction fusion using gradient boosting machine, logistic re-
gression, and support vector machine (SVM) to refine predictions.
For the skin dataset, we compared our method against the fol-
lowing: (1) DIMLP-ensemble [49] which uses the CNN-based
two-step rule extraction technique for two CNN-based subnets
to improve CNN interpretability, and (2) TWDBDL [50] which
introduces a Bayesian deep learning strategy based on three-way
decision using uncertainty quantification for the classification of
skin cancer images. As noticed from Table 9, our method sur-
passes the other literature methods confirming the effectiveness
of our approach.

5.3.6. AUQantO on other datasets
To confirm the experimental study conducted above on BACH

and skin datasets, we selected one of the single architectures
(DSF-CNN [3]) to be the backbone deep learning architecture for
AUQantO on two more datasets. DSF-CNN showed high perfor-
mance on different scenarios done for AUQantO.
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Fig. 3. Accuracy Improvement using AUQantO method and accuracy difference (AD) between included and excluded images for all deep learning architectures on
Skin dataset using Shannon Entropy (a & c) and MC dropout (b & d) as uncertainty measures.
Table 8
Paired t-test and Wilcoxon Signed-Rank as statistical significance measurement on results before and after
AUQantO method using BACH and Skin datasets.
P-value on metric BACH Skin

Paired
t-test

Wilcoxon
Signed-Rank

Paired
t-test

Wilcoxon
Signed-Rank

P-value on precision 3.75×10−8 7.95 × 10−7 9.70× 10−17 7.90 × 10−7

P-value on recall 3.74×10−8 7.94 × 10−7 6.23× 10−17 7.90 × 10−7

P-value on AUC 9.60×10−8 2.32 × 10−6 1.14× 10−16 7.896×10−7

P-value on accuracy 3.74×10−8 7.94 × 10−7 6.23× 10−17 7.90 × 10−7
s
t
p

Table 9
Comparison against literature methods.
Dataset Method Accuracy

BACH

DCNN + SVM [47] 90.00%
InceptionV3 + Ensemble [48] 87.50%
AUQantO DSF-CNN using Entropy (NSGA-II) 97.61%
AUQantO DSF-CNN using MC Dropout (GP) 97.92%

Skin

DIMLP-ensemble [49] 84.90%
TWDBDL [50] 88.95%
AUQantO DSF-CNN using Entropy (NSGA-II) 99.08%
AUQantO DSF-CNN using MC Dropout (NSGA-II) 96.39%

First, we used Brain tumor Magnetic Resonance (MR) image
ataset3 which comprises of 3264 images containing three dif-

ferent types of brain tumor images (glioma tumor, meningioma
tumor, and pituitary tumor) and normal images. The dataset
images are distributed as 500 images for normal, 926 for glioma,
937 for meningioma, and 901 for pituitary. Second, we used
Chest Computed Tomography (CT) scan cancer dataset4 which is
ivided into 4 classes: normal (215 images), adenocarcinoma (338
mages), large cell carcinoma (187 images), and squamous cell

3 https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri
4 https://www.kaggle.com/mohamedhanyyy/chest-ctscan-images
 u
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Table 10
Hyperparameter settings used for AUQantO (DSF-CNN).
Hyperparameter Value

Patch Stride (Patch-wise Network) 56
Patch Stride (Image-wise Network) 112
Optimizer Adam [13]
Learning Rate 0.0001
Batch Size 32
Training Epochs (Patch-wise Network) 4
Training Epochs (Image-wise Network) 6
λ Range 1 × 10−9 to 2
Evaluation Step (Single-Objective) 50
Initial Search Point (COBYLA) 0.01
Number of Variables (NSGA-II) 1
Number of Objectives (NSGA-II) 2
Number of Generations (NSGA-II) 50
Population Size (NSGA-II) 1
MC Dropout Test Runs 50

carcinoma (260 images) giving us a total number of 1000 chest
scan images.

For evaluating DSF-CNN on brain and chest datasets, we first
resized the images from the chest and brain dataset to the size
of 224 × 224 due to the variable image sizes of the original
amples. Then we applied data augmentation by rotating the
raining patches by 90 degrees with horizontal and vertical flip-
ing. Table 10 shows our hyperparameter settings that have been
sed by AUQantO.

https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/mohamedhanyyy/chest-ctscan-images
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Table 11
AUQantO Performance with backbone DSF-CNN on Brain and Chest datasets..
Dataset Optimization

methods
Entropy MC Dropout

Before
AUQantO

After
AUQantO

Acc.
improvement

Excluded
images acc.

AD AP Before
AUQantO

After
AUQantO

Acc.
improvement

Excluded
images acc.

AD AP

Br
ai
n

GP 95.77% 96.72% 0.95% 50.00% 46.72% 2.02% 95.77% 97.02% 1.25% 60.71% 36.31% 4.29%
COBYLA 95.77% 96.58% 0.81% 44.00% 52.58% 1.53% 95.77% 96.76% 0.99% 60.34% 36.42% 3.55%
Dual annealing 95.77% 96.57% 0.80% 50.00% 46.57% 1.72% 95.77% 96.92% 1.15% 63.37% 33.55% 4.35%
NSGA-II 95.77% 98.84% 3.07% 67.50% 31.34% 9.80% 95.77% 97.74% 1.97% 72.99% 24.75% 9.19%

Ch
es
t GP 84.23% 86.43% 2.20% 22.86% 63.57% 3.50% 84.23% 85.10% 0.87% 44.44% 40.66% 2.70%

COBYLA 84.23% 87.34% 3.11% 15.91% 71.43% 4.40% 84.23% 84.39% 0.16% 28.57% 55.82% 0.70%
Dual annealing 84.23% 86.28% 2.05% 31.58% 54.70% 3.80% 84.23% 84.90% 0.67% 74.41% 10.49% 8.60%
NSGA-II 84.23% 95.78% 11.55% 36.41% 59.37% 19.50% 84.23% 89.84% 5.61% 54.26% 35.58% 16.40%
A

f
e

R

Table 11 presents the results of applying our AUQantO method
sing Shannon Entropy and MC Dropout as uncertainty measures
nd the DSF-CNN deep learning architecture as the backbone net-
ork on Brain and Chest datasets, respectively. The table shows
he accuracy performance before and after using AUQantO, the
mprovement in accuracy, the accuracy of the excluded images,
he difference in accuracy between the accuracy of the included
mages and the accuracy of the excluded images, and the percent-
ge of abstaining from the dataset. It can be seen from the table
hat our method is highly efficient in improving performance.

. Conclusion and future work

In this paper, we introduce a model and a data-agnostic
ethod, which we call Actionable Uncertainty Quantification
ptimization (AUQantO) for optimizing uncertainty quantification
n deep learning architectures. AUQantO can measure the uncer-
ainty level in medical images and exclude poor samples based
n a hyperparameter (e.g., threshold) that is optimized using
ingle and multi-objective optimization methods. We validated
nd evaluated the performance of our method in several different
ase studies using two commonly used uncertainty measures.
oreover, we validated the performance of the best performing
ersion of AUQantO on two other datasets. Experimental results
howed a favorable performance in the exclusion of highly uncer-
ain images, confirming its automated actionability with different
eep learning architectures.
Future research directions include the trial of other optimiza-

ion methods and the aid of action taking through visual expla-
ation of the classified image. Furthermore, multiple uncertainty
uantification methods are planned to be combined and incor-
orated to enrich the framework and introduce better sample
xclusion. Also, the adoption of machine teaching is planned by
he authors.
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