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Abstract
Internet of Things (IoT) data has the potential to be utilized in many domain-specific applications to
enable smart sensing in areas that were not initially covered during the conceptualization phase of these
applications. Typically, data collected in IoT scenarios serve a specific purpose and follow heterogeneous
data models and domain-specific ontologies. Therefore, IoT data could not easily be integrated into
domain-specific applications, as it requires ontology alignment of diverse data models with the end
application. This poses a big challenge to semantic interoperability during the integration of IoT data
into a pre-established system. In this line, the alignment process is cumbersome and challenging for an
ontology engineer, since it requires a manual review of the relevant ontologies that could be aligned with
the IoT data. Additionally, before aligning each term used in the IoT data with the concepts defined in the
domain-specific ontologies, all similar/related terms in the given ontologies must be considered. In this
paper, we propose a solution that supports the alignment process by utilizing semantic web technologies
and Natural Language Processing (NLP). Our novel solution proposes an NLP-based term alignment with
a similarity score that supports identifying the relevant terms used in IoT data and ontologies and stores
the similarity scores among terms based on different similarity algorithms. We showcase our solution by
aligning IoT sensor data with the water and IoT domain ontologies.
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1. Introduction

Around the world, software providers are building Internet of Things (IoT) applications by
integrating various solutions and systems that enable remote and continuous monitoring and
diagnosis of problems, manage maintenance issues and optimize domain-specific problems
by utilizing data-driven and knowledge-driven approaches. The gradual deployment of data-
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enabled IoT devices, such as smart sensors and actuators, by organizations has offered an
opportunity to build a cohesive ’overlay network’ in the IoT landscape. Once applications and
IoT devices are networked, they can start communicating and exchanging information. However,
their interoperability (exchange and making use of information) can not be successful without
the syntactic (structure) and semantic (meaning) interoperability of the data/information they
share. For instance, at the point of decision-making, a Decision Support System (DSS) relies
on the understanding of every bit of data/information that is available from every single IoT
device and database, otherwise, it would not be able to advise correctly.

Interoperability of IoT-enabled applications is still a subject of research as cited in [1], one of
the main obstacles towards the promotion of IoT adoption and innovation is data interoperability.
A key challenge to achieving semantic data interoperability is the alignment of heterogeneous
data models among the diverse implementations. Typically, this process needs the calculation
of the so-called semantic similarity scores among potential synonymous terms. Despite the
existence of similarity calculation algorithms in the literature, this process requires considerable
manual work from data workers and analysts to align the application-specific data models to
domain-specific ontologies and standards. As a response to this challenge, in this paper, we
present our approach that relies on the so-called Semantic Similarity Scoring Ontology (S3O),
which automatically identifies the pairs of potential synonymous terms between a given IoT
data and existing ontologies and standards and stores their similarity scores to make them
available for future reference and reuse. Our approach is expected to significantly improve the
efficiency of the cumbersome IoT data alignment process, providing a framework that could
be extended to incorporate several ontologies, standards, and similarity score algorithms. To
validate our proposed approach, we present a reference implementation of the S3O and will
validate its application in an IoT-enabled smart water application.

The rest of the paper is organized as follows. Section 2 discusses the related works in
ontology-based semantic interoperability and Natural Language Processing (NLP)-based se-
mantic similarity. Section 3 defines the research questions and proposes our novel approach
to address these questions. In section 3.3, the proposed Semantic Similarity Scoring Ontology
(S3O) is described. In section 4, we present a showcase of our approach by applying in the water
domain for IoT-enabled Smart Water Networks (SWNs).

2. Related Work

Existing approaches to support semantic interoperability in the relevant IoT projects are Smart
End-to-end Massive IoT Interoperability, Connectivity and Security (SEMIoTICS) [2] and Bridg-
ing the Interoperability Gap of the IoT (BIGIoT) [3]. They propose interoperability solutions that
are based on the transitive conversion model for data protocols, e.g., if Message Queuing Teleme-
try Transport (MQTT) can be converted to/from Constrained Application Protocol (CoAP) and
CoAP can be converted to/from Representational State Transfer (REST) than MQTT can be
converted to/from REST. Closer to our application scenario in the water domain, a similar inter-
operability approach is adopted in the water-related projects e.g., Water analytics and Intelligent
Sensing for Demand Optimised Management (WISDOM) [4] and Water Enhanced Resource
Planning (WatERP) [5], where at first a base ontology (e.g., WISDOM ontology) is aligned with



all possible standards and ontologies then it is used to convert from one standard/ontology to
another. Overall, these approaches assume that an ontology of IoT data already exists or has
already been adopted. However, this assumption may not hold in real-world scenarios, where
IoT data may be re-used in different domain applications, each one using different terms to
label their data. Therefore, these works do not address the problem considered in this paper,
which also includes the automatic identification of potential synonymous terms among existing
ontologies and standards.

Other related works focus on the alignment of similar terms among different dictionaries.
In this context, the alignment process of a dictionary or an ontology aims to align the terms
used in data models of different applications to achieve semantic interoperability, i.e., find
semantic similarity/relatedness of two terms that originate from different ontologies or data
models. Since the initiative of Semantic Web (SW), interest in developing and using ontologies
for semantic interoperability has grown. This has also led to research approaches for ontology
alignment in recent decades. In [6], a survey and comparison of most of the ontology-based
similarity/relatedness measures is presented. It also proposes a feature-based similarity measure
based on taxonomical features of an ontology to calculate semantic similarity. In [7], a semantic
similarity measure based on information distance for ontology alignment is presented. A
recently published paper[8] summarizes and compares ontology matching solutions that use
the same type of information, and analyses the challenges in different types of information. The
list of similarity calculation algorithms is growing with time, as there is no single algorithm to
find the perfect semantic match of terms we will need to consider and reason on the similarity
score of all possible algorithms during the alignment process. In this context, less attention
has been given to a solution that could assist in managing and reasoning the similarity of all
computed similarity-based algorithms.

Our work differs in this respect since it introduces an ontology that encompasses different
similarity algorithms and provides an abstraction to store pairs of similar terms and their scores,
respectively. It enables an ontology engineer to create a linked Knowledge Graph (KG) from
multiple domains, such as environment, healthcare, finance, and government while aligning
IoT data from different sources with domain-specific ontologies through NLP.

3. Research Questions & Proposed Approach

3.1. Research Questions

Despite the existing work discussed in Section 2, it is evident that there is a lack of automated
tools to support the semantic interoperability of IoT data. In this paper, we argue that a holistic
approach for the alignment of IoT data to existing ontologies and data models is necessary
to support and promote semantic interoperability across the heterogeneous IoT landscape.
This holistic approach should provide automated processes for the calculation of the so-called
similarity score between different terms (i.e., data labels) and should subsequently create a
persistent model, expressed through an ontology that will store the relation between the terms
under comparison in the associated metadata (including similarity scores, scoring algorithm
etc.). The resulting similarity scoring ontology could then be queried to retrieve similarity
scores and support fully automated or semi-automated processes for aligning different semantic



Figure 1: Data and Information Interoperability Model (DIIM)

models. To this end, the research questions addressed in this paper are summarized below:

1. Which terms belonging to existing ontologies or data models can characterize a given
entity, e.g., object or attribute name, in an IoT dataset?

2. Given a list of relevant terms identified, which is the semantic similarity score (potentially
calculated with different algorithms) between two terms that may potentially refer to the
same entity?

3. Given a term associated with an entity, which are the terms that show a semantic similarity
score above a given threshold?

4. How the semantic similarity score between two terms could be retrieved efficiently to
support recurring queries and avoid score re-calculation?

3.2. Proposed Approach

To answer the above research questions, our approach builds on the conceptual Data and
Information Interoperability Model (DIIM) introduced in [9]. As shown in figure 1, Data and
Information Interoperability Model (DIIM) takes any IoT dataset and domain-specific ontologies
as input and generates an annotated IoT KG as output. DIIM transforms the semi-structured
IoT dataset into an IoT KG. It aligns the terms/words (labels to name data/values) of IoT the
dataset with the terms/words used in ontologies to describe the concepts, relations, instances,
and axioms. Found alignments are stored in the IoT KG as annotations of the respective terms to
link the terms to related ontologies. All ontologies must be reviewed regardless of the alignment
process nature (manual or computer-assisted). In a computer-assisted alignment, the number of
ontologies to be reviewed could become high when all possible alignments are searched in a
big repository of ontologies. Here, NLP-assisted alignment of the IoT data with domain-specific



Table 1
Parameters and functions used in algorithms

Name Description
𝑑𝑎𝑡𝑎𝐷𝑖𝑟 The URI of the directory or repository where 𝐼𝑜𝑇 𝑑𝑎𝑡𝑎 or 𝑂𝑛𝑡𝑜𝑠𝑑𝑎𝑡𝑎 are held in

Unicode Transformation Format – 8-bit (UTF-8) format.
𝐼𝑜𝑇 𝑑𝑎𝑡𝑎 Semi-structured IoT data presented in human-machine readable UTF-8 text format

and serialized in JavaScript Object Notation (JSON) or Comma-separated Values
(CSV) file.

𝑂𝑛𝑡𝑜𝑠𝑑𝑎𝑡𝑎 Ontologies described in human-machine readable UTF-8 text format and serialized
in a text, Extensible Markup Language (XML), HyperText Markup Language (HTML),
Resource Description Framework (RDF), or Web Ontology Language (OWL) file.

𝑐𝑜𝑟𝑝𝑜𝑟𝑎 It is a collection of human-machine readable UTF-8 files that are processed after
reading the resource from a given URI of 𝐼𝑜𝑇 𝑑𝑎𝑡𝑎 or 𝑂𝑛𝑡𝑜𝑠𝑑𝑎𝑡𝑎.

𝐼𝑜𝑇 𝑐𝑜𝑟𝑝𝑢𝑠 Corpus of IoT data presented in human-machine readable UTF-8 text file.
𝑂𝑛𝑡𝑜𝑠𝑐𝑜𝑟𝑝𝑢𝑠 Corpus of ontology presented in human-machine readable UTF-8 text file.

𝑓𝑐𝑜𝑟𝑝𝑢𝑠 This function takes 𝐼𝑜𝑇 𝑑𝑎𝑡𝑎 or 𝑂𝑛𝑡𝑜𝑑𝑎𝑡𝑎 as input and transforms the input to a
𝐼𝑜𝑇 𝑐𝑜𝑟𝑝𝑢𝑠 or 𝑂𝑛𝑡𝑜𝑐𝑜𝑟𝑝𝑢𝑠 that is suitable for NLP operations.

applications could be beneficial and aid the semantic communication process. In a computer-
assisted alignment process, one finds various alignment algorithms to find term-similarity and
surely new algorithms will be developed as algorithms are case-specific, and we may need to
consider different algorithm results in different cases. Therefore, we have a construct that can
hold information about the applied algorithms, their calculated similarity score and terms with
their reference relation. We propose an ontology instead of a database schema because we can
link the terms directly to the original ontologies and reason on similarity calculated by the
different algorithms. In this line, our approach includes the following steps:

Step 1 Build corpus from IoT data and ontologies: The first step is to create corpora of IoT
data and domain-specific ontologies, so that NLP could be applied to align the terms. Algorithm
1 explains the process of building a corpus from a given Uniform Resource Identifier (URI). A
NLP corpus is the textual representation of IoT datasets and ontologies without any digits and
special characters. It is built while eliminating digits and special characters and keeping words
(text) in the IoT datasets and ontologies as they occur. Table 1 lists the parameters and functions
used in defined algorithms. Inputs and outputs are represented through URI

Step 2 Finding potential ontologies for alignment: In this step, we shortlist the ontologies
that resemble the given IoT data to save computation time. Because there could be many
ontologies for processing, some of them could be aligned and some of them not. If the number of
given ontologies is significantly low, then this step could be skipped. In the following algorithm
2, we use Latent Semantic Index (LSI) to find the term-similarity-based relationship between
the given IoT dataset and ontologies. However, any other kind of similarity algorithm could
be applied to shortlist the relevant ontologies. Gensim library [10] creates a LSI model of each
ontology and indexes these models. Finally, the index is compared with the LSI model of IoT
data to calculate their similarity/relatedness. The threshold to filter ontologies is an optional
parameter. If it is not provided in the input, 1.0 as 100% similarity becomes the default value.

Step 3 Build dictionaries andWord2Vector (Word2Vec) models of IoT data and ontolo-



Algorithm 1 Build NLP corpus from given URI
Input 𝑑𝑎𝑡𝑎𝐷𝑖𝑟 /* URI */
Output 𝑐𝑜𝑟𝑝𝑜𝑟𝑎 /* URI */

1: procedure 𝑓𝑐𝑜𝑟𝑝𝑢𝑠
2: 𝑐𝑜𝑟𝑝𝑜𝑟𝑎← 𝐿𝑖𝑠𝑡()
3: for each 𝑓𝑖𝑙𝑒 ∈ 𝑑𝑎𝑡𝑎𝐷𝑖𝑟 do
4: fileString← readFile(file)
5: lowerString← lowerCase(fileString)
6: cleanedString← removeNumeric(lowerString)
7: cleanedString← removeSpecialChars(cleanedString)
8: cleanedString← removeStopwords(cleanedString)
9: 𝑐𝑜𝑟𝑝𝑢𝑠← 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑐𝑙𝑒𝑎𝑛𝑒𝑑𝑆𝑡𝑟𝑖𝑛𝑔)

10: 𝑐𝑜𝑟𝑝𝑜𝑟𝑎.𝑎𝑑𝑑(𝑐𝑜𝑟𝑝𝑢𝑠)
11: end for
12: return 𝑐𝑜𝑟𝑝𝑜𝑟𝑎
13: end procedure

Algorithm 2 Build LSI from IoT data or ontologies and calculate their similarity score
Input path of 𝐼𝑜𝑇 𝑐𝑜𝑟𝑝𝑢𝑠, 𝑂𝑛𝑡𝑜𝑐𝑜𝑟𝑝𝑢𝑠 and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 /* optional parameter*/
Output pathOfLsiSimilarOntos

1: procedure 𝑓𝑙𝑠𝑖𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

2: iotCorpus← readCorpus(pathOfIoTCorpus)
3: ontoCorpus← readCorpus(pathOfOntoCorpus)
4: ontoLSIModel← buildLSIModel(ontoCorpus)
5: ontoLSIIndex← buildLSIIndex(ontoLSIModel)
6: iotLSIModel← buildLSIModel(iotCorpus)
7: iotOntoLSISimilarity← calculateSimilarity(ontoLSIIndex,iotLSIModel)
8: lsiSimilarOntos← filterOntologies(iotOntoLSISimilarity,threshold)
9: pathOfLsiSimilarOntos← writeFile(lsiSimilarOntos)

10: return pathOfLsiSimilarOntos.
11: end procedure

gies: As shown in the algorithm 3, we first build dictionaries (list of used terms) and Word2Vec
models (representation of used terms as vectors) from given IoT corpus and ontology corpora
(list of corpus). Then, we train Word2Vec models of ontologies with given IoT corpus.

Step 4 Calculate algorithm-based similarity score of terms in IoT data and ontologies:
In this step, we want to calculate the algorithm-based similarity of each term in IoT data with
terms used in given ontologies. In algorithm 4 we use Word2Vec similarity and String-search
Matching (SSM) algorithms to demonstrate the similarity calculation procedure. Hence, any
other similarity calculation algorithms of choice can be added to the procedure to have preferred
results. As output, 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡 and 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦 lists have all
terms of IoT data and ontologies, and their calculated Word2Vec and String-search Matching



Algorithm 3 Build Word2Vec models and dictionaries of IoT data and ontologies
Input 𝑖𝑜𝑡𝐶𝑜𝑟𝑝𝑜𝑟𝑎 and 𝑜𝑛𝑡𝑜𝑠𝐶𝑜𝑟𝑝𝑜𝑟𝑎
Output 𝑖𝑜𝑡𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠, 𝑖𝑜𝑡𝐷𝑖𝑐𝑡𝑠, 𝑜𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠, 𝑜𝑛𝑡𝑜𝑠𝐷𝑖𝑐𝑡𝑠, 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠,
and 𝑎𝑙𝑙𝐼𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠

1: procedure 𝑓𝑤2𝑣

2: 𝑜𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠← buildW2VModel(ontosCorpora)
3: iotW2vModels← 𝑏𝑢𝑖𝑙𝑑𝑊2𝑉𝑀𝑜𝑑𝑒𝑙(𝑖𝑜𝑡𝐶𝑜𝑟𝑝𝑜𝑟𝑎)
4: 𝑜𝑛𝑡𝑜𝑠𝐷𝑖𝑐𝑡𝑠← 𝑏𝑢𝑖𝑙𝑑𝐷𝑖𝑐𝑡(𝑜𝑛𝑡𝑜𝑠𝑊2𝑉𝑀𝑜𝑑𝑒𝑙𝑠)
5: 𝑖𝑜𝑡𝐷𝑖𝑐𝑡𝑠← 𝑏𝑢𝑖𝑙𝑑𝐷𝑖𝑐𝑡(𝑖𝑜𝑡𝑊2𝑉𝑀𝑜𝑑𝑒𝑙𝑠)
6: 𝑎𝑙𝑙𝐼𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠← 𝐿𝑖𝑠𝑡()
7: for each 𝑖𝑜𝑡𝐶𝑜𝑟𝑝𝑢𝑠 ∈ 𝑖𝑜𝑡𝐶𝑜𝑟𝑝𝑜𝑟𝑎 do
8: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠← 𝐿𝑖𝑠𝑡()
9: for each 𝑜𝑛𝑡𝑜𝑊2𝑣𝑀𝑜𝑑𝑒𝑙 ∈ 𝑜𝑛𝑡𝑜𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠 do

10: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑀𝑜𝑑𝑒𝑙← 𝑡𝑟𝑎𝑖𝑛(𝑜𝑛𝑡𝑜𝑊2𝑣𝑀𝑜𝑑𝑒𝑙, 𝑖𝑜𝑡𝐶𝑜𝑟𝑝𝑢𝑠)
11: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠.𝑎𝑑𝑑(𝑜𝑛𝑡𝑜𝑊𝐼𝑜𝑡𝑊2𝑣𝑀𝑜𝑑𝑒𝑙)
12: end for
13: 𝑎𝑙𝑙𝐼𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠.𝑎𝑑𝑑(𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠)
14: end for
15: return 𝑖𝑜𝑡𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠, 𝑖𝑜𝑡𝐷𝑖𝑐𝑡𝑠, 𝑜𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠, 𝑜𝑛𝑡𝑜𝑠𝐷𝑖𝑐𝑡𝑠,

𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠, 𝑎𝑙𝑙𝐼𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠
16: end procedure

(SSM) similarity score.
Step 5 Build an ontology and store algorithm-based similarity score: In the final step,

we build an ontology that stores the information on the similarity of IoT data with an ontology.
It also stores the applied algorithm-based similarity score as a relation between two terms that
are used in IoT data and ontology. The following algorithm 5 depicts the procedure to populate
the ontology with facts and create similarity relationships among entities. S3O contains all
terms of IoT data and ontologies, and their calculated Word2Vec and SSM similarity score.
Additionally, it also contains the LSI similarity score of given IoT data in relation to ontologies.

3.3. Semantic Similarity Scoring Ontology

In this section, we describe the proposed Semantic Similarity Scoring Ontology (S3O) [11] that
stores the terms used in IoT data and ontologies, and stores the similarity score based on the
applied various algorithms. Additionally, it stores the directly calculated similarity between
any IoT data and an ontology. S3O covers all research questions for aligning the IoT terms
with domain-specific ontologies. When S3O is loaded and populated with re facts it will hold
information to answer the question from section 3.1.

Figure 2 displays the S3O ontology that was developed in Protégé [12]. S3O ontology starts
with an abstract class Thing. It has two data properties, serialization_format to represent the
data representation format and URI for identification, that are inherited by its subclasses. Its
direct subclasses are Document, Term, and Similarity. Term class represents a word or phrase



Algorithm 4 Calculate algorithm-based similarity score of terms in IoT data and ontologies
Input 𝑖𝑜𝑡𝐷𝑖𝑐𝑡𝑠, 𝑜𝑛𝑡𝑜𝑠𝐷𝑖𝑐𝑡𝑠 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠
Output 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡 and 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦𝐿𝑙𝑖𝑠𝑡

1: procedure 𝑓𝑠𝑖𝑚
2: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡← 𝐿𝑖𝑠𝑡()
3: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡← 𝐿𝑖𝑠𝑡()
4: /* SSM-based similarity calculation*/
5: for each 𝑖𝑜𝑡𝐷𝑖𝑐𝑡 ∈ 𝑖𝑜𝑡𝐷𝑖𝑐𝑡𝑠 do
6: for each 𝑖𝑜𝑡𝑇𝑒𝑟𝑚 ∈ 𝑖𝑜𝑡𝐷𝑖𝑐𝑡 do
7: for each 𝑜𝑛𝑡𝑜𝐷𝑖𝑐𝑡 ∈ 𝑜𝑛𝑡𝑜𝐷𝑖𝑐𝑡𝑠 do
8: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑇𝑒𝑟𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦 ← 𝐿𝑖𝑠𝑡()
9: for each 𝑜𝑛𝑡𝑜𝑇𝑒𝑟𝑚 ∈ 𝑜𝑛𝑡𝑜𝐷𝑖𝑐𝑡 do

10: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑆𝑠𝑚(𝑖𝑜𝑡𝑇𝑒𝑟𝑚, 𝑜𝑛𝑡𝑜𝑇𝑒𝑟𝑚)
11: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑇𝑒𝑟𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦.𝑎𝑑𝑑(𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)
12: end for
13: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡.𝑎𝑑𝑑(𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑇𝑒𝑟𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦)
14: end for
15: end for
16: end for
17: /* Word2Vec-based similarity calculation*/
18: for each 𝑖𝑜𝑡𝐷𝑖𝑐𝑡 ∈ 𝑖𝑜𝑡𝐷𝑖𝑐𝑡𝑠 do
19: for each 𝑖𝑜𝑡𝑇𝑒𝑟𝑚 ∈ 𝑖𝑜𝑡𝐷𝑖𝑐𝑡 do
20: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑇𝑒𝑟𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦 ← 𝐿𝑖𝑠𝑡()
21: for each 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙 ∈ 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙𝑠 do
22: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ←
23: 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑖𝑜𝑡𝑇𝑒𝑟𝑚, 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑠𝑊2𝑣𝑀𝑜𝑑𝑒𝑙)
24: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑇𝑒𝑟𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦.𝑎𝑑𝑑(𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)
25: end for
26: 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡.𝑎𝑑𝑑(𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑇𝑒𝑟𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦)
27: end for
28: end for
29: return 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡, 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡
30: end procedure

used to describe a thing or express a concept used in any IoT data or an ontology. Document
class represents an object of the text sequence type. In our approach, we identify IoT_data and
Ontology as document objects for NLP. IoT_data contains metadata and measurement data that
can be accessed from any IoT device. The Ontology class contains the terms, relations, and
properties used to describe the data, information, and knowledge of a specific domain applica-
tion. The Similarity abstract class abstracts over all similarity algorithms, e.g., SSM_Similarity
Word2Vec_Similarity that are applied to calculate the similarity of documents and terms. It
holds similarity_value data property to store the similarity score of the documents or terms.



Algorithm 5 Store the algorithm-based similarity score in an ontology
Input 𝑖𝑜𝑡𝐷𝑖𝑐𝑡𝑠, 𝑜𝑛𝑡𝑜𝑠𝐷𝑖𝑐𝑡𝑠, 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑊2𝑣𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐿𝑖𝑠𝑡, 𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝐿𝑆𝐼𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦,
𝑖𝑜𝑡𝑂𝑛𝑡𝑜𝑆𝑠𝑚𝑆𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦, and S3O
Output S3O

1: procedure 𝑓𝑠3𝑜
2: s3o← loadS3OSchema()
3: s3o← createTermRelations(s3o,iotDicts,ontosDicts)
4: s3o← createSimilarityRelations(s3o,iotOntoW2vSimilarityList)
5: s3o← createSimilarityRelations(iotOntoLSISimilarity)
6: s3o← createSimilarityRelations(s3o,iotOntoSsmSimiarity)
7: pathOfS3o← writeFile(s3o)
8: return pathOfS3o.
9: end procedure

(a) Class entities (b) Object properties (c) Data properties

Figure 2: Schema of S3O

We introduce Ngram classes to store the similarity of combined terms, e.g., temperature sensor
(bigrams) that appear as sequences of words in IoT data and ontologies. We have introduced
object property has_Similarity to store the information on similarity-based relationships among
IoT_Data, Ontology, and Term classes. ref_IoT_Data, ref_Ontology, and ref_Term are object
properties for references. term_Used_by and uses_Term are inverse object properties to store
the information when the term is used by IoT-data or ontologies.



4. Showcase implementation for Smart Water Networks (SWN)
applications

To showcase the validity of our approach, we have created a reference implementation [13] of
the proposed approach described in Section 3.2 and tested this in a specific scenario for IoT data
characterizing a Smart Water Network (SWN) application.

Implementation Setup: The solution was developed in Visual Code Studio[14] Integrated
Development Environment (IDE). For the implementation of the approach, Python [15] and
many Python-based NLP libraries, e.g. Gensim [10] for Word2Vector (Word2Vec) and Latent
Semantic Index (LSI), import Matplotlib[16] for visualization, Pandas[17] for data storage and
retrieval, RDFLib [18] for processing S3O, were utilized. Protégé [12], an ontology development
environment tool, is used to author and examine S3O ontology facts on term similarity written
in Turtle RDF serialization format. Pellet[19] reasoner is used to reason the S3O. Snap SPARQL
Protocol and RDF Query Language (SPARQL) Query plugin [20] for Protégé are used to query
the S3O facts.

Showcase characteristics: The showcase application takes two inputs, IoT data and domain-
specific ontologies of the water and IoT domain. In particular, we consider publicly accessible
data sets, related to water quality data. The showcase application processed the IoT data se-
rialized in formats CSV or JSON. More information about the IoT data set characteristics can
be found in Table 2. Table 3 holds the information on the ontologies used as input. Input
ontologies are from the upper, water, biological, or water domain. The showcase application
processed these ontologies from serialization formats, e.g., text, XML, HTML, RDF, or OWL.
S3O schema was developed in Protégé and exported as an RDF file. RDFlib [18] was used to
generate a graph by loading S3O schema and populating it with the facts/information that is
computed by the showcase program on the terms of IoT and ontologies with their relations and
algorithm-based similarity score. We use descriptive-naming-pattern < 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑛𝑎𝑚𝑒 >_<
𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦−𝑛𝑎𝑚𝑒 >_< 𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦𝑡𝑒𝑟𝑚−𝑛𝑎𝑚𝑒 >_< 𝐼𝑜𝑇−𝑛𝑎𝑚𝑒 >_< 𝐼𝑜𝑇−𝑡𝑒𝑟𝑚−𝑛𝑎𝑚𝑒 >
for the similarity class instances. For example, in
𝑆𝑆𝑀_𝑆𝑒𝑛𝑠𝑜𝑟𝑀𝐿_𝑐𝑜𝑢𝑛𝑡𝑠_𝐵𝑟𝑖𝑠𝑡𝑜𝑙𝑊𝑎𝑡𝑒𝑟𝑄𝑢𝑎𝑙𝑖𝑡𝑦_𝑢𝑛𝑖𝑡𝑠 instance, SSM algorithm is used to
calculate the similarity of 𝑐𝑜𝑢𝑛𝑡𝑠 from𝑆𝑒𝑛𝑠𝑜𝑟𝑀𝐿 ontology and𝑢𝑛𝑖𝑡𝑠 from𝐵𝑟𝑖𝑠𝑡𝑜𝑙𝑊𝑎𝑡𝑒𝑟𝑄𝑢𝑎𝑙𝑖𝑡𝑦
data.

As primary output, the showcase application generates the S3O in RDF turtle format. Other
outputs of the showcase application are persisting all calculated information in pickle files and
creating bar charts of the top 10 Word2Vec-based on similar terms of each IoT-term.

Querying similarity in S3O: Figure 3 shows an output of querying the S3O with facts [11]
for the term "sensor". In particular, a SPARQL query [11] is executed in the Snap SPARQL [20],
Query tab of Protégé provides results on similar terms to term "sensor" as shown in the figure
3. Protégé[12], an ontology development environment tool, is used to load S3O facts on term
similarity written in turtle RDF serialization format. pellet[19] reasoner is used to reason the
S3O. Snap SPARQL Protocol and RDF Query Language (SPARQL) Query plugin for Protégé is used
to query the S3O facts.

Discussion: In this section, we have described the reference implementation of our approach
presented in Subsection 3.2 and have demonstrated its applicability considering public IoT



Table 2
Input: IoT data

File Name Bristol River water quality.csv [21] Kaa IoT Data [22]
Format CSV JSON
License Open Government Licence Public access
Topic Water Quality Water temperature
Summary River quality monitoring data (chem-

ical, physical and bacteriological pa-
rameters tested) from 1994.

The data holds the values of a tem-
perature sensor that was simulated
locally to send data to the KaaIoT
cloud.

Extracted words access, allison, ammonium, annes,
apr, ashton, aug, avenue, avon-
mouth, badocks, boiling, bottom,
bright, briscoe, briscoes, . . . [155]

auto, bfg, description, fahrenheit,
latitude, longitude, mac, measures,
model, name, sensor, serial, tempera-
ture, timestamp, value, values, water,
[17]

data sets and relevant domain-specific ontologies in the water domain. More specifically, our
approach uses NLP as the core method to define and calculate the semantic similarity scores.

We start with term/word alignment because in description logic words are used to describe and
to label/name values in datasets and entities in ontologies. Therefore, we can also do structural
alignment based on similar/related words when we could deduce structural alignment through
N-grams, e.g., ’water has ph’ can be deduced to align with the statement ’water contains ph’ if
’has’ and ’contains’ can be aligned. While following the Data and Information Interoperability
Model (DIIM) approach, we want to annotate the terms in IoT KG with similar words found in
different domain-specific ontologies and standards. To achieve this, we first try to find similar
words with this approach and annotate them when the similarity score is higher than the
given threshold. At the current stage, only a similarity score with a value of 1 is automatically
accepted for auto-annotation and all other similar terms with lower scores are suggested for a
human review, which poses a challenge to the manual effort in the alignment process. However,
the proposed approach to use NLP-based techniques and accommodate different algorithms in
combination with S3O significantly ease the alignment process.

The experiments showed that our approach performs well and manages to create the S3O
and subsequently calculate and store the similarity scores for the identified terms in the IoT
data sets. We propose S3O instead of database schema because we want to use import-feature
to link the terms directly to the original ontologies and IoT data converted into KGs and reason
on similarity calculated by the different algorithms as federated KG as whole. S3O covers the
current requirements and is subject to extension for new requirements.

Further implementation and experiments are planned to measure the performance of our
solution (in terms of time) as well as in terms of precision (i.e., compare the output of our
solution with respect to the identification of similar terms using a manual process in small-scale
scenarios). Overall, we consider that our solution is an initial step towards systematizing and
automating the process of semantic interoperability in the heterogeneous IoT landscape.



Table 3
Input: domain-specific ontologies and standards

Name, Domain Description
COSMO[23], upper It is a foundation ontology that allows it to represent all the basic (‘primitive’)

ontology elements of an application.
DOLCE[24], upper It is a descriptive ontology for linguistic and cognitive engineering.
GO[25], biological It provides the foundation for computational analysis of large-scale molecular

biology and genetics experiments in biomedical research.
GOIoTP[26], IoT GOIoTP is developed as part of the INTER-IoT project; it offers modular data

structures for the description of entities most commonly appearing in IoT in
the context of interoperating various IoT artefacts (platforms, devices, services,
etc).

INSPIRE[27], upper Representation of a set of concepts within a domain and the relationships
between those concepts

OntoPlant[28], wa-
ter

Sottara et al. have extended the SSN ontology to decouple control logic from
equipment choices in wastewater treatment plants.

OPO[29], water It is an Observational Process Ontology for water quality monitoring.
SAREF[30], IoT It is a shared consensus model that facilitates the matching of existing assets

in the smart applications domain.
SensorML[31], IoT It provides a robust and semantically-tied means of defining processes and pro-

cessing components associated with the measurement and post-measurement
transformation of observations.

SSN[32], IoT This ontology describes sensors and sensor networks, for use in web applica-
tions, independent of any application domain.

SOSA[33], IoT It can be used directly for lightweight applications, or provide the basis for
additional specialization and axiomatization in vertical and horizontal exten-
sions.

SWIM[34], water,
IoT

It is developed by Aquamatix for the Device-level IoT semantic model for the
water industry

WaterML[35], water WaterML2 is a new data exchange standard in Hydrology to exchange many
kinds of hydro-meteorological observations and measurements. It harmonizes
a number of exchange formats for water data with relevant OGC and ISO
standards.

WatERPOntology[5],
water

It is developed by EURECAT-WatERP. It is a lightweight ontology of generic
concepts for water sensing and management.

WHO_Drinking[36],
water

WHO standard guidelines to maintain the relevance, quality and integrity
of the Guidelines for drinking-water quality (GDWQ), whilst ensuring their
continuing development in response to new, or newly-appreciated, information
and challenges.

WISDOM[4], water It is developed by Cardiff University for cyber-physical and social ontology of
the water value chain.

5. Conclusion

In this paper, we propose a novel methodology based on Semantic Web technologies (OWL, KG,
RDF, and Linked Data (LD) ) and NLP (LSI, Word2Vec and Ngram similarity) to discover related
ontologies and align terms of IoT data with these ontologies. Further, our work contributes to



Figure 3: Find similar terms to the term “sensor”

developing a new ontology, the Semantic Similarity Scoring Ontology (S3O). The proposed S3O
holds similarity score of terms based on the similarity evaluation of the applied algorithms. This
ontology can be easily extended to include the evaluations results of other algorithms. This
way, we do not support a specific algorithm to align terms, rather believe that all alignment
algorithms could become relevant at a certain point. Therefore, we store the similarity scores
of all alignment algorithms in S3O and an ontology engineer can query the similarity scores
and explored the linked terms from different ontologies and decide to do the final alignmen-
t/mapping. We have showcased the validity of our approach in an IoT-enabled smart water
application, however the proposed solution is extensible in terms of adding new ontologies for
alignment and considering newly developed term-alignment algorithms. In our future work, we
plan to extend the implementation of showcase by adding more NLP-based similarity algorithms
to support the alignment of the IoT data with the ontologies of the cross-domain applications.
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