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A B S T R A C T

The Internet of Things (IoT) is a complex and diverse network consisting of resource-constrained sen-
sors/devices/things that are vulnerable to various security threats, particularly Distributed Denial of Services
(DDoS) attacks. Recently, the integration of Software Defined Networking (SDN) with IoT has emerged as a
promising approach for improving security and access control mechanisms. However, DDoS attacks continue to
pose a significant threat to IoT networks, as they can be executed through botnet or zombie attacks. Machine
learning-based security frameworks offer a viable solution to scrutinize the behavior of IoT devices and compile
a profile that enables the decision-making process to maintain the integrity of the IoT environment. In this
paper, we present a machine learning-based approach to detect DDoS attacks in an SDN-WISE IoT controller.
We have integrated a machine learning-based detection module into the controller and set up a testbed
environment to simulate DDoS attack traffic generation. The traffic is captured by a logging mechanism added
to the SDN-WISE controller, which writes network logs into a log file that is pre-processed and converted
into a dataset. The machine learning DDoS detection module, integrated into the SDN-WISE controller, uses
Naive Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) algorithms to classify SDN-IoT
network packets. We evaluate the performance of the proposed framework using different traffic simulation
scenarios and compare the results generated by the machine learning DDoS detection module. The proposed
framework achieved an accuracy rate of 97.4%, 96.1%, and 98.1% for NB, SVM, and DT, respectively. The
attack detection module takes up to 30% usage of memory and CPU, and it saves about 70% memory while
keeping the CPU free up to 70% to process the SD-IoT network traffic with an average throughput of 48
packets per second, achieving an accuracy of 97.2%. Our experimental results demonstrate the superiority of
the proposed framework in detecting DDoS attacks in an SDN-WISE IoT environment. The proposed approach
can be used to enhance the security of IoT networks and mitigate the risk of DDoS attacks.
. Introduction

With the advancing Internet of Things (IoT) innovations, there is ex-
onential growth in the inclusion of various kinds of ‘‘things’’/ devices/
ensors/ objects into the Internet. These resource-constrained ‘‘things’’
an be an easy target for attackers to launch various types of attacks, in-
luding Denial-of-Service (DoS), Man-In-The-Middle (MITM), and mal-
are attacks. In the last decade, the escalating usage of heterogeneous

oT devices has extended challenges related to security, performance,
ccessibility, and scalability. With this growing IoT dilemma, more
onnected devices mean more assault vectors and more conceivable
utcomes for attackers to target (Wang et al., 2020; Ali et al., 2020).
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Therefore, there is a high demand to rapidly address these rising secu-
rity concerns, or IoT applications will face inevitable threats. However,
due to the heterogeneous nature of IoT devices, it is challenging to
deploy security mechanisms (Yaqoob et al., 2019).

The number of Internet-connected devices in the IoT environment
is expected to exceed 100 billion by the end of 2025 (Taylor et al.,
2015). The proliferation of heterogeneous devices and objects in IoT
environments has uncovered deficiencies in security protocols and
mechanisms within IoT frameworks (Chernyshev et al., 2017). These
security loopholes make IoT devices easy targets, and more ambi-
tious attacks on IoT devices have been long predicted. For example,
there are reported incidents of seizing access control of various IoT
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devices in the home or mechanical ecosystems to exfiltrate sensitive
data of individuals. Moreover, IoT devices are dynamically recruited
into botnet armed forces for multi-stage Distributed Denial of Services
(DDoS) attacks (Hallman et al., 2017). Today, the definition of a
DDoS attack gets more and more complicated as cybercriminals utilize
combinations of high-volume attacks. It is becoming more challenging
to detect infiltration that targets applications and existing network se-
curity infrastructures such as firewalls and intrusion prevention systems
(IPS).

Attacks on IoT devices are increasing, as according to the report
of a security vendor, 100 million IoT attacks have been detected in
the first half of 2019. Cybersecurity and anti-virus provider Kaspersky
spotted 105 million attacks from 276 thousand unique IP addresses in
the first six months of 2019 (Over 100 Million, 2021). According to
the same report, the most common malware types have been Mirai and
Nyadrop and the majority of IoT devices have been affected in China
(30%), Brazil (19%) and Egypt (12%) (Over 100 Million, 2021). Cicero,
a network security company, has noticed a dramatic increase in the
frequency of attack attempts against its customers (Corero, 2020). Dyn,
a provider of Domain Name System (DNS) services, was attacked in
October 2016 by two large and complex DDoS attacks against its DNS
infrastructure (DDoS attack, 2016). Due to the attack, large numbers of
Internet platforms and services – including well-known brands such as
Spotify, Netflix, Reddit, and Twitter – experienced significant service
outages. Another report indicates that DDoS attacks during the global
pandemic year 2020 significantly increased in number as compared to
the previous years (DDoS Attacks Spiked, 2021). The report also reveals
different projections of DDoS attacks that depict more complex and
high-frequency attacks as compared to prior years.

The Software-Defined Networking (SDN) paradigm opens tremen-
dous opportunities to manage and secure IoT. SDN aims at creating
network architectures that are more agile, flexible, and smart, making
them different from the traditional networking architecture (Bhayo
et al., 2022). An IoT network is different from a traditional net-
work at various levels. Characteristic differences are in processing
power, scalability, energy consumption, etc., which, however, also
creates a significant management challenge for IoT networks. SDN has
emerged as a promising network model with exponential growth in
network management and configuration complexity (Siddiqui et al.,
2022; Khalid et al., 2023). SDN seeks to effectively turn network
design and operations to become more agile and to efficiently improve
network functions (Hameed et al., 2021; Bawany and Shamsi, 2019).
The SDN paradigm has unique features that provide a dynamic and pro-
grammable network with centralized management, where the network
is abstracted from the upper-layer applications. SDN controller provides
centralized network intelligence and helps network administrators to
monitor, protect, and optimize network resources dynamically and
programmatically configure network traffic patterns (Ahmad et al.,
2015). The SDN controller cannot only manage the IoT heterogeneous
system but can also monitor the incoming and outgoing traffic.

Recently, machine learning (ML) is widely used to aid in various
aspects related to instruction detection and other security and threat
analysis. ML supports diverse network traffic-generated datasets and a
number of data features that can be helpful to get better insights once
properly analyzed (Di Mauro et al., 2021). In integration with ML, the
Software-Defined Internet of Things (SD-IoT) can offer various solutions
to tackle the security challenges faced by IoT devices. Cui et al. (2019)
utilized a support vector machine (SVM) algorithm to train the attack
detection module in the SDN for classifying DDoS attack patterns. They
highlight the importance of cognitive-inspired computing with entropy
technique using entropy values as a feature vector. The implemented
mechanism quickly detects and mitigates DDoS attacks and therefore
restores back to normal communication in time. In this study, we use
naive Bayes and Decision Tree (DT) along with an SVM classifier to
get more improved and competitive results. In order to detect huge
amounts of SDN malicious traffic and DDoS attacks, the sFlow and
2

adaptive polling-based samples with Snort IDS were proposed on the
data plane, along with the deep-learning Stacked Auto-encoders (SAE)
on the control plane (Ujjan et al., 2020). The active mode of the
proposed framework is significantly more effective than the passive
mode with respect to preprocessing and DDoS detection in the traffic
selector method. The framework seems to be useful in combination with
conventional security mechanisms to optimize the results and detection
time. However, the SAD-F framework is based on a traditional network
and suffers from dynamic reprogramming and central management
control. Our framework is also based on ML algorithms, but aided by
SDN, i.e., it provides a unique solution to SD-IoT networks. Hameed
and Ali (2018) propose the HADEC framework for live flooding-based
DDoS attack detection using MapReduce and Hadoop. HADEC takes
less than 5 min to process 1 GB of the log file having 15.83 GB
generated live traffic. According to the results, HADEC takes low-
time attack detection, near real-time, but it is more CPU intensive,
and the capturing phase consumes 77% of the overall detection time.
Instead, our framework is based on SD-IoT, which provides dynamic
and programmable features. Additionally, with the help of supervised
machine learning classifiers, it efficiently detects DDoS attacks in much
less time. Similarly, Yin et al. (2018) proposed an SD-IoT framework for
security against DDoS attacks. The framework consists of DDoS attack
detection and mitigation algorithms based on the cosine similarity
vector of incoming packet messages at the boundary of SD-IoT switches
to determine the DDoS attack based on the threshold of the cosine sim-
ilarity vector. The algorithms work only on packet-in messages; while,
our proposed architecture focuses on a machine learning classifier that
uses distinct network attributes to classify the DDoS attack traffic from
the SD-IoT network traffic flow. In this regard, we investigated different
IDS applications for IoT networks including a time-efficient IDS (Zhang
et al., 2020) which is based on SD-IoT, Counter-based DDoS attack
detection IDS (Bhayo et al., 2020), and other machine learning–based
IDS for IoT (Verma and Ranga, 2020). The main objective of these IDS
is to detect attacks in IoT networks and to ensure security in the IoT
domain.

SDN-IoT could face challenges in terms of performance, interoper-
ability, scalability, dependability, and security (Xie et al., 2018). Fur-
thermore, SDN poses a great challenge in network management (Ghaf-
far et al., 2021). Despite of rapid increase in research in the area
of applications SDN-IoT using machine learning, it is facing multi-
ple open and on-demand challenges including but not limited to (a)
Unavailability of quality datasets for appropriate training, (b) Un-
awareness of distributed and scalable multi-controller platforms, (c)
Continuous improvement of network security, and (d) Incremental
deployment of SDN. The fusion of SDN and IoT brings several ad-
vantages, including intelligent routing, efficient data processing and
analysis, centralized application and resource management, and dy-
namic network reconfiguration. These benefits are derived from SDN’s
programmable and centralized network infrastructure, which simplifies
network management, enhances flexibility, and enables the implemen-
tation of innovative network services and applications in a scalable and
cost-effective manner.

Developing and improving ML and SDIoT-based frameworks that
address the potential security challenges associated with IoT devices
is an overlooked aspect in the current literature. Our proposed frame-
work is based on software-defined IoT and includes dynamic and
re-programmable characteristics that enable the SD-IoT network to
perform security services. The framework detects DDoS attacks with
high accuracy and detection rates by incorporating machine learning
methods. Our suggested framework for the SD-IoT network is based
on machine learning and consists of three distinct independent compo-
nents: (1) A data-plane module made up of Sensor OpenFlow Switches
(SOFS) and IoT devices; (2) An IoT controller module comprised of
adjusted SDN-WISE that manages and controls the SD-IoT network; and
(3) A machine learning-based DDoS attack detection module consisting
of various supervised learning-based classifiers for classifying malicious

and legitimate traffic flow.
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The proposed framework provides an innovative solution to one of
he biggest challenges faced by SD-IoT networks i.e., DDoS attacks.
ndustries such as healthcare, finance, and transportation are heavily
eliant on IoT networks to transmit sensitive data. Any security breach
n these networks could have devastating consequences. With the inte-
ration of SDN and IoT, the proposed framework provides a promising
olution for better security and access control mechanisms. By imple-
enting a machine learning-based security framework to scrutinize IoT
evices’ movements and compile a profile, the framework can detect
bnormal traffic and prevent DDoS attacks in SD-IoT networks. With
he rapid development of various IoT domains such as Smart Cities,
mart vehicles, etc., security application development for IoT networks
s one of the essential parts of these domains (Siddiqui et al., 2023). The
roposed framework’s applications extend beyond industries to smart
ities and cloud computing data centers. With the rapid increase in IoT
evices used in smart cities, the risk of cyber-attacks and DDoS attacks
re a growing concern. By deploying the proposed framework, admin-
strators can prevent service disruptions and improve the reliability of
mart city applications.

The main contributions of this research are given as follows:

• A novel framework designed for an implemented system based on
machine learning and Software-defined IoT with dynamic and re-
programmable features is presented for the effective and timely
detection of DDoS attacks.

• The ML-based module runs on top of the SDN-WISE controller and
consists of different supervised learning classifiers such as Naive
Bayes, SVMs, and Decision Trees (DT)s to efficiently determine
the malicious traffic flow. DT has an accuracy ratio of 98.1%,
whereas Naive Bayes and SVM have an accuracy rate of 97.4%
and 96.1%, respectively.

• The proposed framework thoroughly analyzes the given param-
eters such as IoT nodes, attack nodes, payload size, and packet
frequency with the selected classifiers to measure the perfor-
mance of an SD-IoT network through outcome factors such as CPU
usage, attack detection time, and memory usage. According to the
results, the early detection of malicious traffic within the SD IoT
network is a major advantage in the prevention of high levels
of exploitations and the isolation of IoT devices from malicious
nodes.

Table 1 presents the most used acronyms in this paper. The rest
f the paper has the following structure. Section 2 presents the re-
ated work. Section 3 discusses the proposed ML- and SD-IoT-based
ramework and explains each component of the framework in detail.
ection 4 discusses the testbed experimental setup and explains the
esults gathered during the experiments and finally Section 5 presents
he conclusion.

. Related work

Several studies in the existing literature have analyzed DDoS attacks
nd contributed various protection mechanisms (Tayyab et al., 2020;
nehi and Bhandari, 2021; Alamri and Thayananthan, 2020). The most
roadly utilized defense methods are identifying and mitigating DDoS
ttacks, traffic separation, and trace-back the DDoS source. DDoS detec-
ion solutions are effectively separating typical streams of activity from
nusual streams of activity. Traffic separation solutions obstruct sub-
tantial movement, while trace-back mechanisms must be compelling
nder sponsored activity performed for the most part after the assault.
large portion of current DDoS identification systems has constrained

chievements considering the accompanying difficulties: (a) the attack
requently uses legit requests to overload the target itself, making it
ifficult to distinguish an attack movement from normal activity, (b)
uick ongoing recognition is troublesome due to the enormous measure
f information associated with the current network (Suresh and Anitha,
011).

Two critical and challenging research concerns in identifying DDoS

ttacks are as follows:

3

Table 1
List of most common abbreviations.

Acronym Full term(s)

AI Artificial Intelligence
ANN Artificial Neural Network
BNE Bayesian–Nash Equilibrium
CAIDA Center for Applied Internet Data Analysis
C-DAD Counter-based DDoS detection
DT Decision Tree
DNN Deep Neural Network
DoS Denial-of-Service
DDoS Distributed Denial of Services
DNS Domain Name System
IoT Internet of Things
IDPS Intrusion Detection and Prevention System
k-NN k-Nearest Neighbor
ML Machine Learning
MITM Man-in-the-Middle
NB Naive Bayes
RF Random Forest
SOFS Sensor OpenFlow Switches
SDN Software Defined Networking
SDN-WISE Software Defined Networking solution for Wireless Sensor Networks
SD-IoT Software-Defined Internet of Things
SVM Support Vector Machine
WSN Wireless Sensor Networks

• Distinguishing a genuine and sufficient selection of features that
can be used to construct efficient models for differentiating DDoS
attacks from normal traffic.

• Assessing the viability of the various machine-learning
approaches employed in the discovery process.

Statistical approaches can be used to detect suspicious patterns
in resource utilization in response to DDoS attacks. The issue with
statistics-based identification is that it is not conceivable to discover the
typical network packet distribution. Or maybe, it must be reproduced as
a uniform distribution (Lee et al., 2008). A few strategies which apply
data mining methods can acquire a high success rate in recognizing
the attacks. In any case, these techniques generally cannot be utilized
as a part of real-time computing (Xu et al., 2007). One advantage of
clustering over statistical methods is that they are not dependent on
any prior knowledge about the data distribution. Numerous factors can
be utilized to recognize common network patterns. However, obtain-
ing fundamental characteristics from a massive network is critical for
modeling network behaviors that are distinct from normal traffic.

Numerous studies have been conducted on the problem of feature
extraction. For example, Chhabra et al. (2013) selected eight relative
values as features independent of the network stream. Haddadi et al.
(2010) suggest and investigate recognizable evidence of successful
network features for attack detection testing, applying the principal
component analysis (PCA) technique to determine an optimal set of
capabilities. Software-Defined Networking (2020) examined the ap-
plication of multivariate relationship analysis to DDoS discovery and
developed a strategy for recognizing flooding attacks using co-variance
analysis. They used the majority of the flag bits in the TCP header’s flag
field as highlights in the co-variance investigation presentation. The
researchers demonstrated the effectiveness of the proposed technique in
detecting SYN flooding attacks, a critical sort of DDoS attack, however,
the technique faces a severe hurdle because there is no guarantee
that the six flags are substantial or sufficient attributes for reliably
distinguishing all sorts of DDoS attacks.

A variety of statistics and machine learning techniques can be
employed to detect the unusual changes in resource use associated
with DDoS attacks. Both techniques, however, have their limitations.
For example, one obvious limitation of statistics-based detection is the
inability to determine the usual network packet circulation. This issue
can be resolved by employing clustering methodology to construct

the standard examples, as one of the advantages of clustering tactics
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over measurement procedures is that they are not dependent on any
previously known information transmission. While machine learning
algorithms, which are frequently derived from the overlapping field of
information mining, have been shown to be quite accurate at identify-
ing DDoS attacks, they also have their own limits. For example, these
systems demand a significant learning period, and as a result, these
techniques cannot be used progressively at the moment. Regardless
of these constraints, solutions to the DDoS recognition problem will
emerge from either or both of these domains and major research effort
is being directed in this direction. Lee et al. (2008), for example,
used a multiclass SVM characterization model to detect DDoS threats.
In the solution proposed by Xu et al. (2007), a collection of new
features was also presented, including the establishment of relative
values as a critical component of an extended arrangement of discovery
data. Additionally, they presented another method of detecting DDoS
attacks through the use of attack force. In Ahmed et al. (2020), Ahmed
et al. presented a scalable Spark-based live DDoS detection framework,
termed SAD-F, which is capable of analyzing potential DDoS attacks
without any time delays, as the framework’s performance has been
tested against both live and passive traffic. SAD-F first captures live
netflow traffic by using (Wireshark) live traffic capturing feature, then
preprocesses it to extract required information, and finally uses ML-
Spark algorithms to run detection algorithms for DDoS flooding attacks.
SAD-F tackles the difficult problems of the traditional approach in terms
of scalability, memory inefficiencies, and processes by parallel data
processing with better efficiency and low latency. Bhayo et al. (2020)
explored various research gaps and security challenges associated with
the IoT and proposed a solution for counter-based DDoS detection
(C-DAD) in SD-IoT networks. However, this architecture is built on
a counter-based approach, whereas our research relies on machine
learning algorithms that efficiently detect DDoS attacks against trained
malicious patterns.

In Suresh and Anitha (2011), the authors introduced a new prob-
abilistic packet inspection (PPM) model called TTL-based PPM plot,
in which each bundle is separated with a probability inversely pro-
portional to the separation traversed by the parcel up to this point,
enabling a casualty source to track back the attack source. Nguyen
and Choi (2010) have developed an Anti-DDoS structure based on k-
NN (k-nearest neighbor) classification for proactively identifying DDoS
attacks. They used the k-NN approach to categorize the system’s state
during each DDoS attack session. While the k-NN strategy is superior
for assault discovery, it is computationally expensive for continuous
use as the number of concurrent operations increases. Eskin et al.
(2002) performed anomaly detection using an SVM classifier in which
the feature space is mapped into another component space. Similarly,
Yuan and Mills (2005), the author catches the traffic pattern of a DDoS
attack using cross-relationship analysis. Nagtilak et al. (2020) propose
to enhance the DDoS attack detection model based on deep learning
for the IoT system. The detection model detects the attack in less
time and provides better future extraction and good performance than
conventional algorithms. The model takes advantage of deep learning
to train massive generated data and efficiently detect DDoS attacks in
IoT systems.

Du and Wang (2019) proposed a honeypot strategy for DDoS attacks
in the industrial Internet of things using SDN. SDN provides dynamic
protection through a honeypot strategy to efficiently control the ma-
licious attacker. They also propose a pseudo-honeypot game (PHG)
strategy that protects from anti-honeypot-based attacks and proves
several Bayesian–Nash Equilibrium (BNE) groups in the PHG strategy.
This strategy-based method improves energy consumption and IoT
security. Idhammad et al. (2018) present a semi-supervised Machine
learning-based approach to detect DDoS attacks. The author uses co-
clustering, information gain ratio, network entropy estimation, and
extra trees classifier to classify DDoS traffic accurately. The supervised
algorithms are used to reduce the false-positive rates and unsupervised
models for classifying malicious traffic. Different experiments have
4

been conducted to benchmark the datasets, including NSL-KDD, UNSW-
NB15, and UNB ISCX 12, to get accuracy with satisfactory false-positive
rates. However, this research is based on a traditional network, while
our research is based on a supervised machine learning approach using
SD-IoT for IoT networks for getting more efficient performance.

In da Costa et al. (2019), Kelton et al. investigate the contemporary
techniques used for intrusion detection based on machine learning for
the IoT. The research reveals valuable techniques for achieving a better
recognition rate for malicious traffic. Some methods can reduce the
false-positive rates but with increased classification and training time.
Therefore, it is perceived that false-positive rates are still a problem
for the researcher for further future work to minimize false-positive
rates. The authors surveyed the machine learning-based work, which
summarizes the different papers mostly based on TCP/IP and few
are related to IPv6 over Low-Power Wireless Personal Area Networks
(6LowPAN). According to this study, further research is needed to
improve the false-positive rate for DDoS detection in IoT networks. In
this context, we will provide a methodology for detecting DDoS attacks
over the SD-IoT network that is based on supervised machine learning.
Pande et al. (2020) generates DDoS attacks through the ping of death
technique and detects DDoS attacks with machine learning techniques.
The experiment is conducted with the random forest (RF) machine
learning classifier to classify DDoS traffic using the WEKA tool. The
model is trained with a supervised learning algorithm and gets 97.76%
results for classification using the NSL-KDD dataset. We also use the
WEKA tool and RF classifier; however, we additionally added other
supervised learning classifiers such as SVM and DT and Naive Bayes.
The testing conducted in our research is distinctive because it is based
on the IEEE 802.15.4 protocol with the help of SD-IoT.

SDN despite being a potential network architecture that gives op-
erators more control over a network infrastructure, its architectural
entities pose several security risks and targets which makes it vulner-
able to DDoS attacks. To tackle this problem, authors in Sahoo et al.
(2020) use SDN’s centralized control to identify DDoS attacks on the
control layer. They proposed an evolutionary SVM model from machine
learning to detect malicious traffic. Further, this article integrated the
Genetic Algorithm(GA), ‘‘KPCA: Kernel Principal Component Analy-
sis’’ to improve SVM identification accuracy (GA). The experimental
findings demonstrate that the proposed model provides more accurate
classification and greater generalization than single-SVM. In addition,
the proposed model can be implemented within the controller in order
to build security rules that block potential attacks. Additionally, Radial
Basis Function N-RBF is employed to speed up the learning process.
Experimental results also show that KPCA outperforms Principal Com-
ponent Analysis (PCA) on the DDoS dataset. Their model outperforms
the baseline model in accuracy by 0.9897%.

DDoS attacks have always threatened network security. Since its
inception, both industry and academia have been exploring DDoS
detection and defense. DDoS detection and mitigation methods have
been developed so far. Most methods cannot efficiently detect a small
number of attacks and fail to minimize false alarms. In Agarwal et al.
(2022), the authors present a novel approach to DDoS mitigation using
a deep neural network (FS-WOA-DNN) — a new feature selection-
whale optimization technique. The input dataset undergoes a min–max
normalization approach in the pre-processing phase to replace all of
the input within a predetermined range. Following normalization, the
data is sent into the proposed FS-WOA to help pick the finest features
for classification. A deep neural network classifier is applied to the
data to determine whether it is ‘‘normal’’ or ‘‘attacked,’’ based on the
selected features. The normal data is encrypted using homomorphic
methods and safely stored in the cloud, thus strengthening the security
of the proposed architecture. The proposed algorithm was simulated
and validated using the MATLAB tool and the results indicate that it
can find DDoS attacks with a 95.35% accuracy rate.

In a recent study (Agrawal et al., 2022), authors proposed a novel

approach towards DDoS detection. They suggested a Modified version
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Table 2
Comparison of existing literature on DDoS attack detection techniques.

Study Traditional DDoS detection techniques Machine learning DDoS detection techniques

CPU utilization Memory utilization Detection time Throughput CPU utilization Memory utilization Detection time Throughput

Bhayo et al. (2020) Yes Yes Yes Yes No No No No
Gillani et al. (2018) No No Yes Yes No No No No
Van Adrichem et al. (2014) Yes No Yes Yes No No No No
Cui et al. (2016) Yes No No No No No No No
Ahmed and Kim (2017) Yes Yes No No Yes Yes Yes Yes
Patil et al. (2019) No Yes Yes No No No No No
Chen et al. (2019) No No No No No No Yes No
Mohammadi et al. (2019) Yes Yes Yes No No No No No
Ahmed et al. (2020) No No No No Yes Yes Yes Yes
Hameed and Ali (2018) Yes Yes Yes Yes No No No No
Table 3
Threat model analysis for SD-IoT.

Vulnerability Attack type Detection approaches

Unencrypted data stored Ransomware attack Differential area analysis (Davies et al., 2021)
Targeted interference Jamming attack Unsupervised learning with clustering

(Karagiannis and Argyriou, 2018)
Default, weak, or guessable passwords Bruteforce attack IDS using attack patterns (Raikar and Meena,

2021)

Firmware access Privilege escalation attack Multi-feature-based behavior of privilege
escalation attack detection method (Shen et al.,
2020)

Memory corruption Buffer overflow
exploitation

Bio-inspired based approach (Hamidouche
et al., 2019)

XSS IoT sensor device Botnet N-BaIoT (Meidan et al., 2018)

Directory traversal HTTP attack Edge Intelligence (EI)-enabled HTTP anomaly
detection framework (An et al., 2021)

Lack of device management DoS, DDoS C-DAD (Bhayo et al., 2020)

Insecure network services Malware Fuzzy pattern tree methods for malware
detection (Dovom et al., 2019)

Security and privacy Eavesdropping attacks ML-based detection technique (Xiao et al.,
2018)
of a Deep Belief Neural Network (M-DBNN) to achieve low false-
positive rates and high prediction accuracy. The Center for Applied
Internet Data Analysis (CAIDA) ‘‘DDoS Attack 2007’’ dataset is used
to test the proposed model. The method achieves an accuracy of 87%,
and its results are compared to those obtained by using a deep neural
network (DNN), SVM, an artificial neural network (ANN), and a neural
network (NN). High detection accuracy with minimal false positives is
a key feature of the suggested approach.

SDN is an approach that utilizes software programs to centrally and
intelligently control network design. Separating the control plane of
network devices from the data plan simplifies network management.
In Adeniji et al. (2023), the authors use SVM to detect DDoS attacks
in IPv6-enabled SDNs. The 20-min test generated 500,000 normal and
attack traffic packets. The packet data was re-processed and 25% of the
data was trained on SVM. The SVM detected 100% potential attacks
with 99.69% accuracy.

These solutions defined in the existing literature, detect and prevent
DDoS attacks through algorithm-based approaches. Simulating them
through a programmable and open-source network can help understand
and solve DDoS attacks. The abstract ideas from the relevant research
work can assist a great deal in developing machine learning and SD-IoT-
based environments. After an extensive literature review and to the best
of our knowledge, we concluded that the SDN-IoT had been repeatedly
explored for DDoS detection in two different ways, which we defined
as, (1) Traditional DDoS detection techniques and (2) Machine learning
DDoS detection techniques. Further, both techniques are explored ac-
cording to the related existing literature with different parameters, such
as CPU utilization, memory-utilization, detection-time, and throughput
as shown in Table 2.
5

3. Machine learning-based proposed framework for secure SD-IoT

3.1. Security analysis for the proposed framework

Security analytics is an approach that focuses on data analysis to
produce proactive security solutions. Security analytic-based frame-
works are frequently designed to detect threats over models or appli-
cations. Various solutions can be found focusing on security threats
to IoTs on different levels, including network-level, devices-level, and
application-level. However, in this research, we have analyzed solu-
tions that mostly investigate communication environment-level threats.
IoT devices are used in different applications in large numbers and are
vulnerable to various threats, as shown in Table 3. From the literature,
we have found several techniques to detect intrusion detection. Table 4
presents a comprehensive list of available techniques, which were eval-
uated through security analyses to showcase the existing approaches
and facilitate comprehension of the research problem.

For the test-bed we designed an SD-IoT network topology that
consists of three main components, including the SDNWISE Controller,
IoT Controller, and IoT nodes as shown in Fig. 1. The IoT network
is divided into different clusters, consisting of SOFS and IoT nodes.
The SD-IoT network is designed with normal malicious nodes in each
cluster. In this regard, malicious traffic is generated via malicious nodes
to detect the DDoS attack. The malicious nodes are programmed to
generate flooding traffic for DDoS attacks towards the target node.

This research only focuses on flooding-based network traffic to
generate huge network traffic for DDoS attacks. The SD-IoT network
consists of an SDNWISE controller and IoT nodes that generate n-
1 message traffic in the SD-IoT network. The normal nodes forward
legitimate traffic in the SD-IoT network as per the network behavior
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Table 4
Comparative analysis different approaches for attack detection.

Detection approach Short description Reasoning (Pros/Cons)

Statistics-based It examines network traffic and processes the data using
complicated statistical techniques.

–Requires extensive statistical understanding.
–Simple but less precise.

Pattern-based It tries to recognize the data’s characteristics, shapes, and
patterns.

–Easy to implement.
–A hash function could be used for identification.

Rule-based To detect a potential attack on suspicious network traffic,
it employs an attack ‘‘signature’’.

–Rules require pattern matching and rule-based systems can be
computationally costly.
–A huge number of rules are required to determine all potential
threats.
–Low rate of false positives.
–High rate of detection.

State-based It analyzes a series of events to detect any potential
attack.

–Probabilistic and self-learning.
–Low false positive rate.

Heuristic-based Identifies any abnormal activity that is out of the
ordinary.

–Exploratory and evolutionary learning is required.

ML-based approach Machine learning models are composed of a collection of
rules, procedures, or sophisticated ‘‘transfer functions’’
that may be used to discover significant data patterns or
forecast behaviors.

–The implementation of ML models is typically straightforward, but
the pros and cons of using such models depend on the specific
characteristics of the algorithm in question.
Fig. 1. A general illustration of SD-IoT network topology.
f the particular application. Furthermore, we can also customize the
ormal node traffic pattern as per application requirements. We con-
ucted different experiments to evaluate results with other parameters,
ncluding attack node, packet frequency, and simulation. We vary the
acket flooding ratio with varying numbers in the packet frequency
arameter to detect the DDoS attack. We also conducted experiments
ith attack node parameters to compromised IoT nodes with different

looding packet rates. The main objective of this research is to detect
he DDoS attack at an early stage. The main advantage of this method
s to evaluate and analyze the experiment’s result more deeply with
ifferent outcome parameters, including CPU and Memory utilization,
etwork throughput, and attack detection time.

As illustrated in Fig. 2, the proposed framework is composed of
hree modules: (1) A dataplane module, composed of an SD-IoT net-
ork, Sensor OpenFlow Switch (SOFS), and IoT devices; (2) An IoT con-

roller module composed of an adjusted SDN-WISE; and (3) a machine
earning-based DDoS attack detection module. The SD-IoT network
odule is composed of IoT nodes and is responsible for managing

ncoming IoT traffic and serving as a gateway between the source
oT node and the controller. The SDN-WISE controller module is re-
ponsible for managing traffic and instructs switches where to send

ackets. The machine learning detection module classifies IoT node

6

traffic to detect DDoS packets. A detailed explanation of these modules
is discussed in the subsequent sections.

3.2. SD-IoT and IoT nodes

IoT involves several heterogeneous devices, which require a unique
set of access systems and safety mechanisms. Traditional security ap-
proaches such as intrusion detection and prevention systems (IDPS)
and Firewalls are deployed at the web edge devices to shield the net-
work from outside attacks. SDN, an intelligent networking paradigm,
offers new solutions to understand and solve issues identified with
IoT. By applying SDN, network configuration and management can be
simplified significantly. Wide acknowledgment for SDN demonstrates
that SDN can build a tighter association among the objects in an IoT
network. Each IoT device has an IoT specialist that interfaces with
the IoT controller. SDN separates the network management operation
into network management and packet forwarding at the data plan.
SDN has OpenFlow-based switches that forward the packets according
to the flow table; however, the unknown packet or switch with no
flow information about the received packet forwards to the controller

for further assistance. The controller forwards rules about unknown
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Fig. 2. Proposed ML-based DDoS attack detection framework for SD-IoT networks.
Table 5
Implementation of the adjusted WISE flow table.

Matching rule Action Statistics

Op. Size S Addr. Value Type M S Addr. Value TTL Counter

= 1 1 0 0 Modify 1 1 0 1 122 23
= 1 1 0 1 Modify 1 1 0 0 122 120
– 0 – – – Forward 0 0 0 D 122 143
– 0 – – – Drop 0 0 – – 100 42
– 0 – – – Forward 0 0 0 D 100 32
packets; it also modifies the policies and reprograms the network by
installing new software or packages.

The SD-IoT network consists of IoT nodes and a customized Sensor
Openflow Switch (SOFS). It can detect, break down and gather infor-
mation to accomplish the client targets. All of the IoT nodes should be
enlisted with the IoT controller along with the points of interest such
as their question identifiers, addresses, imparting system conventions,
and basic systems. SOFS is a customized OpenFlow flow switch that
performs packet forwarding according to the flow table. A request is
issued to the Control plane if no entry in the WIreless SEnsor Networks
(WISE) Flow Table matches the current packet. Each node must know
its optimal next hop towards a node in order to contact the Control
plane. Through beaconing, this value is determined in a distributed
manner utilizing the Topology Discovery (TD) layer. The SDNWISE
Flow table has similar functionalities to the OpenFlow table used in
the traditional SDN network. Table 5 shows the three components of
the SDNWISE table: Matching Rule, Action, and Statistics (Galluccio
et al., 2015). There are three matching conditions against each flow
entry, and each matching condition has five fields: Operator, Size, State
(S), Offset (Addr), and value. These matching conditions are matched
against the rule until the end; if the WISE table does not find the
matching rule, it will build the Request Packet and forward it to the
controller via the sink node. The packet will only be forwarded to the
outgoing interface if the condition is matched.

3.3. SDN-WISE and IoT controller

While existing frameworks provide an efficient network topology
for nodes linked to an IoT network, they lack a mechanism for logging
7

communication between nodes. But, packets generated by the nodes
are not being recorded, which means that they are needed for var-
ious security measures to be implemented. We adjusted the existing
framework of the SDN-WISE network by customizing the sink module
to the IoT controller and adding SOFS in the SD-IoT network. The pro-
posed framework overcomes the above-discussed issues and integrates
machine learning-based security services into the SD-IoT network. The
framework contains a logging module that logs all incoming packets
in the forwarding layer. These logs are recorded in the controller’s
directory. To implement the detection module, it is necessary to have
information about the communication between nodes as well as the
communication’s frequency.

The IoT controller receives the traffic from the SD-IoT network
and checks if the traffic is known and reliable, then forwards it to
the WISE Flow entry component, which further forwards the packets
according to flow entry. The decision making for these choices are
reflected in the remote physical system utilizing the SDN controller. IoT
controller on getting the association from its IoT operator will fabricate
the sending rules depending on the systems administration conventions
deployed and convey these guidelines to the SDN controller. Once the
IoT controller gets the address or identifier of the destination, it needs
to identify its source in the network. This is achieved through IoT
agents registered with the IoT controller by comparing their identi-
fier or address. As illustrated in Fig. 3, the SDN-WISE framework is
composed of three modules: the SDN-WISE controller module, the Sink
module, and the IoT Nodes module.

3.3.1. SDN-WISE controller module
The SDN controller controls the switches via OpenFlow protocol for

traffic forwarding. It also pushes rules into Openflow-based switches
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Fig. 3. Existing SDN-WISE framework for SD-IoT network.

to make a decision when network traffic hits them. Switches need to
maintain such rules in the flow table. As per flow, such rules are called
‘flows’, and they are stored in WISE Flow tables. The communication
between IoT devices and security applications must be done via the
controller. The controller has the OpenFlow protocol used for network
configuration, and it is also used to find the best optimal network path
for applications.

In the proposed SDN-WISE framework, the nodes are determined
by the data structures, i.e., WISE States Array, Accepted Array IDs, and
he WISE Flow Table. The controller sends the information contained
n these structures; through sending this information, the controller
efines networking policies that the nodes in the network must im-
lement. The nodes use the wireless medium for connectivity and the
ireless medium has a broadcasting nature; therefore, nodes will also

eceive packets that are unrelated to them. The information in Accepted
Ds Array lets the node decide to select the packets that it should
rocess further. If there is no such information in Accepted IDs Array,
he node will drop the packet. For further processing of the packet,
he node will check the entries of the WISE Flow Table and check the
atching rule. If the matching rule is satisfied, the related action will

e performed; however, if not, the packet will be sent to the controller
ia the sink with a flag indicating a request for further instructions
o handle the packet. The SDN-WISE controller module consists of
ifferent components that cooperate to perform network operations and
ontrol the SD-IoT network. The controller performs network operation
t the central point with the help of set components as shown in Fig. 4.

ISE flow table entry. If the received packet has no flow entry in
he WISE Flow table in the data plane, a request packet is sent to
he controller. Each node in the SD-IoT network must know the path
owards the controller via the best next hope path to sink. The best
ath value is calculated through a beacon packet with the help of the
opology Discovery layer (Abdolmaleki et al., 2017; Shalimov et al.,
013).

ath lookup. Two types of messages are sent from the sensor nodes
o the controller, i.e., REPORT and REQUEST. A REPORT message
ontains an array of local topology information, whereas a REQUEST

essage contains the source and destination address of the path to

8

e established. The SDN controller handles these messages to build
he topology from the REPORT messages and responds to REQUEST
essages using the shortest path from the topology. The SDN controller

eeps reading messages from the serial interface. If the message is a
EPORT message, it extracts the information from the message and uses

t to construct the whole topology. Similarly, if the message is a flow
EQUEST, it extracts the source and destination of the requested path.
hen, it computes the shortest path from the source to destination using
ijkstra’s algorithm (Barbehenn, 1998; Jiang et al., 2014) and replies
ith a RESPONSE message in case a path exists.

olicy engine. The policy engine ensures that packets meet particular
equirements. It helps to reduce the complexity of SDN management. It
ustains the Quality of Service(QoS) of a specific flow to enforce design
onstrain. The policy engine handles efficiently in the SDN paradigm.

etwork stats. Network administrators must monitor network status for
ecurity audit, including network problem tracking, troubleshooting,
uture planning, network scaling, etc. In this regard, the SDN controller
rovides flow information and derived network statistics to high-level
DN applications. Either gathered using the southbound protocol or
rom an external source, such as an IPFIX (Internet Protocol Flow
nformation Export) (Hofstede et al., 2014) probe. The SDN controllers
hould derive statistics for high-level traffic identifiers via linking with
ow-level traffic identifier statistics.

.3.2. Sink module
The sink is a gateway between the sensor nodes and the controller.

ll control packets should pass through the sink to reach the controller.
he sink module consists of three main components, which are used to
ommunicate with controller and IoT nodes as shown in Fig. 5. The
ink implements three layers on top of the MAC layer as part of the
ata plane protocol stack.

ncoming packet handle. This module is responsible for handling up-
oming packets to check whether the packet is known and has a valid
ntry in the WISE flow table. If the WISE flow table does not have an
ntry, then the packet handler would send this packet to the controller,
s depicted in Fig. 6.

djusted WISE flow table. Arriving packets are matched against the
ISE flow table. The flow table is composed of three sections, i.e., on
atching rules, actions, and statistics (Galluccio et al., 2015), as shown

n Table 5.
Each entry in the flow table can have up to three matching condi-

ions as part of the matching rule. Each matching condition has five
ields, i.e., operator, size, state (𝑆), offset (Addr), and value. The rela-

tional operator are specified to be used against the value. Offset and size
fields specify the starting byte and the number of bytes that needs to be
considered starting from the offset. For example, if the size is 2 and the
offset is 5, then two bytes starting from byte 5 are used to compare the
relational operator with the value. Each SDN-WISE network has a WISE
state array which contains the current state for each active controller.
The state (𝑆) indicates whether the matching must be done against the
current packet or the state. If 𝑆 = 0, the current packet is matched
against the value. Whereas, if 𝑆 = 1, the state of IoT node or status of
controller is compared against incoming packet with WISE table entry.
If all matching conditions are satisfied, the operation in the action part

is carried out and the statistics are updated. The action part of the flow
Fig. 4. SDN-WISE controller module.
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t

Fig. 5. Sink module.

Fig. 6. Incoming packet handler.

able entry is composed of five fields, i.e., type, 𝑀 , 𝑆, offset, and value.
The action types are Forward, Drop, Modify, ASK, etc. When the action
is Modify, the 𝑆 field specifies whether to modify the WISE state array
or the current packet. The 𝑀 field specifies whether only one matching
entry must be executed or not. After one successful flow table entry is
matched and the corresponding action is executed; if 𝑀 = 0, SDN-WISE
stops browsing the flow table. However, it keeps searching for other
matching rules if 𝑀 = 1. If no matching rule is found for the incoming
packet, a request packet for a flow table entry is sent to the controller
via the sink.

Forwarding layer (FWD). The sink implements a forwarding layer that
is responsible for handling incoming packets according to the rules
specified in the WISE flow table, which is analogous to the flow table
in OpenFlow. It also keeps updating the WISE flow table according to
the flow instructions sent from the controller. The FWD is responsible
for handling incoming SDN-WISE packets. The header of SDN-WISE
packets has a fixed length of 10 bytes and is made of seven fields as
shown in Table 6. SDN-WISE defines eight packet types (SDN, 2021),
as follows:

• Data Packet: It consists of the data packet having variable payload
size.

• Beacon Packet: It is a broadcast packet that reports the distance
of a source node from the sink and its battery level information.

• Report Packet: Reports the list of neighbors and is route to the
sink.

• Request Packet: Request forwarded to the controller to encapsu-
late the unknown flow via the sink node.

• Response Packet: The controller forwards the rule of a requested
unknown packet via response packet to the Openflow switch for
the flow entry of the requested packet.

• Open-path Packet: It is used to create a path between two nodes
in the network.

• Config Packet: The controller uses this packet to read/write the
configuration information of any node or to forward the configu-
ration information required to the node from the controller.

• Reg Proxy Packet: This packet is used to inform the control plane
about a sink and the SD-IoT network or further information about
it.

3.3.3. IoT nodes
In the SDN-based IoT network, every node is directly connected to

the sink via nodes maintaining the flow table having the best next hop
towards the sink. Each node itself sets this path by running a protocol

in which some of the information packets are exchanged between the

9

Table 6
SDN-WISE packet header fields.

Byte(s) Name Description

0 NET Identifier of network
1 LEN Total length of packet
2–3 DST Destination address
4–5 SRC Source destination
6 TYP Packet type
7 TTL Number of hopes remaining
8–9 NXH Next hop address

nodes containing information related to battery level or IoT node’s
power status and hop count to the sink, as there could be multiple sinks
in a network. Therefore, the route to the nearest sink will be preferred
by the node.

3.4. Machine learning based ddos attack detection module

The machine learning detection module is a completely independent
module that has been developed by us as a feature to be used inside
the SDN-Wise controller. Whenever the IoT controller receives a packet
via SOFS from the SD-IoT network, it first checks whether the packet
is legitimate or unknown. If the packet is unknown, the ML detection
module forwards it to the SDN-WISE controller for further inspection.
We have used ML as a black box, our main concern for this research
is to detect DDoS in SD-IoT and we trained models concerning the
standard requirements of the particular model. The features that were
used for training are: (i) IoT Nodes (ii) Simulation Time (iii) Packet
Frequency and (iv) Detection Time in ms.

3.4.1. Selection of classifier
DDoS is a persistent problem due to variances in its attack strengths

and types. Researchers are continuously working on detecting and
mitigating DDoS using various state-of-the-art solutions and algorithms,
including machine learning techniques. In this step, our framework is
designed to select the classifiers as per the defined workflow. In our
case, we have selected three supervised machine learning algorithms,
i.e., Naive Bayes, DT, and support vector machines (SVM), to analyze
the data sets. The pros and cons of each classifier is summarized in
Table 7.

3.4.2. Configuration of machine learning module
The module has been converted into Java JAR file so that it can be

used with any framework. A JAR file extension needs to be included
in the SDN-WISE controller which will facilitate passing packets as a
command-line argument along with a classifier name (i.e., Naive Bayes,
DT, or SVM), and as a result, the JAR file will contain the details
of a packet accordingly. Based on this classification result, a network
engineer can decide to put a specific rule in the controller to forward
or drop certain packets.

4. Testbed and experimental setup

This section explains the details of the implemented testbed and
evaluates the generated results acquired from different sets of experi-
ments. The performance of the machine learning-based DDoS detection
module integrated with the SDN-WISE controller will be discussed in
detail as well.

4.1. Testbed setup

For performing the experiments, the specification of the deployed
testbed consists of Ubuntu v16.0.2, Intel® Core™ i7-3540M 3.00 GHz
processor, and 4.0 GB RAM. SDN-WISE has been integrated as a work-
ing environment on the testbed setup, which has been used to simulate
an SDN-IoT traffic generation. The machine learning library WEKA
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Table 7
Pros and Cons of selected machine learning classifiers.

Classifier Class nature Pros Cons

SVM Decision boundary – SVM effectively learns from a small training set
– Works well with binary classification
– Can model complex and nonlinear relationships
– Performs well when classes are separable
– Outliers have less impact
– Robust to noise (because it maximizes margins)

– Does not perform well with large datasets
– Results on multiple classification tasks are not satisfactory
– Selecting appropriate hyperparameters is important
– Requires significant processing power and memory
– Sensitive to kernel function parameters

NB Probabilistic – NB is very fast in real-time predictions
– Very flexible with larger datasets
– Fast to execute high-performance
– Performs effectively with multi-class
– Works well with higher dimensions
– Robust to noise
– Capability to learn incrementally

– Slow at training
– Not a good estimator
– Fails when one of the certain features has zero
occurrences, the posterior probability will be zero, so
training data should represent the population effectively
– Does not perform well on attribute-related data sets

DT Tree – In DT normalization/ scaling of data is not needed
– Effectively handles missing values
– Easy to explain/visualize due to graphical representation
– Automatically selects features
– Produces a strong interpretation

– DT is more prone to overfitting
– Sensitive to changes in data
– Requires more time for training
– Results are biased to the majority class
– Ignores the correlation of data
(‘‘Waikato Environment for Knowledge Analysis’’) (Witten et al., 2005)
has been used for the application of the classification techniques.
To measure the efficiency of the algorithms, each classifier has been
trained on our dataset using 20% of the collected data as training data
and 80% of the collected data as test data. The Cooja simulator (Öster-
lind et al., 2006) is highly recommended and mostly used for IoT and
wireless sensor networks as the Cooja simulator and Contiki focuses on
low power consuming devices.

4.1.1. Proposed SD-IoT network architecture
In this research, the SD-IoT-based network model consists of four

main components, including ML-based DDoS Attack detection Module,
SDNWISE controller, IoT controller, and SD-IoT network. The SD-
IoT network components have IoT devices, including sensors, smart
devices, and others that communicate via SOFS. We designed a network
that has malicious as well as normal nodes. These IoT devices are
generating malicious and normal traffic in the SD-IoT network. The
SOFS acts as a forwarding device to forward the SD-IoT network traffic
according to the flow table. IoT controller is used as a mediator between
SD-IoT network and Machine learning-based security applications, and
these applications are running at the top SDNWISE controller. SD-
NWISE controller provides the network management functionalities
and exposes the north-bound APIs for security applications. The ML-
based attack detection module runs at the top of SDNWISE and detects
the DDoS attack using machine learning algorithms.

The experiments carried out in this research are based on variations
of the following attributes:

• Number of IoT nodes
• Simulation time
• Packet frequency (normal and burst mode) (packets/min)
• Number of attack nodes

The sizes of the above-mentioned parameters change between ex-
eriments used to evaluate the model. We performed numerous exper-
ments to determine resource utilization, including CPU, memory, and
etection time, while adjusting the size of each parameter to obtain the
ptimal result.

.2. Results and evaluations

In this research, we conducted different experiments by generating
alicious and normal traffic through IoT devices to observe the uti-

ization of resources. Moreover, we also observed controller resources
hrough these experiments with varying parameters. The details of each

xperiment and their respective results are presented as follows:
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Table 8
Experiment A1.

Algorithm
name

IoT nodes
(Vary)

Simulation
time

Packet frequency Detection
time in ms

Naive Bayes 5 15 min 20 packet/min 578
Decision Tree 5 15 min 20 packet/min 481
SVM 5 15 min 20 packet/min 602

Table 9
Experiment A2.

Algorithm
name

IoT nodes
(Vary)

Simulation
time

Packet frequency Detection
time in ms

Naive Bayes 15 15 min 20 packet/min 576
Decision Tree 15 15 min 20 packet/min 482
SVM 15 15 min 20 packet/min 609

Table 10
Experiment A3.

Algorithm
name

IoT nodes
(Vary)

Simulation
time

Packet frequency Detection
time in ms

Naive Bayes 30 15 min 20 packet/min 576
Decision Tree 30 15 min 20 packet/min 502
SVM 30 15 min 20 packet/min 622

4.2.1. Experiment-A
To analyze the attack detection times for different algorithms in

the SD-IoT network, we conducted five separate experiments as shown
in Tables 8 to 12. In each experiment, we changed the IoT nodes
with other fix parameters. Experiment A is based on the following
parameters,

• Varying number of IoT nodes
• Fix simulation time
• Fix packet frequency

Experiment A has been performed with five different variations.
Three different machine learning classifiers have been utilized, i.e.,
Naive Bayes, a Decision Tree (DT) classifier, and a support vector ma-
chine classifier. It has been revealed that the three selected classifiers
have taken early the same time for detection. Furthermore, it has been
observed that an SD-IoT network with 5 to 45 nodes can effectively
utilize a machine learning detection module for very favorable out-
comes, as shown in Fig. 7. The DT classifier proved efficient in average
classification time, in comparison to Naive Bayes and support vector
machine.
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Fig. 7. Experiment A with IoT node variations.
Fig. 8. Experiment B with IoT packet variations.
Table 11
Experiment A4.

Algorithm
name

IoT nodes
(Vary)

Simulation
time

Packet frequency Detection
time in ms

Naive Bayes 40 15 min 20 packet/min 583
Decision Tree 40 15 min 20 packet/min 497
SVM 40 15 min 20 packet/min 609

4.2.2. Experiment-B
In this experiment, we use the packet frequency as the variable

parameter, whereas the other parameters have constant values, as
shown in Tables 13 to 17. Experiment B also has been performed
with five different variations. Similar to experiment A, it has been
observed that all of the selected classifiers have taken similar detection
11
Table 12
Experiment A5.

Algorithm
name

IoT nodes
(Vary)

Simulation
time

Packet frequency Detection
time in ms

Naive Bayes 45 15 min 20 packet/min 572
Decision Tree 45 15 min 20 packet/min 502
SVM 45 15 min 20 packet/min 608

time, the selected classifiers include Naive Bayes, DT, and Support
Vector Machine. The results have shown that the detection module
needs a maximum of 70 packets/min, without affecting detection time.
However, the average classification time for DT is less in comparison
with Naive Bayes and support vector machine, as shown in Fig. 8.
Experiment B is based on the following parameters,
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Fig. 9. Experiment C with simulation time variations.
Table 13
Experiment B1.

Algorithm
name

IoT nodes Simulation
time

Packet frequency
(Vary)

Detection
time in ms

Naive Bayes 15 15 min 10 packet/min 574
Decision Tree 15 15 min 10 packet/min 357
SVM 15 15 min 10 packet/min 605

Table 14
Experiment B2.

Algorithm
name

IoT nodes Simulation
time

Packet frequency
(Vary)

Detection
time in ms

Naive Bayes 15 15 min 20 packet/min 579
Decision Tree 15 15 min 20 packet/min 363
SVM 15 15 min 20 packet/min 612

Table 15
Experiment B3.

Algorithm
name

IoT nodes Simulation
time

Packet frequency
(Vary)

Detection
time in ms

Naive Bayes 15 15 min 30 packet/min 581
Decision Tree 15 15 min 30 packet/min 356
SVM 15 15 min 30 packet/min 613

Table 16
Experiment B4.

Algorithm
name

IoT nodes Simulation
time

Packet frequency
(Vary)

Detection
time in ms

Naive Bayes 15 15 min 50 packet/min 578
Decision Tree 15 15 min 50 packet/min 354
SVM 15 15 min 50 packet/min 613

• Varying frequency of packet
• Fix simulation time
• Fix number of IoT nodes

.2.3. Experiment-C
Experiment C has been performed with five different variations, as

hown in Tables 18 to 20. In the experiment, the interval of simulation
ime has been varied from 45 to 15 min, and it is revealed that there
12
Table 17
Experiment B5.

Algorithm
name

IoT nodes Simulation
time

Packet frequency
(Vary)

Detection
time in ms

Naive Bayes 15 15 min 70 packet/min 576
Decision Tree 15 15 min 70 packet/min 368
SVM 15 15 min 70 packet/min 620

Table 18
Experiment C1.

Algorithm
name

IoT nodes Simulation
time (Vary)

Packet frequency Detection
time in ms

Naive Bayes 15 45 min 20 packet/min 416
Decision Tree 15 45 min 20 packet/min 506
SVM 15 45 min 20 packet/min 596

Table 19
Experiment C2.

Algorithm
name

IoT nodes Simulation
time (Vary)

Packet frequency Detection
time in ms

Naive Bayes 15 30 min 20 packet/min 460
Decision Tree 15 30 min 20 packet/min 502
SVM 15 30 min 20 packet/min 803

Table 20
Experiment C3.

Algorithm
name

IoT nodes Simulation
time (Vary)

Packet frequency Detection
time in ms

Naive Bayes 15 15 min 20 packet/min 576
Decision Tree 15 15 min 20 packet/min 487
SVM 15 15 min 20 packet/min 609

was no effect on the detection time of the machine learning module,
as shown in Fig. 9. However, in the case of average classification
time, the performance of the Decision Tree (DT) classifier was better in
comparison with the remaining two classifiers. Experiment C is based
on the following parameters,

• Varying simulation time
• Fix number of IoT-nodes
• Fix frequency of packet
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Fig. 10. Experiment D1: CPU and memory usage — Machine Learning (ML) vs. Non-Machine Learning module.
Table 21
Experiment-E: SDN-WISE controller throughput.

Throughput (No. of packets) Packets

Total throughput in 6 h 1 049 756
AVG throughput/h 174 959
AVG throughput/min 2915
AVG throughput/s 48

4.2.4. Experiment-D1: CPU and memory usage comparison of different
machine learning algorithms and without machine learning module

Usage of CPU and Memory consumption has been observed by
performing experiment D1. The experiment proved that the machine
learning module put less burden on the CPU, and it only uses an
additional 3% of CPU for its functionality. Moreover, similar to CPU
usage, the machine learning module also utilized 3% of additional
memory usage for its functionality as shown in Fig. 10.

This experiment has been performed to compare the utilization of
CPU and memory for different classifiers. The results of the experiment
have shown that the support vector machine and DT have utilized
almost equal quantities of CPU usage. However, the DT needs more
memory than the support vector machine and Naive Bayes as shown in
Fig. 10.

4.2.5. Experiment-D2: Memory and CPU utilization: Periodic check vs. all
packets

Experiment D2 has been performed to measure the utilization of
CPU and memory, in a scenario when each packet is sent to a machine
learning-based classifier, instead of sending it to the SD-IoT controller.
It has been observed that additional CPU and memory have been
utilized by all of the selected machine learning classifiers when they
acquire packets in this manner. The results are shown in Fig. 11. For
the selected scenario, the DT classifier proved to be most effective in
CPU utilization, but least effective in memory usage.

4.2.6. Experiment-E
This experiment is used to calculate the throughput of the detection

module. The simulation for this experiment has been executed for a
total of 6 hours, and the outcome has shown that the machine-learning
detection module can process the quantity of 48 packets per second,

as shown in Table 21. According to the results shown in the above

13
Table 22
Average summary of accuracy and detection rate.

Classifier Accuracy % Detection rate

Naive Bayes 97.4 554
Decision Tree 98.1 432
SVM 96.1 625
Overall Average 97.2 537

subsections, we can conclude that our machine learning-based DDoS
attack detection module efficiently detects the attack with additional
usage of CPU 3% and memory 3% with the machine learning module.

4.2.7. Experiment-F
In our framework, we considered accuracy as an average result of

classified packets while the detection rate is the total packet detection
rate. Results shown in Table 22 are the average accuracy and detection
rate of all the experiments performed in this research. We achieved
an accuracy of 97.4% for Naive Bayes, 98.1% for Decision Tree, and
96.1 for the SVM classifier. It is concluded from Tables 8 to 20 that on
average the Decision Tree model outperforms in both experiments (A &
B), while Naive Bayes performed better for experiment C. The proposed
framework has an overall average score of 97.2%.

4.3. Discussion

Numerous experiments are carried out in this research to evaluate
the performance of a machine learning-based DDoS attack detection
application in SD-IoT networks. This section presents the conclusions
from the experiments carried out in this study.

IDS detects DDoS attacks in traditional networks using different
techniques with regard to performance on factors including CPU, mem-
ory, throughput, and attack detection time. In the attack response, the
framework notifies about the malicious flow to the controller module
whenever the DDoS attack is detected by a Machine learning-based
DDoS Attack detection module. The SDNWISE controller will take dif-
ferent attack mitigation actions; the attack countermeasures might be
a flow of attacking nodes being removed from the flow table and nodes
marked as malicious. However, the proposed framework detects the
DDoS attack in the SD-IoT network with very low time and saves and
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Fig. 11. Experiment D2: CPU and memory usage of ML classifiers — all-packets’ check vs. periodic checks.
ptimizes the resources as compared to traditional IDS. Furthermore,
hese mitigation approaches are based on the proper OSI model layer,
uch as layer 3, layer 4, and layer 7. These mitigating approaches
nclude Random Port Hopping, network filtering (Egress and Ingress),
nd a technique in which the flow is branded as malicious, and the
ackets of the labeled flow are dropped (Rai and Challa, 2016; Sahay
t al., 2015).

The experiment demonstrates that augmenting the number of IoT
odes through standard node parameters does not alter CPU or memory
tilization. However, elevating IoT nodes’ burst mode, attack node,
r packet payload parameters has an impact on CPU and memory
onsumption, as well as the SD-IoT network throughput and controller
orkload parameters. As the algorithm utilizes counters to store integer
r floating-point data, changes to these parameters do not affect the al-
orithm. The IoT nodes in the study are limited in number and transmit
essages at a rate of one per second or, in burst mode, up to a max-

mum of 1000 messages per second. The storage range of the counter
ariables accommodates a broad spectrum of counter values and, there-
ore, does not have any impact on the algorithm’s counter variables.
urthermore, counter-based algorithms rely on counter values that are
eprogrammed with threshold values. The algorithm creates the DDoS
ttack warming message once the counter hits the threshold number.

.3.1. Attack detection time
According to our results, the Decision Tree (DT) classifier efficiently

lassifies the malicious traffic in 480 to 500 ms with a minimum of
and a maximum of 45 IoT nodes as compared to Naive Bayes and

VM with other fixed parameters as shown in Tables 8 to 12. With a
arying packet frequency, the attack detection time was reduced with
T classifier, however, we could not observe significant differences
y increasing the packet frequencies. Although, when we conducted
he experiments with varying sizes of simulation parameters we get
ifferent results. In this scenario, the Naive Bayes classifier gets less
ime with 30 and 45 simulation times. There is a big variation in
etection time with the SVM classifier showing 596, 803, and 609 ms at
5, 30, and 15 min of simulation time respectively. The DT classifier is
est and SVM gets the highest time to detect the attack with minimum
imulation time as shown in Tables 18 to 20. According to the results,
ncreasing the IoT node parameter has a negligible effect on detection
ime, but increasing the packet frequency parameter causes detection

ime to fluctuate.
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4.3.2. CPU and memory utilization
According to the results of the experiments D1-D2 conducted for

CPU and memory utilization, the SVM classifier gets less memory and
CPU utilization compared to Naive Bayes and DT. The DT classifier
utilizes the highest memory 35% as compared to others classifiers with
the lowest CPU usage 27%. It is also observed that the SVM classifier
has minimum usage of CPU and memory with periodic checking and
gets the highest utilization of memory and CPU during all packet
checking. The DT on the other hand utilizes high memory periodically
as well as all packet checking as compared to other classifiers.

4.3.3. SDN-WISE controller throughput with machine learning module
The SDN-WISE controller processes a total of 1 049 756 packets in

the experiment and processes 48 packets in a second at an average of
174 959 packets in one hour. It is also revealed that the module takes
approximately 30% usage of memory and CPU and saves about 70%
memory and keeps CPU free to 70% to process the SD-IoT network
traffic. For the sake of performance evaluation, a comparison of the
machine learning module results with other published work is provided
in Table 23.

5. Conclusion and future work

IoT devices are critical components of today’s digital ecosystem,
as they provide service availability and mobility. Because IoT devices
operate on low power and have limited resources and are typically
deployed in open spaces, they are vulnerable to a variety of threats.
This research focuses on the security risks associated with IoT devices.
Detecting and preventing DDoS attacks made at and via IoT devices
is crucial for any IoT system. This study introduces a novel machine
learning-based approach for detecting DDoS attacks. The attack detec-
tion service is based on SDN and is placed on a centralized network
management controller, allowing for efficient protection of the IoT
from threats. The network has been designed with both normal and
malicious nodes in order to create a large amount of traffic. On the
top SDNWISE controller, the DDoS attack detection program classifies
traffic using machine learning classifiers such as Naive Bayes, DT, and
Support Vector Machine. It will be advantageous to implement coun-
termeasures for early detection of DDoS attacks. As a result, we may
isolate IoT devices that communicate with malicious nodes, avoiding
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Table 23
Comparison of the proposed framework’s results with other studies.

Study Year ML algorithms Results Our proposed framework

Zhang et al.
(2020)

2020 Random forest The authors achieved different results by varying features
of RF. Accuracy has been the major factor in evaluation.
While authors also optimized run-time overheads by
reducing RF forest size and tree path.

In comparison to this framework, we used three different
algorithms and achieved an accuracy rate of 97.4%,
96.1%, and 98.1%, for Naïve Bayes, SVM, and DT
respectively. From the results, it is noticed that the forest
size affects the accuracy.

Chen et al.
(2020)

2020 Decision tree F1-score is reported to be approximately 97% showing
that the system detects DDoS attacks with high accuracy

In comparison to the presented study, we used three
different algorithms and the DT achieved an accuracy
ratio of 98.1%.

Silveira et al.
(2020)

2020 Random Forest, Logistic
Regression, and Extreme
Gradient Boost (XGP)

The authors achieved results at a sampling rate of 20%
of network traffic, showing high precision of
approximately 93%, and a low false alarm rate of 96%.

Our proposed framework, on average,
achieved an accuracy of 97.2%
the creation of a higher level of attack. To evaluate the developed
framework, various experiments were conducted using a range of attack
scenarios via simulation. By incorporating supervised and unsupervised
classifiers, we may extend this research into constructing an attack mit-
igation solution and obtaining a more optimized result. Additionally,
the solution may be deployed to include various sorts of DDoS attacks
and train it on a variety of IoT-generated datasets to get new insights
and enhance the existing framework.

This work can be extended through other supervised learning algo-
rithms including Random Forest, Xg boost, and other statistical-based
approaches to machine learning. Furthermore, we can also such as
unsupervised learning, semi-supervised learning, and reinforcement
learning. Additionally, it can be also extended to integrate a DDoS
attack Mitigation module to drop the malicious traffic and block the
vulnerable nodes. This paper only focuses on the flooding types of DDoS
attacks; however, it can be extended to other types of DDoS attacks and
also with different types of IoT networks.
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