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Abstract

Some application areas require motions to be time warped on-line as a motion is

captured, aligning a partially captured motion to a complete prerecorded motion.

For example movement training applications for dance and medical procedures, re-

quire on-line time warping for analysing and visually feeding back the accuracy

of human motions as they are being performed. Additionally, real-time production

techniques such as virtual production, in camera visual effects and the use of avatars

in live stage performances, require on-line time warping to align virtual character

performances to a live performer.

The work in this thesis first addresses a research gap in the measurement of the

alignment of two motions, proposing approaches based on rank correlation and eval-

uating them against existing distance based approaches to measuring motion sim-

ilarity. The thesis then goes onto propose and evaluate novel methods for on-line

time warping, which plot alignments in a forward direction and utilise forecasting

and local continuity constraint techniques.

Current studies into measuring the similarity of motions focus on distance based

metrics for measuring the similarity of the motions to support motion recognition

applications, leaving a research gap regarding the effectiveness of similarity metrics

bases on correlation and the optimal metrics for measuring the alignment of two

motions. This thesis addresses this research gap by comparing the performance

of variety of similarity metrics based on distance and correlation, including novel

combinations of joint parameterisation and correlation methods. The ability of each

metric to measure both the similarity and alignment of two motions is independently

2



assessed.

This work provides a detailed evaluation of a variety of different approaches to using

correlation within a similarity metric, testing their performance to determine which

approach is optimal and comparing their performance against established distance

based metrics. The results show that a correlation based metric, in which joints are

parameterised using displacement vectors and correlation is measured using Kendall

Tau rank correlation, is the optimal approach for measuring the alignment between

two motions. The study also showed that similarity metrics based on correlation

are better at measuring the alignment of two motions, which is important in motion

blending and style transfer applications as well as evaluating the performance of

time warping algorithms. It also showed that metrics based on distance are better at

measuring the similarity of two motions, which is more relevant to motion recognition

and classification applications.

A number of approaches to on-line time warping have been proposed within existing

research, that are based on plotting an alignment path backwards from a selected

end-point within the complete motion. While these approaches work for discrete

applications, such as recognising a motion, their lack of monotonic constraint be-

tween alignment of each frame, means these approaches do not support applications

that require an alignment to be maintained continuously over a number of frames.

For example applications involving continuous real-time visualisation, feedback or

interaction.

To solve this problem, a number of novel on-line time warping algorithms, based on

forward plotting, motion forecasting and local continuity constraints are proposed

and evaluated by applying them to human motions. Two benchmarks standards

for evaluating the performance of on-line time warping algorithms are established,

based on UTW time warping and compering the resulting alignment path with that

produced by DTW. This work also proposes a novel approach to adapting existing

local continuity constraints to a forward plotting approach.

The studies within this thesis demonstrates that these time warping approaches are

able to produce alignments of sufficient quality to support applications that require
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an alignment to be maintained continuously. The on-line time warping algorithms

proposed in this study can align a previously recorded motion to a user in real-

time, as they are performing the same action or an opposing action recorded at

the same time as the motion being align. This solution has a variety of potential

application areas including: visualisation applications, such as aligning a motion to a

live performer to facilitate in camera visual effects or a live stage performance with

a virtual avatar; motion feedback applications such as dance training or medical

rehabilitation; and interaction applications such as working with Cobots.
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Chapter 1

Introduction

Editing and manipulation of motion capture data is a time consuming process re-

quiring specialist tools and skills. The need to edit motion capture data can be

motivated by: i) the desire to reuse existing motion capture data, to avoid the ex-

pense of capturing and cleaning up new motion performances (Geng and Yu, 2003),

and ii) the need to adapt a motion to fit the highly specific and ever changing re-

quirements of a typical film or game production. Solutions which automatically edit

a motion sequence to fit an environment or meet a specified constraint are therefore

particularly desirable.

Real-time solutions, such as Ho, Komura and Tai (2010); Kim et al. (2016), which

automatically adapt motion sequences to spatial changes in an environment as they

occur, allow productions that utilise motion capture, more freedom to make spatial

alterations. The addition of real-time temporal adaptation, would allow motion

sequences to more fully adapt to the movement of a user or the performance of a

live actor as they are captured, for example to interact with a performer on stage or

in camera during film production. However, real-time temporal alignment, or on-line

time warping, of time series data to an incomplete motion, as it is being performed,

is a challenging problem to solve. Existing approaches to on-line time warping start

by aligning the last known frame of the incomplete motion, then plot an alignment

backwards until reaching the first frame (Tormene et al., 2009; Hülsmann et al.,
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2017). This approach can cause continuity issues between frames, as each new

frame of the incomplete motion requires a completely new alignment, which aligns

the new frame independently of the previous frame. This leads to a stuttered or

non-monotonic playback of a motion, which is a problem for applications that need

to visualise the motion as it is being aligned. This thesis proposes on-line time

warping techniques for aligning prerecorded motion sequences, to a live motion as it

is being captured, maintaining continuity between the alignment of each captured

frame for a smooth playback of the motion as it is being temporally aligned.

1.1 Motivation

1.1.1 On-line Time Warping of Opposing Motions

The temporal alignment of time series data, referred to as time warping, uses tech-

niques such as Dynamic Time Warping (DTW) (Senin, 2008) to temporally align

the features of a input time series with those of a similar target time series.

The application scenarios presented below, often require a prerecorded motion se-

quence to be aligned with a completely different live motion. For example a virtual

character’s performance being aligned with that of a live actor performing distinctly

different actions, for example when a virtual character is performing opposite a live

actor. In these scenarios the performance of both the virtual character and the live

actor are recorded during pre-production, capturing the required performance for

the virtual character and a reference of the actor’s motions. This allows the recorded

reference of the actor’s motions, to be aligned to a live actor’s motion during pro-

duction, whilst the time warp is being applied to both prerecorded motions, to align

the virtual characters performance.

There are a number of markerless motion capture solutions, which could potentially

be used to discreetly capture the motion of an actor on set or performer on stage,

and re-targeted to a kinematic joint chain that matches a prerecorded motion. These

include solutions based on extracting and fitting silhouettes from multiple synchro-

nised image cameras (Michoud et al., 2007), using a single depth camera (Grest,
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Woetzel and Koch, 2005), or using discrete electromagnetic and inertial sensors

which could be hidden in clothing (Hu, Jin and Ni, 2012).

1.1.2 Interaction Between Performers and Virtual Charac-

ters

Film visual effects are made from a combination of real elements; such as video

footage and stills; and virtual elements; such as computer generated 3D graphics

and animation. Producing convincing and intricate interaction between real and

virtual elements is a particular challenge, especially between live actors and vir-

tual creatures, however, it is vital to submerging the audience within a film and

maintaining their belief.

Figure 1.1 demonstrates two particularly challenging shots which require tight in-

teraction between a live actor and a virtual creature. Tight interaction is achieved

through either careful and time consuming manipulation of digital elements during

post-production, for example the character’s hand in the left example, or through

spatially and temporally coordinating an actors performance to fit an existing dig-

ital element, for example the actor being moved in a rig to a reference in the right

example. In either case the digital element does not automatically adapt itself to

an actor’s performance.

Innovations in camera tracking technology and real-time rendering, have made it

possible to render digital elements from the correct perspective in real-time and

place them into a camera’s view. This approach, referred to as onset-previsualization

or in camera visual effects, allows the director, actors and crew to see how digital

elements fit into a live action shot as it is being filmed. Both Avatar (Schatz and

Derry, 2013) and Jack the Giant Slayer (Singer, 2013), recorded motion captured

performances of creatures before production, then used onset-previsualization with

a camera tracking technology called Simulcam, to integrate these elements into the

cameras view during filming.

Current onset-previsualization or in camera visual effects solutions focus on track-

ing the camera to visualise digital elements, however, there is a desire for these
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Figure 1.1: Two examples of interaction between live actors and virtual creatures from the
film ’Harry Potter and the Order of the Phoenix’ (Yates, 2011). On the left a character’s
hand needs to tightly follow the movement of an actor’s neck close to camera. On the right
an actor is being moved in a rig to match a reference movement in a monitor.

digital elements to interact more directly with the performer, collaborating with

them and allowing them to more fully utilise their talent. This inspired a number of

projects including: the Dreamspace project which developed a set of virtual produc-

tion tools called VPET (Spielmann et al., 2016), which allowed real-time editing of

virtual elements, and #SEVEN (Claude et al., 2014) which enable digital elements

such as animation and dynamic effects to be triggered by events within and actor’s

performance.

However, neither of the projects above focused on continuous spatial and tempo-

ral alignment of a virtual character with an actor’s performance. The ability to

accurately and automatically adapt a virtual character’s performance on-set, to

collaborate with a live actor, would allow more creative freedom to explore and

experiment with ideas during production. In addition, the capability of real-time

production techniques for visual effects, such as hybrid virtual production (Kad-

ner, 2019), would be increased if more accurate and flexible real-time interactions

between live actors and virtual characters were possible.
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1.1.3 Additional Application Areas

There are a number of potential application areas for real-time temporal alignment

of human motion, outside of onset-previsualization and virtual production.

Virtual avatars are being increasingly used in theatrical and high profile live music

productions, such as the ABBA Voyage tour (Plaete et al., 2022) and bringing

artists such as Prince, Tupac Shakur and Frank Zappa back to life (Stiegler, 2021).

Allowing these avatars to interact with live performers on stage would open up a

range of creative opportunities to engage and surprise an audience.

Real-time alignment would facilitate real-time feedback in movement training sce-

narios, where specific timed movements need to be learnt or performed, such as:

dance (Chan et al., 2010), cardiopulmonary resuscitation (CPR), surgical proce-

dures (Cifuentes et al., 2017), sports (Osawa, Ishikawa and Watanabe, 2020; Chan-

taprasert, Chumchuen and Wangsiripitak, 2019) or steps in manufacturing processes

(Menolotto et al., 2020). Temporally aligning a prerecorded correct motion to a

trainees motion, as a set of actions are performed, would allow real-time feedback

to be given to the trainee, as well as potentially distinguish between spatial and

temporal errors.

The expansion of VR and the Metaverse requires moving beyond recognising human

getsures in real-time, to parameterising and aligning responses to human gestures

(Wilson and Bobick, 1998; Heloir et al., 2006).

Real-time alignment could allow collaborative robots (cobots) to work more inter-

actively with humans, potentially allowing them to anticipate when and where an

interaction with person might occur. This would facilitate moving cobot applications

beyond simply operating as an uncaged robots performing low-level tasks (Michaelis

et al., 2020; Ateş, Stølen and Kyrkjebø, 2022).

1.1.4 Additional Capabilities

On-line alignment of human motion, could facilitate new modalities for driving and

manipulating performances of virtual characters, in real-time. A number of methods
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for manipulating and combining motions, which require motions to be temporally

aligned, would be able to be used in a real-time scenario. For example accurately

blending between an existing animation or motion sequence with a live captured

performance (Kovar and Gleicher, 2003), or transferring motion styles between a

live actor and a virtual character (Xia et al., 2015).

Although the on-line alignment algorithms proposed within this thesis are evaluated

using human motion data, they can be applied to any time series data, regardless of

whether it is singular or multi-dimensional. This opens of up a variety of potential

financial and medical (Tormene et al., 2009) applications.

1.2 Requirements

1.2.1 Motion Adaptation

In order to be usable, any potential real-time solutions for adapting motion sequences

must satisfy the following requirements:

• Run with little latency. A study of human perception of latency in virtual

character interactions (Hoyet, McDonnell and O’Sullivan, 2012), suggests that

on average people typically cannot perceive delays in character interaction of

less than 150ms.

• Maintain realism, with motions resulting from any adaptation or adjustment

remaining physically plausible. (Reitsma and Pollard, 2003) proposes a po-

tential metric for evaluating this.

• Capable of accurately adapting a motion sequence to fit both spatially and

temporally with a live actor’s performance. As spatial alignment can only be

performed after temporal alignment, it is consequently dependent on it. There

have been number of models proposed for modeling the spatial relationships

between virtual characters (Hwang, Suh and Kwon, 2014; Al-Asqhar, Komura

and Choi, 2013; Oh et al., 2016).

• Changes in the live action environment and the actor’s actions and poses, need
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to be captured and extracted in real-time.

The studies presented in this thesis focus on approaches to real-time temporal align-

ment of human motion. Therefore, the requirements of particular relevance to this

aspect of the solution, such as low latency, accuracy and physical plausibility, will

be particularly relevant, when evaluating and comparing these approaches.

1.2.2 Artistic Control

An alternative approach to adapting a prerecorded motion, is to synthesis a new

motion in real-time, which fits the constraints of the environment and actor’s actions.

However, this approach does not always provide the level of control needed for

applications such as visual effects, in which director typically directs an actor to get

the performance they want.

1.3 Challenges

1.3.1 On-Line Time Warping

When performing an on-line time warp, unlike a standard offline time warp, which

performs an alignment on a complete recorded motion, either one or both of the time

series being aligned will only be partially known. In the use cases described above a

wholly known prerecorded motion sequence is being aligned to a live partially know

motion sequence as it is being captured.

Time warping partially know time series presents two challenges. First, the bound-

aries of the warp (i.e. the last frame of the sequence) are unknown, meaning the goal

or end point of the time warp is also unknown. Second, it is not possible to deter-

mine a temporal alignment that is optimal for the entire motion, only the segment

that is known.

On-line time warping algorithms must also be computationally efficient, aligning

each frame faster than the sample rate of the motion capture system, which is

typically 120Hz. This is particularly challenging, considering that the computational
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requirements of standard time warping algorithms such as DTW are a quadratic

function of the length of the motion being aligned.

1.3.2 Measuring Alignment

To compare and evaluate the performance of various time warping methods, accu-

rate and objective metrics are required, to assess how closely aligned the temporal

features of two motions are to one another.

There is not an established approach to measuring alignment. There have been a

number of studies proposing (Kovar, Gleicher and Pighin, 2002) and discussing dif-

ferent metrics (Yang and Guan, 2005) for measuring the similarity of two motions.

In addition metrics specifically intended for measuring the alignment of two mo-

tions have also been proposed (Etemad and Arya, 2015). However, evaluations and

comparisons of these metrics, have focused on their ability to discriminate between

similar and dissimilar motions (Valcik, Sedmidubsky and Zezula, 2016; Chan et al.,

2010), rather than to measure alignment. Consequently there remains a need to

determine which metrics are most optimal for measuring alignment.

1.4 Research Aim

The overall aim of this thesis is to develop and evaluate several approaches to auto-

matic on-line temporal alignment of human motion sequences.

1.5 Research Objectives

The following objectives are to be completed in support of the overall aim:

1. Review existing approaches measuring motion alignment and trends within

on-line time warping research.

2. Design a robust approach to evaluating and comparing the performance of

different similarity metrics for measuring motion alignment.

3. Explore and implement appropriate approaches to measuring the similarity
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and alignment of two motions, then determine which approach is optimal for

measuring alignment.

4. Develop and implement solutions for on-line time warping of human motions,

evaluating the accuracy and quality of the alignments produced.

5. Assess the impact of additional optimisation techniques on performance of

on-line time warping solutions.

6. Assess the impact of characteristics in human motion and motion data, on the

performance of on-line time warping solutions, making recommendations on

how these characteristics could be managed.

1.6 Methodology

To address the aim of this thesis the following approach will be adopted. First,

an optimal approach to measuring alignment will be established for use in subse-

quent studies. A review will be undertaken of different approaches to measuring

the similarity and alignment of motion sequences. These will then be evaluated

and compared to determine an optimal approach. Second, a number of novel tech-

niques for on-line time warping of human motion will be implemented and evaluated.

Additional optimisation techniques such as constraints and penalties will also be ex-

plored, as well as the feasibility of using these techniques in real-world applications.

Third, explore the potential impact of movement and motion data characteristics,

on the performance of the proposed on-line time warping algorithms, with a view

to controlling their impact and further optimising their performance.

1.7 Approach

Due to the time based multidimensional nature of motion capture data, specialist

tools are required to interpret and analysis it. The studies in the thesis required

a platform that allowed specialist low level analysis and manipulation of motion

capture data, while supporting the batch processing of large data sets.
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Existing products such as MotionBuilder (Autodesk, 2021) incorporate a powerful

user interface with a variety of tools for manipulating and reusing motion capture,

while supporting automation, data analysis and motion manipulation, through C++

and Python plugins. Code libraries specialising in working with motion capture data

such as Alemi (2019), often have sporadic development and are focused on a small

set of tasks rather than providing a more general library of features. The FBX

Python SDK Autodesk (2020), provides an extensive library for for working with

3D files in Autodesk’s FBX format. FBX has become a standard for moving 3D

files between content creation applications and is suited to storing 3D skeletal joint

data.

To support this thesis an extensive Python library has been created to perform a va-

riety of tasks including: re-sampling motion data; plotting motion curves; measuring

similarity using a variety of metrics; measuring the correlation of motions; extracting

joint parameters; and time-warping using a number of different algorithms. Addi-

tionally a number of C++ plugins were also created for use with MotionBuilder.

The approaches implemented and used in this thesis focus on geometric techniques,

as they tend to be computationally efficient and allow for more control of the re-

sulting motions. Other approaches to manipulation motion capture data can be

divided into two other categories, space time constraints and artificial intelligence.

Space time constraints (Witkin and Kass, 1988; Gleicher, 1997), use physical models

to determine realistic and plausible motions that meat specified constraints. These

approaches do not work well when a motion sequence is only partially known and

often take a number of iterations to reach a solution. Artificial Intelligent uses ei-

ther statistical techniques such as PCA or trained models to create a solution. They

typically require large training sets of motions, sometimes require experts to label

motions or set-up criteria and allow limited abstract control of the results produced.

These issues are particularly undesirable within a film visual effects production in

which: actions are highly controlled and bespoke; recording of large sets of training

motions is impractical; the solution is to be operated by a naive production crew;

and a director wants to be able to control and direct the actions being performed.
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1.8 Thesis Structure

Chapter 2 presents a background on the motion capture, reviewing its applications

as well as the storage, interpretation and manipulation of motion capture data.

Chapter 3 reviews of approaches to measuring the similarity of two motions and time

warping of human motion sequences. This includes state of the art techniques and

approaches, working with multi dimensional data and on-line time warping, which

are particularly pertinent to the studies in this thesis.

Chapter 4 compares a number of approaches to measuring similarity of motion data

and evaluates their ability measure the similarity and alignment of two motions. This

chapter presents a robust methodology for evaluating similarity metrics and makes

recommendations of best practice when measuring the similarity and alignment of

motions.

Chapter 5 proposes a number of novel methods for on-line time warping of hu-

man motion data, suited to the application areas described in this chapter, that

plot contiguous alignment paths in a forward direction. A detailed comparison and

evaluation of the performance of each method is presented.

Chapter 6 investigates the impact of two optimisation techniques, constraints and

penalties, on the performance of the on-line time warping methods established in

the previous chapter. Recommendations for selecting and configuring an optimal

on-line time warping solution are presented.

Chapter 7 Explores the impact of characteristics and features within the captured

movements and motion data, on the performance of the on-line time warping algo-

rithms proposed in this thesis. Consideration is given as to how to optimise these

characteristic to potentially improve the performance these algorithms.

Chapter 8 summarises and discusses the findings from previous chapters, detailing

limitations and directions for future work.

A review of the aims of each chapter and the contributions of each chapter can be

seen in Figure 1.2.
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Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Aim Aim Aim Aim Aim Aim

Review current 
practices for 
interpreting and 
manipulating motion 
capture data.

Review state of the art 
methods for measuring 
similarity and time 
warping human 
motions.

Explore correlation as a 
method of measuring 
alignment and 
determine the optimal 
similarity metric for 
measuring the 
alignment of human 
motions.

Evaluate the 
performance of on-line 
time warping methods 
based forward plotting 
at aligning human 
motions.

Assess the impact of 
optimisation 
techniques on the 
performance of on-line 
time warping methods 
based forward plotting.

Explore the impact of 
movement and motion 
data characteristics, on 
the performance and 
behaviour of on-line 
time warping methods 
based forward plotting.

Objectives Reached Objectives Reached Objectives Reached Objectives Reached Objectives Reached Objectives Reached

1 1 2 3 4 5 6

Figure 1.2: An overview of the thesis structure, showing the aim of each chapter and it’s
contribution to the thesis objectives stated in Section 1.5

1.9 Contributions

The central contribution of this thesis is the proposal of an on-line approach to time

warping human motion data, temporally aligning a prerecorded performance with

a live performance as it is being captured. In the process of achieving this goal, a

number of other contributions have also been made:

• An evaluation of the ability of different similarity metrics to discriminate be-

tween aligned and non-aligned motions (chapter 4).

• An assessment of the impact of different approaches to correlation and pa-

rameterising joint angles on the performance of correlation based similarity

metrics (chapter 4).

• A comparison between the performance of distance based and correlation based

similarity metrics, when measuring the similarity and alignment of two motions

(chapter 4).

• A novel approach to on-line time warping, using forecasting windows and

forward plotting of alignment paths, to align human motion. (chapter 5).

• Adaptation of established contiguous local constraints to forward plotting of

alignment, and representing constraint logic using state tables (chapter 6).
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• Identification and evaluation of how the characteristics of a movement or arte-

facts within the motion data, can impact the performance of a time warping

algorithm (chapter 7).

1.10 Publications

Work contributing to or contained within this thesis has been published as follows:

• A Predictive Approach to On-line Time Warping of Motion (Randall, Williams

and Athwal, 2017): presents a novel approach to using forecasting within a

time-warping algorithm. Although the idea of applying a time warp to a mo-

tion every frame was not taken forward into this work, the idea of forecasting

the next few frames of a partially know motion was.

• Correlation as a Measure for Alignment and Similarity of Human Motions

(Randall, Harvey and Williams, 2023a): presents a study evaluating correla-

tion as a method of measuring the similarity and alignment of human motions,

based on the study presented in Chapter 4.

• Online alignment of Human Motion Using Forward Plotting-Dynamic Time

Warping (Randall, Harvey and Williams, 2023b): proposes and tests novel

approaches to on-line time warping using forecasting and forward plotting,

based on the studies presented in Chapters 5 and 6.
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Chapter 2

Interpretation and Parameterization

of Motion Capture Data

2.1 Introduction

Motion capture is powerful technique for recording motion, particularly human mo-

tion. It is proven technology, regularly used in a variety of application areas in-

cluding: the production of animation, film visual effects and games; training and

tracking within sports (Van der Kruk and Reijne, 2018); controlling and monitoring

industrial processes (Menolotto et al., 2020); and movement training for physiother-

apy (Yurtman and Barshan, 2014; Walugembe et al., 2020) and dance (Jang et al.,

2017). The research in this thesis is particularly motivated by real-time challenges

within these application areas which are discussed in more detail in Chapter 1.

These different application areas use a variety of different motion capture solutions,

ranging from specialist optical motion capture systems to marker-less systems based

on accelerometers or mono-optical solutions.

Within games and film production, an actor’s motion captured performance is rarely

directly applied to a virtual character without any modification, as editing and

modifying motion capture data is a routine part of working with motion data in this

area, either to achieve the vision of the director or to fit a motion to a particular
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character or environment.

This chapter first briefly explores a variety of different motion capture solutions

and presents fundamental concepts related to working with and interpreting motion

capture data. It then presents a number of different approaches to parameterising

motion capture data, more specifically parameterising joint rotations and the core

mathematical techniques applied to joint rotations within this study. The concepts

and joint parameterization methods presented in this chapter are used within the

studies presented in Chapters 4 and 5. Finally this chapter presents an overview

of different approaches to manipulating and editing motion capture data, provid-

ing a wider more contextual understanding of manipulating human motion, before

temporal manipulation and time warping of motions are discussed in more detail in

Chapter 4.

2.2 Motion Capture Solutions

Motion capture systems can be divided into four types of solutions: Optical, Image

Processing and Inertial (Van der Kruk and Reijne, 2018). These are described in

more detail in the sections below.

2.2.1 Optical Systems

Optical motion capture systems such as Vicon and Optitrack systems use multiple

static cameras to track reflective markers attached one or more subjects within a

capture volume. They are considered to be the most accurate method of capturing

motion and are often used as a standard for evaluating other motion capture systems

against (Freire et al., 2020; Thomas et al., 2022; Tian et al., 2015). These systems

can capture the position of each marker in 3D space at high sample rates. Typically

markers are applied to subject in a set pattern in order to capture the position

and orientation of their joints (Vicon, 2022). Additionally, multiple markers can be

applied to a rigid object to track it’s orientation.

The capability of an optical motion capture system is dependent, amongst other
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things, on the number of cameras used and the specification of the cameras. More

cameras are required to cover larger volumes and/or avoid markers from being oc-

cluded from the view of too many cameras, when there are many subjects in the

volume. Therefore optical systems are restricted to capturing the motion of a spec-

ified number of subjects within a given volume of a restricted size.

These systems are very sensitive, requiring regular calibration and making them

sensitive to any movement of the cameras. They require a lot of hardware, making

them expensive and not particularly portable.

2.2.2 Image Processing Systems

Advances in image capture and processing allow human motion to be extracted from

video signals without the use of markers. These solutions come in a variety of forms:

• Multi camera solutions that track image segments from multiple viewpoints

(Patlolla, Mahotra and Kehtarnavaz, 2012).

• Single camera solutions that use trained Convolutional Neural Networks

(CNN), to estimate the joint poses of multiple subjects within the camera’s

field of view (Cao et al., 2017).

• Depth-sensing cameras such as Kinect (Emanuel and Widjaja, 2018) or

the TrueDepth camera on the iPhone, that measures the distance between

the camera and an array of points in front it, to create a depth image which

can be processed to estimate the joint (Zelenskaya and Harvey, 2019) or facial

(Strassberger and Sikkema, 2018) pose of subject. Additionally, the Leap

Motion controller (Walugembe et al., 2020; Shin, Hasan and Maniruzzaman,

2022), is a depth sensor that has been developed to estimate hand poses to

facilitate gestural interaction with computers.

Motion capture systems based on image processing are often considered more ac-

cessible than other motion capture systems, due to the low cost of the cameras, not

requiring markers and greater flexibility in terms of the portability and the envi-

ronments in which they can be used. However they are less accurate and tend to
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sample motion at low frequencies.

These solutions tend to use algorithms which are specifically designed to detect and

track a person or part of person (i.e. face or hand), therefore, they often cannot be

easily repurposed to track a different types of subject or object.

2.2.3 Inertial Systems

Inertial Systems utilise one or more Inertial Measuring Units (IMUs), which com-

bine accelerometers and gyroscopes to sense movement and orientation respectively.

Single IMU can be used to track a part of a subject such as a hand (Srivastava and

Sinha, 2015) or head (Hachaj and Ogiela, 2019) or multiple IMUs can be combined

to create a motion capture solution that can track the overall pose of a subject

(Yang et al., 2010a; Ciklacandir, Ozkan and Isler, 2022).

While IMUs can detect motion and orientation they cannot detect position. An esti-

mated position can be inferred from the motion information, however, this approach

often results in the position of a subject drifting over time. Motion capture suits

based on IMUs, also often utilise electromagnetic tracking in which a transmitter

creates magnetic fields and sensors are used to detect them.

IMUs are quite versatile and minimally invasive, making them suitable for specialist

applications such as hand writing recognition in a pen (Hsu et al., 2014) or tracking

jaw movements in an assistive input device (Sun et al., 2021).

Although not as accurate as optical motion capture systems, especially in relation to

positional tracking, they are more flexible, as they do not rely on a motion capture

volume and can capture motion over larger distances.

2.2.4 Motion Capture Solutions Summary

The studies presented in this thesis are all based on motion data captured using an

optical motion capture solution, however, the techniques and algorithms developed

within the studies in Chapters 4, 5 and 6, can be applied to motion data captured

using any of the approaches presented in this section.

50



Solution Type Advantages Disadvantages
Optical • Accuracy

• High Sample Rate

• Can track different types of sub-
jects or objects

• Expensive

• Bulky Hardware

• Bound to capture volume

• Affected by occlusions

• Sensitive to cameras being
moved

Image Processing • Markerless

• Inexpensive

• Affected by occlusions

• Often optimised to track a single
type of subject

• Not as accurate as optical sys-
tems

Inertial • Minimally Invasive

• Capture of larger ranges

• Not effected by occlusions

• Can track different types of sub-
jects or objects

• Can be inexpensive

• Not as accurate as optical sys-
tems

• Position can drift

Table 2.1: An overview comparing the advantages and disadvantages of different types of
motion capture solutions.

Table 2.1 summarised the information presented within this section, outlining the

advantages and disadvantages of each type of motion capture solution. Approaches

have also been proposed which combine these solutions, for example combining IMU

sensors and Kinect depth sensor (Tian et al., 2015).

2.3 Working with Motion Capture Data

A motion capture system, captures and stores a set values for each frame of motion.

Although modern motion capture system are capable of higher frames rates, publicly

available motion data-sets (Müller et al., 2007) (CMU Graphics Lab, 2001) and

studies in human motion (Longo et al., 2022), typically utilised a sample rate of

120Hz.

Optical marker base motion capture systems, record the data captured for each

frame in two forms (Parent et al., 2009):
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• Translational data: the position of each marker in single global three dimen-

sional space. Translational data contains no information on the orientation of

the markers, or the hierarchy of objects or joints that the markers might be

attached to.

• Rotational data: stored as joint orientations, typically within a skeletal hi-

erarchy. Information on the skeletal hierarchy such as: the connection between

the joints expressed as a hierarchy; the length of the bones; and the range of

the motion for each joint are stored once, sometimes in a separate file as is

the case of the Acclaim File Format. The rotation of each joint is recorded for

each frame, in the form of rotations in local space.

The motion data-sets and captured motions used within the studies in this thesis

are stored as rotational data. Therefore the mathematical approaches presented in

this section are designed to work with rotational data.

The local rotation of each joint for each frame is often stored as Euler angles. Despite

some of the short comings of this approach to representing joint angles, which are

discussed later in this chapter, they are a data efficient approach to storing rotational

information and can be easily converted to other more useful representations such

as quaternions or rotational matrices.

2.3.1 Forward Kinematics

Expressing the local joint rotations as transform matrices as shown on the left of

Figure 2.1, allows a captured pose to be recreated. The global position of each joint

can be determined by applying each transform in order, following the kinematic

chains of the skeletal hierarchy shown in Figure 2.3, from the root joint to the end

effectors, in a process known as forward kinematics (Parent, 2012). Within the

transform the joint rotation is represented as a rotational matrix in the red area.

The conversion of Euler to rotational matrix is discussed in more detail later in the

chapter. The joint length is represented as a translation in the x axis, in the form

shown on the right of Figure 2.1, and applied to the blue area of the transform

matrix.
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Figure 2.1: Joint data represented as a transform matrix (left). Joint rotations are rep-
resented as a rotational matrix in the red part of the matrix. The length of the joint is
represented as translation in the blue part of the matrix, in the form shown on the right,
where joint length Jl is represented as a translation in the x axis.

If we consider the kinematic joint chain in Figure 2.2, the global position of the end

effector at j2 can be determined using equation 2.1. R and T represent the rotation

and translation elements of a transform matrix. To determine the translation of j2 in

global space, a series of matrix transforms are created following the joint chain from

j0 to j2, and applied by multiplying each transform in turn. The first transform

represents the position and orientation of joint j0 in global space. The second

transform represents joint j1 being translated by bone length l0. The translation

is done within the rotation and translation space of j0 as specified in the previous

transform, before applying its own rotation, R(j1). Finally the third transform

represents the end effector j2 being translated by bone length l1, within the local

space specified by the accumulation of the first two transforms. As j2 is an end

effector it has no rotation value hence R(0).

j0

j1

j2l1
l0

Figure 2.2: Example of a simple kinematic chain

Tg(j2) =

R(j0) T (j0)

0 1

R(j1) T (l0)

0 1

R(0) T (l1)

0 1

 (2.1)

In a more general form, if we consider the skeletal hierarchy in Figure 2.3, equation

2.2 can be used to determine the translation of a given join Jk in global space, where
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root

hip

toe end
toe

foot 

knee

spine 4
spine 3
spine 2
spine 1

shoulder

elbow
wrist

thumb
finger

head end
head
neck 2
neck1

fore foot

origin node

Figure 2.3: An example of a skeletal hierarchy with kinematic chains starting at the root
and ending at end effectors: head end, thumb, finger and toe end.

n is the fixed origin node, r is the root joint, k is the number of joints Jk is away

from the root and jxn is the length of the bone between joints jn and jn−1 (Radke,

2013).

Tg(jk) =

R(n) T (n)

0 1

R(Jr) T (Jr)

0 1

R(j1) T (jx1 )

0 1

 • •
R(jk−1) T (jxk−1)

0 1

R(0) T (jxk )

0 1

 (2.2)

2.3.2 Joint Axis

When represented using Eulers, the rotation of each joint is expressed using three

axis x, y, z. Changes in the orientation of a joint over time, can visualised as motion

curves as shown in Figure 2.4. These are plots of the values of individual joint axis

over time.
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0
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s

x
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0 100 200 300
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10
z

Figure 2.4: Motion curves plotted for in the x, y, z axis for the right hip joint.
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Some joints have limited degrees of freedom and therefore only utilise one or two

of the joint’s x, y, z axis, rather than all three. Figure 2.5 shows examples of these

with the elbow and knee joints which have only two and one degrees of freedom

respectively. The unutilised axis is referred to as a redundant axis, and is populated

with a horizontal line at 0◦. Some motion capture systems, populate redundant axis

by setting a single single key at the start of the motion, while others will set a value

of 0◦ for the redundant axis for every frame.

Figure 2.5: Examples of redundant axis, left unused by joints with limited degrees of
freedom.

2.3.3 Re-sampling

Despite all the motion files recorded or sourced within this study being captured at

120Hz, some motion files can contain missing frames of data or redundant axis with

only one key frame. To facilitate the efficient processing of motion files, there is a

need to re-sample the motions and fill in any gaps in the data, ensuring that joint

rotations are specified in all three axis of every joint for each frame.

Any gaps in the data can be filled in using interpolation. There are number of

python libraries that can be used to interpolate values, the Autodesk Open FBX

Python SDK (Autodesk, 2020) has an evaluate curve function that can be used for

this purpose.
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2.4 Parameterising Joint Angles

There are a variety of approaches to parametrising joint rotations in a three dimen-

sional space. In this section five different methods of parameterising joint angles are

presented and evaluated, they are either a widely used representation or have been

used in previous research related to motion data.

2.4.1 Euler

Euler angles are the most widely understood representation of orientation, using

three angles to specify rotations in three axis, which are perpendicular to each

other. The Cartesian axis of x, y, z are commonly used, with rotations performed in

a specified order.

While they are a compact, human readable representation, they have a number of

weaknesses when used in computer graphics and computation. They often introduce

ambiguities, as they are able to specify the same orientation in multiple ways, for

example, Euler angles (0, 0, -135) and (180, 180, 45) both specify the same orienta-

tion. Additionally, depending on the order in which the rotations are performed in

each axis, different orientations can be realised for the same set of Euler angles.

Euler angles are also notorious for gimbal lock in which two axes align in such a

way, that two of the angles duplicate each others affect on orientation, resulting in

the three angles only being able to affect a change in orientation in two dimensions

(Parent, 2012). Angles represented in this manner are also cumbersome to work

with for certain mathematical operations such as interpolation.

2.4.2 Quaternions

Alternatively a quaternion can be used to represent orientation within a three di-

mensional space. The motivation of using this approach is that it avoids gimbal

lock and simplifies interpolation between angles. A quaternion is a hypercomplex

number composed of real and imaginary numbers in the form q = w + xi+ yj + zk

where w, x, y, z are real numbers and i, j, k are imaginary numbers. When used to
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represent an orientation, i, j, k form imaginary basis vectors, allowing rotations to

be expressed using four parameters [w(x, y, z)], where w is the a scalar component

and (x, y, z) is the vector component.

The quaternion for a given set of three dimensional x, y, z Euler angles, can be

determined using Equation 2.3, where Euler rotations are applied in XYZ order.

Q =


w
x

y

z



 =


cxcycz − sxsysz
cxsysz + sxcycz

cxcysz + sxsycz

cxsycz − sxcysz




where cx = cos(x/2), cy = cos(y/2), cz = cos(z/2)

sx = sin(x/2), sy = sin(y/2), sy = sin(z/2)

(2.3)

There are also some drawbacks to quaternions, they still have potential for ambi-

guity, as negating every element of a quaternion will result in the same angle (i.e.

[w(x, y, z)] = [−w(−x,−y,−z)]. Additionally, unlike Euler angles, quaternion rota-

tions are not linear which can be problematic when determining angular differentials

and means that they are not appropriate for some statistical techniques such as PCA

analysis.

Quaternion mathematics make it easier to manipulate angles and perform operations

such as measuring the distance between angles. The following subsections outline

the more common mathematical operations performed on quaternions.

Inverting Quaternions

As well as rotation, quaternions can also specify a length or magnitude, however, the

common practice when using quaternions to represent rotations, is to specify them

with a unit length or magnitude. This is useful as the inverse of a unit magnitude

quaternion is equal to its conjugate.

The conjugate of a quaternion, can be determined using Equation 2.4.
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Q∗ = [w(−x,−y,−z)] (2.4)

Quaternion Dot Product

The dot product is an operation that is frequently used in other mathematical

operations and can be determined using Equation 2.5.

Q1 ·Q2 = w1w2 + x1x2 + y1y2 + z1z2 (2.5)

Geodesic Distance Between Quaternions

The distance between two angles can be interpreted in a number of ways. The

geodesic distance is the distance between two angles if the were projected onto a

sphere with a circumference of π. More specifically it is the shortest distance between

the two points along the surface of the sphere.

The geodesic distance can be determined using Equation 2.6 (Krzeszowski et al.,

2014). As the maximum possible distance is π/2, the distance is multiplied by 2/π

to produce a normalised value where 0 ≤ d(Q1, Q2) ≤ 1.

d(Q1, Q2) =
2

π
arccos |Q1 ·Q2| (2.6)

Quaternion Mean

The mean angle of a set of unit magnitude quaternions can be estimated as follows

(Johnson, 2003; Markley et al., 2007):

1. Construct a 4 by n matrix, M , from the unit quaternions.

2. Let Mo be the outer dot product of matrix M , calculated using Equation 2.7.

3. Chose the eigenvector of Mo with the largest absolute eigenvalue, as the esti-

mated mean quaternion, Q̂.
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M
⊗

M = MMT (2.7)

Quaternion Hemispherization

As mentioned previously, the negative of a given quaternion represents the same

angle. This double covering, or antipodal symmetry, can be visualised as two hemi-

spheres, where all three dimensional angles can be specified within each hemisphere.

Hemispherization, is a process of making sure that a set quaternions are all specified

in the same local hemispherical space. Hemispherization is done using the following

steps:

1. Find the mean, Q̂, for the set of quaternions, S.

2. For each quaternion Q in S, if Q̂ ·Qi < 0 then Qi ← −Qi.

Summary of Quaternions

Although not as human readable as Eulers, quaternions are less ambiguous and easier

to perform certain calculations with, for example measuring the distance between

two angles in three dimensional space is relatively straight forward using the dot

product of the quaternions, which is particularly relevant to the studies within this

thesis.

2.4.3 Rotation Matrices

Transform matrices are a useful and widely used method of representing orientation

in computer graphics and can be used to specify not just rotations but other trans-

formations, such as translation and scale. The 3 x 3 matrix, that specifies rotation

part of the transform, as shown in Figure 2.1, can be derived from a quaternion

using equation 2.8 (Dunn and Parberry, 2011).

R =


1− 2Qy

2 − 2Qz
2 2QxQy − 2QzQw 2QxQz − 2QyQw

2QxQy + 2QzQw 1− 2Qx
2 − 2Qz

2 2QyQz + 2QxQw

2QxQz + 2QyQw 2QyQz − 2QxQw 1− 2Qx
2 − 2Qy

2

 (2.8)
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Matrices specify the relative transformation between two coordinate spaces, and al-

low different transformations such as scale and translate to be easily combined into

a single matrix. Additionally the combined effect of multiple transforms can be de-

termined by simply multiplying them together. Being able to combine transforms is

useful when working with a kinematic chain of joints, for example when determining

the global position of a joint from the local rotations and joint lengths of the joints

in the kinematic chain.

2.4.4 Displacement Vector

A number of approaches to representing joint angles as an R3 vector in a form that

avoids gimbal lock have been explored and utilised with respect to motion capture

data.

Displacement vectors use a unit vector in the form of V (x, y, z) to represent ori-

entation. Given two points one unit apart at a given angle, x, y, z is the distance

or displacement between the two points in their respective axis. The displacement

vector, v′ for a given joint, can be derived by multiplying the joint’s rotation matrix

Rj by unit vector v = [0, 1, 0] in shown in equation 2.9.

While this representation looses the roll dimension of the angle, it has previously

been used with PCC to measure the correlation between motions (Etemad and Arya,

2015).

v′ = vRj

where v = [0, 1, 0]
(2.9)

2.4.5 Logarithmic Map

A number of different approaches have been explored using logarithmic maps to

convert quaternions to an R3 vector representation, that avoids gimbal lock and still

specifies the axis and magnitude of the rotation (Johnson, 2003; Grassia, 1998). This

angular representation can also be used to calculate geodesic distance between angles
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(Bin, Weibin and Weiwei, 2020) and are considered particularly useful for machine

learning or deep learning applications (Świtoński et al., 2010). Logarithmic maps

exploit the fact that when a logarithm is applied to a quaternion, the real component

w becomes zero, resulting in the definition Qlog ≡
[
0 x y z

]
. Equation 2.10 uses a

natural logarithm as a logarithmic map to convert quaternion Q into a linear vector,

Qln, where Qℜ and Qℑ are the respective real and imaginary vector components of

Q (Johnson, 2003). Before applying this equation, quaternions do need to be on the

same hemisphere.

Qln =
1

sinc(arccos(Qℜ))
Qℑ (2.10)

2.4.6 Rotation Vector

A rotation vector, is an R3 vector around which a rotation is performed. This

representation specifies the axis of rotation but not the magnitude. This approach

would not be effective for working with joint rotations as some joints only have one

degree of freedom. For these joints the axis of rotation is invariant and the important

magnitude variant is lost.

2.4.7 Overview of Parametrization Methods

Table 2.2 provides an overview of the characteristics and capabilities of different

methods of parameterising rotations. Although rotation itself is a linear transform,

within Table 2.2 linear refers whether the parameters are a linear function of ro-

tation. Unique specification refers to whether a given angle can only be specified

in one way using the parmeterization method, while Unique Interpretation refers to

whether a rotation specified using the parmeterization method can only be inter-

preted to result in a single orientation.

Table 2.2 shows that no single method of parameterising rotations entirely full-fills

all of features outlined in the table. This is fundamentally why a variety of different

rotation parameterisation methods are used within the field of computer graphics.
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Table 2.2: Overview of the characteristics of each method of parameterising rotations.

Parametrization
Method Linear Prevents

Gimbal Lock
Unique
Specification

Unique
Interpretation

No.
Axis

Euler yes no no no 3
Quaternion no yes no yes 3
Rotational Matrix no yes yes yes 3
Displacement Vector no yes yes yes 2
Logarithmic Map yes yes no yes 3

2.5 Parameterising Motions

In addition to parameterising the translation and rotation of joints, there are a

variety of other approaches to parameterising motion data. These parameters can

represent abstract elements, such a components in a feature space (Krüger et al.,

2010), or more tangible motion features such as speed and acceleration (Aouaidjia

et al., 2019). As well as a constantly changing variable, parameters can also rep-

resent discrete features occurring within a motion (Müller and Röder, 2008). The

approaches used to parameterise a motion can also be motivated by the sensors used

to capture the motion, such as accelerometers (Hussain and Rashid, 2012) or micro-

phones (Sun et al., 2021). It is often desirable to reduce the number of parameters

used to represent a motion, either by removing less important parameters or us-

ing dimensional reduction techniques such as Principle Component Analysis (PCA)

(Heloir et al., 2006). These approaches to parameterising motion are explored in

more detail within this section.

2.5.1 Sensor Parameters

Rather than using a specialist motion capture solution, in some use cases it can be

desirable to utilise cheaper more general purpose solutions or sensors, to capture

human motion. This creates a need to translate a sensor’s data into joint position

and translations or utilise other approaches to parameterising motion data.

While RAW sensor data is often not detailed or well formed enough, to directly

support motion tracking for production applications, it can still often be used to

recognise motions based on training sets which have been captured using the same
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type or configuration of sensor.

Inertial Measuring Units

Raw sensor data from IMUs are often used to recognise motions in mobile phones

either using purely accelerometer data on older phones (Kratz, Rohs and Essl, 2013),

or combining accelerometer and gyroscopic data available in more modern hand

held devices (Min, Choe and Cho, 2010). IMU sensor data has also been utilised to

recognise handwriting movements in a pen (Hsu et al., 2014), head movements in

a VR display (Hachaj and Ogiela, 2019) and hand movements in tennis (Srivastava

and Sinha, 2015).

Sensor data can be treated with filters to reduce the impact of anomalies or noise

in the sampled data, or normalise and segment it to standardise the data (Janaki,

Babu and Sreekanth, 2013).

To cope with variances between how a user might hold a mobile device, fit an IMU

sensor or change their overall posture when performing a movement, a solution

called Protractor3D was proposed to compensate for this in accelerometer data.

Protractor3D finds optimal registration points with which to fit two sets of 3D

accelerometer data (Kratz and Rohs, 2011), a technique later applied to gyroscopic

sensor data (Kratz, Rohs and Essl, 2013). When capturing the joint poses of a

person using IMU sensors a similar problem occurs with the root joint, which is

defined in global space. This can be solved by comparing the gyroscopic data for

each motion to a vertical plumb line, for example the y axis, (Yang et al., 2010a).

For other joints this is not an issue as they are typically defined in local space in

relation to a parent joint.

Image Sensors

Images sensors, provide video data in a two dimensional plane. For motion capture

applications there is typically a need to extract three dimensional information from

this plane, either through multiple cameras, depth sensors or artificial intelligence

techniques. However, some gesture recognition applications are designed too work
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with two dimensional data (Christensen, Jebara and Pentland, 1999; Tan et al., 2010)

or extracted features only expressed in two dimensional space (Osawa, Ishikawa and

Watanabe, 2020), eliminating the need to determine or estimate the position of

joints of features in the third dimension.

Microphones

Microphones are a cheap and readily available sensor on many devices. The ampli-

tude of the sound at different frequencies, obtained using Fast Fourier Transform

(FFT) can be treated as a set of features (Sun et al., 2021).

2.5.2 Feature Parameters

It is often desirable to extract parameters that represent specific features of a motion,

either to improve the performance or accuracy of a solution using the motion data,

or to add useful semantic information to a motion.

Velocity

One of the simplest features to extract from motion data is joint velocity, which is

the differential of the joints position or rotation. For a given joint axis or feature, j,

at frame, f , a differential can be obtain using ∆(jt) = jt − jt−1. Another approach

is to determine the transform of a joint, as a transform matrix, using the Kabsch

algorithm (Aouaidjia et al., 2019).

A common motivation for using joint velocity is that motion recognition solutions

based on the magnitude of a velocity do not require motions to be spatially aligned

(Aouaidjia et al., 2019), which is useful when working with three dimensional points

defined in a single global space. Velocity is also a useful feature on which to segment

a motion, as low velocity or changes in velocity often define the end of one movement

or gesture and the beginning of another (Yabe and Tanaka, 1999).

Kovar, Gleicher and Pighin (2002) takes the positions of a set of joints in every

frame over a window of time, to form a point cloud. Point clouds represent both

the pose and movement of a motion within a single set of parameters.
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Relational Features

Features associated with the relationship between the joints within a given motion

can also be parameterised. It is important for features to be based on the relation-

ships between joints within the skeletal hierarchy, so that they are independent of

the global position and orientation of each motion.

Example relational features include the distance between joints which are not adja-

cent to each other in the kinematic chain (Aouaidjia et al., 2019) or parameterising

the correlations between joints (Zhao et al., 2020; Yang et al., 2010b). Relational

features encode how the movement of one joint relates to the movement of another,

allowing those relationships to be maintained when editing a motion. Rather than

joint data existing as a multivariate time series, relationships can be determined

between these variables.

Müller and Röder (2008) proposed a set of general approaches for extracted relational

Boolean features from a motion, which can be seen in Table 2.3. The features are

based on movements crossing specified positional, angular and velocity thresholds,

resulting in a set of Boolean values for each feature. A set of 39 features have been

specified, using the approaches in Table 2.3, for encoding the relational features

within a motion.

Labelled and Categorizing Features

Motions can analysed in order to label or categorize different segments of motion.

For example Laban Movement Analysis (LMA) is often used to attach movement

descriptions to dance motions that describe aspects such as body, effort, shape and

space (Jang et al., 2017; Bao and Yao, 2020). An approach has been developed by

Aristidou et al. (2015), that utilises the Boolean features proposed by Müller and

Röder (2008), and presented earlier in this section, to perform an LMA analysis.

Another approach to labeling motion segments is to use solutions such as speech to

text (Saund et al., 2022) to capture additional data to augment the motion data.
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Table 2.3: General approaches to detecting relational features in human motion, as defined
by Müller and Röder (2008)

Crossing 3 point plane: plane(j1, j2, j3, j4)
Evaluates if joint j4, shown in red, is in front of or behind a plane
which intersects joints (j1, j2, j3), shown in blue. For example a
plane intersecting the root, right hip and right foot joints, could be
used to evaluate if the left foot is front of the right foot in walk
cycle.

Crossing normal plane: nplane(j1, j2, j3, j4)
Evaluates if joint j4, shown in red, is in front of or behind a plane
which is perpendicular to the vectors between joints j1 and j2,
shown in green and intersecting joint j3. For example a plane
perpendicular to the bone going from the chest to the neck and
intersecting the neck, could be used to evaluate if the right hand is
above the neck.
Angular threshold: angle(j1, j2, j3, j4, θ)
Evaluates if the angular distance between the vectors going through
joints j1, j2 and j3, j4, shown in red, is below the threshold set by
θ. For example, if the angular distance a, between the bones going
from the right hip to the right knee and from the right knee to the
right foot, crosses below a given threshold, this indicates that the
right knee is bent.

Move threshold: move(j1, j2, j3, θ)
Evaluates if the movement of joint j3, shown in red, is moving in
the direction of the vector between joints j1, j2, shown in green,
above a threshold set by θ. For example, the vector between the
chest and neck, could be used to evaluate if the left hand is moving
upwards beyond a certain speed.

Move threshold (using normal): nmove(j1, j2, j3, j4θ)
Evaluates if joint j4, shown in red, is moving along the normal
of the plane intersecting joints (j1, j2, j3), shown in blue, above a
threshold set by θ. For example the normal of plane going through
the neck, right hip and left hip, could be used to evaluate if left
hand is moving forwards.

Speed threshold: fast(j1, θ)
Evaluates if joint j1, shown in red, is moving faster than the thresh-
old set by θ. For example, evaluating when the speed of a foot
exceeds a threshold to detect phases in a kicking motion.

Touch threshold: touch(j1, j2, θ)
Evaluates if joints j1 and j2, shown in red, are within the distance of
each other set by θ. For example, evaluating the distance between
hands to detect phases in the a clapping motion.
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Motions are often labelled and segmented so that they can be re-sequenced to syn-

thesis new motions. Rose, Cohen and Bodenheimer (1998) segments motions into

verbs and adverbs allowing new motions to be synthesised in an intuitive manner.

Dimensional Reduction

The high dimensional nature of motion capture data and features extracted from

motion capture data, often motivates the use of dimensional reduction techniques.

Generalised dimensional reduction techniques such as: PCA (Principle Component

Analysis) (Heloir et al., 2006; Johnson, 2003), which identifies the principle eigen

vectors within a features space; or Isomaps (Seward and Bodenheimer, 2005) which

identifies transforms between features, can be applied to motion data.

Heloir et al. (2006) split a motion into hands, upper body and lower body zones

and utilised PCA to determine the eigenvector with the largest eigenvalue in each

zone. This approach reduced the number of dimensions, but also allowed each zone

to be weighted independently. Deep learning techniques have also been used for

dimensional reduction, with Neural Networks being used to encode multidimensional

data (Xiao and Chu, 2017).

2.6 Motion Editing

A variety of techniques can be used to manipulate, blend and adapt human mo-

tion data. This section explores some of the motivations for editing motion data

before reviewing the main approaches to editing motion data, starting with more

fundamental approaches such as warping motions and applying constraints, before

presenting more complex techniques such as blending and synthesising motions.

Xiao, Zhang and Bell (2004) identifies the following motivators for editing or con-

trolling motion data:

• Attaining an accurate spatial and temporal alignment of the motion to a real

or computer generated environment or apposing character’s actions.

• Overcoming the spatial restrictions of a motion capture volume.
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• Allowing motion data to be reused on different character’s or in different en-

vironments.

• Seamlessly blending and combining motion data to synthesis new motions.

2.6.1 Editing Motion Signals

The movement of each joint axis is represented in the form time series data, referred

to as a motion curve and shown in Figure 2.4. Editing a motion curve can be

considered a signal manipulation problem, allowing a variety signal manipulation

and filtering techniques to be applied to motion editing (Bruderlin and Williams,

1995).

Motion curves can be displaced to edit a motion, as offsetting the values of a motion

curve will result in a change in a joints orientation. While it is rarely desirable to

offset the values of an entire motion curve by a single fixed value, offsetting the

joint by the same amount for the entire duration of the motion, it useful to be

able to offset a motion curve by varying amounts, as required, at different points in

the motion curve. Witkin and Popovic (1995) proposed specifying displacements or

offsets using a sparse set of key-frames, allowing the motion curves to be displaced

as required.

Time warping can be used to temporally warp a signal, to temporally displace the

data points in a motion curve. Uniform Time Warping (UTW) (Fu et al., 2008)

can be used uniformly scale the duration of a motion to make it faster or slower.

Monotonic temporal warps can also be specified using key frames to create a time

warp curve (Witkin and Popovic, 1995; Kovar and Gleicher, 2003). Dynamic Time

Warping (DTW), warps each frame of a motion to optimally align the features of

one motion with another (Bruderlin and Williams, 1995; Sakoe and Chiba, 1978).

Time warping is a key step in blending motions and transferring styles and features

between motions. Time warping algorithms are presented and discussed in more

detail in Section 3.3. They also a key topic within the studies presented in Chapters

4, 5 and 6.

68



Frequency filters can by applied to motion curves to separate low frequency gross

motion patterns from small high frequency motion elements. This allows the overall

movement of a motion to be edited without effecting high frequency details (Lee

and Shin, 1999), or for high frequency stylistic characteristics of a motion to be

extracted (Unuma, Anjyo and Takeuchi, 1995).

Filters can also applied to a motion curve, such as low pass filters to smooth a

motion (Yu et al., 1999; Fazlali et al., 2020) or shape functions can be applied clamp

or accentuate a motions characteristics (Bruderlin and Williams, 1995).

Neff and Fiume (2003) utilises signal processing techniques to edit more semantically

meaningful motion attributes such as the extension (distance of joints from hips)

and amplitude (range of movement) of a motion.

2.6.2 Applying Constraints

Constraints are widely used approach in computer animation. Parent/Child con-

straints can be used to attach a one element to another, for example an attaching

an axe to a characters hand. Aim constraints can be used to rotate an object to

face another object for example aiming a camera at a character. Constraints are

supported by most animation tools, using the ideas set out by Cohen (1992), for

example allowing the weighting of a constraint to be adjusted at different points in

the animation Choi, PArk and Ko (1999).

Constraints are often used when re-targeting motion data (Choi and Ko, 1999),

a process in which the motion data is re-targeted from one set kinematic joints

to another, a process that is usually required when transferring motion data from

one character to another. A challenge within re-targeting is utilising the destination

joints as efficiently as possible when reproducing the motion, to minimise the amount

by which joints are manipulated.

Re-targeting a motion from one set of joints to another, invariably means the motion

is being reproduced in a set of joints of different sizes to the original motion. This

means a decision has to made as whether the objective is reproduce the pose of
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the motion, or the position of end effectors, in order preserve any interaction with

the environment. Shin et al. (2001) proposes an approach to determining when it is

important to preserve the position of end effectors or the original pose of the motion.

Physical constraints, referred to as spacetime constraints (Witkin and Kass, 1988),

can be imposed to ensure that a motion remains physically plausible. These could

be in the form of the range of motion of each joint or the maximum speed at which

a joint can move or accelerate (Gleicher, 1997).

While individual spatial constraints are relatively straightforward to specify, a gen-

eralised approach to detecting interactions and maintaining spatial constraints is a

more complex problem. Spatial constraints can be identified and specified base local

minima distances between character joints and objects being interacted with or using

zero crossings in velocity to detect changes in movement direction (Bindiganavale

and Badler, 1998). Interactions can also identified using trained data to recognise

motions classified using a Support Vector Machine (SVM) (Oh et al., 2016). Vol-

umetric meshes have been used to detect spatial interactions with more complex

environments or objects, which may involve multiple points of contact, such as a

character sitting in a chair, riding a bike or getting into a car (Ho, Komura and Tai,

2010; Kim et al., 2016).

In some scenarios a motion is required to satisfy multiple constraints, for example

when simultaneously re-targeting a motion, maintaining an eye-line, adjusting a

wall interaction to a spatial change in the environment and making sure joints do

not move to fast. This has motivated solutions for determining the correct or most

effective way of prioritising these constraints (Zhu, Wang and Xia, 2006; Boulic

et al., 2003), including an approach that also incorporates simulation of dynamics

on a character using the Open Dynamics Engine (Li et al., 2009).

2.6.3 Editing via Abstract Models

Kinematic joint hierarchies are not the most intuitive or straightforward model to

work with, this has motivated the development of simplified models for represent-

ing motion, which are potentially more natural to work with. Physical models of
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motions have been abstracted from motions to support more physically plausible

manipulation of motions, including an inverted pendulum model representing the

balance and center of mass of a motion along with joint toques (Tsai et al., 2009),

and modelling of contact forces when walking (Ye and Liu, 2010). There has also

been some interest in editing motions in low dimensional space, motivated by the

fact that this would leave connections between the movement of independent joints

intact (Carvalho, 2009).

Models have also been created to model the physics of soft tissue and skin to deform

the mesh of a character (Loper et al., 2015).

2.6.4 Blending and Synthesising Motions

There is often a desire to blend together a number of short motions to create a single

longer motion, either to get around the limitations of the small capture volume or

to synthesis new motions. In order to blend motions they need to be accurately

aligned, both spatially and temporally (Kovar and Gleicher, 2003; Kovar, Gleicher

and Pighin, 2002). To support this there is a need to extract key frames and segment

motions to create libraries of motions that can be blended together. Segmentation

can be based on identifying key features (Lim and Thalmann, 2001; Müller, Röder

and Clausen, 2005; Janaki, Babu and Sreekanth, 2013) or recognising sub-sequences

within a larger motion or stream of motion data (Li and Prabhakaran, 2005; Xiao

and Liu, 2015).

As well as concatenating motions, movement styles can also be transferred between

motions, taking the motion style of one motion and applying it to the gross move-

ments of another. Motion style transfer solutions have been developed based on the

following techniques: identifying and transferring the difference between motions

(Hsu, Pulli and Popović, 2005); using time warping and linear transforms to best

fit one motion to match another Xia et al. (2015); or using trained neural networks

(Tao et al., 2022; Smith et al., 2019). A key step of style transfer is accurately time

warping motions to align their temporal features, allowing style attributes to be

transferred between the two motions.
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2.6.5 Impact on Perceived Realism

It is important to understand the impact of editing and manipulation of motion data

on the perceived realism of the motion. Pražák, McDonnell and O’Sullivan (2010)

evaluated the impact of time warping on the perceived realism of a motion and found

that slowing down a motion was more acceptable than speeding it up. Changes to

ballistic movements such as jumping are particularly perceptible, motivating a study

into the impact of editing of a throwing animation on perceived realism (Vicovaro

et al., 2014) and the development of metric for estimating the perceived realness of

ballistic motions (Reitsma and Pollard, 2003).

2.7 Summary

Human motions can be encoded in a wide variety of formats and parameters to

produce motion data, which is complex to work with, being both spatial and tem-

poral in nature and typically multidimensional. It is desirable and often necessary

to be able to manipulate, edit and adapt motions, either for stylistic purposes, or

to spatially or temporally fit the motion to a meet new constraints, either to align

contact points or simulate interactions.

This chapter has reviewed a variety of approaches to parameterising joint data as

well other motion features. In addition several methods for editing motion have

been explored. Temporal alignment of interactions and motion editing methods,

such as motion blending and style transfer, are dependent on accurate time warping

methods to aligning the temporal features of motions. The following chapter reviews

a number of approaches to time warping human motions, the majority of which are

based on measuring the similarity of motions, which are also explored at the start

of the same chapter.
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Chapter 3

Measuring Similarity and Time

Warping of Human Motions

3.1 Measuring Similarity

3.1.1 Introduction

The ability to measure similarity of motions is a key tool in motion retrieval and

motion editing. Many techniques and approaches to re-using and combining motion

captured data are dependent on reliable methods of identifying motions within a

motion database, which are similar to a query motion. This has led to development

and use of similarity metrics, equations and algorithms which measure and score the

similarity of two motions for a variety applications.

A similarity metric based on the positional and rotational differences between the

respective joints of two motions, has been used to retrieve motions from a database

to control characters in a virtual environment (Lee et al., 2002). A metric based

on the point clouds of joints over a window of time, has been used to retrieve

motions to be blend together in a motion graph (Kovar, Gleicher and Pighin, 2002).

Müller and Röder (2008) extracted Boolean features from a motion to allow motions

to be retrieved from a database more efficiently. Guerra-Filho and Bhatia (2011)

compared the performance of similarity metrics based on PCA, rotation distance,
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points clouds and Boolean features, at correctly classifying motions in a database,

and found that point clouds performed best. A proposed or selected metric is often

optimised for a particular application.

3.1.2 Types of Similarity Metric

There are a number of different metrics that can be used to measure the similarity

of two motions, which can be separated into the following categories:

• Distance Based Metrics are the most established approach to measuring

similarity. They are based on measuring the differences between particular pa-

rameters of corresponding joints, such as: position; rotation; velocity; and ac-

celeration. Using normalisation, multiple parameters can be combined within

the same metric.

• Correlation Based Metrics assess similarity using the correlation of corre-

sponding parameters rather than the distance between them. They evaluate

the variation between the overall forms of the motion curves associate with

corresponding joint parameters, rather than the differences between the val-

ues that make up the motion curve.

• Feature Based Metrics assess similarity based on the occurrence of discrete

features within the motion such as: feet crossing; hand above head; and foot

or hand in front or behind the hips.

Regardless of the method used to parameterise the motions, each parameter can be

treated as a time series of n data points, where both motions consists of n frames,

defined by t = 1, ..., n ∈ N. The similarity of the two motion sequences, A and

B, is measured by comparing the parameters of respective frames in each motion,

(A1, A2, ..., An), and (B1, B2, ..., Bn).

3.1.3 Preparing Data

The steps required to prepare for motion data before applying a similarity metric,

will vary depending on the use case but can be broadly outlined as follows (Janaki,

74



Babu and Sreekanth, 2013):

1. Sampling: The capture of the motion. It is important to consider the sample

rate the device is capable of and in some cases the sensor delay or latency.

2. Filtering: A smoothing filter can be applied to motions to smooth out po-

tential errors or noise in the sample data, for example applying a Butterworth

filter (Yu et al., 1999).

3. Segmentation: Segmenting the motion based on features within the motion

such as: pauses between actions identified by low joint velocities (Yabe and

Tanaka, 1999), or changes in Boolean features defined using thresholds Müller

and Röder (2008) as described in Section 2.5.2.

4. Conforming Data: Making sure that the motions being compared have same

number of samples or frames. Making sure that the joint data is represented

consistently in both motions (i.e. using the same joint system). Conforming

motion data is outlined in more detail in Section 3.1.4.

5. Normalization: The parameters for each joint or feature sometimes need

normalising to insure the weighting of each joint is independent of the magni-

tude or range motion occurring in the joint.

3.1.4 Conforming Motions

To facilitate these similarity measurements, both motions must have the same num-

ber of frames (i.e. the same duration and sample frequency) and use the same joint

system. This typically requires one of the motions being compared to be adjusted

to conform to the length and joint system of the other.

The length of a motion can be changed using a time warping algorithm such as:

Uniform Time Warping (UTW) or Dynamic Time Warping (DTW). UTW uniformly

stretches or squashes a motion, then re-samples the frames at the required frequency.

DTW monotonically aligns the frames of an input motion to best match the frames

of a target motion, deleting and duplicating frames of the input motion as required.

Which method is used will depend on the use case scenario. Both of these time
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warping approaches are described in more detail in the Section 3.3.

As mentioned previously, similarity metrics can only reliably compare motions ap-

plied to the same joint system or skeletal hierarchy. Differences in the joint systems

will affect the joint angles used to encode character poses, resulting in an identical

pose on two different joint systems being defined using different joint angles. A re-

targeting algorithm, such as the one built into Autodesk MotionBuilder (Autodesk,

2021) can be used to plot motions onto different joint systems.

3.1.5 Joint Weightings

Motion data is multidimensional in nature, for example a simple joint rig of 18 joints,

each encoded with 3 parameters, would use 54 dimensions to define a character’s

pose in a given frame. Any measurement of similarity between motions is therefore

based on the aggregate of multiple joints.

Similarity metrics typically allow joints to be weighted, so that some joints can be

equally weighted or given a higher or lower importance when measuring similarity.

A reasonable assumption would be to give joints which have a higher impact on a

pose or are particularly salient to general human motion such as: shoulders; elbows;

hips; and knees, more importance than other joints (Lee et al., 2002), and ignore

less significant joints such hands and feet. These less significant joints tend to

be peripheral and more invariant to the motion being performed, while having a

limited range of movement, this has motivated giving joints that move the most

more weighting (Lee and Lee, 2016; Patrona et al., 2018).

Studies have been performed to determine the optimal set of joint weightings to

use with a similarity metric. Wang and Bodenheimer (2003) used a constrained

regression technique to determine a set of optimised joint weightings to minimise

the cost of transitioning from one motion to another, while Harada et al. (2004)

determined a set of optimal joint weightings based on viewer perception tests. Both

sets of optimal joint weightings can be seen in Table 3.1. The weightings determined

using human perception (Harada et al., 2004) ranged between 0 and 50, and were

based on the perception of changes in joint position. To aid comparison, these
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weightings were scaled to a range between 0 and 1 and the weights for a given joint

swapped for weighting of it’s parent joint, as the Wang and Bodenheimer (2003)

study was based joint rotations and a joint’s position is largely a derivative of its

parent’s rotation.

Table 3.1: Optimal weighting of joints within a similarity metric, determined by a regres-
sion(Wang and Bodenheimer, 2003) and human perception(Harada et al., 2004).

Joint Determined by Regression Determined by Human Perception
Hips 1.000 0.667
Knees 0.090 0.333
Ankles - 0.067
Shoulders 0.788 1.000
Elbow 0.025 0.000
Neck - 0.333
Head - 0.667

The weighting assigned to each joint, wj, with a set of m joints, is typically in the

range of 0 ≤ wj ≤ 1, where
m∑
j=1

wj = 1.

3.1.6 Distance Base Metrics

Distance based metrics evaluate the similarity of two motions by extracting an iden-

tical set of parameters from the joints of both motions, then measuring the amount

of difference between the respective parameters as a cost function.

Distance based metrics typically score a given joint parameter, based on the average

difference between the corresponding values of the same parameter in each motion,

across all frames. This means that joints that contain a larger variation between the

two motions, will have more impact or weight on the overall similarity score than

joints with less variation between the two motions. Therefore, in order to equally

weight joints or control the weighting of each joint, the differences between each

set of joint parameters need to be normalised across the entire set of motions being

compared.

In this section distance based metrics based on the following joint features: rotation;

position; and velocity will be presented. These metrics are based on measuring
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the difference between features which are represented using multiple parameters.

Although not explored in this section, there are also a variety of techniques for

evaluating the difference between individual sets of parameters (Akila and Chandra,

2013).

Rotational Distance

A common approach to determining the distance between two angular rotations

(Krzeszowski et al., 2014), is to use quaternions and take the absolute value of

their inner product |qa · qb|, giving the geodesic distance between them. The angular

distance between motion sequences A and B, of length n frames, with m joints, with

w weighting, can be determined using equation 3.1. The dot product is multiplied

by 2
π

to normalise the rotational distance to between 0, matching, to 1, opposite.

cθ =

n∑
f=1

m∑
j=1

wj
2
π
arccos |QAf

j ·Q
Bf

j |

n
(3.1)

Positional Distance

When measuring the similarity of two motions using position it is often desirable

to parameterise positions in local space, relative to the hips, rather than in global

space. This eliminates the need to align joint rigs before measuring their similarity.

Moreover, most applications that require aligned or similar motions, such as: motion

blending; motion recognition and translating motion styles, do not have an explicit

need for the hip joint to be considered. To determine the position of a joint with

respect to the hip, the transform of the hip joint needs to be removed by reversing

it. This can be done by multiplying the inverted transform matrix of the hip joint,

H−1, by the global position of a given joint Tg(j), giving the local translation, Th(j),

between the hip and joint j. This allows the similarity between the joint positions

of motions A and B, to be assessed by measuring the difference between the hip to

joint translation, Th(j), of corresponding joints in equation 3.2.
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cp =

n∑
f=1

m∑
j=1

wj|p
Af

j − p
Bf

j |

n

where pj = Th(j) = Tg(j)H
−1

(3.2)

Difference in Velocity

A velocity distance metric is based on comparing the change in a given parameter

or vector over time. Measuring the change of a single parameter only provides infor-

mation the magnitude of the change (i.e. speed of movement), it is more desirable

to measure the change in a vector as this will give a velocity, which has information

on both the speed and direction of a change.

Equation 3.3 demonstrates how the rotational distance metric in equation 3.1, can be

adapted to create a metric based on the difference in rotational velocity, where ∆R
Υf

j

is the rotational velocity of a joint j within motion Υ, represented as a transform

matrix. The rotational velocity is determined by multiplying a joint’s rotation in a

given frame, by the inverse of its rotation in the previous frame. The rotation in

the matrix transform ∆R
Υf

j is converted to quaternion ∆Q
Υf

j .

c∆θ =

n∑
f=1

m∑
j=1

wj
2
π
arccos |∆Q

Af

j ·∆Q
Bf

j |

n

where ∆R
Υf

j = R
Υf

j (R
Υf−1

j )−1

(3.3)

Equation 3.4 is an adaptation of the positional difference similarity metric in Equa-

tion 3.2, creating a metric based on the difference in the positional velocity of each

joint. The positional velocity is determined by magnitude of the translation re-

sulting from subtracting the translation between the hip and joint j, Th(j), in the

previous frame from that of the current frame.
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c∆p =

n∑
f=1

m∑
j=1

wj||∆p
Af

j −∆p
Bf

j ||

n

where ∆pj = Th(j)
f − Th(j)

f−1

(3.4)

Aouaidjia et al. (2019) proposed combining global and local joint velocities in a

single metric. The global joint positions were determined using Equation 3.2, which

subtracts the global hip joint transformation from a given global joint position to

compensate for any difference in the overall orientation of the motion. The local

joint positions were determined relative to the parent joint, which is analogous to

a Displacement Vector as discussed in Section 2.4.4. Rather than determine the

velocity by subtracting the parameters of adjacent frames a Kabsch algorithm was

used to determine the transform of each joint between frames.

Cosine Similarity

A more generic approach to measuring the similarity of vectors is to use cosine

similarity, these can be applied to any feature vector, such as a Cartesian coordinate

representing a position in three dimensional space. Cosine similarity projects one

unit length vector onto another, giving a measure of the difference between the

orientation of the two vectors, where -1 is the opposite orientation, 0 is perpendicular

and 1 is the same. Both Hegarini et al. (2016) and Chantaprasert, Chumchuen

and Wangsiripitak (2019) used this approach to measure cosine similarity of joint

rotations parameterised as displacement vectors, described in Section 2.4.4.

The cosine similarity of two vectors, A and B, can be calculated using Equation 3.5.

If the vectors are both unit length then the Equation 3.6 can be used. Equation 3.5

can be adapted into similarity metric shown in Equation 3.7, where where V Υf
j is

the displacement vector of joint j at frame f of motion
−→
Υ .
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cosθ =

−→
A ·
−→
B

|
−→
A | · |

−→
B |

(3.5)

cosθ =
−→
A ·
−→
B (3.6)

ccos =
n∑

f=1

m∑
j=1

wj

−−→
V Af
j ·
−−→
V Bf
j

|
−−→
V Af
j | · |

−−→
V Bf
j |

(3.7)

Combining Parameters

Both Lee et al. (2002) and Arikan and Forsyth (2002) propose similarity metrics

based on multiple parameters, respectively combining joint rotation with joint ve-

locity and joint position with joint velocity. This can be achieved by combining the

equations already presented in this section as demonstrated in the Equation 3.8.

Both rotational and positional distance metrics evaluate the difference in the overall

pose of the joints, therefore combining both in the same metric would potentially

place too much weight on the pose of the joints over the movement of the joints.

However, as shown Equation 3.8, the parameters can be weighted to compensate for

this or prioritise parameters which may be more pertinent to a given scenario.

c = wθcθ + w∆pc∆p (3.8)

When comparing the similarity of hand features extracted form a video Tan et al.

(2010) combined joint shape and velocity features using key frames. Shape features

where only compared on a sparse set of key frames, while the velocity of the hand

was compared on every frame.

Janaki, Babu and Sreekanth (2013) utilised a similarity metric which combined

DTW distance and Mahalanobis distance (Moonen and De Moor, 1995), to evaluate

the similarity of signals from accelerometer and gyroscope sensors in mobile phones.

The DTW distance, is a measure of how much a motion needs to be time warped
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to align it with another motion. It is the distance of the alignment path plotted

using Dynamic Time Warping, which is discussed in Section 3.3.3, from a linear

alignment. Mahalanobis distance is based on the mean and covariance of a given

set of joint parameters and provides a distance measure that is independent of the

range motion of a particular joint, eliminating the need for normalisation.

Point Clouds

Kovar, Gleicher and Pighin (2002) create point clouds from the joint positions of a

motion at a given frame and its neighbouring frames. The positions of the points are

all defined in the same co-ordinate space and represent both the pose (position) and

movement (velocity and acceleration) of a motion over a small window of time. To

eliminate the effect of any differences between the position and orientation of the two

motion’s root joints, a transformation (T ) is applied to the point cloud of one motion,

optimising the fit (sum of the squared distances) between the two sets of point

clouds. The transform is constrained, only allowing the point cloud to be rotated

around the y (vertical) axis and translated horizontally in the x and z axis. Once the

optimization transform is applied, the distance between the respective points in each

motion can be summed using equation 3.9, giving a measure of similarity, where ω

is the number of neighbouring frames to be included each side of the current frame,

wp is the weighting for the point p in the point cloud and Ap and Bp are points in

the point cloud created from motions A and B respectively.

cpc =
n∑

f=1

m(2ω+1)∑
p=1

wp|Ap − Tθ,x,zBp| (3.9)

The optimal transform T has the following closed form solution:

Tθ = arctan

∑
p=1

wp(xApzBp − xApzBp)− 1∑
p=1

wp
(xApzBp − xBpzAp)∑

p=1

wp(xApxBp + zApzBp)− 1∑
p=1

wp
(xApxBp + zApzBp)

(3.10)
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Tx =
1∑

p=1

wp

(xAp − xBp cos(Tθ)− zBp sin(Tθ)) (3.11)

Ty =
1∑

p=1

wp

(zAp + xBp sin(Tθ)− zBp cos(Tθ)) (3.12)

A potential weakness of this approach is the 2D optimization transform Tθ,x,z. It

assumes that both motions are captured on a level floor, any variance in the floor

level (i.e. a slope) would therefore adversely effect the similarity results produced

using this approach.

3.1.7 Correlation Base Metrics

Although not as established as distance based metrics, similarity metrics have been

proposed based on the correlation between corresponding joint parameters, rather

than the difference in their values. PCC (Pearson’s Correlation Coefficient) has been

proposed as a similarity metric to measure the alignment of two motions (Etemad

and Arya, 2015).

Unlike distance based metrics that evaluate the difference between features defined

by sets of parameters, such as position and rotation, correlation based metrics eval-

uate the correlation between the individual parameters themselves. This needs to be

considered when choosing parameters to evaluate. For example the ambiguous way

in which Euler angles can be used to specify a rotation, coupled with the potential

for Euler values to be rolled over at ±180, means that they are not suitable for use

with a correlation based metric unless they are pre-treated to correct these issues

beforehand. Another example is quaternions, which would need to be hemispherised

to ensure that the quaternions for a given joint, across both motions, are encoded

in the same hemisphere.

Etemad and Arya (2015) proposed parameterising joint rotations as displacement

vectors for use with PCC correlation. While displacement vectors do get around the

issues associated with Euler angles, they are not a linear function of the rotation
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and therefore my not be the optimal choice, or could be better evaluated using a

rank based correlation method such Spearman’s (Zar, 2014).

An example of correlation base metric using PCC can be seen in Equation 3.13,

where each joint is represented using a set of k parameters and cρ is the PCC

correlation between two series of values.

cρ =

m∑
j=1

k∑
a=1

wjρ(A
a
j , B

a
j )

k
(3.13)

The motivation for using correlation based similarity metrics is that they compare

the overall form of the motion curves defined by corresponding parameters, rather,

than the values of the parameters themselves. This means that a correlation based

metric, would not evaluate two motion curves that are the same shape but with a

constant offset as different, where as a distance base metric would. This is explored

in more detail in Section 4.2.2.

Correlation algorithms such as PCC score the correlation of each parameter within

the range −1 ≤ ρ ≤ 1, removing the need to normalise the values for each joint

as is required for distance based metrics. While this is an advantage it also means

that every parameter is equally weighted, regardless of how much variation there is

in the parameter values (i.e. movement in joint). If the joints are equally weighted,

this results in joints with little movement having the same impact on the similarity

metric as joints with lots of movement. It also means that parameters associated

with redundant axis are also considered equally important.

Correlation can also be used to evaluate the relationship between different data

types. For example it could be used to evaluate the correlation between joint pa-

rameters and a sound source for analysing dance movements.

3.1.8 Feature Based Metrics

Feature based metrics measure similarity based on the correspondence of features

within the motions, such as the Boolean features in Section 2.5.2. Equation 3.14 can

84



be used to measuring the similarity of the Boolean features of two motions, where

FΥ is an f by s matrix of f frames and s Boolean features within motion Υ (Röder,

2006).

crel =

n∑
f=1

s∑
r=1

|FA
(f,r) − FB

(f,r)|

ns
(3.14)

3.2 Motion Recognition

3.2.1 Motion Recognition Using a Similarity Metric

A common application of similarity metrics is motion recognition, typically using a

time warping algorithm to match the duration of two motions and temporally align

their features before applying the metric Osawa, Ishikawa and Watanabe (2020);

Chantaprasert, Chumchuen and Wangsiripitak (2019); Wahyuni et al. (2021).

When classifying or reorganising a motion it can be useful determine an average mo-

tion to act as a reference for a given movement. Petitjean, Ketterlin and Gançarski

(2011) uses Barycenter averaging to determine an average motion.

The followings sections explore other methods of recognising motions, or finding

motions similar to a query motion, that do not utilise a similarity metric to score

the overall similarity of a motion.

3.2.2 Motion Recognition Using Clustering Algorithms

Each parameter of a motion can treated as a feature within a feature space of size k.

For example 20 joints each represented in three dimensions would give 60 parameters

or a feature space of k = 60. Each frame of motion can be represented as a single

unit length k dimensional vector (Taranta II et al., 2017) allowing approaches such

as: Support Vector Machines (SVM) (Vantigodi and Babu, 2013; Janaki, Babu and

Sreekanth, 2013) to be used to cluster or categorise motions or poses unsupervised;

or k-Nearest Neighbour (KNN) (Shin, Hasan and Maniruzzaman, 2022; Zhao et al.,

2020) to identify motions and poses which are most similar. As with similarity
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metrics, a time warping algorithm is often used to temporally align the features of a

motion before SVM or KNN is used. Taranta II et al. (2017) uses the inner product

of the feature vectors that make up a motion to find the most similar motion using

KNN, which is referred to as first nearest neighbour (1NN).

3.2.3 Motion Recognition Using Statistical Probability

Hidden Markov Models can also be used for motion recognition, to determine the

probability of a sequence of motion poses belonging to given motion (Oz and Leu,

2011). HMMs can be used to recognise a motion from a partial query motion,

making them potentially useful for real-time tasks.

Logistic Regression is an adaptation of linear regression, in which probability of

given value or motion type occurring is estimated, for a given parameter or set of

parameters (i.e joint orientations or velocities). Kratz, Rohs and Essl (2013) com-

pared the performance DTW, LR and Protractor 3D (discussed in Section 2.5.1,

when recognising a predefined set of movement gestures captured using accelerom-

eters, and found that that both DTW and Protractor 3D performed better than

LR.

Like LR, Naive Bayes can also be used to determine the probability of a given set

of joint parameters or features occurring in a particular movement. As Naive Bayes

considers every feature to be independent, they are less accurate when used with

features that contain repeating values or have some correlation between them, a

characteristic common in motion data. Despite this, Naive Bayes has been found

to be useful for broad classification problems, when applied with CNN, such as the

detection of abnormal motions occurring in a home (Ali et al., 2022).

Statistical probabilistic approaches such as HMM, LR and Naive Bayes all require

training data, making them only suitable for reorganising a defined set of movements,

for which a number of examples have already been captured, such as sign language

or defined gestures.
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3.2.4 Motion Recognition and Time Warping

All of the motion recognition approaches in this section are can implemented along-

side time warping. Before applying a motion recognition algorithm, it is good prac-

tice to time warp motions, to match their length and align their temporal features,

to optimise and improve the consistency of its performance.

3.3 Time Warping

3.3.1 Introduction to Time Warping

Time warping refers to the manipulation of the timing of a motion sequence. This

can be as simple as uniformly scaling a motion to change its duration, to carefully

changing the timing of frames within the motion to temporally align its features

with another motion.

Time warping is an established and widely used procedure, with many techniques

and approaches to re-using motion captured data dependent on reliable and accurate

methods of temporally aligning an input motion to the features of a target motion.

Accurate motion alignment allows sophisticated motion manipulation techniques

to be used, such as extracting (Etemad and Arya, 2014a), blending (Rose, Cohen

and Bodenheimer, 1998; Bruderlin and Williams, 1995) and translating (Hsu, Pulli

and Popović, 2005; Xia et al., 2015) stylistic features between motions. Interactive

applications can also utilise motion alignment, examples include: providing real-time

feedback in movement training (Chan et al., 2010); recognising interactions (Yun

et al., 2012); or allowing virtual characters to interact with a person in real-time

(Randall, Williams and Athwal, 2017).

3.3.2 Uniform Time Warping (UTW)

Uniform Time Warping (UTW) (Fu et al., 2008) is the most straight forward and

naive method of time warping, uniformly squashing or stretching an input motion

to match either a specified duration or the duration of a target motion. Motion data

can be uniformly warped to match a target duration using the following two steps:
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1. Determine the total number of frames required to encode a motion of the

target duration, nt, using nt = tts, where tt is the target duration in seconds

and s is the sample rate in Hz.

2. Re-sample the input motion using nt samples, uniformly spread apart between

the start and end of the input motion, using Equation 3.15, where ti is the

temporal position in seconds of sample i, si is the sample number (indexed

from 0) and it is the duration of the input motion in seconds.

ti = si
it

nt − 1
(3.15)

UTW is useful for efficiently length matching motions, however it is not able to align

the temporal features of a motion.

3.3.3 Dynamic Time Warping (DTW)

Dynamic time warping (DTW) (Sakoe and Chiba, 1978; Bruderlin and Williams,

1995) is a widely accepted approach for temporally aligning motion data. Not only

does DTW change the length of the input motion being warped, to match that of

the target motion, each frame is individually warped as required, to temporally align

the features of the input motion to those of the target motion.

DTW monotonically matches the frames of an input motion to a target motion, with

the objective of minimising the differences between the two motions. The difference

or cost of the time warp is determined using cost function based on the distance

based similarity metrics presented in Section 3.1.6, but without summing the costs

of every frame in the motion.

Figure 3.1 shows an example of input motion aligned to a target motion, using both

UTW and DTW. While UTW does scale the length of the input motion to match the

target motion, DTW aligns the features within walking motion resulting in a more

accurate alignment, in which all the peaks and troughs of the motion curve align.

While UTW successfully aligns frames at the beginning and end of the motion, the
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poses between frames 200 and 400 show DTW producing a better alignment than

UTW.
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Figure 3.1: Comparison of UTW and DTW time warping, applied to a walking motion.
The motion curves of the x axis of the left hip and poses show the accuracy of DTW and
UTW alignment techniques at aligning the input motion to the target motion.

The DTW Algorithm

This section describes the DTW alignment process for aligning an input motion, I,

of length m frames to a target motion, T of length n frames. A DTW alignment is

performed using the following three steps:

1. Cost Matrix

Create a cost matrix, C, of the difference between each frame of the input

motion, I, and the target motion, T . This is done using the Algorithm 1. The

dist(Ii, Tj) function can be based on any of the distance functions presented

in Section 3.1. A commonly used cost function is the geodesic rotational
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distance between the corresponding joints. The rotational distance similarity

metric in Equation 3.1 can be adapted for use in a distance function as shown

in Equation 3.16.

dθ =
m∑
j=1

wj
2

π
arccos |QIi

j ·Q
Tk
j | (3.16)

2. Accumulated Cost Matrix

Calculate an accumulated cost matrix, T , by accumulating the cost within

matrix C, from C0,0 to Cm,n, as shown in Algorithm 2.

3. Plot Alignment Path

Plot an alignment path through the accumulated cost matrix, T , backwards

from Cm,n to C0,0. This is done using a dynamic programming algorithm that

steps through the accumulated cost matrix using Algorithm 3, creating an

alignment map P .

Algorithm 1: getCostMatix() Function
input : Sets I and T of size m and n respectively
output: Matrix C of size m x n

1 for i← 0 to m do
2 for k ← 0 to n do
3 Ci,k = dist(Ii, Tk);

Figure 3.2, shows an example of alignment path plotted by DTW, giving the op-

timal alignment between the features of an input and target walking motion. The

accumulated cost matrix, through which the alignment was plotted, is visualised as

a heat map. The DTW algorithm plots a path through the least cost areas if the

accumulated cost matrix, which are darker than the high cost areas.

The alignment plotted by the DTW algorithm can be used to align the motions in

either direction (i.e. align the target motion to the input motion, or visa versa).

Additionally using DTW to align the target motion to input motion, will result in

the same mapping between input and target frames, as using it to align the input
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Algorithm 2: getAccumulatedCostMatix() Function
input : Matrix C of size m x n
output: Matrix T of size m x n

1 for i← 0 to m do
2 for k ← 0 to n do
3 Ti,k = infinity;

4 for i← 0 to m do
5 for k ← 0 to n do
6 if i = 0 ∧ k = 0 then
7 T0,0 = C0,0;
8 else
9 Ti,k = Ci,k +min{Ti−1,k, Ti,k−1, Ti−1,k−1};

to the target motion.

Constraints of the DTW Algorithm

Given a DTW alignment path, P , of length, k, mapping each input frame to a

target frame, the alignment produced by the DTW algorithm meets the following

conditions:

• Monotonicity condition: P1 ≤ P2 ≤ ... ≤ Pk. The alignment path cannot

go backwards in time.

• Boundary condition: P1 = (0, 0) and Pk = (n,m). The alignment path

must start and end at the first and last frames of the aligned motions respec-

tively.

• Step size condition: Pi − 1− Pi ∈ (1, 1), (1, 0), (0, 1). Limits the number of

frames that can be jumped between points in the alignment path.

The DTW algorithm can be modified to adjust the boundary and step size conditions

to either globally or locally constrain the alignment path respectively.
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Algorithm 3: The DTWPlot() Function
input : Matrix T of size m x n
output: Set P alignment map

1 p← next step as string;
2 R = {m,n};
3 P = R0 ;
4 while R0 > 0 ∨R1 > 0 do
5 p = "match";
6 if R1 = 0 then
7 p = "delete";
8 else if R0 = 0 then
9 p = "insert";

10 else
11 if arg min{DR0−1,R1−1, DR0−1,R1 , DR0,R1−1} = 1 then p = "delete";
12 if arg min{DR0−1,R1−1, DR0−1,R1 , DR0,R1−1} = 2 then p = "insert";

13 if p = "match" then
14 R = {R0 − 1, R1 − 1};
15 P = {R0} ∪ P ;

16 if p = "insert" then
17 R1 = R1 − 1;
18 P = {R0} ∪ P ;

19 if p = "delete" then
20 R0 = R0 − 1;

Computational Requirements of DTW

The creation of the cost matrix within DTW, which requires the difference between

every combination of frames in the input motion, I, and target motion, T , to eval-

uated to determine their difference, means that the computational requirements of

DTW are quadratic in relation to the lengths of the motions being aligned.

DTW Optimisation

A variety of approaches have been proposed to optimise the DTW algorithm, the

main motivations for this is to either make it computationally more efficient or to

ensure that the resulting aligned motions are physically plausible.

A common method of reducing the computation required to perform time warping

is to constrain the search area within the cost matrix, reducing the number of points

within the matrix that need to be calculated. The Sakoe-Chuba Band (Sakoe and
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Figure 3.2: An example of a DTW alignment, overlaid over a normalised version of the
accumulated cost matrix through which the alignment was plotted. The DTW was per-
formed using rotational distance based on the hip, knee, shoulder and elbow joints, which
were each equally weighed.

Chiba, 1978) and the Itakura Parallelogram (Itakura, 1975), shown in Figure 3.3,

are commonly used to do this.

FastDTW (Salvador and Chan, 2004) addresses the efficiency problems of DTW by

taking a multi-resolution approach, solving the alignment in multiple passes with

increasing levels of granularity, using the previous pass to constrain the search area

of the next pass. SparseDTW (Al-Naymat, Chawla and Taheri, 2012) uses a more

directed approach to reducing the density of the cost matrix, determining the cost

between frames of the two motions more sparsely where there is more similarity.

Heloir et al. (2006) proposed using FastDTW to plot an initial alignment path, then

constraining the search for a more accurate alignment, to an the area of the cost

matrix around the initial alignment path.

As well reducing the number of cells in the cost matrix that need to be calculated,
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Figure 3.3: Two constrained search areas within a cost matrix. Sakoe-Chuba Band (left)
and the Itakura Parallelogram (right).

by either constraining the search area or reducing its resolution, another approach

to improving the efficiency of the DTW algorithm is improving the efficiency of

plotting the alignment path. The approach shown in Algorithm 3 only searches

adjacent cells for the next step in the alignment, this local search area for next step

in the alignment path can be expanded allowing a path to skip frames and be plotted

in fewer steps (Li et al., 2019).

In contrast to FastDTW and SparseDTW, Brankovic et al. (2020) proposed Con-

tinuous Dynamic Time Warping (CDTW), which increases the density of the cost

matrix using integrals. This techniques was proposed to cope with more sparsely

sampled data, however, low sample rates are typically not an issue when working

with motion capture data.

Improving the Accuracy of DTW

A number of approaches have been proposed to improve the accuracy of alignments

resulting from DTW. A weakness of DTW is its dependence on a distance function to

measure the different between frames in the input and target motions. As discussed

in Section 4.2.2, distance based function do not cope well with motion curves that

are offset or have peaks and troughs of different amplitudes, both variations that can

naturally occur between two motions. This issue has also motivated the development

of time warping algorithms based on correlation outlined in Section 3.3.4.

A number of adaptations to the DTW algorithm have been proposed to deal with

this issue. For example Derivative Dynamic Time Warping (DDTW) (Keogh and
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Pazzani, 2001) bases the cost function on the first order derivative, focusing the

algorithm on measuring the difference in the overall shape or form of the motion

curves. Vantigodi and Babu (2013) proposed synthesising a linear motion curve that

started at a value of 1 on the first frame of the motion and ended at with a value of

2 at the end of the motion. For every joint axis evaluated within a similarity metric

a copy of the synthesised motion curve was also added.

3.3.4 Correlation Time Warping

Conical Time Warping (CTW) (Zhou and Torre, 2009), combines Conical Correla-

tion Analysis (CCA) and DTW to align multi-dimensional time series. The three

rotational axis of each of the 20 joints that make up a skeletal hierarchy are used

to represent each motion as a 60 dimensional feature vector. CCA is used to iden-

tify and select the features and frames within each motion that best correlate with

one another, as well as translate them to optmise their fit. DTW is then used to

temporally align the motions based on the features and frames selected using CCA.

Correlation-Optimized Time Warping (CoTW) (Etemad and Arya, 2015), uses cor-

relation analysis to determine the optimal combination of temporal warps to apply

to each segment of an input motion to align it to a target motion. An input motion

is uniformly warped using UTW, then divided up into a given number of segments.

Each of the frames at which one segment ends and another starts, set ε ∈ I, are

allowed to be warped or moved within a given range, φ, called slack. The objective

of CoTW is to find the combination of uniform warps, within the slack ±φ, to apply

to each segment that achieves the best alignment. Each possible combination of

segment warps is evaluated using a correlation based similarity metric as described

in Section 3.1.7.

3.3.5 Multidimensional Time Warping

Due to the multidimensional nature of motion data, the cost functions outlined in

Section 3.1.6, must be either weighted for each joint or just averaged across a chosen

subset of joints, depending on which joints are most pertinent to a given motion.
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This section considers other approaches to dealing with the multi dimensional nature

of motion data, within a time warping algorithm, in addition to the more general

approaches presented in Section 2.5.2.

Multidimensional DTW (MD-DTW)(Walugembe et al., 2020) expresses the joints

parameters or features of each frame in a motion as a feature matrix of n frames

and s features. The distances between each frame within two motions, expressed as

feature matrices A and B can be determined using Equation 3.17 where f and g are

frames within motions A and B respectively. Weighting could also be incorporated

as a 1 x s matrix containing a weighting for each feature.

c(f, g) =
√
(Af −Bg)T (Af −Bg) (3.17)

Multiple Segmentation Norm - Weighted DTW (MSN-WDTW) (Zhao et al., 2020)

segments the motions, then finds the internal correlations between joints which are

specific to each segment. The motivation for this approach it to turn a collection of

unrelated multivariate data, into univariate data based on joint relationships specific

to each motion segment. When MSN-WDTW was compared to DTW, using data-

sets of accelerometer data, it was found that both approaches performed similarly

with different approaches performing best on different data-sets.

3.3.6 Guided Time Warping

A time warp can be expressed as a sparse set of key frames, whether they are

manually defined or extracted from another time warping algorithm. The Guided

Time Warping algorithm (Hsu, da Silva and Popovic, 2007) implements warps using

a sparse a set of purposefully positioned key frames, to minimise any distortion of

velocities or acceleration in the motion, with the aim of maintaining the physical

plausibility of the motion.
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3.3.7 On-line Time Warping

Time warping algorithms have been adapted for real-time applications such as clas-

sification and recognition of human motions. Real-time time warping refers to accu-

rately time warping a motion fast enough for real-time applications such recognising

a movement gesture. On-line time warping more specifically refers to the real-time

alignment of a partially known sequence to complete reference sequence, which is

required when time warping with streamed data sources such as data being streamed

from a motion capture system.

The Challenges of On-line Time Warping

A challenge for real-time time warping is computation requirements of the DTW,

which need to be constrained so that they do not quadratically increase in relation

to the length of the motions being aligned.

Dixon (2005) also highlights the lack of explicit boundary conditions when warp-

ing on-line as a key challenge. As the length of one or more of the sequences is

unknown, boundary conditions (i.e. the end frame of the input and target motion)

and consequently the diagonal of the cost matrix are also unknown. This means that

constraints and functions cannot be applied to the entire path. The consequences

of this can be seen in figure 3.4, in which, unlike DTW, the on-line warp has not

attempted to align the last frame of the input motion with the last frame of the

target motion. This is because the algorithm does not have the information to do

this.

Cost islands are particularly problematic with on-line time warping. Cost islands

are areas of high cost cells within a cost matrix that are surrounded by low cost

cells. While offline DTW’s knowledge of the entire sequence allows it consider the

entire cost island, in order to choose the optimal side on which to plot a path around

the island. The dependence of on-line time warping on values within a local area

of the cost matrix, means it can only see part of the island as it is plotting a path

around it, potentially causing it to plot around the wrong side of the island.
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Figure 3.4: An example of a sub optimal alignment path plotted by an on-line warping
algorithm.

Approaches to On-line Time Warping

An approach proposed by Yabe and Tanaka (1999) and Open Ended DTW or OE-

DTW Tormene et al. (2009), both approach aligning a partially known sequence

by selecting an optimal frame from the complete motion to align with the last

frame of the partial motion, then plotting an alignment backwards using a standard

or optimised version of DTW. This approach has been used to provide real-time

feedback to patients undergoing post stroke motor rehabilitation Tormene et al.

(2009), and recognising dance movements (Kim et al., 2015).

Hülsmann et al. (2017) proposed improvements to the accuracy of OE-DTW using

regression techniques on training data-sets to optimise joint weightings, and imple-

menting a path length weighting algorithm to prevent bias towards solutions which

use shorter paths. The weighting algorithm reduced the tendency of motion recog-

nition system based on time warping, to bias towards matching a query motion with

the shorter motions in a motion library, which have shorter and therefore lower cost

alignment paths.

An alternative approach to reducing computational complexity is to break the time

series down into discrete chunks or windows. ODTW (On-line DTW) (Oregi et al.,
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2017) splits the alignment into chunks, only preserving specific areas or windows

of the cost matrix. It also introduces the concept of aligning a streamed time

series, by weighting the distance or costs between more recent data points with

more importance than older ones.

WTW (Windowed Time Warping) (Macrae and Dixon, 2010) breaks the time series

down into discrete windows. Alignments are plotted within each window using

DTW, which are referred to as sub-alignments. Each subsequent window starts

somewhere on the alignment path of the previous sub-alignment and ends at a point

the path is predicted to go through.

The Match music alignment tool (Dixon and Widmer, 2005), minimises the search

area using a dynamic constraint, gradually adding more points to the search area

within the cost matrix at each step of the alignment.

Rather than searching for an optimal point to start a time warp, more arbitrary ap-

proaches have also been taken. Examples include: aligning only last n frames of the

on-line motion stream to prerecorded motion segments to identify the motion being

performed (Emanuel and Widjaja, 2018; Patlolla, Mahotra and Kehtarnavaz, 2012);

choosing a logical range of frames within a reference motion to align a partial motion

against based on the duration of the partial motion (Jang et al., 2017); or segmenting

the on-line motion stream into fixed lengths (Janaki, Babu and Sreekanth, 2013).

3.4 Summary

This chapter reviewed a number of approaches to measuring the similarity of two

motions. It found that the majority of similarity metrics are based on the distance,

or difference, between corresponding joint parameters, and are typically motivated

by a need to measure the similarity of two motions or poses within frames. Metrics

for measuring the temporal alignment of two motions have not been explored to the

same extent, leaving a potential research gap. This gap motivated the study into

correlation as a method for measuring the alignment of human motion, presented in

Chapter 4.
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The chapter also reviewed time warping algorithms, with a section on on-line algo-

rithms that allows time warping of partially captured motions. On-line time warping

methods typically plot alignment paths backwards from a selected frame of the com-

plete motion and are design for use in motion recognition applications. Chapter 5

outlines the need for a forward plotting approach to support real-time monotonic

alignment of human motions, for visualisation and feedback applications, before

presenting and evaluating some novel on-line time warping approaches developed to

satisfy this requirement.
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Chapter 4

Measuring Alignment and Similarity

of Human Motion

This work was published in the proceedings of the 2023 CASA conference on Com-

puter Animation and Social Agents, then subsequently in the journal of Computer

Animation and Virtual Worlds as: "Correlation as a measure for alignment and

similarity of human motions" (Randall, Harvey and Williams, 2023a).

4.1 Introduction

To evaluate the performance of time warping algorithms, there is a need for a robust

approach to measuring how well the temporal features of two motions have been

aligned. This requirement forms the primary motivation for this study, however, as

discussed in previous chapters, many techniques and approaches to effective re-use

of motion captured data, are dependent on reliable and accurate methods measuring

alignment. Examples include, aligning the temporal features of two motions to allow

stylistic variations to be transferred between them (Xia et al., 2015) or to allow two

motions to be blended together (Rose, Cohen and Bodenheimer, 1998; Bruderlin

and Williams, 1995).

An established approach to measuring alignment two motions, is to measure their

similarity using a similarity metric. As discussed in previous chapters, there are
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a number of established techniques and approaches to measuring similarity. These

techniques are primarily based on measuring the difference or distance between the

joint parameters of two motions. Parameters such as position, orientation, velocity

and acceleration are used and combined in different ways to form similarity metrics

based on distance.

Although similarity metrics can be effective at measuring alignment, the similarity

and alignment of two motions should not be considered the same. While similarity

is concerned with whether the two motions contain the same movement, alignment

is concerned with the temporal alignment of features within the motions. This study

will show the importance of this subtle distinction when choosing an appropriate

similarity metric for a given task.

Yang and Guan (2005); Chan et al. (2010) both review and compare a number of dif-

ferent similarity metrics based on angular and Euclidean distance. However, Etemad

and Arya (2015) identified a number of shortcomings with using a distance based

metric to measure alignment. They point to the fact that two motion curves with

the same form, but offset, are incorrectly considered to be quite different by a dis-

tance based metric. They propose using a correlation based metric using Pearson’s

Correlation Coefficient (PCC).

PCC correlation has been utilised in a variety of ways to analyse (Yang et al., 2010b),

time warp (Zhou and Torre, 2009) and manipulate motions (Neff and Kim, 2009).

However, there has been very little study of rank based correlation methods such

as Spearman’s or Kendall Tau, which are potentially more optimal choices when

working with non-parametric data such as motion curves.

Building on the knowledge of previous chapters, this study proposes a number of

different correlation based similarity metrics, then evaluates their performance, com-

paring them with more established distance based similarity metrics. As well as

comparing the effectiveness of PCC, Spearman’s and Kendall Tau correlation coef-

ficients, this study also explores the impact of different methods of parameterising

joint angles on accuracy of these metrics.
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A specially recorded data set of motions and statistical analysis approaches similar

that used by Chan et al. (2010) and Valcik, Sedmidubsky and Zezula (2016) are

used to evaluate and compare similarity metrics to determine which are optimal for

measuring: (i) Alignment: how accurately the temporal features of a pair a motions

are aligned, and (ii) Similarity: how similar a pair of motions are to each other.

4.2 Background

4.2.1 Comparing Time Warping Algorithms

There have been a number of comparisons of time warping techniques based on their

ability to correctly identify similar motions (Guerra-Filho and Bhatia, 2011; Bankó

and Abonyi, 2012) rather than their ability to temporally aligning two motions.

The accuracy of temporal alignments can be visually evaluated, Zhou and Torre

(2009) compared different methods of temporal alignment by projecting a series

of rendered frames from the target motion and resulting aligned motions from the

same angle for direct visual comparison. Although not applied to this study, this

approach could be used with multiple participants scoring or comparing the resulting

alignments. Although the inter-rater reliability of evaluating the temporal alignment

of human motions has not been directly studied, medical and sports studies suggest

that human poses (Whatman, Hume and Hing, 2013) and motions (Herrington,

Myer and Munro, 2013; Ageberg et al., 2010) can be reliably assessed in this way.

Although this approach is useful for small studies, as the number of motion pairs

grows quadraticallly in relation to the size of the data-set, mathematical approaches

need to be used when working with larger motion databases.

Rather than use a distance based metric Etemad and Arya (2015) used Pearson

Correlation Coefficient (PCC) to measure how well two motions align, using this

method to compare a number of different approaches to motion alignment.
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4.2.2 Correlation Vs Distance For Measuring Motion Simi-

larity

A weakness of the distance based approach is the way in which it can be overly

affected by any difference in the offset or amplitude of two signals, in comparison

to correlation based approaches. Figure 4.1 shows a normalised signal of a joint

parameter with an offset, multiplication, gamma and noise applied. Each of these

transforms represent ways in which a repeated action or motion can vary between

performance captures. A performer spatially missing a marked position would result

in an offset, while a more exaggerated performance would result in some joint rota-

tions being extended or amplified. Gamma represents the way in which a movement

starts and stops, akin to the ease-in and ease-out of key-frame animation, this could

be considered a psuedo representation of differences in a movements acceleration,

which is also affected by the exaggeration of a performance. Just like any digital

recording process, a motion captured performance will also contain a certain level

of noise, this noise will vary between each recording.

Despite the original signal (blue) and transformed signal (red) being similar or iden-

tical in form, the distance based metric considers them to be dissimilar, where as

the Pearson, Spearman and Kendall Tau correlation based approaches consider the

signals to be very similar. While the distance based approach measures the simi-

larity of each data point, correlation approaches consider the similarity between the

overall forms of the two signals.

In Figure 4.1, the distance based metric considers the straight linear regression line

to be more similar to the original signal than the offset or amplified versions of the

signal, despite the line being a completely different shape. This is in contrast to the

correlation methods which all gave the offset and multiplied versions of the signal a

score of one, which is the same score two identical signals would achieve.

As well as PCC, which measures the linear relationship between two sets of variables,

there are the Spearman’s and Kendall Tau correlation coefficients, which are based

on rank. These rank correlation coefficients are presented in more detail below, but

have not been explored or utilised to same extent as PCC in relation to working
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Figure 4.1: A comparison of the effects of different signal transforms on distance and
correlation based measurements of similarity. The original signal of a right elbow in a
walking motion, is shown in blue, while the transformed signal, with a similar form, is
shown in red. The poses of the original motion can be seen at the top of the figure. The
measurements under each graph show the inaccuracies that can occur when using distance
as a measure of similarity.

with human motion data.

Unlike PCC, Spearman’s and Kendall Tau rank correlation coefficients, are not

impacted by non-linear transforms such as gamma. The impact of noise is also com-

pared, with the Kendall Tau rank correlation coefficient being particularly sensitive

to noise in comparison to other correlation approaches.

Unlike distance based metrics, correlation coefficients provide normalised results,

where r ∈ R : −1.0 ≤ r ≤ 1.0, regardless of how large the values within the sets

are. This is useful when aggregating the results of multiple correlation coefficients.
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For example when comparing two groups of multiple data series, as is often the case

when working with motion data. This avoids the need to normalise data across

an entire data-set, a data processing step sometimes required when working with

distance based metrics. When applied to motion data, unless weightings are applied,

the normalised results of correlation gives each joint an equal weighting, regardless

of the range of motion occurring in each joint. Therefore there is potential for results

to be overly influenced by joints with limited movement.

This comparison demonstrates the potential of correlation as a method for measuring

similarity and alignment. It also shows the value of exploring rank correlation

coefficients as an alternative to the more established PCC approach.

An addition to PCC this study will also consider the use of the rank correlation

methods Spearman’s and Kendall Tau, which are potentially more suited to work-

ing with non-parametric data. Although rank based correlation methods have not

previously been used to measure the similarity or alignment of two motions, they

have proven effective in other related areas such as recognising human motions from

movement sensors (Li et al., 2015) and measuring the alignment of protein sequences

(Paluszewski and Karplus, 2009).

4.2.3 Linear and Rank Correlation Methods

PCC measures the linear relationship between two sets of variables, by dividing the

co-variance of the two signals by the their variance. For two sets of values S1 and

S2 of identical size m, the PCC (rp) can be determined using Equation 4.1.

rp(S1, S2) =

m∑
t=1

(S
(t)
1 − S1)(S

(t)
2 − S2)√

m∑
t=1

(S
(t)
1 − S1)2

m∑
t=1

(S
(t)
2 − S2)2

(4.1)

The nature of the offset and multiplication transforms maintains the linear rela-

tionship between the original and transformed signals, so does not impact PCC

correlation. As gamma is a nonlinear transform, the linear relationship between

the original and transformed signal is affected when gamma is applied, reducing the
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correlation calculated using PCC, as shown in Figure 4.1,.

While PCC uses a data point’s value, Spearman’s and Kendall Tau rank correlation

coefficients use a data point’s rank, measuring the statistical dependence between

the rankings of corresponding data points in two signals. Spearman’s correlation

coefficient performs a PCC on rank values using Equation 4.2 where S
(t)
1 and S

(t)
2

are rank values of data point t in sets S1 and S2.

rs(S1, S2) = 1− 6
∑

d2t
n(n2 − 1)

where d = r(S
(t)
1 )− r(S

(t)
2 )

(4.2)

The Kendall Tau rank correlation coefficient considers concordant and discordant

pairs of ranked values. Where the sort order of the ranked values in S1 and S2

agree, they are considered concordant, otherwise they are considered discordant.

The number of concordant pairs pc and discordant pairs pd are used with a binomial

coefficient to determine correlation using Equation 4.3.

rkτ (S1, S2) =
pc − ddn

2


where

n

2

 =
n(n− 1)

2

(4.3)

Unlike PCC, neither of the rank based correlation coefficients are effected by a

gamma transform, as shown in Figure 4.1. Although a gamma transform results

in a non-linear relationship between the original and transformed signal values, the

rankings of these values are unaffected by the transform and are therefore identical

for both signals. These identical rankings will have a perfect linear relationship,

hence rs = 1.0, and consist entirely of concordant pairs, hence rkτ = 1.0.
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The Kendall Tau correlation coefficient is particularly sensitive to changes in di-

rection (i.e the derivative of a signal changing from positive to negative or visa

versa), occurring in one signal and not the other, as this produces discordant pairs

in the ranked values. This characteristic is useful for measuring the alignment of

two signals, as any misalignment between the signals will result in discordant pairs

occurring around the peaks and troughs of the signals. It also makes this method

particularly sensitive, arguably oversensitive, to the micro peaks and troughs that

occur in noisy or jittery signals, as shown in Figure 4.1.

4.2.4 Correlation as a Motion Analysis and Manipulation

Tool

The weaknesses of using distance as a measure of similarity, has motivated re-

searchers to propose alignment techniques based on correlation, as alternatives to

established distance based time warping methods such as DTW (Zhou and Torre,

2009; Etemad and Arya, 2015; Zhang et al., 2009).

Correlation and in particular PCC is used in a variety of applications related to

motion capture and working with motion capture data. PCC has been used to

evaluate the accuracy of motion capture systems by comparing their measurements

to a known ground truth (Vander Linden, Carlson and Hubbard, 1992) or to the

measurements of a more capable motion capture system (Pfister et al., 2014). It

has also been used within a similarity metric to retrieve a best fit motion from a

database that matches a given input motion (Etemad and Arya, 2014b).

Multivariate correlation is often used to analyse correlations of joints within a mo-

tion. For example correlations between a motion’s joints and parametric spaces (Neff

and Kim, 2009) or latent subspaces (Zhu, Wang and Xia, 2006) have been utilised

as well as correlations between the joints themselves (Yang et al., 2010b).

Within motion editing, correlation is being used to create tools that allow poses to

be edited in a more intuitive parametric space (Neff and Kim, 2009), and analyse the

relationships between joints and a dynamic model of the motion to create more nat-

ural interpolations between poses (Zhu, Wang and Xia, 2006). However, correlating
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joint poses during editing does make it harder to accurately meet specific motion

constraints, for example making sure a character reaches a particular contact point.

Correlations between joints have been used to evaluate the complexity of human

motions using PCC (Yang et al., 2010b), they also underpin the use of analysis

techniques such as Conical Correlation Analysis (CCA) to temporally align motions

(Zhou and Torre, 2009) and PCA for dimensional reduction (Johnson, 2003) and

compression of motion capture data (Arikan, 2006). Correlations between temporal

as well as spatial aspects of a motion can be exploited, for example in the recognition

of human motions (Shimada and Uehara, 2000).

4.2.5 Evaluating Similarity Metrics

The performance of a given similarity metric can be evaluated by measuring its

ability to distinguish between aligned and non-aligned motions or between similar

and dissimilar motions.

Chan et al. Chan et al. (2010) used a statistical approach to determine which of the

three distance measures: joint position, velocity and angle are best for measuring

the similarity of dance motions, and found that joint position performed best. Two

groups of motion pairs were created, one consisting of similar motions and one

consisting of dissimilar motions. Distance based metrics based on all three distance

measures were applied to both groups of motion pairs and the resulting similarity

scores compared. The distance measure which resulted in the least overlap between

the scores of the two motion groups, was considered to discriminate the best and to

be the optimal approach.

Valik et al. Valcik, Sedmidubsky and Zezula (2016) present a variety of measures for

evaluating the impact of different feature based representations of human motion, on

the retrieval of similar motions from a motion database. This included information

retrieval measures, which measured the ability of different motion representations

to correctly retrieve similar motions from a data-set.
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4.3 Methodology

4.3.1 Overview

The aim of this study is to compare and evaluate the performance of a variety of

distance and correlation based similarity metrics. A robust and objective approach is

required to assess the capability of each metric to measure: (i) the overall similarity

of two motion sequences, and (ii) the alignment of temporal features within two

motion sequences.

There are three key elements to the study’s design. First, a number of data-sets

consisting of pairs of motion sequences were assembled. Four data-sets were created,

comprising of aligned, non-aligned, similar and dissimilar pairs of motions. Second, a

number similarity metrics were implemented, using consistent approaches to process

motion data and deal with aspects such as: redundant axes; joint normalisation; and

joints weightings. Third, the performance of each similarity metric was measured

using the four data sets as follows: (i) the capability of a metric to measure alignment

was assessed based on it’s ability to distinguish between pairs motions in the aligned

and non-aligned data sets; and (ii) the capability of a metric to measure similarity

was assessed based on it’s ability to distinguish between pairs motions in the similar

and dissimilar data sets.

All the algorithms and tests used in this study were implemented using Python and

the Python FBX SDK (Autodesk, 2020).

4.3.2 Sourcing the Data-Sets

To facilitate this study a number of data-sets, consisting of captured human motions,

were required. Each data-set consisted of pairs of motions, referred to as motion

pairs, each containing two motions that were either aligned, similar or dissimilar

as described in Figure 4.2. In total four data-sets of motion pairs were required as

follows:

• To evaluate the performance of similarity metrics at measuring the alignment

of two motions, two data-sets, one consisting of aligned motion pairs and the
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(a) Aligned motion pair: two recordings of the same motion with one motion aligned to the other.
This motion pair consists of blue walking motion that has been aligned to a red walking motion.

(b) Similar motion pair: two recordings of the same motion that have not been aligned. This
motion pair consists of two walking motions.

(c) Dissimilar motion pair: two recordings of different motions. This motion pair consists of
jumping motion (blue) and walking motion (red).

Figure 4.2: Examples of the three different types of motion pairs used in this study.

other similar motion pairs, was required. These data-sets are referred to as

Aligned and Non-Aligned respectively.

• To evaluate the performance of similarity metrics at measuring the similarity of

two motions, two data-sets, one consisting of both aligned and similar motion

pairs and the other dissimilar motion pairs, was required. These data-sets are

referred to as Similar and Dissimilar respectively.

Human Motion Capture

To create the data-sets a set of 63 motions were captured, consisting of 21 different

movements each captured three times. The movements consist of common actions

such walking, jumping, sitting and picking up objects, similar to Müller et al. (2007).
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Each movement was carefully choreographed to achieve a high level of similarity

between each of the three recordings.

Care was taken to match the number of steps, making sure the motions started and

ended on the same foot, and markers were set out on the floor for the actor to hit

with each step. If the actor failed to match any of these elements the capture was

discarded and another capture was taken. The motions were all captured during a

single capture session using the same actor. To ensure the results of this investigation

were more widely applicable, a naive untrained actor was used.

The motions were captured using a Vicon motion capture system consisting of eight

2.2 megapixel Vero 2.2 cameras recording at 120 frames per second. The system

was configured in 7x7 metre volume with a level floor and the markers applied to

the actor in Vicon’s standard ’FrontBackWaist’ 53 marker configuration, as shown in

Figure 4.3. The Shogun Live software (Vicon, 2017) was used to capture the markers

and fit its standard skeleton to the marker positions in real-time. The capture was

performed on a high specification workstation with a Xeon processor and motions

were checked to make sure that no frames were dropped during capture.

Shogun Post was used to convert the motion sequences to the .fbx format, with no

manipulation or cleanup being performed.

4.3.3 Preparing and Assembling Data-sets

Before presenting how the data-sets were assembled, some terms and concepts need

to be defined. Each set of three recordings of the same movement is referred to as a

motion-set consisting of motions {a, b, c}. Each motion is considered to be similar

to other motions within the same motion set and dissimilar to motions within any

other motion set.

Aligned data-set

The motion pairs within the Aligned data-set consist of two similar motions from

the same motion-set, with one motion time warped so that its length and temporal

features match that of the other motion. For every permutation of two motions
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Capture Computer
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And End Positions

Figure 4.3: The Vicon motion capture system, used in this study. Only five cameras
of the eight cameras are visible in the picture, they have been highlighted in red. The
tracking markers which can be seen from this perspective have been highlighted in green.
An approximate start and end point for motions involving a straight movement across
capture volume, such as walking and jumping, have been marked out on the floor.

within a motion-set, a time warp was performed to align an input motion to a

target motion, as shown in Table 4.1, with the target motion and the resulting

aligned motion being combined to create a motion pair. For example input motion

a and target motion b, would result in an aligned motion pair consisting of b and

a→ b.

Table 4.1: To create a data-set of aligned motion pairs, time-warping was performed on
the following permutations of input and target motions within each motion-set (a, b, c),
with the resulting aligned motions.

Target Motion
a b c

Input Motion
a a→ b a→ c

b b→ a b→ c

c c→ a c→ b

Time warping was performed using a standard DTW approach to warp an input

motion, to optimise the correspondence of it’s temporal features to that of a target
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motion. The DTW time warping method is discussed in some detail within previous

chapters and described by Bruderlin and Williams (1995). In this investigation an

angular distance function based on quaternions and geodesic rotational distance was

used (Guerra-Filho and Bhatia, 2011), which is also described in more detail in a

previous capture.

The accuracy of the time warping functions used in this study were tested by warping

an input motion a to a target motion b, then warping the resulting motion a → b

back, aligning it back to the original input motion a. The resulting warped motion

a→ b→ a was then compared against the original motion a using a distance based

similarity metric using joint rotations, to check for any deviation. In our tests the

only deviations which occurred were extremely small and caused by frames being

deleted during the warping process, as this information is not recovered when a

motion is warped back.

Non-Aligned data-set

The Non-aligned data-set consists of similar motion pairs, made up of two recordings

of the same motion which have not been aligned to each other. To produce a more

comprehensive data-set, it is comprised of both unaltered captured motions and

aligned motions produced for the Aligned data-set. The composition of these pairs

can be seen in Table 4.2, note that an aligned motion is never paired with the input

or target motion use to create it.

Similar data-set

The motion pairs inside the Similar data-set consist of a mixture aligned and similar

motion pairs. A motion pair was created from every combination of unaltered or

aligned motion within a motion-set {a, b, c, a → b, a → c, b → a, b → c, c → a, c →

b}. This approach generates a larger data-set, creating 36 similar motion pairs for

each initial motion-set of 3 captured motions.
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Table 4.2: The composition of motions pairs within the Non-aligned data-set. For each
motion set (a, b, c), nine motion pairs are created from the combinations identified below.
Note that aligned motions such as a→ b are also incorporated into the data-set.

Motion A

a b c

Motion B

a ✓

b ✓

c ✓

a→ b ✓

a→ c ✓

b→ a ✓

b→ c ✓

c→ a ✓

c→ b ✓

Table 4.3: The number of motion pairs contained in each data-set used in this study.

Data-set No. Motion Pairs

Aligned 126

Non-aligned 189

Similar 756

Dissimilar 840

Dissimilar data-set

Within the Dissimilar data-set, the motion pairs consist of two different motions

from different motions-sets. To avoid creating an overly large data-set, which might

bias results, not every possible combination different motions was used. Instead only

motions a and b from each motion set were combined with their respective motions

(a and b) in every other motion set.

Data-set sizes

Table 4.3 shows the size of each data-set used in this study.

A key motivation of using the approaches specified above, to assemble the data-

sets, was to generate the most comprehensive data-set possible from the motions
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Table 4.4: Equations for calculating the size of the data-sets that would generated from j
motion-sets each consisting of k captures. Note that nPr and nCr represent the number of
possible permutations and combinations of r elements in a set of size n.

Data-set Equation For Determining Data-Set Size

Aligned j(kP2)

Non-aligned j(kC2 + (kP2(k − 2)))

Similar j(k+
kP2C2)

Dissimilar j(j − 1)k2

captured. Table 4.4 provides equations for determining the size of data-sets that

can be generated from using this approach on a set of motion captures consisting of

j different movements, each recorded k times.

4.3.4 Measuring Motion Similarity

Metrics Included in Study

There is a wide range of different similarity metrics, many of which have been dis-

cussed in some detail in a Section 2.3.2. The choice of similarity metrics implemented

in this study was motivated by two objectives: (i) compare the capability of dis-

tance and correlation based metrics to measure both similarity and alignment, and

(ii) find an optimal approach to using correlation in a similarity metric.

Four distance based similarity metrics were chosen, consisting of established ap-

proaches to measuring similarity. Each metric is based around a different motion

feature, as follows: joint orientation, joint position, joint velocity and point clouds.

The point clouds were generated using a window size of seven, encompassing three

frames immediately before and after the frame being sampled.

Overall 15 correlation based similarity metrics were implemented, one for each com-

bination of three correlation and five angular parametrisation methods, being ex-

plored in this study. The three correlation methods implemented consisted of PCC;

Spearman’s; and Kendall Tau, and are presented in more detail in section 4.2.3. The
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five joint angle parametrisation methods implemented consist of both established ap-

proaches such as Euler; quaternion; and rotational matrix, as well as couple of more

novel approaches: displacement vector and logarithmic map, which have potential

to work well in a correlation based metric. These parameterisation methods are

presented in more detail in Chapter 2 and summarised in table 4.5.

In total 19 similarity metrics were tested in this study, 15 correlation and 4 distance

base metrics.

Table 4.5: Overview of the joint parameterisation methods used in this study.

Method Form Description

Euler x, y, z Rotations in the x, y and z axes

Quaternion w, x, y, z
Consists of a scalar w, and 3 complex
numbers

Rotation Matrix


1 0 0

0 1 0

0 0 1

 A 3 x 3 matrix specifying the
orientation of each axis of a local space

Displacement
Vector

x, y, z Normalised vector in direction of angle

Logorithmic Map x, y, z Logarithm of a quaternion

Consistent Parametrisation of Joint Rotations

Unlike distance based similarity metrics, correlations based metrics are sensitive

to any inconsistencies in how joints are parameterised. For example a common

approach when encoding Euler angles is to roll a rotation value θ around when

−180 > θ > 180, such that a θ of 270◦ becomes −90◦. Therefore Euler angles need

to be unrolled to support the use of correlation based metrics. Similarly any three

dimensional rotation can be be expressed in two ways using a quaternion as ±Q. To

make sure that all quaternions are expressed consistently in the same hemisphere

all joint rotations are hemispherised, using the hemispherisation process that was

presented in Section 2.4.2.
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Conforming Motion Lengths

Both distance and correlation based similarity metrics, require the motions being

compared to have the same number of frames, however, only the aligned motion

pairs will contain the same numbers of frames, as a results of the time-warping used

to align them. Every other type of motion pair needs one of the motions to be

uniformly squashed or stretched to match the number of frames in the other motion

using UTW, before they can be used with a similarity metric.

Dealing With Redundant Axes

The joint parametrisation methods implemented in this paper are intended to ex-

press three degrees of movement, however, as discussed previously, not all three

degrees of movement are required of every joint in order to encode human motion.

The Vicon system used in this study encodes knees with one degree of freedom and

effectively only uses two degrees of freedom to encode elbow joints, with very limited

use of the z axis.

When joint angles are translated from their original Euler representation, in which

the data was captured, to other join representations. The unused axis can propagate

low level noise into some of the joint parameters as shown in Figures 4.4 and 4.5.

Figure 4.4 shows the motion curves for the left elbow joint which has one degree

freedom. The unused joints appear as flat lines, but still have a data point for each

frame of captured motion. These flat lines will not impact the performance of a

similarity metric, as long as the motions being compared have joints with matching

degrees of freedom, as they will consistently score 1 with correlation based metrics

and 0 with distance based metrics.

Instead of a flat line, the x axis of the displacement vector is comprised of very low

amplitude noise, in this case 1 × 10−16. This noise is caused by rounding errors

when translating joint orientations between different parametric representations.

As correlation based metrics normalise the motion curves, this low level noise is

amplified to have the same weight or importance as any other within the similarity

metric. This negatively impacts the accuracy of any similarity metric using this
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Figure 4.4: A comparison of how different methods of joint parametrisation represent the
motion of a joint with one degree of freedom. The motion curves show the rotation of the
left knee joint changing over time during the same walking motion.

Figure 4.5: A comparison of how different methods of joint parametrisation represent the
motion of a joint with two degrees of freedom. The motion curves show the rotation of the
left elbow joint changing over time during the same walking motion.
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method.

While the motion curves of the left elbow joint shown in Figure 4.5, appear to show

all 3 DOFs being used, the z axis of the Euler motion curves is comprised of low

level noise, which will negatively affect the performance of a similarity metric as

discussed above. The Vicon system used to capture the motion data sets, solves and

records joint positions as Euler angles, therefore, the Euler motion curves represent

the raw data recorded by the Vicon system. The noise in z axis is likely to come

from a rounding error, occurring either when solving the pose of the joints to match

position of the tracking markers or when translating rotations from some other form.

This noise propagates into the matrix and displacement vector parameters, but not

into the quaternion or log map parameters.

To resolve this issue a threshold was incorporated into each similarity metric, in

which any joint comprised entirely of low level noise between ±x, is treated in the

same way as a joint with a constant value. In the case of this study x = 1 x 10−5.

Joints such as knees and elbows do not have to be constrained to using one or

two DOF, this is a particular approach implemented by the Vicon motion capture

system. Motion data from other data-sets such as the HDM05 (Müller et al., 2007)

and CMU (CMU Graphics Lab, 2001), use all three DOF even when parametrising

joints with a limited range of movement, thus avoiding the problems described here.

Normalisation of Joints for Distance Metrics

Before the similarity scores of the joints can be summed, to give a total score,

they need to normalised for each joint across the whole data-set, to ensure that

each joint is equally weighted. This is not a concern for correlation based metrics

(as joints scores are already normalised) or for point cloud distance metrics (which

calculate a single translation for the entire motion), however, this step does need to

be performed for the distance based metrics where each joint is scored independently

(i.e. those based on angles, position or velocity of each joint).
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Checking of Similarity Metrics

To check the similarity metrics were functioning correctly, they were tested by using

them to compare every motion in the data-set to itself. As expected the correlation

based metrics consistently provided a result of 1 and distance based metrics provided

results of 0, indicating perfect matches.

4.3.5 Joint Weightings

When time-warping motions or measuring their similarity, rather than using all of

a motion’s joints, it is common to focus on joints which are particularly salient to

general human motion, such as shoulders and hips, ignoring less significant joints

such hands and feet (Lee et al., 2002). What is considered a significant or less

significant joint is somewhat affected by the metric being used. For example the

joints which are significant to a metric based on joint rotations in local space will

be different to those of one based on joint translations in a global space. These

less significant joints tend to be peripheral and more invariant to the motion being

performed, while having a limited range of movement. In the case of joint rotations

defined in local space, less significant joints occur towards the end of the kinematic

chain.

With the parametrisation of joint rotations in local space forming one of the focal

points of this investigation, the time-warping and similarity measurements within

study were performed using a subset of equally weighted joint as shown in Figure

4.6. The subset consisted of both the left and right: shoulders, elbows, hips and

knees.

4.3.6 Evaluating Similarity Metrics

The performance of each similarity metric was evaluated using three different per-

formance tests. The overlap and MAP tests measured the ability of each similarity

metric to distinguish between aligned and non-aligned motions or between similar

and dissimilar motions, while the correlation test measured how consistent the scores

of a metric are with those of other metrics.
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Figure 4.6: Configuration of joints used in study.

To evaluate a metric’s ability to distinguish between aligned and non-aligned mo-

tions, overlap and MAP test were used to compare the similarity scores of the aligned

and non-aligned motion pair data-sets. In the same manner, these tests were also

used to compare the scores of of the similar and dissimilar data-sets to evaluate

how well a metric can distinguish between similar and dissimilar motions. A metric

that is better at distinguishing between align and non-aligned motions is considered

better at measuring alignment, while one that is better as distinguishing between

similar and dissimilar motions is considered better as measuring similarity.

Overlap Test

A Mann–Whitney U test (Haslwanter, 2016) was used to measure how much the

similarity scores of two data-sets overlapped each other, and is based on approach

used by Chan et al. (2010). Each similarity metric was applied to both data-sets and

the resulting scores compared using the test. The Mann–Whitney U was used as the

similarity scores within the sample groups failed the Shapiro-Wilk, D’Agostino Skew

and D’Agostino Kurtosis tests for normal distribution, therefore a non-parametric

test was required.

The test measures the probability of a randomly selected score from the sample
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group with the highest mean being less than a randomly selected score in the other

sample group, using Equation 4.4. p is the probability of a random pair of motions

from one data-set a with na motion pairs, scoring a lower similarity score than a

random pair of motions from data-set b with nb motion pairs, where U is the test

statistic produced by the Mann-Whitney U test. If the distribution of two sample

groups perfectly match, the probability of a score from one sample group being

higher than the score of another sample group is 50%, hence p has a maximum

possible value of 0.5, therefore p ∈ R : 0 ≤ p ≤ 0.5.

p =
U

nanb

(4.4)

The similarity metrics whose scores have the lowest probability p of overlapping, dif-

ferentiate better between the two data-sets and should be considered more optimal.

Mean Average Precision (MAP) Test

The Mean Average Precision (MAP) is commonly used to evaluate search algorithms,

but has been used by Valcik, Sedmidubsky and Zezula (2016) to evaluate similarity

models for human motion. Just like the overlap test, the MAP test measures how

well a metric can distinguish between the motion pairs from two different data-sets,

but using a contrasting approach. Rather than measuring overlap between two sets

of scores, the MAP test combines the two sets of scores into single sorted list, then

considers how many of the scores with the closest k values to each score are from

the same data-set.

Given a query score q, precision Pk is the fraction of scores within the k nearest scores

from the same data-set as q. This is determined using Equation 4.5, where m ∪ k

is the number scores from the same data-set as q within the nearest k neighbouring

scores.

Pk =
m ∪ k

k
(4.5)
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To determine the average precision AP for a given query score q, the Pk for every

value of k is considered in the range {1...n} using Equation 4.6, where n is the total

number of scores in the data-set that q belongs to, and relk is an indicator function

which is equal to 1 if the kth nearest neighbouring score is from the same data-set

as q, or 0 otherwise.

AP =

∑n
k=1 Pkrelk

n
(4.6)

The mean average precision (MAP) is the average AP for every score within the

combined list of scores. This is determined using Equation 4.7, where Q is the total

number of scores in the combined lists.

MAP =

∑Q
q=1APq

Q
(4.7)

The similarity metrics whose scores achieve the highest results in the MAP tests,

show that they are able to differentiate better between the two data-sets and should

be considered more optimal.

Correlation Test

The correlation test measures how well the scores of each metric correlate with

average metric scores, indicating how consistent the scores for a given metric are

with those of other metrics. To reduce the impact of any differences between the

distributions of scores from different metrics, the scores from each metric are ranked,

with averaging and correlation operations performed on the ranks values.

Before being ranked the scores from the distance based metrics were inverted by

subtracting each score from 1, to bring them in line with the scores of correlation

based metrics where 1 is a perfect match and 0 means totally different.

Once ranked, the metric scores attained by each motion pair are averaged, producing

a set of average scores against which the correlation of each set of metric scores is

measured.
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4.4 Results

4.4.1 Interpreting Results

The results of the overlap, MAP and correlation performance tests for each similarity

metric can seen in Tables 4.6 and 4.7. Three different measurements (overlap, MAP

and correlation), were used to measure the performance of 19 different similarity

metrics when executing two different tasks, measuring the alignment and similarity

of two motions. The results of each performance test are colour coded with a con-

tinuous linear colour grade from green (best) to red (worst). For the overlap tests

the lower the result the smaller overlap indicating a better a performance, for the

MAP and correlation tests higher results indicate better performance.

The correlation method used in each correlation based metric is identified using

the following symbols: ρp Pearson, ρs Spearman’s, ρkt Kendall Tau. The results

for performance tests on the correlation based metrics were averaged across each of

the five joint parameterisation techniques and three correlation methods used. This

allowed the performance impact of the different approaches to joint parameterisation

and correlation to be evaluated independently of one another. Rows showing the

mean scores are identified by µ.

The distributions of the similarity scores were tested for normal distributions using

the Shapiro Wilk, D’Agostino Skew and D’Agostino Kurtosis tests, shown in Figure

4.7. Most of the results failed these distribution tests, supporting the use of the

Mann-Witney U non-parametric test method for measuring overlap between results.

For a set of results to be considered normally distributed they would have to pass

all three normal distribution tests.

Figures 4.8 and 4.9 visually show the distribution of the scores obtained from the

different similarity metrics for each type of motion pair and the overlap between

aligned and non-aligned motion pairs (4.8a and 4.8b) and similar and dissimilar

motion pairs (4.9a and 4.9b).
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Figure 4.7: Results of the normal distribution tests performed on the similarity scores
yielded by the similarity metrics in this study for each data-set of motion pairs. Passed
tests (p ≥ 0.05) are green, failed test (p < 0.05) are red.

4.4.2 Measuring Motion Alignment

The ability of each similarity metric to accurately measure the temporal alignment

of two motions was determined by applying them to two data-sets of paired motions,

aligned and non-aligned. The resulting similarity scores were then compared using

the three performance tests, to determine how well each metric distinguishes between

the two data-sets. The metrics which performed best on these data-sets should be

considered more optimal for applications which require motions to be identified with

closely aligning features, such as finding motions to blend with existing motion, and

for evaluating the performance of time warping algorithms.

The results of the tests can be seen in Table 4.6 and Figure 4.8. Overall the corre-

lation based metrics performed significantly better than distance based metrics at

distinguishing between aligned and non-aligned pairs of motions. This suggests that

correlation based metrics are a better choice when measuring alignment.
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Table 4.6: The performance of each similarity metric as a measure of alignment. The
ability of metrics to measure alignment was evaluated by comparing the similarity scores
of motion pairs from the Aligned and Non-Aligned data sets.

Correlation Correlation
Overlap MAP Aligned Non-Aligned

Euler ρp 0.111 0.481 0.920 0.976
Euler ρs 0.073 0.557 0.956 0.989
Euler ρkt 0.062 0.586 0.957 0.987
Euler µ 0.082 0.541 0.944 0.984

Quaternion ρp 0.115 0.478 0.896 0.974
Quaternion ρs 0.067 0.566 0.960 0.987
Quaternion ρkt 0.057 0.599 0.966 0.985
Quaternion µ 0.080 0.548 0.941 0.982

Matrix ρp 0.108 0.487 0.819 0.953
Matrix ρs 0.070 0.561 0.831 0.960
Matrix ρkt 0.059 0.592 0.865 0.968
Matrix µ 0.079 0.547 0.838 0.960

Displacement Vector ρp 0.090 0.511 0.839 0.945
Displacement Vector ρs 0.065 0.565 0.947 0.988
Displacement Vector ρkt 0.052 0.603 0.960 0.988
Displacement Vector µ 0.069 0.560 0.915 0.974

Logarithmic Map ρp 0.137 0.447 0.926 0.973
Logarithmic Map ρs 0.078 0.540 0.965 0.989
Logarithmic Map ρkt 0.063 0.581 0.972 0.988
Logarithmic Map µ 0.093 0.523 0.954 0.983

Peason (ρp)µ 0.112 0.481 0.880 0.964
Spearman’s (ρs)µ 0.071 0.558 0.932 0.983
Kendall Tau (ρkt)µ 0.059 0.592 0.944 0.983

Angular Distance 0.116 0.514 0.656 0.862
Positional Distance 0.197 0.412 0.762 0.920
Positional Velocity 0.246 0.395 0.572 0.797
Point Cloud 0.196 0.399 0.566 0.655

σ (without outliers) 0.026 0.067 0.086 0.019
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(b) The results of distance based similarity metrics applied to Aligned and Non-aligned motion
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Figure 4.8: Histograms visualising the overlap between the similarity scores of motion
pairs in the Aligned and Non-Aligned data-sets. The probability of an aligned motion pair
scoring less than a non-aligned pair is shown by p. The lower the value of p for a given
similarity metric the better it is a differentiating between aligned and non-aligned motion
pairs.

The grouping and averaging of correlation based metrics, based on the correlation

and joint parameterisation method used, identified the Kendall Tau method as the

best performing correlation method in all three performance tests. Significantly

both rank correlation methods consistently perform better than Pearson’s linear

correlation in all tests. The overlap and MAP tests showed displacement vectors

to be the best method of parameterising joints, with the approach also performing

very well in the correlation tests. The optimal metric for measuring alignment is

a correlation based metric in which joints are parameterised using displacement

vectors and the correlation is measured using Kendall Tau.

The averages of correlation based metrics in the overlap and MAP tests show a

smaller deviation between metrics that used different approaches to parameterising

joint angles, than between those that used different methods of correlation. This

suggests that the choice of correlation method is a more important factor to consider
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than the choice of joint angle parameterisation.

The angular distance metric also performed well in both the overlap and MAP tests

at distinguishing between aligned and non-aligned motion pairs. This method would

be a good choice where correlation based metrics are hard to implement, such as

on-line applications in which there is incomplete knowledge of one or of the motions.

4.4.3 Measuring Motion Similarity

To determine the optimal metric for measuring the similarity of two motions, the

metrics where applied to two data-sets of paired motions, one containing pairs of

non-aligned motions with the same movement and the other containing pairs of

motions with different movements. The resulting sets of similarity scores were then

compared using the three performance tests, to determine how well each metric

distinguishes between similar and dissimilar pairs of motions. This approach tests

how well a metric can distinguish between different movements, identifying optimal

metrics to use for tasks such as identifying or classifying motions.

The results of the tests can be seen in Table 4.7 and Figure 4.9a. In general the

distance based metrics performed better than the correlation based metrics when

measuring motion similarity. In particular, metrics based on angular and posi-

tional distance performed the best in both the overlap and MAP tests, with a clear

performance gap between these and other metrics on the overlap test. The high per-

formance of angular and positional distance based metrics in the MAP and overlap

tests, shows that these metrics are ideal for performing discrete or Boolean decisions

such as identifying a motion as the same or not the same. However, the lower and

less consistent performance of distance based metrics in the correlation tests, sug-

gests that they might be less suited to applications where the similarity of motions

are being graded on a continuous scale. This implies that correlation based based

metrics would be a better choice for this type of application, however, these results

are likely to be affected by potential bias in the correlation test method as discussed

in section 4.4.4. Additionally, the limited differentiation between the performance of

the correlation based metrics in this task, means that an optimal correlation based
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metric cannot be clearly identified.
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Figure 4.9: Histograms visualising the overlap between the similarity scores of motion
pairs in the Similar and Dissimilar data-sets. The probability of a dissimilar motion pair
scoring less than a similar motion pair, is shown by p. The lower the value of p for a given
similarity metric the better it is a differentiating between the different types of motion
pairs.

Given the marginal difference in performance between angular and positional based

distance metrics, the optimal choice between these two metrics will be dependent

on the use case. The angular distance metrics is a better choice for comparing

the overall joint poses within the motions, as it is less affected by any potential

differences in joint lengths between the two motions. However, if the priority is to

measure similarities in the positions of end effectors, such as hands and feet, then a

metric based on joint position should still be used.

The results of the performance tests from distance based metrics corroborate the

findings of Chan et al. (2010) which also found that distance metrics based on joint

angle and position performed best at discriminating between similar and dissimilar

motions and that a distance metric based on joint velocity performed particularly

poorly. For applications where joint velocity is important, such as working with
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Table 4.7: The performance of each similarity metric as a measure of similarity. The ability
of metrics to measure similarity was evaluated by comparing the similarity scores of motion
pairs from the Similar and Dissimilar data-sets.

Correlation Correlation
Overlap MAP Similar Dissimilar

Euler ρp 0.073 0.747 0.979 0.943
Euler ρs 0.073 0.750 0.990 0.949
Euler ρkt 0.072 0.743 0.989 0.949
Euler µ 0.073 0.747 0.986 0.947

Quaternion ρp 0.074 0.745 0.973 0.945
Quaternion ρs 0.072 0.748 0.989 0.960
Quaternion ρkt 0.071 0.740 0.988 0.959
Quaternion µ 0.072 0.744 0.983 0.955

Matrix ρp 0.074 0.755 0.954 0.870
Matrix ρs 0.072 0.759 0.964 0.904
Matrix ρkt 0.071 0.750 0.972 0.909
Matrix µ 0.072 0.755 0.963 0.894

Displacement Vector ρp 0.083 0.737 0.951 0.905
Displacement Vector ρs 0.081 0.741 0.988 0.931
Displacement Vector ρkt 0.080 0.732 0.988 0.928
Displacement Vector µ 0.081 0.737 0.976 0.921

Logarithmic Map ρp 0.073 0.748 0.977 0.942
Logarithmic Map ρs 0.072 0.754 0.991 0.966
Logarithmic Map ρkt 0.071 0.746 0.991 0.965
Logarithmic Map µ 0.072 0.749 0.986 0.958

Peason (ρp)µ 0.075 0.746 0.967 0.921
Spearman’s (ρs)µ 0.074 0.750 0.984 0.942
Kendall Tau (ρkt)µ 0.073 0.742 0.986 0.942

Angular Distance 0.016 0.775 0.906 0.388
Positional Distance 0.014 0.769 0.916 0.224
Positional Velocity 0.341 0.288 0.790 -0.064
Point Cloud 0.039 0.670 0.757 0.285

σ (without outliers) 0.001 0.009 0.025 0.026
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dynamic or ballistic motions, a point cloud metric should be considered, rather than

a joint velocity metric. Point clouds metrics still account for velocity over a very

small time window, while performing better than correlation based metrics.

The similarity scores attained by applying distance based metrics to the dissimilar

data-set, were significantly more widely distributed, with a mean standard deviation

of 0.146, than those attained by correlation based metrics, with a mean standard

deviation of 0.0757, when applied to the same data-set. This potentially explains the

better performance of distance based metrics when measuring similarity, although

these metrics did achieve significantly lower scores in the correlation performance

tests when compared against the correlation based metrics.

4.4.4 Review of Performance Tests

The results of the three performance tests frequently corroborated each other, par-

ticularly the overlap and MAP test which were similar in nature. The results of

correlation tests appeared to be less consistent. To better understand which tests

are more suited to measuring the performance of similarity metrics for which task

(i.e. measuring alignment or similarity), the standard deviation σ of the results for

each test was calculated, after outlier results outside of the interquartile range were

removed, these can be seen at the bottom Tables 4.6 and 4.7.

Both the overlap and MAP tests were better able to differentiate between the per-

formance of different correlation based metrics at measuring motion alignment than

similarity. As the overlap and MAP test both clearly identified the same distance

based metrics as being optimal for measuring motion similarity, this is probably

more indicative of the suitability of the correlation based metrics for measuring sim-

ilarity, than it is of the suitability for the overlap and MAP test for evaluating the

performance of metrics for measuring motion similarity.

The results of correlation performance tests consistently showed a high or very high

correlation between individual correlation based metric scores and the mean score.

The standard deviation of the test results showed the correlation test to be bet-

ter suited to measuring the performance of metrics at measuring alignment than
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similarity.

The correlation test is particularly susceptible to potential bias in the results. As the

averages against which the metrics scores are being correlated against in this study

are based on 15 correlation based metrics and 4 distance based metrics, they will

correlate better with the correlation based metrics than the distance based metrics.

The effects of this bias is visible in the test results with a significant gap between the

results of the correlation based metrics and the distance based metrics, particularly

when evaluating a metrics’ ability to measure similarity.

To some extent the results of correlation test are function of the distribution of

the scores of each type of motion pair which can be seen in Figures 4.8 and 4.9.

Where a metric’s scores are more widely distributed the metric performs better in

the correlation test than when they are more narrowly distributed.

Across all of the performance tests there is significantly more variation between the

results of the distance based metrics than the correlation based metrics. This is to

be expected as each distance based metric is based on a wider variety of motion

features such as velocity, rotation or position, where as all the correlation based

metrics are all based on joint rotation.

4.5 Discussion

4.5.1 Combining Similarity Metrics

Although the optimal metrics for measuring the similarity and alignment of two

motions have been shown to be different, they can be used together. A robust

approach to identifying a candidate motion to blend with another motion, could

be to first use a distance metric based on joint position, to identify a short list

of candidate motions. Then use a correlation based metric to identify which of the

short listed motions has the best alignment. This approach of using a distance based

metric to short list candidate motions, then a correlation based metric to identity the

best candidate has been implemented in different forms by other researchers (Yang

and Guan, 2005; Kim et al., 2009). This two stage approach could potentially allow
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less accurate lightweight approaches to be used to short list similar motions when

working with large data-sets. A number of lightweight similarity metrics based on

comparing Boolean features have already been proposed for working specifically with

motion data (Müller, Röder and Clausen, 2005) and more generally with time series

data (Zhang et al., 2009).

4.5.2 Impact of Motion Characteristics

To explore the potential impact of a motion’s characteristics upon the accuracy of

similarity metrics, deviations between scores obtained across the different correlation

metrics for the motion pairs within the same motion set were analysed, using the

aligned data-set. A motion set that obtains similarity scores with a wider deviation,

could contain a movement with characteristics that may adversely effect the accuracy

of a similarity metric. By focusing on the aligned data-set, factors such as the

motions being dissimilar or out of alignment will have been largely removed, allowing

other potential characteristics to be evaluated. Before calculating their standard

deviation, the scores for a each motion pair were normalised, by dividing them by

their mean, to neutralised any bias from a motion set’s overall similarity.

There was a weak correlation (0.32) between the length of the motions in the motion

pair and the deviation between scores, suggesting that the length of a motion doesn’t

significantly impact the accuracy of these similarity metrics. There was a very

strong negative correlation (-0.84) between the average similarity scores obtained

by a motion pair and the deviation between those scores, this indicates that the

similarity of motions being compared does impact the accuracy of correlation based

similarity metrics, with pairs of motions that are less similar having more deviation

between their similarity scores.

Figures 4.10 and 4.11 show the motion curves and joint poses of two example motion

pairs, one pair has a low deviation between their similarity scores, the other a high

deviation. Figure 4.10 shows a pair a walking motions with a high mean similarity

score (0.87) and a low standard deviation between those scores (0.086). Figure 4.11

shows a pair of motions containing identical movements performed while sitting in a

134



Figure 4.10: The motion curves of right hand joints and character poses, of a pair of
walking motions, where the red motion has been aligned to the blue motion. Within the
aligned data-set, correlation based similarity metrics scored this pair of motions the highest
(µ score of 0.87), with a low deviation between the different metric scores (σ = 0.086).

high chair, they scored a lower mean similarity score (0.81) with a higher deviation

between those scores (0.182).

The form of the motion curves belonging to the sitting motions do not match each

other as well as the walking motions. Despite being temporally aligned there are still

clear spatial differences between the two sitting motions, which are clearly visible in

both the joint poses and the motion curves, particularly in the y axis and particularly

in the joints of the lower half of the body (hip and knees).

The flat line at the start of the red motion curves in the sitting motion, is the

result of the same frame being duplicated a large number of times during the motion

alignment process. This indicates that the recording of two motions, start at different

places relative the main substance of the motion.

The nature of the sitting motion causes very little movement in the lower body, and

unlike a walking motion, there is limited correspondence between the movements of

the upper and lower joints. Any approach to time warping or similarity measurement

in which the upper and lower joints are equally weighted will be adversely effected
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Figure 4.11: The motion curves of right hand joints and character poses, of a pair of
motions with identical movements performed while sitting down, where the red motion has
been aligned to the blue motion. Within the aligned data-set, correlation based similarity
metrics scored this pair of motions the lowest (µ score of 0.81). with a higher deviation
between the different metric scores (σ = 0.182).

by motions such as this, particularly with correlation based metrics that normalise

the results for every joint regardless of the extent of their movement.

There are also spatial differences in the gestures made by the upper body of the

sitting motion. The shoulder is positioned slightly further back in the blue motion

and the hands are in different positions at the extreme reaches of the gestures motion.

Unlike the sitting movements, walking is a motion we constantly use and are likely

to be able to repeat with greater accuracy than the upper body gestures in the

sitting motion. However, Table 4.8 demonstrates the dangers of making generalisa-

tions across motion features, as unexpected factors can have a significant impact on

similarity of motions. For example stylised walks such as sneaky and stiff walks can

have a significantly lower similarity score compared to more natural walks, while

the movements performed on the low chair have a very high similarity because the

legs were firmly planted on the floor and did not move between each recording of

the motion.
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Table 4.8: The mean similarity scores for each motion set. The ticks indicate the features
contained within each motion. The mean similarity is based on the scores attained from
motion pairs in the aligned data-set.

Walking Object Score

Walking Sitting and Sitting Dynamic Rhythmic Handling µ Score

Walk ✓ 0.848

Stepping stones walk ✓ 0.846

Dance ✓ 0.881

High Chair Sit Walk ✓ 0.861

Walk Sit High Chair ✓ 0.867

Gestures on High Chair ✓ 0.831

Gestures on Low Chair ✓ 0.879

Jaunty Style Walk ✓ 0.830

3 Jumps ✓ 0.841

Long jump ✓ 0.831

One Hand Pickup ✓ 0.882

Two Hand Pickup ✓ 0.859

Punch Kick ✓ 0.884

Stacking shelves ✓ 0.825

Sit Walk ✓ 0.884

Walk Sit ✓ 0.838

Slow walk ✓ 0.847

Sneaky Style Walk ✓ 0.813

Stiff Style Walk ✓ 0.824

Twirling ✓ 0.822

µ Score 0.835 0.855 0.863 0.845 0.881 0.855

The range of movement in a motion can also have a significant impact on motion

similarity. Motions with a greater range of motion (i.e. have a greater variation

in joint angles) have the potential to score more highly in similarity metrics, than

motions with limited movement. Many of the movements that have a high similarity

in Table 4.8, contain the most movement, examples include: punching and kicking;

dancing and transitioning between walking and sitting. Note that a motion such

as walking may appear to have a lot of movement, however, while walking creates

considerable translation in global space, it is the amount joint rotation in local

space that is relevant here. This phenomena can be expressed as the ratio between

the spatial deviation between two motions and the joint movement inherent in the

motions being performed. This ratio is likely to be higher for motions that require

joints to rotate more and lower for those that do not.
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4.6 Conclusions

This study compared a variety of similarity metrics based on both distance and cor-

relation. Different methods of representing angular data and measuring correlation

were evaluated, including novel approaches such as the use of displacement vectors,

logarithmic maps and rank correlation. The tests revealed that in general correlation

based metrics are better for measuring the alignment, while distance based metrics

are better for measuring similarity. The results also showed that the alignment and

similarity of two motions should not be considered the same, with different similarity

metrics performing best in each use case. For example applications such as motion

blending and motion graphing, are more concerned about motion alignment and

should therefore use correlation based metrics, while applications which recognise

or classify motions are concerned about motion similarity, and therefore, should use

distance based metrics.

The results showed a correlation metric based in joints parameterised using displace-

ment vectors and correlation measured using Kendall Tau rank correlation, to be

the best method for measuring the alignment of two motions. They also showed that

distance based metrics based on angular or positional distance should be used to

measure the similarity of two motions. Depending on the application, angular dis-

tance can be used to compare the overall pose of a motion, while positional distance

can be used to compare the position of end effectors.

The optimal approaches to measuring alignment identified in this study, will be par-

ticularly useful in identifying candidate motions in motion synthesis and accurately

measuring the performance of time warping algorithms. However, it is important to

keep in mind that no matter how accurately a similarity metric measures alignment,

it will not consider factors such how much a motion is distorted or the physical

plausibility of the output motion, other metrics could be used to do this (Etemad

and Arya, 2015; Reitsma and Pollard, 2003).

This study showed the important of using a variety of different methods when eval-

uating the performance of similarity metrics. Each test in this study evaluated

subtly contrasting aspects of a metric’s performance. While the overlap and MAP
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test are objective tests, care should be taken when implementing the correlation

test and interpreting its results, as the test will bias itself towards the approaches

that are most predominant in a given study and data-sets that generate more widely

distributed scores. A robust approach that allows a direct comparison of different

similarity metrics is important, as choosing an optimal method measuring similarity

is crucial decision for researchers working with large data-sets of motions in variety

of disciplines and contexts including: motion synthesis; identifying and classifying

motions; and training AI algorithms.

A novel approach was used, combining sets of (n > 2) similar motions to efficiently

create larger numbers of motion pairs of different types. This approach could be

applied to other data-sets such as the HDM05 data-set (Müller et al., 2007).

Other than choosing a relevant subset of joints, joint weightings where not explored

in detail within this investigation. It is expected that joints weighting would have

a limited impact on the fundamental findings of this study, with more optimal joint

weighting configurations, focused on the movement being performed, expected to

re-enforce these findings.

The results of this study provide a clear optimal approach to measuring alignment

within future chapters, in which studies into on-line time warping algorithms are

presented.

Despite the novel approach used to build the data-sets used in this study, there is

a clear need to increase the size of the data-set for future studies. A power analysis

can be performed on the similarity scores attained in this study to determine a

minimum sample size to be used.

139



Chapter 5

Online Warping of Human Motion

Using Windowing

This work was published in the proceedings of the 2023 CASA conference on Com-

puter Animation and Social Agents, then subsequently in the journal of Computer

Animation and Virtual Worlds as: "Online alignment of human motion using for-

ward plotting-dynamic time warping" (Randall, Harvey and Williams, 2023b).

5.1 Introduction

Chapter 3 introduced the concept of using time warping approaches, such as DTW,

to align the temporal features of one motion to another, as well as presenting on-

line approaches to time warping. As discussed there are significant shortcomings

and barriers to using techniques such as DTW in on-line applications. However,

there a variety of potential applications for an on-line algorithm capable of aligning

a prerecorded human motion to an incomplete human motion as it is being captured,

such as real-time visual effects production or a virtual dance trainer (Chan et al.,

2010). Accurate alignment is a key element of applications such as motion style

transfer (Xia et al., 2015), and on-line alignment algorithms allow these functions

to be performed in real-time.

Building on the knowledge developed in previous chapters, this chapter will propose
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and test a number of novel approaches to on-line time warping of human motion,

which plot alignments in a forward direction. This study will utilise techniques

established in the previous chapter, for measuring the alignment two human motions.

A distinction should be made between real-time and on-line time warping. Real-

time and on-line time warping both require fast and efficient methods for warping

time series data to align temporal features, and therefore share many characteristics

and use similar approaches. The key distinction is that real-time warping can refer

to warping with two completely known time series in real-time, while on-line time

warping refers to warping in real-time while one or both of the time series are

incomplete and only partially known. Typically on-line time warping is use in data

capture scenarios, such as speech recognition in which temporal features of word

sounds are being aligned to live audio capture to recognise words as they are spoken.

This study is focused on aligning a complete prerecorded motion, referred to as the

input motion, with an incomplete or partially captured motion, referred to as the

target motion. Within this paper the terms input and target correspond to the

alignment process, where input motion is being aligned or warped to fit the target

motion. Frames of the complete input motion must be mapped monotonically to

every frame of the incomplete target motion in real-time as it is being captured. The

mapping needs to be performed in such a way as to result in an optimal alignment

of the input motion.

As discussed in Section 3.3.7, previously proposed approaches to on-line time warp-

ing typically plot an alignment backwards, aligning the best fitting part of a com-

plete time series with the known part of a partial time series. However, this approach

requires the mapping of the last known frame of a live target motion to be uncon-

strained, allowing it to be mapped to any frame of the input time series that is

determined to be most optimal. This means that continuity can not easily be en-

forced between the mapping of sequential frames in a live target motion. Figure 5.1

shows an example in which inconsistent starting points have been determined from

the backwards alignment of two sequential frames (15 and 16) of a target motion.

This will cause the playback of the input motion to snap backwards, between the
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start points of each alignment on frames 15 and 16 of the target motion, resulting

in a jump in the time warp and breaking the monotonic constraint. This lack of

continuity does not impact applications such as recognising or classifying motions or

time series data, however, it is undesirable in live performance scenarios, where input

frames are being played back for visualisation purposes as they are being aligned.
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Figure 5.1: An example of the lack of continuity between the alignment paths plotted for
sequential frames of a target motion, when the mapping of the last incoming target frame
is unconstrained. The input frames aligned to frames 15 and 16 break the monotonic
constraint resulting in backwards jumps in the playback of the input motion.

In this chapter, two novel approaches to on-line time warping are proposed and

evaluated, that impose a monotonic constraint. Both approaches plot temporal

alignments in a forwards direction, but utilise a smoothing algorithm to predict the

future frames of the incomplete motion over a small window of time. This allows the

next step in the alignment path to be determined by comparing the predicted frames

of the incomplete motion with a window of frames within the complete motion. One

approach uses DTW to plot an alignment between the predicted frames of target

motion and the select frames of the input motion, using the first steps in the plotted

alignment to determine the next step in the alignment path. The other approach

determines the next step in the alignment, directly from an accumulated cost matrix.

The total costs are accumulated starting at frame (m,n) and ending at frame (0, 0),

the opposite direction to that used by DTW. An optimal alignment point, for the

incoming target frame, is then selected from the first column of the accumulated

cost matrix.
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The performance of the on-line time warping algorithms is to be tested using a

variety of robust objective techniques, to measure the accuracy and quality of align-

ment paths created. The results of the tests are to be evaluated and discussed, to

explore the characteristics of these algorithms and determine if they can support

on-line applications. Specifically the algorithms will need to produce alignments

which satisfy two key benchmarks for a majority of the test performed: i) produce

a more accurate alignment than can be achieved using UTW; and ii) produce an

alignment so close to that achieved using DTW that the difference would typically

not be perceptible.

UTW is a uniform time warp that can be achieved by simply stretching or shrinking

the duration of a motion. Although it is an offline process that requires complete

knowledge of both motions, to be considered useful a time warping algorithm should

be able to align a motion more accurately than UTW.

5.2 Background

This section provides key background information that has informed this study in

addition to the background information already presented in Chapters 2 and 3.

In this section the concept of forward plotting is outlined and existing methods for

forecasting time series data using smoothing and measuring the accuracy of temporal

alignments are discussed.

5.2.1 Forward Plotting

Applications which need to visualise character’s performance as it is being aligned,

such as: training; motor rehabilitation; live performance; and virtual production

scenarios, require a smooth on-line alignment without the previously mentioned

temporal jitter, that can occur when plotting an alignment path backwards. This

has motivated the approaches proposed in this chapter, which use forward plotting

to achieved a smooth monotonic alignment. In this study, each frame of prerecorded

input motion is aligned to an incoming target motion, plotting in a forward direction

as the frames of the target motion are captured and without knowledge of future
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frames of the target motion.

A consequence of the forward plotting is that an error in one step of the alignment

can often lead to additional larger errors in subsequent steps of the alignment. These

errors can accumulate leading to an alignment path that diverges significantly from

the optimal solution. Figure 3.4 shows how forward plotting determines the next

alignment step based on local values within the cost matrix. While DTW which

can determine a solution which is optimal for the entire sequence, the on-line warps

dependence on local values can lead to errors.

A naive approach to forward plotting of an alignment was presented called OPW

(On-line Predictive Warping) (Randall, Williams and Athwal, 2017). Future frames

of the incomplete motion were predicted using a smoothing algorithm, then a dis-

tance metric based on joint positions was used to decide if the remaining portion of

the motion being aligned should be warped to make it shorter (sped up) or longer

(slowed down) in length. The approach worked and demonstrated the feasibility of

using predicted frames to reduce latency in an on-line alignment. The approach of

warping the remaining motion rather than mapping specific frames had weaknesses,

as the latency between changing the speed of the motions playback and achieving

the correct alignment often led to over compensation with unnecessary extra warps

being applied between these points.

The approach was tested using synthesised misalignments, aligning two copies of

the same recorded motion, with a warp applied to one version. While this approach

simulated temporal offsets between motions, it did not simulate positional or spatial

offsets that naturally occur between the motions. For example two separate captures

of a walking motion, starting on the same foot, with a matching number of steps and

recorded on the same actor, will still have naturally occurring temporal and spatial

deviations between the two captures. As time warping methods use the positional

and rotational distances between joints to determine an optimal alignment, the spa-

tial differences will impact the performance of a time warping algorithm. Therefore

a test data set comprising of only temporal deviations between motions, would not

be relevant to real world applications in which spatial differences also occur.
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5.2.2 Smoothing Methods

The approaches to on-line time warping proposed in this study utilise a smoothing

algorithm to predict frame values in the future. The main smoothing algorithms

available for this purpose are as follows:

• Dead reckoning: Assumes that the current rate of change in value xt is going

to continue, creating an estimated prediction without using smoothing.

x̂t+1 = xt + (xt − xt−1) (5.1)

This approach can be adapted to be based on a moving average of the last k

values.

x̂t+1 = xt +
xt − xt−k

k
(5.2)

• Weighted moving average: Uses a weighed moving average of the most

recent values to determine a smoothed value.

x̂t+1 =
k∑

n=1

wnxt+1−n (5.3)

The sum of the of weight factor {w1, w2, ..., wk} must equal 1 such that:

k∑
n=1

wn = 1 (5.4)

• Exponential smoothing: Uses a weighted average between the current value

xt and previous predicted values x̂t−1, to smooth a time series.

x̂t = αxt + (1− α)x̂t−1 (5.5)

An α value of near 0 is weighted towards previously predicted values and

greater smoothing, while and an α near 1 is weighted towards original time
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series without any smoothing applied. α must satisfy 0 < α < 1.

• Holt’s Exponential Smoothing (HES): Extends exponential smoothing,

by also applying it to 1st order derivative values, also taking account of changes

in velocity Kalekar et al. (2004). Both value (position) and its derivative

(velocity) have their own respective smoothing parameters, α and β.

p̂t = αpt + (1− α)(p̂t−1 + v̂t−1) (5.6)

v̂t = β(p̂t − p̂t−1) + (1− β)v̂t−1 (5.7)

(Stakem and AlRegib, 2009) compared the performance of different predictive

smoothing algorithms as predicting the movement of a user’s hand, to facilitate

user interaction with virtual objects. The study showed that exponential smooth-

ing performed similarly to dead reckoning, but also proposed a new technique called

AHES (Adaptive Exponential Smoothing), in which the smoothing parameters α and

β used in double exponential smoothing automatically adapt themselves. This ap-

proach was shown to cope better with sudden twitch movements than dead reckoning

and exponential smoothing, but HES was only more accurate than dead reckoning

periods less than 40 milliseconds, when forecasting for periods over 40 milliseconds

all the methods performed equally well and dead reckoning out performs HES and

AHES when predicting further than 200 milliseconds. This is due to samples pre-

dicted further into the future being less likely to be correlated with the samples used

to make the prediction, a phenomena which is more likely to effect more optimised

techniques such as HES and AHES. It should also be noted that approaches such

as double exponential smoothing should be used with time series that exhibit an

underlying trend, this is often not the case with motion data, especially with cyclic

motions.

5.2.3 Measuring Alignment

Many on-line time warping algorithms are evaluated based on their ability to accu-

rately recognise a sequence of data, rather than their ability to align a data sequence.
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However, the accuracy of the temporal alignment resulting from the time warp is

more important to this study. Therefore this section reviews existing approaches to

measuring the alignment of human motion.

Any meaningful comparison of time warping methods requires robust and relevant

testing methods. Hülsmann et al. (2017) identified and labelled segments within each

motion of the data set, then measured the percentage of corresponding frames in the

aligned and reference motion which were in matching segments. This approach is

particularly appropriate to studies using on-line time warping to classify or recognise

motions, but does not measure the overall quality or accuracy of the alignment. This

approach requires motions to be segmented and labelled in a consistent manner

which is not feasible for the large data-sets.

Similarity metrics are commonly used to evaluate alignments by measuring the dif-

ference between the input motion and the target motion. The warped input motion

with the smallest deviation form the target motion, and therefore greatest similarity,

is considered better aligned. As discussed in a previous chapter there are a wide

variety of distance based similarity metrics to choose from (Yang and Guan, 2005;

Arikan and Forsyth, 2002; Kovar, Gleicher and Pighin, 2002).

The results in chapter 4 highlighted issues with using distance metrics as they are

overly effected by global differences across all the data points of a motion or differ-

ences in the amplitude or exaggeration of a motion. This motivated Etemad and

Arya (2015)to propose using correlation as a similarity metric, with optimal ap-

proaches for implementing this explored within the study presented in the previous

chapter.

Folgado et al. (2018) proposed a distance metric for measuring the temporal align-

ment of two motions, called TAM (Time Alignment Measurement), based on the

alignment path required to align one motion to the other. TAM measures the ra-

tio between the number of out of phase alignment points, which appear as vertical

or horizontal segments within the alignment path, and in phase alignment points,

which appear as diagonal segments within the alignment path.
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Zalkow et al. (2017) used a triple-based transfer approach to measure the accuracy

of transferring music annotations, by temporally aligning audio recordings. Anno-

tations from recording a are transferred in a ring through three different recordings

a→ b→ c→ a creating â, the position of the annotations in â and a are then com-

pared giving and error value. This approach could be adapted to test time warping

algorithms, aligning motion a to b to create ab, then aligning ab to c to create abc,

and finally aligning abc back to a to create abca. This approach, however, is ulti-

mately aligning a warped version of a time series, â, back to the original version of

the same time series a. It therefore falls into the same pitfall as the naive study

discussed in Chapter 1, in which the final motions being aligned are only temporally

displaced, and do simulate the spatial displacements that would naturally occur

between two motions. In addition, to facilitate a relevant real would evaluation of

the performance of time warping algorithms, alignments resulting from single time

warps need to be evaluated rather than those culminating from multiple time warps.

As well as the accuracy of the alignment, other qualities can be measured such as

distortion (Etemad and Arya, 2015). This considers how efficiently a motion has

been manipulated during the alignment process, as well as the overall smoothness

of the warp. For example sudden or unnecessary changes in the direction of the

alignment path, will result in higher distortion.

To contextualise and add meaning to these measurements, it is desirable to un-

derstand how they relate to human perception. Hoyet, McDonnell and O’Sullivan

(2012) studied the ability for viewers to perceive timing errors between the cause and

effect of character interactions in computer animated scenes. The study determined

that on average viewers are unable to perceive timing errors of less than 150ms. This

is significantly longer than the average perception of interaction delays in rigid body

objects, which is 60ms (Reitsma and O’Sullivan, 2009). These findings suggest that

a time warp that deviates less than 150ms, at any given point, from the time warp

determined using DTW, would be imperceptible from the DTW alignment when

applied to a human motion. This would form a useful benchmark to assess a time

warping algorithm against.
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5.3 Methodology

5.3.1 Overview

The purpose of this study is evaluate and compare the performance of different

approaches to on-line time warping of human motion, with the aim of understanding

how they would potentially behave in given applications. As with prior studies

focused on the time-warping of human motion data, there is particular interest

in evaluating how optimal the resulting aligned motions are, both in terms of the

accuracy of the alignment, and the impact of any distortion on the quality of the

resulting aligned motion. As this study is evaluating on-line approaches there is an

additional need to measure the computational performance of the algorithms being

used within each approach.

There are three key elements to the study’s design. First, a data-set of human

motions needs to be compiled. It is important for the motions in the data-set to

be free of capture errors (such as: dropped frames; foot skate; or jittery motion),

represent a suitable range of human motions and be large enough to produce results

that are statistically reliable. Second, once the data-set is compiled, each alignment

algorithm will be applied to this same set of motions. The algorithms will need to

be implemented consistently and in a manner that is relevant to how they might be

used in practical applications. Third the resulting aligned motions outputted from

each algorithm need to analysed, as discussed above, to evaluate different aspects

of their performance. Each of these elements are described in more detail in the

sections below.

5.3.2 Sourcing and preparing the data-set

Sourcing the data-set

The human motions within the data-set are recordings of human movement ob-

tained using a motion capture system. These motions can be obtained by recording

a subject or subjects with a motion capture system; or sourced from an existing

publicly available data-set of human motions.
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Two human motion data-sets that are widely used are the HDM05 database (Müller

et al., 2007) and the CMU (Carnegie Mellon University) Graphics Lab Motion Cap-

ture Database (CMU Graphics Lab, 2001). They have been used to support the

study of a variety of topics such as: human action recognition (Yan, Xiong and Lin,

2018), motion synthesis (Holden, Saito and Komura, 2016) and the representation

of human motion (Han et al., 2017).

The CMU and HDM05 data-sets were published in 2001 and 2007 respectively and

were both recorded using a Vicon MX system with twelve cameras, at a sample rate

of 120Hz. The Vicon MX system was considered the industry standard benchmark

at the time. The data-sets both have issues with missing data where frames are

occasionally dropped, an issue that was not uncommon with motion capture systems

of that era, where the lower powered computers often struggled to keep up with the

processing requirements of the 120Hz sample rate.

The data-set to be created for this study requires many repeated recordings, some-

times refered to as takes, of the same motion, which are to be aligned to each other

during the study. While the CMU data-set is well documented and contains a broad

range motions, only a small number of them are repeated. The HDM05 data-set

contains a more limited set of scripted motions which have been recorded many

times by five different actors. This makes the HDM05 data-set more suitable for

this study.

To diversify the range of sources used to create the data-set, it will also include mo-

tions recorded within BCU in 2018, which can be accessed through Randall (2022a).

These motions were captured using a more recent iteration of the Vicon motion cap-

ture system. These are the same set of motions used the previous study, recorded

on a system consisting of eight 2.2 megapixel Vero 2.2 cameras, recording at a sam-

ple rate of 120fps and configured into a 7x7 metre capture volume. The process of

capturing these motion is presented in more detail in Section 4.3.2. Unlike the CMU

and HDM05 datsets, these motions do not contain any dropped frames as the use

of a high specification workstation based on a Xeon processor prevented this from

occurring.
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Preparing and verifying the data-set

To prepare the recorded motions for use in this study they are all re-targeted

to a single skeletal joint system, using Autodesk MotionBuilder and then saved to

.fbx format. While the motions recorded within BCU were all recorded on the same

actor and joint system, within the HDM05 data-set, discrete recordings of the same

scripted motions were recorded on five different actors, each with a separate joint

system. Re-targeting all motions in the data-set to the same joint system ensures

that they are consistently represented across all motions, and avoids problems and

errors caused by differences in joint names or joint lengths. It also ensures that

the respective joints of every motion in the data set match the same orientations

shown in Figure 5.2, when their rotational transforms are set to zero, an essential

prerequisite for many of the algorithms to be used in this study.

Figure 5.2: The skeletal joint rig used in this study, showing the ’T’ pose the joints form
when their orientations are set to zero.

During the re-targeting process redundant axes in the elbow and knee joints, which

are not being used, are constrained to 0◦. This prevents these axes from being used

when solving the IK to fit joint system to the motion being re-targeted. It also

removes any potential low level residual noise that is often left over from the motion

capture process.

The motions were stored in the .fbx format. FBX is a open format developed by

Autodesk for exchanging 3D assets between its own and third party software, and
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has been adopted as a standard in a variety of industries. The FBX format is

an ideal choice for this study, it can be accessed by both Autodesk MotionBuilder

(Autodesk, 2021) and Python, using the FBX SDK (Autodesk, 2020) available from

Autodesk.

All motions used in the data-set must be checked for any errors such as dropped

frames, significant errors in recorded motion or joints moving beyond the range of

typical human motion. Depending on the configuration of the joint system, the axis

of some joints, typically in the elbows and knees, become redundant. This means

that these axes are not required to encode the motion data and tend not to contain

any key-frame data. To allow each frame to be processed independently, streamlining

the processing of the motion data, all the motions in the data-set were re-sampled,

to fill in drop frames and add key-frames to redundant axes. Every motion was

re-sampled at 120Hz, using the Python FBX SDK to interpolate between frames of

motion data.

All motions in the data-set were visually checked for obvious errors such as: foot-

skate, poses with a high degree of abnormality and sudden popping of joints. Mo-

tions were visually assessed by playing them back at normal speed. Any motions

exhibiting errors were removed from the data-set. The purpose of this check was to

identify motions with obvious errors, not to assess their perceptual realism or levels

of noise in capture data. Therefore, the check did not involve a detailed inspection

of the motion curves.

Verifying range of motion

The motions within the data-set need to be checked to make sure that joints are

not being articulated outside of the possible Range of Motion (ROM) for human

movement. The process for checking the ROM of each motion in the data set

is described in more detail in this section. To prevent this task from becoming

infeasible, only the joints used in this study are checked. As with the previous study,

only a subset of joints which are considered most pertinent to everyday motions are

used in this study. This subset consists of both left and right: shoulders, elbows,
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hips and knees.

When determining the parameters of acceptable ROMs for this study, it is important

to avoid specifying overly constrained ROMs. There are plenty of reliable sources

which specify the average ROM for various human joints (Norkin and White, 2016),

however, the motions in this study need to be checked against the maximum possible

ROM, only eliminating motions which are clear outliers. The acceptable ROMs for

this study are based on Boone and Azen (1979), as the study published the standard

deviations of the sampled ROMs as well as the averages, allowing a total variance

to be determined. More specifically the results for the males over 19 years old group

were used, as this matches the age range and gender of the actors used to record the

motions within the data-sets used. To avoid specifying an overly constrained set of

ROMs, a generous interpretation was made of variance in the data using Equation

5.8, where Jmax is the maximum possible range of movement for joint J .

Jmax = Jµ + Jσ
2 (5.8)

The ROMs used to check the motions against are specified in table in Appendix

A, along with the corresponding joints and axis these limits are applied to. Any

motions with joints rotating beyond these limits were removed from the data-set.

Although the joint system used in this study is fairly typical, the way the ROMs

relate to joints and axis may vary when applied to other joint systems.

Relative to other joints fewer ROMs were specified for the shoulder. This is due to

the ROM in shoulder being particularly complex to model, with the ROM in one

axis being dependent on the orientation of the joint in another axis. It was also

unnecessary to check the ROMs of redundant axes in the elbow and knee joints.

The Final Data-set

The motions used in this study’s data-set can be seen in Table 5.1. The number of

takes refers the number of unique records of each motion. Each permutation of two

takes of the same motion will be used to test the alignment algorithms in this study,
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providing a total of 3248 tests. For each test one motion, referred to as the input,

will be warped to be temporally aligned with the other motion, referred to as the

target. Only the input motion is manipulated in the time warping process.

The table also identifies which of the following types of movement occur within each

motion: Cyclic; Non-Cyclic; Ballistic; Lower Body and Upper Body. The Cyclic

and non-cyclic movement types, identify if periodic repetitions of movement exists

in the motion, such as a walk cycle or multiple kicks. The interest in cyclic move-

ment is motivated by problems that can occur when time warping cyclic motions,

as the algorithm can get confused between which cycles in an input motion to align

with which cycles in the target motion. Ballistic movement refers to motions which

contain moments were there is no contact with the ground, such as jumps. These

are of interest, as at these moments, the motion is largely determined by the physi-

cal forces acting on the actor, rather than the actions of the actor themselves. The

temporal distortion caused by time warping, will potentially have a bigger negative

impact on the perceived realism of a motion during these ballistic non-contact mo-

ments, than at other moments. Lower body and upper body movement, identifies

if a motion contains movement in upper and/or lower body. Identifying this will

allow the relationship between the joints used in motion and joint weightings to be

explored. The representation of each movement type within the data-set can also

be seen within the table.

A power analysis was used to ensure that a sufficient number of tests are performed

to have confidence that differences in results produced by each alignment algorithm

can be relied on. The power analysis was based on the results of the previous study.

The two closest sets of results, across all of the various motion alignment algorithms

tested, were identified using the Mann-Whitney U test with SciPy (Virtanen et al.,

2020) for comparing two non-parametric sample groups (Haslwanter, 2016). The

means (µ1 and µ2) and standard deviations (σ1 and σ2) of the of the two sample

groups were used with Cohen’s d Equation 5.9 to determine the effect size, which

was used along with standard values for power = 0.8 and α = 0.05 to determine the

required sample size using Statsmodel (Seabold and Perktold, 2010). This power

analysis suggested a sample size of 2599, which the study’s data-set exceeds.
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d =
µ2 − µ1√
σ1

2+σ2
2

2

(5.9)

5.3.3 On-line time-warping algorithms

Within this study on-line time-warping of human motion refers to aligning a prere-

corded input motion to a live streamed target motion. This process monotonically

matches every streamed target frame to a prerecorded input frame, resulting in

frames from the prerecorded input motion being inserted and deleted as necessary,

while the incoming target frames are unaffected.

There are two main challenges to on-line time-warping of human motion. First,

aligning frames of motion data in real-time, processing each frame faster than the

motion’s frame rate. Second, aligning the frames of an input motion to a target

motion, when during the time-warping process there is only knowledge of the target

frames that have already been aligned and no knowledge of the remaining unaligned

frames of the motion, that are yet to be streamed into the algorithm.

Three on-line time-warping algorithms are implemented and tested in this study,

each of which use different methods to select an input frame to align to a given

incoming target frame:

• Method A - Frame Matching: The optimal input frame to align with an in-

coming target frame, is selected from a window starting at the input frame

selected for the previous target frame.

• Method B - Predictive Windowing Using DTW: The next n incoming target

frames are predicted. The optimal input frame is found by plotting an align-

ment between the predicted target frames and a window of the input motion,

using DTW.

• Method C - Predictive Windowing Using Cost Matrix: Also based on predict-

ing the next n frames in the target motion, but with the optimal input frame

being selected directly the accumulated cost matrix.
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Table 5.1: The composition of motions within the data-set used for this study.

No. No. of 2 Take Non Lower Upper

Source Motion Takes Permutations Cyclic Cyclic Ballistic Body Body

BCU 3 Jumps 3 6 x x x x

BCU Stepping Stones Walk 3 6 x x

BCU Dance 3 6 x x

BCU High Chair Sit Walk 3 6 x x x x

BCU Jaunty Style Walk 3 6 x x x

BCU Long Jump 3 6 x x x x

BCU High Chair Movment 3 6 x x

BCU Low Chair Movement 3 6 x x

BCU 1 Punch 1 Kick 3 6 x x x

BCU One Hand Pickup 3 6 x x x

BCU Shelf Stack 3 6 x x

BCU Sit Walk 3 6 x x x x

BCU Slow Walk 3 6 x x

BCU Sneaky Style Walk 3 6 x x x

BCU Stiff Style Walk 3 6 x x

BCU Walk 3 6 x x

BCU Walk On All Fours 3 6 x x x

BCU Walk Sit On High Chair 3 6 x x x x

BCU Walk Two Hand Pickup 3 6 x x x x

HDM05 Clap 5 Reps 9 72 x x

HDM05 Deposit Floor R Hand 7 42 x x x

HDM05 Elbow To Knee 3 Reps L Start 11 110 x x x

HDM05 Grab Middle Shelf R 13 156 x x

HDM05 3 Jumps 12 132 x x x x

HDM05 Hop L Leg 3 Hops 14 182 x x x x

HDM05 Jog Left Circle 6 Steps R Start 15 210 x x

HDM05 Jog On Place 4 Steps R Start 14 182 x x x

HDM05 Jump Down 11 110 x x x x

HDM05 Jumping Jack 3 Reps 13 156 x x x x

HDM05 Kick R Side 2 Reps 5 20 x x

HDM05 Punch L Side 2 Reps 11 110 x x

HDM05 Rotate Arms Forward 3 Reps 13 156 x x

HDM05 Shuffle 4 Steps L Start 11 110 x x

HDM05 Sit DownChair 14 182 x x x

HDM05 Sit DownFloor 5 20 x x x

HDM05 Skier 3 Reps L Start 3 6 x x x

HDM05 Sneak 4 Steps R Start 16 240 x x x

HDM05 Staircase Up 3 Rstart 16 240 x x x

HDM05 Stand Up Sit Chair 14 182 x x x

HDM05 Stand Up Sit Floor 3 6 x x x

HDM05 Throw Far R 7 42 x x x

HDM05 Turn Right 13 156 x x

HDM05 Walk 4 Steps L Start 13 156 x x

HDM05 Walk Circle 6 Steps R Start 13 156 x x

Totals 3248 2322 950 634 2688 2416
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Before presenting each algorithm in detail, some common terms and concepts need

to be defined. Let I = {I0, I1....Im} be the frames of prerecorded input motion

and T = {T0, T1....Tn} be frames of a live target motion which have already been

received and mapped to an input frame. The incoming target frame being processed

is Tn+1. Note that set T only consists of frames in the target motion that are already

known, it is not the complete target motion. Set M = {M0,M1....Mn} maps each

received target frame to an input frame. Alignment of the input motion to the

target motion must be monotonic and is achieved by either: mapping the same

input frame to adjacent target frames (slowing the input motion down); mapping

adjacent input frames to adjacent target frames (maintaining the normal speed of

the input motion); or skipping frames in the input motion (deleting frames and

speeding up the input motion).

Method A - Frame Matching

Frame matching is the most straight forward and naive approach to on-line time-

warping. While it is expected to demonstrate some of the short-comings discussed

in earlier in this chapter, it will act as a baseline with which to compare the other

time warping methods.

Using Algorithm 4, Frame Matching uses a distance based cost function, based on

the rotational distance of corresponding joints in each motion frame, to find the

frame within a window of the prerecorded input motion {IMn ..IMn+w} that most

closely matches an incoming target frame Tn+1. This search window is visualised in

Figure 5.3.

previously recorded
input motion:

Frames previously matched with
incoming target motion

search window
{IMn

…Imn+w}

I1 Im

Last match frame

IMn

Figure 5.3: Search window used in Frame Matching algorithm, to find the pre-recorded
input frame that best matches the incoming target frame

Before evaluating each of the input frames within the window, the size of the window
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Algorithm 4: The Method A: Frame Matching time warping algorithm. The
algorithm is applied to each captured frame of a target motion, mapping it to
the best fitting frame within a specified window of the input motion.
input : Window size w

New incoming target motion frame Tn+1

Set of prerecorded input frames I = {I0, I1....Im}
Set of existing maps M = {M0,M1....Mn} between target frames
{0..n} and input frames in I

output: Map Mn+1 mapping target frame Tn+1 to an input frame in I
1 C ← array of 3 dimensional Euler rotations
2 if Mn + w > m then
3 w = m−Mn;

4 if w = 0 then
5 Mn+1 = Mn;
6 else
7 for i← 0 to w do
8 Ci = geoDistance(IMn+i, Tn+1);

9 Mn+1 = Mn + arg min{C0, C1...Cw};

is checked at Line 2 to ensure that there are still enough frames remaining in the

input motion to cover the specified window size, if not, the window size is reduced

accordingly. If the window size becomes zero the search for the best matching input

frame is skipped altogether and the incoming frame is matched to the same input

frame as the previous target frame.

A key consideration is the optimal size window w to use. Consideration needs be

given to how this will constrain the solution. A smaller window reduces the number

of input frames that can be skipped when mapping them to adjacent frames in the

target motion, effectively allowing fewer frames to be deleted between each frame of

the input motion when aligning it. A smaller search window, therefore, effectively

reduces the number of possible alignment solutions which could be used. While

this constraint prevents two motions with more extreme differences in temporal

alignment from being properly aligned, overly large windows result in an under

constrained search, which can cause errors such as entire motion cycles being skipped

or more commonly allowing the alignment to deviate so far from the optimal solution

that it not able to find its way back again.

158



For this study a small window size of two was selected. This approach avoids the

issues of alignments deviating too far from an optimal solution in a single alignment

step, mimicking a Type I local continuity constraint, which is commonly used in

time warping (Rabiner and Juang, 1993). A small pilot study was used to validate

this approach.

Method B - Predictive Windowing Using DTW

The nature of on-line time-warping means that incoming target sequence T is only

partially known. This means that there is no way of knowing when determining an

alignment point for the partial sequence T , if that point is on the optimal path for

aligning the entire sequence. While method A does not try to mitigate against this

problem, Methods B and C propose a windowing technique to do this, inspired by

Macrae and Dixon (2010).

This method applies a smoothing function to sequence T to predict a set of future

frames over a small forecast window w. A slight variation of the standard DTW

algorithm is then used to plot an alignment path within the window, with an align-

ment point at the start of the path being used to align the incoming frame Tn+1.

By choosing an alignment point for Tn+1 based on some limited knowledge of the

future of sequence T , rather than none at all, it is expected that this approach will

avoid some the pitfalls of method A such as: the alignment path getting stuck and

aligning all remaining frames T to the same frame in I, or plotting alignment points

which are far from the optimal alignment path for the entire sequence.

The method functions by applying Algorithm 5 to every incoming frame Tn + 1 in

target sequence T . The algorithm performs the following steps: (i) check if enough

target frames have been captured to forecast the motion and that there are still

prerecorded input frames remaining to align, reducing window size if required; (ii)

determine predictions for future frames in the target motion F ; (iii) calculate a cost

matrix C based on the similarity between every frame within a window of the input

sequence and the predicted frames of the incoming target motion; (iv) accumulate

the costs in the cost matrix to create an accumulated cost matrix D; (v) plot an
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alignment path P through the cost matrix, and (vi) map the incoming target frame

Tn+1 using the second alignment point on the alignment path P1.

Algorithm 5: The Method B time warping algorithm. Determines the best
input frame to map to a target frame by forecasting w frames of the target
motion, then plotting an alignment between predicted target frames and a subset
of frames from the input motion. The algorithm is applied to each captured frame
of a target motion.
input : Set of prerecorded input frames I = {I0, I1....Im}

Set of already received target motion frames T = {T0, T1....Tn}
New incoming target motion frame Tn+1

Set of existing maps M = {M0,M1....Mn} between target frames
{0..n} and input frames in I
Forecasting window size w
Smoothing window size s
Set of joints J = {J0, J1....Jk}

output: Map Mn+1 mapping target frame Tn+1 to an input frame in I
1 F ← 2D array of 3D vectors of size k (number of joints) x w (window size);
2 C,D ← 2D array of floats size wi (size of input motion window) x w (size of

target motion window);
3 P ← {} integers ;
4 if n < s then
5 Mn+1 = n+ 1;
6 else if Mn >= m then
7 Mn+1 = m;
8 else
9 wi = w;

10 if Mn + wi > m then
11 wi = m−Mn

12 F0 = Tn;
13 F = F + forecastJoints({Tn, Tn+1}, J, w) // Algorithm 6 ;
14 C = getCostMatrix({IMn ....IMn+wi

}, F ) // Algorithm 1 ;
15 D = getTotalCostMatrix(C) // Algorithm 2;
16 D0,0 = 10000;
17 P = plotPath(D) // Algorithm 7;
18 Mn+1 = Mn + P1;

Before the DTW function is performed, checks are made to ensure a number of

conditions are satisfied. First a sufficient number of frames in the target sequence

need to have been processed in order to forecast the sequence. If this is not satisfied

then the DTW is skipped and the incoming target frame Tn+1 is mapped to the

next unmapped frame in the input motion In+1. Second are there enough unmapped

frames remaining in the input sequence to fulfill the window size being used, if this is
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not the case, the window size for the input sequence wi is adjusted accordingly and

the DTW is performed on the smaller window. If the last input frame has already

been mapped, then Tn+1 is also mapped to this frame and the DTW is skipped.

Forecasting Motion Data

Method B uses a smoothing algorithm to forecast motion frames in a target mo-

tion, this can be seen in Algorithm 6. There are a number of different smoothing

algorithms that can be used to predict samples in a sequence. Stakem and AlRegib

(2009) compared a number of smoothing algorithms including dead reckoning and

Holt’s Exponential Smoothing, measuring the forecasting error of each algorithm

when applied to predicting the motion of a human hand. The study established

that more complex smoothing algorithms, such as Holt’s Exponential Smoothing,

require fine tuning of smoothing parameters to optimise them, and are only more

accurate when forecasting the first 40ms of motion. Given that the motions used

in this study have been sampled at 120Hz, 40ms equates to just under five frames

of motion. The limited benefit of using HES, suggest that a more straight for-

ward approach such as dead reckoning, that does not require tuning, would be more

appropriate for this study.

Algorithm 6: The forecastJoints() Function. Given two sequential frames of a
motion, this function uses dead reckoning to predict the poses of a set of joints
J over the next f frames.
input : Set of two motion frames A = {A0, A1}

Set of joints to forcast J = {J0, J1....Jk}
Forecasting window size f

output: F ← Predicted joint orientations as 2D Array of 3D vectors size k x f
1 V ← 3D vector;
2 for i← 0 to k do
3 V = A0i − A1i ;
4 for j ← 0 to f do
5 Fi,j = A1,i + (V ∗ (j − 1));

Smoothing algorithms need to be applied to an Euler representation of the joint an-

gle. Although quaternions are used later in the Method B algorithm, for measuring

the distance between angles, depending on how they are implemented, quaternions

161



can be non-linear relative to changes in orientation and representations of very sim-

ilar angles can look very different if they are expressed on different hemispheres.

This makes quaternions unsuitable for use with smoothing algorithms.

Two decisions that need to be made regarding the implementation of the dead reck-

oning smoothing algorithm are the number frames that are to be predicted (i.e. the

window size) and the number of frames on which to base these predictions (i.e. the

smoothing level).

The optimal choice for the first parameter, window size, is determined by testing

different window sizes within the study. The window sizes selected for this study

were mostly informed by the typical period of a walk cycle, a frequently reoccurring

cycle in human motions. Given that a normal walking gait cycle has a frequency of

between 0.82 and 0.9Hz (Ekimov and Sabatier, 2011), and the motions in this study

are sampled at 120Hz. The period of a typical single walking gait cycle in frames,

t, can be determined using Equation 5.10, where fw and fs are the frequencies of

the walk cycle and the sample rate of the motion capture respectively. This gives a

typical walk cycle period of between 133 and 146 frames. Window sizes of more than

half a walk cycle are unlikely to be optimal, as beyond this point the potential for

the incoming frame of the target motion to have multiple local minima points with

frames within the input motion window, will increase, also increasing the potential

for incorrect alignments. Taking the slowest typical walk cycle, it is expected that

an optimal window size will be below 73 frames. To cover the range of potential

window sizes more efficiently, the following non linear distribution of window sizes

are tested in this study: 10, 20, 40 and 80 frames. Including a window size of more

than 73 frames will allow the hypothesis that windows sizes larger than half a walk

cycle are less optimal, to be tested.

t =
1

fw
fs (5.10)

The optimal choice of smoothing level can be determined by testing them on the

motion data-set, and comparing the predicted motion frames with their respective
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Figure 5.4: The performance of different smoothing levels at predicting human motion.
Shows the error resulting from a given number of frames used to predict a motion (smooth-
ing level s) i frames in to the future.

frames in original recorded motions. Equation 5.11 was applied to the entire data-

set to evaluate the performance of different smoothing levels s at predicting i frames

into the future, where D is a data-set of p motions, each containing q frames, with r

joints being evaluated. The results of the test in Figure 5.4 shows that the smaller

smoothing levels perform best for predicting up to 50 frames, after this all the

smoothing levels perform equally. Again this shows that more optimised, smaller,

smoothing levels become less effective as the motion is predicted further into the

future, where frames are less likely to correlate with the frames used to make the

prediction. Based on this test, the forecasting of motion frames in this study will

be based on a smoothing level of one, with the differential between the two most

recently captured target frames forming the basis for forecasting frames using dead

reckoning.

es,i =

p∑
m=1

q−i∑
f=s+1

r∑
j=1

geoDist(Dm,f+i,j, Dm,f,j + (v′i))(
p∑

m=1

q − i− s− 1

)
r

(5.11)

v′ =
Dm,f,j −Dm,f−s,j

s
(5.12)
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Figure 5.5: Plotting of path aligning prerecorded frames {IMn ....IMn+(w−1)} against a
mixture of existing frames {Tn, Tn+1} and predicted target frames {P0....Pw−2}, contained
in set F .

Determining Optimal Alignment Within Method B

Following the standard DTW approach, the next steps are to calculate the cost ma-

trix C and total accumulated cost matrix D, comparing the frames of the predicted

target motion F against those within the window of prerecorded input motion I.

The costs are determined using the sum of rotational distances between correspond-

ing joints in each frame. The calculation is restricted to a subset of joints, which are

converted to quaternions to allow geometric distance between them to be calculated

more efficiently.

Figure 5.5 shows an alignment path plotted through the accumulated cost matrix

D, using the path plotting Algorithm 7. Apart from a minor change this is the same

path plotting algorithm used in the standard DTW algorithm. When plotting a path

each frame in F is monotonically match to a single frame in I. If the alignment path

steps through multiple frames of I within a single frame of F , as seen in F1 and F5,

the frame with lowest index is matched. To facilitate this a single line was added

to the standard DTW function at Line 22 in Algorithm 7, to overwrite an existing

match of F if the path should step down a frame in I.
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Algorithm 7: The plotPath() Function. Plots an alignment path through ac-
cumulated cost matrix D, using a slightly adapted version of the established
approach used in DTW.
input : Matrix D of size m x n
output: Set P alignment map

1 R← {0,0};
2 p← next step as string;
3 R = {m,n};
4 P = P ∪ {R0};
5 while R0 > 0 ∨R1 > 0 do
6 p = "match";
7 if R1 = 0 then
8 p = "delete";
9 else if R0 = 0 then

10 p = "insert";
11 else
12 if arg min{DR0−1,R1−1, DR0−1,R1 , DR0,R1−1} = 1 then p = "delete";
13 if arg min{DR0−1,R1−1, DR0−1,R1 , DR0,R1−1} = 2 then p = "insert";

14 if p = "match" then
15 R = {R0 − 1, R1 − 1};
16 P = {R0} ∪ P ;

17 if p = "insert" then
18 R1 = R1 − 1;
19 P = {R0} ∪ P ;

20 if p = "delete" then
21 R0 = R0 − 1;
22 P0 = R0;

The frame in I that is aligned to F1 in the alignment plot gives the optimal frame

to be mapped to Tn+1. Remember Tn+1 was assigned to F1 earlier in Algorithm

7. Figure 5.6 shows how various alignment paths result in different frames in I

being mapped to Tn+1, allowing frames in I to be inserted, matched and deleted as

required to align it with the target motion T .

The path plotting algorithm will always create a path that ends at D(0,0) of the

accumulated cost matrix. This problem motivated the addition of the last mapped

frame Tn into the cost matrix. If it was not included then Tn+1 would always

be mapped to IMn , in the same way that Tn is always mapped to IMn in Figure

5.6. Adding frame Tn, allows frame Tn+1 to be mapped to the lowest point of the
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Figure 5.6: How the alignment path is used to determine if frames in input motion I are
inserted, matched or deleted to align it with a target motion T , using the frame in I that
is aligned to Tn+1
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Figure 5.7: Determining which frame in input motion I to map to target motion T based
the lowest cell in frame Tn+1 the path goes through. After the path plots through (Tn+1,
IMn+2), it moves to frame, Tn, in the left example and continuous downwards in the same
frame Tn+1 in the right example. As only one frame of I can be mapped to frame Tn+1, in
the right example the mapping of frame Tn+1 is replaced as the plot continuous downwards
in that frame, eventually resulting in the lowest point the the path plots in frame Tn+1

being mapped to that frame.

alignment path in frame Tn+1. Without the inclusion frame Tn this would always be

IMn , however, with inclusion of Tn the alignment path can move to this frame as it

completes it journey to (Tn, IMn), when the frames in (Tn+1) become less optimal,

as shown in Figure 5.7, allowing the most optimal alignment of frame (Tn+1) to be

identified.

Another path plotting requirement, which is specific to the Method B algorithm, is

the need to prevent the alignment path from stepping directly from cell (Tn+1, IMn+1)

to cell (Tn, IMn). Due the manner in which the costs in the accumulated cost matrix

are determined, cells (Tn, IMn+1) and (Tn+1, IMn) will always be more expensive

than cell (Tn, IMn), preventing an alignment path from being plotted through them.
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Uncontrolled this would prevent a path being plotted through (Tn+1, IMn+1) and a

frame being inserted into the time warp alignment as shown on the left most example

in Figure 5.6. To mitigate this, after the accumulated cost matrix is determined, the

cost of cell (Tn, IMn) is set to a very high value in Line 16 of Algorithm 5, forcing

the path to go through either cell (Tn, IMn+1) or (Tn+1, IMn) before going to cell

(Tn, IMn).

Method C - Predictive Windowing Using Cost Matrix

This method is a modification of method B, which removes the need to plot an

alignment path through the accumulated cost matrix D. By reversing the direction

in which the costs are accumulated, the optimal frame within input motion I to map

to target motion Tn+1, can be determined directly from the accumulated cost matrix.

The motivation for this approach was to bypass the complexities associated with

plotting and interpreting alignment paths in method B, to create a more streamlined

solution which potentially requires less computation.

The Method C Algorithm 8, performs initial checks, predicts joint positions F and

calculates a cost matrix C in the same manner as Method B. The only difference as

that Tn no longer needs to be added as the first element of F .

At Line 13, Algorithm 8 calculates an accumulated cost matrix, D, in a reverse

direction using Algorithm 9. Unlike the established approach of Algorithm 2, utilised

in Method B, in which the costs are accumulated from D0,0 to Dm,n, Algorithm 9

accumulates the costs in the opposite direction starting at Dm,n and ending at D0,0.

The optimal choice of input frame to map to the target frame Tn+1 can be deter-

mined using the first column of the accumulated cost matrix, as this represents the

cost of matching each frame in input window {IMn ..IMn+w} to the incoming target

frame Tn+1. Therefore, the input frame corresponding to the cell with the least

accumulated cost in first column is mapped to Tn+1.

This method will also be tested with window sizes 10, 20, 40, and 80, the same as

Method B, to determine the optimal window size to use for this method.
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Algorithm 8: The Method C time warping algorithm. Determines the optimal
input frame to map to a given target frame, by forecasting w frames of the target
motion, then using an accumulated cost matrix between the predicted frames and
a subset of frames from the input motion, to determine the optimal input frame
to map. The algorithm is applied to each captured frame of a target motion.
input : Set of prerecorded input frames I = {I0, I1....Im}

Set of already received target motion frames T = {T0, T1....Tn}
New incoming target motion frame Tn+1

Set of existing maps M = {M0,M1....Mn} between target frames
{0..n} and input frames in I
Forecasting window size w
Smoothing window size s
Set of joints J = {J0, J1....Jk}

output: Map Mn+1 mapping target frame Tn+1 to an input frame in I
1 F ← 2D array of 3D vectors of size k x w;
2 C,D ← 2D array of floats size wi x w;
3 if n < s then
4 Mn+1 = n+ 1;
5 else if Mn >= m then
6 Mn+1 = m;
7 else
8 wi = w;
9 if Mn + wi > m then

10 wi = m−Mn;
11 F = forecastJoints({Tn, Tn+1}, J, w);
12 C = getCostMatrix({IMn ....IMn+wi

}, F );
13 D = getReverseTotalCostMatrix(C);
14 Mn+1 = Mn + arg min{D0,0....Dm,0};

5.3.4 Evaluating the performance of time-warping algorithms

The performance of the three on-line time warping methods, and the impact of

different windows sizes on the predictive window based methods, Methods B and

C, need to be measured to allow them to be appropriately compared and evaluated.

The following four approaches will be used to measure contrasting aspects of each

algorithms performance: (i) Alignment, a similarity metric will be used to measure

how similar the resulting aligned motion is to the target motion it was aligned

to; (ii) Accuracy, how similar is the on-line alignment solution to that produced

by the standard offline DTW algorithm; (iii) Distortion, how much was the input

motion distorted by the time-warping algorithm; and (iv) Computation, how much

processing power does each algorithm require to match an input frame to each frame
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Algorithm 9: The getReverseTotalCostMatix() Function. Accumulates the
costs in cost matrix C starting at (m,n) and ending at (0, 0). The opposite
direction to that used within a standard DTW algorithm.
input : Matrix C of size m x n
output: Matrix D of size m x n

1 for i← m− 1 to 0 by −1 do
2 for j ← n− 1 to 0 by −1 do
3 if i = m− 1 ∧ j = n− 1 then
4 Dm−1,n−1 = Cm−1,n−1;
5 else
6 Di,j = Ci,j +min{Di+1,j, Di,j+1, Di+1,j+1};

in the target motion.

Measuring Alignment

Using the findings of Chapter 4 which showed Kendall Tau correlation applied to

joints parameterised as trajectories to be the most accurate method of measuring

alignment, the alignment of each aligned motion A is measured based on its cor-

relation to the target motion T , to which it was aligned. The correlation between

the corresponding motion curves of the joint axis in motions A and T are measured

using Equation 5.13 where j is a joint in subset of joints J = {J0, J1....Jk} and a is

an axis in {x, y, z}.

rt(A, T ) =

k∑
j=1

3∑
a=1

rt(Aj,a, Tj,a)

3k
(5.13)

Note that the alignment process will cause the aligned motions A to have same

number of frames as their respective target motions T , eliminating the need to

match the lengths of the motions to facilitate the correlation.
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Measuring Accuracy

Alignment accuracy is measured by comparing the mapping, M , of input frames,

I, to target frames, T , produced from the on-line alignment algorithm to that pro-

duced by the standard offline DTW process. This approach treats the mapping

produced by standard offline DTW as the most optimal alignment solution possible.

Measuring difference between the corresponding maps plotted by the offline P a and

on-line P b algorithms for the same input and target motions, allows an A/B testing

approach to be taken, in which the on-line solution can be evaluated based on how

close it is to the offline solution.

Three measures of the difference between maps Ma and M b are used: the average

difference 5.14, measures the bias of the algorithm towards warping ahead or behind

the optimal solution; the absolute difference, 5.15, measures how close the algorithm

was to the optimal solution; and the maximum difference, 5.16, measures how far the

algorithm was from the optimal solution at its furthest point. Each of the equations

normalise the results to account for maps M of different lengths n.

Davg(P
a, P b) =

n∑
q=1

P a
q − P b

q

n2
(5.14)

Dabs avg(P
a, P b) =

n∑
q=1

|P a
q − P b

q |

n2
(5.15)

Dmax(P
a, P b) =

max{|P a
1 − P b

1 |, |P a
2 − P b

2 |, ....|P a
n − P b

n|}
n

(5.16)

Measuring Distortion

Distortion measures the amount a motion has been warped or distorted in order

in order to align it with a target motion. Achieving an alignment through a small

number of smooth changes to an input motion is more desirable than using sharp

170



changes or unnecessary or overly aggressive warps which have to be compensated

for with further warping later in the motion. Overlay or unnecessarily distorted

motions are undesirable as they can potentially be perceived as unrealistic. The

distortion measure in Equation 5.17, inspired by Etemad and Arya (2015), uses a

signal to noise ratio approach where SNR = |noise|
|signal| . In this case the noise is the

difference between the original input motion I and the input motion after alignment

I ′, and the signal is the original input motion. j is a joint in the subset of joints

J = {J0, J1....Jk}, a is an axis in {x, y, z}, and f is a frame of the motion.

To facilitate this, the warped version of the input motion is uniformly time-warped

using UTW and re-sampled at 120Hz so that it has the same number of frames as

the original input motion.

The SNR is based on the slopes of the motion curves, there are two reasons for

not basing it directly on the motion curve values. First this would bias a warped

motion with no alignment, as would be obtained using UTW rather then DTW.

Secondly, motion curves do not naturally centre themselves around the zero value,

as the difference between the two values is divided by the value form the original

motion, motion curves closer to zero would have a larger influence on the results

than those further away.

d(I ′, I) =

k∑
j=1

3∑
a=1

m∑
f=1

|∆I ′j,a,f −∆Ij,a,f |
|∆Ij,a,f |

k3m
(5.17)

Measuring Computation

The computational efficiency of each algorithm will be measured based on the aver-

age time taken to align each frame of a given motion, with the same motion being

used on each algorithm.

The algorithms were ran on a processor with a base speed of 2.21GHz but capable

of up to 3.9GHz. The algorithms have not been implemented to take advantage
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of multi-threading. When running the test, checks will be made to minimise back-

ground processes and notes will be made of the processing speed used.

5.4 Results

5.4.1 Interpreting the results

The results of the alignment, distortion and accuracy performance tests can seen

in Figure 5.8. The tests were used to measure the performance of three different

alignment methods. The results are shown as box plots with each sample group rep-

resenting aligned motions produced by a specified combination of alignment method

and window size. Through-out this section Ma, Mb and Mc refer to methods A, B

and C respectively, while w specifies the window size used.

The results obtained from the established offline time warping methods DTW and

UTW have also been included to some of the graphs for comparison purposes. As an

established and optimal approach to offline time warping, DTW provides an upper

performance threshold to compare the on-line time warping algorithms in this study

against, demonstrating the best potential performance a time warping algorithm

could achieve. UTW shows the alignment achieved by uniformly stretching and

squashing the motion with no alignment of individual frames. In this study UTW

is used to establish a threshold which on-line time warping algorithms should meet,

if they are to be considered effective enough for real world applications. Blue and

red lines have been plotted at the median point of the DTW and UTW results

respectively as a visual aid to help comparison.

5.4.2 Confidence in Results

A power analysis was performed on the alignment test results, which can be seen

in Table 5.2. For any combination of two alignment algorithms tested, the table

shows the number of samples required to be confident that a difference between

their performance does exist. In line with standard practice, a statistical power of

80% was used, allowing a 20% chance of a type II error, while the significance level
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(a) Results of the alignment and distortion performance tests. In both tests the higher result is
best. The blue line represents the alignment and distortion achieved by the standard offline DTW
algorithm, and the red line represents the alignment achieved using UTW with no alignment.

(b) Results of the accuracy performance tests. Results closest to zero are best.

Figure 5.8: The results of the performance tests. Ma, Mb and Mc refer to methods A, B
and C respectively, while w specifies the window size used.
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was set to 5%, allowing 5% chance for a type I error.

Table 5.2: A power analysis of the alignment test results in Figure 5.8a, showing the number
of samples required to have confidence in a performance difference existing between any two
time warping algorithms. The analysis was conducted with a statistical power of 80% and
significance level of 5%. Each algorithm was tested with 3248 samples, giving confidence
that differences do exist between the performance of almost all the time warping algorithms
tested. A small number of outlying pairs of algorithms, require more than 3248 samples,
as they have a similar distribution of results in the alignment test.

Mb w10 Mb w20 Mb w40 Mb w80 Mc w10 Mc w20 Mc w40 Mc w80
Ma 205 131 47 20 523 21 8 35
Mb w10 2388 138 36 78 40 11 89
Mb w20 245 48 61 55 14 143
Mb w40 162 30 209 24 3389
Mb w80 15 9610 63 247
Mc w10 16 7 23
Mc w20 53 344
Mc w40 27

The power analysis was ran on the alignment test results as this test is most pertinent

to the potential performance of an algorithm when used in real-world applications.

It was considered unnecessary to run the power analysis on all the tests.

As documented previously, the number of samples used on each alignment algorithm

(i.e. the sample group size) was 3248. The power analysis shows that significantly

fewer samples are required to be confident that differences exist between the per-

formance of most pairs of algorithms. Where pairs of algorithms do require more

samples (for example Mb w80 and Mc w20 ), consideration will be given as to whether

these impact on the recommendations and conclusion of this study.

5.4.3 Alignment and Distortion Results

The results of the offline DTW method act as a gold standard exhibiting the best

alignment and distortion results that could potentially be achieved, with a median

score of 0.349 and 3.621 for the alignment and distortion tests respectively. As

anticipated the offline DTW method achieved the best results for both alignment

and distortion in Figure 5.8a.

While no on-line warping method is expected to perform better than the DTW
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method, an ideal on-line time warping method would perform better than UTW.

The results of the alignment test in Figure 5.8a, shows that only Method C with

a window size of 40 (Mc w40 ) achieved this with UTW and Mc w40 achieving

median scores of 0.240 and 0.285 respectively in the alignment test. Although all

the other approaches failed to beat the UTW method, this should not be considered

a disappointment. The UTW method itself, although basic, is also dependent on

knowledge of the entire input and target motions, unlike the on-line approaches

tested.

As expected, method A (Ma) was one of the worst performers in both the alignment

and distortion tests, with median scores of 0.069 and 1.298 respectively. However, it

set a useful benchmark, providing a straightforward naive approach to evaluate the

window based methods, A and C, against. The results of the distortion test matched

closely with those of the alignment test, with the poor performances of Method A

and Method C with a window size of 10 (Mc w10 ), being more exaggerated in the

distortion tests.

There was an interesting contrast in the relationship of window size to performance

between Methods B and C. Figure 5.8a shows as the window size increases with

Method B, the results of alignment tests, and to a lesser extent the distortion test,

improved in a predictable and stable manner. The improvement in the performance

of Method B, in alignment test, between each window size, increased as the window

sizes being tested increased, with improvements of: 0.002 (2%) between Mb w10

and Mb w20 ; 0.024 (18%) between Mb w20 and Mb w40 ; and 0.064 (17%) between

Mb w40 and Mb w80.

The improvement in the performance of Method C in relation to window size was

less consistent. The alignment tests show a clear peak in performance at a window

size of 40, dropping significantly by 0.139 to 0.146 with window size of 80.

As suggested previously in Section 5.3.3, when discussing appropriate window sizes

to test within this study, a window size of 80 is less optimal as this covers over half

the typical period of a walk cycle, which is between 133 and 146 frames, resulting in

multiple local minima points occurring between the incoming target motion frame
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and the subset of input frames within the window. This suggests a potential rela-

tionship between optimal window size for method C, the sample rate at which the

motions are recorded and the frequency of cycles within motion. This issue does

not occur with Method B as an alignment path is plotted starting at (n,m) and

end at (0, 0). The path plotting combined with the approach used by Method B

to selecting the optimal input frame based on the path, prevents large numbers of

input frames from being skipped in a single step of the alignment.

Compared with the results for the DTW method, the best performing on-line

method, Mc w40, exhibited a wider spread of results. This would suggest that

this method does not perform as consistently, across different motions as the DTW

method. Another indicator of the potentially inconsistent or unpredictable nature

of Method C, is how much the performance of the algorithm drops off outside of the

optimal window size in comparison to Method B.

In order to consider how each time warping algorithm performs with motions that

contain the different types of movement identified in 5.1, the performance of each

algorithm in the alignment test was broken down into motions containing a specific

types of movement in Table 5.3. Despite concerns about consistency of the Mc w40

algorithm, these results show it consistently performing the best of all the online

alignment algorithms, regardless of the type of movements contained within the

motion. The ranked order of the mean alignment performance test results (µ), for

motions containing each of the different types of movement are the same for both the

Mc w40 and DTW algorithms. Ordered from the best to worse, the rank motions

containing each type of movement are in the following order: Lower Body; Cyclic;

Ballistic; Upper Body; and Non-Cyclic.

5.4.4 Accuracy Results

Three accuracy tests were carried out comparing the mapping of input frames to

target frames produced by each on-line algorithm with that of the DTW algorithm,

treating the map from the DTW algorithm as the optimal alignment. The results of

these tests can be seen in Figure 5.8b. The deviations between the maps have been
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Table 5.3: The means µ and standard deviations σ of the alignment test scores achieved
by each time warping algorithm, for motions containing different types of movement as
identified in Table 5.1

.
Cyclic Non Cyclic Ballistic Lower Body Upper Body

Method µ σ µ σ µ σ µ σ µ σ

Ma 0.103 0.149 0.114 0.157 0.105 0.127 0.108 0.153 0.104 0.147
Mb w10 0.139 0.146 0.134 0.177 0.125 0.124 0.145 0.156 0.133 0.155
Mb w20 0.150 0.161 0.140 0.184 0.137 0.139 0.155 0.169 0.140 0.165
Mb w40 0.187 0.182 0.158 0.196 0.185 0.155 0.191 0.188 0.170 0.184
Mb w80 0.231 0.181 0.195 0.205 0.233 0.147 0.238 0.187 0.211 0.188
Mc w10 0.089 0.144 0.084 0.152 0.112 0.134 0.088 0.147 0.091 0.143
Mc w20 0.225 0.184 0.189 0.186 0.270 0.136 0.228 0.186 0.202 0.180
Mc w40 0.297 0.157 0.249 0.182 0.270 0.122 0.304 0.159 0.262 0.167
Mc w80 0.172 0.172 0.225 0.185 0.107 0.093 0.207 0.176 0.186 0.177
DTW 0.356 0.137 0.320 0.152 0.348 0.098 0.373 0.122 0.329 0.141

normalised and expressed as a percentage of the overall motion length. The closer

the median of each sample group is to zero, the better the algorithm has performed.

Again, as expected Method A (Ma) is consistently one of the worst performing meth-

ods, setting a lower benchmark of a 33.3% error, in the average absolute deviation

test, to compare other methods against.

As with the alignment results, the performance of Method B in all the accuracy

tests improved consistently as the window size increased, with increasingly larger

improvements in performance as the window sizes increased. The performance of

Method B in the average absolute deviation tests improved by: 1.6% between Mb

w10 and Mb w20 ; 11.5% between Mb w20 and Mb w40 ; and 52.5% between Mb

w40 and Mb w80.

Method C has also produced some interesting results for the accuracy tests, as it

did with the alignment tests. Each of the accuracy tests show Method C working at

its most optimal when configured with a window size 40, with a median 4.1% error

in the average absolute deviation test. The results of the average deviation tests in

Table 5.8b, both show the alignment maps in Method C falling behind the optimal

alignment, by 18.4% and 18.2% with a window size of 10 and 20 respectively, but

being ahead of the optimal alignment by 25.1% when a window size of 80 is used.
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Figure 5.9: Absolute deviation from the standard DTW alignment in frames. The blue line
represents the threshold at which timing errors in character interactions can be perceived
(Hoyet, McDonnell and O’Sullivan, 2012).

This gives an indication of how the different windows sizes in Method C are effecting

the performance of the algorithm.

Each of the tests have outliers with deviations of more then 100%. This is possible

when the input motion being aligned is longer than the target motion.

To understand how the accuracy of a time warp relates to human perception, the av-

erage threshold for viewers being able to perceive timing errors of 150ms, established

by Hoyet, McDonnell and O’Sullivan (2012), was used. As the data-set used in this

study was recorded at 120Hz, the number of motion frames that 150ms represents

was determined to be 18 using 150/(1000/f) where f is the sample frequency. The

deviation from the standard DTW alignment shown in Figure 5.8b is normalised,

so does not allow direct comparison to the 150ms threshold. Figure 5.9 shows the

deviation in frames for the a more direct comparison. A blue line has been added to

represent the 150ms perception threshold, so performance of the algorithms can be

compared against this. The only algorithm with a median below this was Mc w40

with a median error of 13 frames, although Mb w80 does come close with a median

error of 21 frames.
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5.4.5 Computational Performance

An on-line time-warping algorithm must be able to process frames faster than the

rate they are being sampled to avoid dropping frames. Table 5.4 shows the average

time each algorithm took to process a single frame in microseconds (µs). The al-

gorithms were ran on a single processing core, with the processor running between

3.58GHz and 3.95GHz during the time warp. Given a sample rate of 120Hz, a

process time significantly less than (1 x 106)/120 or 8333µs is required.

Table 5.4: The average time each algorithm takes to process a single frame of motion data
in microseconds.

Window Size (w)
10 20 40 80

Method B 856µs 1654µs 4806µs 16945µs
Method C 782µs 1583µs 4764µs 10106µs

The results show that a window size of 80 would not be feasible for use with a sample

rate of 120Hz. The quadratic relationship between windows size and processing time,

that is characteristic of DTW, can be clearly seen in these results. The lower than

expected processing time of Method C with a window size of 80 (Mc w80 ), is an

anomaly, due to the algorithm running out of input frames to match to, early in

the alignment process, therefore requiring any attempt to align to the remaining

target frames to be skipped. Ignoring the anomaly of Mc w80, although Method C

is slightly more computationally efficient than Method B, as it does not need to plot

an alignment path, the reduction in computation time is insignificant, only reducing

it by 74µs, 71µs, and 42µs for window sizes 10, 20, and 40 respectively.

Potential adaptations could be made to the processing of cost matrices in both

methods to allow larger windows sizes such as 80 frames to be viable options. One

approach would to determine the initial alignment costs of each cell in the cost

matrix in parallel, using a multi threaded process. Another approach would be to

down sample the cost matrix as proposed by (Salvador and Chan, 2004).

While motion performances are typically captured at a sample rate of 120Hz, visu-

alisations do not need to be played back or displayed at that rate. Visualisations
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could be played back at 60fps or 30fps, with little to no impact, potentially allowing

intermittent alignment of capture frames (i.e. aligning every other frame) and inter-

polation of others to reduce the computational load. In fact on-set previsualizations

of virtual characters during visual effects production would need to be time locked

with the capture rate of the camera being used, which would typically be 24fps.

5.4.6 Visualising Aggregated Plots

Figure 5.10 visualises the alignment paths plotted by each time warping algorithm,

by aggregating the paths plotted for each sample into a single heat-map. This allows

the behaviour of different alignment algorithms to be visualised. The alignment

paths determined using the standard DTW approach have also been plotted for

comparison.

The heat-maps where created by accumulating all the alignment paths M , plotted

by a given time warping algorithm into a single 100 x 100 matrix A100,100, using

equation 5.18 on each alignment point in M of every aligned motion. M t and M i

are the positions of the alignment point in the target and input motions respectively

and n and m are the number of frames in the input and target motion respectively.

The heat-map for Method A shows how the algorithm often sticks on a particular

input frame during alignment. These stuck alignments appear as horizontal lines in

the heat-map. Rather than the alignment paths clustering around a diagonal line

going from (0,0) to (100, 100) as with the DTW alignment, the stuck alignments

of Ma create a hot area under the diagonal. Once stuck, algorithm Ma is rarely

able to continue moving forward through input frames, much less find it’s way back

onto the alignment path. The issue of getting stuck on an input frame also effects

Methods B and C, although to a lesser extent.

Ap,q = Ap,q + 1

where p =
M t

n
100 and q =

M i

m
100

(5.18)
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Figure 5.10: Heat maps visualising the alignment paths plotted by each algorithm. Each
heat-map shows an aggregate of the alignment paths plotted by all 3248 samples in the
data-set for a given time warping algorithm. Every alignment path has been normalised
to a size of 100 by 100, each cell in the heat map shows the number of alignment points
plotted within that cell. An optimal alignment algorithm will cluster alignment paths
around the diagonal as shown with the DTW algorithm. Hot areas under the diagonal
indicate alignment paths incorrectly sticking on frames, while hot areas above the diagonal
indicate alignment paths incorrectly skipping frames.
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The gradual improvement in Method B as the window size increases can also be

seen. As the window size increases, the alignment path is less likely to stick or

remain stuck on an input frame, this can be seen by the slight reduction in the hot

area under the diagonal. The consistently dark area above the diagonal, shows that

this improvement does not result in significantly more alignment paths incorrectly

skipping input frames.

As the window size increased for Method C, the plots visually show the bias moving

from getting stuck on an input frame (hot below the diagonal) to skipping input

frames (hot above the diagonal). While window size 40 is clearly the best of the

window sizes tested, the hot area at the top of plot Mc w40 (at input frame 100),

shows there are a lot of alignments where too many input frames are being skipped,

causing the alignment path to run out of input frames to align to. The spread

of alignment paths on this plot also suggests that this algorithm does not work

consistently across all samples. The hot area above the diagonal within the Mc w80

plot, shows many alignment paths incorrectly skipping frames, corroborating the

results of average absolute deviation tests in Figure 5.8b.

5.4.7 Visualising Individual Alignments

To gain a deeper understanding of the quality of alignment and resulting motions

produced by each time warping algorithm. The individual alignments produced

by different online time warping algorithms, for selected pairs of input and target

motions were plotted and visualised in more detail in Figure 5.11.

Three pairs of motions were selected that demonstrate issues and characteristics

that occur in time warped motions. The top example shows alignments resulting

from time warping a Walk Circle 6 Steps R Start motion, that contains a cyclic

walking motion with movement in both the upper and lower body. The bottom

two examples show alignments resulting from time warping Turn Right motions,

in which the performer turns their whole body in one spot, it contains a non cyclic

motion with most of the movement in the lower body. Neither motions contain a

any ballistic movement.
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Three different forms of visualisation have been produced for each motion pair to

visualise different aspects of the alignments created for them:

1. Alignment Paths: Shows the alignment paths produced by each on-line time

warping algorithm with the offline DTW algorithm included for reference. The

alignment paths are overlaid over a heat map of the accumulated cost matrix

of the pair of motions used in the alignment. The dark blue area of the heat-

map indicates a low cost with minimal difference between the poses input and

target frames, the bright yellow area indicates an area of high cost with a

substantial difference between the input and target frames. The alignment

algorithms’ objective is to plot a path through the dark blue, low cost, areas

of the matrix, to determine the most cost effective alignment.

2. Motion Curves: Plots of the motion data associated with a single joint axis.

The purpose of these is not visualise the entire motion data but to visualise the

alignment of a single joint axis in more detail, which is particularly pertinent

to the motions being aligned.

3. Views: Orthographic renders of characters poses from individual frames

within the motion, from a specified elevation. The elevations plotted are those

most appropriate for displaying the motion being performed.

The colour coding of the different on-line time warping algorithms is same across

all of three visualisation. While the light blue in the alignment paths, denotes the

offline DTW algorithm, the darker blue in the motion curves and views, refers to the

target motion to which the input motion was being aligned to. In both the motion

curves and the view, the bottom three aligned inputs are being compared against

the target motion at the top.

The sample number next to each example is a unique ID that was given to every

pair of motions in the data set. The sample number can be used to look up a

corresponding video of the alignment within a GitHub repository (Randall, 2022b).

In both the views and videos the root translation or rotation of the hips been removed

in some cases, to make it easier to compare the motions. An example of this is the
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Walk Circle 6 Steps R Start where the character turning obscured a clear view

of how well the walk cycle was being aligned.

Incorrectly Sticking on Input Frames

A clear example of an alignment incorrectly sticking on an input frame can be seen

in Figure 5.11, within the alignment produced by the red Mc w20 algorithm in the

top example alignment. The alignment path sticks early in the alignment and then

proceeds horizontally, mapping the same input frame to the remaining frames of

the target motions. The stuck alignment manifests itself as a flat line in the motion

curve, as repetition of the same input frame causes a repetition of the same joint

orientations. The views show the stuck alignment resulting in the aligned motion

freezing early in motion.

Another example of an alignment sticking can be seen with the grey Mb w40 algo-

rithm at the bottom of Figure 5.11. Rather than sticking on a single input frame for

the remainder of the motion, it stick for short periods creating plateaus within the

alignment path. These manifest themselves as flat spots in the motion curve and as

matching poses in frames 132 and 176. The video shows the alignment pausing in

a number of places, including before frame 132, indicating that small stick will not

always show up in the views.

Incorrectly Skipping Input Frames

The top of Figure 5.11 also contains an example of and alignment incorrectly skip-

ping, with algorithm Mc w80. The alignment skips approximately 132 input frames,

between aligning to frames 180 and 182 of the target motion. This causes the aligned

motion to skip and entire walk cycle and run out of input frames to align before

the alignment is completed. In the alignment path there is a sudden vertical step

between frames 180 and 182, as the alignment path crosses a brighter high cost

island in the heat map and to an input frame in the following walk cycle, which

contains a similar pose to the target frame being aligned. The skips also appears

in the respective motion curve which shows only two peaks in the rotation of the

hip, when there should three, one for every two steps in the motion. At frame 180
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Figure 5.11: A detailed presentation of the alignments produced by online time warping algorithms, showing: the alignment paths plotted by
each time warping algorithm, aligned motion curves in comparison to the target motion, and rendered character posed from different elevations.
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there is also a glitch in the motion curve where the rotation in the x axis of the

right hip, suddenly drops and then comes back up. The glitch is caused by a skip

occurring at target frame 180, where 78 frames of the input motion are skipped,

almost the maximum number the window the algorithms window size allows, during

which the value of x axis drops from 22◦ to -11◦. On the following target frame,

181, another 54 input frames are skipped, during which θ rises back to 20◦. When

the alignment runs out of frames towards the end of the motion, a flat line occurs in

the motion curve and the motion freezes as shown in the video and last two poses of

the motion shown in the view. When watching a video of the alignment, the skip in

the alignment is not visible, with the first two walk cycles aligning accurately and

smoothly. It is only when the motion stops prematurely that it is clear something

went wrong.

Jittery Alignments

The plots for Sample number 2897, in the middle of Figure 5.11, show a number

of time warps that have produced good alignments, allowing a comparison of the

alignment achieved by different time warping algorithms, when they have not been

affected by incorrectly skipping or sticking on input frames. While all three algo-

rithms, whose motion curves have been plotted (Mb w80, Mc w20 and Mc w40 ),

have produced a good alignment, the motion curves resulting from algorithms based

on Method C are jittery, while those resulting from Method B are smooth. These

different characteristics between Methods C and B, can also be seen in the bottom

example. Algorithm Mc w40 has produce an accurate alignment that follows the

DTW alignment, but a jittery motion curve, while Mb w40 has produced a less

accurate alignment, but with a smother motion curve.

The cause of the jittery motion curves produced by Method C can be seen in align-

ment paths produce by its respective algorithms, which contain frequent changes in

direction with lots of small vertical cliffs and horizontal plateaus. In comparison the

alignment paths plotted by algorithms based on Method B, contain only a few in-

frequent changes of direction. Despite how pronounced these jitters appear in both

the alignment paths and motion curves, the video of Sample number 2897 shows
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that they are not as pronounced in the playback of the motion, with limited impact

on the fidelity of the motion.

Interestingly, the jittery alignments produced by algorithm Mc w40 do not appear

to overtly impacted the results of the algorithms distortion test in Figure 5.8a. How-

ever, when the improvement in performance from algorithm Mb w80, an algorithm

that produced less accurate alignments without jittery alignment paths, to Mc w40

is compared to across both the alignment and distortion tests in Figure 5.8a, the

impact of the jittery alignments produced by algorithm Mc w40 becomes clearer.

While Mc w40 achieves a 42% improvement over algorithm Mb w80 in the alignment

test, it only achieves a 4% improvement over algorithm Mb w80 in the distortion

test.

Impact of Window Size

In comparison to algorithms based on Method B, the performance and behaviour

of algorithms base on Method C varies more significantly between different window

sizes. This can be seen in both the aggregate plots in Section 5.4.6 and the alignment

paths in Figure 5.11. There is a clear divergence between the alignment paths

plotted by algorithms based on Method C, with algorithms using smaller windows

consistently sticking on input frames incorrectly, and those using larger windows

sizes having a tendency to skip frames. In contrast the algorithms based on Method

B often followed similar and often almost identical paths.

5.5 Discussion

5.5.1 Impact of Sample Rate on Window Size

The choice of window size has a considerable impact on how both Methods B and C

perform, however, the results showed a clear peak in performance for Method C at

window size 40 dropping significantly with a larger window size of 80. The purpose

of this section is to determine if the optimal window size for Method C relates to

frequencies of reoccurring cycles within movement of the motions being aligned.
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The occurrence periodic cycles, such a walk cycles, in motion data was discussed

in Section 5.3.3, when considering which size of forecasting windows to test within

this study. In that section, it was anticipated that a window size with a duration of

more than half a walk cycle (73 frames) would not be optimal. The more constrained

approach of Method B, which has to plot an alignment path through the forecast

window, appears to prevent this issue form occurring, maintain performance im-

provements at larger window sizes, with Mb w80 performing the best of the Method

B algorithms tested. However, with its less constrained approach, this issue did

occur with Method C, with a significant drop in performance between algorithms

Mc w40 and Mc w80.

Any potential relationship between the frequency of movement cycles and the opti-

mal window size, will also have implications on the relationship between the sample

frequency at which motions are recorded and the optimal window size. To explore

this, the data-set was down sampled to 60Hz, effectively halving the number of

frames over which any motion cycles occurred within the data-set. Method C was

applied to this data-set using the same previously used set of windows sizes. The

performance of these algorithms on the down sampled data-set can be seen in Figure

5.12.

Figure 5.12: Performance results for Method C when applied to motions sampled at 60Hz.

As anticipated the optimal window size has shifted downwards, along with the sam-

ple rate, from 40 to 20. Both the alignment and accuracy test results show the same

characteristics as the test results from the data-set samples at 120Hz, but shifted

down a window size. The window size of 80 now represents more than an entire

motion cycle and perform worse in the absolute deviation accuracy test than the
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Ma algorithm.

5.5.2 Joint Weighting

Within this study, a subset of joints considered most pertinent to everyday motions

was used, consisting of both left and right: shoulders, elbows, hips and knees. Each

of these joints were equally weighted when calculating the similarity of two motions

or calculating the cost or distance between the character poses of two given frames

within the alignment algorithm. The joints were equally weighted regardless of

which joints might be most pertinent to a particular movement, for example upper

body joints were not given more weighting in motions that make particular use of

those joints.

Although there is no knowledge of the incoming target motion, an analysis of the pre-

recorded input motion could be performed to automatically determine the optimal

weighting of each joint. Patrona et al. (2018) proposes an approach to automati-

cally weighting joints based on the amount each joint moves from a given neutral

position. Although implementing automatic joint weighting is outside of the scope

of this study, it could potentially further optimise the performance of an online time

warping algorithm.

Another approach to joint weighing is the use of dimensional reduction techniques

such as PCA analysis. Johnson (2003) proposes a technique for representing the

orientations of all the joints of a character in single multidimensional PCA space.

The aim was to reduce the amount of data required to store a character’s pose by

storing only the eiganvectors within the PCA space with the largest eiganvalue, as

these are the principle components of the pose. This same approach could be used

as a pseudo automated joint weighting approach by basing the distance calculations

on the principle eigenvectors in PCA space. This approach may also reduce compu-

tation time, however, a distance metric based on distance in PCA space could have

implications on accuracy which would need to be explored.
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5.5.3 Jittery Alignments

In section 5.4.7, it was found that time warping algorithms based on Method C

produced jittery alignments, with frequent changes of direction in the alignment

paths and jagged motion curves containing lots of small cliffs and plateaus. This is

in contrast to the smother alignments produced by time warping algorithms based

on Method B.

There is a need establish if the jitter in the Method C alignments is perceptible

or acceptable. To support this a method a measuring the magnitude of jitter is

required, along with human perception tests to establish that magnitude of jitter

which is perceptible or acceptable for a given task.

The magnitude of the jitter could be objectively evaluated by measuring the size of

the cliffs and plateaus in the alignment paths, an approach that is quite specific to

the style of jitter that Method C produces. Alternatively a more general approach

would be to apply a smoothing algorithm to the alignment path, then used SNR to

evaluate the difference between the smoothed and none-smoothed alignment paths.

It is important to consider that any testing of what is an acceptable magnitude of

jitter, would be dependent on the task being performed. For example, certain tasks

such as real-time transfer of motion styles, maybe a lot more sensitive to jittery

alignments than visualisations motion at low frame rates.

5.5.4 Optimizing Alignment Accuracy

Constraints

Time warping techniques such as DTW are often implemented with constraints.

However, as the aim of this study was to measure the raw performance of each

method, no constraints have been applied to any of the methods used in this study,

beyond the number of input frames in the search window.

Constraints have the potential to reduce the problem of algorithms skipping too

many input frames or sticking on an input frame. Rabiner and Juang (1993) propose

a local inter-frame constraint method, in which the options available for an alignment
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path to take on a given frame are dependent on the path taken in the previous

frames. For example, if the last two target frames have been mapped to the same

input frame, then the next target frame cannot by mapped to the same input frame,

therefore preventing the alignment path from sticking on the same input frame for

too many consecutive frames.

Smoothing the Motion Data

A number of techniques could be explored to potentially improve the accuracy of

the alignment paths determined by the on-line time warping algorithms tested in

this study.

Noise and jitter are by-products of the inaccuracies of motion capture process, result-

ing in small frequent errors occurring in the motion capture data. For this reason

it is often desirable to apply a smoothing filter to remove noise from the motion

data, although no smoothing filters were applied to the motions used in this study.

Smoothing could reduce the potential for an error in the motion capture data to

cause an error in the alignment. Although Figure 5.4 shows using two consecutive

frames, is the most accurate approach to using dead reckoning to predict target

frames, using more frames could potentially smooth out errors in the target motion.

Another approach is to use a low pass filter, suhc as a Butterworth filter which

is commonly used on motion data. Yu et al. (1999) used regression techniques to

determine Equation 5.19 which provides the optimal cut off frequency fc to use

when applying a Butterworth filter to data sample at frequency fs. In the case of

the data-set used in this study which was sampled at 120Hz, this gives an optimal

cut off frequency of 8.088Hz.

fc = 0.071fs − 0.00003fs
2 (5.19)

Pre-Analysis of Motion

While the target motion is unknown, the pre-recorded input motion could still be

analysed before the alignment process to optimise the configuration of the alignment
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algorithm. For example an analysis of movement frequencies within the motion

would allow a more optimal window size to be chosen.

Blended Approaches

There is an interesting contrast between the characteristics of Methods B and C.

Method B is more likely to incorrectly stick on an input frame, while Method C is

more likely to incorrectly skip input frames. Selecting an input frame based on a

weighted blend of the input frames selected by the each of the two methods may

be an optimal approach. This approach would be computationally more expensive,

but they would both make use of the same initial cost matrix, which is the most

computationally expensive part of the process, and the subsequent calculations of the

accumulated cost matrix for each method could be performed on different processing

threads.

Algorithms could be blending or switched automatically in response to detecting

frame sticking or skipping in the time warp. For example switching from a Method

B algorithm to a Method C algorithm when frame sticking is detected.

5.5.5 Optimizing Computational Performance

The algorithms in this study were all ran as a single threaded operation. There is

significant potential to use a multi-threaded approach to reduce the time required

to process each frame of motion. A significant amount of the processing time is

spent calculating the initial cost matrix, for which the processing time increases

quadratically, not linearly, as the window size increases. The cost matrix, however,

easily lends itself to multi-threading, each cell of the matrix can be calculated inde-

pendently. Unfortunately this is not the case when calculating the accumulated cost

matrix or plotting a path through the accumulated cost matrix, as a programmatic

approach is taken in which each step is dependent on the previous step.

A common optimisation applied to DTW is to avoid calculating the entire cost

matrix and ignore the area around extreme corners of (0,m) and (n, 0) of the matrix

which an alignment path rarely needs to go through. Sakoe and Chiba (1978) and
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Rabiner and Juang (1993) both propose different approaches for determining the

area of the cost matrix to be calculated, which are discussed in more detail in the

next chapter, however the aggregate paths plotted by the DTW algorithm in Figure

5.10 clearly indicate which areas need to be calculated. The dark blue areas around

(0, 100) and (100, 0) are not used by any of the alignment paths so do not need

to be calculated, however, the area which all the paths are plotted thorough going

diagonally across the center of the matrix, does need to be calculated.

5.5.6 Frame Dropping

Although this is a study into on-line time warping algorithms, a deliberate decision

was made not to consider dropped frames when testing the algorithms, to ensure

the tests were consistent.

In the case of this study dropped frames occur when the algorithm takes longer to

process a single frame than the time available between incoming target frames. A

sample rate of 120Hz allows 8.333ms between frames, to process each frame.

When the frames are dropped there is still a requirement to map the dropped target

frame to a frame in the in the input motion. The path plotting approach of method

B provides a graceful way of dealing with this. Any dropped target frames can be

appended in front of the current incoming and predicted target frames, resulting

in the alignment path also being plotted through the dropped frames, selecting

appropriate input frames for them.

As Method C does not plot a path through the accumulated cost matrix, the options

for dealing with dropped frames are more clumsy. The input frame to which the

dropped frame is mapped to could be interpolated based on the input frame the

current incoming target frame was matched to. Another approach is to again append

the dropped frames to the front of the target frames, then use the first n columns

of an accumulated cost matrix to select input frames for n dropped frames.
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5.5.7 Performance Tests

Most of the performance tests used in this study produced useful and contrasting

views of the performance of the online alignment algorithms. Some tests, however,

did establish themselves to be more useful than others. The core performance tests

that should be used in this type of study are the alignment and the average differ-

ence and absolute average difference accuracy tests. The alignment tests provide a

fundamental measure of the quality of the alignment solution provided by each al-

gorithm, while the two accuracy tests help to develop insight into how the algorithm

behaves. The average difference test was particularly useful showing the bias each

algorithm has towards skipping input frames or sticking on input frames.

The distortion and maximum deviation tests didn’t appear to inform the findings of

this study as much as other tests. Although the distortion test largely corroborated

the results of the alignment tests and provided little additional insight themselves,

it is useful to have a secondary test method to confirm the results of the alignment

test. The maximum deviation test felt unnecessary and provided little information

beyond what was provided by the average difference test.

5.6 Conclusions

In this chapter two novel approaches to on-line time warping of human motion,

methods B and C, were tested and compared to offline DTW and UTW approaches

and a naive on-line approach, Method A, using a variety of performance tests.

The results of all the performance tests showed Method C with a window size of

40 to be the best performing algorithm, when working with motions captured at

120Hz. The window size needs to be appropriately adjusted, when working with

motion capture data sampled at different frequencies, for example a window size of 20

should be used with a sample rate of 60Hz. Despite concerns about how consistently

the Mc w40 algorithm would perform across motions containing different types of

movement, Table 5.3 showed it was the best performing online algorithm regardless

of the types of movement contained in the algorithm.
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Mc w40 was the only algorithm in which the majority of the alignments produced

were close enough to the alignments produced using standard DTW that the differ-

ence would not be humanly perceptible. It was also the only algorithm to perform

better than UTW. As the only algorithm to pass these two thresholds it is the only

one that could be recommended for use in real world applications.

As expected the naive approach, Method A, performed worst, with alignments often

sticking on input frames.

Method B has the potential to perform well, but needs large search windows (size 80)

to work well, creating significant computational work for real-time applications as

shown in Table 5.4. At lower size search windows, Method B would often incorrectly

stick on an input frame and did not cope well with delays to the start of the target

motion.

Method C performed best and showed optimal performance at smaller window sizes

(40), making it ideal for real-time applications. On average the algorithm was shown

to perform better than an offline UTW alignment, and able to align to within 150ms

of the gold standard offline DTW solution. This demonstrates that the algorithm

can produce high quality alignments required for real-world applications.

A relationship was established between the optimal window size for Method C, the

sample rate used to record the motion, and the frequency of cyclic movements within

the motion. For the data-set used in this study, which contained a variety of cyclic

and non-cyclic motions with walking making up the predominant cyclic movement,

window sizes of 40 and 20 were found to be the optimal size to use with sample rates

of 120Hz and 60Hz respectively. In each case the duration of the window equates to

333ms, suggesting that Method C would struggle to handle misalignment’s greater

than this.

A number of ideas have been presented for further optimising the algorithm, the

most promising and established of which is applying constraints to the alignment

path being plotted and penalties for warping a motion (i.e skipping or sticking on an

input frame). These approaches will be implemented and tested in the next chapter.
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Chapter 6

Constraints and Penalties

6.1 Introduction

A number of different time warping algorithms were implemented within the study

presented in Chapter 5 and their performance evaluated. The algorithms in the

study were implemented without the incorporation of any optimisation techniques,

to allow a direct comparison. Within the study, one algorithm performed well enough

to be used for real world applications. However, the algorithm appeared to be

sensitive to ordinary errors in the motion data, such as starting points of the motion

being misaligned or lack of joint weightings to reflect the joints which are most

pertinent to a particular motion. There is, therefore, a need to explore some of the

optimisation techniques outlined within the discussion in the previous chapter.

The motivation of the study in this chapter is to:

1. Further optimise the accuracy of the best performing algorithm.

2. Determine if the performance of other algorithms can be improved to a point

where they could also be considered for use in real world applications. To

support this motivation, it is necessary to test the impact of optimisation

techniques on a selection of the time warping algorithms presented in the

previous chapter, not just the best performing one.
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There are three established techniques for optimising time warping algorithms: con-

straints, penalties and weighted joints. This study will focus on constraints and

penalties, as these target the issues identified in the previous chapter, and there

is more potential for the different algorithms to respond quite differently to these

techniques.

In this chapter, established approaches to implementing constraints and penalties

are adapted to fit characteristics and requirements of plotting an alignment forward

in real-time. To support this, in contrast to previous work, penalties will be imple-

mented to constrain alignment paths and sets of constraints paths will start at a

single point, rather than converge at a single point. Additionally an approach to im-

plementing constraints using a ‘constraint state table’ is proposed, as a generalised

approach to maintaining the continuity of constraints, when sequentially aligning

frames.

The performance of different on-line time warping algorithms, with either constraints

or penalties incorporated, will be tested using the same techniques and data-set used

in the previous chapter. This will allow:

1. A direct comparison of the algorithms’ performance, with and without these

optimisation techniques applied.

2. An independent evaluation of the impact of each technique.

6.2 Background

6.2.1 Constraints

In addition to the monotonic and boundary constraints, which a time warping algo-

rithm must satisfy, additional constraints can also be imposed to reduce the number

of possible alignment paths that can be plotted. Two commonly used additional

constraints are:

• Global path constraints, which define the areas of the cost matrix that an
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alignment path must stay within, and are used to reduce computational re-

quirements of the time warp.

• Local continuity constraints, which define the local step sequences allowed

with an alignment path, and prevent a time series or motion from being overly

distorted by excessive expansion or compression.

Global Path Constraints

Two established approaches to defining global path constraints are the Sakoe-Chuba

Band (Sakoe and Chiba, 1978) and the Itakura Parallelogram (Itakura, 1975), shown

in Figure 3.3. By constraining the area of the cost matrix within which an alignment

path is searched, they reduce the computation required to solve a time warp from

being a quadratic function of the length of the motions to towards a linear function.

The boundaries of both global path constraints are defined using slope equations

as seen in Figure 6.1. The Sakoe-Chuba band constraint can be simplified to the

condition defined in Equation 6.1. For a point to be within Itakura Parallelogram it

must satisfy the conditions in both Equations 6.2 and 6.3, where q determines the

size of the parallelogram.

|y − x| ≤ r (6.1)

x− 1

q
+ 1 ≤ y ≤ x−m

q
+ n (6.2)

q(x−m) + n ≤ y ≤ q(x− 1) + 1 (6.3)

Local Continuity Constraints

It is important for temporal alignment to be achieved without excessively distorting

the motion, resulting in an unnatural looking motion, or excessive skipping of input
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Figure 6.1: Equations for defining slopes to determine the boundaries of global path con-
straints. Sakoe-Chuba Band (left) and the Itakura Parallelogram (right). In the example
Itakura Parallelogram on the right q = 2.

frames resulting in loss of information. Local continuity constraints can be incorpo-

rated to restrict the alignment paths that can be plotted to a set number of steps

(Rabiner and Juang, 1993). A variety of different rules can be used to express local

continuity constraints, such as the constraints proposed by Sakoe and Chiba (1978)

in Equations 6.4 and 6.5.

xk+1 − xk ≤ 1 (6.4)

yk+1 − yk ≤ 1 (6.5)

Myers, Rabiner and Rosenberg (1980) proposed a notation system that allowed

a wide variety of local continuity constraints to be defined more conveniently, in

terms of incremental paths. In Table 6.1, different constraints are defined in terms

of a number of allowable incremental paths {P1...Pt}, where each path specifies

a sequence of moves. When incorporated into a time warping algorithm, a time

alignment must be satisfied using only paths specified within the constraint. Note

that the Type I constraint in Table 6.1 replicates the condition specified in Equations
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Table 6.1: Types of local constraints, expressed as sets of allowable paths {P1...Pt}

Type Allowable Paths Path Specifications

I

P2

P1

P3

P1 → (1, 0)
P2 → (1, 1)
P3 → (0, 1)

II

P1 P2

P3

P1 → (1, 1)(1, 0)
P2 → (1, 1)
P3 → (1, 1)(0, 1)

III

P1 P2

P3

P1 → (2, 1)
P2 → (1, 1)
P3 → (1, 2)

IV

P1

P2

P3

P4

P1 → (1, 1)(1, 0)
P2 → (1, 2)(1, 0)
P3 → (1, 1)
P4 → (1, 2)

V

P1 P2 P3

P4

P5

P1 → (1, 1)(1, 0)(1, 0)
P2 → (1, 1)(1, 0)
P3 → (1, 1)
P4 → (1, 1)(0, 1)
P5 → (1, 1)(0, 1)(0, 1)

VI

P1

P2

P3

P1 → (1, 1)(1, 1)(1, 0)
P2 → (1, 1)
P3 → (1, 1)(1, 1)(0, 1)

VII

P7

P8

P9

P4

P5

P6

P1

P2

P3

P1 → (1, 1)(1, 0)(1, 0) P6 → (1, 3)(1, 0)
P2 → (1, 2)(1, 0)(1, 0) P7 → (1, 1)
P3 → (1, 3)(1, 0)(1, 0) P8 → (1, 2)
P4 → (1, 1)(1, 0) P9 → (1, 3)
P5 → (1, 2)(1, 0)
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6.4 and 6.5.

The implementation of a local constraint also implies a global constraint, as the

allowable incremental paths in set P , can only reach certain areas within the matrix.

The reachable area of a constraint can be modelled as an Itakura Parallelogram,

using Equation 6.6 to determine the q value from a given set of paths P (Rabiner and

Juang, 1993). If path P is made up of points {P1...Pn}, each containing coordinates

(i, j), then l(P ) is the function applied to each path in which the sum of the j

co-ordinates in a path is divided by the sum of the i coordinates. The q value for a

constraint is determined by the path P which returns the largest value from the l(P )

function. Table 6.2 shows the q value for each of the different type of constraint.

q = max l(P )

{∑Pt

k=1 Pk,i∑Pt

k=1 Pk,j

}
(6.6)

Table 6.2: The q values for different types of constraint. The local constraints result
in a search area resembling an Itakura Parallelogram, the smaller the q value the more
constrained the alignment and the smaller the search area.

Constraint Type q Value

I ∞

II 2

III 2

IV 2

V 3

VI 1.5

VII 3

The impact of various motions on the performance of different constraint types

cannot be easily analysed, therefore, the impact of constraint types needs to be

explored experimentally.

Macrae and Dixon (2010) tested the impact of each type of constraint on the align-

ment accuracy of an application that aligned musical scores, using a novel windowed

time warping approach. The tests found that the Type V constraint performed the
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best across a range of window sizes, therefore this was chosen as the local constraint

method to implement within this study.

6.2.2 Penalties

Penalties are often incorporated into time warping algorithms to mitigate against

biases or some undesirable characteristic within the time warping algorithm or the

data being aligned. The two main categories of penalties are:

• Feature based penalties, which penalise or weight alignment paths based on

features in the data being aligned.

• Path based penalties, which penalise an alignment path, based on the route it

is taking through the cost matrix.

Feature Based Penalties

Feature based penalties are effective for dealing with features and trends in the data

being aligned, that can effect the performance of a time warping algorithm. These

issues typically stem from the distance based metric used to measure the cost or

similarity of points m and n in the input and reference data respectively.

Jeong, Jeong and Omitaomu (2011) proposed a time warping algorithm called

WDTW (Weighted Dynamic Time Warping), which applied an additional weighting

to the standard distance metric used in DTW, based on how far apart the phases

of the two points are. Points that are closely in phase had a small penalty applied,

while points which were more out of phase had a higher penalty applied. The mo-

tivation for this approach was to reduce alignment errors in cyclic data, preventing

alignment from getting confused by points before and after a peak or trough in the

signal, which would be very similar distances apart.

Another approach is to preprocess data before the time warp, typically to normalise

a feature in the data which may effect or bias a time warping algorithm. This

approach has been used to automatically weight joints which are more pertinent to

a gesture or movement being aligned (Arici et al., 2014; Celebi et al., 2013). The
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contribution of each joint to a gesture is quantified based on the total movement

of joints in an example motion. Choi, Cho and Kim (2015) extended this with an

approach that dynamically weights the contribution of joints over time, to reflect

the importance of different joints to a motion or gesture at different points in time.

Path Base Penalties

When using time warping to recognise, match or classify a motion, DTW has a

bias towards matches with the shortest path, resulting in the shorter motions being

matched to a query motion. To tackle this problem, approaches have been proposed

to normalise for different path lengths. Hülsmann et al. (2017) and Muscariello,

Gravier and Bimbot (2009) proposed a local normalisation approach in which the

lengths of the paths used to determine the values in the accumulated cost matrix

D, are stored in a separate matrix L. Alignment paths are then plotted through the

matrix based on a weighted value D(m,n)/L(m,n).

Tormene et al. (2009) proposed a global normalisation approach based on the length

of the alignment path. This was to facilitate open ended time warps, such as OE-

DTW, that allow an entire input (or query) sequence to be aligned to part of a

reference sequence. As this approach removes the boundary constraint that exists

in standard DTW, which forces the alignment path to end at (m,n), a normalisation

approach was required to stop the warping algorithm from always picking shorter

alignment paths, which prefers to match an input to fewer frames in the reference

motion.

Anguera and Ferrarons (2013) compared both local and global approaches to nor-

malising alignment paths, to align speech within a speech detection algorithm. Al-

though not conclusive it found that local normalization of path lengths performed

better for that use case.

Sakoe and Chiba (1978) and Dixon (2005) both suggest penalizing one to one steps

in the alignment path (i.e. steps which move one frame in both input and target

sequence), by using a weighting of two for this step. The function for determining

the accumulated cost matrix D can be adapted to accommodate this using Equation
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6.7.

D(m,n) = min


D(m,n− 1) + C(m,n)

D(m− 1, n) + C(m,n)

D(m− 1, n− 1) + 2C(m,n)

 (6.7)

6.3 Constraints Methodology

6.3.1 Adapting Constraints to Support Forward Plotting

As discussed previously there are a variety of continuity constraints that can be

applied to a time warp, of which the Type V constraint has been shown to be an

optimal choice for real-time scenarios (Macrae and Dixon, 2010). These established

constraint types, however, are designed for use when plotting an alignment back-

wards and need to be adapted to support forwards plotting.

A Type V constraint, as shown on the left of Figure 6.2, is implemented by deter-

mining which which alignment point out of {P1....P5} has the least cost, then adding

the corresponding steps to the front of the alignment path, this process is repeated,

plotting the alignment path backwards until the start of both motions is reached. To

implementing the constraint within an on-line forwards plotting time warp, adap-

tations need to be made to accommodate the following issues: i) alignment points

need to be chosen from predicted points in the future, rather than points in the past;

ii) only one input frame can be mapped to each target frame; iii) the frame by frame

nature of forward plotting, in many cases, means the optimal choice of alignment

point (out of {P1....P5}) cannot be chosen in a single step, but instead needs to be

determined over a number of frames.

To support forward plotting and allow alignment points to be picked from predicted

points in the future, the paths allowed by the constraint must be inverted. Figure

6.2 shows how the paths of Type V constraint were inverted. The order of steps

associated with each spot have been reversed, but the steps themselves remain the

same.
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P1 P2 P3

P4

P5

P1 (1, 1)(1, 0)(1, 0)
P2 (1, 1)(1, 0)
P3 (1, 1)
P4 (1, 1)(0, 1)
P5 (1, 1)(0, 1)(0, 1)

P1P2P3

P4

P5 P1 (1, 0)(1, 0)(1, 1)
P2 (1, 0)(1, 1)
P3 (1, 1)
P4 (0, 1)(1, 1)
P5 (0, 1)(0, 1)(1, 1)

Type V Adapted Type V for forward plotting

Figure 6.2: Two continuity constraints. On the left is a Type V continuity constraint used
when plotting an alignment backwards backwards. On the right is an adapted version of
the Type V constraint for plotting an alignment path forwards.

As only one input frame can be mapped to a target frame the constraint steps have

to be further adapted as shown in the left of figure 6.3, with points P5 and P4 reached

in one step. Note that the new incoming target frame automatically forces a step

forward in the target motion sequence.

P1P2P3

P4

P5

Target Frames

In
p

u
t 

Fr
am

e
s

A

3

2

1

0

B

1

0

C

1

Figure 6.3: The constraint steps used to implement the adapted Type V constraint. The
coloured arrows show how each end position in the constraint can be reached.

Unlike points {P3, P4, P5}, points P1 and P2 cannot be reached within a single new

target frame. In these cases an alignment point cannot be chosen in a single step,

so additional constraints will need to be applied to the proceeding step to maintain

the constraint. The wider implication is that at any given point in the alignment,

the steps available (i.e. input frames which can be mapped to) are dependent on

steps performed in the preceding frames. For example if the two proceeding steps

were both (1,0) (i.e. repeat the same input frame) then the only step possible is

(1,1) (step forward 1 input frame).
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A novel approach called a constraint state table was implemented, to manage the

constraint and maintain its continuity between target frames. The adapted Type V

constraint was represented using 3 states (A, B and C) as shown in the right of Figure

6.3. Each state determines which input frames from IMn+k
where k ∈ {0..3} can be

mapped to the current target frame Tn+1. The alignment starts with the constraint

in state A, with the current constraint state and selected input frame determining

the what state the constraint will be in when processing the next target frame. The

coloured arrows in Figure 6.3 show how each end position in the constraint can be

reached by stepping through constraint states. Whenever an end position is reached

the constraint is set back to state A. The following steps provide an example of

constraint states in operation:

1. A time warp begins with the constraint in state A. The time warping algorithm

can select to move the alignment of the input motion forward by any number

of frames specified in state A, i.e. frames {0, 1, 2, 3}.

2. The time warp algorithm elects to move the input motion alignment forward

zero frames, causing the incoming target frame to mapped to the same input

frame as the previous target frame, and the constraint to be set to state B. The

time warping algorithm can now only move the alignment of the input motion

forward by the number of frames specified in state B, i.e. frames {0, 1}.

3. For the next target frame the time warping algorithm again elects move the in-

put motion alignment forward zero frames, causing the incoming target frame

to mapped once again to the same input frame as the previous target frame.

This time the constraint moves to state C which only allows the alignment of

the input motion to be moved forward one frame.

4. For the next target frame the time warping algorithm skips any attempt to

evaluate alignment options, as it is forced to move the input motion alignment

forward one frame. Now the local alignment has reached end point P1 in the

constraint, as shown in Figure 6.3, therefore the constraint resets back to state

A.
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These states can easily be expressed as a table, as shown in Table 6.3, expressing

the constraint logic in a generalised manner that is flexible enough to express other

constraint types.

Table 6.3: Constraint state table for the adapted Type V constraint.

States
A B C

3 A
2 A
1 A A A
0 B C

This approach to adapting local continuity constraints to forward plotting in real-

time, does come with a compromise. When implemented in the standard manner, the

accumulated cost of each path allowed by the constraint cannot be fully evaluated.

The adapted constraints only allows the next step in the path to be evaluated. Using

the Type V constraint as an example. If an alignment is in state A, the accumulated

cost for paths {P3, P4, P5} can be fully evaluated, but only the next step towards

paths {P1, P2} can be considered, as there is no knowledge of the frames these paths

go through, as these are outside of the known part of the incoming target motion.

6.3.2 Implementing Constraints

The constraint state table, shown in Table 6.3, was used to implement the adapted

Type V constraint within each of the three on-line warping approaches tested in

previous chapter, methods A, B and C. For each method the following segments of

code were used to implement the constraint:

1. At the start of the alignment the constraint state is set to A.

2. Before processing each frame the constraint table is checked. If the current

constraint state has only one possible choice of input frame (i.e. state C),

the entire process of determining the optimal input frame is skipped, and the

target frame is mapped to the input frame corresponding to the only option

available.

3. If the current constraint state provides a selection of input frames to choose

207



from, the process for determining the optimal input frame is constrained to

chose only from that selection. This element was implemented differently for

each method to conform to the approach being used to select the next step in

the alignment path, within that method.

4. After processing each frame, the constraint state is set to S(s, k), where S is

the constraint table, s is the current constrain state and k defines the input

frame selected for alignment to the current target frame using IMn+k
.

For all methods the distance or cost between the incoming target frame and input

frames not allowed by the constraint are set to a very high value of 10,000, forcing

the input selection algorithm to not pick them. In methods A and C this step

is performed just before the input frame with the minimum cost selected. For

method B this step is done between calculating the cost matrix and accumulated cost

matrix. By setting corresponding cells within the cost matrix to very high values,

the alignment path plotted within the forecast window is forced to go through a

frame allowed by the constraint. A backup step was added to method B to catch

alignment plots that still go through an input frame not allowed by the constraint,

if this is the case, the input frame allowed by the constraint which is closest to the

alignment point selected by method B is chosen.

Which input frames an alignment point is allowed or not allowed to be placed at,

is dependent on the frames allowed by the current constraint state, as specified in

the constraint table. Input frames beyond the dimensions of the constraint table or

with null values, are considered outside of the constraint and not allowed.

6.4 Results of Type V Constraint

6.4.1 Test Implementation and Interpreting Results

A Type V constraint was implemented with each of the online time warping meth-

ods (A, B and C), from chapter 5. The data-set of motions and performance tests,

established in the same chapter, were used to test and measure the impact of the
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Type V constraint on the performance of each method when aligning humans mo-

tions, allowing a direct comparison of the performance of each method before and

after the constraint was applied.

The results of the alignment, distortion (Figure 6.4) and accuracy test (Figure 6.5)

have been presented and labeled using the same conventions as the previous chapter.

To aid comparison, each algorithm’s performance with and without the Type V

constraint applied are presented side by side and colour coded.

6.4.2 Alignment and Distortion Results

The impact of the Type V constraint can be seen in Figure 6.4, which shows the

results of the alignment and distortion test on each algorithm, with and without

the constraint applied. The addition of the constraint improved the performance of

most algorithms at aligning motions and reduced the distortion of all algorithms.

While the algorithms using Methods A and B were all improved by the constraint,

it attained less consistent results when applied to algorithms using method C. The

only algorithm using Method C that was improved by the constraint, had the largest

window size (80 frames). The improvement of the Mc W80 + Type V algorithm

over Mc w80, was significantly more substantial, with a increase of 0.149 in the me-

dian alignment test result, than that attained for algorithms using Method B, which

achieved an average increase of 0.029 in the median of the alignment test results.

In addition to Mc w80 the alignment performance of algorithm Ma was also signif-

icantly improved by the constraint, with a 0.181 increase in the median alignment

test result. The implementation of constraints raised the alignment performance of

both the Ma and Mc w80 algorithms above the performance threshold set by UTW.

Table 6.4 presents a different view of the alignment results, breaking down the

performance of each algorithm, based on the types of movement contained in the

motion. The cells in green indicates a higher mean (µ) or standard deviation (σ)

than that of the same algorithm and movement type without the constraint applied,

while red indicates it is lower. An algorithm improved by the constraint should

exhibit a higher mean alignment score, to indicate better performance, and a lower
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Figure 6.4: The alignment and distortion performance tests results for different time warp-
ing algorithms, with and without the Type V constraint applied. In both tests the higher
the result the better. The blue line represents the alignment and distortion achieved by
the standard offline DTW algorithm, and the red line represents the alignment achieved
using UTW with no alignment. Ma, Mb and Mc refer to methods A, B and C respectively,
while w specifies the window size used.
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standard deviation to indicate a more consistent performance.

Table 6.4: The means and standard deviations of the alignment test scores achieved with
the Type V constraint applied to each algorithm, for motions containing different types of
movement. Green and red values indicate higher or lower values respectively, than those
of the same algorithm and motion type without a constraint applied. The higher values in
green indicate an improvement in performance.

Cyclic Non Cyclic Ballistic Lower Body Upper Body
Method µ σ µ σ µ σ µ σ µ σ

Ma + Type V 0.263 0.177 0.226 0.192 0.250 0.148 0.269 0.179 0.237 0.178
Mb w10 + Type V 0.167 0.154 0.164 0.184 0.143 0.130 0.175 0.165 0.161 0.163
Mb w20 + Type V 0.179 0.169 0.169 0.190 0.158 0.145 0.186 0.177 0.170 0.172
Mb w40 + Type V 0.214 0.182 0.185 0.199 0.203 0.152 0.219 0.188 0.196 0.184
Mb w80 + Type V 0.238 0.180 0.211 0.201 0.232 0.147 0.247 0.185 0.223 0.184
Mc w10 + Type V 0.075 0.115 0.060 0.154 0.092 0.102 0.073 0.128 0.077 0.135
Mc w20 + Type V 0.181 0.161 0.130 0.187 0.219 0.136 0.177 0.172 0.166 0.170
Mc w40 + Type V 0.273 0.151 0.202 0.194 0.288 0.117 0.271 0.164 0.239 0.168
Mc w80 + Type V 0.299 0.140 0.249 0.182 0.294 0.112 0.306 0.147 0.272 0.157
DTW 0.356 0.137 0.320 0.152 0.348 0.098 0.373 0.122 0.329 0.141

Changes in the standard deviation, between algorithms with and without the con-

straint applied, are mainly a function of changes in the mean (i.e. a higher mean

score causes a higher standard deviation and visa versa). Where this correspon-

dence between the mean and standard deviation is broken is of particular interest,

for example algorithm Mc w40 performing both worse (lower µ) and less consis-

tently (higher σ) for motions containing: Non-Cyclic; Lower Body; or Upper Body

movements, when the constraint is applied to it. Meanwhile, Mc w80 performing

better (higher µ) and more consistently (lower σ) for motions containing all but the

Ballistic movement type, when the constraint is applied to it.

Although smaller, the improvements attained by the constraint are slightly more

consistent across the different motion types, when applied to Method B than Method

C. Out of 20 combinations of windows size and movement type, analysed in Table

6.4, constraints achieved improvements in the mean for 19 out of 20 combinations

when applied to Method B and only 6 out of 20, when applied to Method C.

The bottom graph in Figure 6.4, shows that the implementation of the constraint

consistently improved the performance of every algorithm in the distortion test, re-

ducing the distortion within the aligned motions, with an average increase of 1.045
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in the distortion test score. This is to be expected as the constraint is restricting the

choice of possible alignment paths to those closer to the UTW solution. Note that

the higher the SNR, the less distortion present in the aligned motion. As with the

alignment test, the implementation of a constraint achieved a significant improve-

ment in the performance of algorithm Ma, increasing the score in the distortion test

by 2.430.

In the distortion test, Figure 6.4, 7 of the 9 time warping algorithms tested beat the

benchmark set by the DTW algorithm, when the Type V constraint was applied. It

is tempting to see this as an on-line algorithm performing better than off-line DTW,

but this potentially indicates the alignment solution being overly constrained, with

the constraint itself preventing the algorithm from finding the optimal alignment

path, which may be further away from the UTW solution than the constraint al-

lows. It is therefore important to check the results of the distortion test against

the corresponding results of the alignment test, to determine if the reduction in

distortion is due to better quality or overly constrained alignments. For example

in comparison to Mc w40, the implementation of the constraint in algorithm Mc

w40 + Type V reduced distortion, increasing the distortion score by 0.375, but also

degraded the alignment, reducing the alignment score by 0.022. This indicated that

the improvement in distortion is likely to be the result of the solution being overly

constrained, not better aligned. In contrast the implementation of the constraint

in the Ma + Type V algorithm, resulted in performance improvements in both the

alignment and distortion tests, with the scores increasing by 0.181 and 2.430 respec-

tively over the Ma algorithm, indicating that the reduced distortion is the result of

improvements in the alignment.

6.4.3 Accuracy Results

Figure 6.5 shows the impact of the Type V constraint on the accuracy of the align-

ment in comparison to an offline DTW warp. Three accuracy tests were performed,

each providing a slightly different view of the deviation between the alignment path

plotted by the on-line time warping algorithm and the offline DTW algorithm, the

smaller the deviation the better the results.
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Figure 6.5: The accuracy performance tests results for different time warping algorithms,
with and without the Type V constraint applied. Ma, Mb and Mc refer to methods A,
B and C respectively, while w specifies the window size used. Results closest to zero are
best. The blue line in the bottom chart represents the threshold at which timing errors in
character interactions can be perceived (Hoyet, McDonnell and O’Sullivan, 2012).
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The results of the three accuracy tests in Figure 6.5, all show the performance of

almost every time warping algorithm improving when constraints are applied, apart

from algorithms Mc w20 and Mc w40. The constraint also consistently reduced the

variation in test results for each algorithm, with the spread of results shown in the

box plots of all three graphs in Figure 6.5, being consistently smaller for algorithms

with the constraint applied, in comparison to the same algorithm without the con-

straint applied. However, this is likely to be a function of the mean being moved

towards zero, rather than the algorithm with the constraint applied performing more

consistently.

The results of the accuracy test largely corroborate the results of the alignment test,

with algorithms Ma and Mc w80 again both showing significant improvements in

performance when the constraint is applied.

The top chart in Figure 6.5, shows the average deviation and the bias of an algorithm

towards warping ahead to behind the optimal alignment. Apart from Mc w80,

applying the constraint has not changed the bias of any algorithm. Given that the

purpose of the constraint is to modify the behaviour of the time warping algorithm,

rather than fundamentally change its behaviour, this outcome is to be expected.

The exception of Mc w80 + Type V is made possible by the mean of the results

being very close to zero and limited variation in the results.

The bottom chart in Figure 6.5 shows the average absolute deviation between the

alignment paths determined by a given algorithm and DTW, in frames. The im-

plementation of the Type V constraint takes the deviation of an additional three

algorithms (Ma, Mb w80 and Mc w80 ) below the threshold of 18 frames, at which

timing errors in character interactions can be perceived (Hoyet, McDonnell and

O’Sullivan, 2012), as shown by the blue line and established in the previous chapter.

The median deviations for algorithms (Ma, Mb w80 and Mc w80 ) were reduced from:

100 to 12, 21 to 15, and 83 to 11 respectively. The Mc w80 + Type V algorithm

performed particularly well in this test, with 70% of the alignment paths sampled

falling below the threshold. Without the constraint, only one algorithm was able to

meet this threshold and offer a potentially viable solution to on-line time warping
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of human motion. With the constraint applied there are now four algorithms with

this potential.

6.4.4 Computational Performance

Table 6.5 shows the impact of the Type V constraint on the computational per-

formance of each algorithm. Although the constraint requires some additional pro-

cessing steps when added to an algorithm, they are not processor intensive, so have

little impact on the overall performance.

Table 6.5: The average time each algorithm takes to process a single frame of motion data
in microseconds.

window size (w)
10 20 40 80

Method B 856µs 1654µs 4806µs 16945µs
Method B + Type V 813µs 1543µs 4803µs 16928µs
Method C 782µs 1583µs 4764µs 10106µs
Method C + Type V 649µs 1330µs 4021µs 14099µs

Although extra steps are added, the results show that the addition of this type of

constraint often reduces the average per frame computation time. Where a con-

straint state constrains the next step in the alignment path to only one choice of

input frame (e.g. State C), the entire process of evaluating which is the optimal

input frame is skipped, saving computation time. For Method B the computational

time was reduced by: 43µs; 111µs; 3µs; and 17µs, for window sizes: 10; 20; 40; and

80 respectively, while for Method C the computational time was reduced by: 133µs;

253µs; and 743µs, for window sizes: 10; 20; and 40 respectively. The larger reduc-

tions in the computational times of Method C in comparison to Method B, suggest

that the Method C time warping algorithms enter State C during alignments more

often than the Method B algorithms. When an algorithm enters state C, no com-

putation is performed to select an input frame, as there is only one input frame

to select from. Additional research would be needed to performed to confirm this,

modifying the algorithms to track the number of times each state was entered into

during an alignment, however, the frequency at which an algorithm enters State C,
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is indicative of how often a constraint has to step in to prevent an alignment from

sticking on an input frame.

The only exception to the computational savings attained by the constraint, would

appear to be algorithm Mc w80 + Type V, where the constraint appears to have

significantly increased the computational time. However, this is an anomaly, as

the increase is caused by the constraint preventing the algorithm from incorrectly

skipping to many input frames, and running out of frames to align the target motion

to, early in the alignment process, as discussed in section 5.4.5. The reduction in

frame skipping between algorithms Mc w80 and Mc w80 + Type V, results in the

computationally expensive process of evaluating choices of input frames to map a

target frame to, occurring on more frames during the alignment, therefore increasing

the average time each frame takes to process.

6.4.5 Aggregate Plots

A visualisation of the alignment paths plotted by each time warping algorithm,

when the Type V constraint is applied, can be seen in Figure 6.6. Using an identical

process to that used in the previous chapter in Section 5.4.6, the alignment paths

plotted for each combination of motions in the data-set, have been aggregated into a

single heat-map, visualising the performance and characteristics of each algorithm.

The addition of the constraint has reduced the overall variation between the aggre-

gate plots produced by each alignment algorithm. This demonstrates that where an

algorithm had a tendency towards skipping or sticking on input frames, as shown

in plots for Mc w10 and Mc w80 respectively of Figure 6.7, this is reduced or more

controlled when a constraint is applied, as shown in plots Mc w10 + Type V and

Mc w40 + Type V respectively. Figure 6.7, places the aggregate plots of selected

algorithms, with and without the constraint applied, next to each other for direct

comparison. Examining the two algorithms which were most enhanced by the con-

straint Ma and Mb w80. In the case of the Ma algorithm, the hot area below the

diagonal, indicating alignment paths incorrectly sticking on input frames, is reduced

when a constraint is applied in algorithm Ma + Type V. In the case of the Mc w80,
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Figure 6.6: Heat maps visualising the alignment paths plotted for all samples in the data-
set, by time warping algorithms with the Type V constraint applied.

the hot area above the diagonal, indicating frames being incorrectly skipped, is

reduced when a constraint is applied in algorithm Mc w80 + Type V. With the

constraint applied, both algorithms are plotting paths within a similar triangular

area.

The Type V constraint appears to be much better at preventing algorithms from

skipping input frames, than preventing them from sticking on input frames. This

can be seen across the plots in Figure 6.6, where the area below the diagonal, from

(0,0) to (100, 100), typically contains more paths and is brighter than that above

the diagonal. Given that an alignment was plotted in both directions for each pair of
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Figure 6.7: A comparison between the aggregate plots of algorithms Ma, Mc w40, and Mc
w80 with and without the Type V constraint applied.

motions within the data-set, aligning motion A to B and visa versa, both areas, above

and below the diagonal, should have the same number of paths plotted through them

and be equally bright, therefore, if the constraint is successfully controlling any bias

towards skipping or sticking on input frames inherent in the time warping algorithm.

In Figure 6.6, the aggregate plot Mc w80 + Type V, where algorithm Mc w80 has a

tendency to incorrectly skip frames, more closely resembles the aggregate plot of the

standard DTW algorithm, than plot Mc w10 + Type V, where algorithm Mc w10

has a tendency to incorrectly stick on a frame. The Mc w80 + Type V plot has clear

diagonal hot spot from (0,0) to (100, 100), where most alignments would be expected

to be plotted, and a natural scattering of plots along the top edge. The diagonal hot

spot in plot Mc w10 + Type V, however, is much shallower than where alignment

path would be expected to be, and the area where alignment paths are plotted has
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a hard edge at the bottom. While the constraint has stopped the algorithm Mc w10

from sticking on a single input frame, the algorithm is often still failing to correctly

return to an appropriate alignment path, instead using the lowest possible number

of input frames the constraint allows, resulting in the shallow diagonal highlight.

Although both algorithms Ma and Mc w10 characteristically stick on input frames

during alignment, the aggregate plot for algorithm Ma + Type V in Figure 6.6 more

closely resembled that of the standard DTW algorithm, than the plot for algorithm

Mc w10 + Type V. Unlike the Mc w10 + Type V plot, the gradient and of the

diagonal hot spot in plot Ma + Type V matches that of the DTW algorithm. This

suggest that the constraint is more successful at helping algorithm Ma return to an

appropriate alignment path, than when applied to algorithm Mc w10.

While the constraint struggles to prevent Method C from sticking on an input frame,

it is more successful at preventing it from incorrectly skipping input frames. The

constraint therefore, works particularly well when method C is implemented with a

larger forecast window, where it can control the algorithms tendency to skip frames.

The significant performance improvement attained by the constraint when applied

to algorithm Mc w80, is a good example of this.

6.5 Discussion of Constraint Findings

6.5.1 Key Findings

Out of the nine on-line time warping algorithms proposed in this study, six performed

better when they were implemented with a the Type V local continuity constraint.

Across the six algorithms that performed better with a constraint, there was an

average improvement of 0.074 in the alignment test score of the median sample.

Where the constraint did not improve performance, it typically resulted in only

small drops in performance, with drops in the median score of: -0.001; -0.060; and

-0.022 for algorithms: Mc w10 ; Mc w20 ; and Mc w40 respectively. This indicates

that where an algorithm has not been tested with this constraint, it would still be

worth applying it, as it is more likely to improve the performance of the algorithm.
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Additionally, whenever the less likely outcome of a reduction in performance occurs,

its impact is likely to be limited. Although the implementation of the constraint in

algorithm Mc w40 + Type V negatively affected the performance of the algorithm,

it was still able to meet both the UTW threshold at the top of Figure 6.4 and the

threshold of acceptable deviation from the standard DTW solution in Figure 6.5.

The constraint raises the performance of a range of on-line time warping algorithms,

which were previously not viable options for real-time alignment of human motion,

to a standard where they become viable options. For example the chart at the

bottom of Figure 6.5, shows the deviation of algorithms: Ma + Type V ; Mb w80 +

Type V and Mc w80 + Type V, from the offline DTW algorithm are all be below the

threshold at which timing errors in human motion can be perceived. Additionally

the chart at the top of Figure 6.4 shows the performance of algorithms Ma + Type

V and Mc w80 + Type V, are above the performance threshold set by the offline

UTW algorithm. Importantly this provides a greater range of options to choose

from when aligning human motion, removing the reliance on the single algorithm

able to meet this threshold without a constraint applied, Mc w40.

With constraints applied, the best performing algorithm is Mc w80 + Type V, how-

ever, it was established in Chapter 5 that a window size of 80 would be computa-

tionally too expensive to support real-time applications. Two options for making

this window size viable are: i) adapting the algorithm to support parallel processing

of the cost matrix, or ii) down sampling the 80 x 80 window to a 40 x 40 window

and using interpolation to fill in the missing cells in the cost matrix.

6.5.2 Sticking on Input Frames

The Type V constraint is better at preventing algorithms from incorrectly skipping

input frames during alignment, than preventing them from incorrectly sticking on

input frames. Figure 6.7 shows that the Type V constraint is better able to reduce

the occurrence of frame sticking, when applied to an algorithm based on time warp-

ing method A, than method C. This suggests that the cause of this shortcoming

stems from the method used by the algorithm rather than the constraint.
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The discussion in the previous chapter highlighted how alignment paths determined

by method C, tend to stick input frames when the method is applied using smaller

window sizes. While the implementation of the constraint prevents alignment paths

from sticking on a single input frame, it does not correct the underlying shortcoming

within the method. Therefore, rather than the constraint successfully intervening

to return the alignment to the optimal path, the problem often continues to persist

for the entire time warp, resulting in an alignment path which uses the minimum

set of input frames that the constraint will allow.

6.5.3 Impact of Global Constraints

The areas of a cost matrix which can be accessed by a constraint, as determined by

their q values in Table 6.2, have been plotted in Figure 6.8, over a heat map showing

the alignment paths plotted by DTW for the entire data-set. Note that the forward

plotting approach used by the time warping algorithms in this study, means that

two slopes passing through (m,n) in the Itakura Parallelogram do not apply. This

is reflected in Equation 6.8 which defines the accessible area.

The plots visualises how well suited constraints with a given q value, are to the time

warping needs of the data-set being aligned. It shows that a constraint type with a

q value of two or three is required, which is satisfied by the Type V constraint.

Figure 6.8: A visualisation of how well constraints with a given q value, fit the time warping
requirements of the data-set used in this study.

x− 1

q
+ 1 ≤ y ≤ q(x− 1) + 1 (6.8)

The overall shape of the accessible area defined by a local continuity constraint,
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indicates that they can potentially limit the ability for a time warping algorithm to

deal with any delay in movement within an input or target motion, as the alignment

necessary to deal with these fall outside of the accessible area.

6.5.4 Appraisal of Constraint Study

The performance tests and plots used in this study have provided a robust quan-

titative assessment of the impact of implementing a constraint on the performance

of time warping algorithms. Along with the simulations presented in the previous

chapter, they provide valuable insights into how the constraints interact with the

characteristics of particular time warping methods.

The distortion performance test, which appeared to be of limited value in the previ-

ous chapter, was proven to be of more valuable in this study. The test can potentially

identify were alignment algorithms are overly constrained towards the UTW time

warp. An algorithm with a good performance in the distortion test, which is not

supported with a corresponding score in the alignment test, could potentially be

overly constrained.

It should be noted that the study which identified the Type V constraint as the best

performing constraint for on-line time warping (Macrae and Dixon, 2010), applied

constraints to an algorithm that plotted alignment paths to align features in a

musical score. The differences between these studies suggests that it would be

worthwhile evaluating the performance of other types of constraint in this scenario.

Given the compromises of using local continuity constraints in a forward plotting

time warp, constraint types that allow more paths to be evaluated in a single step

such as Type V and Type VII are better suited to this application. Consideration

should also be given to how well the q value of a constraint Type fits the alignment

requirements of the data-set.
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6.6 Penalties Methodology

6.6.1 Motivation and Overview

The motivation for implementing penalties in this chapter is different to previous

studies. Hülsmann et al. (2017) and Tormene et al. (2009) implemented penalties

based on path length, to remove bias within the DTW algorithm towards shorter

alignment paths, as this creates a positive biasing towards matching a query time

series with shortest length reference time series. Dixon (2005) applied penalties to

encourage the alignment path to warp the motion, rewarding alignment that moves

away from a straight diagonal path. In contrast to these studies, the motivation

in this chapter is to use penalties to constrain the amount of warping in an align-

ment path, potentially reducing the magnitude by which a given algorithm might

incorrectly skip to stick on input frames while plotting an alignment. In contrast

to previous studies penalties are being used to reduce the amount of warping not

encourage it. This contrasting motivation is reflected in the implementation of

penalties in this chapter.

On-line time warping requires a penalty system that works with only partial knowl-

edge of one of the motions, and consequently without knowledge of the entire cost

matrix or alignment path. This supports an approach in which penalties are deter-

mined and applied to each frame independently of each other.

There are two elements to the penalty system: a penalty factor pf , determined by

the position of a potential alignment point in relation to the previous alignment

point; and a penalty coefficient pc, a multiplier applied to the penalty factor which

controls the magnitude of the penalty. The penalty applied to a potential alignment

point pi determined by p(i) = pf (i).pc.

6.6.2 Determining the Penalty Factor

To support the motivation above, penalties are applied to each time warping method

to penalise sticking or skipping of input frames when plotting an alignment path.

For methods A and C alignments penalties are applied to alignment points which
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do not step forward one frame in both the target and input motion. Both methods

plot a single alignment point for each target frame, imposing a single frame step

in the target motion between each alignment point. Therefore, it is the number of

input frames between each alignment point that determines the penalty factor, more

specifically the further the number is away from one, the larger the penalty factor.

Figure 6.9a shows the penalty factors for each potential alignment point, after the

last plotted alignment point in cell (2,2). The monotonic nature of alignment paths

means that any input frames before the previously mapped input frame can not be

considered. Mapping the next target frame to the same input frame as the previous

target frame, incurs a penalty of one, as there will be zero input frames between the

alignment points, causing the alignment to stay or stick on the same input frame.

Mapping the next target frame to the next input frame, gives a penalty factor of

zero, resulting in no penalty. Mapping to the two or more inputs frames ahead of

the last alignment point, means the alignment is skipping input frames and therefore

incurs a penalty. The penalty factor increases by one for each frame that is skipped.

5 2
4 1
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2 1
1

1 2 3 4 5

a) The penalty factor values (pf ) when 
stepping from the last alignment 
point in cell (2,2) to potential 
alignment points in column 3.

IMn+4 3
IMn+3 2
IMn+2 1
IMn+1 0

IMn 1
Tn + 1

b) The penalty factors (pf ) applied to input 
frames, starting at the last mapped 
input frame Imn

onwards, when 
selecting the closest match to an 
incoming target frame (Tn + 1).
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Figure 6.9: Determining the penalty factors to apply to input frames within methods A
and C

Given that M = {M0,M1....Mn} contains the input frames which have been mapped

to each target frame up to the last aligned target frame n. Figure 6.9b shows

the penalty factors applied to the previously mapped and subsequent input frames

{IMn , IMn+1, IMn+2, IMn+3, IMn+4}. The penalty does not reduce or restrict the num-

ber of input frames that a target frame can be aligned to, this is imposed by the
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window size of the algorithm and any constraints applied. The penalty factor pf

can be determined for any input frame with index i using equation 6.9.

pf = |i− (Mn + 1)| (6.9)

In both methods A and C, penalties are applied after the cost of aligning the target

frame to each potential input frame has been determined. In the case of method

C this is after the accumulated cost matrix has been calculated. The calculated

penalty values are added to the alignment cost of each corresponding input frame.

This influences which input frame is considered the optimal choice for the next

alignment point, as this is determined by the frame with the lowest cost.

While methods A and C both determine which input frame is the optimal choice for

the next alignment point, directly from their alignment costs, method B determines

this using an alignment path. Therefore a different approach to determining penalty

factors and applying penalties needs to used with method B, which influences the

alignment path that this method plots through the forecast window. To achieve this,

equation 6.10 is used to calculate the penalty factor for every cell in the accumulated

cost matrix, where Q is a matrix matching the dimensions (m,n) of accumulated

cost matrix D. Note that the equation rounds values to the nearest whole number.

Examples of the penalty factor matrices generated by equation 6.10 for different

values of (i, j), can be seen in figure 6.10.

The penalty factors Q are used in equation 6.11 to create an accumulated cost

matrix that includes penalties Dp, where pc is a normalisation coefficient and D is

the accumulated cost matrix. The alignment path is then plotted through matrix

Dp.

Q(i,j) =

[∣∣∣∣ im − j

n

∣∣∣∣ ·min{m,n}
]

(6.10)

Dp = D + (Q · pc) (6.11)
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a) 10 x 5 pf matrix b) 10 x 10 pf matrix c) 5 x 10 pf matrix

Figure 6.10: Example penalty factor matrices generate by equation 6.10

6.6.3 Determining the Normalisation Coefficient

The magnitude of the penalties applied is controlled by a normalisation coefficient

pc. Applying penalties of an appropriate magnitude is a critical optimisation step,

if the penalties are too great then alignment paths will be constrained to a diagonal

path, if they are too small they will have a limited or no impact on the alignment.

Given that the penalty factor represents the number of frames the local alignment

path is being moved away from a one to one alignment, a logical approach to deter-

mining an optimal normalisation coefficient is to find the average difference between

the joint poses of two sequential frames of motion data. It also follows that the

method used to measure the difference between the joint poses must be the same

as that used to measure the alignment cost within the time warping algorithms.

Within this study two approaches are used to do this:

1. Global Normalisation: based on the average difference between sequential

frames across the entire data-set.

2. Local Normalisation: based on the average difference of sequential frames

within the prerecorded input motion being aligned.

Global Normalisation of Penalties

The average difference between sequential frames across the entire data-set D, is

calculated using equation 6.12, where data-set D contains p motions, each containing

q frames, with r joints being evaluated. As this gives a d of 0.034 for the data-set

used in this study, a global normalisation around this value should be considered
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when implementing penalties in this chapter.

d(D) =

p∑
m=1

q∑
f=2

r∑
j=1

geoDist(Dm,f,j, Dm,f−1,j)

p∑
m=1

q∑
f=2

r

(6.12)

Local Normalisation of Penalties

A local normalisation coefficient for motion m can be determined using equation

6.13, where q are the frames contained in motion m and r are the joints being evalu-

ated. The equation calculates the average difference between each pair of sequential

frames within the motion.

d(m) =

q∑
f=2

r∑
j=1

geoDist(mf,j,mf−1,j)

(q − 1)r
(6.13)

6.6.4 Implementation of Penalties

To better understand the optimal configuration for penalty coefficients, six different

coefficients will be tested as identified in table 6.6. Three global normalisation

coefficients will be tested, that surround the d(D) value calculated for the data-set.

In addition three local normalisation coefficients will be tested, which comprise of

different multiples of d(m). The motivation is to determine if a coefficient greater or

lower than d(D) or d(m) is a more optimal choice of normalised coefficient. The table

also specifies codes that will be used to label the algorithms which have penalties

applied, within the results section.
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Table 6.6: List of the penalty coefficients to be tested

Test
No.

Coefficient
Type

Coefficient
Value

Test
Code

1 Global 0.025 Pf0.025

2 Global 0.050 Pf0.050

3 Global 0.100 Pf0.100

4 Local d(m)0.5 Pn0.5

5 Local d(m)1.0 Pn1.0

6 Local d(m)2.0 Pn2.0

6.7 Results of Implementing Penalties

6.7.1 Test Selection and Implementation

The number of different penalty coefficients being tested, means it would not be

practical to test every penalty coefficient on each of the nine algorithms tested in

chapter 5. Therefore the worst performing algorithm of each method (A, B and C),

along with the best performing algorithm Mc w40, were selected to be tested with

penalties implemented using the each of the six penalty coefficients in the table

6.6. Algorithms Ma, Mb w10 and Mc w10, performed the worst in the accuracy

tests in figure 5.8b and showed a tendency to plot alignment paths that stick on

input frames. The performance of these algorithms have the most potential to

be improved by the implementation of penalties and be influenced different penalty

configurations. The best preforming algorithm (Mc w40 ) was included in the test to

evaluate any negative impact penalties might have on a higher performing algorithm.

Every combination of selected time warping algorithm and penalty configuration in

table 6.6 was tested using the data-set motions and performance tests established in

chapter 5, to allow a direct comparison of the performance of each algorithm with

and without penalties applied. This approach would allow the impact of different

penalty configurations on different time warping algorithms to be evaluated.
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6.7.2 Performance Test Results

The impact of penalties on each of the four time warping algorithms tested, can

be seen in figure 6.11. It shows the distribution and median of results for the

alignment, distortion and absolute frame deviation performance tests, which were

used to evaluate the motion alignments determined by the time warping algorithms,

with and without penalties applied. The alignment and performance test are detailed

in section 5.3.4, while the frame deviation test, which evaluates how closely an

alignment matches that of the offline DTW alignment, is detialed in section 5.4.4.

The results shown in blue are algorithms with penalties applied to them, while those

in red are algorithms without penalties or the results of the offline DTW and UTW

time warping algorithms, which are included for reference. In the alignment and

distortion tests, the higher the score the better the performance, with the blue and

red lines representing the median score of alignments produced by the offline DTW

and UTW algorithms respectively. In the frame deviation test, the lower the score

the better the performance, with the blue representing the threshold determined

by Hoyet, McDonnell and O’Sullivan (2012), at which a difference between the

alignment being tested and the one produced by the offline DTW algorithm would

be perceptible.

Table 6.7 shows the mean results attained by each algorithm with and without

penalties applied across five performance tests, which includes two accuracy tests

in addition to the tests described above, which are both described in more detail

in section 5.3.4. The result of algorithms with penalties applied have been colour

coded green and red to indicate if the performance is better or worse respectively,

than the same algorithm without penalties applied.

Note some difference between the mean scores in table 6.7 and the medians shown

in figure 6.11. This is due to skews in the distribution of test results within each

sample group.

Algorithm Ma was the only algorithm to show a significant improvement in per-

formance when penalties were applied. Although the improvement in performance

was not enough to take it above the threshold set by the UTW algorithm in the
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(a) Results for algorithm Ma

(b) Results for algorithm Mb w10

(c) Results for algorithm Mc w10

(d) Results for algorithm Mc w40

Figure 6.11: The results for the alignment, distortion and accuracy performance tests for
selected time warping algorithms with different penalties of varying strength and penalty
coefficient types, applied. The performance of the time warping algorithm with no penalty
applied can be seen in red.

230



Table 6.7: The mean performance test scores attained by time warping algorithms with
different penalty configurations applied. Values in green and red indicate algorithms with
penalties applied performing better or worse, respectively, than the same algorithm without
the penalty applied.

Performance Tests
Average Absolute Absolute
Percent Percent Frame

Algorithm Alignment Distortion Deviation Deviation Deviation
Ma 0.106 1.852 -33.684 33.875 117
Ma + Pf0.025 0.216 4.244 -9.220 12.247 37
Ma + Pf0.050 0.176 4.887 -5.393 10.449 32
Ma + Pf0.100 0.145 5.207 -3.578 10.045 31
Ma + Pn0.5 0.233 3.896 -12.666 13.854 43
Ma + Pn1.0 0.197 4.622 -6.332 10.358 32
Ma + Pn2.0 0.144 5.190 -3.723 10.218 32
Mb w10 0.136 3.806 -21.733 21.852 70
Mb w10 + Pf0.025 0.135 3.827 -21.754 21.873 70
Mb w10 + Pf0.050 0.135 3.835 -21.756 21.875 70
Mb w10 + Pf0.100 0.135 3.835 -21.757 21.876 70
Mb w10 + Pn0.5 0.135 3.821 -21.754 21.873 70
Mb w10 + Pn1.0 0.135 3.834 -21.756 21.875 70
Mb w10 + Pn2.0 0.135 3.835 -21.757 21.876 70
Mc w10 0.088 1.814 -35.662 35.707 122
Mc w10 + Pf0.025 0.044 1.567 -40.521 40.543 140
Mc w10 + Pf0.050 0.030 1.635 -41.452 41.473 143
Mc w10 + Pf0.100 0.024 1.927 -40.737 40.768 139
Mc w10 + Pn0.5 0.051 1.572 -39.748 39.771 137
Mc w10 + Pn1.0 0.035 1.567 -41.104 41.122 142
Mc w10 + Pn2.0 0.026 1.739 -41.303 41.323 142
Mc w40 0.282 3.822 -2.871 12.017 36
Mc w40 + Pf0.025 0.268 3.652 -8.366 13.670 43
Mc w40 + Pf0.050 0.259 3.633 -10.934 14.333 46
Mc w40 + Pf0.100 0.244 3.733 -13.764 15.309 50
Mc w40 + Pn0.5 0.276 3.761 -6.746 12.586 39
Mc w40 + Pn1.0 0.271 3.695 -9.033 12.918 41
Mc w40 + Pn2.0 0.258 3.737 -11.738 13.770 44
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alignment test, it was enough to reduce the distortion of the alignment to below that

of the DTW algorithm in some instances. The algorithm’s performance across dif-

ferent penalty configurations, appear to contradict each other in the alignment and

distortion tests. This contradiction suggests that higher penalty values are overly

restricting the alignment paths plotted by the Ma algorithm, forcing it to plot an

alignment path that steps forward one input frame for each target frame (i.e. a one

to one alignment). While this type of alignment has little distortion it is not an

optimal alignment. This is backed up by the frame deviation tests for the Ma algo-

rithm, which show the same trend in performance improvement across the different

penalty types as that alignment test.

The frame deviation test results for the Ma algorithm also show that penalties

have reduced the difference between the alignments produced by the Ma and DTW

algorithms to below the perceptible threshold in some instances. This indicates that

penalties can improve the performance of the Ma algorithm, to a point where it can

produce useful alignments.

In contrast to the Ma algorithm, other algorithms did not respond so well to penal-

ties being applied to them. Applying penalties had very limited to no impact on the

Mb w10 algorithm, and caused both algorithms based on method C (Mc w10 and

Mc w40 ) to perform worse. The performance of both algorithm’s in the alignment

test were similarly affected, both showing a worse performance as the strength of

the penalty was increased.

The results of the distortion tests for Mc w10 and Mc w40 were more mixed. Algo-

rithm Mc w10 with the smaller window size, produced alignments with less distor-

tion when penalties were applied, while algorithm Mc w40 with the larger window

size was less effected by application of penalties. The contradicting trends in the

results of the alignment and performance test for algorithms Mc w10 are similar

to that observed in the Ma algorithm, again suggesting that the stronger penalty

coefficients are pushing the alignment path towards a one to one alignment between

input and target motion frames.

The frame deviation tests again show the performance of both Mc w10 and Mc w40

232



algorithms were negatively impacted by the application of penalties. The perfor-

mance of algorithm Mc w10 with the smaller window size was more effected than

Mc w40 with the larger window size.

6.7.3 Aggregate Plots

A visualisation of the alignment plots plotted by algorithms Ma, Mc w10 and Mc

w40, with each of the tested penalty configurations applied and without any penalty

applied, can be seen in figure 6.12. Using the same process used in section 5.4.6, the

alignment paths plotted for each combination of motions in the data-set, have been

aggregated into a single heat-map, to visualise the performance and characteristics

of each algorithm with different penalties applied.

The heat maps for the Ma algorithm, clearly show the overly constrained alignments

resulting from stronger penalties with higher penalty coefficients being applied. This

characteristic is the same regardless of whether the penalty is using a global or local

normalisation coefficient.

The Mc w10 and Mc w40 algorithms also produced worse alignments when higher

penalty coefficients were applied. However, the aggregate plots indicate that in the

case of these algorithms, this is because higher penalty coefficients are causing the

alignment paths to incorrectly stick on input frames. This characteristic is more

prominent with Method C algorithms configured with smaller window sizes.

While higher penalty coefficients caused alignment paths to incorrectly stick on

frames, when applied to algorithms based on Method C, they did also reduce the

occurrence alignment paths incorrectly skipping too many frames.

6.8 Discussion of Penalty Findings

6.8.1 Impact of Penalties on Time Warping Methods

The contrasting approaches used by time warping method A, B and C, has caused

them to respond to the implementation of penalties in different ways.
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Figure 6.12: Heat maps visualising the alignment paths plotted by algorithms Ma, Mc w10
and Mc w40, with different configurations of penalties applied.
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Method A showed the most improvement when penalties were applied. This is a

combination of the method A algorithm both responding well to the implementa-

tion of penalties and having quite a poor initial performance before penalties were

applied. Method A was the only time warping method, where the implementa-

tion of penalties improved the performance of the algorithm enough, to cross below

the threshold at which differences between the alignment produced by on-line time

warping method and DTW time warping, are potentially not perceptible.

Algorithms based on Method B do not respond to implementation of penalties,

showing little to no improvement or deterioration in performance as a result of

penalties being implemented. This is likely due to the approach used by Method B, of

plotting a path within the forecast window. As a path is plotted backwards through

an accumulated cost matrix, which contains costs accumulated from the bottom left

to the top right of the initial cost matrix, the relatively small penalty factor values

in matrix Q are likely to have very little impact on the large accumulated costs

in the accumulated cost matrix. Therefore, penalties implemented in this way are

probably only going to effect one or two of the left most alignment points plotted

through the forecast window. Applying the penalty factors in matrix Q to the initial

cost matrix, before the accumulated cost matrix is calculated would have a bigger

impact.

The performance of both algorithms based on Method C deteriorated when penalties

were applied to them. The penalties appeared to exacerbate the problem method

C has with alignments sticking on input frames. The performance of algorithm Mc

w10, with a smaller window, appeared to deteriorate more than algorithm Mc w40

with the larger window. Despite the performance of the Mc w40 algorithm deteri-

orating when penalties were applied, none of the penalties reduced the algorithm’s

performance enough to take it either below the UTW threshold in the alignment

test or above the perceptible error threshold in frame deviation test.

The contrasting impact of penalties on different time warping methods, means a

decision on whether to implement penalties is dependent on the method being used.

It is recommended that penalties are only applied to time warping algorithms based
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on Method A.

6.8.2 Normalisation Coefficients

Across the different performance tests conducted there was not a significant differ-

ence between the performance of global and local normalisation of penalties.

When applied to algorithm Ma, locally normalised penalties performed better in the

alignment test, while globally normalised penalties performed better in the frame

deviation test.

In the case of algorithms based on both methods A and C, stronger penalty co-

efficients resulted in consistently poorer performances in the alignment test, when

compared to the same algorithm with smaller coefficients. For any group of time

warps using the same type of penalty coefficient, the smallest penalty coefficient

performed the best. This suggests that smaller penalty coefficients should be tested

and explored to find potentially more optimal coefficient values.

6.8.3 Penalty Implementation

The manner in which penalties were implemented was potentially better optimised

for preventing alignment paths from skipping input frames, than preventing them

from sticking on input frames.

The penalty factors for determining the optimal alignment point for each target

frame, were determined independently each other. While this allowed the penalty

factor to be increased for skipped input frames as required, it does not allow the

penalty factor to be increased by more than one for sticking on an input frame,

regardless of how many consecutive frames the alignment has remained stuck on a

particular input frame. This could be corrected by tracking the number of frames

an alignment path has stuck on a particular input frame, between processing each

input frame.
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6.9 Conclusions

In this chapter a constraint and a variety of penalties were applied to the on-line

time warping algorithms introduced in the previous chapter. The motivation for this

study was to ascertain the impact of these approaches and evaluate their potential

to optimise each of these time warping algorithms.

Overall the Type V constraint improved the performance of different time warp-

ing algorithms more consistently than penalties. In the alignment test six out of

nine algorithms improved their performance when the constraint was applied. In

comparison, penalties only enhanced the performance of one of the four algorithms

tested. Where the constraint did not enhance the performance of an algorithm it

did not degrade performance significantly, unlike penalties which did significantly

degrade the performance of some algorithms. This means that penalties should be

implemented with more caution than constraints.

Table 6.8 provides an overview of which on-line time warping algorithms, and con-

straint or penalty configurations, could be considered for use in a real world scenario.

It shows which of the algorithms and configurations tested, met or exceeded either of

two key performance thresholds. Threshold U, is the quality of alignment threshold

set by offline UTW in the alignment test. Threshold F, is the point at which an

alignment’s deviation from the alignment plotted by the DTW algorithm, is enough

to be perceptible. An algorithm is deemed to have met this threshold, if the me-

dian alignment from the data-set of motions aligned using the algorithm, meets or

exceeds the threshold.

Each of the three time warping methods showed different characteristics when the

constraint and penalties were implemented.

Method A responded to the implementation of both constraints and penalties with

a significant improvement in performance. The performance of method A is quite

malleable, responding positively and predictably to both optimisation methods. Al-

though Method A was initially the worst performing method, both constraints and

penalties were each able to improve its performance enough to take it over one of
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Table 6.8: Overview of which on-line time warping algorithms met key performance thresh-
olds, both with and without the constraint or penalties applied. U means the algorithm
performed better than an offline UTW time warp. F means that the majority of align-
ments produced by the algorithm, were so close to the that produced by offline DTW, that
differences may not be perceptible. Black cells represent test that were not performed.

Ma Mb Mb Mb Mb Mc Mc Mc Mc
Constraint w10 w20 w40 w80 w10 w20 w40 w80
or Penalty Type U F U F U F U F U F U F U F U F U F
None x x
Constraint V x x x x x x x
Penalty Pf0.025 x x x
Penalty Pf0.050 x x
Penalty Pf0.100 x x
Penalty Pn0.5 x x x
Penalty Pn1.0 x x x
Penalty Pn2.0 x x

the key thresholds in table 6.8.

While algorithms based on Method B did not improve as much as Method A, when

constraint and penalties were applied. They did in a consistent manner, showing a

small but consistent improvement when the Type V constraint was applied and no

improvement when penalties were applied. Neither the constraint or penalties caused

a deterioration in performance when applied to an algorithm based on Method B.

Algorithms based on Method C, responded poorly to both the implantation of either

the constraint or penalties. The Type V constraint produced inconsistent results,

with the performance of some algorithms improving, while the performance of others

deteriorated. In addition, the implementation of penalties consistently resulted in a

deterioration in performance across different window sizes. Neither approach, con-

straint or penalties, was able to counteract the problem Method C has, of producing

alignments which incorrectly stick on an input frame. However, a useful benefit

of using constraints with the Method C algorithm, is that it produced smoother

alignment paths and smoother alignments as a result.

While other studies have implemented penalties in such a way as encourage or allow

alignment paths to deviate way from a one to one alignment between input and
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target frames. In this study penalties where implemented as an alternative form of

constraint, discouraging alignments from deviating away too much from a one to

one alignment.

Implementing both constraints and penalties together, within a single time warping

algorithm has not been explored within this study. Combining constraints and

penalties is an interesting area for further exploration, which could potentially create

a more optimal time warping algorithm. Two such scenarios which could be explored

are:

1. Algorithms such as Ma, which responded well to the implementation of both

a constraint and penalties, could potentially be further optimised by imple-

menting both.

2. Penalties implemented in such a manner as to encourage warping away from

a one to one alignment, and act as a balance against a constraint in an overly

constrained algorithm such as Mc w40 + Type V.
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Chapter 7

Impact of Movement and Motion

Data Characteristics on the

Performance of Time Warping

Algorithms

7.1 Introduction

The the quality of alignment produced by a given time warping algorithm varies

significantly, not just across the different movements contained within the data set

used in this thesis, but in some cases across alignments of different recordings of the

same movement. While all nine online time warping algorithms tested in Chapter 5,

achieved a median score in the alignment test that was lower than that achieved using

offline DTW, the variation of the scores for every algorithm was higher than than of

offline DTW, which had a standard deviation of (0.141), with the alignment scores

of algorithms Mc w10 and Mb w80, having the lowest (0.146) and highest (0.188)

standard deviations respectively. Additionally motions such as ‘Stand Up Sit Floor’

and ’Elbow To Knee 3 Reps L Start’ exhibit a high variance in the alignment test

scores of time warps performed on different recordings of the same movement, with

an average standard deviation of 0.201 and 0.195 respectively, across the different
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time warping algorithms tested in Chapter 5.

These variations in alignment scores suggests that the on-line time warping algo-

rithms proposed in Chapter 5 perform less consistently than the offline DTW algo-

rithm, and are potentially more affected by subtle features in a recorded motion,

such as a mistimed start or unusual pose. In addition the characteristics of the

movements being performed, such as the number of joints being utilised and fea-

tures contained in the motion (e.g. ballistic and cyclic movement), also have the

potential to cause a time warping algorithm to perform inconsistently. This chapter

explores the impact of various characteristics in the movement and data of the mo-

tions being aligned, on the performance of on-line time warping algorithms, with the

aim of developing a deeper understanding of how to optimise the implementation

and application of the on-line time warping algorithms presented in Chapters 5 and

6. This chapter will explore the impact of the following characteristics:

• Under Utilised or Under Constrained Joints: Movement and pose vari-

ations that occur in joints that are not utilised or constraint by the movement

being performed.

• Data Capture Errors: Errors such as noise and dropped frames, that can

occur in the data capture process.

• Mistimed Starts: Differences in the timing of the start of the input and

target motions.

• Speed Differentials: Differences in the speed at which input and target

motions are performed.

The first two sections of the chapter outline the danger of overly weighting joints

which are not particularly pertinent to a motion, Section 7.2, then discusses errors

that can occur in motion data, Section 7.3. Where possible the occurrence of these

data errors in both the BCU and HDM05 data-sets have been measured.

Sections 7.4 and 7.5, present a more detailed evaluation of two characteristics which
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particularly impacted the performance of the on-line time warping algorithms pre-

sented in this thesis, mistimed starts and speed differentials respectively.

7.1.1 Identification of Most Impactful Characteristics

Within the data-set, every unique combination of two motions appears twice, with

the input and target motion swapped around in one occurrence (i.e. one sample

aligns input motion A to target motion B, while another sample aligns input mo-

tion B to target motion A). The results of the tests performed in Chapter 5, were

searched to find the combinations of two motions with alignment test scores that

diverged the most between their two occurrences. When these high divergent motion

combinations were reviewed, it was found that they often contained motions with

mistimed starts or motions performed at different speeds.

7.2 Under Utilised and Under Constrained Joints

Under utilised joints refer to joints which are not directly utilised by a given motion.

An example can be seen in the kick motion on the right of Figure 7.1, in which the

pose of the arms and and hands, which are not directly involved in the motion, vary

considerably between motions A and B.

Under constrained joints, are joints which are used by a given motion but do not

have to be in a particular pose to achieve it. An example can be seen in the clapping

motion on the left of Figure 7.1, in which the clapping movement can be achieved

with arms in a higher or lower position (i.e. spatial variation), as seen in the side

views, and with arms spread apart to different extents between claps as seen in the

front view of pose A (i.e amplitude variation). In this example, the under constraint

leads variations between the poses of the arms and hands, despite being utilised by

the motion.

The variations between the poses of unconstrained motions also result in variations

in the motion curves, as shown in Figure 7.1. For example the motions curves for

the shoulder joint of kick motions A and B, shown on the right, all start with a form
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that is symmetrical (or opposite) to each either.

A consequence of the greater variation between the poses of unconstrained motions,

is that they do not respond as well to time warping algorithms, generally resulting

in less satisfactory alignments, than more constrained motions. This variation in the

performance of on-line time warping algorithms, between aligning under constrained

and constrained motions, can be seen in Table 7.1, which shows the mean similarity

score attained by the three best performing algorithms, Ma + Type V, Mc W40, and

Mc w80 + Type V, for each type of motion sourced from the HDM05 data-set. As

other factors, associated with the capture of a particular data-set, can also affect the

performance of time warping algorithms, this table compares only motions sourced

from the single data set. These factors are explored further in the proceeding section.

Table 7.1 shows time warping algorithm performing worse when aligning under con-

strained motions, such as the clap and kick motions shown in Figure 7.1, compared

to aligning more constrained motions, such as the walk and skier reps shown in

Figure 7.2. The skier motion, sometimes referred to as cross-ski, is a cardio vascular

exercise that mimics the movement of cross country skiing. The pose of both the

upper and lower body is well defined, with the exercise swapping between, a right

arm and left leg forward with left arm and right leg back pose, and a right arm and

left leg back with left arm and right leg forward pose, with limited possible variation

in how a subject can transition between these two poses.

Motions which only directly utilise the upper or lower body such as: kicks; punches;

and throwing, tend to perform worse than motions that utilise the whole body such

as: skier; elbow to knee; and jumping jack exercises. There are exceptions such as

walking, although only directly utilising the legs, the leg motion is often accompanied

by an arm motion to counter weight the motion of the legs, thus indirectly utilising

both the upper and lower body, resulting in time warps achieving good alignments

when applied to walk motions. More stylised walks, such as the sneak walk, with

room for different interpretations of what the arms poses should be, result in poorer

alignments.
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Figure 7.1: Examples of motions which are under constrained. Due to the variety of ways in which the movement in the motion can be achieved,
there is more variation between the poses and motion curves of different takes (recordings) of the same motion.
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Figure 7.2: Examples of motions which are constrained. Due to the limited ways in which the movement can be achieved, there is less variation
between the poses and motion curves of different takes (recordings) of the same motion.
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Table 7.1: Table of the mean similarity test scores attained by different on-line time warping algorithms, for each of the different movements
used from HDM05 data-set.

Types of Movement Mean Similarity Score
Cyclic Non-Cyclic Ballistic Lower Upper Ma Mc w40 Mc w80

Motion Body Body (+Type V) (+Type V)
Clap 5 Reps x x 0.030 0.044 0.040
Deposit Floor R Hand x x x 0.311 0.318 0.380
Elbow To Knee 3 Reps L Elbow Start x x x 0.326 0.332 0.418
Grab Middle Shelf R x x 0.110 0.133 0.126
3 Jumps x x x x 0.180 0.225 0.240
Hop L Leg 3 Hops x x x x 0.235 0.218 0.232
Jog Left Circle 6 Steps R Start x x 0.340 0.366 0.360
Jog On Place 4 Steps R Start x x x 0.200 0.273 0.260
Jump Down x x x x 0.229 0.279 0.314
Jumping Jack 3 Reps x x x x 0.352 0.352 0.390
Kick R Side 2 Reps x x 0.128 0.222 0.185
Punch L Side 2 Reps x x 0.075 0.108 0.105
Rotate Arms Both Forward 3 Reps x x 0.264 0.246 0.257
Shuffle 4 Steps L Start x x 0.222 0.289 0.295
Sit DownChair x x x 0.336 0.357 0.380
Sit DownFloor x x x 0.317 0.352 0.342
Skier 3 Reps L Start x x x 0.554 0.559 0.543
Sneak 4 Steps R Start x x x 0.157 0.203 0.187
Staircase Up 3 Rstart x x x 0.327 0.399 0.382
Stand Up Sit Chair x x x 0.146 0.132 0.155
Stand Up Sit Floor x x x 0.221 0.275 0.347
Throw Far R x x x 0.159 0.241 0.268
Turn Right x x 0.167 0.218 0.127
Walk 4 Steps L Start x x 0.372 0.400 0.392
Walk Left Circle 6 Steps R Start x x 0.284 0.370 0.371
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In general the pose of the lower body is arguably more constrained than the up-

per body. In most motions the lower body is supporting the weight of the upper

body, and therefore constrained to movements that allow a center of gravity to be

maintained.

Related to joint utilisation, are redundant axis, previously discussed in Section 4.3.4.

Depending on the method used to encode joint orientations into Euler rotations,

some axis of particular joints are not used. These unused axis are referred to as

redundant axis and typically reflect the freedom of movement that a particular

joint would have in reality. Figures 4.4 shows a knee joint with one degree of

freedom and two redundant axis, while Figure 4.5 shows an elbow joint with two

degrees of freedom and one redundant axis. These figures also show the impact

of the redundant axis when the joint orientation is converted to other rotational

parameters.

The issues occurring from under constrained or under utilised joints can be avoided,

by clearly defining motions for a subject to perform, in manner which specifies the

poses or choreographed movements for both the upper and lower body. For example

when a subject is performing a motion while sitting down, only using hands and

upper body movement, also specify a set of lower body movements. As Table 7.1

shows, motions which contain both upper and lower body movements align more

accurately, therefore, the additional choreographing of lower body movements will

improve performance of the time warping algorithm. In some scenarios this approach

may be too limiting, preventing free expression or not allowing ideas to be explored.

A potential solution is joint weighting as discussed in Section 3.1.5. This allows

joints with are more pertinent to motion to be given more weight, when calculating

the cost (or difference) between poses of input and target frames. As well as the

optimal weightings already discussed, joints can be automatically weighted based on

their range of movement in a given motion (Patrona et al., 2018). For longer motions

containing a range of movements, the weighting could be dynamic, changing with

each frame or for different segments of the motion. Alternatively multiple takes of a

motion could be analysed, to determine the joints exhibiting the greatest variation
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between takes, allowing those joints to be given less weighting.

7.3 Data Capture Errors

No motion capture system is completely error free, and these errors will potentially

impact the performance of a time warping algorithm. This section explores some of

the errors that can occur in the process of capturing and encoding motion data.

7.3.1 Noise

Errors occur in any process that involves sampling and digitizing real world infor-

mation, such as the pose of an actor. These errors can stem from the accuracy of the

measurement instrument(s) being used or in the way the measurements processed

and manipulated to produce meaningful information.

In the case of optical motion capture systems, such those used to capture motions

for both the BCU and HDM05 data sets used in this study. Multiple cameras

are used to capture the position of markers and a best fit location in 3D space is

determined for each marker, that best fits the corresponding 2D position of the

marker within each camera’s view. For this process to work accurately the system

needs to be correctly calibrated. Errors in the calibration process, noise from the

cameras sensors and rounding errors, which occur in the process of fitting 3D points

and encoding rotational data, all contribute errors in the motion data captured using

the system. While errors can never be completely illuminated, the desire is reduce

the level of error to a point where is has a minimal impact on the motion capture

data (i.e. the signal).

An example of a motion with noise can be seen in Figure 7.3. The noise can be seen

as small ripples in the motion curve.

Figure 7.4 shows the noise present in the motions sourced from the BCU and HDM05

data sets. The noise was measured by smoothing the motion curves for each joint us-

ing a Butterworth filter, configured to a cut off frequency of 8.088Hz following Equa-

tion 5.19, then calculating absolute difference between the original and smoothed
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Figure 7.3: An example of noise in a motion signal. Noise artefacts in the motion signal
have been highlighted in red.

motion curves using Equation 7.1. n is the noise in a given motion, where a is a

motion curve used by the subset of joints used in the study in Chapter 5, where

difference between the maximum and minimum value within the motion curve is

greater then 0.01, and f is a frame within the motion curve. A more established

approach to measuring noise is to use PSNR (Peak Signal to Noise Ratio), in which

the amplitude of the noise is expressed as ratio to the peak signal value, however,

issues explored later in this section, such rolling over rotations and changes that can

occur mid way through a motion curve, in the way Euler angles are used to express

angles, effect the accuracy of the PSNR approach.

BCU HDM05
Data Source

0.0

0.5

1.0

1.5

2.0

2.5

3.0

No
ise

Figure 7.4: The noise present in motions sourced from the BCU and HDM05 data-sets.

n =

k∑
a=1

r∑
f=1

[Oa,f − Sa,f ]

m

k
(7.1)
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The motions sourced from the HDM05 data-set have a lower median noise level than

those sourced from the BCU data-set, however, there are number of outlier motions

in the HDM05 data-set which have high levels of noise up to 30 times greater than

the median value. Hence, despite having a lower median, the motions sourced from

the HDM05 data-set have a higher mean noise levels than those sourced from the

BCU data-set, with mean noise levels of 0.207 and 0.157 for motion sourced from

the HDM05 and BCU data-sets respectively.

The mean noise level of both data-sets was low, less then a degree of rotation, so it is

not anticipated that this would have had much of an impact of on the performance

of the time warping algorithms.

7.3.2 Inconsistent Expression of Joint Rotations

Euler angles are an ambiguous method of expressing joint rotations, as the same

orientation can be expressed in multiple different ways. Sometimes the manner in

which a Euler angles are used to express rotations changes in the middle of a motion.

Changes in the way that Euler angles are expressed can be caused by joints rotating

beyond 180◦ or -180◦. Depending on how the motion is being encoded on to the

joints, rotations can be allowed to continued beyond these limits, or, in the case of

the top plot in Figure 7.5, the rotations instead jump between 180◦ and -180◦, to

prevent them from exceeding these limits. If required these rotations can be unrolled

to remove the jumps.

Changes in the way three dimensional Euler rotations are expressed, can also occur

arbitrarily as shown in bottom plot of Figure 7.5, as the same orientation can be

expressed by Euler rotations in a number of different ways. As Euler rotations are

realised by rotating around each axis sequentially in a given order, the axis are

interdependent, meaning that a change in the way that one axis rotates will result

in changes in all the other axis, in order to achieve the same orientation.

The impact of changes in the way Euler rotations are expressed, either between

motions or within a motion, can be managed by using a rotational distance function
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Figure 7.5: Examples of the manner in which a joints orientations are expressed using
Euler rotations, changing mid motion. In the top example the x and z axis jump from 180
to -180 as arm rotates in a complete circle. In the bottom example, the way in which the
rotations in each axis are used to orientate the joint, appears to change arbitrarily between
frames 160 and 175.

based on quaternions rather than Euler angles.

7.3.3 Flat Spots

Flat spots, in which the same joint orientations are written to consecutive frames,

can occur in motion capture data. Two examples of flat spots can be seen in Figure

7.6.

Figure 7.6: Examples of flat spots in motion data. The top example is caused by constraints
stopping a knee joint from over extending, the bottom example is a motion with starts
with a series dropped frames, which are substituted with zero values.

The flat spots in the top plot of Figure 7.6, are caused by a constraint applied to a
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knee joint. To prevent a motion capture system from producing motions that contain

implausible joint poses, the range of motion of certain joints can be constrained. A

draw back with this approach is that a flat spot occurs when a joints orientation

crosses over the limit imposed by the constraint. In the example at the top of Figure

7.6, the extension of a knee joint is not allowed below 0◦. This an example of an

overly constrained joint, as the Table A.1 shows that knee extensions down to -5.1◦

are possible. As the movement of knee is restricted, hitting this constraint can also

cause foot skate to occur, where the foot appears to slide along the floor.

The flat spot that occurs at the start of the motion curve plotted in the bottom of

7.6, is caused by dropped frames, which occur when motion capture system fails to

capture the pose of a joint on particular frame. Dropped frames can occur when

there is not enough computing power to maintain the sample rate that the motion

capture system has been set to, or when markers are occluded from the view of too

many cameras, to be able to determine its position. When dropped frames occur

in the middle of a capture, data for those frames is simply not recorded, however,

if frames are dropped at the start of a capture, the default (or zeroed out) pose of

joint will remain on the first few frames.

Table 7.2 shows the number of flat spots that occur across all the motions sourced

from the BCU and HDM05 data-sets, along with the length of the longest flat spot.

All of the 57 flat spots that occurred within the motions captured for the BCU

data set, occurred on the first two frames and would have a very little impact of

on the performance of a time warping algorithm. The small number of flat spots

that occurred within the motions sourced from the HDM05 data-set, had longer

flat spots, which would potentially impact on the performance of a time warping

algorithm.

Table 7.2: The number of times flat spots occur and the length of the longest flat spot, in
motions sourced from each data source.

Data Source Total Frames Across
All Motions

No. of Flat Spot
Occurrences

Longest Flat
Spot (frames)

BCU 59,550 57 2
HDM05 91,138 4 24

252



7.3.4 Comparison of BCU and HDM05 Data-sets

To identify if the on-line time warping algorithms perform differently when applied

to motions sourced from the BCU or HDM05 data sets, the mean similarity test

scores of a selection of comparable motions, containing similar movements, where

compared in Table 7.3. Four types of motion were compared in Table 7.3 comprising

of: jumps; walk; sneaky walk; and transitioning from sitting to walking. In each

case the the time warping algorithms performed better when applied to the motions

from BCU data set.

Table 7.3: A comparison of the mean similarity test scores attained by on-line time warping
algorithms for comparable motions sourced from the BCU and HDM05 data sets.

Ma Mc w40 Mc w80
Source Data-Set Motion (+Type V) (+Type V)
BCU 3 Jumps 0.339 0.443 0.437
HDM05 3 Jumps 0.180 0.225 0.240
BCU Walk 0.674 0.634 0.525
HDM05 Walk 4 Steps L Start 0.372 0.400 0.392
BCU Sneaky Style Walk 0.462 0.474 0.430
HDM05 Sneak 4 Steps R Star 0.157 0.203 0.187
BCU Sit Walk 0.633 0.611 0.581
HDM05 Stand Up Sit Chair 0.146 0.132 0.155

There are two differences between the BCU and HDM05 data-sets, which could

potentially explain the differences in the way the time warping algorithms perform,

when applied to motions from each source:

• Unlike the BCU data-set the HDM05 data set comprised of motions performed

by different actors. All the motions in the BCU data-set where performed by

one actor.

• While both data-sets were recorded using Vicon motion capture systems, they

are not the same systems. The BCU and HDM05 data-set was created in

2018 and 2005 respectively, on capture system that would would have been

representative of the state of motion capture technology at the time. The lower

mean noise amplitude and shorter flat spot of the motions sourced from the

BCU data-set, are indicative of the improvements in the accuracy of motion
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capture solutions between 2005 and 2018.

This section has identified several differences between the HDM05 and BCU data-

sets, such as: the amount of noise in each data-set; the occurrence flat spots; and

the method of capture. Accurately evaluating the individual impact of each of these

differences on the performance of the time warping algorithms, is not possible from

these data-sets and would require data-sets specifically designed or synthesised for

this purpose.

7.4 Mistimed Starts

7.4.1 Description of Mistimed Starts

Multiple recordings captured of the same motion often start at different points in

the motion, resulting in a mistiming between the starting points of the input and

target motions being aligned. These mistimed starts can be caused by either the

recording of a motion starting early, resulting in a delay in the motion’s movement

starting within the recording, or the recording starting late, resulting in start of the

motion being cropped.

Mistimed starts occur when there is a delay in a performer starting a motion or in

the initialising the motion capture process. This results in the start of the performers

movement and the capture process not being synchronised.

An example of a mistimed start can be seen in Figure 7.7, which shows the motion

curve of the X axis of the right hip and side views of poses taken from the first 150

frames of two recordings of the same 3 Jump motion containing three jumps. The

start of Jump 01 has been cropped, removing the initiation phase of the first jump,

in which the performer crouches down to prepare for a jump. This results in Jump

01 starting approximately 100 frames 0.833 seconds ahead of the Jump 02 motion.

This section explores the impact of mistimed starts on the performance of online

time warping algorithms, analysing the impact of the start of an input motion being

either: ahead of the start of a target motion, referred to as a leading input within
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Figure 7.7: An example of mistiming between two jump motions, in which the recordings
starts at different points in the motion. The recording of Jump 01 starts the end initiation
phase of the first jump, while the recording of Jump 02 starts at the beginning of the
initiation phase

.

this study; or behind the start of a target motion, referred to as a trailing input

within this study.

7.4.2 Identifying and Visualising Mistimed Starts

The alignment of two mistimed motions containing a leading input, results in an

alignment path in which the first frame of the input motion is mapped to multiple

frames at the start of the target motion. Until the target motion catches up to the

input motion, there are no better frames than the first frame of the input motion,

to map to the target motion. Examples of this can be seen in Figure 7.8, which

contains a number of plots of alignment paths for pairs of motions with a leading

input. The alignment path produced by the offline DTW algorithm, shown in light

blue, starts with a flat line, mapping the first η number frames of the target motion

to the first frame of the input motion. Therefore, the gap between the motions (i.e.

the number of frames by which the input motion leads), is equal to η, and a sample

pair of motions with a leading input, can be identified if their DTW alignment path

has an η > 1.

The alignment of two mistimed motions containing a trailing input, results in first

η′ frames of the input motion being skipped and not mapped to the target motion.

As the first few frames of the input motion are outside of the movement contained in
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the target motion, they are not required. Examples can be seen in Figure 7.9, which

contains a number of plots of alignment paths for pairs of motions with a trailing

input. The alignment path produced by the offline DTW algorithm, again shown in

light blue, starts at frame η′ of the input motion. Therefore, the gap between the

motions (i.e. the number of frames by which the input motion trails), is equal to η′,

and a sample pair of motions with a trailing input, can be identified if their DTW

alignment path has an η′ > 1.

The DTW alignment paths for every sample motion pair within the data set com-

piled in Chapter 5, were searched to identify motions with leading or trailing inputs.

Two motions were identified, Walk Circle 6 Steps R Start and Right Turn,

which have samples with leading and trailing input motions with a range different

size gaps of η and η′ respectively. Samples containing either of the two identified

motions where selected with an approximately evenly distributed gap sizes of η and

η′, and plotted in Figures 7.8 and 7.9. It should be noted that each sample plotted

in Figure 7.9 contains the same two recordings as the respective sample in Figure

7.8, but with recordings assigned to the input and target motions swapped around

to produce an inverted version of the alignment.

Each plot in Figures 7.8 and 7.9 shows the alignment path plotted by each of the

online time warping algorithms presented in Chapter 5 as well as that of the offline

DTW algorithm, for a given sample pair of motions. The alignment paths have been

overlaid over a heat-map of the accumulated cost matrix of the two motions within

the sample.

The heat-map visualises how the accumulated cost matrix influences the alignment

path determined by each algorithm. The dark blue area of the heat-map indicates a

low cost area with minimal difference between the poses input and target frames, the

bright yellow areas indicates areas of high cost with a substantial difference between

the input and target frames. The alignment algorithms’ objective is to plot a path

through the dark blue, low cost, areas of the matrix, to determine the most cost

effective alignment.
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(a) Alignment paths plotted when time warping Walk Circle 6 Steps R Start motions.
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(b) Alignment paths plotted when time warping Turn Right motions.

Figure 7.8: Alignment paths plotted by different time warping algorithms, to align a
selection of Walk Circle 6 Steps R Start and Turn Right motions. Every plot has
a leading input which starts ahead of the target motion by a given number of frames.
This should result in an alignment starting with the first frame of the input motion being
mapped to multiple frames of the target motion, as the target motion catches up to the
input motion. The deviation between the alignment paths produced by each online time
warping algorithm and offline DTW, can seen in Table 7.4.
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(a) Alignment paths plotted when time warping Walk Circle 6 Steps R Start motions.
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(b) Alignment paths plotted when time warping Turn Right motions.

Figure 7.9: Alignment paths plotted by different time warping algorithms, to align a
selection of Walk Circle 6 Steps R Start and Turn Right motions. Every plot has a
trailing input which starts behind the target motion by a given number of frames. This
results in an alignment that should start with the first few frames of the input motion
being skipped, and not being mapped to the target motion as they are not required. The
deviation between the alignment paths produced by each online time warping algorithm
and offline DTW, can seen in Table 7.5.
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7.4.3 Evaluation of Alignments

Figures 7.8 and 7.9 show that a mistiming in either direction (i.e. lead or trailing

input) can have a negative impact on the performance of an on-line time warp. An

online algorithm’s partial knowledge of the motions being aligned, in comparison

to the offline DTW algorithm’s complete knowledge of both motions, clearly has a

significant impact on the algorithm’s ability to deal with mistimed starts.

Where online algorithms fails to plot a correct alignment path, they fall into their

natural bias towards incorrectly skipping or sticking on input frames during align-

ment, as discussed in Sections 5.4.6 and 5.4.7, with algorithms Mc w40, Mc w80

tending to incorrectly skip frames and algorithms Ma, Mb w10, Mb w20, Mb w40,

Mb w80, Mc w10 and Mc w20 tending to incorrectly stick on input frames during

alignment.

To provide a more accurate view of the quality of the alignment paths plotted in

Figures 7.8 and 7.9, the absolute average deviation in frames, between alignment

paths produced by each on-line time warping algorithm and the offline DTW time

warping algorithm, in each plot, are shown Tables 7.4 and 7.5. The method for cal-

culating the average frame deviation is described in more detail in Section 5.4.4, and

utilises a version of Equation 5.15, without the normalisation based on the length of

the motion. The lower the deviation the better the algorithm has performed. Align-

ment paths with a deviation of less than 18 frames from the path produced by the

offline DTW algorithm, are considered good alignments and have been highlighted

in green. According to Hoyet, McDonnell and O’Sullivan (2012), timing errors of

less than 150ms (18 frames) in interactions between two animated characters are

visually imperceptible.

While no one online time warping algorithm successfully plotted a good alignment

for every pair of motions, algorithm Mc w40 was able to plot a good alignment for

17 of the 20 pairs of motions tested, but was only the best performing algorithm

for 13 of the 20 pairs of motions. While the Mc w40 was reasonably consistent at

providing a good alignment (85% of motions aligned), it was not as consistent at

providing the best alignment (65% of motion aligned).
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Table 7.4: The average deviation in frames between alignments produced by various online
time warping algorithms and the offline DTW algorithm when applied to Walk Circle
6 Steps R Start and Turn Right motions, with mistimed leading inputs of a given
number for frames, using a variety of online time warping algorithms. Green and red are
used to indicate if the deviation is below the threshold at which the difference between
the online time warp and DTW alignments would be visually perceptible (i.e. below 18
frames). The alignment paths plotted for these time warps can be seen in Figure 7.8.

Motion Walk Circle 6 Steps R Start Turn Right
Time Gap (frames) 10 20 30 40 54 10 30 50 67 94
Ma 200 200 159 217 179 49 4 43 12 19
Mb w10 86 115 19 176 160 12 6 19 16 19
Mb w20 86 115 19 176 160 12 6 19 16 19
Mb w40 86 115 19 176 160 6 6 19 15 19
Mb w80 8 73 19 18 8 6 6 19 15 19
Mc w10 199 199 161 217 176 56 26 52 21 18
Mc w20 177 181 161 126 4 5 14 45 14 22
Mc w40 6 9 8 17 7 4 75 15 13 81
Mc w80 62 196 117 229 211 6 77 90 101 80

Table 7.5: The average deviation in frames between alignments produced by various online
time warping algorithms and the offline DTW algorithm when applied to Walk Circle
6 Steps R Start and Turn Right motions, with mistimed trailing inputs of a given
number of frames, using a variety of online time warping algorithms. Green and red are
used to indicate if the deviation is below the threshold at which the difference between
the online time warp and DTW alignments would be visually perceptible (i.e. below 18
frames). The alignment paths plotted for these time warps can be seen in Figure 7.9.

Motion Walk Circle 6 Steps R Start Turn Right
Time Gap (frames) 10 20 30 40 54 10 30 50 67 94
Ma 216 116 237 236 251 4 99 127 125 131
Mb w10 177 96 176 182 192 7 89 60 114 115
Mb w20 176 96 176 182 192 7 89 60 114 115
Mb w40 176 3 176 182 192 6 88 60 114 115
Mb w80 124 3 25 139 144 6 10 60 112 115
Mc w10 235 120 268 260 282 46 102 134 131 154
Mc w20 187 4 239 134 253 7 5 100 113 110
Mc w40 4 3 225 7 12 6 5 7 7 9
Mc w80 4 3 148 118 131 6 5 7 8 7
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The next best performing algorithm was Mb w80, which plotted a good alignment

for 9 of the 20 pairs of motions. This is large drop from the success rate of Mc w40,

however, for the three motion pairs that Mc w40 was not able to align, Mb w80

either achieved or came close to achieving a good alignment with deviations of 6, 19

and 25, while Mc w40 deviated by 75, 81 and 225 when aligning the same respective

motions. This demonstrates that the Mb w80 algorithm is a good complement to

Mc w40 performing well where the other algorithm is weakest. The manner in

which the Mb w80 and Mc w40 algorithms complement each other stems from the

contrasting approached taken by Methods B and C. As described in more detail in

Chapter 5, Method C achieves better alignments at a lower window size by using

a less constrained approach, determining the which input frame to map to a given

target frame, by selecting an input frame directly from an accumulated cost matrix,

while Method B takes a more constrained approach by plotting a path through the

accumulated cost matrix.

Why "Comparison to UTW" Benchmark Is Unsuitable

Within this study the performance of on-line time warping algorithms have been

compared to two benchmarks. First, is the similarity score achieved by the algo-

rithm higher than that achieved by offline UTW algorithm. Second, is the average

deviation between alignment path plotted by the algorithm and that plotted the

offline DTW algorithm, less than 18 frames. The second benchmark is utilised in

Tables 7.4 and 7.5, as the first, UTW based benchmark, is unreliable when applied

to assessing alignments between pairs of motions which start with large mistiming

errors.

As the UTW algorithm aligns based on a straight diagonal alignment path from

frame (0,0) to frame (m,n), when aligning an input motion of m frames to a target

motion of n frames. This diagonal path becomes a less accurate benchmark to

measure against, the further a mistiming error requires a correct alignment to move

away from it. Using Table 7.5 as an example, when applied to motion pairs starting

with a mistimed trailing input of 10 frames, the UTW benchmark identifies the same

set algorithms as producing a good alignment, as the frame deviation benchmark,
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for both Walk Circle 6 Steps R Start and Turn Right motions. As the the size

of the mistimed trailing input increases the similarity score achieved by the UTW

alignment becomes very low, sitting an extremely low benchmark that can be easily

satisfied by every time warping algorithm.

The similarity score attained by an alignment using the UTW algorithm for a pair of

Walk Circle 6 Steps R Start motions starting with a mistimed trailing input

of 54 frames was -0.012, while a UTW aligned pair of Right Turn motions starting

with a mistimed trailing input of 94 frames, scored -0.024. Both of these scores

are easily beaten by the alignments produced by all of the time warping algorithms

tested, despite the most of them clearly producing unsatisfactory alignments in the

respective plots in Figure 7.9.

A comparison between the good alignments identified in Tables 7.4 and 7.5, using

the second benchmark based on the deviation from the offline DTW alignment, and

the visualisations of the same alignments in plotted Figures 7.8 and 7.9, shows that

this is a reliable method of identifying good alignments.

7.4.4 Relationship Between Size of Mistiming and Window

Size

The alignments plotted for the Turn Right motion show that time warping algo-

rithms that tend to skip input frames incorrectly, perform better at aligning pairs

of motions with a trailing input, as they require a certain number of frames to be

skipped at the start of the alignment. Likewise, the same alignments also show that

time warping algorithms that tend to stick on input frames incorrectly, perform bet-

ter at aligning pairs of motions with a leading input, as they require the alignment

to stick on the first frame of the input motion at the start of the alignment. While

both trends is to be expected, it is however not consistent, both Figures 7.8 and

7.9 show the Walk Circle 6 Steps R start motion not following these trends as

closely as the Turn Right motion.

The frame deviation results in Table 7.5, shows that pairs of motions which start with

bigger trailing input mistiming errors, require time warping algorithms with larger
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forecast windows to successfully align them. This trend is more clearly demonstrated

within the results of Right Turn motion in Figure 7.9b, where the motions with

smallest mistiming error of 10 frames, can be successfully aligned by all but one of

the time warping algorithms, while the motions with three largest mistiming errors

of 50, 67 and 94 respectively can only be solved by Method C algorithms with largest

window sizes Mc w40 and Mc w80.

The trend of the performance of particular time warping algorithms dropping, as

the magnitude of the mistiming at the start of the motions gets larger, is not as

apparent with pairs of motions with leading input mistimed starts. The changes

in the amount of deviation (or error) in Table 7.4, between pairs of motions with a

smallest and largest mistimed starts, is less dramatic than in Table 7.5.

This divergence between motions with leading and trailing mistimed starts, in the

way the performance of online time warping algorithms change as the magnitude of

the mistimed start increases, is a product of the use of the windowing in the online

time warping algorithms evaluated in this study.

Aligning pairs of motions that start with mistimed leading inputs, requires a time

warping algorithm to map the first η frames of the target motion, to first frame of

the input motion, effectively sticking the alignment path to a single input frame.

Without any local continuity constraints applied, all time warping algorithms are

capable of sticking on an single input frame and aligning any number of target frames

to it. This is not the case, however, with pairs of motions that start with mistimed

trailing inputs, as these require an alignment path that starts by skipping input

frames, and the number of input frames that can be skipped between two consecutive

alignments points (i.e. two consecutive target frames), is limited by the windows size

of the time warping algorithm (i.e algorithm Mc w10 can only skip up to 10 input

frames between alignment points). This would explain why time warping algorithms

with smaller window sizes are able align pairs of motion with large leading input

mistimed starts, but not those that start with large mistimed trailing inputs.

This points to a weakness in the general approach used by the on-line time warping

algorithms used in this study. As they are ran once for every target frame, in order

263



to determine the best input frame to align each target frame to, there is no limit

to how many target frames can be mapped to a single input frame, while there is

a limit to how many input frames can be skipped between two consecutive target

frames. This is a limitation imposed by using a forecasting window and explains

the bias the online time algorithms showed towards sticking on input frames within

the aggregate plots in Section 5.4.6. This bias can be managed with approaches

such as, using the forecasting window in manner that potentially allows for more

input frame skipping as shown in with Method C or local continuity constraints as

descried in Chapter 6.

7.4.5 Impact on Motion and Alignment Quality

Figures 7.10 and 7.11 show a more detailed visualisation of the impact of mistimed

starts, with leading and trailing inputs respectively, on alignment accuracy and

motion quality. For each sample pair of motions, the alignment path, motion curves

and character poses from selected frames have been plotted, for different time warp-

ing algorithms, in the same manner as the visualisations in Section 5.4.7. Videos of

the aligned motions have been rendered and can be located and downloaded from

Randall (2022b) using the sample number.

The contrasting forms of the Turn Right and Walk Circle 6 Steps R Start

motions curves can be clearly seen, with the cyclic Walk Circle 6 Steps R Start

motion containing repetitive peaks and troughs.

Poor alignments show up as flat lines in the motion curves and repeated character

poses in consecutive frames. Figure 7.11 shows all the Method B algorithms along

with algorithms Ma, Mc w10 and Mc w20, struggling to align pairs of motions

with a mistimed trailing input starts, with flat lines occurring at various points

in the alignment. Sample number 2795 in Figure 7.10 and Sample number 3196 in

Figure 7.11, both show mistimed starts causing algorithm Mc w80 to skip frames

incorrectly at the start of the alignment. In both cases this causes the alignment to

run out of input frames early in the alignment, resulting in a flat line at the end of

the motion curve, where many multiple target frames have to be aligned to the last
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Figure 7.10: A detailed presentation of the alignments produced by online time warping algorithms, when used to align motions with a leading
input of a given number of frames.
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Figure 7.11: A detailed presentation of the alignments produced by online time warping algorithms, when used to align motions with a trailing
input of a given number of frames.
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input frame.

7.4.6 Tolerance of On-line Warping Algorithms for Mistimed

Starts

For real-world applications it is important to consider how large a mistiming gap,

between the starting points of an input and target motion, can an on-line time

warping algorithm tolerate and still produce useful alignments. To determine this,

all the pairs of motions in the data-set established in chapter 5, were group based

in the alignment plotted for them by the offline DTW time warping algorithm.

The pairs were group together based on the type (leading or trailing input) and

magnitude of the mistiming error (i.e. the gap, in frames, between the start of the

input and target motions). For each time warping algorithm the median performing

sample of motion pairs within each group was charted in Figure 7.12. In line with

Section 7.4.3, the median performing sample and subsequent Error values in Figure

7.12, are based on the average deviation of the sample alignment from the DTW

alignment, in frames. The median rather than the mean was chosen as this is less

likely to be affected by outlier results. The number above each group indicates the

number of samples within the group, the curation of the data set in Chapter 5,

means that the number of samples that start with larger mistiming gaps is small.

Figures 7.12a and 7.12b show the capability of different on-line time warping algo-

rithms to align pairs of motions with mistimed start of various sizes, with leading

inputs and trailing inputs respectively. The error values can be assessed against

the previously established benchmark of 18 frames, shown as a dash blue line in

each graph.

There is some contrast between which online time warping algorithms cope well

with different types of mistimed starts. According to Figure 7.12a, the most capable

algorithm for aligning pairs of motions starting with mistimed leading inputs is

algorithm Ma w80, which is able to cope timing gaps of up to 50 frames or 416ms.

Meanwhile, Figure 7.12b, shows that the most capable algorithm for aligning pairs

of motions starting with mistimed trailing inputs is algorithm Mc w40, which is
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(a) The performance of on-line time warping algorithms when aligning pairs of motions starting
with mistimed leading inputs of various sizes.
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(b) The performance of on-line time warping algorithms when aligning pairs of motions starting
with mistimed trailing inputs of various sizes.

Figure 7.12: Charts showing the capability of different on-line time warping algorithms
at aligning pairs of motions starting with mistimed leading inputs and trailing inputs
of various sizes. Each bar represents the median sample from each group, the Error is
the average number of frames by which the sample alignment deviates from the offline
DTW alignment. The dashed blue line represents the threshold at which timing errors
in character interactions can be perceived (Hoyet, McDonnell and O’Sullivan, 2012). The
numbers above each group of bars indicates the number of alignments the results are based
on.
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able to cope timing gaps of up to 30 frames or 250ms.

The on-line time warping algorithm that performs the most consistently across both

types of mistimed starts is Mc w40, which is able to align motions with mistimed

starts of either type to up to 30 frames, to below the benchmark error level. For

both types of mistiming error the Mc w40 algorithm dips in performance at 30 - 40

frames, with results below the benchmark, then improves to beat the benchmark at

40 - 50 frames. Beyond 50 frames the Mc w40 algorithm does beat the benchmark

in places but this is patchy. It should be noted that the small number of samples

with larger mistiming gaps, means that data is not as reliable beyond 50 frames.

There is a difference in the performances of Mb w80 and Mc w80, between aligning

pairs of motions with mistimed leading or trailing inputs. While Mb w80 is able

to align motions with a leading input mistiming of up to 50 frames, to the bench-

mark standard, it is only able to align motions with a trailing input mistiming of

up to 20 frames. As the size of the mistimed start increases, the difference in the

performance of Mb w80 between aligning motions with mistimed leading or trail-

ing inputs increases, with a median Errors of 23 and 167 frames respectively, for

mistimed starts of above 100 frames. Interestingly the performance of the Mb w80

algorithm is not as affected by the magnitude of the leading input as the Mc w40

algorithm, maintaining a more consistent performance across a mistimed starts of a

range of sizes. The Mb w80 algorithm’s capability to align motions with mistimed

leading input starts, stems from its tendency to stick on frames, as discussed in

Section 7.4.4. Therefore, this capability does not extend to aligning motions with

mistimed trailing starts which require input frames to be skipped at the start of

the alignment.

The Mc w80 algorithms tendency to skip input frames during alignment, caused

it to have a contrasting performance to that of Mb w80. The Mc w80 algorithm

generally performs poorly, only beating the DTW alignment deviation benchmark

in the "90-100 trailing input" group which contained only one sample. While it

performed consistently poorly at aligning motions with mistimed leading input
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starts of various magnitudes, when applied to motions with mistimed trailing in-

put starts, its performance improves as the magnitude of the mistiming increases,

performing better than the Mb w80 and Mc w40 algorithms at aligning motions

which start with a mistimed trailing input of greater than 60 frames.

7.4.7 Impact of Constraints on Mistimed Starts

Local constraints, as presented in Chapter 6, can potentially improve the ability

of the time warping algorithms to cope with mistimed starts. To explore this the

performance of selected time warping algorithms, with and without the Type V

local constraint implemented, were compared in Figure 7.13, when applied to both

leading input and trailing input mistimed starts of varying magnitude. The time

warping algorithms plotted were selected as they were either shown to be the best

performing algorithms in Chapter 5 or were their performance was most improved

by the use of a constraint in Chapter 6. The chart plots an Error value for each

time warping algorithm at different magnitudes, which is determined in the same

manner as that in Figure 7.12.

Figures 7.14 and 7.15, show a more detailed visualisation of the impact of constraints

on the ability of online time warping algorithms to cope with mistimed starts. The

figures show the alignment paths plotted by time warping algorithms with and with-

out constraints implemented on the left and right respectively, for selected sample

motion pairs. To help visualise the impact of the alignment on the quality of the

motion, motion curves have also been incorporated.

Impact of Constraints on Aligning Leading Input Verses Trailing Input

Mistimed Starts

Figure 7.13 shows that constraint had a larger positive impact on time warping algo-

rithms, when they were applied to pairs of motions with mistimed leading inputs

with average Error reduction of 133 frames across the selected algorithms, however,

when applied to motion pairs with trailing inputs, a smaller average Error re-

duction of 16 frames was achieved by the same algorithms, with some algorithms
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(a) The performance of on-line time warping algorithms, with and without local constraints applied,
when aligning pairs of motions starting with mistimed leading inputs of various sizes.

2 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100 100+
Size of mistimed trailing input (frames)

0

50

100

150

200

250

Er
ro

r (
fra

m
es

)

286
174 86

42
38

18

16

9

8

1

7
Ma
Mb w80
Mc w40
Mc w80

Ma + Type V
Mb w80  + Type V
Mc w40  + Type V
Mc w80  + Type V

(b) The performance of on-line time warping algorithms, with and without local constraints applied,
when aligning pairs of motions starting with mistimed trailing inputs of various sizes.

Figure 7.13: Charts showing the capability of different on-line time warping algorithms,
with and without local constraints applied, at aligning pairs of motions starting with
mistimed leading inputs and trailing inputs of various sizes. Each bar represents the
median sample from each group, the Error is the average number of frames by which the
sample alignment deviates from the offline DTW alignment. Bars with a hash pattern,
represent time warping algorithms with a the Type V constraint applied. The dashed
blue line represents the threshold at which timing errors in character interactions can be
perceived. The numbers above each group of bars indicates the number of alignments the
results are based on.
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performing worse. With the constraint implemented, the median Error for algo-

rithms Ma, Mb w80, Mc w40 and Mc W80, reduced by 48, 3, 14, 68, respectively

when applied to pairs of motions with leading inputs. In comparison, when ap-

plied to pairs of motions with trailing inputs, the constraint only produced an

average improvement in the performance of algorithms Ma and Mb w80, reducing

the Error by 76 and 9 frames respectively, with the Error increasing for remaining

two algorithms Mc w40 and Mc w80, by 57 and 12 frames respectively.

For time warps applied to mistimed leading inputs, Figure 7.13a shows the con-

straint improving the performance of every algorithm up to a mistiming magnitude

of 60 frames, with every algorithm meeting the Error level benchmark for mistimings

of up to 50 frames. In comparison, when applied to pairs of motions with mistimed

trailing inputs, Figure 7.13b shows the Type V constraint produced no improve-

ment in the Mc 40 algorithm at any magnitude, and all the constrained algorithms

only met the benchmark when applied to a mistiming errors of up to 20 frames.

The implementation of the constraint tends to be more effective at correcting align-

ment paths that incorrectly skip frames than those that incorrectly stick on frames.

In Figures 7.14 and 7.15, Samples 2897, 2795 and 3239 all show the incorrect skips in

the alignment path plotted by algorithm Mc w80 being fully resolved or reduced by

the implementation of the constraint. In contrast Samples 3196 and 2831 in Figure

7.15, both show the frame sticking in the alignment paths plotted by algorithms Mc

w10 and Ma only being partially resolved, with the algorithms still only plotting

the shallowest alignment path allowed by the constraint. Apart from algorithm Ma,

in Samples 3239 and 2897 in Figure 7.14, alignment paths that incorrectly stick

on input frames, are only partially resolved when a constraint is incorporated into

the time warping algorithm. In case of sample 2897 the incorrect sicking within

the alignment plotted by algorithm Mc w10 is made worse when the constraint is

applied to the algorithm.

The effectiveness of constraints at preventing alignment paths from incorrectly skip-

ping input frames, in comparison to preventing them from incorrectly sticking on

an input frame, is supported by the findings in Chapter 6 and the aggregate plots in
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Figure 7.14: A detailed presentation of alignments produced by online time warping algorithms, with (right) and without (left) constraints
implemented, when used to align motions with a leading input of a given number of frames.
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Figure 7.15: A detailed presentation of the alignments produced by online time warping algorithms, with (right) and without (left) constraints
implemented, when used to align motions with a trailing input of a given number of frames.
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Figure 6.6, comparing the alignment paths plotted by time warping algorithms with

and without the implementation of constraints. It also explains why the implemen-

tation of constraints produced more improvements, in the results of time warping

algorithms when applied to pairs of motions with mistimed leading inputs than

mistimed trailing inputs. Mistimed leading input starts, require the alignment

path to start by sticking on the first input frame, so improvements that reduce the

tendency of an algorithm to incorrectly skip frames will benefit this use case.

Impact of Constraints on Aligning Mistimed Starts of Larger Magnitudes

When applied to pairs of motions with mistimed starts of larger magnitudes, the

impact of implementing constraints is significantly different between motion pairs

with leading inputs, Figure 7.13a, and trailing inputs, Figure 7.13b. For example

with mistimed Errors of over 100 frames, the performance of algorithms Ma, Mc

w40 and Mc w80 improved significantly with implementation of constraints, when

applied to pairs of motions with leading inputs , with the Error for algorithms Ma,

Mc w40 and Mc w80 reducing by 50, 48 and 68 frames respectively. In comparison,

when applied to pairs of motions with trailing inputs, constraints had a limited

and sometimes negative impact on the performance of the same algorithms, with

the Error for algorithm Ma reducing by 61 frames and the Error for algorithms Mc

w40 and Mc w80 increasing by 85 and 129 frames respectively.

Mistimed starts with a larger magnitude can be seen in Sample 2901 in Figure 7.15

and Sample 2795 in Figure 7.14. In both cases constraint is preventing the algorithm

from finding the optimal alignment path, as the ideal path falls outside cells that

can reached by the constraint. While the constraint does improve the accuracy of

time warping algorithms, the limit it places on the extremity of warp that can be

achieved by the algorithm, can cause problems in cases such as this.

Impact of Constraints on Individual Time Warping Algorithms

Out of the four algorithms evaluated, the performance of Ma, was enhanced the most

by the implementation of the constraint. The algorithm consistently performed

better with the constraint applied, for both leading input and trailing input
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mistimed starts at every magnitude. The only outlier was mistimed leading input

starts between 90 -100 frames, however, this is not a reliable result as only one pair

of motions fit into this category. The Ma algorithm with the Type V constraint, is

able to align motions with mistimed leading input starts of up to 70 frames and

mistimed trailing inputs of up to 30 frames, to the benchmark standard. The Ma

+ Type V algorithm was also the only algorithm able to align pairs motions with

leading input mistimed starts of greater 100 frames to the benchmark standard.

Although not enhanced to the same extent, the Mb w40 algorithm also consistently

performed better at dealing with mistimed starts, with the constraint implemented.

Despite the improvements in performance, the implementation of the constraint

did not increase the magnitude of the mistimed starts, neither leading input or

trailing input, that algorithm Mb w40 could deal with and still meet the Error

benchmark.

When implemented with the constraint, the Mc w40 algorithm performed worse

than without the constraint, at aligning pairs of motions which start with mistimed

trailing inputs of any magnitude. In all the Samples in Figure 7.15, the constraint

is stopping the Mc w40 algorithm from skipping the required frames at the start of

the alignment. In the case of Sample 3196 the alignment path never finds it way back

to the optimal alignment path, resulting in two of the three walk cycles being skipped

in the aligned motion. The constraint has a better impact on the performance of the

Mc w40 algorithm when aligning pairs of motions with mistimed leading inputs.

The Mc w40 algorithm can meet the benchmark with mistimed leading input

starts of up to 50 frames, with the constraint implemented, compared to up to 30

frames without.

Implementing the constraint on the Mc w40 algorithm, results in smoother align-

ment paths, producing smoother motions as demonstrated by the motion curves in

all the samples in Figures 7.15 and 7.14. The jitter discussed in Section 5.4.7 is not

eliminated by the constraint but has been reduced.

The ability of the Mc 80 algorithm to align pairs of motions with mistimed lead-

ing inputs of all magnitudes is improved by the implementation of the constraint.

276



Without the constraint the Mc 80 algorithm is not able to align mistimed leading

inputs of any magnitude to the benchmark standard. With the constraint imple-

mented the algorithm is able to align mistimed leading inputs of 50 frames within

the benchmark Error level.

In regards to aligning pairs of motions with mistimed trailing inputs starts, the

implementation of the constraint on the Mc 80 algorithm produces highly contrast-

ing results, depending on the magnitude of the mistiming. At smaller magnitudes

(up to 50 frames) the constraint greatly improves the performance of the Mc 80 al-

gorithms, but at larger magnitudes (above 70 frames), the constraint greatly reduces

the performance of the algorithm.

7.4.8 Impact of Penalties on Mistimed Starts

As well as constraints, another approach to improving the ability of time warp-

ing algorithms to deal with pairs of motions with mistimed starts is to implement

penalties, as presented in Chapter 6. To explore this, the performance of the same

time warping algorithms selected in Section 7.4.7 were evaluated, with and with-

out penalties implemented, when applied to pairs of motions with leading input

or trailing input mistimed starts. Charts plotting the error values for each time

warping algorithm, for both types of mistimed starts at different magnitudes, can

be seen in Figure 7.16, for algorithms Ma and Mb w10, and Figure 7.17, for algo-

rithms Mc w10 and Mc w40. The error value for each time warping algorithm was

determined in the same manner as Figure 7.12.

The only algorithm, whose capability to align motions with mistimed starts, was

improved significantly by the implementation of the penalties was the Ma algorithm.

With penalties implemented, on average the algorithm reduced the error caused by

mistimed starts with a leading and trailing input by 29 and 76 frames respectively.

For comparison the implementation of penalties had no impact in the performance of

the Mb w10 algorithm, reduced the performance of the Mc w10, increasing the error

by an average of 11 and 18 frame for leading and trailing inputs respectively, and

only achieved a small improvement in the Mc w40 algorithm for mistimed leading
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inputs, reducing the error for by an average of 7 frames for mistimed leading

inputs and increasing the error by an average of 49 frames for mistimed trailing

inputs.

Without the implementation of penalties, the Ma algorithm is not able to align any

pairs of motions with any form of mistimed start at any magnitude, as shown in

Figure 7.16. With penalties implemented the algorithm is able produce alignments

below the Error benchmark, with mistimed leading inputs of up to 70 frames and

mistimed trailing inputs of up to 10 frames, using the normalised Pn0.5 penalty.

Interestingly, the plot at the top of Figure 7.16, shows a clearer difference between

the performance of the Pn0.5 normalised penalty and the penalties using a fixed

coefficient, than test performed in Chapter 6.

More detailed visualisations of the alignment paths plotted by the Ma algorithm,

with and without penalties applied, along with an example resulting motion curves

can be seen in Figure 7.18. Examples of time warping pairs of motions with leading

inputs can be seen on the left and trailing inputs on the right.

Figure 7.18 shows the implementation of penalties pulling the alignment towards

plotting a linear path, where each alignment point steps forward one frame in both

the input and target motions. For example Sample 3196 in Figure 7.18, shows

the Ma algorithm without a penalty, shown in green, sticking on a number input

frames when plotting an alignment. With penalties applied, the larger the penalty

weighting, the closer the alignment path plotted resembles a slope with a one to one

gradient.

Despite improving the ability of the Ma algorithm to align pairs of motions with

mistimed starts, it is important to recognize that the implementation of penalties, is

causing the a time warping algorithm to plot an alignment that more closely resem-

bles a one to one gradient, not to plot an alignment that more closely resembles the

optimal alignment path, as plotted by the DTW algorithm shown in blue. In many

cases where the alignment path plotted by the Ma algorithm incorrectly sicks on

input frames, such as Samples: 3196; 2831; 2901; and 2897, plotting an alignment

that more closely resembles a one to one gradient has also resulted in an alignment
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Figure 7.16: Charts showing the capability of the Ma and Mb w10 time warping algorithms,
with and without different penalties applied applied, at aligning pairs of motions starting
with mistimed leading inputs and trailing inputs of various sizes, against the allowable
Error or deviation from DTW, shown in as a dashed blue line.
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Figure 7.17: Charts showing the capability of the Mc w10 and Mc w40 time warping algo-
rithms, with and without different penalties applied applied, at aligning pairs of motions
starting with mistimed leading inputs and trailing inputs of various sizes, against the
allowable Error or deviation from DTW, shown in as a dashed blue line.
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Figure 7.18: A detailed presentation of alignments produced by online time warping algorithms, with and without penalties implemented, when
used to align pairs of motions starting with mistimed leading inputs (left) and trailing inputs (right) of a given number of frames.
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that also more closely resembles the optimal alignment path, resulting in the im-

plementation of a penalty, improving the alignment. In other cases where the Ma

algorithm has already found a reasonable alignment path, such as Sample 2795, plot-

ting an alignment the more closely resembles a one to one gradient has resulted in

plotting an alignment that is further away from the optimal path. Interestingly, the

algorithm with the more lightly weighted penalty that uses a normalised coefficient,

Ma + Pn0.5, has avoided this problem.

The implementation of penalties effectively reduces the occurrence of alignments

sticking on input frames, regardless whether the sticking results in a correct or in-

correct alignment. A comparison of the alignment paths plotted in Figure 7.18 by

the Ma algorithm shown in green, when aligning mistimed leading inputs on the

left and mistimed trailing inputs on the right, demonstrates the algorithms greater

tendency to incorrectly stick on input frames when aligning mistimed trailing in-

puts than mistimed leading inputs. Therefore the implementation of a penalty

in the Ma algorithm is more likely have a positive impact with mistimed trailing

inputs, where alignment paths sticking on input frames is more likely to result in

an incorrect alignment, than with mistimed leading inputs, where the alignment

path is required to stick on input frames at the start of the alignment.

Another effect of algorithms with larger penalties plotting alignment paths that are

closer to a one to one gradient, can be seen in the results for the Ma algorithm

when time warping mistimed trailing inputs, in Figure 7.16. It shows the optimal

strength of the penalty changing from small, with smaller mistiming magnitudes, to

large, with larger mistiming magnitudes. The Ma algorithm, tends to produce poor

alignments when time warping pairs of motions with larger mistiming magnitudes,

which are more likely to be improved by an alignment path resembling a one to one

gradient.

Alignment paths that more closely resemble a one to one slope result in smoother

motion curves. Examples of this can be seen Samples 2897, 2901 and 2831 in Figure

7.18, where the straight one to one slopped alignment paths plotted using a fixed

penalty of 0.025 (Ma + Pf0.025 ), have produced smoother motion curves than the

282



less linear alignments paths plotted by the normalised penalty of 0.5 (Ma + Pn0.5 ).

7.4.9 Conclusions on Mistimed Starts

An overview of how the performance of best performing time warping algorithms,

with and without penalties and constraints applied, are effected by mistimed lead-

ing input and trailing input starts, can seen in Tables 7.6 and 7.7 respectively.

The tables show the median deviation of the alignment paths produced by each

time warping algorithm from the path plotted by the DTW algorithm, for mistimed

inputs of different magnitudes. The cells highlighted in green are deviations of less

than or equal 18 frames from the alignment path plotted by the DTW algorithm

and therefore satisfy the frame deviation benchmark. This visualises the magnitude

of mistimed start that the each time warping algorithm is able to deal with, while

still achieving an acceptable quality of temporal alignment.

The on-line warping algorithms presented in this study cope with mistimed leading

input starts better than trailing input starts. This trend is most clearly demon-

strated in the best performing algorithms such as: Ma with a Type V constraint

applied, which could align leading inputs of up to 70 frames but trailing inputs

of up to only 30 frames, to within the frame deviation benchmark standard; or algo-

rithm Mb w80 with a Type V constraint applied, which could align leading inputs

of up to 50 frames but trailing inputs only up to 20 frames, to the benchmark. As

discussed in this chapter the trend is driven by the tendency of these time warping

algorithms to stick on input frames when plotting an alignment.

Summing the frame deviations for a range of magnitudes across both mistimed trail-

ing and leading inputs allows time warping algorithms with the most consistent

performance to be identified. When summing the deviations of both type of mist-

imed starts, for magnitudes up to 30 (250ms) and 60 (500ms) frames, the Mc w40

algorithm is the best performing algorithm in both cases, with a total deviation of

29 and 189 frames respectively.

In real world scenarios, mistimed starts result from temporal differences between

the start of the time warp and the motion being performed. These can be caused
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Table 7.6: The performance of different time warping algorithms at aligning pairs of mo-
tions, starting with mistimed leading inputs of various sizes. Cells shown in green are
where most of the alignment paths plotted, deviate less than the benchmark of 18 frames
from alignment path plotted by the DTW algorithm.

Size of mistimed leading input in frames

Warping Method 2 -10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100 100+

Ma 85 87 74 74 82 51 55 73 73 19 66

Ma + Type V 7 8 10 11 12 13 10 21 32 68 16

Ma + Pn0.5 7 8 10 10 14 10 11 23 30 71 25

Ma + Pn2.0 13 18 27 34 43 44 54 54 86 64 80

Mb w80 11 12 15 18 13 19 10 41 36 19 23

Mb w80 + Type V 9 9 11 13 11 19 11 16 15 44 26

Mc w40 8 9 10 19 18 39 12 42 47 81 74

Mc w40 + Type V 8 8 9 14 11 18 15 18 31 51 27

Mc w40 + Pn0.5 8 8 10 19 14 23 13 41 54 73 63

Mc w40 + Pn2.0 8 8 11 18 16 29 10 37 35 71 14

Mc w80 82 98 83 71 105 100 108 44 127 80 116

Mc w80 + Type V 8 8 9 15 16 37 22 29 22 52 48

Table 7.7: The performance of different time warping algorithms at aligning pairs of mo-
tions, starting with mistimed trailing inputs of various sizes. Cells shown in green are
where most of the alignment paths plotted, deviate less than the benchmark of 18 frames
from alignment path plotted by the DTW algorithm.

Size of mistimed trailing input in frames

Warping Method 2 -10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100 100+

Ma 84 108 114 140 151 180 214 169 245 131 221

Ma + Type V 8 13 16 37 85 99 117 114 164 114 159

Ma + Pn0.5 7 20 35 64 83 115 104 111 142 107 140

Ma + Pn2.0 14 20 36 51 60 70 70 74 113 86 127

Mb w80 13 18 30 74 87 134 115 116 175 115 167

Mb w80 + Type V 11 17 21 67 79 118 102 100 161 113 156

Mc w40 8 11 11 24 14 19 65 111 50 9 107

Mc w40 + Type V 8 13 22 46 96 110 126 114 207 118 192

Mc w40 + Pn0.5 7 10 13 31 22 65 92 111 204 102 130

Mc w40 + Pn2.0 7 9 15 41 48 98 133 114 248 104 174

Mc w80 67 74 70 70 60 47 25 29 41 7 33

Mc w80 + Type V 8 10 12 21 19 33 34 109 130 118 162
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by delays in either either the algorithm initiating the time warp, causing leading

inputs or performer starting the movement, causing trailing inputs. Delays in a

performer starting a movement are likely to be harder to manage and less predictable

than delays in the initiating the time warping algorithm. Therefore, time warping

algorithms are more likely to need to deal with mistimed trailing inputs, which

the online time warping algorithms in this study have been shown to be weaker at

dealing with.

To attain consistent results a performer needs to start their motion within 30 frames

or 250ms of the time warp starting. Trained musicians have been shown to be able

to start a performance with mean accuracy of 31ms (Lidar, 2016) and participants

are able move their arms to follow a metronome with a mean asynchronicity of

19ms (Honisch, 2012). This indicates that with the use of timing techniques such as

count downs, performers would be able to time the start of the movement to within

250ms. Alternatively the start of motions could be automatically detected using

prediction algorithms based on neural networks (Carrara et al., 2019) or Support

Vector Machines (SVM) classifiers (Oh et al., 2016).

7.5 Speed Differentials

No two performances of a given motion will be performed at exactly the same speed,

therefore, a useful time warping algorithm should be able cope with variations in

the speed at which motions are performed by a subject. This section explores how

well the on-line time warping algorithms in this study are able to align input and

target motions, in which the motions have been performed at different speeds.

7.5.1 Visualising the Impact of Speed Differentials on Align-

ment

To visualise the impact of motions performed at different speeds, on the performance

of the on-line warping algorithms presented in this study. Examples of motion

pairs, in which the same movement has been performed at different speeds and with

minimal mistiming between the starts of two motions, were identified. The alignment
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paths plotted by the time warping algorithms for each of these examples, can be

seen in Figures 7.19, 7.20, 7.21 and 7.22, along the resulting motion curves. The

two samples in each figure show the alignment of the same two motions in opposite

directions. The sample with shortest motion set as input motion, is presented on

the left, while the sample with shortest motion set as the target motion is presented

on the right. For each sample the alignment paths plotted by the standard on-line

time warping algorithms are shown at the top, algorithms with the Type V constrain

applied are shown in the middle and the Ma algorithms with penalties applied are

shown at the bottom.

The performance of the samples in Figures 7.19, 7.20, 7.21 and 7.22, with faster

input motions and faster target motions, is summarised in Tables 7.8 and 7.9

respectively. They show the average deviation of the alignment path plotted by

each time warping algorithm from the DTW alignment. Where the result is high

lighted in green the alignment is within the frame deviation benchmark of 18 frames.

7.5.2 Impact of Speed Differentials on Standard Time Warp-

ing Algorithms

Tables 7.8 and 7.9 show that the on-line time warping algorithms are significantly

better at aligning pairs of motions, in which the movement is performed faster in the

input motion, than where the movement is performed faster in the target motion.

Out of the 48 combinations of sample motion pairs with faster inputs and time

warping algorithms, as presented in Table 7.8, 42 met frame deviation benchmark.

This is in comparison to only 18 of the combinations using sample motion pairs with

faster targets, in Table 7.9.

The difference in the performance of the on-line time warping algorithms, between

aligning pairs of motions with fast inputs and pairs with fast targets, can be seen

in the Figures 7.19, 7.20, 7.21 and 7.22.

The alignment paths plotted for the fast input motion pairs, on the left side of each

figure, show better quality alignments, with many of the time warping algorithms

able plot alignment paths that resembled that of the blue DTW alignment path. For
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Figure 7.19: The alignment paths and motion curves, resulting from time warping two motions in which the same movements have been performed
at different speeds. The same two motions have been time warped in different directions in samples 214 and 215. The input motion is performed
faster than the target motion in the left hand sample and visa versa on the right.
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Figure 7.20: The alignment paths and motion curves, resulting from time warping two motions in which the same movements have been performed
at different speeds. The same two motions have been time warped in different directions in samples 334 and 335. The input motion is performed
faster than the target motion in the left hand sample and visa versa on the right.
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Figure 7.21: The alignment paths and motion curves, resulting from time warping two motions in which the same movements have been performed
at different speeds. The same two motions have been time warped in different directions in samples 842 and 843. The input motion is performed
faster than the target motion in the left hand sample and visa versa on the right.
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Figure 7.22: The alignment paths and motion curves, resulting from time warping two motions in which the same movements have been
performed at different speeds. The same two motions have been time warped in different directions in samples 2642 and 2643. The input motion
is performed faster than the target motion in the left hand sample and visa versa on the right.
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Samples 214 and 842, all the standard time warping algorithms, without any penalty

or constraint applied, were able to plot acceptable alignment paths. In Sample 334

the only standard time warping algorithm to fail was Mc w80, while Ma, Mc w10

and Mc w20 failed in Sample 2642.

The alignment paths plotted on the right for the samples with fast target mo-

tion pairs, have clearly resulted in poorer alignment, with many alignments paths

deviating considerably from the blue DTW path, while many of the resulting mo-

tion curves show limited resemblance to the target motion. Out of the standard

algorithms, Mc w80 was the best performing algorithm for aligning faster target

motion pairs, producing a useful alignment in 3 out for 4 examples. As seen in

Section 5.4.6, many of the time warping algorithms fail by incorrectly sticking on

input frames when plotting an alignment. These can be seen by the horizontal lines

in the alignment paths and subsequent flat lines in the motion curves.

The tendency of the on-line time warping algorithms to stick on input frames appears

to be beneficial when aligning pairs of motions with a faster input. The frame

sticking keeps the alignment on track when the correct alignment path is shallower

than a 1:1 diagonal slope. For faster target motion pairs, the opposite is true,

with algorithms that have a tendency to skip frames, such as Mc w80 performing

better, correctly plotting alignment paths that are steeper than a 1:1 diagonal slope.

7.5.3 Impact of Constraints and Penalties on Dealing with

Speed Differentials

Neither the implementation of constraints or penalties consistently improved the

performance of any given time warping algorithm in all cases. In both cases the

implementation of constraints and penalties had a more positive impact on the

alignment of faster target motion pairs. Tables 7.8 and 7.9 show that constraints

resulted in an improved alignment in 6 out of 16 cases with faster inputs, compared

to 12 out of 16 for cases with faster targets. They also show a similar trend with

penalties, which improved the alignment in 5 out if 16 cases with faster inputs,

compared to 8 out of 16 cases with faster targets. This is to be expected as the

291



Table 7.8: The performance of different on-line time warping algorithms at aligning pairs
of motions, in which the movements are performed faster in the input motion.

Sample No. 214 334 842 2642

Motion Deposit Floor
R Hand

Elbow To Knee
3 Reps L Start

Jog Left Circle
6 Steps R Start

Stand Up Sit
Chair

Input Duration Frames 254 319 352 301
Target Duration Frames 321 489 392 327
Duration Difference (%) 79% 65% 90% 92%
Ma 5 2 5 129
Ma + Type V 7 4 1 12
Ma + Pn0.5 6 6 8 3
Ma + Pn2.0 13 67 33 14
Mb w80 4 2 2 10
Mb w80 + Type V 4 3 1 11
Mc w40 7 4 3 10
Mc w40 + Type V 5 5 5 22
Mc w40 + Pn0.5 6 5 3 9
Mc w40 + Pn2.0 7 7 4 108
Mc w80 6 28 3 9
Mc w80 + Type V 6 6 5 13

Table 7.9: The performance of different on-line time warping algorithms at aligning pairs
of motions, in which the movements are performed faster in the target motion.
Sample No. 215 335 843 2643

Motion Deposit Floor
R Hand

Elbow To Knee
3 Reps L Start

Jog Left Circle
6 Steps R Start

Stand Up Sit
Chair

Input Duration Frames 321 489 392 327
Target Duration Frames 254 319 352 301
Duration Difference (%) 79% 65% 90% 92%
Ma 127 198 141 127
Ma + Type V 37 21 6 88
Ma + Pn0.5 40 61 4 73
Ma + Pn2.0 17 103 30 19
Mb w80 49 132 6 104
Mb w80 + Type V 45 117 7 55
Mc w40 55 7 4 127
Mc w40 + Type V 36 82 8 108
Mc w40 + Pn0.5 57 7 5 133
Mc w40 + Pn2.0 56 188 6 135
Mc w80 10 11 87 12
Mc w80 + Type V 14 11 7 17
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poor alignment achieved by the time warping algorithms without a constraint or

penalty, allowed more opportunity for a better alignment to be achieved.

According to Tables 7.8 and 7.9, the algorithms that performed the most consistently

at aligning pairs of motions, with either faster inputs or faster targets, to within

a deviation (or Error) of 18 frames, were Mc w40 (6 out of 8), Mc w40 + Pn0.5 (6

out of 8), Mc w80 (6 out of 8) and Mc w80 + Type V (8 out of 8).

In some cases, the use of a constraint or penalty when aligning a motion pair with

a faster input, has resulted a significant drop in the quality of alignment. For

example the use of the Pn2.0 penalty with algorithm Ma, increased the deviation

(or Error) in the alignment from 2 to 67 for Sample 334 and from 5 to 33 in the case

of Sample 842.

Out of the three constraint and penalty methods shown in Table 7.8 (Type V, Pn0.5,

Pn2.0 ), the Pn0.5 penalty was the only approach that did not result in an alignment

with a deviation above the allowed 18 frame benchmark. While the Pn0.5 penalty

did significantly improve the alignment of the Ma algorithm in Sample 2642, algo-

rithms with a Pn0.5 penalty applied, perform marginally worse in 5 out of 8 cases

with faster inputs, compared to the same algorithm without a constraint or penalty

applied. The sample motion pairs with a faster input, shown on the left of Figures

7.19, 7.20, 7.21 and 7.22, show penalties with large weightings (Pf0.1 and Pn2.0 ),

causing the Ma algorithm to incorrectly skip input frames during alignment.

Tables 7.8 and 7.9 show the low weighted Pn0.5 penalty out performing the larger

weighted Pn2.0 penalty in 14 out of 16 cases.

As seen previously in Section 5.4.7, the use of constraint and penalties with al-

gorithms based on Method C, results in smoother motion curves. With penalties

producing the smoothest curves.

7.5.4 Conclusions on Speed Differentials

Overall the time warping algorithms presented in this study are better at aligning

pairs of motions with a faster input motion, than those with a faster target
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motion.

The Mc w80 algorithm with a Type V constraint is the best performing time warping

approach when dealing with speed differentials, especially in cases where a faster

input or faster target are equally likely to occur. However, this approach is

computationally expensive, therefore without further optimisation of the algorithm,

the Mc40 algorithm would have to be used to avoid dropping frames.

As discussed in Chapter 6, constraints are more effective at controlling the tendency

of algorithms to incorrectly skip input frames, than the tendency to stick on input

frames, during a time warp. Hence, the Type V constraint is particularly effective

when used with the Mc w80 algorithm.

The findings in this section suggests that the performance of the online time warping

algorithms presented in this study, could potentially be optimised by re-sampling

the input motion to increase its speed, using UTW. As only a limited number of

samples have been reviewed in this section, this would need further exploration.

While this section has presented some useful findings, they are based on a small

selection of samples, with further research required to confirm if these are more

generalizable. Such a study could also consider the impact of multi-modal speed

differentials with a mixture of faster input and faster target segments within the

same motion.

When designing such a study, a key point to consider from the study presented

in Randall, Williams and Athwal (2017), is that a study using simulated speed

differentials must not use pairs of the same motion recording, with one motion

warped to change its duration. The performance of the time warping algorithms

presented in this study, would be artificially high if applied to aligning warped

versions of the same recording, as all the joints in motion would agree on the same

alignment path. The variations in the timing and poses of individual joints that

naturally occur between separate recordings of the same motion, often cause joints to

contradict each other regarding which alignment path is optimal. A better approach

to simulating speed differentials would be to use DTW to warp motion A to the
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same duration as motion B, then use then use UTW to change duration of one of

the motions as desired.

Table 7.10: Tables showing the performance of different online time warping algorithms,
when aligning pairs of motions with either an input or target motion that has a shorter
duration. The tables are split into algorithms with no penalty or constraint (top), with
constraints (middle) and with penalties (bottom).

Algorithm Ma Mb w10 Mb w20 Mb w40 Mb w80 Mc w10 Mc w20 Mc w40 Mc w80

Constraint/Penalty None None None None None None None None None

Shorter Input 0.109 0.180 0.185 0.206 0.238 0.091 0.208 0.275 0.164

Shorter Targets 0.083 0.078 0.085 0.121 0.175 0.064 0.184 0.267 0.207

Algorithm Ma Mb w10 Mb w20 Mb w40 Mb w80 Mc w10 Mc w20 Mc w40 Mc w80

Constraint/Penalty Type V Type V Type V Type V Type V Type V Type V Type V Type V

Shorter Inputs 0.274 0.233 0.238 0.255 0.266 0.097 0.199 0.267 0.280

Shorter Targets 0.200 0.085 0.094 0.129 0.170 0.033 0.106 0.207 0.267

Algorithm Ma Ma Ma Ma Ma Ma Ma

Constraint/Penalty None Pf0.025 Pf0.05 Pf0.1 Pn0.5 Pn1.0 Pn2.0

Shorter Inputs 0.109 0.229 0.169 0.113 0.254 0.198 0.109

Shorter Targets 0.083 0.158 0.118 0.102 0.178 0.138 0.104

The characteristic of on-line time warping algorithms presented in this study, are

better able align pairs of motions with faster inputs, aligns well with the charac-

teristic that they are better able to align pairs of motions with a leading inputs,

established in Section 7.4. The tendency for these on-line time warping algorithms

to stick on input frames during an alignment, better supports time warping these

types of motion pairs.

Both faster inputs and leading inputs will have motion pairs in which the input

motion is shorter in duration. Table 7.10 provides a more general picture of how the

time warping algorithms perform when aligning, motion pairs with a shorter input

motion (likely caused by a faster input or leading input), compared to motion

pairs with shorter target motion (likely caused by a faster target or trailing

input). Any of the 3248 sample motion pairs in the study’s data-set with a difference

of greater than 18 frames, between the duration’s of input and target motions, were

split into two bins, depending on weather the input or target motion was shorter.

This process resulted in 1258 samples in each bin. Standard on-line time warping

algorithms, with no penalty or constraint applied, are shown at the top, algorithms
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with constraints are shown in the middle and algorithms with penalties are shown

at the bottom.

Table 7.10 shows almost every time warping algorithm performing better, when

aligning pairs of motions with a shorter duration input motion. The only exception

is the Mc w80 algorithm without constraints or penalties applied, due to being the

only approach with tendency to skip input frames. Applying a Type V constraint

to the Mc w80 algorithm, increases its performance at aligning pairs of motions

with shorter target motions, resulting in an algorithm that performs consistently

well across both types of motion pairs. Another algorithm that performs well across

both types of motion pairs is Mc w40. The consistent performance of the Mc w40

algorithm combined with smaller amount of computation required, when compared

to the Mc w80 + Type V algorithm, reinforced why this is best choice of algorithm

for on-line time warping scenarios which require forward plotting of the alignment

path.

7.6 Summary

This chapter explored the impact variety of different movement and motion data

characteristics on the performance of the on-line time warping algorithms presented

within this thesis. Suggestions were made as to how these characteristics could be

controlled and particularly impactful characteristics were studied in some detail.

Key considerations and suggestions arising from this chapter, regarding the imple-

mentation of on-line time warping algorithms, are as follows:

• Rather than use a generic set of joint weights, joints should be weighted ac-

cording the joints being utilised by a specific motion. Pre-recorded motions

can be analysed to establish an optimal set of weights, which are specific to a

motion.

• Data errors can occur during motion capture, for example if a system drops

frames during recording, overly constrains the range of movement of a given

joint or captures noisy data. There is need to evaluate the occurrence of these
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characteristics in any motion capture system that is planned to be used as a

source of motion data for on-line time warping.

• There is potential for the on-line warping algorithms to perform sub optimally

when the input and target motions are performed by different subjects, in

comparison to when they are performed by the same subject.

• The on-line time warping algorithms presented in this thesis cope with mist-

imed leading input starts better than trailing input starts. Across both types

of errors the Mc w40 algorithm was able to cope most consistently.

• To attain consistent results a performer needs to start their motion within 30

frames or 250ms of the time warp starting. A solution for automatically de-

tecting the start of the motion could be implemented to potentially illuminate

this issue.

• The on-line time warping algorithms presented in this thesis are better at

aligning pairs of motions with a faster input motion, than those with a faster

target motion. Although the Mc w80 +Type V algorithm was shown be the

best at dealing with speed differentials, it is suggested that the Mc w40 should

still be used to keep computational requirements within a feasible threshold.

• As the on-line warping algorithms performed better at aligning pairs of motions

with a faster input motion, their performance could potentially be optimised

by increasing the speed of the pre-recorded input motion before time warping.

As shown in the suggestions above, the studies in this chapter have identified several

approaches to potentially further optimise the performance of the on-line time warp-

ing algorithms presented in this thesis. This opens up opportunities to implement

and evaluate these approaches in further work.
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Chapter 8

Conclusions and Recommendations

The primary aim of this work was to develop and evaluate an approach to on-line

temporal alignment of human motion sequences, using a forward plotting approach

to avoid the lack of continuity and non-monotonic alignment associated with existing

on-line time warping algorithms. This was achieved by first establishing an approach

to measuring the accuracy of the alignment of two motions. Existing approaches to

evaluating similarity of two motions were reviewed in Chapter 3, then this knowledge

was used to propose and evaluate an optimal approach to measuring alignment in

Chapter 4. Findings showed that the a metric based on correlation is more optimal

for measuring alignment, as it was better at discriminating between temporally

aligned and non-aligned recordings of the same movement.

A number of novel on-line time warping algorithms were then developed and im-

plemented in Chapter 5, which plot alignment paths in a forward direction rather

than backwards. The algorithms were based on established techniques use by ex-

isting time warping algorithms such as DTW. The performance of the algorithms

was evaluated using a number of tests including the metric established in Chapter

4. Findings showed that if configured correctly, a forward plotting time warping

algorithm could time warp a motion with sufficient accuracy to be potentially useful

in real-world applications.

Following this, in Chapter 6, the forward plotting online time warping algorithms
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proposed in this research were implemented with two optimisation techniques, penal-

ties and constraints, and the impact of each technique evaluated. It was found

that constraints raised the performance of most forward plotting time warping algo-

rithms. Most importantly the implementation of constraints increased the number

of time warping algorithms which work sufficiently well enough to be potentially

used in real world applications, providing a choice forward plotting time warping

algorithms to choose from.

Finally there was an exploration of the impact of different characteristics within the

motion data, on the performance of the on-line time warping algorithms in Chapter

7. The findings showed that not all characteristics adversely effect the performance

of the time warping algorithms, with the performance of some algorithms being

enhance by particular characteristics or differences between the input and target

motions being aligned.

This chapter discusses the recommendations arising from this work and potential

applications that this work could be utilised in. This chapter then considers some

of the limitations and potential challenges to implementing online forward plotting

time warping algorithms in real-world applications, before disucssing future work.

8.1 Recommendations

8.1.1 Measuring Similarity and Alignment

Different metrics should be used to measure the similarity and alignment

of two motions. Chapter 4 showed that no single metric was optimal for measuring

both the alignment and similarity of two motions. Metrics based on correlation

were shown to be the optimal choice when measuring the alignment of two motions,

while metrics based on rotational or positional distance are the optimal choice when

measuring similarity.

This shows that the similarity and alignment of two motions should not be considered

the same thing, additionally when choosing a similarity metric the use case should

be considered, in terms of what motion characteristic are a priority to be matched
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for a given application. For example when classifying a motion the overall pose of

a motion will be the priory, therefore a distance base metric using joint rotations is

the best approach. When trying to find a motion that best fits interactions within

an environment, the position or reach of the end effectors is the priority, therefore a

distance based metric based on joint position is the best approach. When trying to

blend to motions together, transfer stylistic elements between motions or evaluate

the performance of a time warping algorithm, identifying motions that are well

aligned is the priority, therefore a similarity metric based on alignment is the best

choice.

The optimal approach to measuring alignment is to use a correlation

based metric, utilising Kendall Tau correlation on joint rotations param-

eterised as displacement vectors. Parameterizing joints using displacement

vectors confirms the approach suggested by Etemad and Arya (2015), however, the

findings in this thesis suggest that Kendall Tau is a better choice than PCC, which

has previously been used. Using a correlation method based on rank correlation,

results in a similarity metric that is not affected by logarithmic differences between

rotation parameters. Kendall Tau’s use of concordant and discordant value pairs,

results in a similarity metric which is sensitive to small differences between motions.

Both these attributes are useful when measuring the alignment of two motions, how-

ever, will cause the metric to be unreliable when applied to dissimilar motions. This

should only be considered an optimal metric to use when evaluating the ability of a

time warping algorithm to accurately align similar motions.

8.1.2 On-line Time Warping of Motions

The on-line forward plotting time warping methods, to be considered for

use in real-world applications are Ma + Type V, Mc w40 and Mc w80 +

Type V. All of these algorithms meet both the UTW alignment, and the deviation

from DTW alignment path benchmarks. They should therefore be considered to

provide an accurate enough alignment for real-world applications. While the Mc

w40 algorithm is the best compromise between computational performance and

alignment performance, it is useful to have alternative algorithms that can also
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satisfy both benchmarks, especially when they complement each other in terms of

their ability to align motions with different characteristics. For example the Ma +

Type V and Mc w40 algorithms perform better at aligning a faster input motion

to slower target motion, while the Mc w80 + Type V algorithm performs better at

aligning slower inputs motions to faster target motions.

Without the use of a local constraint, the optimal size of forecast window

to use with algorithms based on Method C, is approximately a third of

the duration of the main cyclic movement within a given motion. The

performance of Method C was found the vary significantly, depending on the size

of forecast window it was implemented with. Without the implementation of a

local constraint, the performance of Method C dropped significantly when imple-

mented with too larger window size, unlike Method B. When implementing Method

C without a constraint, consideration should be given to the frequency of the most

prominent cyclic movement in a motion and the rate at which the motion is being

sampled, to determine the optimal window size to use. The most prevalent move-

ment cycle is the walk cycle, which, at a sample rate of 120Hz is typically 133 frames

in duration, approximately three times the duration of the best performing window

size for Method C.

Assuming a sample rate 120Hz, to ensure that no frames are dropped dur-

ing alignment, due to processor overload, window sizes over 40 should not

be used. The processing requirements of both Methods B and C grow quadratically

with the size of forecast window used. Window sizes of 80 where shown to take ap-

proximately 17,000µs to process, which is larger than the 8,333µs duration between

each frame of motion captured at 120Hz sample rate. This means that while the

Mc w80 + Type V algorithm performed best in some tests, it may not be feasible

to use in many scenarios. Motions could be captured at a lower sample rate, giving

more processing time between each sample, but using a large forecast window with

a low sample rate would conflict with the recommendation above.

When implementing an online forward plotting time warping algorithm,

consideration should be given to implementing it with local constraints.
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The performance of most of the online time warping algorithms proposed in this

study, improved with the implementation of constraints. Any further evolution

or adaptation of the time warping algorithms proposed in this study should also be

tested with local constraints implemented. When optimising a forward plotting time

warping algorithm, the implementation of local constraints should be prioritised over

the implementation of penalties.

8.2 Review of Aims and Objectives

The overall aim of this work was to develop and evaluate an approach to automatic

on-line temporal alignment of human motion sequences. This was achieved through

the following objectives:

1. Review existing approaches to measuring motion alignment and

trends within on-line time warping research. A state of the art review

of similarity metrics and time warping algorithms was presented in Chapter 3.

Research gaps were identified, regarding approaches to measuring the align-

ment of motions, the use of correlation in motion similarity metrics, and the

use of forward plotting in on-line time warping algorithms to produce mono-

tonically consistent results, when continuously aligning a prerecording motion

to a stream of motion data.

2. Design a robust approach to evaluating and comparing the perfor-

mance of different similarity metrics for measuring motion align-

ment. This was achieved in the methodology presented Chapter 4. Four

data-sets of motions were created, then a MAP test and an adapted version

of the Mann-Whitney U test, were used to evaluated how well each similar-

ity metric could distinguish between pairs of motions from the Aligned and

Non-Aligned data-sets and between pairs of motions from the Similar and

Dissimilar data-sets.

3. Explore and implement appropriate approaches to measuring the
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similarity and alignment of two motions, then determine which ap-

proach is optimal for measuring alignment. This was achieved in study

presented in Chapter 4. A variety of similarity metrics were implemented,

including established metrics based on distance and some novel metrics based

on correlation. There was a detailed exploration of the impact of different cor-

relation methods and approaches to parameterise angles, on the performance

of correlation base similarity metrics.

4. Develop and implement solutions for on-line time warping of human

motions, evaluating the accuracy and quality of alignments produced

by them. This was achieved in Chapter 5, in which a number of novel ap-

proaches to online time warping are presented and evaluated. Two useful

performance benchmarks were established, which could be used as threshold

to determine if the alignments produced by a time warping algorithm were

accurate enough for use in visualisation applications.

5. Assess the impact of additional optimisation techniques on perfor-

mance of on-line time warping solutions. This was achieved in Chapter

6, in which the on-line time warping algorithms presented in Chapter 5, were

optimised using penalties and constraints. The performance of the optimised

algorithms was compared to the non-optimised algorithms allowing the effec-

tiveness of each optimisation technique to be evaluated.

6. Assess the impact of characteristics in human motion and motion

data, on the performance of on-line time warping solutions, making

recommendations on how these characteristics could be managed.

This was achieved in Chapter 7 in which a number of key characteristics as-

sociated with human motion and the capture of motion data were identified.

Pairs of motions exhibiting these characteristics, were identified within the

data-set and used to evaluate their impact on the performance of the time

warping solutions proposed in Chapters 5 and 6. Where appropriate, rec-

ommendations have been made regarding how to control or mitigate against
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characteristics which have a negative impact on the performance of time warp-

ing solutions, while identifying characteristics which could potentially have a

positive impact on the performance of these solutions.

8.3 Potential Applications of This Work

The online forward plotting time warping algorithms presented and evaluated within

this thesis, are able to align a known prerecorded motion, to a partially known

motion as it is being captured, without the continuity issues associated with some

existing on-line time warping methods. This allows a prerecorded motion, that

matches the movements being performed by a live actor, performer or user, to be

aligned in real-time, provided their motion is being captured.

Importantly, aligning a matching prerecorded motion to a users motion in real-

time, gives a continuous, rather than discreet, understanding of the users temporal

position within a movement and the speed at which they are performing it. This

information can be used by a computer to provide feedback to the user within

motion or movement training applications such dance training or learning medical

procedures.

This continuous temporal information could also be used to allow a computer to

more accurately co-ordinate an opposing motion, continually updating it as a user

performs a given movement. By recording an opposing motion at the same time as

the prerecorded input motion, the alignment resulting from the on-line time warping

of the prerecorded input motion, can be used to control the opposing motion, by

applying the same alignment. The best approach would be to record the opposing

motion at the same time as recording the motion being aligned, using two performers.

The time warping algorithms proposed in this thesis, combined with the approach

discussed in this section, have a variety of potential applications as outlined in Sec-

tion 1.1. These included: coordinating the performance of a virtual character when

visualising visual effects during film production or during a live stage performance;

providing real-time feedback within motion training applications; or allowing cobots
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to interact more responsively and intuitively when working with humans.

8.4 Implementation Challenges

While the time warping algorithms proposed and evaluated in this work have been

shown to be effective, there is still a number of challenges to overcome to implement

them within a complete solution. The main challenges are outlined below and should

be considered challenges not barriers, as significant progress has already been made

within existing research, to solve these challenges.

• A method of accurately recognising when a motion starts is required, to auto-

matically initiate the time warping process and minimise mistimed starts.

• The time warping algorithms presented within this study need to be modified

to cope with frame overloading, which can occur if a time warping algorithm

does not process a frame before the next frame is captured.

• The algorithms presented within this study only temporally align motions,

there is still a need to spatially align an input motion to support interactions

between a virtual character and a live actor. This is, however, a well studied

problem (Ho, Komura and Tai, 2010; Kim et al., 2016).

• When applied to live performance or film production scenarios, there is a need

to unobtrusively capture the motion of the actor, using either a markerless

motion capture system, which may not coexist well with production lighting, or

hidden inertial sensors. The captured motion would also need to be retargeted

in real-time, to a joint system that matches that of the prerecorded input

motion or visa versa.
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8.5 Limitations and Future Work

8.5.1 Joint Weightings

All of the similarity metrics and time warping algorithms used within these studies,

where implemented using a fixed subset of equally weighted joints, considered most

pertinent to general human motion according to Lee et al. (2002) and Wang and

Bodenheimer (2003). While the choice of joints was considered and informed, joints

were not individually weighted and there was no analysis of joint movement within

motions to determine the optimal weighting to apply to each joint for a given mo-

tion. The impact of individually weighted joints and automatically determined joint

weightings on the time warping algorithms proposed in this study could be explored

further.

8.5.2 Impact of Motion Characteristics

While the impact of motion characteristics has been explored and analysed within

Chapter 7, the data-set used in this thesis did not allow the individual impact of

each characteristic to accurately evaluated. A more conclusive study needs to be

performed using data-sets in which these characteristics are properly isolated. This

study would also allow a detailed and accurate exploration of characteristics which

improved the performance of the time warping algorithms proposed in this study,

with a view to synthesising these characteristics within the prerecorded input motion

to enhance their performance.

The data-set used in Chapters 5, 6, 7, was compiled as a set of natural motions to

evaluate time warping algorithms, rather than exhibit specific characteristics. To

accurately study the impact of particular movement and data characteristics on time

warping algorithms, a data-set containing individual isolated and measured charac-

teristics is required. The creation of such as data-set may involve synthesising certain

characteristics. As discovered in the naive study presented in Randall, Williams and

Athwal (2017), aligning motion A to the same motion with a characteristic and warp

applied, A′, will not accurately assess how a time warping algorithm will perform
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when aligning two different motions. The following are two approaches which could

be taken to avoid this issue:

• Simulating more natural temporal and spatial deviations between motion A

and A′, which are independently synthesised for each joint. Deviations that

occur between similar motions could be analysed to inform this approach.

• A given characteristic could be removed or matched between two different

motions A and B, then synthesised on one of the motions.

Such a data-set would support more detailed studies of time warping and motion

manipulation techniques.

8.5.3 Simulating Time Warps

Applying time warping algorithms to simulated frames of single motion curve, would

allow a more detailed exploration of their behaviour. Different magnitudes of tempo-

ral and spatial deviation, could be simulated in controlled cyclic signals. Simulating

the alignment of frames at different phases of the motion cycle, rather than trying to

align the entire motion signal, would show how a time warping algorithm performs

across different phases of motion. This would provide an insight into how an algo-

rithm deals with peaks and troughs in a motion curve, where the directional change

may cause time warping algorithms based on forecasting to perform sub optimally.

This study may identify ways to further optimise the time warping algorithms pre-

sented in this work.

8.5.4 Perception Testing

While the time warping algorithms presented in this thesis have been evaluated

against thresholds established through perception tests (Hoyet, McDonnell and

O’Sullivan, 2012). Further perception tests could be used expand upon this work.

For example perception tests are needed to evaluate how sensitive viewers are to

motions that are out of alignment and determine the threshold of temporal devia-

tion that can be perceived by the average viewer. Such a study would more fully
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evaluate the validity of the UTW and frame deviation benchmarks proposed and

utilised in this work. Such a study would need to consider how sensitive viewers

are to misalignments in different scenarios involving different types of motion and

interactions at various distances and orientations in relation to the camera. The

aligned motions produced within this work could potentially be used as an initial

data-set for such a study.

Perception tests could be used to evaluate if the jitter within the alignments plotted

by time warping Method C are perceptible or not.

8.5.5 Similarity Metrics

Future work could explore other factors that inform the choice of similarity metric

such as computing efficiency and sensitivity to errors in motion capture data. For

applications working in real-time or with large data-sets, a trade-off of using a

slightly less accurate similarity metric for a faster search algorithm maybe more

appropriate. Additionally, the motion capture process is susceptible to errors such

as noise or gaps in the data, while these errors can be cleaned up, it is an expensive

process, so it is often desirable or necessary to work with large data-sets of uncleaned

motion data. It is therefore important to understand how different similarity metrics

are effected by the data errors described in Section 7.3.

8.5.6 COVID-19

Personal circumstances during the period of the COVID-19 pandemic impacted the

progress of this work during this period. The scope of the study was modified

to ensure its completion within the registration period. This did not effect the

contributions and findings within this work.

8.6 Impact

The optimal similarity metrics and benchmarks established within this thesis, form

a robust method of evaluating the performance time warping algorithms and in
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particular on-line time warping algorithms, which can be utilised by other researchers

working in this field.

The novel forward plotting approach to on-line time warping, opens up a range of

potential applications which require a continuous temporal alignment to be main-

tained, between a set of prerecorded data and a stream of incoming data.
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Appendix A

Joint Range of Motions

Table A.1: A specification for acceptable ROMs for key joints. The mean, µ, and stan-
dard deviation, σ, for each ROM are obtained from Boone and Azen (1979) and used to
determine the maximum acceptable ROM for the respective joint axis using equation 5.8.

Shoulder Flexion and Extension

90˚

0˚

180˚

Flexion

90˚

Extension

Flexion Extension

Sampled ROMs: Sampled ROMs:
µ = 140.7◦, σ = 4.9 µ = 43.7◦, σ = 5.8

Max ROM: 164.71◦ Max ROM: 77.34◦

Left Shoulder Constraint: Left Shoulder Constraint:
Y min = −164.71◦ Y max = 77.34◦

Right Shoulder Constraint: Right Shoulder Constraint:
Y max = 164.71◦ Y min = −77.34◦

Elbow Flexion and Extension

0˚

150˚
Flexion

Extension 10˚

Flexion Extension

Sampled ROMs: Sampled ROMs:
µ = 140.5◦, σ = 4.9 µ = 0.3◦, σ = 2.7

Max ROM: 164.51◦ Max ROM: 7.59◦

Left Elbow Constraint: Left Elbow Constraint:
Xmax = 164.51◦ Xmin = −7.59◦

Right Elbow Constraint: Right Elbow Constraint:
Xmax = 164.51◦ Xmin = −7.59◦
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Elbow Pronation and Supination

0˚

90˚90˚

Supination
Pronation

Pronation Supination

Sampled ROMs: Sampled ROMs:
µ = 75.0◦, σ = 5.3 µ = 81.1◦, σ = 4.0

Max ROM: 103.9◦ Max ROM: 97.1◦

Left Elbow Constraint: Left Elbow Constraint:
Y max = 103.9◦ Y min = −97.1◦

Right Elbow Constraint: Right Elbow Constraint:
Y min = −103.9◦ Y max = 97.1◦

Hip Flexion and Extension

0˚

Flexion

100˚

0˚

30˚ Extension

Flexion Extension

Sampled ROMs: Sampled ROMs:
µ = 121.3◦, σ = 6.4 µ = 12.1◦, σ = 5.4

Max ROM: 121.3◦ Max ROM: 41.26◦

Left Hip Constraint: Left Hip Constraint:
Xmin = 121.3◦ Xmax = 41.26◦

Right Hip Constraint: Right Hip Constraint:
Xmin = 121.3◦ Xmax = 41.26◦

Hip Outward and Inward Rotation

0˚

30˚

0˚
20˚

Outward
Rotation

Inward
Rotation

Outward Rotation Inward Rotation

Sampled ROMs: Sampled ROMs:
µ = 44.2◦, σ = 4.8 µ = 44.4◦, σ = 4.3

Max ROM: 67.24◦ Max ROM: 62.89◦

Left Hip Constraint: Left Hip Constraint:
Y min = −67.24◦ Y max = 62.89◦

Right Hip Constraint: Right Hip Constraint:
Y max = 67.24◦ Y min = −62.89◦
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Hip Abduction and Adduction

0˚ 0˚
20˚20˚

Abduction Adduction

Abduction Adduction

Sampled ROMs: Sampled ROMs:
µ = 40.5◦, σ = 6.0 µ = 25.6◦, σ = 3.6

Max ROM: 76.5◦ Max ROM: 38.56◦

Left Hip Constraint: Left Hip Constraint:
Zmax = 76.5◦ Zmin = −38.56◦

Right Hip Constraint: Right Hip Constraint:
Zmin = −76.5◦ Zmax = 38.56◦

Knee Flexion and Extension

0˚
10˚

180˚

Flexion

Extension

Flexion Extension

Sampled ROMs: Sampled ROMs:
µ = 141.2◦, σ = 5.3 µ = 1.1◦, σ = 2.0

Max ROM: 169.29◦ Max ROM: 5.1◦

Left Knee Constraint: Left Knee Constraint:
Xmax = 169.29◦ Xmin = −5.1◦

Right Knee Constraint: Right Knee Constraint:
Xmax = 169.29◦ Xmin = −5.1◦
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