IMET - International Conference on Interactive Media, Smart Systems and Emerging Technologies (2023)
N. Pelechano, F. Liarokapis, D. Rohmer, and A. Asadipour (Editors)

Exploring the Impact of Synthetic Data Generation on
Texture-based Image Classification Tasks

! C. Ashley2 and P. Fairbrass”

B. Yordanov & C. Harvey1 L. Williams'
IDMTLab, School of Computing and Digital Technology, Birmingham City University, Birmingham, United Kingdom
borislav.yordanov@bcu.ac.uk, carlo.harvey @bcu.ac.uk, ian.williams @bcu.ac.uk
28BS Insurance Services, Staffordshire, United Kingdom

c.ashley @sbs-claims.co.uk, p.fairbrass@sbs-claims.co.uk

Abstract

In this study, we introduce a novel pipeline for synthetic data generation of textured surfaces, motivated by the limitations of
conventional methods such as Generative Adversarial Networks (GANs) and Computer-Aided Design (CAD) models in our
specific context. We also investigate the pipeline’s role in an image classification task. The primary objective is to determine
the impact of synthetic data generated by our pipeline on classification performance. Using EfficientNetV2-S as our image
classifier and a dataset of three texture classes, we find that synthetic data can significantly enhance classification performance
when the amount of real data is scarce, corroborating previous research. However, we also observe that the balance between
synthetic and real data is crucial, as excessive synthetic data can negatively impact performance when sufficient real data is
available. We theorize that this might stem from imperfections in the synthetic data generation process that distort fine details
essential for accurate classification, and propose possible improvements to the synthetic data generation pipeline. Furthermore,
we acknowledge the potential limitations of our study and provide several promising avenues for future research. This work
illuminates the advantages and potential drawbacks of synthetic data in image classification tasks, emphasizing the importance
of high-quality, realistic synthetic data that complements, rather than undermines, the use of real data.
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1. Introduction

Image classification and transformations are a crucial task in com-
puter vision processes with numerous practical applications in
fields such as autonomous driving, harmonisation, robotics, and
medical imaging [ZVSL18, STT*19, DHW20]. The accuracy of
image classification models depends heavily on the quality and
quantity of data used for training [GBWC12]. However, collect-
ing and annotating large datasets can be time-consuming, expen-
sive, and sometimes even impossible, especially when dealing with
specialised domains or rare events [AMSD21]. To overcome these
limitations, synthetic data generation has emerged as a promising
solution to augment real data or even replace it entirely in certain
scenarios [MCL* 18, ABB*20].

While conventional methods for synthetic data generation, like
Generative Adversarial Networks (GANs) and Computer-Aided
Design (CAD) models, have shown success in various domains
such as medical imaging [PCQ*20,LHW™*19b,CDLA16,HFR*20],
stereo or optical flow estimation [MIF* 18] and robotic 3-D object
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classification [WPV19, CCY™*20], their inherent limitations have
prompted the need for tailored solutions in certain cases. In this
study, we propose a novel pipeline for synthetic data generation
of textured surfaces and investigate its role in image classification
tasks. Our primary objective is to determine the impact of synthetic
data generated by our pipeline on classification performance, using
EfficientNetV2-S as our image classifier and a dataset of three tex-
ture classes. We aim to explore the potential benefits and limitations
of synthetic data in this context, including the balance between syn-
thetic and real data, the impact of imperfections in synthetic data
generation, and possible improvements to the pipeline.

Our study builds upon previous research that has shown the po-
tential of synthetic data in enhancing classification performance,
especially when real data is scarce [HNBKK15, WHH18,FSB*21].
However, there is still a need for more systematic evaluations of
synthetic data quality and their impact on different types of im-
age classifiers and distributions of datasets. Our work contributes
to this effort by presenting a comprehensive analysis of the effect
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of synthetic data on classification performance, including a thor-
ough investigation of the trade-offs between synthetic and real data
across a range of data distributions in both these types of data.

The findings of this study have significant implications for the
development of image classification models that can operate effi-
ciently and accurately with limited real data. Moreover, our work
sheds light on the importance of high-quality, realistic synthetic
data that complements, rather than undermines, the use of real data.
We believe that the insights gained from this study will pave the
way for future research in synthetic data generation for image clas-
sification and related fields.

This study makes two primary contributions:

1. We introduce a pipeline for generating synthetic data of textured
surfaces, and;

2. We perform an ablation study to assess the impact of synthetic
data on the accuracy of an image classifier when used in con-
junction with varying amounts of real training data.

2. Related Work

The use of synthetic data has gained increasing attention in re-
cent years as a cost-effective and time-efficient solution to data
scarcity and annotation challenges in various computer vision tasks
[dCBV09, GRBH18, BCC*18]. In image classification, several
studies have explored the impact of synthetic data on model perfor-
mance, with mixed results depending on the specific task, dataset,
and synthetic data generation methods [MQHY20, YZY *22].

One common approach to generating synthetic data is based on
generative adversarial networks (GANs) [GPAM*20], which learn
to generate realistic images that resemble the training data distri-
bution. For instance, Zhu et al. proposed a GAN-based method for
generating synthetic data, which demonstrated improved classifi-
cation accuracy compared to using only real data [ZLQL17]. Sim-
ilarly, Momeni et al. used a GAN-based approach to generate syn-
thetic medical images for lesion classification, showing their GAN
model can be applied on unseen datasets, with different MRI pa-
rameters and diseases, to generate synthetic lesions with high di-
versity and without needing laboriously marked ground truth data
whilst enhancing model performance [MFL*21].

Other studies have focused on more specialised synthetic data
generation methods, such as texture synthesis. For example, Mu
et al. proposed a texture transfer method for generating synthetic
data of animal images, which improved classification performance
when combined with real data [MQHY20]. Similarly, Ding et al.
introduced a texture synthesis method for generating synthetic data
of skin lesions, which showed promising results in improving clas-
sification accuracy [DZL*21].

While previous research has shown the potential benefits of syn-
thetic data, there are also limitations and challenges associated with
its use. One common issue is the quality and realism of synthetic
data, which can affect model performance and generalisation. For
instance, Pereira et al. found that their results obtained on synthetic
data can misestimate the actual model performance when it is de-
ployed on real data, suggesting the importance of carefully evalu-
ating and controlling the quality of synthetic data as well as defin-

ing proper testing protocols [PKM*21]. In addition, there are ques-
tions around the balance between synthetic and real data, as well
as the optimal ratio of synthetic to real data for a given task and
dataset [MTM12]. Mogelmose et al. found that even when the syn-
thetic data covered a large part of the parameter space, it would still
perform significantly worse than real-world data.

Our study addresses some of these limitations and challenges
by proposing a pipeline for synthetic data generation of textured
surfaces and thoroughly evaluating its impact on classification per-
formance. We investigate the trade-offs between synthetic and real
data. Our work contributes to the ongoing research on synthetic
data generation for image classification and highlights the impor-
tance of high-quality, realistic synthetic data that complements real
data in enhancing model performance in image classification tasks.

3. Methodology

Our experiments focus on training an image classifier to distinguish
between three distinct categories of carpets, based on their material
composition:

1. carpets made of 100% synthetic fibres
2. carpets made of 100% wool fibres
3. carpets consisting of a blend of synthetic and wool fibres

This classification task has practical implications in the floor-
ing insurance claim handling industry, where companies must ac-
curately determine the category of a damaged carpet to provide a
replacement with comparable price and quality. Notably, our pro-
posed methodology exhibits the potential to be generalised and
utilised in other applications that involve textured surfaces.

3.1. Synthetic Pipeline

For the generation of synthetic data, we chose to construct our
own pipeline rather than relying on conventional methods such as
the use of Generative Adversarial Networks (GANs) or Computer-
Aided Design (CAD) models. This decision stemmed from the in-
herent limitations of these methodologies within our specific con-
text. GANSs, despite their proven effectiveness in data generation,
inherently operate within the confines of the distribution of the
training data [GPAM*20]. They do not possess the capacity to gen-
erate data that lies outside of this distribution. Given our training
dataset, which was tightly distributed and comprised almost exclu-
sively of top-down carpet images provided by carpet manufactur-
ers, this restriction posed by GANs was deemed detrimental. These
images were characterised by their uniform and consistent light-
ing conditions, and as such, the use of GANs would have gener-
ated synthetic data with similar lighting and camera angles. Con-
sequently, the resulting model would have lacked the capability to
generalise effectively to the real-world task of identifying carpet
materials from arbitrary photos, which are expected to display vari-
ations in lighting and viewpoint. CAD models, on the other hand,
although offering a higher degree of control over the generation
process [MQHY?20], were not a suitable choice due to the scarcity
of detailed carpet models available. The majority of existing CAD
models fail to capture the intricacies and fine texture details that
are crucial for the accurate categorisation of carpets based on their
material composition.
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Figure 1: A novel pipeline for generating synthetic data depicting textured surfaces. The pipeline combines manual filtering with automated
image processing techniques to create seamless textures and normal maps using Python scripts and batch processing in Photoshop. The syn-
thesized seamless textures and normal maps are then combined into materials within the Unity platform and utilised by the Unity Perception

Package to generate realistic synthetic images.

In light of the above constraints, we chose a tailored pipeline for
synthetic data generation. Our pipeline aimed to generate diverse,
high-quality synthetic images of carpets with varied lighting con-
ditions and camera angles, thereby enhancing the robustness and
generalisability of the machine learning model to real-world condi-
tions. The synthetic data generation pipeline devised for this study
is depicted in Figure 1. Initially, professional product photographs
were obtained from various carpet manufacturers in the UK, re-
sulting in a dataset of 3,355 manufacturer carpet images, compris-
ing 1,356 synthetic fibre carpets, 602 wool fibre carpets, and 1,397
synthetic-wool blend carpets, this dataset is partially illustrated in
Figure 2. The decision to source images from carpet manufactur-
ers was primarily influenced by the necessity to obtain images of
carpets with verified material compositions. In this context, carpet
manufacturers serve as the most reliable source, offering specific
information about the exact material composition of each carpet.
This method ensured that we could confidently categorise the im-
ages in our initial dataset, providing a reliable foundation for our
synthetic data generation pipeline.

To facilitate their integration into the synthetic data generation
pipeline, images suitable for use as textures in a 3D environment
were manually filtered, ensuring a top-down perspective, consistent
lighting, and a tileable pattern. A total of 2,676 images met these
criteria and were subsequently processed using a Python script,
which cropped the largest possible square from each image and
sorted them into one of four distinct size bins: 512 x 512, 1024 x
1024, 2048 x 2048, or 4096 x 4096. These size bins were chosen to
align with the power-of-2-based efficiency of 3D software and con-
temporary graphics hardware. To allocate images to the appropriate
bins, the script considered whether an image’s size was within 10%
of the higher bin’s dimensions, in which case it was assigned to
that bin; otherwise, it was assigned to the lower bin. This strategy

© 2023 The Authors.
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aimed to optimise texture resolution while minimising artefacts in-
troduced through upsampling.

The selected images were further processed in Adobe Photo-
shop (version 23.2.1) [Ado22] using the software’s batch pro-
cessing feature, converting them into seamless textures and gen-
erating corresponding normal maps. This procedure involved re-
sizing images to match their respective bin dimensions, applying
an offset with wrap-around to relocate the seam, and employing
Photoshop’s Content-Aware Fill [Frell, KLW12, WC12] feature
to eliminate that seam, yielding seamless textures. Subsequently,
normal maps were automatically computed based on the texture’s
colour values using Photoshop’s Generate Normal Map feature
[QLSZ18,MCC22]. The entire process is illustrated in the first row
of Figure 3. The default Photoshop parameters were used for all of
these processing steps.

Within the Unity game engine (version 2020.3.27f1) [Uni22],
individual materials were created for each texture and normal map
pair. Utilising the Unity Perception Package [Uni20], synthetic data
were generated by randomly selecting carpet materials, applying
them to a flat surface, and sampling parameters such as the vir-
tual camera’s distance and angle, carpet rotation, and light inten-
sity, colour temperature, and rotation. The Unity High Definition
Render Pipeline (HDRP) was employed for this stage, offering en-
hanced realism through its physics-based lighting. Table 1 provides
a comprehensive overview of the randomised parameters, and Fig-
ure 3 presents examples of synthetic images generated from a single
carpet material.

The synthetic data generation process described here can be ap-
plied to other tasks requiring textured surface synthetic data gener-
ation. However, it is important to note that parameter values may
need to be adjusted for the different processing steps, depending on
the specific application.
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(synthetic, wool and mixed fibres).
Generate
normal map

|
Normal map

s Content-aware

Offset by
fill

"~ 12Wand 1/2H

2 . ’ |
Cropped and Offset image Seam selected Seam removed
resized image

l—Generate synthetic images from the seamless texture and normal map—l

Figure 3: The transformation of a single image as it undergoes the various stages of the processing pipeline, followed by examples of
synthetic images generated from the processed image.
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3.2. Ablation Study mentioned carpet categories. Our training experiments utilised an

EfficientNetV2-S [TL21] image classification model, chosen for
To evaluate the efficacy of the generated synthetic data, we its near state-of-the-art performance on image classification bench-
conducted an ablation study centred around the task of train- marks and relatively smaller size compared to other state-of-the-art

ing an image classifier to differentiate among the three afore-
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Table 1: The randomised parameters in the simulation scenario
created with the Unity Perception Package

Sampled Parameter Min Value Max Value
Camera X rotation 40 90
Camera Y position 2 8
Surface Y rotation 0 360
Light intensity 40000 130000
Light temperature 5000 8000
Light X rotation 30 150
Light Y rotation 0 360

models. This allowed for expedited training and a higher number
of experiments.

In our experiments, we applied transfer learning, a prevalent ma-
chine learning technique that takes advantage of pre-training to
enhance a model’s performance on a new task. Transfer learning
has been demonstrated to improve training efficiency and accuracy,
particularly when training data is scarce [YCBL14]. Foundational
work on transfer learning includes that of Pan and Yang [PY10],
as well as recent surveys by Weiss et al.. [WKW16] and Zhuang et
al. [ZQD™*20] that offer comprehensive overviews of transfer learn-
ing techniques and applications. We employed an EfficientNetV2-S
pre-trained on the ImageNet-21K dataset [RDS*15] and fine-tuned
only the final classification layer. To the best of our understanding,
ImageNet-21K constitutes the largest freely accessible pre-training
dataset suitable for transfer learning applications. Furthermore, em-
pirical evidence suggests that a more expansive pre-training dataset
invariably correlates with superior model performance, as corrobo-
rated by Ridnik et al. [RBBNZM21], which is why we decided to
run our experiments with ImageNet-21K.

Regarding training hyperparameters, we largely adhered to those
used by the EfficientNetV2 authors in their transfer learning exper-
iments [TL21], with the exception of utilising a smaller batch size
of 64 due to hardware limitations and a dropout rate of 0.2 in the
final layer for enhanced regularization. A detailed breakdown of
the hyperparameters can be found in Table 2. We ran each train-
ing experiment for 50 epochs, which proved sufficient for model
convergence.

Table 2: The hyperparameters employed in all training experi-
ments.

Hyperparameter Value

EfficientNetV2-S
ImageNet-21K

Model architecture
Pre-training dataset

Batch size 64
Number of epochs 50
Learning rate 0.001
Optimizer Adam (default parameters) [KB14]

Loss function Categorical Cross-Entropy
Dropout rate (final layer) 0.2

We adopted a less conventional approach for fitting images to

© 2023 The Authors.
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the model’s input dimensions. Rather than resizing images to fit a
square with the appropriate dimensions, we took a central crop of
each image with the required dimensions and discarded the remain-
ing image. This approach is based on the rationale that observing
a larger area of the carpet is less crucial for material classification
than observing finer details. A central crop provides increased de-
tail at the expense of discarding parts of the image.

Moreover, we employed data augmentation during training, as
it has been proven to enhance performance and robustness in ma-
chine learning models [LHW*19a,NT18, KNF*19]. Data augmen-
tation was successfully utilised by the EfficientNetV2 authors as
well [TL21], which reinforced our decision to employ this tech-
nique. It involves applying various transformations to existing im-
ages, such as rotations, translations, flips, and colour distortions,
to generate new, similar images with slight variations. This helps
prevent overfitting and improve generalization performance, espe-
cially when training data is limited [SK19], [PW17]. The specific
augmentations applied in our training pipeline are detailed in Ta-
ble 3.

Table 3: The data augmentation applied in the training pipeline.
The Python Albumentations library was utilised for these augmen-
tations [BIK*20].

Augmentation type Min Value Max Value Probability
Rotation -90 90 0.25
JPEG compression 80 100 0.25
Blur 3 5 0.25
Brightness -0.1 0.1 0.25
Contrast -0.1 0.1 0.25
Hue -10 10 0.25
Saturation -15 15 0.25
Value -10 10 0.25
Flip horizontally and/or vertically 0.25

Our experimental data consisted of the dataset of 3,355 real car-
pet images obtained from manufacturers, used in our synthetic data
generation pipeline, and 15,000 synthetic images generated by the
pipeline. Of the real images, 3,166 were used for training and a
class-balanced set of 189 images for testing. A validation set was
deemed unnecessary, as no hyperparameter tuning was performed
and all models were trained for an equal number of epochs. Syn-
thetic images were utilised solely for training, not evaluation.

The ablation study comprised two parts. The first part investi-
gated the accuracy of image classifiers on the testing dataset when
trained on an increasing number of real images combined with a
constant number of synthetic images. We conducted these exper-
iments with 5,000 and 15,000 synthetic images, as well as with
only real images and no synthetic data supplementation, to com-
pare the accuracies. We employed 15 distinct increments of real
image quantities, providing finer resolution at the lower end and
more equal spacing thereafter. Table 4 displays the 15 increments
along with the percentage of our full real image training dataset that
each increment represents.

The second part of the ablation study involved utilising a training
set capped at 3,166 examples with varying proportions of real to
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synthetic images to examine how the accuracy evolved as the real-
synthetic ratio changed. The percentages from the same 15 steps
depicted in Table 4 were used for this experiment. To achieve 5-
fold cross-validation and yield more accurate results, all training
experiments were executed five times, with the average result being
reported.

4. Results

In this section, we showcase the outcomes of our ablation study,
which was designed to evaluate the influence of synthetic data on
the accuracy of an image classifier when combined with different
quantities of real training data. Our investigation is divided into two
segments, with the corresponding findings visualised in Figure 4
and Figure 5. The insights obtained from this study help us under-
stand the trade-offs between real and synthetic data in the context
of training image classifiers, with a focus on applications involving
textured surfaces.

4.1. Impact of synthetic data on classifier performance with
increasing numbers of real images

Figure 4 displays the 5-fold cross-validated results of the
EfficientNetV2-S image classifier’s performance when trained on
increasing quantities of real images, both in combination with a
constant number of synthetic images (5,000 and 15,000) and with-
out synthetic data supplementation. Our findings reveal that the in-
clusion of synthetic data in the training dataset initially enhances
the classifier’s accuracy when the number of real images is limited.
However, as the quantity of real images increases, the benefit of
adding synthetic data diminishes. Eventually, at a certain threshold
of real images, which for our experiments was between 316 and
474 real images, adding synthetic data begins to negatively affect
the classifier’s performance, and it becomes more effective to train
on real data exclusively. In the comparative analysis between sce-
narios that incorporated either 5,000 or 15,000 synthetic images,
discernible differences in performance emerged only in two spe-
cific instances: where no real data was incorporated and where the
smallest subset of real data (comprising 79 examples) was used. In
these particular cases, classifiers trained with the larger synthetic
dataset of 15,000 images outperformed those trained with 5,000
synthetic images. For all other experimental conditions, the addi-
tion of either 5,000 or 15,000 synthetic images yielded statistically
indistinguishable effects on classifier performance.

4.2. Classifier performance with varying ratios of real to
synthetic images in a fixed-size dataset

Figure 5 presents the 5-fold cross-validated results of the
EfficientNetV2-S image classifier’s performance when trained on
a dataset limited to 3,166 examples, featuring varying proportions
of real to synthetic images. Our findings indicate that the classi-
fier’s accuracy exhibits a linear increase as the proportion of real
data in the training dataset expands. This observation implies that,
within the boundaries of a fixed dataset size, the incorporation of
more real data consistently enhances the classifier’s performance.

In summary, our results demonstrate that synthetic data gener-
ated through the pipeline we introduced can be advantageous in
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Figure 4: Comparing the 5-fold cross-validated accuracy of the im-
age classifier (EfficientNetV2-S) when trained on increasing num-
bers of real images with and without the addition of synthetic data.
Note that the synthetic datasets have an additional data point be-
cause they can be run without any real data.
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Figure 5: Comparing the 5-fold cross-validated accuracy of the
image classifier (EfficientNetV2-S) when trained on an increasing
proportion of real to synthetic images in a dataset capped at 3,166
examples.

improving the accuracy of an image classifier when the amount of
available real data is limited. However, as the real dataset grows, the
contribution of synthetic data becomes less significant, and even-
tually detrimental to the classifier’s performance. These findings
highlight the importance of carefully considering the balance be-
tween real and synthetic data when training image classifiers for
tasks involving textured surfaces, such as carpet material classifi-
cation, and emphasise the need for further refinement of synthetic
data generation techniques.

© 2023 The Authors.
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Table 4: The 15 distinct increments of real images utilised for the ablation study along with the percentage of the full real image training

dataset that each increment represents.

# Real images 0 79 158 237 316 474
% Real images 0% 2.5% 5.0% 75% 10% 15%

949 1266 1583 1899 2216 2532 2849 3166
30% 40% 50% 60% 70% 80% 90% 100%

5. Discussion

The results of this study offer valuable insights into the role of syn-
thetic data in image classification tasks, particularly in the context
of textured surface classification. In line with the research question,
we found that synthetic data is especially beneficial when there is a
limited amount of real data available and further acquisition of real
data is challenging or expensive. This finding aligns with previous
research demonstrating the advantages of synthetic data when real
data is scarce [TPA*18], [PSAS15]. However, we also found that
the balance between synthetic and real data is crucial, as exces-
sive synthetic data can hurt performance when sufficient real data
is available. This is an interesting observation, and to the best of our
knowledge, there are no studies that explicitly show the detrimen-
tal effects of synthetic data when ample real data is present. Our
results support the hypothesis that, with an increasing number of
real examples, the benefits of synthetic data may be overshadowed
by imperfections in the generation pipeline.

It is essential to underline that our findings are specifically in
the context of the synthetic data generated by our pipeline. One
possible reason for the observed degradation in performance when
using excessive synthetic data is the distortion of fine details dur-
ing the synthetic data generation process. Particularly, the content-
aware fill and automatically generated normal maps from Photo-
shop could be introducing artefacts and distortions to subtle details
that affect the classifier’s ability to discern between classes. For
tasks where macro details are more important than micro details,
the use of synthetic data generated from this pipeline might provide
a greater improvement in accuracy and could even remain benefi-
cial when a large amount of real data is available. Further research
is needed to explore this relationship in greater depth.

The diminishing returns of synthetic data observed as the amount
of real data increases suggest that improvements can be made to
our synthetic data generation pipeline. Incorporating Generative
Adversarial Networks (GANs) [GPAM™20] at various stages of
the pipeline can enhance the realism and quality of the generated
synthetic data. GANs could be employed for generating higher-
quality textures, improving texture mapping, simulating realistic
lighting conditions, and refining the final images. In addition to
GANSs, other advanced computer vision techniques, such as feature-
based matching [BTVGO06], can be used to automatically align
and merge multiple 2D images of a textured surface into a sin-
gle, high-quality 3D texture map. Such advancements could poten-
tially lead to higher-quality synthetic data that captures the neces-
sary details for accurate classification, thus mitigating the observed
synthetic-data-induced performance degradation as real data quan-
tity increases.

There are some limitations to our study that warrant discussion,
as they could influence the generalisability of our results. Firstly,
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we employed a single image classifier (EfficientNetV2-S) and a
single pretraining dataset (ImageNet-21K). Exploring alternative
architectures, pretraining datasets, and fine-tuning strategies could
potentially yield different results, providing a more comprehensive
understanding of the trade-offs between real and synthetic data. Ad-
ditionally, our study was limited to a single task with only three
classes. It’s conceivable that for tasks with more classes, the bal-
ance point at which adding synthetic data becomes detrimental, as
shown in Figure 4, could shift. Moreover, the same data augmenta-
tion setup was utilised for all our training experiments, which is a
factor that could potentially affect the balance between the benefits
and drawbacks of using synthetic data. Future research should ex-
plore the interplay between data augmentation and synthetic data
in image classification tasks.

6. Conclusion

In conclusion, this study presented a novel pipeline for synthetic
data generation of textured surfaces and investigated its role in im-
age classification tasks. Our findings suggest that synthetic data can
significantly enhance classification performance when the amount
of real data is limited. However, the balance between synthetic and
real data is crucial, as excessive synthetic data can negatively im-
pact performance when sufficient real data is available. This under-
scores the importance of developing better synthetic data genera-
tion pipelines that produce high-quality, realistic images that can
complement real data effectively, even when the latter is abundant.
While our study provides valuable insights, there are still several ar-
eas for improvement and exploration, which future research should
address.

6.1. Future Work

One area to investigate is the effect of using different image clas-
sifiers, pretraining datasets, and fine-tuning strategies on the per-
formance trade-off between real and synthetic data. This would
involve examining how different classification models respond to
synthetic data generated by our pipeline, and identifying which
models are better suited for leveraging the benefits of synthetic
data. Moreover, we plan to evaluate the impact of pretraining on the
classification performance when using synthetic data, and identify
the optimal fine-tuning strategy to maximise the benefits of syn-
thetic data.

We also need to explore the relationship between the number
of classes in the classification task and the balance point at which
adding synthetic data becomes detrimental. We hypothesise that
adding synthetic data to the training set may lead to diminish-
ing returns when the number of classes increases beyond a certain
threshold. We plan to conduct experiments with varying numbers
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of classes to investigate this relationship and determine the optimal
balance point between real and synthetic data.

For further clarity in this area we wish to better understand the
interaction and combined impact between data augmentation meth-
ods and synthetic data usage in image classification tasks. We will
investigate how data augmentation and synthetic data generation
can be used together to improve the performance of image classi-
fiers, especially in scenarios where real data is limited. We antic-
ipate that data augmentation methods can enhance the quality of
synthetic data and lead to more robust image classifiers.

We should better understand the effect of enhancing the synthetic
data generation pipeline with advanced techniques such as Gener-
ative Adversarial Networks (GANSs) and feature-based matching to
improve the quality and realism of synthetic data. This would in-
volve exploring how GANs can be used to generate more diverse
and realistic textures, and how feature-based matching can improve
the alignment between synthetic and real data. We anticipate that
these advanced techniques can further improve the quality of syn-
thetic data and lead to more accurate image classifiers.

Another area to evaluate in the future is the performance of our
synthetic data generation pipeline on other types of classification
tasks, especially ones with a lower emphasis on small visual details,
to determine its generalisability and effectiveness in a wider range
of applications. This would involve testing the pipeline on datasets
with different textures and objects to assess its performance in var-
ied scenarios.

Finally, we plan to investigate the potential of the synthetic data
pipeline in addressing dataset imbalance, particularly in scenar-
ios where classes are significantly unequal in image quantity. This
could help ensure fair representation and improved performance
across all classes, and would involve exploring how synthetic data
can be used to balance the distribution of classes in the training set.
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