
Adaptive and Scalable Controller
Placement in Software-Defined

Networking

Adekoya Oladipupo Adewale
Birmingham City University

A DISSERTATION SUBMITTED TO THE SCHOOL OF COMPUTING AND
DIGITAL TECHNOLOGY IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DOCTOR OF PHILOSOPHY

Doctor of Philosophy

MAY 2023

Dedication

With profound humility, I dedicate this thesis to my exceptional wife, Moninuola Adekoya.

Her unwavering dedication, steadfast support, and tireless efforts throughout my

doctoral journey have been nothing short of remarkable. My gratitude towards her

knows no limits. Equally, my heartfelt appreciation extends to Peter, Banjo, Kayode,

and my cherished network of supporters. Your combined encouragement has been an

invaluable source of strength, and I am profoundly thankful for the exceptional

contributions you have made.

Acknowledgements

"Glory be to God.

Above all else, I wish to extend my heartfelt gratitude to the Almighty God, who holds ulti-

mate responsibility for my present existence. Through His boundless grace, I embarked upon

and successfully completed this thesis. Throughout this journey, my rock and unwavering

support have been Jesus Christ, my Lord, and Redeemer.

To Prof. Adel Aneiba, I struggle to convey the depth of my appreciation for your presence as

my supervisor. Your steadfast support and unwavering trust over the years have left me pro-

foundly grateful. Serving under your guidance has been both an honor and a pleasure. May

God richly bless your endeavors. Equally deserving is my esteemed professor, Mak Sharma. I

am thankful for your enthusiasm, patience, and willingness to share your extensive manage-

ment and administrative expertise. Your dedication to mentoring young individuals has been

a true inspiration to me.

Special gratitude extends to Professor Gaber for his insightful contributions during the intel-

ligence phase of my research. Your persistence, dedication, and guidance have significantly

contributed to my journey thus far. I offer my heartfelt thanks.

Eternal gratitude is reserved for Peter, Banjo, and Kayode for their unwavering support and

heartfelt care that sustained me. The support and prayers of my in-laws have been a true

source of strength. My parents, I thank you for your prayers, guidance, and unwavering sup-

port throughout this remarkable journey. I also wish to extend my appreciation to all those

who have contributed to my success during my pursuit of a PhD.

Lastly, my incredible wife, Moninuola, deserves my deepest gratitude. Your ceaseless words

of encouragement and unwavering support have been my anchor. I hold you in the highest

regard."

Abstract

Software-defined networking (SDN) revolutionizes network control by externalizing and cen-

tralizing the control plane. A critical aspect of SDN is Controller Placement (CP), which

involves identifying the ideal number and location of controllers in a network to fulfill diverse

objectives such as latency constraints (node-to-controller and controller-controller delay), fault

tolerance, and controller load. Existing optimization techniques like Multi-Objective Parti-

cle Swarm Optimisation (MOPSO), Adapted Non-Dominating Sorting Genetic Algorithm-III

(ANSGA-III), and Non-Dominating Sorting Genetic Algorithm-II (NSGA-II) struggle with

scalability (except ANSGA-III), computational complexity, and inability to predict the re-

quired number of controllers. This thesis proposes two novel approaches to address these

challenges. First, an enhanced version of NSGA-III with a repair operator-based approach

(referred to as ANSGA-III) is introduced, enabling efficient CP in SD-WAN by optimizing

multiple conflicting objectives simultaneously. Second, a Stochastic Computational Graph

Model with Ensemble Learning (SCGMEL) is developed, overcoming scalability and compu-

tational inefficiency associated with existing methods. SCGMEL employs stochastic gradient

descent with momentum, a learning rate decay, a computational graph model, a weighted sum

approach, and the XGBoost algorithm for optimization and machine learning. The XGBoost

predicts the number of controllers needed and a supervised classification algorithm called

Learning Vector Quantization (LVQ) is used to predict the optimal locations of controllers.

Additionally, this research introduces the Improved Switch Migration Decision Algorithm

(ISMDA) as part of the holistic contribution. ISMDA is implemented on each controller to

ensure even load distribution throughout the controllers. It functions as a plug-and-play mod-

ule, periodically checking if the load surpasses a certain limit. ISMDA improves controller

throughput by approximately 7.4% over CAMD and roughly 1.1% over DALB. ISMDA also

outperforms DALB and CAMD with a decrease of 5.7% and 1%, respectively, in terms of

controller response time. Additionally, ISMDA outperforms DALB and CAMD with a de-

crease of 1.7% and 5.6%, respectively, in terms of the average frequency of migrations. The

established framework results in fewer switch migrations during controller load imbalance. Fi-

nally, ISMDA proves more efficient than DALB and CAMD, with an estimated 1% and 6.4%

lower average packet loss, respectively. This efficiency is a result of the proposed migration

efficiency strategy, allowing ISMDA to handle higher loads and reject fewer packets.

Real-world experiments were conducted using the Internet Zoo topology dataset to evalu-

ate the proposed solutions. Six objective functions, including worst-case switch-to-controller

delay, load balancing, reliability, average controller-to-controller latency, maximum controller-

to-controller delay, and average switch-to-controller delay, were utilized for performance eval-

uation. Results demonstrated that ANSGA-III outperforms existing algorithms in terms of

hypervolume indicator, execution time, convergence, diversity, and scalability. SCGMEL ex-

hibited exceptional computational efficiency, surpassing ANSGA-III, NSGA-II, and MOPSO

by 99.983%, 99.985%, and 99.446% respectively. The XGBoost regression model performed

significantly better in predicting the number of controllers with a mean absolute error of

1.855751 compared to 3.829268, 3.729883, and 1.883536 for KNN, linear regression, and ran-

dom forest, respectively. The proposed LVQ-based classification method achieved a test ac-

curacy of 84% and accurately predicted six of the seven controller locations.

To culminate, this study presents a refined and intelligent framework designed to optimize

Controller Placement (CP) within the context of SD-WAN. The proposed solutions effectively

tackle the shortcomings associated with existing algorithms, addressing challenges of scalabil-

ity, intelligence (including the prediction of optimal controller numbers), and computational

efficiency in the pursuit of simultaneous optimization of multiple conflicting objectives. The

outcomes underscore the supremacy of the suggested methodologies and underscore their

potential transformative influence on SDN deployments. Notably, the findings validate the

efficacy of the proposed strategies, ANSGA-III and SCGMEL, in enhancing the optimization

of controller placement within SD-WAN setups. The integration of the XGBoost regression

model and LVQ-based classification technique yields precise predictions for both optimal con-

troller quantities and their respective positions. Additionally, the ISMDA algorithm emerges

as a pivotal enhancement, enhancing controller throughput, mitigating packet losses, and re-

ducing switch migration frequency—collectively contributing to elevated standards in SDN

deployments.

5

Publications

In this research, two journal articles had already been accepted and published, and one is

under review.

Adekoya, O., Aneiba, A. and Patwary, M., 2020. An improved switch migration decision

algorithm for SDN load balancing. IEEE Open Journal of the Communications Society, 1,

(pp.1602-1613).

Adekoya, O. and Aneiba, A., 2022. An Adapted Nondominated Sorting Genetic Algorithm

III (NSGA-III) With Repair-Based Operator for Solving Controller Placement Problem in

Software-Defined Wide Area Networks. IEEE Open Journal of the Communications Society,

3, pp.(888-901).

Adekoya, O. and Aneiba, A., 2023. A stochastic computational graph with an ensemble learn-

ing model for solving the controller placement problem in software-defined wide area networks

(under review).

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Research Problem . 4

1.3 Research Questions . 5

1.4 Solution Overview . 6

1.5 Motivation . 7

1.6 Primary Research Aim and Objectives . 8

1.7 Contributions . 9

1.8 Thesis Structure . 11

2 A Review of Controller Placement Techniques in SDN 13

2.1 Background . 13

2.1.1 SDN Architecture . 15

2.1.1.1 Protocols, Standards, and SDN Operations 16

2.1.1.2 Open Source Software-Defined Networks Controllers 19

2.1.1.3 OpenDaylight . 20

2.1.1.4 Floodlight . 20

2.1.1.5 Ryu . 21

2.2 Software-Defined Network Controller Placement Algorithms 21

2.2.1 Minimising Network Latency . 23

2.2.2 Maximising Resilience and Reliability . 25

2.2.3 Load Balancing . 27

2.2.4 Decreasing Infrastructure Cost and Energy Consumption 28

2.2.5 Combinatorial Optimization Approach . 29

2.2.6 Multi-Objective Approach . 30

2.2.7 Artificial Intelligence and Machine Learning Usages in Software Defined Networking 38

2.3 Research Gaps . 41

2.4 Summary of Literature Review . 43

3 An Improved Switch Migration Decision Algorithm for SDN Load Balancing 44

3.1 Introduction . 44

3.2 Developed ISMDA for SDN Controller Load Balancing Overview 47

3.2.1 ISMDA Load Balancing Strategy . 47

3.2.1.1 Associated Assumptions . 47

3.2.1.2 ISMDA Framework Flowchart . 48

i

3.2.1.3 Load Balancing Mechanism for ISMDA Strategy 49

3.2.1.4 ISMDA Algorithm 1 . 50

3.2.1.5 Dynamic Controller Threshold (Algorithm2) 50

3.2.1.6 Execute Judgment Module Load (Module 1) 51

3.2.1.7 Module for switch selection (Module 2) 54

3.2.1.8 Controller Selection Module (Module 3) 55

3.2.2 Example for Demonstration . 57

3.3 Experimentation . 58

3.4 Result AND Discussion . 59

3.5 Verification and Validation of the Developed Improved Switch Migration Decision Algo-

rithm for SDN Load Balancing (ISMDA) . 64

3.6 Conclusion Remarks . 66

4 A Scalable Solution for solving Controller Placement problem in Software-Defined

Networks 67

4.1 Introduction . 67

4.2 CPP Mathematical Design and Objective Functions . 68

4.2.1 Objective functions . 69

4.3 The Adapted NSGA-III (ANSGA-III) for SD-WAN Controller Placement 70

4.3.1 The Description of the ANSGA-III as Developed 71

4.3.2 Repair-Based Operator (RBO) Algorithm Description in the ANSGA-III 74

4.3.3 Normalization algorithm description for the planned ANSGA-III 75

4.3.4 Association algorithm description for the planned ANSGA-III 76

4.3.5 Niching technique description for the planned ANSGA-III 77

4.3.6 Coefficient of Variation in Percentage (PCV) . 78

4.3.7 Difference in Percentage (% Diff.) . 78

4.3.8 Parallel Coordinate Plot (PCP) . 79

4.3.9 Hypervolume Performance Indicator (HPI) . 79

4.4 Experimentation . 80

4.5 Results and Discussion . 80

4.5.1 Hypervolume Analysis Results . 81

4.5.2 Convergence Analysis Results . 81

4.5.3 Percentage of Coefficient Analysis Results . 83

4.5.4 Percentage Difference Analysis Results . 85

4.5.5 Experiment Execution Time Results . 85

4.5.6 Parallel Coordinate Plot (PCP) Result . 86

4.6 Verification and Validation of the developed ANSGA-III 90

4.7 Conclusion Remarks . 92

ii

5 An Intelligent-based solution to address Controller Placement problem in SDN 93

5.1 Introduction . 93

5.2 Optimization Design for Controller Placement Problem 94

5.2.1 Objective functions . 96

5.3 Proposed Stochastic Computational Graph with Ensemble Learning Model for SD-WAN

Controller Placement . 98

5.3.0.1 Stochastic Gradient Descent (SGD) . 98

5.3.0.2 Learning Rate . 99

5.3.0.3 Stochastic Gradient Descent with Momentum 99

5.3.0.4 Learning Rate Decay . 99

5.3.0.5 Computational Graph . 100

5.3.0.6 Computational Graphs Types . 101

5.3.0.7 Extreme Gradient Boosting (XGBoost) 102

5.3.0.8 Normal Distribution. 103

5.3.0.9 Variance homogeneity or Levene’s test . 103

5.3.0.10 Non-Parametric test of Kruskal-Wallis . 104

5.3.0.11 Wilcoxon rank-sum pairwise method (Post Hoc-Test) 104

5.3.0.12 Learning Vector Quantization . 104

5.3.0.13 Example showing how LVQ works . 105

5.4 The Proposed Stochastic Computational Graph Model with Ensemble Learning Approach,

as well as the LVQ Flowcharts and Algorithms for SD-WAN Controller Placement 108

5.4.1 Proposed Learning Vector Quantization for the Controller Placement predictions. . 115

5.5 Experimentation . 118

5.6 Results and Discussion . 119

5.6.1 The BtEurope Dataset and initial and final controller location images 120

5.6.2 Outcome of the proposed stochastic computational graph models 120

5.6.3 The proposed number of controller using elbow method 124

5.6.4 The performance comparison between the proposed solution and the existing opti-

mization algorithms . 125

5.6.5 The performance comparison between the proposed ensemble learning model and

the other regression models . 129

5.6.6 The performance comparison between the proposed classification algorithm (Learn-

ing Vector Quantization and the existing classification algorithms) 131

5.7 Verification and Validation of the proposed Stochastic Computational model 136

5.7.1 Inferential Statistical Analysis for Controller Placement Algorithms 138

5.7.1.1 Shapiro-Wilk test for Normality assumption test 141

5.7.1.2 Homogeneity of variances test . 141

5.7.1.3 Kruskal-Wallis test . 142

5.7.1.4 Post HOC Test . 143

5.8 Conclusion Remarks . 145

iii

6 Conclusion and Future Work 147

6.1 Introduction . 147

6.2 Summary of Contributions . 148

6.3 Reflection on the Research Questions and Achievement of Objectives 149

6.4 Future work . 151

A Glossary 153

B Code Repository for the Thesis 155

Bibliography 156

iv

List of Figures

1.1 A simplified architecture for SDN layers . 2

2.1 High level Software-Defined networks reference architecture 16

2.2 Processing of packets in an OpenFlow switch. 18

2.3 Overview of Existing Optimization Algorithms Based on Different Performance Metrics . 22

2.4 Existing controller placement algorithms . 23

3.1 ISMDA framework flowchart. 48

3.2 Load balancing framework. 49

3.3 DALB Controller throughput . 60

3.4 CAMD Controller throughput . 60

3.5 Proposed ISMDA Controller throughput . 61

3.6 Throughput comparison of different Algorithm . 61

3.7 Comparison of Response Time different Algorithm . 62

3.8 Comparison of several Migration Time Algorithms . 63

3.9 Comparison of Packet-Loss Rates of different Algorithm 64

3.10 ISMDA Controller total received load . 64

3.11 Throughput comparison of different Algorithm . 65

3.12 Comparison of several Migration Time Algorithms . 65

4.1 Reference point on a Unit hyperplane . 72

4.2 Graphical representation of the Normalization algorithm 76

4.3 Measure of Hypervolume for the three Algorithms . 82

4.4 Measure of Hypervolume for the ANSGA-III Algorithms 82

4.5 Measure of Hypervolume for the NSGA-II Algorithms . 83

4.6 Measure of Hypervolume for the MOPSO Algorithms . 83

4.7 The three optimization algorithms’ convergence graph . 84

4.8 The three optimization algorithms’ execution times . 85

4.9 The ANSGA-III algorithm execution time . 86

4.10 The NSGA-II algorithm execution time . 86

4.11 The MOPSO algorithm execution time . 87

4.12 An ANSGA-III parallel coordinate visualisation of the solution 87

4.13 A NSGA-II parallel coordinate visualisation of the solution 88

4.14 A MOPSO parallel coordinate visualisation of the solution 88

4.15 Scatter plots in three dimensions for ANSGA-III Pareto sets 89

4.16 Scatter plots in three dimensions for NSGA-II Pareto sets 89

v

4.17 Scatter plots in three dimensions for MOPSO Pareto sets 90

4.18 Hypervolume Indicator for the three Algorithms . 91

5.1 Build up of Computational Graph . 101

5.2 Illustration of Computational Graph . 102

5.3 Conceptual Representation of LVQ networks . 105

5.4 LVQ networks . 106

5.5 The flowchart of the proposed stochastic computational graph model 110

5.6 The flowchart of the proposed ensemble learning model (XGBoost) 111

5.7 Demonstration of datasets used in their original values . 116

5.8 Demonstration of dataset in their encoding format . 117

5.9 Demonstration of the BtEurope Image . 120

5.10 A scatter plot showing the Starting location of controllers 121

5.11 A scatter plot showing the Final location of controllers . 121

5.12 Outcome of the proposed stochastic computational graph model without decay rate and

momentum . 121

5.13 Outcome of the proposed stochastic computational graph model without decay rate and

momentum . 122

5.14 Outcome of the proposed stochastic computational graph model with momentum and

learning decay rate . 122

5.15 Outcome of the proposed stochastic computational graph model with momentum and

learning decay rate . 123

5.16 Outcome of the proposed stochastic computational graph model with momentum and

learning decay rate . 123

5.17 Outcome of the proposed stochastic computational graph model with momentum and

learning decay rate . 123

5.18 Graph showing the Optimal Controller Number . 124

5.19 Graph showing the Execution of the four Algorithms . 125

5.20 Graph showing the Average CPU usage of the four Algorithms 127

5.21 Graph showing the Total CPU usage of the four Algorithms 127

5.22 Graph showing the initial losses of the four Algorithms . 128

5.23 Graph showing the final losses of the four Algorithms . 128

5.24 Graph showing the train and test accuracy for each model 129

5.25 Graph showing the proposed XGBoost controller number prediction 130

5.26 Figure showing the converted datasets to binary classification formats 132

5.27 Figure showing the converted datasets to binary classification formats 132

5.28 Figure showing the actual controller placement position 133

5.29 Figure showing the predicted controller placements of the proposed learning vector quan-

tization . 134

5.30 Figure showing the predicted controller placement of the catboost model 134

5.31 The bar plot of the classification algorithms train accuracy 134

5.32 The bar plot of the classification algorithms train accuracy 135

5.33 The bar plot of the classification algorithms train and test accuracy 135

5.34 The bar plot of the classification algorithms train and test score 135

vi

5.35 The merged bar plot of the classification algorithms fit and prediction time 136

5.36 Outcome of the proposed stochastic computational graph model with momentum and a

learning decay rate . 137

5.37 Graph showing the Optimal Controller Number . 137

5.38 Graph showing the Total CPU usage of the four Algorithms 138

5.39 Final output loss Average . 138

5.40 Graph showing the final losses of the four Algorithms . 139

5.41 Box Plot for the Optimization Algorithm . 140

5.42 Standardized Residual Plot . 140

5.43 Histogram Plot . 141

5.44 Shapiro-Wilk Normality Test result . 141

5.45 Levene’s method equality of variance result . 142

5.46 Barlett’s method equality of variance result . 142

5.47 Kruskal-Wallis Test result . 142

5.48 Final Output loss Median for the Optimization Algorithm 143

5.49 Comparison of the Proposed and MOPSO Algorithm . 143

5.50 Comparison of the Proposed and NSGA-II Algorithm . 143

5.51 Comparison of the Proposed and NSGA-III Algorithm . 144

5.52 Comparison of the NSGA-II and NSGA-III Algorithm . 144

5.53 Comparison of the MOPSO and NSGA-III Algorithm . 144

5.54 Comparison of the MOPSO and NSGA-II Algorithm . 144

vii

List of Tables

2.1 Overall comparison between conventional networks and software-defined networks. 15

2.2 The comparison of southbound protocols at a high level 17

2.3 Overview of OpenFlow Control Messages . 19

2.4 The sub-classes of the publication that considers latency to optimize SD-WAN controllers 24

2.5 The sub-classes of the publication that considers resilience and reliability to optimize SD-

WAN controllers . 26

2.6 The sub-classes of the publication consider load balancing to optimise SD-WAN controllers

using controller capacity and switch migration approach. 27

2.7 The sub-classes of publications that result in controller placement that lowers SD-WAN

costs and power consumption. 28

2.8 The sub-classes of publications that result in Multi-objective controller placement. 31

2.9 The sub-classes of publications that result in Multi-objective controller placement. 32

4.1 Evaluation of Diversity Based on the Standard Deviation and the Variance Coefficient . . 84

4.2 Diversity Evaluation Using Standard Deviation and Variance Coefficient 91

5.1 Table showing the performance of each model . 130

5.2 Table showing the proposed XGBoost controller number prediction 131

5.3 Table showing the datasets used in the classification algorithms in their original format . 132

5.4 Table showing the inferential statistics information of the classification algorithms 133

5.5 Sample data representing losses obtained from the four Algorithms 139

viii

Chapter 1

Introduction

Software-defined networking (SDN) has emerged as a promising paradigm for constructing networks tai-

lored to meet the evolving demands of the next generation of network technologies and services [1]. This

innovative approach represents a substantial departure from traditional networking methods, marking a

foundational shift within communication networks. This transformation revolves around the development

of a logically centralized architecture that effectively separates the control and data planes. To elabo-

rate, the data plane comprises simplified packet forwarding switches, while the control plane consists of

specialized software-based controllers that serve as the intelligent core of the system. This segregation

brings forth enhanced efficiency in terms of reconfigurability and programmability, resulting in several

advantages, including streamlined network administration, improved network performance, and the fa-

cilitation of novel network advancements [1][2][3].

The predominant communication interface for SDN is OpenFlow [4], a widely adopted software com-

munication protocol. This is accompanied by Netconf (Network Configuration Protocol) and Restconf

(Restful Network Configuration Protocol), which serve as connectors between the control and data planes,

facilitating connectivity via the southbound application programming interface (API) [5]. While the

OpenFlow protocol initially assumes a single controller, scalability and performance issues can arise as

networks expand. To address these concerns, multi-controller systems have been developed, exemplified

by concepts like HyperFlow [6]. Such systems partition OpenFlow networks into distinct segments, each

governed by an independent controller. Collaborative efforts in design have led to the establishment of

this multi-controller framework.

The core architecture of SDN comprises three layers: the data plane, the control plane, and the

application plane, as illustrated in Figure 1.1. The data plane encompasses packet-forwarding switches

managed by control planes, or "controllers." These controllers, utilizing southbound APIs such as Netconf,

Restconf, or OpenFlow, establish connectivity. Through northbound application programming interfaces

like Representational State Transfer (REST API), the controllers interface with the application plane,

facilitating network control and the provisioning of network services. As indicated by [2], a pivotal

hurdle arising from the deployment of multiple controllers lies in the strategic placement of these

entities. This complex challenge, often denoted as the "controller placement challenge," involves mak-

ing critical determinations regarding the optimal locations for deploying controllers and the appropriate

quantity of controllers to allocate within a software-defined wide area network (SD-WAN). This intricate

deliberation is geared toward fulfilling a spectrum of objectives encompassing various dimensions. These

1

Figure 1.1: A simplified architecture for SDN layers

objectives encompass a wide range of goals, including reducing latency in both average and

worst-case scenarios, minimizing controller-to-controller latency, achieving load balancing,

enhancing network reliability, and delving into energy conservation. For a comprehensive visual

representation and deeper understanding, please refer to Figure 1.1, which aptly captures the intricacies

inherent in the controller placement quandary. The interconnections between switches and controllers can

take on diverse configurations, as evidenced by the array of linkages demonstrated by the black dotted

lines. However, it’s important to acknowledge that this particular arrangement might not be the most

optimal, particularly in scenarios where multiple conflicting objectives need to be concurrently optimized.

Within an SDN-enabled network, specifically in the context of SD-WAN, the endeavor of controller

placement solutions revolves around identifying efficient methods to optimize the positioning of controllers

while simultaneously catering to diverse performance metrics. It’s noteworthy that in a substantial num-

ber of scenarios, several of these performance criteria inherently conflict with one another. Consequently,

the pursuit of an unequivocally perfect placement is often unattainable. Instead, decision-makers are

compelled to navigate a path of balanced trade-offs, strategically managing the intricate interplay be-

tween these competing factors.

The strategic placement of controllers within the context of an SD-WAN deployment, where multiple

conflicting objectives are at play, has garnered significant attention. Notably, research has demonstrated

2

the efficacy of metaheuristic algorithms such as the Adapted Non-Dominated Sorting Genetic Algorithm

III (ANSGA-III) [7], the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [8], and the Multi-

Objective Particle Swarm Optimization (MOPSO) [9] in tackling the intricate Controller Placement

Problem (CPP) inherent in SD-WAN. However, it’s worth noting that while these metaheuristic algo-

rithms offer promising solutions, some encountered challenges impact their applicability. Specifically, with

the exception of ANSGA-III, the other algorithms faced issues related to scalability, particularly when

dealing with more than three objective functions. Additionally, they grappled with high computational

complexity and the inability to predict the optimal number of controllers required.

As the need to optimize multiple objectives simultaneously grows in complexity, there is a pressing

demand for innovation and the development of efficient techniques capable of addressing challenges related

to scalability, computational complexity, and intelligent decision-making. In this context, ’intelligence’

pertains to deploying predictive models such as XGBoost for informed decision-making. These innovations

are essential for enhancing the capabilities of the aforementioned metaheuristic algorithms, ensuring their

suitability for addressing the intricate scenarios encountered in SD-WAN deployments.

1.1 Problem Statement

Despite the demonstrated advantages of SDN being realized in data centre networks (DCNs) and various

local area networks (LANs) [10], the implementation of SDN controllers within operational Wide Area

Networks (WANs) continues to present a range of intricate architectural challenges [11]. To effectively

serve its pivotal role as the network’s central processing unit (CPU), an SDN controller must be capable

of promptly responding to control request messages, even when confronted with multiple conflicting

objectives [12]. Moreover, the execution of control tasks, such as efficient monitoring of the forwarding

plane, is essential for maintaining up-to-date status information. This underscores the necessity for

enhancements in the southbound interface. The significant impact of switch-to-controller latency on

WAN performance has accentuated the significance of controller placement as a critical design hurdle,

profoundly influencing the southbound performance of SDN [13]. The strategic arrangement of SDN

controllers plays a determining role in their positioning relative to forwarding plane components [11].

Furthermore, the quantity of controllers deployed within a given WAN introduces an additional layer of

consideration in controller placement. Various objectives, encompassing elements like end-to-end latency,

load balancing, and network reliability, are directly influenced by the deployment count of controllers [14].

It’s essential to emphasize that in an SD-WAN, randomly selecting the number of controllers without

a well-calculated mechanism to determine the optimal number can significantly impact various network

performance metrics. These metrics encompass critical aspects such as end-to-end latency, load balancing,

and network dependability. This research briefly explores how these factors can affect the performance of

an SD-WAN below and is further examined in Chapter 5 of this thesis. In Chapter 5, this research delves

into the stochastic computational graph approach and its utilization of the XGBoost model to gain a

deeper understanding of these implications

• End-to-End Latency: Randomly deploying controllers may lead to uneven distribution across the

network. Some areas may be overserved with controllers while others are underserved. This im-

balance can result in variations in end-to-end latency. Nodes closer to heavily deployed controllers

may experience lower latency, while those farther away may suffer from higher latency. The lack

of optimization for controller placement can exacerbate latency issues, especially in real-time or

latency-sensitive applications.

3

• Load Balancing: Random placement of controllers can result in uneven controller workloads. Some

controllers may become overloaded with traffic and management tasks, while others remain un-

derutilized. Load balancing, which is critical for efficient network operation, becomes challenging

without an appropriate mechanism to calculate the optimal number of controllers. This imbalance

can impact the overall network’s ability to handle traffic efficiently and may lead to congestion in

some parts of the network.

• Network Dependability: Random controller placement can also affect network dependability and

resilience. Inadequate controller coverage may result in reduced fault tolerance and recovery ca-

pabilities. In case of controller failures or network disruptions, the lack of optimized controller

placement may hinder the network’s ability to reroute traffic and maintain service availability.

These attempts encompass mathematical models and multi-objective evolutionary algorithms [15]. Math-

ematical models, including quadratic programming, mixed integer programming, and linear programming,

have been explored within the literature [10]. However, these methods are generally limited to small-scale

network scenarios because they suffer from significant computational complexity and are prone to be-

coming trapped in local optima. In such situations, the algorithm reaches a point where it can no longer

enhance the objective or fitness function it’s attempting to optimize [7]. On the other hand, metaheuris-

tic techniques such as ANSGA-III [7], NSGA-II [8], and MOPSO [9] have demonstrated effectiveness in

resolving the CPP in SD-WAN. Nevertheless, the mentioned metaheuristic algorithms, with the excep-

tion of ANSGA-III, have grappled with challenges encompassing scalability (particularly with more than

three objective functions), heightened computational complexity, and the inability to predict controller

numbers. In summary, the absence of a well-calculated mechanism to determine the optimal number

of controllers and their placement can lead to suboptimal network performance. It can cause latency

disparities, load imbalances, and reduced network dependability. To mitigate these issues, it is essential

to employ optimization techniques that consider various performance metrics and network objectives

to determine the appropriate number and placement of controllers in an SDN. As a result, the central

challenge to address is as follows: Within a functional SDN-enabled WAN, the challenge arises: What

defines the optimal number of SDN controllers, and where should they be strategically positioned to align

with customer requirements, adhere to constraints, and ensure both peak runtime performance (referring

to computational efficiency) and accuracy (referring to algorithm precision and correctness)? [16]. This

challenge presents a multi-objective optimization problem characterized by competing objectives, [17],

necessitating a solution to enhance overall network performance. Numerous research efforts have aimed

to concurrently optimize controllers while addressing conflicting objectives [8]. However, in the pursuit

of simultaneously optimizing controller placement (CP) while managing conflicting objectives, a gap ex-

ists in terms of scalability (excluding ANSGA-III), intelligence, and the challenge of high computational

complexity [7].

1.2 Research Problem

The landscape of controller placement methods is entangled with intricate challenges, specifically re-

garding scalability and intelligence. In this context, scalability denotes the algorithm’s inefficiency when

faced with the simultaneous optimization of more than three conflicting objectives. Intelligence, on the

other hand, pertains to the existing optimization techniques’ limitations in comprehending the heuris-

tics of combinatorial optimization problems, like SD-WAN controller placement, and their incapability

4

to predict the optimal number of controllers. These complexities underscore the multifaceted nature of

optimizing controller placement in SD-WAN networks At the same time, these methods grapple with

formidable computational intricacies during CP within the SD-WAN environment. As CP plays a pivotal

role in SD-WAN architectures, administrators must strategically position controllers to optimize multiple

conflicting objectives. The overarching research problem revolves around optimizing the placement of

controllers in SD-WANs while addressing key challenges:

Scalability and Computational Complexity: Existing controller placement algorithms, including NSGA-

II, MOPSO, and even ANSGA-III (with the exception of the ANSGA-III), exhibit substantial compu-

tational burdens that restrict their applicability in large-scale SD-WAN deployments. This exposes a

critical research gap: the need to develop optimization methods that adeptly handle the intricate com-

putational demands arising from addressing multiple, clashing objectives. This research endeavor seeks

to harness the power of established optimization paradigms to tackle these computational complexities

head-on.

Predefined Controller Deployment: Present paradigms often assume a fixed number of controllers for

SD-WAN deployments, potentially leading to suboptimal outcomes in varying network conditions and

requirements. This highlights the need for predictive models, exemplified by techniques like XGBoost

and learning vector quantization, capable of accurately determining the optimal number of controllers

essential for effective SD-WAN deployment.

Statistical Analysis and Significance Testing: A distinct research gap emerges in conducting compre-

hensive statistical evaluations that compare the performance of proposed methodologies against existing

controller placement algorithms (e.g., NSGA-II, MOPSO, and ANSGA-III). While the computational ef-

ficiency and scalability of the stochastic gradient descent approach are emphasized, ensuring the observed

performance differences hold statistical significance is crucial. The absence of rigorous statistical analysis

hampers the capacity to assert the superiority or effectiveness of proposed methodologies over existing

alternatives.

Overall, the current academic landscape lacks an approach that adeptly optimizes multiple conflict-

ing objectives (beyond three) while effectively managing computational complexities. Additionally, the

absence of predictive intelligence for determining optimal controller numbers and placements underscores

the need for innovative methodologies. Recognizing the significance of computational costs and perfor-

mance for network operators, the research calls for novel strategies that address scalability, computational

efficiency, and predictive intelligence—ultimately elevating SD-WAN deployments while prudently mini-

mizing organizational costs.

1.3 Research Questions

The research problem at hand raises a significant concern for SD-WAN service providers and operators

who seek to enhance the efficiency of their chosen algorithms while adapting controller placement strate-

gies. In light of this challenge, it is imperative to formulate specific research questions that can guide the

investigation and provide actionable insights. The research holds crucial implications due to the substan-

tial impact that controller placement has on SD-WAN operators. Based on the underlying problem, the

following research questions have been formulated:

5

RQ1. How can an enhanced migration decision algorithm for controller placement be

formulated to effectively tackle the complexities of SDN load balancing?

RQ2. How can the optimization of SD-WAN controllers be achieved in the context of

multiple conflicting objectives, surpassing the count of three)?

RQ3. How can machine learning methodologies be leveraged to facilitate the acquisi-

tion of heuristics for solving intricate combinatorial optimization problems, such as the

placement of SD-WAN controllers?

1.4 Solution Overview

This thesis undertook a comprehensive approach to address challenges associated with existing switch

migration techniques in SDN load balancing. The initial focus was on refining switch migration methods

to improve SDN load balancing. While existing algorithms, such as controller adaptation [12], migra-

tion decision [18], and dynamic and adaptive load balancing [19], have been developed for SDN load

balancing, they face issues like high packet loss, extended response times, inefficient switch selection,

and low throughput in scenarios involving high-volume incoming elephant traffic flows. As a result, this

study introduced an enhanced switch migration decision algorithm for more effective SDN load balancing.

The introduced mechanism, termed ISMDA, selects heavily loaded switches for migration from con-

trollers with excessive loads. This migration aims to target the most suitable controller to optimally

release clustered resources. The balancing module of the developed framework initiates during the migra-

tion process. The mechanism assesses both the variance and average load states of controllers to identify

underutilized controller groups. Moreover, a migration model was developed to consider migration cost

and load-balancing variance for selecting optimal controllers from a pool of unloaded ones. Building upon

this, the thesis delves into two additional solutions, Solutions 2 and 3, focusing on SD-WAN controller

placement without assuming an optimal initial placement. These solutions bridge gaps in the existing

literature by addressing CP optimization algorithms within the SD-WAN context. These solutions specif-

ically target the challenges of scalability, intelligence, and high computational complexity encountered

while positioning controllers to optimize conflicting objectives.

The first approach incorporates a repair operator-based mechanism, reference points, normalization,

association, and a niching algorithm, creating a scalable framework beneficial for WAN operators. The

second method employs a stochastic computational graph with an ensemble learning model (SCGMEL)

and a learning vector quantization classification algorithm. This dual approach effectively determines the

optimal controller placement while predicting the number and location of controllers. These strategies

enhance overall SD-WAN performance by promptly catering to service provider requirements.

To assess the classification model’s effectiveness, a new metric called "mean accurate location" was

developed. It was compared with existing classification algorithms, including XGBoost, CatBoost, Ran-

dom Forest, k-NN, and Logistic Classification. Additionally, the proposed XGBoost regression model

underwent evaluation and performance comparison with KNN, Random Forest, and linear regression

6

models using mean absolute error as the performance measure. The SCGMEL leveraged stochastic gra-

dient descent with momentum, learning rate decay, a computational graph model, and the XGBoost

algorithm. This hybrid approach predicted the required number of controllers for SD-WAN deployment

and simultaneously optimized controller placement. A novel Learning Vector Quantization (LVQ) based

classification algorithm was also introduced for SD-WAN CP prediction.

These innovative solutions collectively offer a comprehensive framework to enhance SDN load balanc-

ing and optimize controller placement in SD-WAN scenarios. The utilization of advanced algorithms and

machine learning techniques sets the foundation for improved network performance and efficient resource

allocation.

1.5 Motivation

Recognizing the gaps prevalent in existing literature pertaining to challenges associated with controller

placement algorithms in SD-WAN, there arises a pressing need to address these gaps to cater to the

requirements of service providers and network administrators. Algorithms lacking scalability, computa-

tional efficiency, and intelligence in controller placement are impractical and uneconomical for users and

service providers utilizing SD-WAN. This research draws inspiration from these identified issues and their

significance in the realm of SD-WAN architecture users.

The core differentiating aspect of SDN architectures lies in the segregation of the network’s control

plane and forwarding plane. This division of control and forwarding planes gives rise to the intricacies

of controller placement. The CPP stands as a combinatorial optimization challenge akin to location

analysis, classified under non-deterministic polynomial-time hardness. Developing an algorithm capable

of delivering nearly optimal solutions within a short span for such scenarios demands substantial effort.

The CPP’s search space encompasses all possible combinations of ’k’ (controller number) and ’n’ (po-

tential nodes) within the network architecture, where ’k’ is less than ’n’. For instance, with 35 nodes,

the exploration spans
(
n
k

)
, resulting in 52,360 distinct alternative placements when aiming to determine

optimal locations for four controllers. Even for smaller ’k’ values, the feasible locations escalate signif-

icantly in both magnitude and scope. In such contexts, meta-heuristic approaches offer an alternative

by exploring a subset of the search space to locate a near-optimal solution. As demonstrated by [20],

the position of controllers profoundly impacts network efficiency by shifting controllers across the net-

work. Hence, in dynamic-changing architectures like SD-WAN, determining the positioning of network

controllers becomes a formidable task. For this determination to hold value, the controller’s placement

must be strategically derived. The Pareto-Optimal Resilient Controller (POCO) approach [21] exhibits

the capability to handle small and medium-sized topologies, delivering solutions swiftly. However, eval-

uating the location of controllers within large-scale networks demands extensive assessment, consuming

substantial time and struggling to keep pace with the network’s rapid changes.

Developing an algorithm capable of providing optimal solutions within seconds or minutes for complex

challenges like SD-WAN is an arduous undertaking. Achieving optimal solutions within an acceptable

time frame can be accomplished through the application of meta-heuristic techniques or, alternatively,

through standalone machine-learning techniques. The popularity of meta-heuristic strategies has surged

due to their capacity to optimize multiple conflicting objectives and yield Pareto-optimal solutions in a

7

reasonable time, surpassing mathematical approaches. Approaches like Simulated Annealing (SA), Iter-

ated Local Search, and Guided Local Search exemplify single-solution meta-heuristic techniques. Each of

these strategies focuses on individual potential solutions at a time. In contrast, population-based meta-

heuristic algorithms such as ANSGA-III, NSGA-II, and MOPSO store numerous potential solutions,

facilitating the attainment of non-dominated solutions through Pareto optimization. Single optimiza-

tion techniques and mathematical approaches prove inadequate for extensive search spaces like SD-WAN

due to the risk of local optima entrapment, extended computational time, and lack of comprehensive

evaluation. Guided by these attributes, this thesis is propelled to leverage diverse meta-heuristics and

machine-learning techniques for selecting optimal solutions from an extensive array of possibilities within

a predefined time frame. The presented meta-heuristic algorithms and machine learning techniques sys-

tematically address the issue in a scalable manner, augmenting overall system performance. Meanwhile,

the lack of intelligence in current optimization methods propels further exploration and provision of more

intelligent and robust solutions tailored for SD-WAN operators.

1.6 Primary Research Aim and Objectives

This research aims to develop a collaborative and adaptive optimization learning-based framework to

facilitate the placement of SD-WAN controllers, even in the presence of multiple conflicting objectives.

The primary objectives to achieve this aim are as follows:

• [Obj-1] To meticulously examine and assess the cutting-edge optimization and classifi-

cation algorithms utilized in the realm of SD-WAN controller placement. This rigorous

analysis is conducted to pinpoint any existing research gaps within the public domain

pertaining to this field.

A comprehensive overview of various optimization and classification algorithms is provided and

subjected to in-depth analysis. This critical examination delves into the limitations inherent in

the current state-of-the-art optimization and classification algorithms found in the literature. The

investigation particularly focuses on their effectiveness in concurrently optimizing multiple conflict-

ing objectives. Moreover, the potential implications of these techniques on SD-WAN operators’

Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) are explored, especially in

the context of determining optimal positions for placing SD-WAN controllers.

• [Obj-2] To formulate and actualize an improved switch migration decision model that

ensures efficient load distribution among distributed controllers within the SDN ar-

chitecture.

In light of the identified limitations within the existing literature, the imperative need arises to

develop an advanced switch migration decision model that can ensure the efficient distribution

of workloads among the dispersed SDN controllers. Consequently, an enhanced switch migration

decision algorithm has been devised to address the challenge posed by the influx of substantial

incoming data flows. During instances of controller load disparity, the balancing components of

the switch migration model are initiated. To determine the ensemble of controllers operating below

their capacity in the network, the enhanced framework incorporates parameters such as controller

variance, controller threshold, and controller average load status.

• [Obj-3] To design and develop a repair operator-based mechanism, integrating it into

existing NSGA-III, for optimizing SD-WAN controller placement while addressing

8

multiple conflicting objectives (more than three).

Considering various network performance metrics, SD-WAN operators strive to strategically posi-

tion controllers to achieve diverse and sometimes conflicting goals. Existing optimization techniques

like NSGA-II and MOPSO face scalability challenges when dealing with more than three objectives.

These challenges include limited acquisition of non-dominated solutions. To address this, a solution

that supports more than three objectives and covers the Pareto front comprehensively is impera-

tive. To achieve this, a repair operator-based mechanism was integrated into ANSGA-III for optimal

SD-WAN controller placement. The enhanced ANSGA-III utilizes a reference-based approach, as-

sociation, normalization, and a niching algorithm to simultaneously optimize multiple competitive

objectives in SD-WAN controller placement.

• [Obj-4] To create an automated learning-based decision-making model for optimal

controller placement, this research aims to leverage a stochastic computational graph

combined with an ensemble learning model and a learning vector quantization.

The existing literature has proposed the utilization of meta-heuristic algorithms for SD-WAN con-

troller placement, particularly when faced with conflicting objectives. However, a thorough review

conducted within this study has revealed a common limitation across these developed meta-heuristic

algorithms (ANSGA-III, NSGA-II, and MOPSO), primarily pertaining to their scalability challenge

in scenarios involving more than three conflicting objectives. Additionally, these solutions are as-

sociated with high computational costs and lack the intrinsic capability to intelligently learn the

heuristics required for solving combinatorial optimization problems, such as the intricate task of

controller placement in SDN. Given these inherent issues within the current methodologies for con-

troller placement, the urgency arises to devise a solution that is not only scalable and adaptable

but also significantly computationally efficient for addressing SDN controller placement challenges.

• [Obj-5] To test, verify, validate, and analyze the obtained results for critical evalu-

ation. The proposed intelligent and scalable framework will undergo rigorous testing, analysis,

and validation to assess its performance and functionality. These tests aim to uncover the frame-

work’s strengths and weaknesses, providing valuable insights for a comprehensive comparison with

existing frameworks designed to address similar challenges. This process is vital for ensuring the

framework’s effectiveness and suitability for practical implementation.

1.7 Contributions

In pursuit of bridging the identified gaps, this thesis presents a range of innovative contributions. The

primary goal was to formulate and implement a collaborative and adaptive learning-based optimization

solution tailored for controller placement in the presence of numerous concurrent optimization objectives.

Aligned with the framework outlined in the objectives, these contributions culminate in the following

achievements:

• [OC-1] Introducing a novel approach for load balancing among controllers through the

utilization of switch migration techniques.

Existing approaches for load balancing among distributed controllers in SDN architecture have

been limited in their effectiveness. Previous authors addressing this issue often focused on scenarios

9

where incoming traffic comprised smaller "mice flows," and they optimized migration efficiency con-

sidering low-flow data planes. However, this research goes beyond these limitations by introducing

enhanced switch migration techniques that address challenges associated with substantial incoming

data traffic loads. The developed algorithm’s balancing component, present in each controller, ac-

tivates to achieve efficient load distribution when a controller’s load exceeds a predefined threshold.

In this novel approach, the algorithm identifies under-loaded controllers within the set by analyzing

the variance and average load of the controllers. By effectively reallocating highly loaded switches

from overloaded to under-loaded controllers, the method optimizes resource utilization. Addition-

ally, the study includes a migration efficiency model that highlights the trade-off between migration

cost variance and load balancing. This comprehensive methodology overcomes previous constraints

and offers a more robust solution for load balancing across distributed SDN controllers.

• [OC-2] This research introduces an innovative repair operator-based mechanism seam-

lessly integrated into the existing NSGA-III framework to achieve optimal controller

placement within SD-WANs.

Current state-of-the-art optimization techniques face limitations when dealing with more than three

objectives to be simultaneously optimized within the network architecture. This research addresses

this challenge by introducing a novel repair operator-based mechanism, seamlessly integrated into

the engineering-based NSGA-III framework for optimizing controller placement. The developed

repair operator ensures the elimination of impractical solutions during the crossover and mutation

process, and it replaces continuous optimization features in NSGA-III with discrete optimization

characteristics. This approach enhances the convergence and diversity of solutions across the Pareto

Front through techniques like normalization, association, reference points, and niching. Further-

more, this strategy proves to be highly effective, enabling the concurrent optimization of multiple

conflicting objectives during SD-WAN controller placement.

• [OC-3] Introduces an innovative automated learning-based decision-making model for

achieving optimal controller placement. This model leverages a stochastic computa-

tional graph in conjunction with an ensemble learning approach and learning vector

quantization.

Recent studies have revealed that traditional exhaustive and meta-heuristic approaches face sig-

nificant challenges due to their high computational demands and their inability to learn heuristics

crucial for solving complex combinatorial optimization tasks like SDN controller placement. In

response to these limitations, this research introduces an innovative approach that combines a

stochastic computational graph with an ensemble learning model and learning vector quantization.

This novel solution aims to optimize controller placement while simultaneously addressing com-

peting objectives and predicting the ideal number and positions of controllers within an SD-WAN

topology. By utilizing a stochastic and dynamic computational graph and leveraging an ensemble

learning model, specifically XGBoost, to predict optimal controller counts, this approach efficiently

tackles the challenge posed by multiple conflicting goals during SD-WAN controller placement.

Additionally, this study introduces a classification algorithm based on LVQ to accurately predict

controller placements. The choice of XGBoost as an ensemble learning method is based on its

proven ability to enhance predictive accuracy and overall model performance. XGBoost, classified

as a boosting algorithm, falls under the category of ensemble methods. Unlike ensemble learning

10

methods that involve combining multiple independently trained models, XGBoost’s ensemble model

pertains to the collaborative operation of multiple decision trees within the algorithm.

1.8 Thesis Structure

The thesis is organized into the following sections:

• Chapter 2 - Literature Review : The literature review section conducts an extensive anal-

ysis of the challenges associated with SD-WAN architecture’s controller placement problem. A

comprehensive examination of the intricacies involved in positioning controllers within SD-WAN is

presented, offering a thorough understanding. In Chapter 2, a critical assessment of methodologies,

strategies, and approaches aimed at addressing the controller placement challenges in SD-WAN is

undertaken. This analysis is rooted in the gaps identified in existing literature, highlighting the

need for innovative solutions. Various frameworks contribute to resolving these placement chal-

lenges, significantly impacting the SD-WAN architecture. The review systematically evaluates the

strengths and weaknesses of diverse techniques, serving as a guiding roadmap for implementing the

proposed scalable and intelligent framework. The exploration of the requisite development envi-

ronment and architecture is also conducted, essential prerequisites for constructing the envisioned

scalable and intelligent framework.

• Chapter 3 - Novel Approach for Controller Load Balancing through Switch Migration

This chapter presents a pioneering solution aimed at rectifying a prominent gap identified in the ex-

isting literature: Optimal load balancing across distributed controllers. Drawing from this identified

void, a unique approach has been conceptualized and developed to tackle this challenge head-on.

This chapter offers an insightful exploration into the intricate workings of this novel approach,

detailing the synergy between its distinct modules: Load Judgment, Switch Selection, and Target

Controller Selection. By elucidating the interplay of these modules, this chapter unveils the me-

chanics of the proposed approach. Moreover, the implementation of this approach is thoroughly

elucidated, highlighting the incorporation of mathematical techniques such as variance, average

load, migration cost, and load balancing rate. The comprehensive implementation and testing pro-

cedures undertaken in this study are meticulously outlined, providing a comprehensive view of the

approach’s viability and effectiveness. Through these in-depth insights, readers can gain a robust

understanding of how this novel approach addresses the critical load-balancing challenge within the

context of distributed controllers.

• Chapter 4 - Introducing a Scalable Approach for Simultaneously Optimizing Compet-

ing Objectives in SD-WAN Controller Placement

Chapter 4 introduces an innovative meta-heuristics solution designed to revolutionize the way SD-

WAN controllers are placed within the network. This approach takes a bold step forward by

addressing the challenge of optimizing multiple, often conflicting, objectives simultaneously during

controller placement. Within this chapter, readers will find an intricate exploration of the modified

NSGA-III at the heart of this cutting-edge solution. The algorithm’s various components, including

the introduced mechanisms of the repair-based operator, normalization, association, and niching,

are meticulously dissected and explained.

Central to this endeavor is the replacement of continuous optimization characteristics in the existing

NSGA-III with discrete optimization attributes through the innovative repair-operator mechanism.

11

This chapter delves deep into the mechanics of this substitution and offers a comprehensive under-

standing of how it enables SD-WAN operators to effectively balance multiple competing objectives

when placing controllers. As the chapter unfolds, readers are guided through the intricate technical

details, presenting a coherent narrative that culminates in a robust solution ready for implementa-

tion. From concept to execution, this chapter provides a holistic view of how the proposed approach

empowers SD-WAN operators to make informed decisions while optimizing controller placement to

align with diverse network objectives. Comprehensive implementation and rigorous testing are also

presented, ensuring that the proposed approach is thoroughly evaluated for its effectiveness and

real-world viability.

• Chapter - 5 Innovative Learning-Based Decision-Making Model for Optimal SD-WAN

Controller Placement

Chapter 5 introduces a groundbreaking approach that reshapes the landscape of SD-WAN controller

placement. At its core is a novel framework that combines a stochastic computational graph with

an ensemble learning model, resulting in a powerful solution to the complex challenges of controller

placement in SD-WAN networks. This chapter provides an in-depth exploration of the proposed

SCGMEL model. Through a meticulous description, readers gain a comprehensive understanding

of how this innovative fusion of technologies works synergistically to tackle the intricate problem of

controller positioning.

The SCGMEL model is meticulously dissected, offering insights into its components, including

stochastic gradient descent with momentum, a weighted sum approach, learning rate decay, and

a dynamic computational graph. The ensemble learning model, a key player in the SCGMEL ap-

proach, is unveiled, illustrating its ability to harness the power of multiple predictive models to

make informed decisions. Furthermore, this chapter demonstrates the practical application of the

SCGMEL model in solving the controller placement challenge. By leveraging the dynamic compu-

tational graph and ensemble learning techniques, the SCGMEL model effectively determines the

optimal placement of controllers within SD-WAN networks. Notably, the XGBoost decision tree

model is incorporated to predict the number of controllers required for an efficient SD-WAN de-

ployment. A crucial element of this chapter is the comprehensive implementation and testing of

the proposed approach. Through rigorous assessment, the performance, accuracy, and scalability of

the SCGMEL model are thoroughly evaluated, showcasing its potential to revolutionize SD-WAN

controller placement strategies.

To validate the significance of the offered solutions, this chapter presents a comparative analysis,

pitting the proposed stochastic computational graph with an ensemble learning model (XGBoost)

and learning vector quantization against existing state-of-the-art solutions. By providing a com-

prehensive context for the contributions made in this study, Chapter 5 establishes a foundation for

elevating SD-WAN controller placement practices to new heights.

• Chapter 6 - Conclusion and Future Work

In culmination, this chapter draws the curtain on the thesis, providing an insightful encapsulation

of the research’s discoveries and accomplishments. The path traversed has been one of innovation,

aiming to bridge gaps and forge new frontiers in the realm of SD-WAN controller placement opti-

mization. As the contributions unfold, it becomes evident that these novel solutions hold immense

promise for both practical application and scholarly exploration.

12

Chapter 2

A Review of Controller Placement
Techniques in SDN

This pivotal chapter delves into the intricate landscape of research concerning controller placement

predicaments within the realm of SDN architecture. This exploration unfolds across three distinct sec-

tions, each contributing to a comprehensive understanding of the subject matter. The chapter commences

by offering a comprehensive overview of SDN, dissecting its core elements and mechanisms. This unveil-

ing encompasses the very essence of SDN’s design, operation, and underlying architecture. Notably, the

discussion encompasses key elements such as open-source SDN controllers, protocol intricacies, and the

bedrock of standards that collectively shape the architecture. These layers, aptly termed Application,

Control, and Infrastructure, set the stage for the subsequent exploration. Continuing its journey, the

chapter seamlessly transitions into an exploration of related endeavors in the realm of controller place-

ment. This comprehensive survey delves into prior works, illuminating the various facets of controller

placement concerns. This meticulous investigation traverses through the existing literature, shedding

light on the innovative strategies that have attempted to address this pressing challenge. The chap-

ter’s culmination witnesses a meticulous dissection of potential controller placement strategies, closely

tethered to the all-encompassing objective function. This analytical endeavor navigates through diverse

placement tactics, evaluating their alignment with the overarching objective. A systematic exploration

of these strategies offers insights into the multifaceted nature of controller placement within the context

of the objective function. Embarking on this literary journey, the chapter encapsulates a panoramic

exploration of the research milieu pertaining to the intricate realm of controller placement predicaments,

especially pronounced within SDN architecture and the SD-WAN domain. This thorough examination

unfurls against the backdrop of state-of-the-art literature, with gaps and discrepancies pinpointed, setting

the stage for this research’s emergence. In summary, this chapter serves as a crucial bridge connecting

the historical, current, and future dimensions of controller placement in SDN architecture. Its thorough

analysis not only sheds light on the existing landscape but also lays the foundation for the study’s pivotal

role in addressing the identified research gaps. Navigating through this chapter, the research embark on

a journey that traces the evolution of controller placement, captures its present complexities, and charts

a course for impactful future advancements

2.1 Background

In the current networking landscape, the coupling of hardware and software constrains operators’ ability

to swiftly respond to evolving market needs. The intricate interplay between these components hampers

13

the introduction of new services on demand, often resulting in delayed responses to changing requirements.

Notably, the substantial investment in specialized hardware further exacerbates this challenge, as opera-

tors must navigate intricate processes to extract maximum utility from hardware updates and releases [22].

Consequently, the rigid structure imposed by this hardware-software integration impedes the flexibility

required for agile adaptation to emerging market trends.Furthermore, the absence of streamlined proto-

cols for remote problem identification and resolution across diverse multi-vendor systems compounds the

challenges of network maintenance. The prevailing practice of deploying specialized Systems Engineers

to physically inspect and rectify network malfunctions [16] not only consumes valuable resources but also

exposes operations to potential human fallibility. This heavy reliance on vendor-specific methodologies

not only intensifies resource allocation but also undermines operational efficiency, ultimately eroding the

overall quality of services provided.

SDN emerges as a revolutionary solution poised to revolutionize conventional networking paradigms.

In essence, SDN serves as a potent response to the intricate challenges entrenched within traditional net-

work configurations. The core premise of SDN revolves around a fundamental restructuring of network

principles, making them open, programmable, and remarkably adaptable. This paradigm shift entails a

profound architectural alteration whereby the control plane, responsible for pivotal network management

decisions, is meticulously decoupled from the data plane, which constitutes the tangible path traversed by

data packets [10]. Through this strategic division, SDN takes center stage by orchestrating a centralized

control entity, commonly referred to as a controller, thereby unifying and streamlining the governance

of the entire network’s traffic dynamics.The defining hallmark of SDN lies in its extraordinary ability

to abstract intricate networking functionalities into elevated constructs, effectively disentangled from the

intricate underpinnings of hardware intricacies. This sophisticated orchestration of network behaviors

not only underscores SDN’s prowess but also underpins its ability to seamlessly harmonize and admin-

ister services across a diverse array of computing systems. Leveraging exposed APIs, network operators

are empowered to configure and deploy specialized applications within the centralized controller. These

dynamic applications encompass an extensive spectrum of functions, ranging from the realms of virtual-

ization and load balancing to the intricacies of traffic engineering, the optimization of quality of service,

the adept handling of faults, and the fortification of security protocols [23].

In this context, SDN unfolds a plethora of compelling benefits:

• Innovation Empowerment: SDN enables businesses to develop robust applications, innovate new

products, and devise novel business models by abstracting the intricacies of underlying forwarding

operations;

• Capital Expenditure (CapEx) Savings: SDN permits businesses to utilize "white box" switches and

routers, facilitating the adaptation of their conventional hardware to SDN compatibility. This leads

to cost reductions in CapEx;

• Operational Expenditure (OpEx) Savings: By enabling automated network administration and

enhanced data plane programmability, SDN contributes to reduced OpEx;

• Enhanced Security: SDN enables the consistent deployment of security policies managed from a

centralized control panel, resulting in improved security measures;

• Service Agility: SDN accelerates the deployment of new applications and services to adapt to

changing traffic patterns, enhancing operational flexibility.

14

Table 2.1 provides a comprehensive comparison between conventional networks and software-defined

networking. This table serves to elucidate the pivotal role that SDN plays in contemporary networks,

underscoring the imperative for organizations and service providers to embrace software-defined networks

in their infrastructure. A prime instance of SDN’s advantage is its capacity to decouple the control plane

from the data plane, streamlining management and enhancing overall network performance. Further-

more, when applied to the deployment of controller placement in SD-WAN, this architectural approach

facilitates centralized monitoring of all connected devices, yielding cost-efficient maintenance in contrast

to traditional WAN technology.

Table 2.1: Overall comparison between conventional networks and software-defined networks.

Criteria Conventional Net-
works

Software-Defined Net-
works

Network configuration
and management [24]

Needs to use vendor-
specific instructions,
which makes the program
modifications complex
and necessitates special-
ized experience.

Facilitates network pro-
grammability by offering
interfaces that are inde-
pendent of certain ven-
dors.

Awareness of the status of
the global network [25]

Complicated by the tight
coupling of control and
data planes

Simplified with a logically
centralized decoupled con-
troller

Cost of Maintenance [26] Higher Less

The time needed for up-
dates and error handling
[27]

Might take months
Due to centralized control
logic, the process may be
completed in only minutes

Load-balancing in the
control plane [24] Not Crucial Crucial

The utilization of the con-
trol plane [28] Irrelevant Relevant

The availability of a con-
trol plane [24] Not Crucial Critical

Utilisation of resources.
[28] Less High

The integrity of the flow
table and the state infor-
mation [29]

Important Essential

Integrity, authenticity,
and consistency of the
control plane [29]

Irrelevant Vital

2.1.1 SDN Architecture

The architecture of a software-defined network is structured into three functional planes: the data layer,

the control layer, and the application layer (refer to Figure 2.1). Within the data layer, diverse network

components like firewalls, switches, and routers form a cohesive network infrastructure. These compo-

nents communicate their capabilities to the control layer via southbound programmable interfaces such as

15

RESTCONF, NETCONF, and OpenFlow. The control layer is embodied by a logically centralized con-

troller that offers a comprehensive overview of the network’s myriad constituents. The application layer

encompasses a diverse array of software, encompassing software-defined networking applications, custom

policies, cloud orchestration, and mobility management [30]. Through the utilization of a northbound

programmable interface like RESTful, applications convey their requirements to the controller in the form

of high-level directives. Subsequently, the controller translates these application needs into granular flow

instructions, which configure the data layer accordingly. Resource utilization and state are abstracted for

the application layer by the controller through its northbound interface. This abstraction ensures that

the application layer is presented with relevant information while extraneous elements are concealed. To

address scalability concerns, distributed controllers are often employed as an alternative to centralized

control [31].

Figure 2.1: High level Software-Defined networks reference architecture

2.1.1.1 Protocols, Standards, and SDN Operations

Protocols, Standards, and SDN Operations are pivotal components of the SDN framework, collectively

shaping its functionality and interoperability. This section delves into the intricate web of protocols and

standards that underpin SDN’s operation, ensuring seamless communication between its various layers

and components. SDN relies on a variety of communication protocols to facilitate data exchange and

coordination between its distinct layers: the data layer, control layer, and application layer. Notably,

OpenFlow has emerged as a prominent protocol, acting as a conduit for communication between the

control and data planes. Through OpenFlow, the control layer instructs network devices at the data

layer on how to handle traffic flows. This separation of control and data planes allows for centralized

control and programmability of network behavior. "Although OpenFlow is not commonly em-

ployed as a standard component within SD-WAN, it’s essential to distinguish SD-WAN’s

primary focus. SD-WAN technology is designed for the optimization and efficient manage-

ment of wide-area network connections [32]. While OpenFlow may be utilized in specific

SD-WAN implementations, the core attributes of SD-WAN encompass dynamic path se-

lection, application-oriented routing, WAN optimization, and centralized administration

16

of diverse network connections, including MPLS, broadband, and LTE [33]. While cer-

tain SD-WAN solutions may incorporate OpenFlow-like principles for traffic management

within the WAN infrastructure, it’s important to note that the SD-WAN architecture is

fundamentally geared towards application-level control and optimization, rather than the

granular control offered by OpenFlow." Through abstracting the complexities, SDN communica-

tion protocols facilitate the convergence of diverse network devices. Extensive efforts have been directed

toward standardizing both southbound and northbound protocols, with a particular emphasis on the

southbound interface [10]. Currently, a range of southbound and northbound protocols are available.

Notable examples of southbound protocols include NETCONF [34], OVSDB (Open vSwitch Database

Management) [35], and OF-CONFIG (OpenFlow Configuration) [36]. Northbound protocols encompass

LISP (Locator ID Separation Protocol) [37], Path Computational Element Protocol (PCEP) [38], BGP

Link-State (BGP-LS) [39], and I2RS (Interface to Routing System) [40]. Southbound protocols facilitate

the implementation of forwarding plane activities, such as port allocation, IP assignment, and policy en-

forcement, while northbound protocols enable the configuration of packet flow activities on the forwarding

layer [41]. Protocols like I2RS, PCEP, and BGP-LS, categorized as "Hybrid SDN" in Table 2.2, offer

viable options for introducing SDN into traditional networks without requiring a complete infrastructure

overhaul. This approach minimizes migration costs, particularly capital expenses.

Table 2.2: The comparison of southbound protocols at a high level

Standards Regulatory
Body Motive Business

Domain
SDN Inter-
face

OpenFlow
[42]

Open Net-
working
Foundation

Control
Software-
Defined
Networks

Southbound
Interface

Interface to
Routing Sys-
tem [43]

Internet
Engineering
Task Force

Control

Conventional
Network-
ing+SDN
protocols

Southbound
Interface

Locator ID
Separation
Protocol [44]

Internet
Engineering
Task Force

Control

Conventional
Network-
ing+SDN
protocols

Southbound
Interface

Network
Configura-
tion protocol
[26]

Internet
Engineering
Task Force

Management

SDN Con-
ventional
Network-
ing+SDN
protocols

Northbound
Interface,
Southbound
Interface,
East/Westbound

Path Com-
putational
Element
Protocol [42]

Internet
Engineering
Task Force

Control

Conventional
Networking
+ SDN pro-
tocols

Southbound,
East/ West-
bound

Open
vSwitch
Database
Management
[45]

European
Telecom-
munication
standards
institute

Management
Software-
Defined
Networks

Southbound,
Southbound

17

Conversely, protocols like OF-CONFIG may not be compatible with existing networks and may de-

mand substantial capital investments. BGP-LS and PCEP have gained prominence in carrier-grade SDN

deployments due to their scalability features, while OpenFlow has become the standard for data center

environments [46] [47]. A comparative overview of frequently used southbound SDN protocols is pre-

sented in Table 2.2.

OpenFlow remains a prominent choice for controlling SDN deployments, despite the proliferation of

alternative SDN control protocols. Major networking equipment providers such as Dell, Cisco, HP, Arista,

and Big Switch Networks have expressed interest in OpenFlow. Serving as a communication standard

within SDN, OpenFlow enables the execution of flow instructions into the data layer via the Transmission

Control Protocol. To ensure secure communication, OpenFlow recommends using the Transport Layer

Security (TLS) protocol. Figure 2.2 illustrates the packet flow mechanism in OpenFlow [4]. Upon

receiving user packets, switches examine the packet’s match fields (including packet headers, ingress

port, and metadata) against table entries. When a matching flow entry is found, the switch updates

counters and executes the instructions from the instruction set [48]. These instructions can direct the

traffic to a specific egress port or discard the packet. In cases where no matching entry is found (a

table miss), the instruction set in the table miss flow entry defines how mismatched packets are handled.

Options include discarding packets, routing them to another table for further matching, or forwarding

them to the controller using a packet-In message through the southbound interface. Upon receiving

packet-in messages, the controller decides on the course of action and utilizes packet-out messages to

install flow entries on the switch.

Figure 2.2: Processing of packets in an OpenFlow switch.

18

OpenFlow encompasses three distinct types of messages: controller-to-switch, asynchronous, and

symmetric [49]. In the controller-to-switch message format, initiated by the controller, the conversation

between the two entities commences. This message type includes role request messages, feature requests,

and switch statuses, among others, and serves purposes like monitoring and discovery [50].

Conversely, in the asynchronous message type, the switch can transmit messages to the controller

without any explicit request. Examples of such messages encompass switch state changes, packet-in noti-

fications, port status updates, packet-out messages, and flow-removed notifications. These asynchronous

messages facilitate real-time communication and event handling [51].

Lastly, symmetric messages [52] are those that can be initiated by either the controller or the switch,

without prior solicitation. These messages promote bidirectional interaction. Notable examples of sym-

metric messages include Hello messages for connection establishment, Echo messages for connection

verification, and Experimental messages for research and custom functionalities.

Table 2.3: Overview of OpenFlow Control Messages

Message Type Description Examples

Controller-to-Switch [50]

Message sent by the con-
troller, which may or may
not need a response from
the switch depending on
the circumstances.

Read-State, Features
request, Barrier messages,
and Send-Packets are
some of the operations
that are performed.

Asynchronous [51]

A message is transmitted
by the switch regardless of
whether or not it was re-
quested by the controller.

Flow-removed, Packet-in,
Error messages, as well as
Port-Status

Symmetric [52]
The direction of an unso-
licited message might be
either way.

Hello, Echo, and Vendor
messages

2.1.1.2 Open Source Software-Defined Networks Controllers

Open-source software-defined network (SDN) controllers play a pivotal role in the architecture, acting as

the central processing unit, as highlighted in section 2.1.1. To expedite the development of SDN solu-

tions, substantial efforts have been invested in crafting these open-source controllers. Among the most

prominent ones are Ryu [53], OpenDaylight [54], and ONOS [55]. These controllers have surged in pop-

ularity and offer diverse attributes encompassing scalability, complexity, security, and interoperability.

The subsequent section furnishes a concise overview of these controllers, coupled with a comprehensive

feature-based juxtaposition. ONOS, a leading open-source software-defined network controller, was de-

veloped by ON.Lab with a primary objective of empowering service providers to establish practical SDN

solutions. This controller, notably optimized through its distributed core, prioritizes crucial production

network attributes such as high-performance metrics, scalability, and dependability [56]. ONOS em-

ploys two abstraction frameworks within its northbound interface: the global network topology view and

the intent framework. Leveraging the intent framework, network applications can deploy services using

policy-based instructions, abstracting the "what" over the "how" [10]. The global network view equips

the application layer with the network’s real-time status, streamlining resource utilization comprehension.

19

The southbound interface further enhances abstraction by representing hardware resources as objects,

accommodating diverse infrastructural plane elements through protocol plugins like OpenFlow, OVSDB,

and NETCONF. Eastbound and westbound communication across multiple ONOS controller instances

is facilitated by an adapted version of the BGP protocol, allowing distributed control nodes to provide

domain-specific status data [10]. ONOS finds its prime use case in CORD (Corporate Office Re-architected

as a Data Centre), revolutionizing the domain through cloud computing, SDN, and network function

virtualization [57]. This approach enables operators to achieve economies of scale and process optimization

akin to cloud service providers, fostering rapid network service deployment and elastic scaling.

Recognized as the service provider controller due to its distributed core, ONOS boasts a series of

version releases, including Velociraptor, Uguisu, Toucan, Sparrow, Raven, Quail, Peacock, Owl, Magpie,

Nightingale, Loon, Kingfisher, Junco, Ibis, Hummingbird, Goldeneye, Falcon, Emu, Drake, Cardinal,

Blackbird, and Avocet. These versions signify its substantial community support and widespread adoption

[10].

2.1.1.3 OpenDaylight

OpenDaylight, a versatile Java-based open-source software-defined controller, is maintained by the Linux

Foundation and serves as a configuration and coordination tool for networks of varying scales [58]. Lever-

aging the Model-Driven Software Engineering (MDSE) paradigm, OpenDaylight abstracts the lower-level

capabilities of data layers, utilizing YANG as its data modeling syntax. The controller represents hardware

resources as manageable objects through the Service Abstraction Layer (SAL), ensuring interoperability.

OpenDaylight’s modular design empowers users and technology providers to tailor traffic controls to their

specific needs. Embedded in the control plane, the Model-Driven SAL (MD-SAL) functions as the SDN

network’s "brain," translating application layer rules into the data layer through its northbound and

southbound interfaces, respectively. OpenDaylight supports an array of southbound protocols, including

OpenFlow, OVSDB, NETCONF, PCEP, BGP-LS, among others. Notably, OpenDaylight occupies a

central role in open-source supervision and automation frameworks like ONAP (Open Networking Au-

tomation Platform), OPNFV, OpenStack, and industry-specific groups such as MEF (Metro Ethernet

Forum) [59]. An instance of this is the UNI Manager plugin version within OpenDaylight, offering APIs

for MEF’s LSO (Lifecycle Service Orchestration) project. Focused on interoperability, OpenDaylight has

become the standard choice for hybrid SDN implementations. With 16 releases to date, including Sul-

fur, Phosphorus, Silicon, Aluminium, Magnesium, Sodium, Neon, Fluorine, Oxygen, Nitrogen, Carbon,

Boron, Beryllium, Lithium, Helium, and Hydrogen, each version expands application instances, incorpo-

rates IoT support, integrates network function virtualization management, and enhances S3P (Scalability,

Security, Stability, and Performance) through clustering and federation strategies.

2.1.1.4 Floodlight

Floodlight, an event-based SDN controller developed by Big Switch Networks, serves as a valuable choice

for rapid prototyping in smaller environments. Notably, Floodlight is tailored for OpenFlow compatibility

in its southbound, making it optimal for scenarios not requiring support for more intricate protocols

like PCEP or BGP-LS. Its northbound REST API support streamlines the creation of diverse traffic

engineering strategies for application developers. Furthermore, Floodlight boasts features like multi-

threading, flexibility, and operates within an asynchronous architecture [60].

20

2.1.1.5 Ryu

Ryu [53], a Python-based SDN controller, finds its utility as a versatile software-defined network con-

troller, commonly utilized in cloud orchestration applications. One of its distinctive advantages lies in

its extensibility through the integration of modules written in various languages, offering the flexibility

of a generic controller. Ryu employs REST API as its northbound abstraction interface and supports

a spectrum of southbound interfaces including OVSDB, NETCONF, OFCONFIG, and OpenFlow [61].

However, its lack of support for broader protocols like BGP-LS renders it unsuitable for large-scale de-

ployments, restricting its use primarily to rapid development in limited-scale scenarios. Among various

open-source controllers, OpenDaylight and Ryu stand out for their extensive range of southbound con-

nections. Floodlight, in contrast, is tailored for OpenFlow exclusively. This narrow focus limits its

deployment to environments exclusively using SDN. Notably, OpenDaylight [26] garners significant com-

munity and vendor support, closely followed by ONOS [55]. Both Floodlight and Ryu provide developers

with full control over their codebases. In terms of deployment, OpenDaylight and open network operating

systems offer distributed control, rendering them suitable for data networks. Both systems also exhibit

high modularity, simplifying the addition of new features. A distinguishing limitation of open network

operating systems is their lack of support for cloud orchestration tools like OpenStack, which is crucial

for managing cloud infrastructure. Decision-makers involved in SDN network design can leverage this

feature-based comparison to match each controller’s attributes against their requirements. For example,

open network operating systems excel in scalability due to their distributed core, enhancing dependability

and availability. On the other hand, OpenDaylight shines in its robust support for legacy southbound

protocols, making it ideal for diverse enterprise contexts. For small-scale campus networks, Ryu’s Python

foundation streamlines installation and its centralized core minimizes inter-controller latency. However,

it’s vital to note that performance effectiveness can’t solely rely on feature comparison; the controller

selection depends on a blend of feature capability and performance aligned with the intended application.

2.2 Software-Defined Network Controller Placement Algorithms

The division between the control plane and data plane in software-defined networking introduces addi-

tional challenges. One pivotal question that emerges when constructing an SDN network revolves around

the optimal placement of controllers. The subject of Controller Placement Problem (CPP) assumes great

significance in the realm of SDN, and its exploration dates back to 2012 [62]. For smaller to medium-scale

networks, CPP rarely poses a concern, as a single controller can capably oversee these networks. How-

ever, the landscape changes dramatically in expansive enterprise networks like SD-WAN, where multiple

controllers must be strategically situated. Often referred to as the NP-hard problem, CPP mirrors the

location analysis or facility locating dilemma. Arbitrarily placing controllers anywhere within the net-

work is counterproductive. Such an approach not only escalates the overhead delay of network services

but also undermines overall network performance [63]. The challenge lies in determining the most fitting

locations for controllers to ensure efficient network management and optimal performance. The principal

objective of this study is to determine the most optimal controller placement for SD-WAN infrastructure

while addressing a multitude of conflicting objectives. To identify the existing gaps and contextualize

the research within the domain, a comprehensive literature review on controller placement is undertaken.

Moreover, the author aims to leverage insights from prior research for comparative purposes subsequent

to the analytical assessment of the proposed solution. Ultimately, the intention is to showcase the poten-

tial outcomes of the present study through a juxtaposition with the findings of previous research.

21

In this study, the controller placement algorithms have been systematically categorized based on their

optimized criteria. These criteria fall into five distinct categories: (a) Minimization of network latency;

(b) Maximization of resilience and reliability; (c) Load balancing; (d) Reduction of infrastructure costs

and energy consumption, and (e) Multi-objective strategy. Additionally, the enhancement of existing

SDN controller placement algorithms through heuristic approaches is explored. Visual representations of

the optimized criteria and the current placement method are depicted in Figures 2.3 and 2.4, respectively.

The ensuing subsections delve into the pertinent literature concerning controller placement algorithms,

expounding on their respective optimized criteria. Moreover, the insights gained from these studies

significantly contribute to shaping the trajectory of this thesis. A comprehensive summary and conclusion

section will encapsulate these findings, as illustrated in Figure 2.3.

Figure 2.3: Overview of Existing Optimization Algorithms Based on Different Performance Metrics

22

Figure 2.4: Existing controller placement algorithms

2.2.1 Minimising Network Latency

In an SDN-based architecture, controller placement doesn’t have a direct impact on the latency of all

packets generated by data plane devices. Instead, it notably influences the latency of the first packet,

often termed as the ’final flow setup time.’ This encompasses the comprehensive duration required

for transferring the initial packet from source to destination, encompassing the time taken to initiate

a request, the controller’s duration to establish forwarding rules across switches along the source and

destination paths, along with any network latency encountered during packet transmission [64]. The

researchers who prioritize latency as their primary objective for controller placement can be categorized

into three distinct groups, as illustrated in Table 2.4:

• Node-Controller Latency

• End-to-End Latency

• Inter-Controller Latency

These researchers operate under the assumption that the optimal approach to optimize controller place-

ment is by minimizing the switch-to-controller latency. Notably, one of the pioneering researchers to in-

vestigate the impact of controller placement on average and worst-case node-to-controller latencies within

private networks is cited in [20]. These researchers developed an algorithm that utilizes an exhaustive

approach to explore every conceivable controller combination for determining the optimal controller

placement. The exhaustive method necessitates the algorithm to examine all possible controller combi-

nations, potentially leading to increased computational complexity.

23

Table 2.4: The sub-classes of the publication that considers latency to optimize SD-WAN controllers

Class
No

Sub-
Optimization
criteria

Publication
No Reference Algorithm

1
Switch-
Controller
latency

1 (Heller et al. 2012) Farthest-point clustering

2 (Bari et al. 2013) Integer Linear Program-
ming

3 (Penna et al. 2014) Modifies K-clustering

4 (Tuncer et al.
2015) Clustering

5 (Tanha et al. 2016) Capacitated k-center

6 (Wang et al. 2016) Improved K-Means

7 (Zhao et al. 2017) Exempler-clustering

8 (Sahoo et al. 2017) PSO and Firefly

9 (Sahoo et al. 2018) CAMD

10 (Mamushiane et al.
2021) PAM and Gap Statistics

2 End-to-end
latency 11 (Zeng et al. 2016) Integer Linear Program-

ming

12 (Guodong et al.
2017)

Optimized K-mean algo-
rithm

13 (He et al. 2017) Spectral clustering and
MIP

14 (Sood and Xiang,
2017) Analytical model

3 End-to-end
latency 15 (Nagano and Shi-

nomiya, 2015) Clustering

16 (Zhang et al. 2016) Analytical model

17 (Han et al. 2016) Exhaustive search algo-
rithm

18 (Zhu et al. 2017) Adapted K-mean

19 (Li et al. 2018) Approximation algorithm

The primary finding of this study suggests that a single controller is satisfactory to fulfill network

demands. Nonetheless, the author acknowledges that this falls short when considering fault tolerance

requirements. The authors in [65] and [66] built upon the work initiated by [20]. In [67], the author

introduced a clustering technique aimed at minimizing the number of hops between controllers and the

controlled switches. Additionally, the authors of [68], [69], and [70] also employed clustering approaches

to reduce latency between controllers and their controlled switches. In conclusion, the authors in [71]

introduced an evolutionary-based approach to determine the optimal controller placement, focusing on

24

minimizing latency between controllers and their related switches. It’s worth noting that the first group

of researchers did not consider other types of latencies during the optimization of controller placement,

even though these latencies also play a crucial role in the network’s overall performance.

The second group of researchers focuses on minimizing end-to-end latency by considering various factors

such as controller processing, queue latency, link propagation, and switch transmission [64]. Their work,

including studies like [72], [73], and [64], takes a comprehensive approach by accounting for multiple

latency types when optimizing controller placement and calculating end-to-end latency. Additionally,

in [74], the authors introduced the concept of shifting the controller placement problem to a controller

selection problem. They emphasized the importance of dynamically modifying logical controllers using

a topology-independent, computationally efficient placement procedure. However, it’s worth noting that

while this second group of researchers proposed suitable positions for dedicated network zones, they

overlooked inter-controller latency. This oversight rendered their placement strategy less suitable for

SD-WAN controller placement when controllers need to communicate with each other.

The third group of researchers delved deeply into the realm of end-to-end latency. Beyond considering

just switch-to-controller delay, they also factored in inter-controller latency. For instance, in [75], the au-

thors illustrate the substantial impact of inter-controller communication on overall network performance.

Moreover, the authors of [76] highlighted the following key insights: Firstly, the choice of consistency

techniques employed among controllers, such as Zookeeper and the Raft consensus algorithm, along with

the selected consistency level, significantly influences controller response times. Secondly, they empha-

sized the necessity of incorporating inter-controller latency into the calculation of end-to-end latency.

These endeavors were complemented by three additional algorithms - switch-to-controller [77] [78] and

[79], each striving to minimize latency between inter-controllers and switch-to-controller. Consequently,

the contributions of this third group of researchers led to more empirically grounded insights, ultimately

demonstrating an improved controller placement strategy in terms of latency performance.

2.2.2 Maximising Resilience and Reliability

The failure to install forwarding rules in switches can lead to network disruptions, posing a significant

threat to network stability and reliability. Furthermore, delaying the installation of these forwarding rules

can exacerbate the situation, making it even more critical to optimize the controller placement problem.

This optimization is essential not only to enhance resilience in the event of control layer failures but also

to significantly improve network reliability [3, 80]. Numerous research studies have been dedicated to

optimizing the

placement of SD-WAN controllers with a particular emphasis on resilience and reliability measures.

These investigations can be broadly categorized into two groups. The first group of researchers concen-

trates on bolstering resilience in scenarios where there’s a failure in the connection between the controller

and switches. Conversely, the second group of researchers is primarily concerned with enhancing reliability

in situations where the controller itself experiences a failure. For further details, please refer to Table 2.5.

The first group of researchers explored the potential of clustering techniques to create resilient domains.

In [80], the authors initially examined how controller placement impacts the resilience of connections

between switches and controllers. Subsequently, [81] and [82] improved upon the concept of clustering

the network into resilient domains. Interestingly, the authors noted that extending SD-WAN can inad-

vertently lead to inter-controller broadcast storms, even though this wasn’t their intention. Building on

this concept, [75] and [83] employed partitioning strategies to enhance network resilience. However, a

drawback of the resilient clustering approach is its tendency to produce unbalanced clusters [84]. On

25

Table 2.5: The sub-classes of the publication that considers resilience and reliability to optimize SD-WAN
controllers

Class
No

Sub-
Optimization
criteria

Publication
No Reference Algorithm

1

Maximize
resilience
against path
failure

1 (Zhang et al. 2011) Min-cut clustering

2 (Hu et al. 2013) Percentage of loss control

3 (Guo and Bhat-
tacharya, 2013) Robust tree (clustering)

4 (Jimenex et al.
2013) Robust tree

5 (Hu et al. 2014) Simulated Annealing

6 (Jimenex et al.
2014) Improved K-critical

7 (Xiao et al. 2014) Spectral clustering

8 (Liu et al. 2016) K-Means

9 (Aoki and Shi-
nomiya, 2016) Clustering

2

Maximize
Resilience
against Con-
troller failure

10 (Muller et al. 2014) Integer Linear Program-
ming

11 (Perrot and Rey-
naud, 2016)

Integer linear program-
ming

12 (Tanha et al. 2016) Exhaustive search

13 (Killi and Rao,
2017)

MILP and Simulated An-
nealing

14 (Bannour et al.
2017) NSGA-II and PAM

15 (Tanha et al. 2018) Clique-based

16 (Killi et al. 2019) Mathematical model

17 (Calle et al. 2021) Mixed integer program-
ming

a different front, [85], [84], and [86] introduced a novel approach to tolerate path failures, proposing a

robust control tree to address this issue. Nevertheless, due to the computational complexity of identifying

the optimal tree, these methods might not be suitable for deployment in complex network structures.

Another angle of research, exemplified by [87], examined controller placement concerning path failures.

These authors introduced a new metric called the "percentage of loss control path" to maximize the

control layer’s reliability. According to their findings, controller placement could enhance the control

plane’s reliability without necessarily causing unacceptable latencies between the controller and its as-

26

sociated switches. Finally, [3] recognized the challenge of link outages and introduced the concept of

the "Reliability Factor" (RF), which utilizes the average distance of multi-paths between controllers and

their associated switches. However, all these investigations primarily focused on addressing link and node

failures, while neglecting controller failures. In pursuit of greater reliability in controller placement, some

researchers have explored methods to assist in recovering from control layer faults, particularly controller

failures. A common approach followed by authors in studies such as [88], [89], [69], [90], [91], and [92]

involves the use of a single backup controller. They employ a Mixed Integer Linear Programming (MILP)

and simulated annealing approach, distributing a set of three controllers to each cluster. This controller

placement strategy, focusing on resilience, proves to be more robust against network failures

2.2.3 Load Balancing

In the pursuit of maintaining optimal network performance, ensuring a balanced load among distributed

controllers is crucial. Consequently, researchers aim to identify the most effective controller placement

strategies for load balancing, with the objective of dynamically distributing the controller’s workload.

Load balancing can be achieved through two primary methods: assessing the controller’s capacity and

ensuring load distribution accordingly, or employing the switch migration approach to alleviate the burden

on overloaded controllers. The publications that have explored controller placement with a focus on load

balancing, utilizing both the controller’s capacity and the switch migration approach, are summarized in

Table 2.6.

Table 2.6: The sub-classes of the publication consider load balancing to optimise SD-WAN controllers
using controller capacity and switch migration approach.

Class
No

Sub-
Optimization
criteria

Publication
No Reference Algorithm

1 Distribute
load equally 1 (Rath et al. 2014) Non-zero game theory

2 (Yao et al. 2014) Capacitated K-center

3 (Aoki et al. 2015) Minimum cut (clustering)

4 (Aoki and Shi-
nomiya, 2015) Spectral clustering

5 (Sanner et al. 2016) Hierarchical clustering

2

Miminize the
load of the
overloaded
controller
(switch mi-
gration)

6 (Yao et al. 2015) K-mean clustering

7 (Hedge et al. 2017) Exhaustive search

8 (Adekoya et al.
2020) ISMDA

The authors in [93] utilize a non-zero game theory method to dynamically adjust the placement of

controllers. Similarly, the authors in [94], [95], and [96] explored graph partitioning techniques to create

27

balanced clusters. It’s worth noting that the clustering methods investigated in previous papers can

achieve controller load balancing in a static network environment. However, due to the high computa-

tional cost of these approaches, achieving load balancing of controllers in a dynamic network context

is challenging. Other related works, such as [97], [98], and [99], opt to position the controllers in fixed

locations and then migrate the switches among them to balance the controller load. However, it’s im-

portant to note that while this approach is effective for minimizing changes in network load, it may not

be sufficient for handling significant fluctuations in network traffic or topology. In particular, the last

two works determine controller locations based on cluster shapes, which can change depending on the

network’s status.

2.2.4 Decreasing Infrastructure Cost and Energy Consumption

The goal in SDN is to minimize both Capital Expenditures (CAPEX) and Operating Expenses (OPEX)

to ensure the financial viability of deployment and operations. This entails decreasing infrastructure and

operating expenses, alongside efforts to minimize energy consumption, while simultaneously optimizing

network resources to enhance efficiency without compromising performance [100]. Consequently, several

researchers have explored the concept of cost-effective controller placement, aiming to maximize controller

utilization while minimizing the number of active controllers (refer to Table 2.7).

Table 2.7: The sub-classes of publications that result in controller placement that lowers SD-WAN costs
and power consumption.

Class
No

Sub-
Optimization
criteria

Publication
No Reference Algorithm

1

Trading-off
between
multi-
objectives

1 (Sallahi and St-
Hilaire, 2015)

Exhaustive search algo-
rithm

2 (Sallahi and St-
Hilaire, 2017)

Exhaustive search algo-
rithm

2

Combining
multi-
objective
in single
solution

3 (Auroux et al.
2014)

Minimize active con-
trollers

4 (Auroux et al.
2015)

Optimal placement among
limited locations

5 (Ruiz-Rivera et al.
2015) Minimize active links

6 (Hu et al. 2017) Genetic algorithm

The authors of papers [101] and [102] have created a mathematical model for determining the most

cost-effective controller placement in newly constructed or upgraded networks. While effective in reducing

network costs, this model doesn’t account for inter-controller delay during controller placement and

has high computational complexity. Additionally, the authors of [103], [104], and [100] have developed

28

placement algorithms aimed at minimizing power consumption by reducing active controllers. However,

these approaches may increase latency and do not consider inter-controller delay.

2.2.5 Combinatorial Optimization Approach

Combinatorial optimization problems come up in many different areas, such as decision-making, planning,

telecommunications, transportation, routing, and scheduling [105]. A multi-objective approach refers to

a problem-solving or decision-making strategy used to address scenarios where there are multiple, often

conflicting, objectives or criteria that need to be simultaneously optimized. In such situations, the goal

is to find a set of solutions that represents a trade-off between the different objectives because it’s often

impossible to optimize all objectives simultaneously due to their conflicting nature.

This approach is commonly used in various fields, including engineering, economics, operations re-

search, and more [106]. It involves mathematical modeling and optimization techniques to find a set of

solutions (known as the Pareto front) that are considered optimal with respect to the different objectives.

Decision-makers can then choose from this set based on their preferences, balancing the trade-offs between

the objectives to make informed decisions. This study is centered on addressing the intricate challenge of

SD-WAN controller placement, which serves as a quintessential example of a combinatorial optimization

problem. The crux of the controller placement problem lies within the domain of discrete optimization,

characterized by the delineation of distinct and finite solutions [8]. Conversely, even cutting-edge algo-

rithms like NSGA-III predominantly excel in tackling continuous optimization quandaries [29]. In the

realm of continuous optimization, where variables possess continuous value ranges, the solution space

extends infinitely. In stark contrast, discrete optimization grapples with variables that assume specific,

discrete values, yielding finite and distinct solution sets. The selection of optimization paradigms is in-

trinsically tied to the inherent characteristics and constraints of the problem at hand. To ensure the

derivation of pragmatic and viable solutions while guarding against in-feasibility during critical genetic

algorithm operations such as cross-over and mutation, and to circumvent the unwarranted generation of

redundant solutions, an innovative repair-operator-based mechanism has been meticulously developed.

The pivotal roles of cross-over and mutation in catalyzing genetic diversity cannot be overstated. These

operations perpetually explore uncharted solution territories while tenaciously safeguarding favorable

traits inherited from preceding generations. This ingeniously crafted mechanism effectively supplants

continuous optimization elements in the NSGA-III algorithm with discrete optimization attributes, thus

rendering it exceptionally well-suited for the resolution of discrete controller placement challenges. This

is accomplished while upholding its remarkable proficiency in addressing multifaceted objectives.. There

are several different goals that need to be optimized at the same time to get the best controller place-

ment. Prominent metaheuristic algorithms, including the ANSGA-III [7], NSGA-II [107], and MOPSO

[108], have been proposed to seek solutions that approach optimality. Nonetheless, these methodologies

exhibit certain limitations that warrant prompt attention. Existing techniques grapple with issues such

as computational inefficiency, a lack of capacity to acquire combinatorial optimization heuristics, and

suboptimal controller placement optimization, especially when dealing with more than three objectives

(with the exception of ANSGA-III).

This study’s findings underscore a common challenge across optimization algorithms, namely, the sub-

stantial computational demands associated with MOPSO, NSGA-II, and ANSGA-III (refer to Chapter 5,

subsection 5.6.3, figure 5.19). Despite ANSGA-III’s notable scalability in SD-WAN controller placement,

none of the existing solutions, including MOPSO and NSGA-II, or even the adapted ANSGA-III, possess

autonomous heuristic learning capabilities for tasks like predicting the optimal number and placement

29

of controllers in combinatorial optimization scenarios, such as SD-WAN controller placement. These

advanced algorithms (ANSGA-III, NSGA-II, and MOPSO) rely on handcrafted heuristics to make com-

plex decisions that are either computationally expensive or lack well-defined mathematical formulations.

Thus, there’s a pressing need for intelligent-based solutions that can swiftly compute both the optimal

controller number and their strategic placement [109, 106, 110].

2.2.6 Multi-Objective Approach

This research now delves into an in-depth exploration of the background study concerning multi-objective

approaches. The final group of researchers in Table 2.7 believes that focusing on a single goal (such as cost,

energy, latency, load, or reliability) won’t lead to an optimal controller placement. Instead, they consider

multi-objectives in two ways: first, by trading off objectives, and second, by merging multi-objectives

into a single placement with adaptive values (see Table 2.8 and 2.9). The authors in [21] tackle all forms

of placement using the NP-hard brute-force search algorithm. They introduce POCO, also known as the

Pareto-based Optimal Controller Placement tool. Pareto-based optimal controller placement refers to a

strategic approach employed for determining the most favorable controller locations within a network,

while simultaneously addressing multiple competing objectives [21]. Within this framework, ’local’ so-

lutions denote those that exhibit optimality or efficiency within specific problem space regions. These

solutions excel within their localized domains but may not necessarily translate to global optimality.

The terms ’maximum minimum’ and ’minimum maximum’ encapsulate the essence of balancing di-

verse objectives [15]. In the realm of multi-objective optimization, the objective often revolves around

optimizing one metric (maximum) while minimizing another (minimum). ’Maximum minimum’ signi-

fies the pursuit of solutions that maximize one objective while minimizing another, while ’minimum

maximum’ represents the converse—minimizing one objective while maximizing another. Notably, even

objectives aimed at maximization are transformed into minimization objectives through the introduction

of negative values. This alteration fosters a harmonized optimization process, wherein all objectives are

uniformly minimized. This unification eliminates the need to differentiate between maximization and

minimization objectives, streamlining the optimization algorithm.

In the context of Pareto-based optimal controller placement, the overarching objective is to identify a

set of controller positions that offer an optimal compromise between conflicting objectives. This pursuit

takes into consideration both localized and global optima, navigating the intricate interplay between max-

imizing and minimizing various performance metrics. This POCO Matlab framework is enhanced with

a Visual Interface to facilitate the presentation of placement results in dynamic conditions [21]. In their

subsequent study, [15] utilize POCO and PlanetLab [111] to optimize controller placement in dynamic

environments. Additionally, [112] presents a heuristic strategy for using the POCO tool in their study.

The POCO algorithm could be a viable option for small and medium-sized networks (not exceeding fifty

nodes and seven controllers). However, due to its high resource and time requirements, it may not be

suitable for large networks and dynamic implementations [8]. The proposed heuristic strategy simplifies

the placement of POCOs, yielding acceptable but less precise outcomes [113].

Consequently, when employing the heuristic method, a greater number of controllers might be placed

in larger networks (e.g., fifty nodes and fifteen controllers). This prior heuristic technique is further

refined in a subsequent work by [113] to achieve more precise placement. However, it’s important to

30

Table 2.8: The sub-classes of publications that result in Multi-objective controller placement.

Class
No

Sub-
Optimization
criteria

Publication
No Reference Algorithm

1

Trading-off
between
multi-
objectives

1 (Hock et al. 2013) K-centers and K-median
algorithms

2 (Gebert et al.
2014) K-median algorithms

3 (Lange et al. 2015) Heuristics approach

4 (Gebert et al.
2015)

Pareto capacitated K-
medoids

5 (Naning et al.
2016) Analytical model

6 (Hollinhurst et al.
2016)

Local search and Adapted
K-means++

7 (Xu et al. 2022) Genetic Algorithm

8 (Radam et al.
2022)

Harmony search and PSO
Algorithm

9 (Alouache et al.
2022)

Multi-Objective Genetic
Algorithm

10 (Aravind et al.
2022) Simulated Annealing

11 (Hemagowri et al.
2023) Artificial fish algorithm

2

Combining
multi-
objective
in single
solution

12 (Jalili et al. 2015) Adapted NSGA-II

13 (Borcoci et al.
2015)

Multi-criteria Decision Al-
gorithm

14 (Gao et al. 2015) Particle Swarm Optimiza-
tion

15 (Hu Bo et al. 2016) MOGA

16 (Liao et al. 2017) Density-based clustering

17 (Bannour et al.
2017) NSGA-II and PAM

18 (Zhang et al. 2018) MOCP

19 (Kuang et al. 2018) Hierarchical K-means

20 (Tanha et al. 2018) Heuristics approach

31

Table 2.9: The sub-classes of publications that result in Multi-objective controller placement.

Class
No

Sub-
Optimization
criteria

Publication
No Reference Algorithm

2

Combining
multi-
objective
in single
solution

21 (Ahmadi et al.
2018)

Heuristics approach algo-
rithms

22 (Mohanty et al.
2019) Metaheuristics techniques

23 (Liao et al. 2021) Genetic Algorithm and
PSO

24 (Adekoya et al.
2022) ANSGA-III

25 (Bagha et al. 2022) Seagull Optimization Al-
gorithm

26 (Sapkota et al.
2022)

Naked Mole-Rat Algo-
rithm

27 (Thalapala et al.
2022)

Wisdom of Artificial
crowds

28 (Kazemian et al.
2022)

Antilon Optimization Al-
gorithm

29 (Qaffas et al. 2023) Cuckoo search algorithm

note that the size of the networks and the number of controllers in the tests conducted are similar to

those of the POCO tool’s tests, which do not represent truly large networks. Additionally, analytical

research employing the POCO algorithm is presented in the work by [114]. From this, it can be deduced

that placing controllers based on their resilience can fulfill system needs such as load balancing, depend-

ability, and latency. Most scientific studies utilizing the trade-off methodology suggest that local search

and k-means++ approaches are more feasible for large organizations [114]. However, it’s worth noting

that some drawbacks are common among these works, including the fact that selecting between multiple

placements may not be an appropriate solution, controller overload during reassignment of nodes to the

closest controller in case of a failure is not considered, and the latency between the switch and controller

is depicted solely by the propagation latency.

In their research, the authors of [115] have introduced a multi-controller load balancing model with

three primary optimization objectives. The model aims to achieve controller load balancing, reduce com-

munication latency between the control plane and forwarding plane, and minimize switch migration costs.

This approach utilizes dynamic switch migration to balance the load among controllers, resulting in de-

creased network latency and migration costs. However, it’s important to note that the genetic algorithm

proposed by these authors has demonstrated challenges related to scalability and computational efficiency.

Consequently, further testing is warranted to assess the practicality and effectiveness of this algorithm in

real-world scenarios. Similarly, in a study focusing on enhancing network performance by addressing the

32

controller placement problem, researchers employed a multi-controller-based SDN approach [116]. This

approach uses a hybrid strategy that combines the harmony search algorithm with the PSO algorithm to

determine the optimal controller placement. While it successfully minimizes communication latency and

optimizes controller placement, it does have drawbacks. The approach involves several heuristic strategies

in the optimization process, which can lead to computational inefficiency. Additionally, it doesn’t possess

the capability to effectively learn the heuristics required for solving combinatorial optimization problems.

Additionally, the authors in [117] focus on controller placement for Vehicular networks coupled with 5G.

They employ a Multi-Objective Genetic Algorithm to optimize controller placement considering objec-

tives like latency, load balancing, and robustness. While this method can compute controller placement

and identify nearly optimal solutions, it faces challenges related to scalability, computational efficiency,

and the ability to learn heuristics. The authors in [118] propose a simulated annealing algorithm to

address controller placement issues. This approach aims to reduce execution time while optimizing con-

trollers using simulated annealing. However, it may struggle to efficiently find diverse solutions when

dealing with several conflicting objectives and could encounter computational inefficiency and scalabil-

ity issues. Finally, the authors in [119] present a hybrid evolutionary algorithm optimized controller

placement approach that utilizes artificial fish algorithms and chaotic Gaussian maps. This approach op-

timizes controller placement based on conflicting metrics but may face difficulties finding diverse solutions

in scenarios with numerous conflicting objectives. It could also be computationally intensive and lacks

the ability to learn the heuristics of combinatorial optimization problems. In summary, these approaches

make significant contributions to optimizing controller placement. However, they often face challenges in

terms of scalability, computational efficiency, and effectively addressing a wide range of objectives.

Transitioning to the second approach, which revolves around the fusion of multiple objectives, this

research identifies notable studies like [107], [120], and [121]. These works employ a multi-objective

placement strategy, skillfully adjusting the distribution based on the weight or threshold assigned to each

objective. As articulated by [122], a pioneering density-based clustering technique emerges to orchestrate

controllers in alignment with diverse objectives encompassing latency, load balancing, and reliability.

However, it’s imperative to note that this method predominantly centers on propagation latency, poten-

tially overlooking the meticulous minimization of inter-controller latency. Furthermore, the application of

a capacity-aware clustering technique occasionally begets clusters with fragmented nodes, as illuminated

by [14], who accentuate the necessity of simulating traffic flows among controllers for ensuring consistent

placement. Lastly, several studies place great emphasis on the optimization of factors like reliability,

load balancing, and node-to-controller latency. This is exemplified in the scholarly contributions of [123],

[124], and [125].

In the research detailed in [126], the authors explore the concurrent optimization of multiple objectives

for the purpose of identifying optimal controller placements using their proposed metaheuristic approach.

These objectives primarily pertain to load balancing and the minimization of node-to-controller latency.

To achieve this objective, they employ heuristic techniques grounded in a genetic algorithm, which is

a key component of their approach. This algorithm assists in partitioning the network topology based

on a predefined number of controllers. The fitness function employed amalgamates the weights of the

minimal spanning tree for each partition with the weights of the average controller load deviation. The

strategic placement of controllers is carefully designed to shorten the shortest path to each switch within

its designated partition, achieved by siting controllers at the centroids of their respective partitions. The

33

proposed approach undergoes rigorous testing on various topologies, including those from Internet2 and

the Internet Topology Zoo.

In the research outlined in [127], the authors undertake the simultaneous optimization of multiple

conflicting objective functions to ascertain the optimal controller placements in SD-WAN. These objec-

tives encompass crucial factors like controller load balancing, network reliability, and maximum switch-

controller latency. The overarching goal is to harmonize these diverse objectives into a single, unified

optimization problem. To tackle this intricate challenge, the authors introduce the Adaptive Bacterial

Foraging Optimization (ABFO) algorithm. A comprehensive comparative analysis is conducted, juxta-

posing the newly introduced ABFO algorithm with a previous method elucidated in [87]. This evaluation

spans three distinct network topologies.

In the research conducted by [9], they introduce a Particle Swarm Optimization (PSO) algorithm to

address the challenge of determining optimal controller placements while simultaneously considering mul-

tiple concurrent objectives. The optimization goals revolve around the capacity limitations of controllers

and include objectives like minimizing node-controller latency and inter-controller latency. To evaluate

the effectiveness of their approach, the authors employ key performance metrics such as maximum latency

and computational cost. In their assessment, they compare their PSO algorithm against various place-

ment strategies, encompassing a greedy strategy [126], an integer linear programming approach [101],

and a random placement strategy. In the research conducted by [128], they present an innovative ap-

proach known as Network Clustering Particle Swarm Optimization (NCPSO). This approach is designed

to optimize controller load while simultaneously adhering to controller load balancing and node-controller

latency constraints. Notably, the NCPSO technique outperforms other methods, including k-center [128]

and capacitated k-center [20], across several critical factors such as the number of controllers, propagation

latency, load balancing, and controller utilization.

The studies conducted by [11] and [107] introduced a genetic algorithm-based approach to simulta-

neously optimize multiple competitive objectives in controller placement. These objectives include load

balancing, node-to-controller latency, and inter-controller latency, making it a multi-objective problem.

To address this challenge, the researchers harnessed the power of NSGA-II. NSGA-II [129] is a widely

acclaimed metaheuristic algorithm renowned for its ability to tackle complex optimization problems

characterized by competing objectives. Its versatility extends seamlessly to the realm of SD-WAN, where

strategically placing network controllers plays a pivotal role in enhancing a variety of performance metrics.

Within the intricate landscape of SD-WAN controller placement, NSGA-II proves to be an invaluable

tool. It excels at orchestrating solutions that harmonize conflicting objectives. NSGA-II accomplishes this

feat through the skillful application of non-dominating sorting techniques and the utilization of crowd-

ing distance metrics to evaluate potential solutions. Their framework, configured with six predefined

controllers, was compared against the POCO framework [21]. The evaluation was based on efficiency

(run-time) and effectiveness (near-optimality), utilizing a dataset from the topology zoo. In subsequent

work, [130] enhanced the approaches of [11] and [107] by introducing several improvement mechanisms.

These included a greedy initialization approach, an enhanced performance evaluation metric, and IGD-

inverted generated distance. Building on these foundations, [131] further refined the methodology based

on the works of [130]. They introduced a multiple-objective capacity-aware controller placement prob-

lem and incorporated a constraint handling mechanism inspired by the work of [132]. The techniques

34

proposed in these studies demonstrated superior performance compared to the approaches proposed by

[112] and [9], especially concerning the coverage parameter [133]. The study conducted by [120] identified

a set of performance metrics that exhibited inherent conflicts. These metrics encompassed various as-

pects, including node-to-link controller failure, node-to-controller latency, load balancing, inter-controller

latency, and multi-path node-controller connectivity. To tackle the complexity of optimizing these di-

verse and occasionally conflicting objectives, the authors introduced a Multi-Criteria Decision Algorithm

(MCDA) framework. This approach was designed to enable the simultaneous optimization of these ob-

jectives. The MCDA framework was constructed based on a benchmark decision algorithm [134], and

its efficacy was demonstrated through numerical examples. The study conducted by the authors in [135]

delved into the intricate realm of the multi-objective controller placement problem, specifically exploring

the intricate balance among multiple conflicting objectives. These objectives encompass load balanc-

ing, inter-controller latency, and node-to-controller latency. To address the challenge of optimizing these

competing objectives, the authors introduced the Nash bargaining model. This model aimed to identify

the Pareto optimal solution that strikes a harmonious compromise among the various objectives. The

research presented different problem formulations, including those focusing solely on switch-to-controller

objectives, inter-controller latency, and simultaneous optimization of multiple objectives. By juxtapos-

ing the multi-objective approach against a comparable single-objective formulation, the study effectively

highlighted the advantageous nature of their proposed solutions in achieving a judicious trade-off among

the conflicting objectives.

In [14], the researchers conducted a comprehensive evaluation of scalability and reliability performance

metrics, both acknowledged as significant challenges within the centralized control plane of software-

defined networks. To address these concerns, the study compared two multi-objective optimization

techniques that jointly optimize performance and reliability metrics. The first technique, a variant of

a genetic algorithm known as NSGA-II (non-dominated sorting genetic algorithm-II), was considered,

alongside the second technique which employed an unsupervised machine learning approach called Par-

titioning around medoids (PAM). The study aimed to concurrently optimize controller load imbalance,

controller failure reliability, and switch-to-controller latency. Through experimentation, the researchers

found that PAM consistently outperformed NSGA-II across various scenarios and random topologies of

different sizes. This comparison demonstrated the superior performance of the PAM technique in opti-

mizing the specified objectives.

In the study by [136], a heuristic algorithm employing simulated annealing was introduced to concur-

rently optimize conflicting objectives in controller placement problems. The primary objective was to

minimize mean node-controller latency. This approach was compared against the k-centre and k-medoids

algorithms using the zoo topology. Similarly, in [137], spectral clustering methods were evaluated along

with k-median and k-centre algorithms for controller placement problems. The objective was to reduce

both node-controller delay and inter-controller delay. Furthermore, in [138], multiple objectives in con-

troller placement were addressed by examining two population-based evolutionary algorithms: Firefly

and Particle Swarm Optimization (PSO). These algorithms aimed to optimize node-to-controller and

inter-controller latencies. The study concluded that Firefly outperformed PSO based on analyses con-

ducted on the zoo topology.

The Pareto Optimal Controller Placement framework, developed by [15] and [21] using a simulated an-

nealing algorithm, extended its investigation into controller location parameters beyond network latency.

It considered metrics such as controller-to-controller latency in both maximum and worst-case scenarios,

switch-to-controller latency in similar scenarios, resilience in controller failure, and load balancing among

35

controllers. To enable the incorporation of multiple objectives into the optimization process, they intro-

duced the Pareto Simulated Annealing meta-heuristic. The POCO framework employed an exhaustive

approach, analyzing the entire solution space for a limited number of controller installations while con-

sidering potential link or node failures. While known for providing optimal solutions, it has drawbacks in

terms of computational expense and suitability for large-scale networks. Additionally, the predetermined

number of controllers may lead to either excessive deployment costs or decreased network performance.

Algorithmic solutions for SD-WAN controller placement have seen the emergence of several multi-

objective evolutionary algorithms and metaheuristic algorithms. These approaches are effective in identi-

fying multiple Pareto optimal solutions within a single simulation run, a key feature contributing to their

effectiveness. One of the early EA algorithms adapted for multi-objective problems is Non-dominated

Sorting Genetic Algorithm, introduced by [139]. Subsequent versions, such as NSGA-II and NSGA-III,

introduced performance enhancements. In the same vein, [8] proposed a multi-start hybrid NSGA to ad-

dress multi-objective controller placement challenges in large networks. This approach utilizes a greedy

heuristic for generating an initial population and incorporates intelligent mechanisms to enhance diver-

sity and intensification within the non-dominated set. However, it’s important to note that this strategy

relies heavily on computational power and lacks the ability to learn combinatorial optimization heuristics,

which distinguishes it from the approach discussed in this research.

The Fast and Exclusive Multi-Objective NSGA-II, introduced by [129], was a pioneering method

equipped with innovative operators such as fast non-dominated sorting, crowding distance, elitism, and

a crowded comparison operator. NSGA-II proved to be a robust population-based algorithm for tackling

multi-objective problems with two or three goals. By efficiently approximating Pareto fronts through a

combination of crowding distance diversity and non-dominated sorting elitism, NSGA-II excelled, even

in scenarios with non-convex and non-connective Pareto optima. However, it’s important to note that

NSGA-II’s scalability is limited when dealing with more than three objectives. In response to this limi-

tation, [140] introduced NSGA-III, a modified version of NSGA-II capable of handling a broader range of

objective functions. NSGA-III built upon the foundation of NSGA-II and extended its capabilities. Lever-

aging these advancements, [7] proposed ANSGA-III to address the Controller Placement (CP) problem

in SD-WAN. ANSGA-III simultaneously optimizes multiple competing objectives for SD-WAN controller

placement. However, it’s worth noting that this approach is computationally intensive and lacks the abil-

ity to learn combinatorial optimization heuristics, a characteristic essential for addressing challenges like

SD-WAN controller placement. Additionally, like other methods, ANSGA-III predetermines the number

of controllers, which can potentially result in either unnecessary costs or compromised network perfor-

mance.

In the research conducted by [141], a seagull optimization algorithm (a metaheuristics algorithm) is

introduced for controller placement, coupled with the use of fuzzy C-Means clustering, a well-known clus-

tering algorithm, for network partitioning. This combined approach aims to determine suitable controller

locations within each network partition. The optimization objectives considered in this study encompass

end-to-end delay, inter-controller delay, node-to-controller delay, and controller load. The use of the C-

Means clustering algorithm can be effective in grouping controllers that are spatially close to each other,

potentially improving network performance. However, the practicality of employing fuzzy C-Means for

partitioning the network, particularly in the context of addressing several conflicting objectives, remains

36

uncertain. Additionally, population-based metaheuristics, as utilized in this work, often encounter scala-

bility issues when simultaneously optimizing multiple conflicting objectives. Furthermore, this approach,

when compared to the recommended solution proposed in this thesis, lacks the capability to learn the

heuristics of combinatorial optimization algorithms.

In the research conducted by [142], a population-based metaheuristic optimization technique known

as Naked Mole-Rat is introduced for optimizing multiple conflicting objectives in the context of SD-

WAN controller placement. The objectives considered include inter-controller delay, load balancing, and

switch-controller delay. This study compares the performance of the Naked Mole-Rat algorithm with

the Bat algorithm, focusing on their computational complexity as the number of controllers increases

and their impact on minimizing switch-controller latency. The Naked Mole-Rat algorithm demonstrates

the ability to efficiently find near-optimal solutions based on the specified objective functions within a

reasonable time frame. However, its scalability remains uncertain. Furthermore, like other population-

based approaches, the Naked Mole-Rat algorithm lacks the capability to predict the required number

of controllers for deployment and does not possess the ability to learn the heuristics of combinatorial

optimization problems. In a similar vein, the authors of [143] introduce the concept of the "wisdom of

artificial crowds," which is an evolutionary algorithm designed for controller placement in SDN. The pri-

mary objective of this study is to enhance overall network performance by identifying optimal controller

positions while minimizing the number of controllers used. The optimization process takes into account

factors such as inter-controller delay, controller-switch delay, and reliability metrics. In this approach,

artificial agents collaborate by merging their individual candidates to generate a single outcome that

outperforms the other candidates in the population. The algorithm proposed in this study outperforms

both the K-means algorithm and modified density peak clustering techniques, as reported in the work.

While this metaheuristic approach demonstrates efficient performance in optimizing controller placement,

it may face challenges when tasked with finding diverse solutions for artificial crowds in situations where

multiple conflicting objectives, exceeding three, need to be simultaneously optimized. Additionally, it

may be computationally intensive compared to the approach suggested in this thesis due to the involve-

ment of several heuristic strategies (selection, crossover, and mutation) during the training process while

finding the optimal locations. Finally, this approach lacks the ability to learn the heuristics of com-

binatorial optimization problems, such as SD-WAN controller placement, which may impact the time

required for the algorithm to complete its execution. Moreover, the research presented in [144] tackles

the controller placement problem (CPP) as a multi-objective optimization challenge and introduces the

Antlion optimization algorithm to address it. The CPP involves optimizing three objective functions:

switch-to-controller delay, controller-controller delay, and the existence of separate connectivity links be-

tween nodes and controllers. The Antlion optimization algorithm is a population-based evolutionary

technique known for its effectiveness in optimizing conflicting objectives in SDN controller placement.

However, this approach may encounter scalability issues when tasked with simultaneously optimizing

more than three objectives. Additionally, it lacks the ability to learn the heuristics of combinatorial

optimization problems. In comparison to the stochastic computational graph approach proposed in this

thesis, the Antlion optimization algorithm, as mentioned in this reference, is recognized for its computa-

tional expense due to the various heuristic strategies involved during the training process of the algorithm.

Finally, the study in [145] introduces the challenge of positioning controllers as a multi-objective op-

timization and proposes the adaptive group-based cuckoo optimization algorithm to address the CPP.

37

The primary objective of this study is to utilize the adaptive group-based cuckoo optimization algorithm

to optimize the efficiency of an SDN-enabled wireless sensor network. This reference considered three

objective functions, such as reliability constraints, timing constraints, and the cost of controller installa-

tion, for the controller placement problem. This approach may find a near-optimal solution based on the

considered objective functions in an efficient time; however, the practicality of this algorithm in terms of

scalability is not guaranteed. Moreover, the group-based approach, like the Adaptive group-based cuckoo

optimization algorithm suggested in this research, does not possess the capability to predict the required

number of controllers for deployment and also lacks the ability to learn the heuristics of combinatorial

optimization problems. Compared to the stochastic computational graph approach proposed in this the-

sis, the Adaptive group-based cuckoo optimization algorithm suggested in this reference is known to be

computationally expensive due to the various heuristic strategies involved during the training process of

the algorithm.

2.2.7 Artificial Intelligence and Machine Learning Usages in Software De-
fined Networking

Artificial Intelligence (AI) is a rapidly expanding field that encompasses various sub-fields such as reason-

ing, machine learning (ML), decision-making, planning, and evolutionary algorithms [146]. Alan Turing’s

[147] famous Turing Test defines intelligence for a computer as the ability to answer questions in a way

that is indistinguishable from a human. To successfully pass this test, a computer must possess sophisti-

cated abilities, such as automated reasoning, ML, computer vision, knowledge representation, and natural

language processing [147]. AI investigation has its roots in the mid-1950s, when a summer program at

Dartmouth College, planned by Claude Shannon and Martin Minsky, laid the foundation [148]. However,

even earlier in 1943, Pitts and McCulloch introduced the initial model for artificial neural networks. Over

the years, AI has witnessed notable advancements, giving rise to sub-fields like evolutionary algorithms,

expert systems, and fuzzy logic. These advancements have played a crucial role in refining existing AI

methods and introducing hybrid intelligent approaches [146].

Within the framework of SDN, AI techniques like machine learning and meta-heuristic algorithms play

crucial roles in tasks such as network management, resource allocation, and traffic routing. Additionally,

the integration of natural language processing and computer vision enhances the interaction between

humans and machines in SDN systems [149]. In the modern era, owing to technological progress and

the rapid expansion of mobile communication technologies and the Internet, communication networks

have become progressively advanced and complex [149]. To efficiently handle, arranged, maximize, and

sustain such communication networks, a substantial amount of information must be taken into account

and utilized. Traditionally, using machine learning in closed networks was challenging. However, with the

introduction of SDN, network flexibility, agility, and programmability have been revolutionized, offering

researchers the chance to explore different facets of the network through software-driven solutions. Ma-

chine learning is a potent method that can be employed in SDN architecture to boost network capabilities

and improve non-functional aspects like security and performance [150].

Using machine learning techniques to address the placement of controllers in SD-WAN is an emerging

approach to optimize network performance and efficiency [146]. In SD-WAN, determining the optimal

locations for SDN controllers to effectively manage the network is crucial. Various ML techniques, like

particle swarm optimization, reinforcement learning, and genetic algorithm are applied to tackle the

complex controller placement problem [151]. These algorithms analyze network data, traffic patterns,

and other relevant parameters to identify the most suitable controller positions. By leveraging machine

38

learning, SD-WAN benefits from reduced communication latency, improved network responsiveness, and

efficient resource utilization [151]. ML enables the system to adapt to dynamic network conditions and

changing traffic patterns [146]. Stochastic Gradient Descent (SGD) is another optimization algorithm

widely used in training machine learning models [152],[153]. In controller placement, SGD is applied to

optimize controller locations based on network metrics and objectives. It iteratively updates controller

positions to minimize the cost function, considering factors like latency, load balancing, and communi-

cation overhead. This leads to efficient controller placement and improved network performance. The

computational graph approach [154] is a method that represents relationships between variables and

operations in a graph structure. In SD-WAN controller placement, a computational graph can model

interactions between network components, controller locations, and various performance metrics. This

approach facilitates the analysis and optimization of controller placement decisions through techniques

like back-propagation or graph-based optimization algorithms. The computational graph approach of-

fers a systematic and flexible representation of the controller placement problem, making it easier to

apply diverse machine learning techniques for finding optimal solutions. By integrating SGD and the

Computational Graph Approach [155] with other machine learning techniques, SD-WAN can approach

controller placement from multiple perspectives, enabling sophisticated optimization and better adapta-

tion to varying network conditions. These techniques contribute to achieving load balancing, reducing

latency, and enhancing overall SD-WAN efficiency. Ultimately, the integration of machine learning in

controller placement strengthens network performance, optimizes resource allocation, and supports the

successful implementation of SD-WAN.

In reinforcement learning (RL), the system acquires knowledge through feedback from its environment,

which can be in the form of rewards or punishments, reflecting the system’s performance. With each

interaction with the environment, the system gathers information and uses it to improve its understand-

ing and update its knowledge. The study in [156] tackles the complex challenge of optimizing controller

placement within a multi-objective optimization framework. The study proposes a novel approach that

leverages deep reinforcement learning to enhance network control and management, capitalizing on its

ability to explore solution spaces and adapt to rapidly changing data flows. This novel approach incorpo-

rates historical network data learning into both the deployment of controllers and the real-time mapping

of switches to controllers, effectively adjusting to the dynamic conditions of the network environment.

The study focuses on addressing three fundamental objective functions: load balancing, flow fluctua-

tions, and latency reduction, all aimed at achieving optimal controller placement. This study contributes

by framing the CPP as a multi-objective optimization issue and introducing a dynamic flow data-driven

methodology that harnesses the power of deep reinforcement learning techniques. The proposed approach

demonstrates its effectiveness in improving latency and load balance within the dynamic network context

characterized by flow fluctuations. This strategy holds the potential for refining controller placement and

switch-controller mapping techniques within SDN networks. However, it is crucial to emphasize that this

study primarily revolves around resolving the controller placement issue specific to SD-WAN. This solu-

tion leans heavily on historical network data, implying the necessity of having comprehensive operational

data from a functioning SD-WAN network deployment. In contrast, this thesis advances a stochastic com-

putational graph approach for determining the optimal number and placement of controllers, uniquely

relying on coordinates-based datasets and predefined objective functions. The study in [157] introduced

a multi-path routing technique for software-defined networking, leveraging reinforcement learning. The

aim of this approach is to tackle the challenges linked to underutilized links and the inability to promptly

39

adapt to real-time network conditions, which are prevalent in current SDN routing methods. The agent

adeptly selects the most advantageous route from a range of options, considering network metrics like

bandwidth, loss rate, and delay, to optimize the desired outcome. This strategy proficiently manages

varied data flows, judiciously allocating them based on quality-of-service priorities to achieve multi-path

routing. As a result, it led to diminished loss rates and improved jitter values compared to the con-

ventional SDN routing methods. While not designed to solve the controller placement issue central to

this thesis, this approach exhibits potential relevance to addressing the CPP in SD-WAN. The stochastic

computational graph approach, which forms a cornerstone of this thesis, shares similarities with reinforce-

ment learning since both involve learning through interactions within an environment to attain specific

goals. However, in this context, it pertains to the framework of CP in SD-WAN. Given this perspective,

the present thesis harnesses the stochastic computational graph approach in conjunction with ensemble

learning (XGBoost) to ascertain the optimal number and arrangement of SD-WAN controllers. Similarly,

the work in [158] introduces a novel strategy for addressing the controller placement problem related to

load imbalance in the distributed control plane, employing deep reinforcement learning techniques. This

approach involves the creation of a deep reinforcement learning model that interacts with the network,

acquiring the ability to migrate switches effectively to maximize rewards. Notably, this method relies on

historical network data concerning switch migrations. Once adequately trained, the model can swiftly

and accurately determine switch migration actions. The load balancing achieved through this deep re-

inforcement learning-based approach is recognized for its capability to effectively distribute controller

load and significantly reduce migration frequency times. While the primary focus of this approach is

not specifically on solving the controller placement challenge central to this thesis, it exhibits potential

relevance to addressing the CPP in SD-WAN. Notably, the stochastic computational graph approach,

a pivotal aspect of this thesis, shares similarities with reinforcement learning, both involving the acqui-

sition of knowledge through interactions within an environment to achieve specific objectives. In the

same manner, the study in [159] introduces an innovative SDN controller architecture tailored for drone

management, deeply rooted in the principles of machine learning. The comprehensive scope of drone

management encompasses vital tasks like migration, drone authentication, and regulation of communi-

cation. A notable stride in this work is the introduction of an application-based authentication method,

strategically designed to expedite the authentication process for drones. Moreover, the researchers harness

widely adopted ML techniques, including Logistic Regression, Decision Tree, Support Vector Machine,

and Random Forest, to effectively categorize and classify diverse drone types. The integration of the

SDN controller into this framework ushers in an era of efficient drone communication, tailored to the

specific requirements of each drone’s designated purpose. This approach is specifically crafted to tackle

persistent challenges within drone management systems, such as time and energy consumption, intricate

complexities, and a rigid operational paradigm. An intriguing facet of their proposal is the utilization of

the inherent capabilities of the SDN controller to dynamically program the network, facilitating seamless

information management and astute analysis. Through the utilization of real-time and historical data

within the drone network, machine learning techniques contribute intelligence to the SDN controller.

This empowerment results in automated provisioning of network services, data analysis, and network

optimization. Although this work primarily revolves around the intricacies of drone management and

does not explicitly delve into controller optimization, the deployment of machine learning techniques for

application classification shares parallels with the utilization of similar techniques in predicting the opti-

mal number of controllers required for an efficient SD-WAN environment. Furthermore, the work of [160]

presents a software-defined optical transport network routing optimization procedure that relies on the

40

reinforcement learning model of the ensemble and a Deep Q-Network utilizing a message-passing neural

network structure. This novel approach for optimizing optical network routing in software-defined optical

transport networks is suggested to effectively improve the extrapolation capability of deep reinforcement

learning decision-makers. Notably, a message-passing neural network is employed to enhance the agent’s

generalization capabilities by capturing the relationship between network topology and demand. Ensem-

ble and Message passing neural network-based Deep Q-network algorithm effectively tackles challenges

posed by traditional routing methods and mitigates limitations often observed in deep reinforcement

learning agents. This method stands out by addressing the complex and computationally intensive na-

ture of network problems through ensemble learning. The primary focus is on introducing the Ensemble

and Message passing neural-network-based reinforcement learning model, that offers reliable decisions

or predictions even when faced with new or previously unencountered scenarios. The integration of

message-passing neural networks and ensemble learning contributes robustness, facilitating stable and

efficient environment exploration. While not directly tailored to the controller placement issue discussed

in this thesis, this method holds the potential for addressing controller placement challenges in SD-WAN.

2.3 Research Gaps

This section examines the identified gaps in the literature regarding the placement of controllers in SD-

WAN. One notable gap revolves around the inefficiency of existing switch migration techniques for SDN

load balancing, particularly when dealing with substantial incoming traffic flows. In response, the liter-

ature has seen the development of various switch migration techniques [12, 19, 18]. However, while it

is assumed that the placement of controllers in these techniques has been optimized and appropriately

positioned, these approaches have often been associated with drawbacks such as prolonged migration

times, increased response times, or reduced throughput. For instance, the authors in [19] proposed a

dynamic and adaptive load-balancing architecture for software-defined load balancing using switch mi-

gration techniques. This framework selects the closest controller from a group of unloaded controllers to

facilitate load shifting during switch migration. Another framework, known as the Controller Adaption

and Migration Decision, as suggested by [12], chooses the controller with the "lightest load" from the pool

of unloaded controllers for participation in load shifting during switch migration. While these approaches

prove efficient, especially when dealing with high traffic volumes, they are most effective with a specific

type of traffic known as mice flow, characterized by data packets loading at rates between 1 p/s and 499

p/s. However, it’s worth noting that the controller adaption and migration decision algorithm, which

prioritizes the controller with the lightest load, has improved response time, throughput, and migration

cost compared to dynamic and adaptive load balancing frameworks [18] and Elasticon [18]. Nevertheless,

it can result in low load balancing rates (LBR) when the mechanism selects the switch with the lightest

load. This method can also lead to issues such as high packet loss, increased response time, inefficiencies

in switch selection, and reduced network efficiency, ultimately affecting throughput. Furthermore, when

examining the target controller, the dynamic and adaptive load balancing approach of [19] is associated

with increased congestion, while the controller adaption and migration decision technique by [12] can

lead to higher packet loss, increased response time, inefficiencies in switch selection, low throughput, and

network inefficiency. Most previous research on switch migration primarily considers unloaded controllers

without focusing on migration efficiency. A more effective approach would involve migrating a switch

to a new master controller with higher efficiency to prevent overload. In response to these challenges in

existing frameworks for dynamic and adaptive load balancing and controller adaptation and migration

41

decision-making, this research introduces an enhanced switch migration decision algorithm for software-

defined network load balancing (ISMDA). The ISMDA mechanism selects a switch with a high load for

migration from a controller with excessive load, similar to dynamic and adaptive load balancing. How-

ever, it also migrates to the most suitable controller to free up the most clustered resources. During the

migration step, the framework’s balancing module, operating on each controller, is initiated. By con-

sidering both the variance and average load state of the controller, the developed mechanism identifies

groups of controllers in the system that are underutilized. The research proceeds to establish a migration

model that assesses migration cost and load-balancing variance for selecting optimal controllers from a

group of unloaded controllers.

Additionally, this thesis identifies gaps in the literature regarding solutions developed for optimiz-

ing controller placement while dealing with multiple conflicting objectives. These objectives encompass

switch-to-controller latency in both average and worst-case scenarios, controller-to-controller latency in

both average and worst-case scenarios, load balancing, and maximum controller failure. Existing literature

introduces metaheuristic algorithms, such as NSGA-II [8] and MOPSO [161] for simultaneous controller

optimization. However, scalability becomes a challenge when more than three objectives need considera-

tion [7]. These methods are also computationally expensive, hampering their practicality. State-of-the-art

optimization techniques often lack support for overall network architecture as the number of objectives

surpasses three [17], leading to high computational complexity. In terms of scalability, the investigated

MOPSO and NSGA-II optimization methods prove ineffective when dealing with more than three ob-

jectives, as they rely on operators like crowding distance to preserve diversity and Pareto dominance

techniques to rank solutions. The majority of solutions remain non-dominated even in early generations,

making it difficult to maintain a strong selection pressure towards optimal solutions. Consequently, the

quality of identifying the best solutions suffers, resulting in less efficient exploration for optimal solu-

tions. In contrast, a guiding mechanism, such as a clustering operator with a well-distributed reference

point, in NSGA-III has been shown to help maintain a diverse solution pool. To address these issues,

this thesis proposes an enhanced version of NSGA-III, incorporating a repair operator-based mechanism,

which allows it to handle the discrete optimization problem of controller placement in SD-WAN. This

enhancement ensures impractical solutions are eliminated during crossover and mutation processes while

preventing duplicate solutions. Alongside the repair operator mechanism, the developed strategy ensures

convergence and diversity across the Pareto front through techniques like normalization, association, ref-

erence points, and niching approaches. This approach effectively enables the simultaneous optimization

of multiple competing objectives during SD-WAN controller placement.

Moreover, existing optimization methods, including MOPSO, NSGA-II, and the adapted NSGA-III,

are computationally intensive and lack the ability to automatically learn heuristics, such as predicting

the number and placement of controllers, for combinatorial optimization tasks like SD-WAN controller

placement. These algorithms rely on manually crafted heuristics to make decisions that are either com-

putationally expensive or not well-defined mathematically. Therefore, a quick, intelligent solution is

required to compute both the optimal number of controllers and their placement, considering the com-

plex nature of these algorithms. To address these limitations, this thesis suggests the use of a stochastic

computational graph model with an ensemble learning approach (XGBoost) to determine the optimal

controller location and the number of controllers required for an SD-WAN deployment when various per-

formance metrics conflict. The proposed solution combines a stochastic computational graph model with

42

an Extreme Gradient Boosting Machine Learning Regression Model (SCGMEL). The ensemble learning

method, specifically XGBoost, predicts the optimal number of controllers needed for SD-WAN deploy-

ment, offering a more efficient alternative to existing SD-WAN controller placement techniques. The

choice of XGBoost as an ensemble learning method is based on its proven ability to enhance predic-

tive accuracy and overall model performance. XGBoost, classified as a boosting algorithm, falls under

the category of ensemble methods. Unlike ensemble learning methods that involve combining multiple

independently trained models, XGBoost’s ensemble model pertains to the collaborative operation of mul-

tiple decision trees within the algorithm. Additionally, this study suggests the use of an artificial neural

network, specifically learning vector quantization, for predicting controller placement in an evolving SD-

WAN topology. However, this approach may require collaboration between administrators and service

providers due to its usage implications.

2.4 Summary of Literature Review

This section provides a concise overview of the current state of controller placement in SD-WAN and

identifies critical issues within existing methodologies. The core challenge lies in determining the optimal

placement of controllers and the required quantity of controllers for that placement. However, many

existing approaches used in the literature to simultaneously optimize multiple conflicting objectives have

significant drawbacks. For instance, popular metaheuristic algorithms like NSGA-II, MOPSO, Adaptive

Foraging, and Firefly Optimization often face scalability issues, particularly when dealing with more

than three performance metrics that must be optimized simultaneously. Additionally, these approaches

demand substantial computational resources. Both the business and academic communities share a

keen interest in optimizing controller placement in software-defined wide-area networks, especially when

multiple conflicting objectives are involved. A comprehensive analysis of existing efforts to tackle the con-

troller placement problem in SD-WAN reveals that metaheuristic algorithms like ANSGA-III, MOPSO,

and NSGA-II have addressed certain aspects of the problem. However, apart from ANSGA-III, these

metaheuristic algorithms encounter scalability challenges when optimizing more than three objectives.

Moreover, these solutions tend to be computationally intensive and lack the capability to learn heuris-

tics for combinatorial optimization problems, such as determining the optimal controller placement and

quantity. The aspect of the controller placement problem related to identifying the optimal number of

controllers has received limited attention in the literature. Even in cases where some research has been

conducted in this area, it typically focuses on a single performance metric and relies on clustering ap-

proaches to determine the ideal number of controllers. Notably, these studies often predefined the number

of controllers without employing robust tools to ascertain the most suitable quantity, potentially affecting

overall network performance. Inadequate controller numbers might degrade network performance, while

an excessive number may result in unnecessary installation costs for service providers.

This review of related work and the examination of existing solutions in the literature have unequivocally

revealed critical gaps, including scalability issues, high computational complexity, and the absence of

predictive tools, associated with current controller placement methodologies. Consequently, there is a

pressing need to develop scalable, adaptive, and computationally efficient frameworks to address controller

placement challenges in software-defined networks.

43

Chapter 3

An Improved Switch Migration
Decision Algorithm for SDN Load
Balancing

3.1 Introduction

This chapter discusses the developed solution that addresses the first discovered gap in light of the gaps

mentioned in section 2.4. This discovered gap results from the absence of an optimized switch migra-

tion technique for software-defined load balancing when an elephant-sized traffic flow is present. This

is important for this research because, as the network scale continues to expand, the scalability of the

centralized controller emerges as a major challenge in a software-defined network. A promising solution

to the issue is the deployment of distributed controllers, each of which controls a subset of the network’s

switches. However, the switch and the controller mapping are static in nature. Fixed switch-controller

mapping causes sub-optimal performance and load imbalances when inconsistent load distribution across

the controllers. A dynamic switch migration strategy, like the one described in this research, is a potential

method for efficient load balancing and flexible scalability. The first section of this chapter will provide

an introduction to the subject matter. The section 3.2 of this chapter will look at the proposed developed

algorithm and its components. This section will examine the various modules that these methods use

to optimize switch migration for load balancing in software-defined networks. In the third section, the

outcomes of the simulation approach will be discussed, as well as how it will be evaluated and validated

against some existing methods using several performance metrics such as the number of migrations, re-

sponse time, throughput, and packet loss.

SDN is an enabling technology that simplifies network management and fosters development and in-

novation by decoupling the control plane from the data plane. Software-defined intelligent networking is

achieved by having a logically centralized controller monitor switches and provide them with instructions

to govern how they handle packets[162]. A promising solution to the issue is the deployment of distributed

controllers, each of which controls a subset of the network’s switches. However, the switch and the con-

troller mapping are static in nature. Fixed switch-controller mapping causes sub-optimal performance

and load imbalances when the controllers are not equally distributed with their loads [163]. A dynamic

switch migration strategy, like the one described in this study, is therefore a potential method suitable to

address this challenge which will bring about an efficient load balancing and a flexible scalable network

environment. In actual fact, the migration of switches might take place in three different scenarios. In

44

the first possible situation, new controllers will need to be installed if the current ones are unable to

handle the overall traffic load and the switches can then be switched to the new controllers. In the second

scenario, with the aim of diminishing both power consumption and cost incurred in communication, it is

advisable to consider relocating a controller’s switches to an alternative location whenever the controller

is powered down or enters a sleep state. In contrast, in the third scenario, when the load on a single

controller exceeds its capacity, the switch migration process must be carried out by migrating the chosen

switch to other controllers regardless of whether the number of deployed controllers changes or not. This

procedure of migrating switches from the controller that was overloaded to the controller that will ensure

that the optimum amount of clustered resources is left free (minimum under-loaded controller suitable

for the incoming load) is referred to as load balancing. The scalability and performance of distributed

controllers may be significantly improved with real-time switch migration. However, the execution of such

migrations necessitates a meticulously designed system that can effectively determine which switch to

relocate and the optimal destination for relocation. The prevailing body of literature in this domain has

established that switch migration decision algorithms typically consider either the switch with the maxi-

mum or minimum flow to the controller during migration. For example, in the research by [12], a switch

migration algorithm was introduced that prioritizes relocating the lightest load switch when predefined

load thresholds are exceeded. In contrast, our proposed solution favors migrating the maximum-loaded

switch, ensuring that the network’s load distribution is optimized. In essence, it highlights the importance

of having a structured and intelligent process for managing switch migrations in a network. This issue is

what is referred to as a switch migration problem (SMP).

According to [164], the switch migration problem is a resource maximization issue that necessitates

approximate solutions to handle each distributed controller and find the optimal method for establish-

ing load balancing in real-time. However, this method picks the recipient controller and the migrating

switch at random, which could result in poor overall throughput of the network and a high response time.

According to the findings of some research, improving the control plane performance in software-

defined networks requires a number of different considerations. These include optimizing the reliability

of every physical controller [165][166], relieving the controller by delegating some tasks to the network

elements [18][167], as well as permitting a group of controller nodes to realize distributed network control

[168][164]. These are just a few examples of the types of factors that should be taken into consideration.

These studies have suggested a network control that is logically centralized and has attempted to resolve

the state’s consistency and the global view of distributed control planes. This might enable greater scal-

ability and resilience with distinct controllers, but it would result in a load imbalance among controllers

if an unusually high volume of traffic arrived at these separated controllers. This is due to the fact that

each controller would be accountable for their own traffic load.

Additionally, DALB - a Dynamic and Adaptive load-balancing architecture was suggested in the work

of [19] for software-defined load balancing using switch migration techniques. To support load shifting

during switch migration, this framework selects the closest controller from the group of unloaded con-

trollers. Unlike mice flows, which typically involve data packets loading at rates ranging from 1 packet per

second (p/s) to 499 packets per second, our dynamic and adaptive load balancing system was specifically

designed to address elephant flows. Elephant flows, on the other hand, entail data packets loading at

rates between 501 packets per second and 5000 packets per second (p/s). The dynamic and adaptive

load balancing framework’s greatest strength is its ability to select the closest controller to accommodate

45

load shifts. This indicates that the closest neighbor controller will always be taken into consideration

for migration during each phase of the migration process. This strategy, on the other hand, has the

potential to reduce migration expenses as well as the amount of time required for execution. However,

this procedure would lead to an increase in the amount of traffic congestion due to load shifting.

The CAMD which is also referred to as Controller Adaption and Migration Decision is a framework

that was suggested by [12]. Within the confines of this architecture, the controller with the lightest load

is chosen from the pool of unloaded controllers in order to participate in load shifting during switch

migration. This approach is efficient, and it can manage a greater volume of traffic, provided that the

incoming traffic is a mice flow (data packets load at a rate within 1p/s and 499p/s inclusively). The

controller adaption and migration decision algorithm under the controller with the lightest load improved

response time, throughput, and migration cost in comparison to the dynamic and adaptive load balancing

framework [18] and Elasticon [19] approaches. However, the Load Balancing Rate (LBR) would be quite

low if the controller’s adaption and migration decision mechanism chose the switch that had the lightest

load. In a similar manner, the controller adaption and migration decision technique results in a high

packet loss, high response time, and a decrease in the efficiency of the network, along with poor through-

put in the network. When the target controller is considered, the dynamic and adaptive load balancing

[19] approach to switch selection is linked to the issue of increased congestion, whereas the controller

adaption and migration decision [12] approach is linked to the issue of greater packet loss, increased

response time, switch selection inefficiency, and low throughput. The majority of previous research on

the switch migration problem simply takes into account any unloaded controllers without considering the

migration efficiency. Meanwhile, a good demonstration would be the controller migrating a switch to a

new master controller that has a higher level of efficiency (leaving maximum clustered resources free) for

the purpose of preventing overload. In this particular piece of research, the focus is on the last switch

migration scenario mentioned above in the second paragraph.

As a direct result of the problems that were described earlier with the frameworks for dynamic and

adaptive load balancing, as well as the frameworks for controller adaptation and migration decision mak-

ing. The aforementioned problems with the dynamic and adaptive load balancing as well as the controller

adaption and migration decision frameworks were addressed by the research design that led to the devel-

opment of an improved switch migration decision algorithm for software-defined network load balancing.

This algorithm was given the name ISMDA[99]. The developed mechanism (ISMDA) will choose a switch

with a heavy load for migration from the controller with an excessive load just as the choice of DALB, it

will do so while migrating to the most suitable controller in order to leave the most clustered resources

free. The developed framework’s balancing module, which functions on each controller, is started during

the migration step. In order to discover which group of controllers in the system were not being utilised

to their full potential, the developed mechanism took into account both the variance and the average load

state of the controller. This research went on to develop a migration model that detects the migration cost

as well as the load-balancing variance for the choice of the optimal controllers from a group of unloaded

controllers.

46

3.2 Developed ISMDA for SDN Controller Load Balancing Overview

The aim of this thesis is to provide a collaborative and adaptive optimization learning-based framework

for solving controller placement in SD-WAN. The method developed in this chapter is consistent with the

collaborative approach stated in the thesis’ aim. (Please see 1.6). The software-defined network is built in

the form of an undirected graph represented by the equation G = (V, E), in which V is the set of vertices

and E is described as a set of connections. This research takes into consideration the premise that the con-

troller has been suitably positioned in the network so that each controller governs a collection of switches.

3.2.1 ISMDA Load Balancing Strategy

Switch migration for load balancing is an efficient method of managing the controller’s overload. This

research presents a framework that uses a dynamic switch migration system to equitably distribute

workloads among controllers. This method expedites the load-balancing process and maximises migration

efficiency[99].

3.2.1.1 Associated Assumptions

This research presents the underlying presumptions that must be made in order to put the constructed

framework to work.

• All of the controllers can communicate with one another, allowing for easy load distribution among

them. This indicates that the load balancing technique is activated, and all of the switches in the

network have easy access to all of the other controllers in the network, allowing them to migrate to

the appropriate controller.

.

• There is already a distributed data store (Hazelcast) present in the network. This data store

connects different sets of controllers to one another to provide a logically centralized controller.

Similarly, there is also a messaging library protocol called Zookeeper that allows for easy interaction.

• In the distributed environment, switches are concurrently connected to multiple controllers, with

each controller serving one switch at a time. This design allows for redundancy and efficient load dis-

tribution. However, it’s crucial to note that once a switch has been selected for migration, it cannot

revert to its original controller until the entire migration process has been successfully completed.

In the event that the migration process encounters difficulties or experiences extended delays, a

fail-safe mechanism is in place. Specifically, switches are programmed to prioritize connecting to

underloaded controllers within the network. Even if the migration process is temporarily stalled or

fails, switches will not switch back to an overloaded controller, ensuring that network performance

and load balancing are maintained.

47

3.2.1.2 ISMDA Framework Flowchart

A flowchart representation of the established framework, known as ISMDA, can be seen in figure 3.1.

Figure 3.1: ISMDA framework flowchart.

The ISMDA that was established here is implemented on each controller, and they all work together

to guarantee that the load is distributed evenly throughout the controllers. The ISMDA[99] functions

on the controller itself, as a plug-and-play module. The controller performs periodic checks to determine

48

if the load has surpassed a certain limit (see Algorithm 2). To enhance total throughput and foster

the establishment of stable, well-balanced networks, the ISMDA design intentionally prioritizes the set

of under-loaded controllers for handling a higher volume of elephant data packets (flows) during switch

migration operations. Here, it’s important to note that "mice flows" typically encompass data packets

loading at rates ranging from 1 packet per second (p/s) to 499 packets per second, while "Elephant flows"

entail data packets loading at rates between 501 packets per second and 5000 packets per second (p/s).

As soon as the load increases past a certain point, the load judgment module (module 1) is activated.

The estimated mean and variance of the load are calculated by combining the controller’s load data

with that of other controllers. The controller simultaneously activates Module 1, which is in charge

of load evaluation, Module 2, which chooses the switch that will be used, and Module 3, which is the

target controller. All of these modules are responsible for controlling different aspects of the system. By

using the calculated variance, a group of under-loaded controllers may be found from which the optimal

one can be chosen. The ISMDA’s switch module receives the flow operation from the load judgment

module (see module 1). So that the overloaded controller’s load is reduced by the same amount that

the target controller’s load is increased, the controller with the greatest load request would be migrated.

The controller makes sure that the load on the target switch is less than or equal to half the difference

between the load on the heavily loaded controllers and the load on the targeted controllers in order to

ensure a smooth transition. To explore the effectiveness of selecting switches and controllers, respectively,

the ISMDA created two different efficiency models that can be used interchangeably. In order to free

up as many cluster resources as possible, the overload controller may migrate the newly-selected switch

(maximum loaded) to the best-suited controller in the cluster with the help of a zookeeper (message

library protocol).

3.2.1.3 Load Balancing Mechanism for ISMDA Strategy

Figure 3.2 depicts the conceptual model of the ISMDA, and it is composed of three separate modules

that can be found running locally on each controller that contributes to the topology of the network. The

load decision-making module (in module 1) is immediately activated by Algorithm 1 in the event that

the controller’s load capacity goes beyond a predetermined threshold.

Figure 3.2: Load balancing framework.

49

The network’s mean and variance for controller loads are determined by adding each controller’s load

to those of the other controllers in the network. The set of unloaded controllers in the network structure is

determined by these conditions, where an unloaded controller is one whose load is lower than or equal to

the average load of all the controllers. The load decision-making module (in module 1) prompts the switch

selection module (in module 2) to migrate the highly loaded switch from the heavily loaded controller in

order to increase selection efficiency due to the high load balancing rate. However, Modules 1 and 2 are

followed by Module 3, which is the controller selection.

With migration efficiency in mind, it selects the best controller from the group of underutilized controllers,

freeing up as many clustered resources as possible. The interaction between the controllers is connected

through a cooperating service called Zookeeper. The data packets of Switch 3 in figure 3.2 of controller A

in zone A will move its data packets to controller B in zone B whenever there is an imbalance in network

demand.

The research goes on to detail the many components of ISMDA as well as its primary purposes. Al-

gorithm 1 demonstrates the primary operation of ISMDA, and Algorithm 2 demonstrates the controller’s

dynamic threshold. The algorithm makes a request to the Load Decision-Making module (in module 1)

whenever the controller’s load status rises above a certain threshold. Module 2’s Switch Selection is called

concurrently with module 3’s Target Controller Selection module to choose between available switches

and controllers. As a direct consequence of this, the algorithm concludes, after which the switch moves

to the targeted controller. The presentation of the ISMDA Overview can be found in Algorithm 1. This

research also introduced an adaptive controller load rate in Algorithm 2. This rate improves how the

network’s controller threshold is updated.

3.2.1.4 ISMDA Algorithm 1

Modules 1, 2, and 3 are part of Algorithm 1, together with the adaptive controller rate algorithm (Algo-

rithm 2). To determine if the controller load is too high, ISMDA Algorithm employs Algorithm 2. As

a consequence of this, if the condition is met, then the three modules will each be set into motion to do

their designated tasks.

Algorithm 1 Illustration of the ISMDA overview
1: Input: N, β′, ρ, CLcur

2: Output: Balanced Distributed Controllers
3: if CLcur > β′ then
4: Activate Load_Judgement_module
5: Activate Switch_Selection_module
6: Activate Target_Controller_Selection_module
7: Switch_Migration(clj ← swk)
8: Update N (current and target)
9: end if

10: return Balanced Distributed controllers

3.2.1.5 Dynamic Controller Threshold (Algorithm2)

Dynamic updating of the controller threshold is carried out using Algorithm 2. The threshold value is

kept in the central repository. Each network controller verifies whether or not its current load is above a

certain limit. Assuming that this is the case, it calculates the controller’s mean load in the networks. It

returns the original threshold if the calculated mean is less than or equal to that value. If that number

is above or below the current threshold, the predicted average load is used instead. So that it may make

50

an informed judgement about how to distribute system loads, ISMDA must receive data from all of the

system’s controllers. Nonetheless, using a static controller threshold method, system performance can be

degraded due to the regular gathering of load statistics data in the network for making load-balancing

decisions. An adaptive load collection threshold strategy was proposed in this research to address the

issue of degraded system performance (presented in Algorithm 2). This is kept in a centralised database

that can be accessed by any controller.

Algorithm 2 ISMDA’s Threshold for the Dynamic Controller
1: Input: Load list {CL1, ..., CLn}
2: Output: Dynamic (γ′)

3: Compute average load CL(ci) =
1
n

n∑
i=1

CL(ci)

4: Assume (γ′) = 1600
5: if CL(ci) ≤ Initial(γ′) then
6: (γ′) = 1600
7: else if CL(ci) > Initial(γ′) then
8: (γ′)=CL(ci)
9: end if

10: return (γ′)

3.2.1.6 Execute Judgment Module Load (Module 1)

This component keeps track of each controller’s load data and relays that information in real time. The

data reveals how the controller’s central processing unit, network, and memory are being utilised. When

a controller’s load exceeds a predetermined threshold in Algorithm 2, it uses the system variance which

is also referred to as system performance error and an estimate of the mean load of all other controllers

to determine which controller is unloaded. The higher the quality of a network, the less room there is for

error in its output. So these works classify, as unloaded, controllers whose weight is less or equal to the

entire mean load of the networks. According to the author’s description in [19], there are essentially two

ways to obtain the SDN controller’s load conditions. Both a centralised and decentralised load collection

algorithm are examples of such techniques.

The load balancer is used in a centralised load collection technique to monitor and record the controller’s

current load. This method is inefficient and would only work on a restricted (small-sized) network. The

distributed load collection mechanism, however, allows for any controller node to function as a load

balancer. Regardless of the scale of the network, it can simply monitor, estimate, and report on its load

data, making it more suitable and acceptable in large networks. There are two methods available for

gauging the controller’s workload. There are two approaches to this problem; one is the input metrics

from the switch, while the other one is the performance metrics.

Input metrics from switches are used to characterise the controller’s load by measuring things like the

number of entries in the flow table, average message arrival rate, and response time. Since the switch input

metric directly impacts controller resources, it was not used in this investigation. In this research, we focus

on the performance measures that may be used to characterise the load status of a controller and how they

relate to the controller’s resources. The controller’s metrics are central processing unit utilisation, memory

usage, and bandwidth utilisation. Due to the multidimensional nature of the controller’s resources and

the wide variety of switch controller demands, it is difficult to make meaningful comparisons between

them. Accordingly, a weighted total is assigned to integrate various resource kinds, with the weight being

51

adjusted to modify the controller resources’ utilisation proportion. A rough estimate of the domain’s

overall CL load is made by each controller LC(ci). This is possible in real-time using the aforementioned

measurements and their weighted values, which is expressed in Eq. 3.1

LC(ci) =
[
wgt1 wgt2 wgt3

]
LCbandwidth(ci)

LCmemory(ci)

LCCPU (ci)

 . (3.1)

in which wgt1, wgt2, and wgt3, represent the weights of network control productive capacity (band-

width, CPU, and memory), and where LCbandwidth(ci), LCCPU (ci), and LCmemory(ci) denotes the actual

bandwidth, CPU, and memory used on the control layer by flow rule instructions. For simplicity, let’s

assume λk represents the packet_in message at was transmitted from switch skto controller ci at instant

t. Due to the fact that such resources reside on the same control plane (uniformly distributed systems),

a weighting (wgt1, wgt2, and wgt3) system is required. Here, we employ a weight system to standardise

the dissimilarities and similarities among the control plane’s available assets. That way, you can learn

how much of a resource one is actually utilising through the use of the available resources. The reduction

of bias should be the primary concern when assigning weight to controller resources. In the absence of

the weight, there will be a sharp increase in inconsistency as well as an increase in general error. As a

result, the total burden that has been placed on the controller as a direct consequence of the incoming

data packets messages is stated in Eq. 3.2

LC(ci)=
∑
sk∈ci

λk(t)ϕki. (3.2)

LC(ci) stands for the controller’s (ci), current load,

ϕki is the utilisation value of the control plane’s resources, and λk(t) is the total number of OpenFlow

messages transmitted from switch sk to controller ci during the time interval t. In this investigation, we

use the notation where ϕi stands for the controller’s ci resource utilisation value and the definition is

defined in Eq. 3.3

ϕi=
∑
sk∈ci

ϕki. (3.3)

As shown in the Eq. 3.4, the symbol ϕki is the sum of the network utilisation caused by every switch

sk to controller ci

ϕki =

(
ηai
λk ∗ ai
κi

+ ηbi
λk ∗ bi
ρi

+ ηci
λk ∗ ci
ψi

)
. (3.4)

Where λk stands for the Packet_in message that the associated switches send whenever they detect a

change in the control load. Control event ci for switch sk is expressed by ai, bi, and ci, which each denote

the CPU time, memory, and bandwidth used by ci. Values ηai , ηbi , and ηci stand for the approximated

weighted value of controller resources. For the memory, central processing unit, and network to be used

efficiently, the formula ηai + ηbi + ηci = 1 must hold.

Additionally, κi, ρi, and ψi stand in for the central processing unit, memory, and bandwidth of

controller (ci).

In order to make an accurate estimate of the control plane equilibrium level, the concept of the population

52

variance is offered. This is because all of the controllers are taken into consideration. This difference is

represented in the Eq. 3.5 as

γ =
1

k

k∑
i=1

(
LC(ci)− LC(ci)

)2

. (3.5)

in which γ is the variance, k is the number of controllers, LC(ci) symbolises the controller current load

and LC(ci) symbolises the controller mean load. In light of this, the load-balancing component would

then initiate a load-balancing method with regard to the variance. Moreover, when there is an unbalance

in controller load, the migration of the switches will begin.

Using data from other loads on the network, the module will calculate an average load factor which

can be expressed in the Eq. 3.6 as

LC =
1

k

k∑
i=1

LC(ci). (3.6)

Algorithm 3 Module 1: Description of ISMDA’s Load Judgement module
1: Input: n(load controller number), ρi, β′

2: Output: CUL

3: max = NULL
4: for i = 1 to n do
5: check controller load LC(ci)
6: max = max + LC(ci)
7: end for
8: Calculate the mean load using 3.6
9: Estimate the load variance using equation 3.5

10: for i=1 to k do
11: Compute load balancing rate using equation 3.7
12: if δi < 1 then
13: CUloaded ← ci
14: else
15: COloaded ← ci
16: end if
17: end for
18: return CUloaded

The pace at which a controller is able to bring its load closer to its average is known as its load

balancing rate, and it is symbolized by the symbol δi. Specifically, this is shown in the Eq. 3.7

δi =
LC(ci)

1
k

k∑
i=1

LC(ci)

. (3.7)

After that, the module will compute the following three ratios, which will serve as the foundation for

its migration decision-making.

• δi < 1: it may be deduced that the controller’s current load status is less than the typical load that

is currently being experienced. This suggests that the controller is not operating at full capacity

and has room for additional loads or a switch migration.

• δi > 1: it may be deduced that the load that is now being placed on the controller is more than

the load that is considered to be the present average. This indicates that the controller is overfull,

which could cause the network to become imbalanced and cause additional costs.

53

• δi = 1: This indicates that the load that is now being carried by the controller is equivalent to

the current average load that is being carried by the active controllers as a whole. As a result,

the controller is not operating in an overloaded or underloaded mode at this time. As a direct

consequence of this, the controller is incapable of handling any more demand. This indicates that

the load that is now being carried by the controller is equivalent to the load that is being carried

by the active controllers as a whole. As a result, the controller is not operating in an overloaded

or underloaded mode at this time. As a direct consequence of this, the controller is incapable of

handling any more demand.

Following the techniques described above, controllers are classified into two distinct groups: the overfull

controller group as well as the unloaded controller group. This is expressed as a mathematical expression

as
δi > 1 controllerin overfull mode
δi = 1 controller in imbalanced mode
δi < 1 controllerin unloaded mode.

3.2.1.7 Module for switch selection (Module 2)

In order to facilitate migration, this component or module chooses the high load switch provided by the

overfull controller. The number of entries in the switch flow table, the arrival rate of packets, and the

round-trip time were some of the helpful statistics that were provided by the load judgement module. The

number of entries in the switch flow table and the round trip time are often utilised for the selection of

the controller, whereas the mean arrival rate of the message is employed for both threshold computation

and controller selection.

In accordance with the OpenFlow protocol, the switch selection process can benefit from taking into

consideration the aforementioned three statistics. The number of messages sent from the associated

switches during the specified time interval (t) directly relates to the amount of work performed by the

controller. The switch is able to relay a plethora of messages to the controller, including Echo messages,

Packet in messages, Hello messages, and others. Nevertheless, the Packet in messages is responsible for

the majority of the weight placed on the controller. In this particular investigation, the typical Packet in

messages that were transmitted from the switch to the controller was used to represent the controller’s

workload. The objective of the developed mechanism is to share the workload across a network of

distributed controllers. This study assumed that in order to have a well-sustainable system, the load

decrease of the overfull controller would not be greater than the increase of the target controller load in

an ideal scenario. Following that, this study came to the conclusion that when choosing a switch for the

purpose of migration, the load on the switch that is going to be transferred ought to be equal to or less

than the difference between half of the overfull controller and the destination controller. Consequently,

the decision to choose the switch is determined according to the constraints in Eq 3.8

SMLMigrate ≤
CLOverfull − CLdestination

2
. (3.8)

54

Algorithm 4 Module 2: ISMDA Switch_Selection module overview
1: Input: Overfull controller COF

2: Output: A list of migrated switches si from COF

3: Load switch set ∆ = {}
4: for ∀ si ∈ COF do
5: for ∀ Flows ∈ COF do
6: Identify migrated switch
7: end for
8: end for

9:

(
1
k

k∑
i=1

(Ci)

)
/

k
max
i=1

(Ci) to find selection efficiency

10: sn = argmax{Psn}
sn∈COF

11: Migrate LSMigrate ≤ LCOverloaded−LCInbound

2
12: Return switch set ∆{}

SMLMigrate reflects the weight of the transferred switch from the overfull controller LCOverfull re-

flects the weight of the overfull controller, and the LCInbound reflects the weight on the controller that

is best suited for the task at hand. This idea originates from [169], the NSGS technique for Indifference

Zone strategy. This process notifies the switch migration component of its decision. The NSGS Method

is an abbreviation of the entire sequential procedure and the Ranking and Selection (R&S) approach.

NSGS is an abbreviation for Nelson, Swann, Goldsman, and Song, the first names of the authors of

[169].

In the context of this study, it is anticipated that a switch will be able to establish connections with

several controllers all at once. Nonetheless, only one controller, the master, will be actively serving

the switch’s needs at any given moment; the rest will be in either slave or equal mode. A messaging

library protocol such as Zookeeper and ZeroMQ (ZMQ) can be used to make the transition in roles possi-

ble, and HA-TCP is what’s utilised to make sure messages are sent between the switch and the controller.

3.2.1.8 Controller Selection Module (Module 3)

To ensure that the full amount of grouped resources are reserved, the objective of this module is to choose

the controller that is the best fit to take on the load that will be transferred from the controller that is

currently overloaded. This research developed a migration efficiency model that took into account both

load balancing variance and the cost of migration. This model was then used to determine the best

controller to use for the optimal selection. The migration cost and load balancing variation have both

been established so that their application to the efficiency model that has been created can be improved.

When switch migration takes place, there is an improvement in the network’s load balance. Nev-

ertheless, this does result in additional migration costs for the network. As a result, one requires the

introduction of the idea of migration cost. The majority of the costs associated with migration are made

up of two primary aspects: the rise in the amount of work done by the controller, as well as the quantity

of data that is passed between the controllers. In the process of moving sk from the ci computer to the

cj computer. The cost of migration can be stated in the Eq 3.9

cmigsicj = cmigex + cmiglc. (3.9)

where cmigex represents the cost of exchanging messages and mclc indicates the cost of dealing with an

increased load.

55

The increase in load that takes place as a result of the intended controller accepting the migrating

switch from the overload controller is what is meant by the term "load increased cost." This is represented

in Eq. 3.10

cmiglc =

{
λicmigsicj − λicmigsici , cmigsicj > cmigsici
0, cmigsicj ≤ cmigsici .

(3.10)

where λi reflects the control messages generated by the switch sk.

Algorithm 5 Module 3: ISMDA’s Target_Controller_module illustration
1: Input: si, CunderL, cmiglc
2: Output: Target Controller cj
3: Obtain the current load on CunderL

4: for ∀ controller ci ∈ CunderL do
5: for j = 1 to n ∈ CunderL do
6: Evaluate variance Ω and Ω∗using (3.11)and(3.12)
7: Compute migration efficiency using (3.13)
8: end for
9: end for

10: Check that LC(ci) + LS(si) ≤ LC(cj)
11: CST = argmax{CunderL}

cj∈CunderL

: LC(ci) + SL(si) ≤ LC(cj)

12: update {CunderL} with current load state
13: return target controller, cj

Therefore, the load variance method needs to be implemented as a criterion for selection. In this

analysis, the mean load of the N controllers was taken to be LC(ci) and the controllers’ load variance

was employed as the balancing factor. This network selection factor prior to switch migration is re-defined

from equation (5) and mathematically expressed in the Eq 3.11

Ω =
1

k

k∑
i=1

(
LC(ci)− LC(ci)

)2

. (3.11)

In the above equation, Ω represents the inherent network load variance that occurs before any switch

relocation takes place. LC(ci) is what defines the load for each controller and LC(ci) represents average

controller load n. After the switch migration, the network’s load selection factor makes certain that the

amount of system bias is decreased to an acceptable level. This is defined in Eq. 3.12

Ω∗ =
1

k

k∑
i=1,i̸=j

[LC∗(ci)− LC∗)2 + LC∗(cj)− LC∗)2], (3.12)

with LC∗(ci) =
(
LC(ci) - λsicsici

)
and LC∗(cj) = LC(cj) + λsicmigsicj .

After switch migration has taken place, the Ω∗ in (3.12) merely represents the network’s load variance.

To further improve destination controller selection, migration efficiency is created to show a balance

between the cost of the migration and the load balancing rate. In this analysis, the rate of load balancing

is divided by the cost of migration to get the migration efficiency. This is written in Eq. 3.13

Λ =
| Ω∗ − Ω |
cmigsicj

, (3.13)

∀si ∈ S, cj ∈ C, J(si, cj) = {0, 1} (3.14)

56

∀si ∈ S,
∑
ci∈C

J(si, cj) = 1, (3.15)

∃ci ∈ C,LC(ci) ≤ δ′ (3.16)

Equation (3.13) restricts the number of connections between nodes, Equation (3.14) guarantees that

the master controller is in charge of all switches at a time (t), and Equation (3.15) prevents all network

controllers from becoming overfull at once.

Table 2. The arrival rate of the switch to controller flow

Controller set CC1 CC2 CC3

Switch set s1 s2 s3 s4 s5 s6 s7 s8 s9

Switch Flow

rate (KB/s)
800 600 600 600 1000 800 1400 400 600

Controller

Threshold
3200

3.2.2 Example for Demonstration

The purpose of this study is to demonstrate the importance of migration efficiency and load variance in

switch migration situations with the same controller capacity using a simple example. Assuming that the

controller CC = {CC1, CC2, CC3, CC4} and their corresponding load CCL = {800, 300, 500, 400}p/s.
The mean controller load of LS = 500p/s. 600p/s is anticipated to be the threshold of the controller

(TC). As a result of the preceding calculation, CC1 will be the overfull controller. In a given distribution,

variance evaluates how far a set of data is from its average value. Controller individual variances are

v(CC1) = 250000, v(CC2) = 40000,v(CC3) = 0, and v(CC4) = 10000, variance of the controller’s

load before migration is 75000. The overfull controller CC1 could either move excess load of 200 to

CC2 or CC4. If controller CC1 selects CC2, the variance is therefore {10000, 0, 0, 10000}, and the net-

work’s global load variance is 5000(p/s)2. If CC4 is picked, the variance of individual controller is now

{10000, 40000, 0, 10000}p/s, and the load variance equals 15000p/s2. As a result, the migration

efficiency for CC2 is 350, whereas the migration efficiency for CC4 is 300. This analysis led to the

conclusion that the optimal option would be a controller with better migration efficiency. Since the entire

load balance will be in a stable mode, the controller CC2 will be judged to be the one that is best suitable

for the situation.

Lemma 1 : During the migration stage of this research project, a switch with the most loaded flow

requests on an overfull controller is taken into consideration since this would increase the network’s Load

Balancing rate (LBR).

Proof 1 : A load balancing rate can be used to evaluate how closely the model matches the observed

load distribution. As may be seen in Table II, the study reveals the rate at which various switches reach

the controller. The combined load on Controller C2 is 3800p/s at the time (t), making it overfull.

57

For load shifting, Controller C3, which has a higher migration efficiency, will be the preferred con-

troller. This research explains how selecting a switch that has fewer flow requests has an effect on the

LBR. For the purpose of determining LBR, equation (3.17) was taken into consideration in this study.

LBR is defined as

LBR =

(
1

k

k∑
i=1

(CCi)

)
/

k
max
i=1

(CCi). (3.17)

with {CCi, ..., CCn} denotes the load list of the network components which includes the overfull

controller’s load within the 0–1 co-domain. The LBR is confirmed to be 0.59 before migration takes

place. For example, if controller C2 chooses switch S4 for migration because it is the least loaded switch

in its configuration, the LBR in equation (17) will be 0.71. Meanwhile, the LBR will become 0.94 if C2

makes the decision to select its switch with the current highest load for migration. According to the

findings of the study, which can be derived from the analysis presented above, choosing a switch that has

the largest flow request would result in a noticeable improvement in the effectiveness of the network.

3.3 Experimentation

This section explains the experiments that were conducted for this investigation. For the purpose of

conducting a performance evaluation, this study employed a simulation-based methodology and measured

the number of migrations, the packet loss, the throughput, and the response time. The Python code used

in these experiments was developed specifically for this study by the research team and is available in

the GitHub repository at [https://github.com/dipokoya2003/ISMDA.git]

This research was conducted using a personal computer that featured a Windows 10 Professional

operating system, a processor from Intel Core i7-6700HQ running at 2.60 gigahertz, and 16 gigabytes

of DDR3 memory operating at 1600 megahertz in order to build up the simulation environment. The

experiment was carried out by utilising the Jupyter notebook compiler, which is a free and open-source

software application that generates code that is capable of being performed in real-time. It was assumed

throughout the operation that the threshold of the controller’s load capacity was set to 2000p/s. Before

any migration phase, the current load on controllers A-D was assumed to be 500p/s, the rate of system

processing was set to 70%, and the total received load was initiated between (10000-26000)p/s by a size

of 20. Each simulated controller had its Controller Threshold (CT) set at 2000p/s before each iteration

began, which is the value used by the proposed ISMDA when deciding on its migration method. For

the purpose of simulating a realistic control environment, the processing rate was set to 70% before any

migration phase began, and the current load being handled by controllers A, B, C, and D was configured to

be 500p/s. Each experiment was repeated 1,500 times, and the total received load was varied from (10000-

26000)p/s in each run. When the load that is being computed is greater than the controller threshold

that has been established, the developed ISMDA will activate Module 1. After that, the ISMDA will

call the module for selecting the switches (module 2) as well as the module for selecting the controllers

(module 3). The aforementioned modules will choose the high-load switch for migration, as well as the

controller that is most suited to handle the inbound load. As part of this research, an improved switch

migration decision mechanism has been developed to make sure that the maximum number of grouped

resources would be accessible at all times during the migrating process. Therefore, when elephant flows

make up the incoming traffic, this significantly improves the performance of the baseline frameworks. In

58

https://github.com/dipokoya2003/ISMDA.git

this research, the range of "elephant flow" is specified as 501p/s to 5000p/s, while the range of "mice

flow" is specified as 1p/s to 499p/s

3.4 Result AND Discussion

This research introduces the ISMDA[99] method and evaluates it in relation to two other similar works

that have been published previously by [19] and [136]. This is done so that the findings of the study can

be affirmed. The DALB [19] mechanism, which is also known as the nearest controller selection method,

can quickly lead to an increase in traffic congestion when accepting load shifting. This is because the

communication overheads between switches and controllers increase when multiple switches can migrate

into the same controller simultaneously. CAMD [136], method, which is also known as the Least-loaded

controller selection strategy, is only useful for accepting load shifting in situations in which the inbound

traffic load is minimal flow. In addition, the controller adaption and migration decision mechanism

selection of a switch with the lowest flow request rate for migration is inappropriate and not optimal

in comparison to a maximum utilised switch. As demonstrated in the final paragraph of Section 3,

choosing a switch with the lowest flow request could not be more beneficial to the network than selecting

a maximum-loaded switch. For this reason, ISMDA chose a maximum loaded switch when performing

a migration, as well as uses the migration indexing factor to determine which controller is most suited

to take on the load. Following is a discussion of the simulation results, with short explanations of the

various performance metrics used in the analysis.

• Controller throughput: The term "controller throughput" refers to the maximum number of packets

that a controller is capable of successfully processing at one time. The amount of traffic that was

created while the simulation was being run was used to make an estimate of the average controller

throughput. The total incoming load that was used for this research ranged between (10000 -

26000)p/s. The controller throughput of each of the studies that were examined as well as the

proposed ISMDA can be seen in Figures 3.3, 3.4, and 3.5. As the graph shows, the proposed ISMDA

is able to process more flow requests than the studies that were considered in the evaluation. Figure

3.6 presents a comparison of the average throughput achieved by each of the various algorithms.

Figure 3.3 shows that the DALB method, in contrast to the CAMD approach, reliably processes

more flow requests even under heavy demand, with a lower drop rate. Figure 3.5 shows that, on

the same scale, DALB method was not consistent with the developed ISMDA.

In contrast to the ISMDA and DALB algorithms, the CAMD algorithm in Figure 3.4 was unable

to keep its consistency when the load was at its highest point. The decline rate went as low as 250.

As a direct result of this, the overall throughput was decreased.

ISMDA was able to effectively process a greater number of flow requests, as seen in Figure 3.5,

compared to both DALB and CAMD. In comparison to DALB and CAMD, it maintains a more

constant level of performance even at high loads, and its level of load reduction is also more manage-

able. The comparative results for the three different algorithms’ average throughput are presented

in Figure 6.

As shown in Figure 3.6, the developed ISMDA algorithm accepted a greater volume of traffic than

both the CAMD and DALB algorithms. The developed architecture shown in Figure 3.6 achieves

an increase in controller throughput of around 7.4% over the CAMD and roughly 1.1% over the

59

Figure 3.3: DALB Controller throughput

Figure 3.4: CAMD Controller throughput

DALB. This results in an overall throughput of approximately 444p/s for the typical controller. De-

spite the fact that DALB and ISMDA both have comparable throughputs, it has been demonstrated

that the suggested ISMDA algorithm is superior to both DALB and CAMD in terms of its efficiency.

• Response time: It is anticipated that there will be an increase in response time in a particular

network when there is an imbalance in the controller load. This study employed equation (3.18)

provided by Netforecast [170] for response time computation. All parameters in this equation were

held constant during evaluation, as the main goal of this research was to determine the impacts of

packet loss on response time. Packet-loss values were derived from the number of rejected packets.

The adopted expression is given as

60

Figure 3.5: Proposed ISMDA Controller throughput

Figure 3.6: Throughput comparison of different Algorithm

RT = Pdt + Tdt, (3.18)

where

Pdt = 2
[
Rtd+ Cpt + Stcp

]
+

[
Rtd+

[
Ccpt + Spt

]
2

]
AT − 2

mf
+

Plr

[
AT − 2

mf
+ 1

]
+ Y T (

L

1− L
), (3.19)

and

61

Tdt =

MAX

[
8pyl 1+OHR

MPB ∗Rtdpyl
ws

]
1−
√
L

. (3.20)

The term "RT" stands for the response time, Pdt represents the propagation delay time, and Tdt

stands for the transmission delay time. In equation 3.18, Rtd represents the round-trip delay, Cpt

shows the current processing time, Stcp represents the server TCP processing, and Spt shows the

server processing time. AT represents the application turns, mf shows the multiplexing factor, Plr

shows the packet-loss ratio, and Y represents the TCP timeout. In a similar manner, in equation

3.19, Pyl represents the length of the payload, OHR represents the overhead ratio, MPB represents

the minimum path bandwidth, and WS represents the window size.

Figure 3.7: Comparison of Response Time different Algorithm

In this study, the authors assessed the three algorithms that were utilised in the simulation analysis

by using the average response time. When there is an increase in the incoming load, there is

likewise an increase in the mean response time of the three algorithms. Figure 7 shows that the

reaction time of the developed algorithm (ISMDA) outperforms that of the controller adaption and

migration decision algorithm and the dynamic adaptive load balancing algorithm, with around 5.7%

and approximately 1% less, respectively. The study’s effective procedure for choosing a controller to

absorb inbound load from the overfull controller was crucial. At any point throughout the migration

process, ISMDA will choose the most suitable controller to ensure that as many resources as possible

are freed up in their clustered form. Because of the greater efficiency in resource utilisation ensured

by ISDMA, fewer packets were rejected, and controller response times were drastically improved.

The number of Migration spaces: This is the frequency with which each algorithm must carry

out a migration during an unbalanced or overload on the controller. Analysing and estimating

the performance of the ISMDA (the developed mechanism), and the two compared algorithms, the

dynamic adaptive load balancing and the controller adaption and migration decision algorithm were

all accomplished by using the average count of the rejected packets. The average frequency with

62

which each algorithm was required to execute the migration is depicted in Figure 3.8. It is clear

from this, that a higher total incoming load would naturally cause all three algorithms to perform

more migrations than they currently do. The performance of the developed framework outperforms

that of DALB and CAMD, with a decrease of 1.7% and 5.6%, respectively. This suggests that

the established framework will result in fewer switch migrations occurring during controller load

imbalance as compared to DALB and CAMD.

Figure 3.8: Comparison of several Migration Time Algorithms

At each stage of the migration process, the efficient method that was implemented and the selection

of the controller that was the best fit are both deemed to be accountable. Because of this, there

was a considerable drop in the total migration time occurrence.

• Packet Loss: The term "packet loss" refers to the number of data packets that are lost or discarded

while a transmission is taking place. In this investigation, estimates were made on the typical

amount of rejected packets that occurred during the performance evaluations of the three methods.

Figure 3.9 demonstrates that for all three approaches, the average number of packet-loss rises in

proportion to the amount of incoming traffic. On the other hand, the controller adaption and mi-

gration decision algorithm had the highest average packet loss, whilst the ISMDA - the developed

mechanism and the dynamic and adaptive load balancing had similar levels of mean packet loss.

According to the findings of the analysis, ISMDA was more efficient than DALB and CAMD by

an estimated 1% and 6.4%, respectively, in terms of the average packet loss. This is the case as a

direct result of the efficient process that was proposed in this work. ISMDA can handle a higher

load than either CAMD or DALB. As a direct result of this, a lower percentage of packets were

rejected.

63

Figure 3.9: Comparison of Packet-Loss Rates of different Algorithm

3.5 Verification and Validation of the Developed Improved Switch
Migration Decision Algorithm for SDN Load Balancing (IS-
MDA)

In this part of the thesis, the author shows that the developed ISMDA model has met its main goal in

terms of quality and credibility by showing how it has done what it was meant to do. The verification

process includes everything that goes into making a high-quality solution, like testing, analyzing the

design, analyzing the specifications, and so on. The technique can be thought of as being fairly objective.

In contrast, the process of validation is extremely subjective in nature. It involves making subjective

decisions about how well a solution that has been proposed or made meets a real-world need.

Figure 3.10: ISMDA Controller total received load

64

Figure 3.11: Throughput comparison of different Algorithm

Figure 3.12: Comparison of several Migration Time Algorithms

The validation process includes many different steps, such as modeling the requirements, making

a prototype, and testing with users. The specifications were followed closely during the planning and

construction of the suggested solution. The developed solution aimed to address one of the gaps identified

in this thesis’s Chapter 2, namely the inability of existing switch migration algorithms for SDN load

balancing to increase average network throughput and reduce the average number of migrations when

an elephant-sized traffic flow is present. Looking at the figures in 3.10, 3.11, and 3.12 it is clearly seen

that the developed ISMDA for SDN load balancing using switch migration techniques actually fulfills its

intended design aim and meets the expected outcomes. In a similar way, the validation process involved

comparing the results of the ISMDA model with those of the existing switch migration techniques for

SDN load balancing when elephant traffic flows are present. The figures in 3.11, and 3.12 were used in the

65

validation process of the developed ISMDA model. As revealed by the figure in 3.11, the ISMDA average

throughput outperforms the compared algorithms. In the same way, the developed model migrates less

often than the algorithms that are already out there. As a result, this thesis concludes that the outcomes

revealed by the 3.11, and 3.12 confirm the validity of the developed ISMDA model and have met its

expectations. The reader is advised to see figures 3.3 and 3.4 for more information.

3.6 Conclusion Remarks

This section summarizes related works by presenting the key issues associated with existing switch mi-

gration techniques for SDN load balancing, assuming that the controller is optimally placed in SD-WAN

deployment. According to the literature, the existing solution’s inability (the switch migration technique

for SDN load balancing) to perform efficiently when the incoming traffic flows are large is a major concern

that needs urgent attention.

Several switch migration techniques have been developed in the literature to solve the aforementioned

challenge. [19] developed a dynamic and adaptive load balancing architecture for software-defined load

balancing using switch migration techniques. To support load shifting during switch migration, this

framework selects the closest controller from the group of unloaded controllers. The CAMD, which is

also referred to as Controller Adaption and Migration Decision, is a framework that was suggested by

[12]. Within the confines of this architecture, the controller with the "lightest load" is chosen from

the pool of unloaded controllers in order to participate in load shifting during switch migration. This

method works well, and it can handle more traffic if the incoming traffic is a mice flow, which means

that data packets load at a rate between 1 p/s and 499 p/s. This new method either had long migration

times, long response times, or low throughput. When the target controller is considered, the dynamic and

adaptive load balancing [19] approach to switch selection is linked to the issue of increased congestion,

whereas the controller adaption and migration decision [12] approach is linked to the issue of greater

packet loss, increased response time, switch selection inefficiency, and low throughput. The majority of

previous research on the switch migration problem simply takes into account any unloaded controllers

without considering the migration efficiency. In the meantime, a good example would be the controller

moving a switch to a new master controller that is more efficient and frees up as many clustered resources

as possible to prevent overload.

Consequent to the problems that were described earlier with the frameworks for dynamic and adap-

tive load balancing, as well as the frameworks for controller adaptation and migration decision making,

this research addressed these challenges by developing an improved switch migration decision algorithm

for software-defined network load balancing(ISMDA). Just like DALB, the new mechanism (ISMDA) will

choose a switch with a high load for migration from a controller with too much load. It will do this while

migrating to the best controller to free up the most clustered resources. The developed framework’s

balancing module, which functions on each controller, is started during the migration step. In order to

find out which group of controllers in the system were not being used to their full potential, a mechanism

was made that took into account both the variance and the average load state of the controller. This re-

search went on to develop a migration model that detects the migration cost as well as the load-balancing

variance for the choice of the optimal controllers from a group of unloaded controllers.

66

Chapter 4

A Scalable Solution for solving
Controller Placement problem in
Software-Defined Networks

4.1 Introduction

Software-defined networking (SDN) is quickly becoming known in the networking world as a possible

new networking paradigm. The control layer’s detachment from the data-plane layer is what sets SDN

apart from traditional networking [7]. The data-plane layer is made up of numerous streamlined packet

forwarding switches, whereas the control layer consists of a group of devoted controllers that function as

the SDN’s intellectual "brains." This division makes the network directly programmable, which provides

several advantages such as enhanced network utilisation effectiveness, simplified network administration,

and the facilitation of network innovations. The most widely used communication interface for software-

defined networks (SDN) is OpenFlow [1], which at the outset simplifies things by assuming there is just

one controller. However, the performance and scalability of such a system with just a single controller

may be compromised as the network scale grows over time. As a result, several different multi-controller

strategies are subsequently put forth, which succeed in creating a similar fundamental architecture [2].

The Controller Placement Problem (CPP) poses a significant issue in multi-controller systems. While

discussing software-defined networks, the CPP typically raises the question of where to deploy controllers

and which switches to use in order to accomplish a specific objective. These objectives may include lower-

ing latency, increasing reliability, improving energy efficiency, and so forth. Because it affects practically

every aspect of SDN, including fault tolerance, network performance, and state distribution options, the

CPP has generated a great deal of research attention [2]. While SDN has seen widespread adoption in

data centre networks, traditional routing and traffic engineering practises persist in wide area networks.

Although the placement of controllers is usually not a problem in LANs, it can have a big effect on the

performance of an SD-WAN when many goals need to be optimised at the same time. In the context of

SD-WAN, there has been a great deal of focus on determining the best location for controllers when there

are multiple conflicting goals. Researchers have made use of metaheuristic algorithms. These algorithms

include NSGA-II [8] also known as Non-dominated Sorting Genetic Algorithm II, and the MOPSO [161],

also known as Multi-objective Particle Swamp Optimization to solve controller location issues in SDN.

However, when more than three objectives needed to be considered, the scalability of these SD-WAN

optimization algorithms became a problem [7]. In the same way, these algorithms are known to be com-

67

putationally expensive.

Based on the discussion in the concluding part of Chapter 3, see section 3.6 regarding the assumption

that controller placement has already been placed in the topology (randomly positioned) for SDN load

balancing. This is not a realistic assumption, and it cannot be implemented in a real network envi-

ronment because randomly placing controllers in a large-scale environment is inefficient and can lead to

poor network performance, which can also raise a service provider’s capital expenditure (CAPEX) and

operating expenses (OPEX). As a direct result, there is an urgent need to propose and develop a solution

that can effectively optimise controllers in the SDN environment, especially in SD-WAN.

The controller placement can be positioned with reference to several performance metrics, which

include resilience, inter-controller latency, switch-to-controller latency, and load balancing, to mention but

a few. These performance metrics are known to be conflicted in nature, and as such, service providers need

to carefully find a solution that will simultaneously optimise the controller regarding these performance

metrics. This is a multi-or many-objective problem, also known as an optimization problem.

This chapter presents the first attempt to overcome the related difficulties in the literature by ad-

dressing controller location in large-scale deployments like SD-WAN, taking into account the established

research goals and the observed gaps in the current body of knowledge. The developed strategy is a mod-

ified version of the original Mechanical Engineering-Based Non-Dominated Sorting Genetic Algorithm III

(henceforth made reference to as ANSGA-III or adapted NSGA-III) [7].

Due to the scalability issues faced by the existing algorithms in the literature (MOPSO and NSGA-II)

when dealing with objectives that are three and above. This research proposed and developed a modified

version of the third edition of the Mechanical Engineering-based non-dominated sorting genetic algorithm

in order to offer the ANSGA-III for the best location of controllers in the software-defined wide area net-

work [7]. The developed strategy includes a special operator (repair operator) that helps in avoiding

duplicate solutions in the Pareto-optimal sets and also makes it possible for the original NSGA-III [17]

to be used in the SD-WAN domain. This is done by changing the original NSGA-III from its continuous

optimization characteristics to the discrete optimization characteristics used for controller placement.

This chapter’s initial portion will give an introduction to the subject matter. The problem definition

will be examined in this chapter’s second section after the introduction. The numerous objective functions

that are utilised in the optimisation of controllers in SD-WAN will be presented in the following section.

In the third section, the developed strategy for simultaneously optimising several conflicting objectives

in the placement of controllers will be discussed. In addition, the description of several algorithms that

constitute the developed algorithms will be investigated here. Such algorithms include reference-based,

normalisation, niche, association, and repair-based operators. The experimentation that was carried out

regarding the developed strategy will be discussed in section four, while the results and discussion of the

experimentation will be examined in section five. The sixth and final section will bring the chapter to a

close.

4.2 CPP Mathematical Design and Objective Functions

Within the scope of this study, the controller location issues in SD-WAN and the metrics used in opti-

mising the controller were analysed. This method offered the ideal placement of controllers in respect to

68

the topology of the network infrastructure in order to satisfy a number of network criteria all at once.

Although the latency that exists between the switch and the controllers to which it is connected is the

most critical CPP condition, there are other competing goals that need to be taken into consideration.

Among these objectives are the deployment cost, node-to-controller latency, resilience, load balancing

and inter-controller latency.

Based on the findings of this study, an unconstrained, many-objective CPP was designed and imple-

mented. Equations (4.1) through (4.6) introduce the objective functions of this research. These objective

functions were used along with the decision variables in optimising CP. The SD-WAN is built in the

form of an undirected graph represented by the equation G = (V,E), in which V denotes the collection

of vertices and E denotes the connections that exist between the vertices. Furthermore, to calculate

placement, a distance matrix denoted by D holds information on the minimum path latency across each

set of vertices in the topology. The latency between vertices n and vertices k is represented as dnk. In this

study, the authors normalised the latency values by dividing them by the diameter of the corresponding

graph, which they express in D. The search area is constrained to a predefined list of
(
α
β

)
possibilities

through which the required outcome can be obtained.

Meanwhile, the shortest path delay between any two vertices in the topology is stored in a distance

matrix represented by D, which is used in the placement calculation.

In this research, we define a location as an α-element set, where α is a smaller set than V . The

CPP uses the β-subset of V as its search space because it contains all the solutions. For demonstration

purposes,the set Υ = 2, 7, 15, 18, 19 represents the locations of the 5 controllers in a network with 21

vertices and a predetermined number of controllers such that Ω = 5. It is assumed that the 5 controllers

should be located at the vertices 2,7, 15, and 19. Note that switching the members of each subgroup does

not yield a new permutation. Thus, in this particular case, there are
(
21
5

)
possible placements in this

topology, and since there are a set of criteria to be minimised, the author has denoted these placements

with the symbols {k1, k2, . . . , km}. Note that when there is no other feasible option Y for the search

area, then Υ is the Pareto optimal choice. To be more precise, at least one index n must satisfy the

condition, ∀n ki(Φ) ≤ kn(Υ) and kn(Φ) < kn(Υ). The purpose of solving the CPP is to determine the

Pareto optimum set of the whole search area and the list of criteria for all Pareto optimal placements,

that together constitute the Pareto Frontier, a collection of solutions.

4.2.1 Objective functions

A summary of the objective functions used in optimising CP was provided in this subsection. The au-

dience is referred to [112] for further information on the examined objectives. When choosing where to

position controllers, Ω of controllers, various competing objectives must be taken into account while deter-

mining controller placement. The maximum switch-to-controller latency and average switch-to-controller

latency are indicated by the first two objective functions. This refers to the maximum and minimum

latency between the controller that sits on the control plane and its associated switches. The maximum

and mean switch-to-controller latency for every potential placement Ω ∈ 2V and the provided distance

matrix D are determined by equations (4.1) and (4.2).

69

δLat−max−S2C(Ω) = max
v∈V

min
ω∈Ω

dv,ω, (4.1)

δLat−avg−S2C(Ω) =
1

|V |
∑
v∈V

min
ω∈Ω

dv,ω. (4.2)

When several controllers are installed in large networks, they must communicate with one another

and share data. As a result, when evaluating controller placement, inter-controller latency should be

considered and minimised. Equations (4.3) and (4.4) perform the same functions as equations (4.1) and

(4.2), but they compute inter-controller latency rather than the maximum and average forms of latency.

This goal should be addressed in the CPP because it has a significant impact on controller coordination.

δLat−max−S2C(Ω) = max
ω1,ω2∈Ω

dω1,ω2
, (4.3)

δLat−avg−S2C(Ω) =
1(|Ω|
2

) ∑
ω1,ω2∈Ω

dω1,ω2
. (4.4)

The latency-based objectives try to minimise the number of possible communication pathways inside

the network, but the controller load balance is equally important for ensuring the steady operation of the

network. To guarantee adherence and equitable load distribution across controllers, this research offers

an imbalance metric in place of a balancing metric, as all other objective functions are minimised in

this work [112]. To keep track of how many devices are assigned to each controller, the author uses the

notation δω, where Omega is the number of possible placements and omega is the number of controllers.

In the equation, (4.5) ([112]), δω represents the difference between the allocations of the two controllers

with the fewest and the greatest amount of nodes, accordingly.

δimbalance(Ω) = max
ω∈Ω

αω −min
ω∈Ω

αω. (4.5)

This research also took into account controller failure resilience as a cost function during optimal CP. This

research assumes that C = 2Ω \ {∅} contains all of the remaining placements after the failure of up to

(β − 1) controllers, then the mean node to controller latency for any failings condition is theoretically

depicted by the equation (4.6).

δLat−avg−S2C(Ω) =
1

|C|
∑
Ω∈C

(
1

|V |
∑
v∈V

(
min
ω∈Ω

dv,ω

))
. (4.6)

4.3 The Adapted NSGA-III (ANSGA-III) for SD-WAN Controller
Placement

This section of the thesis discusses the changed version of the non-dominated sorting genetic algorithm

III, which will be called the ANSGA-III in the next few paragraphs. This approach is consistent with

the optimization approach stated in the thesis’ aim. (please see 1.6.) The NSGA-III [17] was developed

in the field of industrial engineering to handle optimization problems with multiple competing objectives

(greater than three). The controller location problem is a discrete optimization problem, whereas the

present NSGA-III can only solve continuous optimization problems. As a result, it is not possible to use

70

it in a direct manner to solve the controller location problem in SD-WAN. Because of this limitation,

the application of the existing NSGA-III to controller location problem did not result in the generation

of a singular solution that was free of duplicates. NSGA-III used the strategy that NSGA-II had set up,

but it also used the reference point-based technique and other techniques (like association, normalization

and niching approaches) to enhance diversity preservation and convergence, and to make sure that the

network could handle growth.

Because the majority of solutions were non-dominant and remained in the first layer even in the first

generation, it was difficult to maintain a strong evolutionary pressure from top solutions toward ideal

solutions. The investigated MOPSO and NSGA-II optimisation methods are ineffective when applied to

solve the problem of scalability (more than three objectives) due to their reliance on crowding distance

operators for conserving diversity and Pareto dominance strategies in ranking solutions, respectively [17]

and [161]. Because the majority of solutions became non-dominant and remained in the initial level layer

even in the early generation, it was difficult to sustain a strong genetic change among elite solutions

toward an optimum solution. As a result, it became harder to find the best solutions, which made it

harder to search for the best candidate solution in the most efficient way. Nonetheless, it has been demon-

strated that a guiding mechanism in NSGA-III, such as a clustering operator with an equally dispersed

reference point, aids in keeping the pool of solutions sufficiently broad and diverse. The algorithm has

been independently verified as more accurate, making it similar to [140], and [171] which both agree that

the NSGA-III self-adaptivity of the reference point list, obtained from the representative state of each

point of reference over the course of multiple evaluations, makes it more efficient computationally. As

a consequence, it is believed that the association, normalization, and niching techniques, as well as the

reference point processes included in the NSGA-III procedure, account for the substantial convergence

and diversity enhancement achieved by ANSGA-III [7] in comparison to NSGA-II.

It has been shown in the literature that the MOPSO and NSGA-II do not exhibit diversification char-

acteristics throughout the Pareto set of solutions when there are more than three goals to simultaneously

optimise (scalability challenge) [17] and the population size is greater than one hundred [172]. As a

direct result of the shortcomings of existing algorithms, there is a need to build an algorithm that can

choose diverse solutions. Hence, this substantiates the validity of the preliminary implementation of the

modified ANSGA-III in SD-WAN.

4.3.1 The Description of the ANSGA-III as Developed

The suggested ANSGA-III is reviewed in this subsection after being introduced in Algorithm 6. The

ANSGA-III model is given a set of well-defined reference point data Ref and the parent population

represented as PPt. The defined reference point data can be calculated following the systematic method

of [173] represented as Ref=
(
Nobj+k−1

k

)
where Ref = the total reference point in an Nobj objectives

problem, Nobj represents the number of objectives while the k represent the number of division which is

also a user-defined parameter.

The parent population at the next generation is represented by PP(t+1). The reference points are se-

lected and created on a unit hyperplane in order to guarantee they are spread consistently over the entire

scaled hyperplane (see Figure 1). Reference points produced in this way are often scattered throughout

the normalized hyperplane, thus it stands to reason that the solutions generated from them will be widely

71

Figure 4.1: Reference point on a Unit hyperplane

distributed toward the Pareto optimal solution sets. This criterion is grounded in the diversity that is

described in terms of the reference lines or reference points ([17]).

Line 3 of Algorithm 6, Φt holds the decision variables (solutions that are non-dominant) in the Front

layer {FL1, FL2, . . . , FLM} and i is the iteration number that is initialised to 1. In Line 4, the parent

species (PP t) was optimised through the use of the crossover (simulated binary) and mutation operators

(polynomial mutation) to create the child species. At line 5, the introduced RBO employs a check

mechanism on the offspring species set CRt to eliminate non-viable offspring solutions and ensure that

no duplicate solutions are produced after the final generation.

72

Algorithm 6 Proposed Adapted NSGA-III for SD-WAN Controller Placement Problem
1: Input:Ref =structured reference points δs
or γs as aspiration points PPt for the parent population

2: Output: PPt+1

3: Φt=∅, i=1,Φt = save non− dominated solutions
4: CRt=Crossover +Mutation
5: Use repair operator technique on CRt

6: ρt=PPt ∪ CRt

7:
(
FL1, FL2, ...

)
=solutions that are not dominated

(
ρt
)

8: repeat
9: Φt=Φt ∪ FLi and i = i+ 1

10: until |Φt| ≥ N
11: Final front to be included : FLl = FLi

12: if |Φt|=N then
13: PPt+1=Φt, interrupt
14: else
15: PPt+1=

⋃l−1
j=1 FLj

16: Points to be chosen from FLl : K=N − |PPt+1|
17: Normalise all objectives and generate reference set γs : Normalize (fn,Φt, γ

r, γs, γa)
18: Associate every candidate ϕ of Φt to its ref point : [τ(s), d(s)] = Associate (Φt, γ

r,) τ(s) :
near ref point d : distance between s and τ(s)

19: Compute niching of reference point j ∈ γr : λj =
∑

Φ∈Φt/FLt

((τ(s) = j) ?1 : 0)

20: Select K individuals each at a time from FLl to construct PPt+1 :
Niching(K,λj , d, γ

r, FLl, PPt+1)
21: Output Required P lacements
22: end if

In line 6, the parent species and the child species are merged together and kept in ρt. The non-

dominant rank was performed on ρt and the decision variables were sorted in the order of their importance

which is represented as {FL1, FL2, . . . , FLM} in line 7. The audience are directed to [17] for further

details on the NSGA-III and the methods it employs. The procedure of non-dominating sorting is carried

out once again in line 8. In parallel, lines 9 and 10, added the solution from the initial fronts to the species

set, and this process is repeated until the population set’s size exceeds the size of population N .In line 11,

the details of the final solution, which are required to be provided before condition 10 may be satisfied,

are outlined. In lines 12 and 13, the algorithm interrupts and the number is incremented by 1 if the final

front is included and the length of Φt = N. The fronts from the generation before are combined to the

fronts of the generation after it on Lines 14 and 15, with the exception of the front that comes last. Line

16 outlines the selected locations from the previous front, while the normalization of objective functions

and candidate solutions, as well as the generation of reference point sets denoted by γs, take place in Line

17. In line 18, individual candidate solution ϕ, which is a member of Φt, is connected with a reference

point. A comparable clustering approach is utilized in this instance, but solely for reference points. It

is worth noting that all solutions of the decision variables {FR1, FR2, . . . , FRM} in Xt are interrelated.

The niche count is computed on Line 19, and this specifies the number of different solutions that are

associated with the Reference Line. Last but not least, beginning on line 20, K solutions are extracted

one at a time from the last front. The normalization, RBO, niching, as well as association algorithms in

the ANSGA-III are explained further in sections (4.3.2), (4.3.3), (4.3.4), and (4.3.5), respectively.

73

4.3.2 Repair-Based Operator (RBO) Algorithm Description in the ANSGA-
III

The Repair-Based Operator (RBO) technique, innovatively developed as part of this research, repre-

sents a substantial enhancement to the NSGA-III algorithm. It was meticulously tailored to address the

unique demands of the controller placement problem in SD-WAN and seamlessly integrated into the core

of the original NSGA-III framework [17, 129]. The primary purpose of the RBO algorithm is to confine

the search process exclusively to the feasible solution space. This strategic restriction serves as a guiding

principle for the adapted NSGA-III, steering it toward the creation of unique and duplicate-free solutions.

Moreover, the operator-based mechanism was designed with the specific intent of facilitating the replace-

ment of continuous optimization characteristics with discrete optimization attributes within the existing

NSGA-III framework. This transformation is pivotal since the controller placement problem inherently

aligns with the realm of discrete optimization. This innovation constitutes a significant advancement

for the NSGA-III algorithm, rendering it better equipped to tackle the distinct challenges posed by the

research problem. Algorithm 12 provides a comprehensive breakdown of the RBO algorithm, elucidating

its critical role in achieving the research objectives. The study seamlessly incorporates the developed

repair operator-based mechanism into the adapted NSGA-III for the optimal placement of controllers in

SD-WAN. This integration ensures both convergence and the generation of diverse solutions among the

non-dominated alternatives.

In the case of Algorithm 12, the algorithm’s input and output are read from lines 1 and 2, respectively.

The algorithm takes as input the controller position values (αβ) and outputs the candidate solution value

with no duplicate (αβ). In line 3 of the algorithm, the (αβ) is iterated through by counting rows (m)

in (αβ). The starting controller position is (αβ), which is equal to the size of the entire dataset ((20).

Starting at line 3, the method checks the number of rows (n) and iteratively moves through (αβ). Like

in line 2, an empty list named γ is created in line 4, and in line 6, the algorithm turns the values αβ to

an integer by rounding down to zero. The ROB also performs a similar check in line 7 to ensure that

γ in line 4 does not match the number in line 3. In addition, if the requirement in line 7 is met, the

algorithm designates γ to be the (αβ) in line 8; otherwise, if the number exists inside γ, 0 is assigned to

j (line 9). Because the value in αβ[m,n] exists in γ up until γ reaches 20, the algorithm assigns the first

number that is not in γ to z on line 10. The algorithm determines if z is outside of γ at lines 14 and 15.

If this is the case, the first non-empty value not contained in γ is used. As a direct consequence of this,

the number z is ascribed to γ in line 16.

74

Algorithm 7 Repair − based Operator Algorithm
1: Input: αβ : Location variables for controllers
2: Output: αβ : Candidate solutions without duplication
3: for m in range (len (αβ[i])) : check rows in αβ do
4: Create a blank list γ : a blank list
5: for n in range (len (αβ[i])) : check column number in a row do
6: αβ [m] [n] = int (round (αβ [m] [n])) : round variables within αβ to 0 and transform to integer

7: verify if γ is missing the variable that is found in αβ [m] [n]
8: Assign γ = αβ once the requirement is met
9: j = 0 : set j = 0

10: for (z in range (αβ [m] [n] 20)) : let z equal the variable spanning αβ [m] [n]up till 20 do
11: end for
12: end for
13: end for
14: if z not in γ : verify if the variable does not exist in γ (the first one then
15: αβ [m] [n] = z : Assign the first value found that does not exist in γ
16: Attribute the variable of z to γ
17: j = 1 : assign j = 1, if variable is found for γ already
18: interrupt
19: if j == 0 then
20: interrupt
21: end if
22: end if
23: for (z in reversed (range (0, αβ [m] [n])) : let z be the variable spanning 0 up till αβ [m] [n]/ do
24: if z not in γ : if the variable does not found in γ (the first one then
25: αβ [m] [n] = z : Assign the first variable found that does not exist in γ
26: Attribute the variable of z to γ
27: j = 1 if variable is found for γ already
28: interrupt
29: end if
30: end for

In the same manner, if a number is found for γ, line 17 will assign 1 to the variable j. The algorithm

will break either in line 18 or line 20 depending on the value of j in line 19. From line 23 to line 27,

the procedure that should be completed in reverse is carried out. If the condition is true in line 24, then

lines 25 and 26 will assign the first value discovered that is not in γ to the variable z. If the condition is

false, then line 24 will return false. Last but not least, using the same procedure in reverse order, set j

to 1 if a value has already been obtained for γ in line 27. If this requirement is fulfilled, the algorithm

will terminate and stop at line 28.

4.3.3 Normalization algorithm description for the planned ANSGA-III

In this part, the normalisation procedure of the reference points as well as the complete population list

regardless of the rankings is described, as well as the algorithm that goes along with it in the ANSGA-

III. The normalisation procedure can be found in Algorithm 13. All objectives, reference points, and

the population sets are normalised between 0 and 1 using this procedure. This phase is crucial because

the reference points are constructed using the first quadrant of a single hyperplane. Furthermore, this

approach assures that the scales of all objective variables are constant. The normalisation technique is

described in depth in Algorithm 8, whereas the normalisation in the ANSGA-III is depicted in Figure 2

as discussed in [17]. Following this sub-section is a brief explanation of the algorithm 8.

75

Algorithm 8 Normalization (αn, βt, γ
r, γs/γa) procedure

1: Input:βt, γs (reference points) orγa (aspiration points)
2: Output: αn, γr(points of reference on scaled hyperplane)
3: for n = 1 to N do
4: Find ideal point : δmin

i=n = min
β∈βt

αn(s)

5: Translate objectives α′
n(s) = αn(s)− δmin

n ∀s ∈ βt
6: Find extreme points (δn

max

n = 1, ..., N)ofβt
7: end for
8: Calculate intercepts νn for n = 1, ..., N

9: Standardized objectives (αk) using α′
m(x) =

αm(x)−δmin
m

ai

10: if γa is given then
11: Map each γa point on scaled hyperplane α

′
m(x) and keep the points in the list γr

12: else
13: γr = γs

14: end if

Figure 4.2: Graphical representation of the Normalization algorithm

The "ideal point" is obtained in Algorithm 8 using lines 3 through 6, which explains the minimum for

every objective function vector generated per each objective. The objective in line 3 is translated into line

4 by deducting the minimal value δmin
m=n from each objective. Translating objectives into the first quad-

rant of the hyper-plane will ensure that all objectives read positive values. This translation is required

due to the fact that the reference points are generated based on the first quadrant and diversification is

preserved with the help of reference point. The extreme solutions are computed on lines 6 through 8 since

the extreme solutions do not intersect the {α1, α2, α3} axis. These intercepts are calculated by stretching

the plane and finding the point where it meets the objectives 5.1, 5.2, and 5.3. The transformed objective

αm(x) is divided by the intercept in line 9 to provide a normalised objective function. To put it another

way, this restores the function to its primitive state. Last but not least, lines 10−14 verify that the

population size, objectives and reference points are on the same axis.

4.3.4 Association algorithm description for the planned ANSGA-III

The association across each reference point and the nearest reference line is described in detail by the

algorithm (9). The angle at which the points are perpendicular to the line is determined. The order of

76

the solutions has no bearing on this association.

Algorithm 9 Association (Bt,Γ
r) procedure

1: Input:γr, Bt

2: Output: ρ(β ∈ Bt), d(β ∈ Bt)
3: for every reference point γ ∈ Γr do
4: Compute reference line z = γ
5: end for
6: for every β ∈ Bt do
7: for every z ∈ γr do
8: Determine d⊥(β, z) = ||(β − zT /||z||2)||
9: end for

10: Set ρ(s) = z : argmaxz∈Prd⊥(β, z)
11: Set d(β) = d⊥(β, ρ(β))
12: end for

The inputs consist of the reference points and all the solutions in the front that correspond to those

points, and the outputs consist of the reference lines along with the associated minimal solutions and

minimum distance. Lines 3 and 4 contain the calculation that determines the associated reference line

for each reference point that is provided. For each of the solutions in Bt and each reference line, lines

6through8 computed value for the perpendicular distance between the point and the line. In addition to

this, the reference line that illustrates the lowest possible value of the solution is calculated. Last but

not least, in lines 10 and 11, the reference line that has the solution not far from its distance are kept as

ρ(s) and d(x), respectively, for future computation during niching process.

4.3.5 Niching technique description for the planned ANSGA-III

In this subsection, the niching strategy that was employed in the ANSGA-III will be discussed. The

matching algorithm may be found in Algorithm (10). The Niching method is used to choose the solutions

from the most recent front that are connected to the reference line.

Algorithm 10 Niching (T, αnc, δ, dst, γ
r, FLl, PPt+1)

1: Input:T, αnc, δ(β ∈ Bt), d(β ∈ Bt), γ
r, FLl

2: Output: PPt+1

3: τ = 1
4: while τ ≤ T do
5: NCmin = nc : argminnc∈γrαnc

6: NC ′ = random(NCmin)
7: INC′ = β : δ(β) = NC ′, β ∈ FLl

8: if INC′ ̸= ∅ then
9: if αnc′ = 0 then

10: PPt+1 = PPt+1

⋃(
β : argminB∈INC’

d(β)

)
11: else
12: PPt+1 = PPt+1

⋃
arbitrary(INC′)

13: end if
14: αnc′ = αnc′ + 1, FLl = FLl/s
15: τ = τ + 1
16: else
17: γr = γr/j′

18: end if
19: end while

77

It is possible that the Last Fronts (LF) solutions will give rise to three niching scenarios ([17]). To

make this clear, the Scenario 1 depicts the circumstance in which there is single solution is associated

with the reference line, Scenario 2 describes the situation where no such solution exists, and Scenario

3 depicts the circumstance where multiple solutions are associated with the reference line. In the Pro-

cedure (10), lines 3 and 4 show the solution from the LF, which is replicated one at a time until the

population is full. The reference line with the lowest niche count value is discovered, and one reference

line from lines 5 and 6 is picked at arbitrary. In line 7, a search is performed to identify the solution

in the LF connected to the selected reference line in line 6. Line 15 eliminates the reference line as a

conditional removal if there is no solution connected to the LF. As a result, if the solution from the LF

(linked to the reference line) is null, then lines 8 through 19 are true. In the meanwhile, if a solution

from the LF is linked to the reference line, the algorithm verifies in line 9 whether the niche count of

the reference line is not zero (0). If requirement is met, the procedure will go to line 12, where it will

choose a solution at random from the LF and include it in the generation that comes after it. In line

14, the niche count of the reference line is rise by one (1), and the previously chosen solution is removed

from the sequence that is now being processed (the LF). Consequently, the counter is incremented by

one in line 15 to undertake the next niching procedure. For diversity’s sake, the solution relatively close

to the reference line in line 10 will be chosen when numerous solutions of the LF are associated with

the reference line and the niche count is zero. By contrast, if the number of niches is non-zero and

several solutions from the LF are connected to the reference line. Any random solution might be chosen

at random from the line that served as the desired reference (12 line). This would imply that one of

the solutions from either the first or second front has already been associated with the reference line

and diversification has been preserved. It is essential to keep in mind that the search performance would

not be improved by any randomly picked solution that was located in close proximity to the reference line.

4.3.6 Coefficient of Variation in Percentage (PCV)

In this work, the Coefficient of Variation in Percentage, also known as PCV is used as a statistical

measure of the variation in solutions throughout the non-dominant front regarding the mean of the

objective function, regardless of the measuring method used. [174][175]. The PCV tool was used for a

dominance and diversity study in [176] and for a software comparison in [177]. The PCV is calculated by

dividing the standard deviation of the objective function by its mean, as proposed by [177]. The Standard

Deviation and the Average of the Objective Function are calculated using the Distributed Evolutionary

Algorithms in Python (DEAP) library. This research makes use of the DEAP library to gather statistics

on the activities that are taking place in the optimization [139]. The PCV directly affects the features

of diversification, which are proportional to it. This suggests that the diversification features are better

when the PCV is greater, as indicated by the [178]. This result will be used to figure out how to use the

diversity value that was found during this research.

4.3.7 Difference in Percentage (% Diff.)

This is a method that is used in statistics to express the variation (in percentage and as a fraction of

the whole) between the characteristics of two different things at the same time.In this investigation, the

percentage difference is employed to indicate the difference in diversity between the ANSGA-III alongside

the NSGA-II and MOPSO algorithms. The percentage difference is utilised to describe the difference in

78

the level of diversity between the three algorithms. The [179] stated Percentage Difference (% Difference.)

as

% Difference. =
V ariations between two variables

average of the two variables
∗ 100. (4.7)

4.3.8 Parallel Coordinate Plot (PCP)

Traditionally, the evolutionary algorithm’s solution vectors have been seen using a scatter plot in either

two or three dimensions. The form, quality, and dispersion of a non-dominant collection of solutions, as

well as the connection between different objectives, may be better grasped with this knowledge. Nev-

ertheless, when there are more than three goals, it’s possible that scatter plots in either two or three

dimensions may be more difficult to grasp. For this scenario, a Parallel Coordinate Plot is preferable for

investigating the corresponding solution sets (PCP). The PCP presents multifaceted data in the form

of a two-dimensional chart, with each component of the main data being plotted along a vertical axis.

With metaheuristic optimization approach ([180]), a visualising tool called a PCP has received very little

attention. In order to further this evolution, this research employed PCP to visualise and evaluate the

quality of the solution set supplied by the ANSGA-III as well as the other two examined algorithms.

The parallel coordinates plot is a useful tool that makes the comprehension of high-dimensional data

easier and more effective. In order to comprehend the behaviour of the six objectives along with the

decision variables used in the placement of controllers, the PCP is used. It is generally known that the

parallel coordinate plot scales well with the increasing complexity of the dataset, and it is also simple to

construct. Based on the available literature, four criteria—convergence, divergence, coverage, and uni-

formity—have been established for assessing the quality of non-dominated set solutions in metaheuristic

optimization techniques. This has been established in the body of academic work. Both convergence and

divergence are considered in this investigation. The convergence of a solution is defined as the degree to

which several solutions approach one another, or more specifically, the degree to which various solutions

approach the actual Pareto front. In the meanwhile, the concept of divergence relates to the process of

distinguishing one solution from another. This indicates that the solutions are maintained in isolation

from one another. Obtaining a convergence solution while maintaining solution diversity is essential for

any evolutionary method.

4.3.9 Hypervolume Performance Indicator (HPI)

In the literature, hypervolume performance metrics have received a lot of attention ([181]). This per-

formance indicator calculates the feasible region that the non-dominant solution dominates. The HPI

demonstrates the ability to capture both the convergence and diversity metrics in a single scalar as

demonstrated by the [182]. The optimal solution was chosen with the assistance of the reference point

by the hypervolume indicator. Because of this property, the HPI is more desirable than other indicators

(Generational Distance, Spread, and Entropy), which call for the availability of the true Pareto Front.

The true Pareto efficient solutions are unknown in environments such as SD-WAN controller placement

and as a direct result, other indicators may not perform well. In continuation of the previously described

advantages of the HPI, this research used a HPI as a measure to evaluate the quality of the ANSGA-III

in comparison to the existing aforementioned optimization algorithms. The HPI had a scale that went

79

from zero to one inclusive. Better algorithm performance is associated with hypervolume indicators that

are closer to one, according to the [182]. In contrast, when the HPI gets closer to zero, the quality of the

performance starts to suffer. In order to evaluate the effectiveness of the developed ANSGA-III algorithm,

this research compared the ANSGA-III algorithm to the two most popular equivalent SD-WAN controller

placement algorithms, NSGA-II and MOPSO, employing HPI to gauge its efficacy. The performance of

these algorithms was evaluated according to convergence and diversification metrics. The results of the

experiment, together with a discussion of the findings, are described in the following paragraphs.

4.4 Experimentation

This experiment was carried out on a personal computer with a 2.70 GHz Intel Core i7-6820HQ CPU,

64GB of 1600 MHz DDR3 RAM, and Microsoft Windows 10 Professional Edition installed. The ex-

perimental setup was programmed in the Python programming language. Code was compiled using

Jupyter Notebook version 6.3.0.. The Hypervolume performance indicator [183] was used in the compu-

tation of convergence using the Multi-objective optimization library in Python (pymoo version 0.5.0.).

The open-source code can be viewed for free on the GitHub code repository at the following links:

https://tinyurl.com/2p95ad26. This section of the research presented a real-world topological test

case to illustrate the use of ANSGA-III. The primary goal of this research is to determine where on the

Internet2 OS3E architecture [184] a set of k = 5 controllers should be placed in order to maximize the

achievement of several, potentially competing objectives. This research employs the following six objec-

tive functions to optimize controller placements in the presence of many competing objectives. These

objectives are resilience (maximum controller failure), load imbalance, maximum inter-controller latency,

average inter-controller latency, as well as average switch-to-controller latency and maximum switch-to-

controller latency. This network architecture (BtEurope) has 21 nodes, as documented by [184]. The

adapted NSGA-III had its settings determined by the following factors. A 495 population size, 6 objective

functions, 5 number of dimensions, 8 as a number of divisions, a 495 which represents the user-defined

reference point, a 1.0 used as a crossover probability, and a mutation probability which is 1.0 divided by

the number of dataset sizes were all used to arrive at these results. The dataset specified a 0− 20 range

for the bounds, with 0 being the minimum and 20 the maximum. Following the foundational work of

[129] and the studies of [185], this research started the experiment’s iteration number at 100 and steadily

raised it. It was discovered that 75% of the hardware computing capabilities were consumed during the

experiment, and no more improvement was made at the five hundred iteration number. Meanwhile, an

evaluation network scenario based on the internet zoo topology datasets was employed for this research.

[184].

4.5 Results and Discussion

This research employed a set of six objective functions to guide the optimization of controller place-

ments, addressing a multitude of competing objectives. These objectives included resilience (minimizing

controller failure), load balancing, maximum inter-controller latency, average inter-controller latency, as

well as average and maximum switch-to-controller latencies. To achieve these results, specific parameter

settings were utilized: a population size of 495 individuals, six objective functions, five dimensions, eight

80

https://tinyurl.com/2p95ad26

divisions, a user-defined reference point set to 495, a crossover probability of 1.0, and a mutation proba-

bility calculated as 1.0 divided by the number of dataset sizes. The dataset was bounded within the range

of 0 to 20, with 0 representing the minimum and 20 the maximum values. In line with established prac-

tices in the field, NSGA-II and MOPSO were selected as the benchmark algorithms for evolutionary and

combinatorial optimization problems. This aligns with the prevailing trends in the literature, facilitating

a meaningful comparison with our proposed evolutionary algorithm. The experiments were executed on

a personal computer equipped with a 2.70 GHz Intel Core i7-6820HQ CPU, 64GB of 1600 MHz DDR3

RAM, and Microsoft Windows 10 Professional Edition. The entire experimental setup was implemented

using the Python programming language within Jupyter Notebook version 6.3.0. The Hypervolume

performance indicator, sourced from the multi-objective optimization library in Python (pymoo version

0.5.0), was employed to assess convergence. For transparency and reproducibility, the open-source code

is freely accessible on our GitHub code repository: https://tinyurl.com/2p95ad26. Additionally, the

benchmark algorithm’s source code was obtained from ’ Yarpiz - Academic Source Codes and Tutori-

als https://yarpiz.com/ and adapted to incorporate the necessary parameters for optimal controller

placement. In evaluating the algorithms’ performance, the Hypervolume performance indicator played a

pivotal role, offering a comprehensive assessment of their effectiveness.

4.5.1 Hypervolume Analysis Results

The Figure 4.3, shows a composite of Figures 4.4 through 4.6, for a comprehensive examination of the

hypervolume indicators. The convergence graph of the three algorithms is depicted in Figure 4.7. The

descriptive chart of the hypervolume indicator is displayed in Figures 4.4 through 4.6 for the ANSGA-III,

NSGA-II, and MOPSO techniques, accordingly. Figures 4.4 through 4.6 shows hypervolume indicator

descriptive charts for the ANSGA-III, NSGA-II, and MOPSO algorithms. The adapted NSGA-III, with

a measurable HPI of 0.94876, was the most performed of the three techniques, as seen in the graph. The

NSGA-II’s with a measurable HPI was 0.94314, while the MOPSO algorithm’s HPIr was 0.91168, the

lowest of the three and the least close to 1. The modified version of NSGA-III’s hypervolume improve-

ment (0.9488), which is more than NSGA-II’s (0.9431) and MOPSO’s (0.9117) (all of which are between

0 and 1), is considered to be significant. This adheres to the core idea developed by [186] Pareto and

put into practice by [187],[188], and [182]. The same meaning applies to Figures 4.4 through 4.6 as it

does to Figure 4.3. In a similar manner, when it comes to the convergence, the ANSGA-III achieved the

maximum (most near to 1) measurable HPI of 0.94876. This was the case among all three algorithms.

The NSGA-II algorithm had a verifiable hypervolume indicator value of 0.93646 whereas the MOPSO

algorithm achieved an identifiable HPI of 0.89348. The MOPSO algorithm achieved the mimimum value

(the least closer to 1 among the three indicators). In the meanwhile, the number of generations in the

convergence method, which was initially set at 500, was multiplied by 100 as a result of the computations

performed by the internal library of DEAP. According to these results, the ANSGA-III method possesses

the maximum level of convergence and diversity, whereas the MOPSO algorithm possesses the lowest

level of convergence and diversity. Consequently, out of the three algorithms, only the ANSGA-III has

the maximum convergence and diversity properties.

4.5.2 Convergence Analysis Results

The convergence chart of the three methods is depicted in Figure 4.7. In a follow-up to the research of

[129], the algorithm’s point of convergence is established when no more improvement leads to an optimal

81

https://tinyurl.com/2p95ad26
https://yarpiz.com/

Figure 4.3: Measure of Hypervolume for the three Algorithms

Figure 4.4: Measure of Hypervolume for the ANSGA-III Algorithms

solution. In this experiment, the number of iterations started at 100 and was slowly increased until it

reached 500. However, during these 500 iterations, a new optimal solution did not appear. This research

utilises the usage of the HPI to shed additional light on the nature of this convergence, which is displayed

in Figure 4.7, in order to evaluate the convergence’s quality further and provide a more in-depth analysis

of it. The value of the measurable hypervolume indicator was 0.94876 for the ANSGA-III, which was the

maximum among the three algorithms and the one that was closest to 1. The NSGA-II algorithm had

a verifiable HPI of 0.93646 whereas the MOPSO algorithm achieved an identifiable HPI of 0.89348.The

MOPSO algorithm achieved the lowest value (the least closer to 1 among the three indicators). In the

82

Figure 4.5: Measure of Hypervolume for the NSGA-II Algorithms

Figure 4.6: Measure of Hypervolume for the MOPSO Algorithms

meanwhile, the number of generations in the convergence method, which was initially set at 500, was

multiplied by 100 as a result of the computations performed by the internal library of DEAP.

4.5.3 Percentage of Coefficient Analysis Results

Further, the deductive approach of the PCV and the standard deviation related to the six objectives

across the three methods under consideration are displayed in Table 4.1. It was found in the Table

4.1, that the PCV [176] revealed substantially more inner genetic variation than the standard deviation

utility did. As a consequence of this, the outcomes of the PCV were utilised to give further insight into

the diversification features of the six objectives that were included in each one of the three algorithms

83

Figure 4.7: The three optimization algorithms’ convergence graph

that were taken into consideration. The PCV directly affects the features of diversification, which are

proportional to it. This suggests that the diversification features are better when the PCV is greater, as

indicated by the [178]. The findings of the comparison may be seen in Table 4.1, which shows that the

ANSGA-III has a higher PCV than the NSGA-II does for all six objectives. In a similar way, the ANSGA-

III achieves a higher PCV than the MOPSO algorithm for five of the objectives, with the exception of

the 2 objective. Because of this, it can be deduced that the ANSGA-III has the greatest overall gain in

diversity compared to NSGA-II and MOPSO algorithms.

Table 4.1: Evaluation of Diversity Based on the Standard Deviation and the Variance Coefficient

Table 4.1 demonstrates that the adapted NSGA-III has the equivalent maximum PCV of (36.867,

18.9024, 23.644, 38.3098, 24.8801, 24.8808) respectively than the NSGA-II (22.4033, 13.4573, 20.7105,

84

23.0668, 20.7946, 20.7965) and the MOPSO approach (6.42, 14.3162, 29.149, 5.0297, 11.7147, 11.714)

for the objective functions 0 through 5. In a similar vein, the percentage coefficient variation investiga-

tions reveal that the ANSGA-III possesses a percentage coefficient variation total of 167.4841%, which

is a significant improvement over NSGA-II, which achieved a percentage coefficient of variation total of

121.229%, and the MOPSO approach, which achieved a PCV total of 78.3436% respectively.

4.5.4 Percentage Difference Analysis Results

The developed ANSGA-III performs better than both the MOPSO and NSGA-II, with a difference of

32.04% and 72.52%, respectively, when comparing the percentage differences (% Diff.) between the al-

gorithms. This result supports the previous finding that, when the number of objectives is more than

three, adapted NSGA-III outperforms MOPSO and NSGA-II in terms of diversification. This shows that

the adapted NSGA-III method is better at scaling than both the MOPSO and NSGA-II models.

4.5.5 Experiment Execution Time Results

In a similar manner, Figure 4.8 displays the combined qualitative feature of the processing time (in secs)

for the three models, whereas figures 4.9 through 4.11 display the qualitative feature of the processing

time (in seconds) for each of the three models. The highest number of iteration for each model was

limited to 500.

Figure 4.8: The three optimization algorithms’ execution times

The modified NSGA-III achieved an average processing time of 100.961 seconds, which was quite close

to the NSGA-II (100.766 secs). On the other hand, the MOPSO model required an average of 165.652

seconds to complete.

85

Figure 4.9: The ANSGA-III algorithm execution time

Figure 4.10: The NSGA-II algorithm execution time

4.5.6 Parallel Coordinate Plot (PCP) Result

Figures 4.12 through 4.14 show the parallel coordinate charts for all three methods. All three techniques

were shown to converge on the true Pareto front. The diversity of solutions that stretched into the border

was maintained by the proposed adapted NSGA-III, which did not cluster its solutions in a single loca-

tion. On the other hand, it was discovered that solutions from the NSGA-II beginning with objective 1

and continuing through objective 6, were clustered together, and there was no indication of diversification

anywhere in the objective solution space. Based on this conclusion, it appears that NSGA-II does not

successfully preserve a sufficient degree of variation among the solutions. Similar to the NSGA-II method,

86

Figure 4.11: The MOPSO algorithm execution time

Figure 4.12: An ANSGA-III parallel coordinate visualisation of the solution

the MOPSO algorithm does not sustain a satisfactory convergence toward the genuine Pareto front. This

is seen by the parallel coordinate plot, which ranges between 0.28 and 0.42. On the other hand, this con-

tradicted what the ANSGA-III and NSGA-II demonstrated. Additionally, it was found that the MOPSO

algorithm has difficulty covering the solution frontier for a number of objectives. Meanwhile, it appeared

that the results obtained by the adapted NSGA-III and NSGA-II models achieved a satisfactory level of

convergence throughout the whole Pareto front. These outcomes not only supported the evidence that

87

Figure 4.13: A NSGA-II parallel coordinate visualisation of the solution

Figure 4.14: A MOPSO parallel coordinate visualisation of the solution

was provided with the hypervolume performance metrics, but they also complemented it.

Non-dominated solutions in three-dimensional space achieved by the three methods are shown in

Figures 4.15 through 4.17. According to the results, the adapted NSGA-III has a more diverse set of

88

non-dominated solutions than the NSGA-II and MOPSO algorithms because its solution is more evenly

distributed over the objective space. The solutions found by NSGA-II and MOPSO tend to cluster in a

small number of locations rather than being evenly dispersed over the objective space. These clustering

behaviors displayed by the NSGA-II and MOPSO algorithms demonstrate that these algorithms are not

uniformly dispersed over the Pareto Fronts. Based on these results, it can be concluded that adapted

NSGA-III solutions were dispersed throughout a broad region of the Pareto Front. The outcome was a

positive addition to the outcomes that were acquired in the earlier results.

Figure 4.15: Scatter plots in three dimensions for ANSGA-III Pareto sets

Figure 4.16: Scatter plots in three dimensions for NSGA-II Pareto sets

89

Figure 4.17: Scatter plots in three dimensions for MOPSO Pareto sets

4.6 Verification and Validation of the developed ANSGA-III

In this part of the thesis, the author shows that the developed model has met the main goal in terms

of its quality and credibility by showing that it has done what it was meant to do. The verification

process includes everything that goes into making a high-quality solution, like testing, analyzing the

design, analyzing the specifications, and so on. The technique can be thought of as being fairly objective.

In contrast, the process of validation is extremely subjective in nature. It involves making subjective

decisions about how well a solution that has been proposed or made meets a real-world need. The

validation process includes many different steps, such as modeling the requirements, making a prototype,

and testing with users. The specifications were followed closely during the planning and construction of

the suggested solution. The aim of the developed solution was to address one of the gaps (scalability)

identified in Chapter 2 of this thesis, namely, the inability of the existing metaheuristic algorithms to

work efficiently when the number of objectives to simultaneously optimize exceeds three. Looking at the

Table in 4.2 it is clearly seen that the developed ANSGA-III for the optimization of controller placement

in SD-WAN actually fulfills its intended design aim and meets the expected outcomes. The scalability

is measured with the standard deviation and coefficient of variation which is directly proportional to

the model diversification. The outcomes of the PCV in table 4.2 were utilized to give insight into

the diversification features of the six objectives in each of the three algorithms that were taken into

consideration. The PCV directly affects the features of diversification, which are proportional to them.

90

Table 4.2: Diversity Evaluation Using Standard Deviation and Variance Coefficient

This implies that the diversification features improve as the PCV increases, as indicated by the [178].

The results of the comparison may be seen in Table 4.2, which shows that the ANSGA-III has a higher

PCV than the NSGA-II does for all six objectives. This shows that the ANSGA-III method is better

at scaling than both the NSGA-II and MOPSO algorithms, which confirms the verification process of

the developed solution and how it actually meets its intended purpose. In a similar way, this thesis uses

the comparison of outputs as a validation process to make sure that the model that was built is credible

and meets user satisfaction. The hypervolume performance indicator, which measures how much of the

objective space the Pareto set solution takes up, was used to judge the quality of the ANSGA-III model

and other optimization models like NSGA-II and MOPSO.

Figure 4.18: Hypervolume Indicator for the three Algorithms

91

As exhibited by the reference figure 4.18, the hypervolume indicator for the ANSGA-III shows the

highest hypervolume (convergence and diversity), which confirms the validity of the developed model.

This hypervolume indicator had a scale that went from zero to one, inclusive. Better algorithm perfor-

mance is associated with hypervolume indicators closer to one; similarly, the indicator measures both

convergence and diversity metrics and is recorded as a single scalar, as shown in 4.18.

4.7 Conclusion Remarks

There has been a lot of focus on finding the best location (in terms of both number and location) for SD-

WAN controllers among a number of conflicting objectives. NSGA-II and MOPSO are two metaheuristic

optimization strategies that have been used to find good solutions to the CPP in SD-WAN. However,

these techniques were associated with a scalability challenge when there were more than three competing

objectives that needed to be optimised simultaneously for SD-WAN controller placement. Therefore, this

research introduced a modified version of the NSGA-III algorithm referred to as ANSGA-III to deal with

the scaling problems encountered by the NSGA-II and MOPSO algorithms in the presence of more than

three objectives. This research built and incorporated a RBO into the previously established industrial

engineering-based NSGA-III in order to propose the ANSGA-III for optimal controller placement in the

SD-WAN. The recommended ANSGA-III, NSGA-II, and MOPSO methods were put to the test using

Internet zoo topology datasets that included six different objective functions. High convergence and

diversification were shown by the suggested ANSGA-III over the NSGA-II and MOPSO methods in the

presence of the scalability challenge. This was demonstrated by the HPI, the PCV, and the percentage

difference, as well as the PCP. In addition, the suggested ANSGA-III was able to scale better than the

other two methods. The results of the experiment revealed that the recommended ANSGA-III was effec-

tive in resolving the scalability challenges related to the optimal controller placement in the SD-WAN.

As a direct consequence of this, the ANSGA-III approach was recommended in preference to both the

NSGA-II method and the MOPSO method.

It was established that the NSGA-II and MOPSO are characterised by their incapacity to acquire a

wide range of solutions among the non-dominant solutions. The ANSGA-III algorithm performs better

than the NSGA-II and MOPSO algorithms when there are more than three objective functions. It

is well known that both of the optimization strategies that were studied, MOPSO and NSGA-II, as

well as the modified NSGA-III that was proposed, require a significant amount of computing effort.

This has also been verified by the studies presented in this research. Even though the adapted NSGA-

III supports scalability regarding the number of objectives that can be optimised simultaneously in

the placement of controllers in software defined wide area networking. Neither the currently available

solutions (MOPSO and the NSGA-II) nor the suggested adapted NSGA-III are able to automatically learn

heuristics for combinatorial optimization tasks like SD-WAN controller placement. This is an issue that

requires immediate attention. This research will present a less computationally expensive and intelligent

framework as a direct result of this in the next chapter. The framework will be able to calculate controller

placement in the face of several competing objectives in less time. Additionally, the solution will be able

to predict controller placement when there is an expansion in the network topology rather than subjecting

the datasets to optimization techniques each time.

92

Chapter 5

An Intelligent-based solution to address
Controller Placement problem in SDN

5.1 Introduction

Combinatorial optimization problems come up in many different areas, such as decision-making, plan-

ning, telecommunications, transportation, routing, and scheduling [105]. This research is looking into the

SD-WAN controller placement problem, which is an example of a combinatorial optimization problem.

There are several different goals that need to be optimized at the same time to get the best controller

placement. Adapted Non-Dominated Sorting Genetic Algorithm III (ANSGA-III) [7], Non-Dominated

Genetic Algorithm II (NSGA-II) [107], and Multi-Objective Particle Swarm Optimization (MOPSO)

[108] are examples of metaheuristic algorithms that have been suggested as ways to find near-optimal

solutions. However, these approaches are associated with some drawbacks that need urgent attention.

Existing methods have problems like not being efficient computationally, not being able to learn the

heuristics of combinatorial optimization, and not being able to optimize controller placement well when

there are more than three goals (except for ANSGA-III).

It has been confirmed in this study that the optimization algorithms explored, MOPSO and NSGA-II,

as well as the ANSGA-III require a substantial amount of computational effort. (Please see Chapter 5,

subsection 5.6.3, figure 5.19). Despite the fact that the adapted NSGA-III supports scalability in terms of

the number of objectives that can be simultaneously optimized in SD-WAN controller placement, neither

the currently available solutions (MOPSO and the NSGA-II) nor the suggested adapted NSGA-III can

automatically learn heuristics (ability to predict the number and placement of controllers) for combi-

natorial optimization tasks such as SD-WAN controller placement. Due to the complex nature of the

state-of-the-art algorithms (ANSGA-III, NSGA-II, and MOPSO), which are known to rely on heuristics

that have been built by hand in order to make decisions that would otherwise be either too expensive

to calculate or not adequately defined mathematically, an intelligent-based solution that is quick enough

is therefore needed to compute both the optimal number of controllers and their placement [109][106]][110].

Due to the limitations of existing methods, this study suggests using a stochastic computational graph

model with an ensemble learning approach to figure out where the best controller should be placed and

how many controllers are needed for an SD-WAN deployment when different performance metrics are at

odds with each other. The solution proposed in this study is a combination of a stochastic computational

graph model and an Extreme Gradient Boosting Machine Learning Regression Model (SCGMEL). This

93

model solves the problem with the existing techniques used to place SD-WAN controllers. This study

further suggests using an artificial neural network called learning vector quantization to predict where

to put controllers in an SD-WAN topology, especially as the network grows. This approach is subject to

the administrator and the service providers on account of its usage.

The proposed strategy is in line with the identified gaps in the second paragraph of 4.7. The first

part of this chapter is going to be an introduction to the subject matter. After the introduction, the

problem definition and the objective functions that were used to evaluate this method will be discussed.

The proposed stochastic computational graph model with an ensemble learning model is explained in

Section III of this study. Section IV discusses how this study was done through experiments, while the

results and discussion of the proposed study, along with the comparison with the existing approach in

the literature, are discussed in Section V. Finally, Section VI concludes the work.

5.2 Optimization Design for Controller Placement Problem

The research undertaken in this study delved into the critical realm of CPP within SD-WAN networks.

In doing so, a novel approach for strategically situating controllers within the SD-WAN architecture was

introduced. This method was specifically designed to cater to the simultaneous fulfillment of multiple,

and often conflicting, network requirements. While the latency between switches and controllers stands

out as the paramount consideration in CPP scenarios, it’s imperative not to overlook other equally vital

factors. These objectives encompass a spectrum of concerns, including but not limited to redundancy,

equitable distribution of controller workloads (load balancing), and latency considerations in both switch-

to-controller and inter-controller communication, spanning both average and worst-case scenarios [21].

This research not only addresses the core challenge of minimizing switch-to-controller latency but also

recognizes the broader landscape of requirements that must harmoniously coexist within the SD-WAN

network.

The optimization design for controller placement in SD-WAN is a critical research area given its

pivotal role in enhancing network performance and efficiency [70]. This problem is inherently combina-

torial, involving the intricate task of determining the optimal locations for SDN controllers in a way that

simultaneously optimizes multiple, often conflicting, objectives [12]. In the realm of SD-WAN, where

the network’s performance is vital, optimization becomes paramount. The primary objectives typically

include minimizing latency, ensuring load balancing, maximizing network dependability, and reducing

operational costs. Achieving these goals is complex, as they often compete with one another [8]. For

instance, reducing latency might involve placing controllers closer to end-user devices, but this could

lead to uneven load distribution and decreased network dependability. To tackle this multifaceted chal-

lenge, researchers have turned to metaheuristic optimization algorithms [128]. ANSGA-III, NSGA-II,

and MOPSO have been among the algorithms of choice. However, while these algorithms have shown

promise in addressing controller placement issues, they are not without limitations. One of the most

pressing issues is computational efficiency. As SD-WAN deployments scale up to handle large networks,

the computational demands placed on these algorithms increase exponentially. This often leads to pro-

hibitively long optimization times and renders these algorithms impractical for real-world, large-scale

94

deployments. Another critical limitation is the algorithms’ inability to learn the heuristics of combinato-

rial optimization specific to SD-WAN controller placement [7]. In dynamic network environments, where

traffic patterns, user demands, and network conditions are constantly changing, the ability to adapt and

optimize in real-time becomes crucial [21]. Existing algorithms struggle to capture these nuanced heuris-

tics and adapt their solutions accordingly. Furthermore, when faced with more than three conflicting

objectives, most algorithms exhibit scalability challenges [7]. The inability to efficiently handle these

scenarios limits their applicability in complex SD-WAN deployments where optimizing multiple objec-

tives is essential. In response to these challenges, this research aims to pioneer innovative strategies that

overcome computational complexity, harness optimization heuristics, and adapt to the dynamic nature

of SD-WANs. Employing advanced machine learning techniques such as the Stochastic Computational

Graph approach in conjunction with ensemble learning methods, notably XGBoost, and a supervised

classification algorithm known as Learning Vector Quantization, this research aims to craft optimization

and predictive models. These models are primed to assume a pivotal role in discerning the optimal

number of controllers and their precise placements within the SD-WAN network. The envisaged result

is a substantial enhancement in SD-WAN network performance and efficiency, effectively addressing the

constraints inherent in current optimization methodologies. In conclusion, the optimization of controller

placement in SD-WAN networks represents a multifaceted yet indispensable research domain. The press-

ing task at hand is to surmount challenges related to computational efficiency, heuristics learning, and

scalability, all of which are instrumental in unlocking the full potential of SD-WAN technology. By pi-

oneering innovative approaches and leveraging the capabilities of machine learning, this research aspires

to blaze a trail toward more efficient, adaptable, and effective SD-WAN deployments in the immediate

future.

Based on the outcomes of this study, an unconstrained, many-objective CPP for controller placement

was designed. The objective functions of this study are described in Equations (5.1) through (5.6) to

the reader. Specifically, the SD-WAN is constructed in the form of an undirected graph, denoted by the

equation G=(Φ, E), where Φ is the set of nodes and E is the set of links between them. Meanwhile, the

shortest path delay between any two nodes may be found in a distance matrix designated by the letter

Dm, which can be used in the placement computation. dηθ described the delay that occurs between the

node η and node θ. Take into consideration the fact that the authors of this study arrived at their basis

for normalisation by dividing the delay recorded in Dm by the diameter of the graph that corresponded

to it. In order to get the desired outcome, which is determined by the number of controllers that are

sought, the search space is limited to a predetermined collection of
(
σ
ρ

)
locations.

This study came to the conclusion that placement should be referred to as a σ-element, where ϕ is

a subset of Φ. The search space for the CPP is the ϕ-subset of Φ, which is a space that includes all of

the possibilities that might be chosen. In the event that there is a network design with 21 nodes and a

predetermined number of controllers, such as ϕ=7 for instance, the set ρ={4, 5, 8, 10, 11, 13, 16} denotes

controller locations (|CL|=7. This is an example to explain the point. In order to fulfill the requirements

of the assumption, the seven controllers have to be situated at nodes 4, 5, 8, 10, 11, 13, and16. It is essen-

tial to keep in mind that rearranging the members of any subset will not result in the formation of any

new combination. As a consequence of this, in this particular case, the total number of possible locations

in this network is
(
21
7

)
. It is anticipated that a set of objectives referred to as {τ1, τ2, . . . , τm} will be

reduced to the greatest extent possible. If there is no other potential placement δ in the search space

then the solution ρ is the best possible alternative according to the Pareto principle. In other words,

95

all things considered, ∀η θη(δ) ≤ θη(ρ) and θη(δ) < θη(ρ) must have at least one index η. This study

has to deal with the CPP to find the best set of solutions for the whole solution space as well as the

set of objective values for all of the best placements, which together make up a set of solutions. In the

next section, this study will discuss the objective functions that are used to find the best decision variables.

5.2.1 Objective functions

In this part of the study, the authors present a summary of the objective that was examined. The

objective function in this study can also be referred to as the cost function or loss function. It is

an important part of controller placement. The objective functions are used to optimize the decision

variables (controller location). For further reading on the importance of the objective functions discussed

in this section, the reader is referred to the study in [112]. When deciding where to put the controllers,

there are several different priorities that need to be taken into account, each of which is contingent on

the specific configuration of the controllers. This study has considered six different objectives that are

conflicting in nature in optimizing controller placement. Although there are several objectives that can

be used to optimize the placement, this research has carefully considered those that have a major effect

on the service providers and that the user of SD-WAN cannot afford not to consider when optimizing

controllers in the face of several conflicting objectives. The first two performance metrics (objective

functions) display the maximum and average switch-to-controller latency. These two objectives ensure

that average-case and worst-case latency between the controller and its associated switches are considered

when optimizing placement, with the goal of minimizing both. The equations (5.1) and (5.2) calculate

the maximum and average switch-to-controller latency for each controller placement PL ∈ 2Φ and the

defined distance matrix Dm, respectively).

γLat−max−N2C(CL)=max
ϕ∈Φ

min
cl∈CL

dϕ,cl, (5.1)

γLat−avg−N2C(CL)=
1

|Φ|
∑
ϕ∈Φ

min
pl∈CL

dϕ,cl. (5.2)

In SD-WAN architecture, where several or more than one controller is deployed, there is a need

for those controllers to communicate together to exchange information with each other. As a result,

controller-to-controller latency should be taken into consideration when optimising the placement of

controllers. This is generally referred to as "inter-controller latency," and it should be minimized. In a

similar way to equations (5.1) and (5.2), the two equations in (5.3) and (5.4) do the same thing, but in this

case, they determine the controller-to-controller latency. In this type of objective, both the average and

worst-case scenarios (maximum inter-controller latency) are taken into account when deciding where to

place controllers to improve the overall performance of the network. This performance metric (objective

functions) should be looked into as part of the controller placement optimization because it significantly

affects the way controllers work together overall.

γLat−max−N2C(CL) = max
cl1,cl2∈CL

dcl1,cl2 , (5.3)

γLat−avg−N2C(CL) =
1(|CL|
2

) ∑
cl1,cl2∈CL

dcl1,cl2 . (5.4)

96

While latency-based objectives focus on shortening network paths for data transmission, controller

load balancing must also be taken into account while optimising controller placement in SD-WAN archi-

tecture to improve the reliability of network operation. In a capacitated controller placement environment

where network reliability is the key performance indicator, one controller should not be overloaded while

others are not underloaded. The load across the controller should be distributed equally. In this study, the

switches associated with the controllers represent the load on them, and the number of switches assigned

to the controller should be evenly distributed. As a result, the load-balancing objective characteristics

should also be minimised. This study has considered an imbalance metric in order to minimise the loads

across the controllers since the remaining objective functions were subjected to minimization [112]. The

number of switches assigned to the controller is represented in this study as mpl, where pl is the placement

and mpl is the number of switches that are connected to pl. The equation that describe this objective

is mathematically denoted in (5.5) and is defined as the difference between mpl two controllers with the

lowest and highest assigned nodes.

γimbalance(CL) = max
cl∈CL

mcl − min
cl∈CL

mcl. (5.5)

In this study, in addition to latencies and load balancing, controller failure as an objective function is

also taken into account. This is called "resilience." This performance metric is important to the service

providers because reliability is one of the most important things in any business. In case a controller

fails, there should always be a way to ensure fault tolerance. This study has considered the minimum

switch-to-controller latency failure that may occur during the optimization of controllers in SD-WAN.

Assuming that CL = 2P \ {∅} includes all potential positions left over from controller failures of up to

(n − 1) controllers, the minimum switch-to-controller latency under any failure situation is represented

in (5.6).

γavg−N2C(CL) =
1

|CL|
∑

cl∈CL

(
1

|Φ|
∑
ϕ∈Φ

(
min
cl∈CL

dϕ,cl

))
. (5.6)

The objective functions, with the help of the distance matrix (containing the shortest distance be-

tween two locations), are what are used to optimize the decision variables (controller locations) for optimal

placement of controllers in SD-WAN. This study deals with the problem of optimal controller placement

in SD-WAN when there are several competing objectives to simultaneously optimize. Optimizing sev-

eral competing objectives simultaneously is a combinatorial optimization problem that is NP-hard. An

example of this combinatorial optimization problem is the CPP investigated in this study. In the liter-

ature, metaheuristic algorithms like MOPSO, NSGA-II, and ANSGA-III have been suggested as ways

to solve controller placement problems. All of these algorithms, with the exception of the ANSGA-III,

were connected to the problem of scalability (when the number of objectives exceeded three). Yet, these

solutions that have been developed are known to be computationally inefficient and often lack intelligence

(for example, the ability to predict how many controllers are needed to set up an SD-WAN). In the next

part of the study, the proposed solution to the problem of where to put the controller and how many

controllers are needed for SD-WAN will be discussed. This solution equally resolves the aforementioned

challenges associated with the existing solutions for the placement of controllers.

97

5.3 Proposed Stochastic Computational Graph with Ensemble
Learning Model for SD-WAN Controller Placement

The aim of this thesis is to provide a collaborative and adaptive optimization learning-based framework

for solving controller placement in SD-WAN. The proposed method in this chapter is aligned with the

aim of the adaptive optimization learning-based framework mentioned in this thesis in section 1.6. This

study came up with a new optimization algorithm and a smart way to place controllers in SD-WAN when

there were several goals that were at odds with each other. The proposed solution is presented in this

section and is referred to as a stochastic computational graph model with ensemble learning (SCGMEL).

The proposed SCGMEL algorithm will solve the problem of where to place controllers in SD-WAN, and it

will also solve the problems with the current solution to the problem of where to place controllers in SD-

WAN that has been proposed in the literature. The controller placement problem is about figuring out

how many and where to put controllers when different goals are at stake. Large enterprise organizations,

like SD-WAN, are examples of where controller placement problems exist. This study came up with a

unique and novel solution for the placement of controllers in SD-WAN. These solutions are a mix of a

stochastic computational graph model (stochastic gradient descent with momentum, learning rate, decay

rate, and a dynamic computational graph) and an extreme gradient boosting decision tree model called

XGBoost. After figuring out where to place the controllers with the SCGMEL algorithm, XGBoost was

used to predict a good number of controllers for deploying SD-WAN. In the same way, this study used

an artificial neural network called Learning Vector Quantization to predict where controllers should be

placed. In the next part of this study, there will be a brief discussion about the flowchart and algorithm,

as well as the different solutions that make up the proposed solution.

5.3.0.1 Stochastic Gradient Descent (SGD)

SGD is a popular optimization algorithm that is frequently used in machine learning applications [189].

SGD and Mini-Batch SGD are the transformed versions of Gradient Descent (GD). With stochastic gra-

dient descent, instead of using all of the observations to figure out the gradient, only a random subset

of them is used. Given a dataset with n observations (i > 103), GD considers all n points for reducing

the cost function, making this algorithm extremely computationally intensive. SGD, on the other hand,

adjusts the parameters with a single data point (i = 1) at each epoch. Mini-batch SGD involves adjusting

model parameters using a subset of available data (j data points (j < i)). These ways of picking observa-

tions with a number of observations less than n make the procedure computationally efficient. In SGD,

the value of the cost function drops off suddenly, making it less likely to become trapped at the local

minimum and increasing the likelihood that it will eventually break free. To optimise a loss function,

SGD, a popular gradient descent technique, is often utilised. It improves generalisation performance

compared to batch gradient by updating model parameters using mini-batch samples at a time, which

in turn requires less computation. The most basic type of gradient descent, known as batch gradient

descent, updates parameters using all available samples at each iteration, which is both computationally

intensive and has subpar generalisation performance.

This research uses SGD as an optimization technique to find the best way to place controllers in an SD-

WAN, taking into account latency (both switch-to-controller and inter-controller latency), load balancing,

and resilience (controller failure). When many goals are at odds with each other, the recommended solu-

tion is to use the stochastic gradient descent (mini-batch) principle to figure out where to put controllers.

In the following sections, we’ll go through the SGD and several additional optimization approaches and

98

parameters (learning decay rate, momentum, and a dynamic computational network) that work together

to boost the SD-WAN’s overall performance.

5.3.0.2 Learning Rate

In gradient descent, the learning rate [190] is used to scale the size of parameter updates as the algorithm

moves downward. The number that is selected for the learning rate can have an effect on two different

aspects of the algorithm: 1) how quickly the model learns, and 2) whether or not the cost function is

minimized. In every method of machine learning, there are two types of parameters: those that can be

learned by the machine and those that cannot. Machine-learnable parameters are those that algorithms

can learn or estimate on their own while they are being trained on a specific dataset. However, data

scientists will assign values to hyper-parameters to control the learning process and the final accuracy of

the model. This is done in order to improve the accuracy of the predictions made by the model. In most

cases, the learning rate is denoted by the symbol α. Finding the appropriate learning rate for a given

challenge is not a simple task. Because of this, the optimization algorithm proposed in this study uses

a decaying learning rate that slows down over time. The effect of a decaying learning rate is that the

learning rate changes (becomes "dynamic") over time instead of staying the same (being "static").

5.3.0.3 Stochastic Gradient Descent with Momentum

SGD with momentum [191] is an extension of the stochastic gradient descent that ensures that a portion

of the previous update of the vectors is put in memory while calculating the next one. The SGD with

momentum is designed to speed up the optimization process. The fact, that the SGD progression of

the search may bounce around the solution space and getting the right learning rate with SGD requires

careful selection, which may result in the possibility of getting stuck in the local minimum if too high or

too low, integrating momentum with the SGD will help to avoid local minimum and allow the algorithm

to attain global optimum as well as speed up the optimization process (function evaluation reduction

before attaining optimal results) with a more desirable end result. This study in the optimization part of

the proposed solution has incorporated history into the parameter update (momentum) with the history

being determined by the gradient that was seen in earlier iterations. As part of the suggested approach,

the momentum is put to use in order to mitigate the impact of the learning rate and give strength to

training stability (integrating first-order historical gradient). It is important to keep track of the most

recent change to the vector so that you can factor it into the subsequent calculation.

5.3.0.4 Learning Rate Decay

Learning rate decay [192] is a mechanism that aids in the acquisition of complicated patterns and, as

such, helps the model to converge to the global optimum and avoid the oscillation seen in conventional

SGD without momentum and learning rate decay. The suggested SGD optimization model includes an

autonomous learning rate decay technique. Using this method, one may determine the significance of

the preceding update’s (momentum’s) contribution to the optimization process. This method gradually

lowers the training pace, which lessens the need for human intervention and the number of adjustable

settings. Decreases in the learning rate have the dual benefit of suppressing oscillation and speeding up

convergence. To optimize a loss function, SGD, a popular gradient descent technique, is often utilised.

It improves generalization performance compared to batch gradient by updating model parameters using

mini-batch samples at a time, which in turn requires less computation. The most basic type of gradient

descent, known as batch gradient descent, updates parameters using all available samples at each iteration,

99

which is both computationally intensive and has subpar generalization performance. As time goes on,

the learning rate slows down, so the optimization techniques proposed in this research (a stochastic

computational graph model) get closer and closer to an optimal solution where the controllers are placed

in the best way possible (the minimum point). This hyper-parameter helps with the convergence of the

proposed stochastic computational graph model and prevents overfitting.

5.3.0.5 Computational Graph

Computational graphs [193] are a way to represent a mathematical function in graph theory. Graph

theory is predicated on the central premise that all components of a graph may be classified as nodes

or edges. The "nodes" in a computational graph may be either input values or functions that combine

those values. The edges get their final weights throughout the data transmission process. If an edge

is leaving an input node, its weight will be set to the value of the input, but if it is leaving a function

node, its weight will be calculated by multiplying the weights of the incoming edges by the parameter

of the function. Popular machine learning frameworks like PyTorch and Tensor Flow [194] rely on the

construction of these computational graphs to carry out the back-propagation process for a given network

and to calculate gradients. Backpropagation is utilized to estimate the "gradient" of an input weight,

which may be defined as the change in a loss that results from a relatively insignificant shift in that weight.

After then, the weight is revised with the aid of the gradient and a learning rate with other optimization

arguments like momentum and learning decay rate to cut down on the overall loss as much as possible and

give strength to the training stability and speed up the convergence process. The objective functions used

in this study for the optimization of controllers are represented mathematically. As a result, this study

has adopted the use of the computational graph approach in writing the objective function as graph

theory for ease of implementation and to help in the optimal performance of the proposed stochastic

computational graph model. The dynamic computational network is made up of tensors (variables) that

are enabled for gradients as well as functions (operations). Because the flow of data and the operations

that will be done on the data are defined during runtime, the dynamic creation of the computational

graph will take place in real time and in an iterative fashion. At each cycle, many gradients are created,

and a computation graph is built to record the resulting gradient functions. PyTorch accomplishes this

goal by building a computational graph that can be interacted with. It is possible to compute gradients

in a variety of ways using this method due to the fact that each iteration of this procedure starts with

a clean slate. Forward and backward computations are two distinct types of calculations that may be

performed by utilizing the computational graphs in various ways.

The following terminologies provide definitions for a few of the most important terms in the field of

computational graphs.

• A node in a network represents a variable. This variable might be a scalar, vector, matrix, tensor,

or perhaps an entirely different kind of variable altogether.

• A function parameter and a data dependency are both represented as an edge in a graph. These

are comparable to the node pointers that are used.

• A basic function that makes use of one or more variables is called an operation. In this context, only

specific operations are permitted. Several operations can be combined to express more complicated

functions than are included in this set.

100

Figure 5.1: Build up of Computational Graph

Consider the following: P= (a+ b) ∗ (b− c) as illustrated in 5.3.0.6

In order to facilitate a deeper level of comprehension, authors define two variables, d and e, as output

variables for each operation. The equation now becomes: d = a+ b, e = b− c,P = d ∗ e. It is possible to

do arithmetic operations such as addition, subtraction, and multiplication. Nodes are the fundamental

building pieces of a computational graph, each of which performs a unique operation and receives its own

set of parameters[195]. The array’s direction determines the flow of input data to other nodes in the

network. The final output value can be calculated by first establishing the values of the input variables

and then calculating the nodes of the graph in accordance with those values.

5.3.0.6 Computational Graphs Types

All deep learning mechanisms rely on the building of computation graphs in order to compute the gra-

dient values necessary for gradient descent optimization [196]. The framework often handles backward

differentiation so all you have to do is construct the forward propagation graph. This section will briefly

discuss static and dynamic computational graphs.

Static graphs provide a number of benefits, one of which is that they make it possible to do sophisti-

cated offline optimization and scheduling of graphs. This suggests that they would typically be quicker

than dynamic graphs in general; nevertheless, the difference may not be noticeable in all use cases. The

drawback is that managing structured data, including data with changeable sizes, is unsightly [197] [198].

The static graph is known to generally have the following two phases. In the first phase, architecture

is defined (perhaps with fundamental flow control such as loops and conditionals) while in the second

phase, one will either train the model or create predictions using a significant quantity of data.

Dynamic computational graphs: Computational graphs that are dynamic are those in which the graph

is defined implicitly (by means such as operator overloading) as the forward computation is carried out

[199]. The advantage of dynamic graphs is that they are more flexible. The library is less invasive and

permits parallel graph construction and evaluation.

101

Figure 5.2: Illustration of Computational Graph

It is necessary to make use of the chain rule in order to do the evaluation of the partial derivatives of

the final output variable with regard to the input variables α, β, and γ. As a direct consequence of this,

the derivatives may be written as follows:

δP
δα = δP

δd ∗
δd
δa = e ∗ 1 = e

δP
δβ = δP

δd ∗
δd
δb = e ∗ 1 = e

δP
δγ = δP

δe ∗
δe
δc = d ∗ −1 = −d

This provides us with an illustration of how computational graphs simplify the process of obtaining

derivatives through the use of back-propagation.

5.3.0.7 Extreme Gradient Boosting (XGBoost)

XGBoost, or Extreme Gradient Boosting, is a renowned and potent machine learning algorithm exten-

sively employed for constructing supervised models, whether for regression or classification tasks [200].

This algorithm is celebrated for its exceptional efficiency, adaptability, and versatility. It has been metic-

ulously optimized to operate across various data formats, making it a robust choice for a wide array of

machine-learning applications. One of the key strengths of XGBoost is its ability to perform parallel com-

putation, which contributes significantly to its efficiency, accuracy, and practicality. At its core, XGBoost

employs an ensemble technique known as "gradient boosting." This technique combines the predictions of

102

a set of simpler models, each with limited predictive power, to generate a highly accurate final prediction.

XGBoost is renowned for its computational prowess and efficiency, surpassing many other algorithms,

particularly in comparison to single decision trees. XGBoost is particularly resilient to outliers and lever-

ages a collection of decision trees in its analysis. It incorporates both a tree learning algorithm and a

linear model solver. Its selection as an ensemble learning method in this study is underpinned by its

well-documented ability to elevate predictive accuracy and overall model performance. Unlike traditional

ensemble methods that involve combining independently trained models, XGBoost operates through the

collaborative synergy of multiple decision trees within the algorithm itself [201]. The result is an ensemble

model that excels in a variety of tasks, including regression and classification. This study capitalizes on

XGBoost’s numerous advantages by proposing its use as a scalable tree-boosting model to predict the

optimal number of controllers required for SD-WAN deployment. Data scientists commonly rely on XG-

Boost to achieve cutting-edge results in machine learning challenges. In essence, XGBoost is a versatile

and robust machine learning tool suitable for a wide range of applications, including predictive modeling

for SD-WAN controller placement.

5.3.0.8 Normal Distribution.

In statistics, the mean of a normal distribution is a measure of its central tendency [202]. The normal

distribution is an incessant probability distribution in statistics that is used a lot in statistical analysis and

modeling. The mean of a normal distribution is also known as its expected value or average value. It is

denoted by the symbol µ and represents the point at which the distribution is symmetrically centered. The

mean, or the most likely value, for a normal distribution is the same as the point where the distribution

is most normally distributed. A normal distribution with an average of zero and a sigma of one has its

peak near the mean. The mean value is the position on the horizontal axis where the curve is centered.

The mean is a key parameter of the normal distribution and is used to calculate many other statistical

measures, such as variance and standard deviation. It is also used in hypothesis testing when the sample

mean differs from the null hypothesis in a statistically meaningful way [203].

5.3.0.9 Variance homogeneity or Levene’s test

The Levene’s or variance homogeneity test is a test in statistics that is used to detect whether or not

the variances of two or more sets of data are equal to one another [204]. The assumption that the

variances of the groups being compared have the same value is made by many statistical tests, including

the t-test and the ANOVA; hence, this test is quite significant. Levene’s test compares the absolute

deviations of the data from their respective group means and tests whether these deviations are equal

across all groups. The test can be conducted using different methods, such as the Brown-Forsythe test

or Bartlett’s test, depending on the underlying assumptions of the data. In the case of Levene’s test, the

assumption that there is equality in the variances across multiple groups of data is inferred to be the null

hypothesis, while the assumption that at least one of the datasets among the group differs significantly

can be regarded as the alternative hypothesis. In statistical analysis, the null hypothesis is ruled out

and unequal variances are inferred if the probability value of the test’s result is lower than the level

of significance which is normally set at 0.05 threshold [205]. It is important to test for homogeneity

of variances before conducting any statistical analysis that assumes equal variances, as violating this

assumption can lead to biased results and incorrect conclusions.

103

5.3.0.10 Non-Parametric test of Kruskal-Wallis

The Kruskal-Wallis statistical analysis method is applied to the process of comparing the medians of

relevant data sets in order to evaluate whether a statistically notable distinction exists between multiple

groups of data [206]. It is a non-parametric test, which means it does not require the assumption of

normality or equal variances in the data, making it suitable for analyzing non-normally distributed data.

The Kruskal-Wallis test ranks the observations within each group and calculates a test statistic based on

the sum of ranks [207]. The medians of all groups are assumed to be equal in the null hypothesis of the

test and to be different from one another in at least one group in the alternative hypothesis. The null

hypothesis is rejected and a statistically significant difference in medians between at least two groups

is inferred if the probability (p-value) of the test’s result is lower than the selected level of significance

which is normally at 0.05 threshold. If the null hypothesis is found to be false, then post hoc tests,

such as the Pairwise Wilcoxon rank-sum test or the Conover-Iman test, can be used to discover whether

groups are substantially different from one another. The Kruskal-Wallis test is commonly used in fields

such as biology, sociology, and economics when the assumptions of parametric tests, such as the one-way

ANOVA, are not met.

5.3.0.11 Wilcoxon rank-sum pairwise method (Post Hoc-Test)

Wilcoxon rank-sum pairwise method is a non-parametric test in statistics that is used to compare the

medians of two independent data sets to see if they differ statistically substantially [208]. The test entails

ranking the observations from both groups and computing the total of each group’s ranks. The test

statistic is then computed as the smaller of the two sums of ranks, and a p-value is computed based on

the test statistic’s distribution under the null hypothesis of no difference between the groups [209]. If the

probability value is lower than a predetermined level of significance, which is normally not more than 0.05,

then the null hypothesis is ruled out, and it is shown that the medians of the two groups differ statistically

significantly. The pairwise Wilcoxon rank-sum test is often used in situations where the assumptions of

parametric tests, such as the t-test, are not met, such as when the data are non-normally distributed

or have unequal variances. It is a robust test, meaning that it is not susceptible to the presence of

outliers or non-normality in the data. When conducting multiple pairwise comparisons between groups,

the significance level should be adjusted using a method such as the Bonferroni correction in order to

keep the family-wise error rate under control.

5.3.0.12 Learning Vector Quantization

Learning Vector Quantisation is a production version of the supervised classification technique [210][211].

The terms "production version" and "prototype-based" are used interchangeably. A prototype is a test

version of a product, service, or system that is developed to ensure the viability of an idea. Each class

in the dataset is represented by one or more prototypes, and there may be more than one prototype

per class. The class of the prototype that is geographically closest to new data points that are initially

unknown is then allocated to those new data points. Defining a distance metric is necessary for the word

"closest" to make any sense. There is no restriction on the number of prototypes that may be used per

class; the only condition is that each class must have at least one prototype.

LVQ is a specific example of an artificial neural network that employs a winner-take-all Hebbian-

based learning strategy [212]. It is quite similar to the self-Organising Maps (SOM) method, with a

minor change. The LVQ system is represented by its prototypes, which are denoted by the notation

104

Figure 5.3: Conceptual Representation of LVQ networks

W = (wi, . . . , wn). In training algorithms that use a winner-take-all approach, the winner is either

brought closer to the target if it properly classifies the data point or further away if it erroneously

classifies the data point. One of the benefits of LVQ is that it generates prototypes that are simple

and straightforward for specialists in the relevant application domain to understand. The LVQ networks

are depicted in Figure 5.3, where the letters I and J stand for the input cluster and output cluster,

respectively. The weights, denoted by W, are used to indicate how strong the connection between I and

J. In the next part, we will examine an example of this method as well as the essential stages in further

depth.

5.3.0.13 Example showing how LVQ works

The objective of this example is to illustrate the LVQ notion by providing a network of LVQs that contains

five vectors that have each been assigned to one of two classes.

• Step 1: Based on the information presented in Figure 5.4 in the previous paragraph, each vector has

105

Figure 5.4: LVQ networks

0 0 1 1

1 0 0 0

0 0 0 1

1 1 0 0

0 1 1 0

1

2

2

1

1

four inputs designated as I1, I2, I3, and I4, and the number of output classes is two. Take the first

two vectors into consideration as the starting weight vectors (codebook vectors, or the prototype),

then use the remaining three vectors to create the input vector. The first two are taken due to

the number of classes that exists in the network. Hence, w1 = [0011], w2 = [1000]. There are four

inputs in each vector (k = 1, 2, 3, 4), and there are two classes (n=1,2) in total.

Hence, the initial weight matrix, Wkn = Therefore, the weight matrix, or the codebook vectors

depending on the circumstance, consists of 4 rows and 2 columns. In the matrix Wkn =, the value

denoted by column 1 is the w1, and the value denoted by column 2 is the w2.

• Step 2: The last three vectors out of a total of five vectors are now being taken into consideration

at this level. During this part of the process, it is necessary to take into consideration the first

input vector, which is the third vector in the starting vector Ik = (i1, i2, i3, i4) = (0001), while

the matching target cluster is represented by the number 2. In addition, using this formula, the

106

0 1

0 0

1 0

1 0

Euclidean Distance between clusters n=1,2 and the first input vector will be determined.

disn =

n∑
k∈1

(wkn − ik)2. (5.7)

Compute the distance between cluster n=1 (first column of the matrix) and first input vector, disn
= dis1 using

dis1 =

n∑
k∈1

(wk1 − ik)2. (5.8)

dis1 = (0 − 0)2 + (0 − 0)2 + (1 − 0)2 + (1 − 1)2 = 1, Also, repeat this procedure with the second

codebook vector, which has the cluster number 2; the first input vector has the value disn = dis2

dis2 =

n∑
k∈1

(wk2 − ik)2. (5.9)

dis2 = (1− 0)2 + (0− 0)2 + (0− 0)2 + (0− 1)2 = 2. After taking into account the minimal values,

the winning cluster n = 1 is clear from the calculation of the Euclidean distance between the code-

book vectors and the first input vectors in the remaining vectors given, here, dis1dis2. Therefore,

only column n = 1 of the aforementioned matrix 5.4 will be updated to reflect the latest weights

(codebook vectors or prototype). It is observed that n = 1, and the target cluster is 2. So the

target cluster is not equal to the winning cluster. The below equation is used to update the weight

when the winning cluster ̸= target cluster.Weikn(new) = weikn(old) − β[ik − weikn(old)]. The β

here represents the learning rate which is set to 0.1. ik, represent the input vector, n = 1, the first

column of the weighted matrix. Wei11(new) = 0−0.1(0−0) = 0, Wei21(new) = 0−0.1(0−0) = 0,

Wei31(new) = 1 − 0.1(0 − 1) = 1.1, and Wei41(new) = 1 − 0.1(1 − 1) = 1. The new matrix after

the update becomes
0 1

0 0

1.1 0

1 0

• Step 3: In this phase, the second input vector is considered such that Ik = (i1, i2, i3, i4) = (1100)

and the corresponding target cluster = 1.The same procedure in steps 1 and 2 are followed, but in

this case with the new updated weight. Euclidean distance will be computed following the proce-

dure in the previous step 1 and 2. When n =1 dis1 = (0− 1)2 + (0− 1)2 + (1.1− 0)2 + (1− 0)2 =

4.21, and when n = 2, dis2 = (1 − 1)2 + (0 − 1)2 + (0 − 0)2 + (0 − 0)2 = 1. In this case,

dis2 << dis1, which implies that the winning cluster n = 2 considering the minimum value.

Hence, the update will be performed on column n = 2 of the above 5.4. Since the winning cluster

107

̸= target cluster, thisequationWeikn(new) = weikn(old)−β[ik−weikn(old)] will be used to update

with the same learning rate β = 0.1. The weighted matrix will then be computed as Wei12(new) =

1− 0.1(1− 1) = 1, Wei22(new) = 0− 0.1(1− 0) = −0.1, Wei32(new) = 0− 0.1(0− 0) = 0, as well

as Wei42(new) = 0− 0.1(0− 0) = 0. The new matrix after the update becomes
0 1

0 −0.1

1.1 0

1 0

• Step 4: In this phase, the third input vector is considered such that Ik = (i1, i2, i3, i4) = (0110) and

the corresponding target cluster = 1.The same procedure in step 1 and 2 are followed, but in this case

with the new updated weight. Euclidean distance will be computed following the procedure in previ-

ous steps 1 and 2. After the computation,when n =1 dis1 = (0−0)2+(0−1)2+(1.1−1)2+(1−0)2 =

2.01, and when n= 2, dis2 = (1 − 0)2 + (−0.1 − 1)2 + (0 − 1)2 + (0 − 0)2 = 3.21. In this case,

dis1 << dis2, which implies that the winning cluster n = 1 considering the minimum value.Since

the winning cluster = target cluster, this equation Weikn(new) = weikn(old) + β[ik − weikn(old)]
will be used to update with the same learning rate β = 0.1.The weighted matrix will then be com-

puted as Wei11(new) = 0 + 0.1(0 − 0) = 0, Wei21(new) = 0 + 0.1(1 − 0) = 0.1, Wei31(new) =

1.1+0.1(1− 1.1) = 1.09, and Wei41(new) = 1+0.1(0− 1) = 0.9. The new matrix after the update

becomes
0 1

0.1 −0.1

1.09 0

0.9 0

By using a winner-take-all concept and input vector clustering, Learning Vector Quantization au-

tomatically updates the matrix weights.

This study has proposed the learning vector quantization classification algorithm to predict the placement

of the controller in the SD-WAN deployment. The next section will now present the flowcharts and the

algorithms of the proposed stochastic computational graph model with an ensemble learning approach,

as well as the classification algorithm used in the prediction of controller placement.

5.4 The Proposed Stochastic Computational Graph Model with
Ensemble Learning Approach, as well as the LVQ Flowcharts
and Algorithms for SD-WAN Controller Placement

In this section, the flowcharts and the algorithms of the proposed stochastic computational graph model

with an ensemble learning approach, as well as the classification algorithm used in the placement of

controllers, will be discussed. The flowcharts will be presented first, followed by the algorithm, and then

their discussion will follow.

108

In Figure 5.5, the following inputs are loaded: the datasets (coordinates-based), which comprise the

latitude and longitude of different cities for possible controller placement locations; the learning rate α,

which is used to control the movement of the model down the hill; the momentum, which is used to

stabilize the training and help speed up the convergence process; and the learning rate decay, which

helps to dynamically decrease the learning rate as well as help in suppressing oscillation and speeding up

the convergence process. The number of epochs, which is the number of iterations the model takes in

optimizing the parameters; the data loader, which helps to load the tensors batch by batch during the

training; and early stopping (callback operation), which is a monitoring technique to avoid overfitting of

the model and ensure the model terminates when there is no longer improvement in the loss. The second

step in the flowchart ensures that the datasets are converted to a tensor format for easy readability and

operation with the dynamic computational graph. Then, the haversine distance function is employed to

calculate the distance between two geographical cities. The third box of the flowcharts defined various

objective functions used with the decision variables to optimize controller placement. These objective

functions include switch-to-controller latency on the average and worst-case scenarios, inter-controller

latency on the average and worst-case scenarios, load balancing, which was converted to load imbalance

for easy computation, and resilience (controller failure). The fourth box uses PyTorch tensors to generate

the initial controller location randomly from the datasets. The optimal number of controllers here is

seven. The fifth box is then used to clone the initial controller location to help in the comparison of the

initial loss and the final loss when the model finishes its optimization. Meanwhile, little noise of 0.0001 is

added to the tensors to enhance the gradient computations. Similarly, in the sixth box of the flowchart,

the dynamic computational graph is used to track the operation of the tensors, and then containers to

store all losses such as the train loss, validation loss, and overall loss are created. In the next box, the

container for best loss was first used to store the initial losses, which were subjected to updates during

the model iteration. Similarly, the final location container was used to store the final location losses. The

iteration begins in the next box, and the dataloader is used to load the tensors batch by batch. This

approach is known as "mini-batch stochastic gradient descent." In the next box, all losses were computed,

and back-propagation with the help of PyTorch was used in the automatic differentiation and calculation

of gradients. In the tenth box, the controller location was updated using various parameters, such as the

learning rate, the decay rate, and the momentum (see Figure 5.5). In the next box, the "loss function"

is defined, where all the losses are added into a single loss value with the appropriate weight to show the

importance and strength of each objective function. In the twelfth box, losses were recorded between the

tensors and the rest of the position during the completion of the train and the validation cycle. This is

required because mini-batch SGD is considered and the dataloader was used to load the tensors batch

by batch. The train losses contain losses stored by batch, while the validation losses contain losses at

the complete epoch. The next box will sum up all the value losses and store them in the overall losses

container. Meanwhile, the next box employs the use of a callback operation and tracks the losses of

the model, such that when the current loss is less than the minimum of the previous losses, the value is

recorded, which implies

109

Figure 5.5: The flowchart of the proposed stochastic computational graph model

110

that there is an improvement after the iteration. The model then updates the best locs and the final

locs defined in the seventh box, and also, updates the val losses and losses defined in the previous box.

However, in the final box, if no improvement occurs after ten iterations, the model will terminate and

record the losses recorded at this early stopping, which will now be the optimized controller placement.

This means that the model has converged and reached the global minimum.

Figure 5.6: The flowchart of the proposed ensemble learning model (XGBoost)

This study now presents the next flowchart which describes the flowchart of the ensemble learning

model employed in this research to determine the optimal number of controllers that is needed in the

optimal placement of controllers in SD-WAN. The proposed ensemble learning model and its discussion

111

are presented in Figure 5.6. The optimal number of controllers has achieved with the use of the proposed

stochastic computational model and elbow method techniques, which were used to identify the right

number of controllers (using the overall loss estimated); thereafter, the initial controller location and

the final controller location generated by the use of the model with feature engineering were used in the

prediction of the suitable number of controllers, which was achieved with the help of XGBoost.

In Figure 5.6, the first approach that was carried out is the same as the one flowchart in 5.5. The pro-

posed stochastic computational graph model was first used to obtain the placement of controllers. This

is done because the overall loss obtained from this approach was used to calculate the optimal number

of controllers needed in the SD-WAN deployment. Note that the entire dataset from the zoo topology

[184] was subjected to evaluation in this study to optimise the number of controllers needed for each of

the datasets represented in the zoo topology.

The first box in 5.6 describe the input which is geographical datasets obtained from zoo topology.

This dataset comprises of 242 different service providers’ WAN datasets. The zoo topology is a directory

where live WAN datasets are kept for research purposes. The second box converts this datasets into

tensors format then haversine distance formula is used to calculate distance between locations. In the

third box, objective functions that were used to compute placement were defined, while the population

size and a seed value were specified for reproducibility in box four. Similarly, box five generates a random

initial controller location. The proposed stochastic computational graph was used in Box 6 to optimise

the decision variables regarding the objective functions. The overall loss function, which was obtained

from the overall loss calculated by the model in the previous box, was used in box seven to estimate the

number of controllers. Further explanation on this will be given after the presentation of the results. In

the box, the optimal number of controllers was achieved with the help of the elbow method. The next

boxes begin the process of controller number prediction with the help of the XGBoost model. In the

ninth box of the flowcharts, datasets from the zoo topology were merged together. Feature engineering

was extracted from Box 10 to build up more necessary features for the prediction. In box eleven, input,

the final location of controllers, the size of the number of datasets, and the number of controllers for

each dataset in the topology are obtained. Box twelve calculates the distance between the locations in

the zoo topology datasets. Box 13 describes those features that were extracted from the zoo topology

datasets. Such features as the mean, median, sum, standard deviation, maximum area, and upper and

lower percentiles of the distance between locations were computed in this box. The next box checks for

correlation between the X features and the y features (number of controllers). This is done to see if the

model will be able to perform well or not. Box fifteen loads the necessary libraries for the XGBoost model,

the dataset was split-ted into training and testing with 80% and 20% respectively. Similarly, the mean

absolute error, which is a performance metric, as defined in this box to help evaluate the performance of

the model. The last box describes the training process with the XGBoost model and how the required

number of controllers was obtained.

Following the given description of the proposed stochastic computational model with ensemble learn-

ing approach flowcharts, the algorithms of the proposed solution and the learning vector quantization

used in the placement of controllers will now be described. The algorithm 11 below is the proposed

optimization algorithm for the optimization of several conflicting objectives in the placement of SD-WAN

controllers using the Stochastic Computational Graph model with an ensemble learning approach. This

proposed optimization algorithm is briefly discussed below.

112

Line 1 consists of the input to the model which are the required dataset (coordinate-based), data-loader

(which is used for loading tensors in batches), user control parameters learning rate, decay rate, momen-

tum, number of epochs, and early stopping. The necessary libraries (PyTorch, Numpy, and Pandas, to

mention but a few) that help in the computation of the algorithm were loaded in Line 2. The datasets

in longitude and latitude were loaded in Line 3, while Line 4 converted the coordinates-based datasets

to tensor format. In Line 5, the haversine distance function was used in the computation of the distance

between two locations. Line 6 defines the objective functions using a computational graph approach.

In Line 7, generate random initial controller locations. While in line 8, the initial controller location is

being cloned so as to be able to compare the initial loss and the final loss after the completion of the

training process. A little noise is added to the controller location to make the computation of gradients

easier in Line 9. Line 10 tracks the operations that each tensor performs (the seven controller positions

in this case). In line 11, lists were created as a placeholder that holds the train losses, val losses, and

the losses sum values. Line 12 defines val losses as the losses after all epochs are done. Similarly, lines

13 and 14 serve as placeholders for the best loss and final location, respectively. Note that initial losses

are the loss of starting losses, and as training progresses, the losses with the lowest value will be kept in

the placeholder known as "best loss." Line 15 iterates through the number of epochs, and in Line 16, the

algorithm runs through the batches with the help of the data loader, which is used to load the tensors.

In Lines 18 and 19, the algorithm takes into account each tensor in the controller location (Line 7) and

computes all of the objective functions with a computational graph, and performs automatic differenti-

ation using PyTorch autograd. Lines 20 and 21 update the controller location by taking the difference

in the new learning rate multiplied by the gradient plus the momentum multiplied by the decay rate

from the controller location. In Line 23, all objectives are added together to form a single loss. In Line

24, append the losses of the position tensors (final controller location) and the controller location (initial

controller location) to the train losses (losses at each batch). Similarly, all losses of the position sensor

and controller location to val losses (after each epoch). Line 26 sums the validation losses together and

stores them in losses. If the epoch is greater than zero, it checks if the losses are less than the sum of

all previous losses, and then it updates the final location and the best loss in Lines 27–34. In line 35,

a callback rate was employed to avoid over-fitting. Meanwhile, the printout messages were set to every

4 epochs, such that the outcome of the iteration will only be printed out when the remainder of the

epoch and the predetermined number of epochs that were set are equal to zero. Line 36 returns val loss

for each loss, whereas line 37 will only execute after 10 epochs have been executed to see if there is an

improvement or not since the early stop was set to ten.

113

Algorithm 11 Proposed Optimization Algorithm for SD−WAN Controller P lacement using Stochastic
Computational Graph model with ensemble learning approach

1: Require: Dataset, Learning rate(∅), nepochs, dataloader(dl), momentum,
decay − rate, early stopping

2: Load necessary libraries
3: Load datasets (coordinate− based)
4: Convert datasets into tensor formats
5: Define haversine distance function =

2(r)arcsin

(√
sin2

(
β1−β2

2

)
+cos(β1)cos(β2)sin2

(
α1−α2

2

))
6: Define objective functions using the
computational graph approach

7: Generate random initial
controller location

8: Clone the initial controller location for later use
9: Add little noise to controller location to enhance gradients computation

10: Track the operation of the decision variables
11: Create list to store trainlosses, vallosses, lossessum
12: vallosses, = calculate loss after all epoch is done
13: bestloss = initiallosses
14: finallocs = contlocs
15: for epochs in range(nepochs) do
16: Run through batches using dl
17: for postensor in dl do
18: Calculate loss2, loss, loss.backward

with the help of dynamic computational graph
19: loss2 = first + second objective, loss = all objective, and loss.backward
20: new learning rate (α)= 1

1+decay rate∗epoch∗initial learning rate(α0)

21: contlocs.data−=contlocs − (α ∗ grad) + (momentum ∗ decay rate)
22: end for
23: Add all objective functions to form a single loss

24: append

(
alllosses(postensors, contlocs)

)
to trainlosses

25: set alllosses
(
postensors, contlocs)

)
to vallosses

26: sum vallosses and store in losses
27: if epoch > 0 then
28: if losses < min(lossessum then
29: finallocs = contlocs.clone()
30: bestloss = valloss
31: append valloss to vallosses
32: append losses to lossessum
33: end if
34: end if
35: if epoch mod verbose==0 then
36: return each vallossfor each losses
37: if epoch > early − stopping then
38: if min(lossessum[−early − stopping :]) > min(lossessum then
39: end if
40: end if
41: end if
42: return best score recorded at early − stopping
43: end for
44: Expected : optimized controller placement positions

In lines 38–41, after waiting for 10 epochs to run, the algorithm will check if the minimum in the last

ten losses is greater than the current loss. If this happens, it means that there is no improvement in the

114

loss, so it should break the process. Then the best score should be returned at an early stop in line 42,

and finally, line 43 returns the optimized controller placement positions.

Following the discussion above, this study will now present the proposed ensemble learning algorithm

(see 12). The same explanation given in 5.6 also explains Algorithm 12. This study will now present the

learning vector quantization, an artificial neural network used for the prediction of controller placement

(see 13).

Algorithm 12 Proposed Ensemble Learning Algorithm to Predict Optimal Controller Number
in SD −WAN Controller P lacement
1: Require: Required coordinates based Datasets
2: Convert datasets into tensor formats
3: Define haversine distance function =

2(r)arcsin

(√
sin2

(
β1−β2

2

)
+cos(β1)cos(β2)sin2

(
α1−α2

2

))
4: Define objective functions using the computational graph approach
5: Specify seed and population size
6: Generate random initial controller location
7: Use Stochastic computational graph model to optimize decision variables with the given objectives

8: Obtain overall loss values from the model in previous step
9: Find optimal number of controller based on the overall loss using elbow method

10: Merge all datasets in the zoo topology
11: Perform feature engineering to extract important features
12: Get initial features like latitude longitude number of controller size of the datasets
13: Compute mean median maximum sum standard deviation max area upper and lower

percentiles of the distance between locations
14: Build up the datasets and check if there is correlation between the features and the target
15: Load the ensemble model library initiate the XGBoost model and split the data into X and y
16: Train the model and evaluate it with Mean absolute error
17: Expected : the predicted number of controllers

5.4.1 Proposed Learning Vector Quantization for the Controller Placement
predictions.

The Algorithm 13 provides a description of the suggested improved learning vector quantisation for SD-

WAN controller placement. This technique is used in order to better predict the future locations of

controllers. The proposed algorithm will be described in further detail below.

Line 1 describes the datasets, which include the data obtained from the optimization method; the learning

rate; a tuning parameter that characterises the step size and is denoted here as θ; the number of epochs;

and the number of codebook vectors (prototypes or the weight). In line 2, the output of the algorithm,

which is the predicted controller placement, is described in its entirety. The dataset is described in its

original values (multi-label/multi-class dataset) in line 3 of the algorithm. During this time, line 4 will

convert the dataset into multi-label binary data by populating a two-dimensional array with zeros based

on the row size. In line 5, the X variable stands for the encoding training examples, and in line 6, the

y variable stands for the encoding target examples. In line 7, the enumeration of the dataset was done

by mapping the corresponding values to the index of the dataset with one. In line 8, the X and y were

broken up into Xtrain, Xtest, ytrain, ytest. Line 9 computes the distance between the codebook vectors

and the training datasets and finds the minimum distance using euclidean distance. Line 10 denotes the

training process of the model, which was carried from lines 11-28. Line 11 iterates the labels through

115

the transpose of the training data represented by yTtrain. Lines 12 and 13 combine to label all of the

entire training features Xtrain, yielding a one-dimensional array of features and the target. Line 13

describes the scenario when the random codebook vectors are generated from the entire train. Line 14

loops through the epoch’s range before running line 15, which computes the rate, which is represented

by rate=∅ ∗ (1 − (epoch/nepochs)). In the same way, lines 16 and 17 go through each row in the train

and find the closest match between each row and the codebooklabel. In line 18, the algorithm considers

the rows in the train without the last row, which is the label, and updates the weights with the following

in lines 19-23: It computes error as the difference between each of the rows and each of the bmu (best

matching unit). The bmu is the closest codebook vector. Line 20 updates the codebook vectors by using

the bmu[i] + =rate ∗ error if the bmu without the label is equal to each row of the train without the

label. Otherwise, the model employs this equation bmu[i] − =rate ∗ error to update the codebooks.

Lines 24-28 end the conditional statement and the control sequence iteration. Meanwhile, lines 29–41

describe the prediction part of the algorithm. Lines 29 and 30 iterate through codebooklabel in all the

codebooks and select codebook vectors that do not have the target features in all positions where the

codebooks are one. This is so because the ones represent the top five values, which are our controller

positions. Note that the multi-label binary consists of only zeros and ones alone. Lines 31-34 show the

model iterating through each row in Xtest and the codebook iterating through each codebooklabel, after

which the Euclidean distance between the codebook and each row is computed in lines 33 and 34. In

line 35, predict probability was employed due to the multi-class label approach, and the inverse of the

minimum of the codebooks was computed in line 35. Line 36 ends the for-loop, while lines 37 and 38

return the different numbers of labels. On line 39, the predicted values are decoded back to their original

values. Similarly, line 40 argsorts the predicted values such that the values are in ascending order. Lastly,

line 41 returns the predicted controller positions. The original dataset and the encoded dataset that were

discussed above are represented in Figures 5.7 and Figure 5.8 respectively. In the discussion of the

algorithm "13," it is revealed that the encoded dataset is what will be fitted to the model, and when

the model returns the outcome, it will return the original values by employing argsort, which returns the

sorted indices of an array. In other words, the dataset will be decoded before it is fitted to the model.

Figure 5.7: Demonstration of datasets used in their original values

116

Algorithm 13 Proposed Adapted Learning V ector Quantisation
(LV Q) for SD −WAN Controller P lacement Prediction

1: Input: Datasets, ∅(Learning rate), nepochs, ncodebooks
2: Output: predict controller placement positions
3: Given dataset in its original values consisting of X
training instances and y targets

4: Decompose dataset into multi − label instances by
creating a 2−D array full of zeroes with rows size

5: Let X represents the encoded training instances
6: Let y represents the encoded target instances
7: Enumerate dataset by mapping the corresponding
values to the index of dataset with ones

8: Split X, and y into Xtrain, Xtest, ytrain, ytest
9: Compute getclosest using squared Euclidean distance

=
∑

(cvij − xi)2 : where getclosest is minimum
10: Fittrain model from lines 11− 28
11: for label ∈ yT

train do
12: train=np.concatenate([Xtrain, label])
13: codebooklabel=randomsubset of train
14: for epoch ∈ range(nepochs) do
15: rate=∅ ∗ (1− (epoch/nepochs))
16: for row ∈ train do
17: bmu=getclosest(codebooklabel, row)
18: for i ∈ range(len(row)− 1) do
19: error=rowi − bmu[i])
20: if bmu[−1]==row[−1] then
21: bmu[i] + =rate ∗ error
22: else
23: bmu[i]−=rate ∗ error
24: end for
25: end for
26: end for
27: end for
28: end if
29: for codebooklabel in codebooks do
30: codebooklabel1=codebooklabel where codebooklabel[−1] is 1
31: for row in Xtest do
32: for codebook ∈ codebooklabel1 do
33: distcode=euclideandistance(codebook, row)
34: end for
35: probalabelrow=1/(min of distcode)
36: end for
37: Returns the n different numbers of labels
38: end for
39: Re−Decompose prediction back to the original controller values
40: sortedpred = argsort prediction
41: Output : Predict controller placement

positions(last five columns of sortedpred)

Figure 5.8: Demonstration of dataset in their encoding format

117

5.5 Experimentation

This experiment was carried out on a personal computer outfitted with a 2.70 GHz Intel Core i7-6820HQ

processor, 64GB of 1600 MHz DDR3 memory, and Microsoft Windows 10 Professional Edition. The

experimental setup was programmed in the Python programming language. The code was compiled using

Jupyter Notebook version 6.3.0.. The machine learning framework such as PyTorch and TensorFlow

PyTorch were employed within the proposed stochastic computational model with ensemble learning

approach. The TensorFlow PyTorch was used to create the decision variables. The computational graph

was used to express the objective function in the form of graph theory, and the gradient was calculated

with the automatic back-propagation approach using PyTorch’s auto-grad engine. A dataloader was

used to load tensors batch by batch. The code can be assessed at no cost as open-source code on the

GitHub code repository at the following link: https://tinyurl.com/2p95ad26. A real-world dataset

from the Zoo topology [184] was used in this experiment for the computation of controller placement in

SD-WAN. The primary goal of this research is to determine where in the WAN topology is suitable

to place controllers such that several conflicting objectives are simultaneously optimized. Based on the

experiment carried out in this study, 7 is revealed as the optimal number and is considered in this

experiment as the number of controllers needed in the deployment of SD-WAN. The chosen number of

controllers is in line with the overall loss and cost. The following six objective functions were used along

with the decision variables in optimising the controller. These objectives are average switch-to-controller

latency, average inter-controller latency, load balancing, maximum switch-to-controller latency, maximum

inter-controller latency, and resilience. The following parameters were used in the proposed stochastic

computational model with an ensemble learning approach: These parameters include: learning rate =

0.1, the number of decision variables = 7, the number of objective functions = 6, the early stopping

(callback operation) = 10, the number of epochs = 200, the seed value = 12, momentum = 8, decay

rate = 0.6, and the training and test data = 80% and 20% respectively. Similarly, this research employs

the same zoo topology (Internet 2 OS3E) as discussed above, but it automates the entire datasets in the

zoo topology of approximately 242 datasets (each dataset contains a different number of nodes) for the

prediction of the number of controllers suitable for each of the datasets based on the conflicting objectives

employed in this research. The Haversine function was used to calculate the distance between two points

in this case. An extreme gradient-boosting decision tree algorithm was proposed for the number of

controller predictions in this study. This was subjected to performance evaluation with other existing

regression models. These include logistic regression, K-nearest neighbors, and random forest.

Similarly, this research proposed a classification algorithm referred to as Learning Vector Quantisation for

the prediction of controller placement in SD-WAN and this was compared with the existing classification

algorithms in order to evaluate and validate the proposed algorithm. K-nearest neighbors algorithm,

Random forests, Linear regression, XGBoost, CatBoost, Graph neural network, Feed Forward Network,

and Ensemble learning were among the existing algorithms that were compared. The dataset used for the

purpose of this classification was obtained from the outcome of the proposed optimization algorithm used

in this research. The dataset was encoded before being fitted into the model to improve its performance

of the model. The number of codebooks used was set to 40, the learning rate was set to 0.2, and the

number of epochs was set to 70. All these were the best outcomes from Optuna, which was employed

in this research to automate the tuning of parameters. The dataset was split into training and testing

phases. 70% of the data was used in the training phase, while the remaining 30% was used in the testing

phase. The Grid Search and Optuna were used in the hyper-parameter tuning of the adapted classification

118

https://tinyurl.com/2p95ad26

algorithm (LVQ) to enhance the model and use the best parameters in the training phase of the model,

although Optuna had better performance. Simultaneously, an open-source just-in-time compiler referred

to as Numba was used in this research to compile the Python code to C to make computation and the

speed of the proposed algorithm faster.

5.6 Results and Discussion

This section provides a summary of the experiment’s findings. The results of the A-NSGA-III, NSGA-II,

and MOPSO algorithms are compared to the outcomes of the stochastic computational graph model with

an ensemble learning technique. The findings of the experiment are depicted in Figures 3 through 19.

The primary objective of this research is to determine where in the WAN topology SD-WAN controllers

should be placed to achieve various network requirements and how many controllers are required to

set up the topology. The experiment leveraged six (6) aspects of the controller placement problem in

SD-WAN to accomplish the results provided in this study using performance metrics such as execution

time, average CPU usage, average core load, and total CPU usage. These were the average switch-to-

controller latency, the maximum switch-to-controller latency, the average controller-to-controller latency,

the maximum controller-to-controller latency, resilience regarding controller failure, and load balancing.

Similarly, the suggested ensemble learning (XGBoost) model was compared to three more regression

models (logistic regression, random forest, and K-nearest neighbor). Meanwhile, the proposed learning

vector quantization was subjected to performance evaluation with a mean number of accurate controller

locations and accuracy metrics. The proposed learning vector quantization classification algorithms were

compared with state-of-the-art classification algorithms. These include k-nearest neighbor, random forest,

logistic regression, xgboost, catboost, graph neural network, and feed-forward neural network.

In order to ensure a fair comparison, the suggested method and the compared algorithm were sub-

jected to identical data observations in all experiments undertaken for this study. These methods provide

the initial (randomly generated) and final (results from the stochastic computational graph model) con-

troller locations, execution time, average CPU use, average core load, and total CPU utilization. The

computational resources measure was fully accounted for in the experiment in order to obtain the de-

sired outcome. Note that the total CPU usage is the product of execution time and the average CPU

utilization. All the algorithms were combined to enhance comparison and validation. The initial and

final controller locations were mapped back to the corresponding location data frames (coordinates-based

form), and the haversine distance function was used to calculate the distance between the locations. Input

and final losses based on the starting controller location and the final controller location were calculated

with the help of the objective functions. The difference in total loss between the initial and final losses was

calculated. This was done for all exploited objective functions. Then the average of all these losses for all

objectives in each algorithm was extracted for evaluation. All this will help in judging the performance

of the models. In the parts that follow, the experimental outcomes are analyzed and discussed.

This study will now show the image depicting one of the datasets utilized in the experiment, as well

as the initial and final controller positions, in the next section. This was solely mentioned in the research

to convey visual assistance.

119

5.6.1 The BtEurope Dataset and initial and final controller location images

The dataset used in this research was obtained from the Internet2 0S3E network zoo topology [184]. The

internet zoo topology comprises of 260 different wide area network service providers’ datasets. It is a

repository where service providers store their WAN data for research purposes. The BtEurope is one of

the datasets used in this experiment. BtEurope, for example, contains 21 geographically separated cities

in Europe. The image of this dataset is shown in Figure 5.9 below. Meanwhile, the entire datasets in the

zoo topology were used during the learning of heuristics in this research work in order to find the suitable

number of controllers that should be deployed in a network. The usable datasets in the zoo topology

were about 242, for a total of about 260

Figure 5.9: Demonstration of the BtEurope Image

Next to the BtEurope datasets is the scatter plots showing the figure of the initial and final controller

location. This is captured in both Figure 5.10 and Figure 5.11 respectively. This starting and final

location was solely included in the research to convey the visual assistance. The initial controller location

was randomly generated with the dynamic computational graph approach during the experiment of the

stochastic computational model proposed in this study. The final controller location is the final optimized

controller location obtained from the model.

Following the starting and final controller location scatter plots displayed in Figures 5.10 and Figure

5.11 respectively, this study will now present the proposed stochastic computational graph model results

in the next section. This result shows the outcome when momentum and decay rate are not added to

the experiment, and the second graph shows the overall loss outcome when momentum and decay rate

are included in the experiment.

5.6.2 Outcome of the proposed stochastic computational graph models

In this section, the outcome of the proposed stochastic computational graph model results are shown.

This result shows the outcome when momentum and decay rate are not added to the experiment, and

the second graph shows the overall loss outcome when momentum and decay rate are included in the

experiment.

120

Figure 5.10: A scatter plot showing the Starting location of controllers

Figure 5.11: A scatter plot showing the Final location of controllers

Figure 5.12: Outcome of the proposed stochastic computational graph model without decay rate and
momentum

121

Figure 5.13: Outcome of the proposed stochastic computational graph model without decay rate and
momentum

The proposed stochastic computational graph model is depicted in Figure 5.13. This is the graph

without the decay rate and momentum. The model works by using the traditional learning rate as its

parameter. Although several trials and errors of this learning rate were investigated before finally choos-

ing the most suitable one, the overall loss obtained from this approach is 1580.04. This can be seen in

Figure 5.12.

The next four graphs depicted in Figures 5.14, 5.15, 5.16, 5.17 represent the outcome of the proposed

stochastic computational graph model with the user control parameters such as decay rate and momen-

tum. Figures 5.14, show the overall initial and final loss obtained by the model. Similarly, the graph

in Figure 5.16 shows the training and validation of the switch-to-controller latency with respect to their

losses. Meanwhile, the graph in the 5.17 represents the training overall and validation overall loss. The

total loss is plotted against the number of epochs in both Figures 5.16 and 5.17.

Figure 5.14: Outcome of the proposed stochastic computational graph model with momentum and learn-
ing decay rate

122

Figure 5.15: Outcome of the proposed stochastic computational graph model with momentum and learn-
ing decay rate

In contrast to the overall loss obtained with the proposed stochastic computational graph model

without decay rate and momentum, the outcome (overall loss) of the solution with decay rate and

momentum was able to minimize loss with less use of computational resources.

Figure 5.16: Outcome of the proposed stochastic computational graph model with momentum and learn-
ing decay rate

The convergence process was faster as compared with the solution without the decay rate and momen-

tum. This further proves the theoretical concept and how strong the effect of decay rate and momentum

may be on the model. It is revealed from the graph in Figure 5.16 how fast the convergence process is

compared to the figure in Figure 5.13. The overall loss obtained from the graph in Figure 5.16 is 883.41

as against 1580.04 obtained in the solution of Figure 5.13 which experiment was carried out without the

parameter of decay rate and momentum.

Figure 5.17: Outcome of the proposed stochastic computational graph model with momentum and learn-
ing decay rate

123

In Figure 5.16, the convergence happens at around 70 epochs, as against the convergence in Figure

5.13 which happens at around 209 epochs. In summary, the solution with momentum and a slower decay

rate is recommended over the solution without a slower decay rate. This recommended solution will

ensure the stability of the training process and speed up the convergence of the model. In addition, it

will help in suppressing oscillation movements associated with the traditional approach. This study will

now present the number of controllers used and its discussion in the next subsection.

5.6.3 The proposed number of controller using elbow method

In this part of the study, the proposed number of controllers using the elbow method is presented in

Figure 5.18. Controller placement in SD-WAN addresses two challenges: the optimal location and the

optimal number of controllers needed for the deployment. The researchers in the literature choose the

number of controllers to deploy in SD-WAN in advance. This is not a good approach because choosing

the number of controllers to be installed in advance may lead to poor overall network performance (high

network overhead) if the number selected is too small. However, it may also increase the service providers’

capital expenditure if the number selected is too high. Contrary to the approach in the literature, this

study has carefully selected the number of controllers needed in the SD-WAN deployment with respect to

the overall losses obtained by the optimization model proposed in this study. This approach considered

all the objective functions used in optimizing the decision variables.

Figure 5.18: Graph showing the Optimal Controller Number

Figure 5.18 revealed the graph of the optimal number of controllers considered for the placement

of controllers. This overall loss (y-axis) is plotted against the number of controllers (x-axis). Looking

at the graph, it is revealed that 7 controller is optimal. Although, 14 is the number of controllers that

has the minimum value of the overall loss, however, the point of inflection is considered in this study.

This is where the trade-off comes into play. The cost of installation for 14 controllers is more expensive

compared to the cost of installing 7 with a small difference in an overall loss. It will be a wise decision

and more cost-effective to choose the optimal number of controllers to install at this point of inflection

than to go for a high number of controllers when the difference in overall loss can be negligible.

In the next section, the discussion on the proposed stochastic computational graph model compared with

124

the existing optimization algorithms used in the optimization of controller placement in SD-WAN will

now be presented. The compared solutions are Adapted Non-Dominated Sorting Genetic Algorithm-

III (ANSGA-III), Multi-Objective Particle Swarm Optimization (MOPSO), and Non-Dominated Sorting

Genetic Algorithm III (NSGA-III). The suggested method and the compared algorithm were subjected

to identical data observations in all experiments undertaken for this study. Performance metrics such as

execution time, average CPU usage, and total CPU utilization were used to assess the performance of

the models.

Consequently, it is recommended for the operator of a wide area network who is using the software-defined

network architecture or who plans to use it in the future to employ this approach in choosing the number

of controllers for their deployment.

5.6.4 The performance comparison between the proposed solution and the
existing optimization algorithms

In this section, the performance comparison between the proposed solution and the existing optimization

algorithms will be discussed. The proposed stochastic computational graph model is compared with the

three other existing optimization algorithms used in the optimization of controller placement in SD-WAN.

The compared solutions are Adapted Non-Dominated Sorting Genetic Algorithm-III (ANSGA-III), Multi-

Objective Particle Swarm Optimization (MOPSO), and Non-Dominated Sorting Genetic Algorithm III

(NSGA-III). Performance metrics such as execution time, average CPU usage, and total CPU utilization

were used to assess the performance of the models (please see: https://tinyurl.com/2p95ad26).

Figure 5.19: Graph showing the Execution of the four Algorithms

The graphs of the proposed optimization algorithm and the existing optimization techniques for

the placement of controllers in SD-WAN are represented in Figures 5.19, 5.20, and 5.21 respectively.

The graph in Figures 5.19 under the same experimental condition proves that the proposed stochastic

computational graph model outperforms others with respect to the execution time. In this experiment,

the total CPU was achieved through the product of the execution time and the average CPU usage. The

125

https://tinyurl.com/2p95ad26

time module (DateTime) was used in this experiment to calculate the algorithm’s running time. The

datetime.now() function was used before the first line of the script, and the end time was saved before

using the same function before the last line of the script. This time module can be used to achieve

different purposes in the running of the experiment. Examples of these include saving the timestamp at

the beginning and end of the algorithm as well as finding the difference between the start and end times,

which gives the outcome referred to as the "execution time." The proposed solution as depicted in Figure

5.19 shows that the stochastic computational graph model is computationally inexpensive. Consequent

to the result exhibited by the graph in Figure 5.19, this study concludes that the proposed solution

efficiently performs better than the NSGA2, ANSGA-III, and MOPSO algorithms, with a percentage

decrease of 99.972%, 99.974%, and 99.012% respectively. Hence, it is recommended over the state-of-the-

art optimization algorithms that are compared in this research.

Similarly, Figure 5.20 shows the average CPU usage of the proposed and state-of-the-art optimization

algorithms. CPU utilisation refers to the utilisation of processing resources by the computer. Python

System and Process Utilities, or psutil, is a package that can be used to get information about running

processes and how the system is being used (CPU, memory, and load). This library was used in all of

the optimization algorithms that were considered during this research. It was mostly used to keep an

eye on the system and control processes that were already running. As revealed by the graph in 5.20 ,

the proposed stochastic computational graph model exhibits the lowest CPU usage. Consequent to the

result exhibited by the graph in Figure 5.20, this study concludes that the proposed solution efficiently

performs better than the NSGA2, ANSGA-III, and MOPSO algorithms, with a percentage decrease of

41.2%, 41.7%, and 43.81% respectively. Based on these results, the proposed optimization algorithm uses

the least CPU resources. Hence, it is recommended over the state-of-the-art optimization algorithms that

are compared in this research.

In addition, the graph in 5.21 shows the total CPU usage of the proposed optimization algorithm and

state-of-the-art optimization algorithms. In this experiment, the total CPU was achieved through the

product of the execution time and the average CPU usage. The time module (DateTime) was used in

this experiment to calculate the algorithm’s running time. The datetime.now() function was used before

the first line of the script, and the end time was saved before using the same function before the last

line of the script. This time module can be used to achieve different purposes in the running of the

experiment. Examples of these include saving the timestamp at the beginning and end of the algorithm

as well as finding the difference between the start and end times, which gives the outcome referred to as

the "execution time."

Similarly, CPU usage refers to the use of processing resources by the computer. Python System and

Process Utilities, or psutil, is a package that can be used to get information about running processes and

how the system is being used (CPU, memory, and load). This library was used in all of the optimization

algorithms that were considered during this research. It was mostly used to keep an eye on the system

and control processes that were already running. As revealed in the graph, it can be seen that the pro-

posed optimization algorithm exhibits the least total CPU usage and, as such, efficiently performs over

the ANSGA-III, MOPSO, and NSGA-II with a percentage decrease of 99.983%, 99.985%, and 99.446%

respectively. Based on these results, the proposed optimization algorithm uses the least CPU resources.

Hence, it is recommended over the state-of-the-art optimization algorithms that are compared in this

research.

126

Following the analysis and discussion of the computational resources used by each of the optimization

algorithms in this research, this study will now discuss the losses minimized by these algorithms. This

was achieved with the help of the objective functions used in this experiment and the distance between

the locations calculated using the haversine function (please see: https://tinyurl.com/2p95ad26).

Figure 5.20: Graph showing the Average CPU usage of the four Algorithms

Figure 5.21: Graph showing the Total CPU usage of the four Algorithms

127

https://tinyurl.com/2p95ad26

Figure 5.22: Graph showing the initial losses of the four Algorithms

Figure 5.23: Graph showing the final losses of the four Algorithms

The losses minimized by each of the optimization algorithms used in this experiment are displayed in

Figures 5.22 and 5.23. The initial losses were captured from the calculation of the losses between different

algorithms at the initial controller location, while the final losses were captured from the distance between

128

the final controller locations. The final controller location was achieved with the help of each algorithm’s

optimized controller locations after subjecting the initial controller location to the respective optimization

algorithms (Please see UPDATEDPLOT1 in : https://tinyurl.com/2p95ad26).) As exhibited by the

graph in Figure 5.23, it is revealed that the proposed stochastic computational graph model was able

to minimize the objective far better than the compared algorithms. This result further proves the result

achieved in Figure 5.17. In the next subsection, this study will now analyze and discuss the proposed

ensemble learning model and the other regression models used in the prediction of the optimal number

of controllers while deploying SD-WAN.

5.6.5 The performance comparison between the proposed ensemble learning
model and the other regression models

In this section, this study will now analyze and discuss the proposed ensemble learning model and the other

regression models used in the prediction of the optimal number of controllers while deploying SD-WAN.

To predict the optimal number of controllers, the following data was used across the proposed ensemble

learning model (XGBoost) and the rest of the machine learning regression models: These include the

number of controllers, achieved through the capture of the overall loss with the elbow method during the

optimization of controller placement conducted with the help of the proposed stochastic computational

graph model. The size of the datasets, the distance between locations in the datasets calculated with the

haversine function (longitude and latitude), the mean distance, median distance, difference in the highest

and lowest coordinate points, the maximum distance, the upper and lower percentile distance, and the

standard deviation distance (please see: https://tinyurl.com/2p95ad26) were all calculated.

Figure 5.24: Graph showing the train and test accuracy for each model

129

https://tinyurl.com/2p95ad26
https://tinyurl.com/2p95ad26

Table 5.1: Table showing the performance of each model

The following outcomes of the prediction computed by the proposed ensemble learning model will

now be presented in Figures 5.24, 5.1, 5.25, and 5.2. Figure 5.24 display the graph of the train and test

accuracy of all the regression models used in this study. The mean absolute error was used to assess the

performance of these models. As can be seen from this graph, the proposed ensemble learning model

(XGBoost) came up with the least mean absolute error. The lower the mean absolute error, the better

the models. This implies that the proposed ensemble learning model was able to reduce more error

between the actual and predicted errors. As a direct result of this outcome, this study concludes that

the proposed XGBoost outperforms other comparable regression models. Similarly, table 5.1 shows the

inferential statistics achieved from these models. This result complements the graph in Figure 5.24.

Figure 5.25: Graph showing the proposed XGBoost controller number prediction

130

Table 5.2: Table showing the proposed XGBoost controller number prediction

In addition, Figure 5.25 and Table 5.2 show the controller number prediction achieved by the proposed

ensemble learning model and the inferential statistics information of the controller number prediction of

randomly selected datasets for visual representation. As exhibited in Figure 5.25, it can be seen that

the proposed ensemble learning model actually performs better in its prediction because the difference

between the actual and predicted error is negligible and it is able to predict accurately most of the time.

In the next section of this study, the proposed classification algorithm (learning vector quantization)

and the existing classification algorithms will be presented. This research has further used this classifica-

tion algorithm to predict future controller placement for SD-WAN deployment. This controller placement

complements the proposed stochastic computational graph for future controller placement. This proposed

classification algorithm is at the discretion of the user or SD-WAN service providers when expanding the

network topology.

5.6.6 The performance comparison between the proposed classification al-
gorithm (Learning Vector Quantization and the existing classification
algorithms)

This section of the study will now discuss the proposed classification algorithm (learning vector quan-

tization), and the existing classification algorithms. This research has further used this classification

algorithm to predict future controller placement for SD-WAN deployment. This controller placement

complements the proposed stochastic computational graph for future controller placement. This proposed

classification algorithm is at the discretion of the user or SD-WAN service providers when expanding the

network topology. A method called Multi-Class Learning Vector Quantization (MCLVQ) was proposed to

predict the placement of controllers in SD-WAN. The suggested classification model was validated using

some of the existing algorithms in the same class. These algorithms are KNN, Random Forest, Logistic

Regression, XGBoost, CatBoost, the Ensemble Model (XGBoost, Random Forest, and CatBoost), Graph

Neural Network (GNN), and Feed Forward Network (FFN). The dataset (the final controller location)

131

achieved from the output of the proposed stochastic computational graph model was used in the opti-

mization of several conflicting objectives in the placement of controllers. This dataset was originally in

a multi-class, multi-label format and was converted into a multi-class, binary classification format and

then used to train the model. This brought down the number of dimensions and made it easier for the

suggested model to figure out how the features related to the target. Because of the nature of this re-

search, a new metric called "the mean number of accurate controller locations" was developed to measure

how well the classification models worked. With the help of Optuna, a software framework for automatic

hyper-parameter optimization, the process of optimizing the hyper-parameters that were used to train the

model was done automatically. These parameters include the number of folds, learning rate, number of

epochs, and number of codebooks. To make the computation faster, Numba, an open-source just-in-time

compiler, was also used to compile the Python code to C (please see: https://tinyurl.com/2p95ad26).

Table 5.3: Table showing the datasets used in the classification algorithms in their original format

Figure 5.26: Figure showing the converted datasets to binary classification formats

Figure 5.27: Figure showing the converted datasets to binary classification formats

The outcome of the proposed classification algorithms and the other compared classification algorithms

are displayed in Figures 5.26, 5.27, 5.28, 5.4, 5.33, 5.30, 5.34, and 5.35. The table in 5.3 displays the

dataset used in the training of the proposed learning vector quantization and the compared classification

132

https://tinyurl.com/2p95ad26

algorithms. Similarly, the Figure in 5.26 and 5.27 shows the conversion of these original datasets in 5.3

into binary classification format to enhance the performance of the training model.

Table 5.4: Table showing the inferential statistics information of the classification algorithms

Similarly, the inferential statistics information of all the classification algorithms is revealed in table

5.4. The parameters used are the fit time (secs), the predicted time (secs), the training accuracy, the

test accuracy, the training score, and the test score. The train and test scores were achieved from the

developed mean accurate location. This mean of "accurate location" is the performance metric developed

in this study to measure the performance of the classification algorithms with respect to the number

of controllers. It is revealed from this table that the proposed learning vector quantization performs

well along with the catboost and logistic classification algorithms with respect to prediction time. The

prediction time is the time taken for the model to predict the controller placement outcome. In addition,

the accuracy of the proposed learning vector is similar to that of the other compared classification

algorithms. All accuracy of the classification algorithms except graph neural network lies in the range of

80s. The table next to the 5.27 further complements this discussion that the proposed learning vector

quantization performs well in the prediction of controller placement along with the other classification

algorithms.

Figure 5.28: Figure showing the actual controller placement position

133

Figure 5.29: Figure showing the predicted controller placements of the proposed learning vector quanti-
zation

Figure 5.30: Figure showing the predicted controller placement of the catboost model

Figures 5.28, 5.34, and 5.30 show the actual and predicted controller placement by the proposed

learning vector quantization, as well as the best-performing classification algorithms in terms of accuracy

and the mean number of accurate locations. This figure shows that both the proposed classification

algorithm and the catboost did a good job of predicting where the controllers should be placed. In

Figure 5.34, the numbers 9, 17, 16, 18, 13, 20, and 19 refer to the positions of the cities in the datasets.

For examples, 9 represents Barcelona; 17 represents Dublin; 16 represents Madley; and 18 represents

Brussels; 13 represents Copenhagen; 20 represents Gothenburg; and 19 represents Amsterdam. All these

geographical cities are from the BtEurope datasets. In most cases, the two of them were able to correctly

predict six of the seven controllers. So, this showed that the proposed algorithm could work well in all

situations, so it was recommended for predicting where controllers should be placed in SD-WAN.

Figure 5.31: The bar plot of the classification algorithms train accuracy

134

Figure 5.32: The bar plot of the classification algorithms train accuracy

Figure 5.33: The bar plot of the classification algorithms train and test accuracy

Figure 5.34: The bar plot of the classification algorithms train and test score

In conclusion, the graph in Figures 5.33, 5.34, 5.35 shows the bar plot of the classification algorithms’

train and test accuracy, train and test score, and the merged bar plot of the classification algorithms’ fit

and predict time. Figure 5.33 shows the bar plot of the train and test accuracy for all the classifications.

This bar plot shows that all of the algorithms worked well, except for the k-nearest neighbor, which

135

did not work as well as the others. Similarly, Figure 5.34 shows the training and test scores of all the

classification algorithms. All classification algorithms except the graph neural network perform well and

are able to score above 80% in the number of accurate controller placement predictions. Lastly, the

merged bar plot revealed in Figure 5.35 shows the time taken for the classification algorithm model to

train and predict the placement of controllers. From the outcome displayed in this part of the study, it

is concluded that the proposed learning vector quantization efficiently performs well along with similar

classification algorithms. Hence, it is recommended for use in the prediction of controller placement in

SD-WAN.

Figure 5.35: The merged bar plot of the classification algorithms fit and prediction time

5.7 Verification and Validation of the proposed Stochastic Com-
putational model

In this part of the thesis, the author shows that the proposed model has met the main goal in terms

of its quality and credibility by showing that it has done what it was meant to do. The verification

process includes all of the steps involved in creating a high-quality solution, such as testing, design

analysis, specification analysis, and so on. The technique can be thought of as being fairly objective.

In contrast, the process of validation is extremely subjective in nature. It requires making subjective

judgments about how well a solution that has been presented or produced addresses a demand that

exists in the real world. The validation process encompasses a variety of activities, such as modeling the

requirements, prototyping, and user testing. The specifications were followed closely during the planning

and construction of the suggested solution. The aim of the proposed solution is to address the challenges

identified in 2 of this thesis, which include scalability, high computational complexity, and the lack of

an existing method to learn the heuristics of combinatorial optimization. Looking at the figure in 5.6

and the algorithm 11, it is clearly seen that the proposed stochastic computational graph model for the

136

optimization of controller placement in SD-WAN actually fulfills its intended design aim and meets the

expected outcomes. The loss/objective function progression is shown in Figure 5.36 which further reveals

how the proposed model reduces by finding the optimal location. In a similar fashion figure 5.37 shows

the optimal location of controllers. Both figures confirm the verification process of the proposed model

and how it actually meets its intended purpose.

Figure 5.36: Outcome of the proposed stochastic computational graph model with momentum and a
learning decay rate

Figure 5.37: Graph showing the Optimal Controller Number

The overall loss function and its progression towards the optimal solution in both figure 5.36 and

5.37 clearly confirm the intention of designing this model. The intention of the author is to build a

solution that would be able to reduce the overall loss of the objective functions used along with the

decision variables (controller locations) in optimizing controller placement. Meanwhile, in a supervised

machine learning approach, model performance can be validated with unseen data called a "validation

or test set." On the other hand, the proposed stochastic computational graph model is a reinforcement

learning method, not a supervised learning method. In this case, the outputs are compared and the model

is tested with different data sets. Such datasets include BtLatinAmerica, BtNorthAmerica, NetworkUsa,

and TataNld which are all extracted from the datasets [184] deposited to the online repository by the

service providers. The figure in 5.38 shows that the proposed stochastic computational graph model

137

performs efficiently over the existing models (ANSGA-III, NSGA-II, and MOPSO). The total CPU usage

(the product of average CPU usage and execution time) exhibited by the figure in 5.38 confirms the

validity of the proposed model.

Figure 5.38: Graph showing the Total CPU usage of the four Algorithms

5.7.1 Inferential Statistical Analysis for Controller Placement Algorithms

The aim of this analysis is to use statistics to find out if the proposed controller placement algorithm

(SCGMEL) really has a low and significant output loss compared to the MOPSO, NSGA-II, and ANSGA-

III algorithms. This analysis is important because it will help find the best way to place controllers in the

SDN so that output loss is kept to a minimum. The descriptive graph chart is shown below to give an

understanding of the considered and reviewed optimization algorithms before conducting the inferential

statistics.

Following the descriptive chart in 5.40 is the sample data used in conducting the inferential statistical

analysis. The sample data represent the losses obtained by each of the optimization algorithms. The

network final output loss means of the algorithms are displayed in table 5.5. Meanwhile, its variances are

25139.335528, 3067.111557, 32561.492155, and 33732.179519 for Proposed SCGMEL, MOPSO, NSGA-II,

and ANSGA-III respectively.

Figure 5.39: Final output loss Average

138

Figure 5.40: Graph showing the final losses of the four Algorithms

Table 5.5: Sample data representing losses obtained from the four Algorithms

Interpretation: Looking at Figure 5.39, the proposed algorithm has the network final output loss

means of 936.018623 while the MOPSO algorithm has the highest network final output loss means of

1459.347972. This study is interested to know if there is a significant difference among these fours

controller based on the network final output loss data.

139

Figure 5.41: Box Plot for the Optimization Algorithm

Each box represents each controller optimization algorithm, there is no presence of outliers based on

the revealed box plot. However, there is a need for further investigation to actually know if the data obey

the normality assumption or not.

Figure 5.42: Standardized Residual Plot

140

Figure 5.43: Histogram Plot

Interpretation of standardized residuals plot: As the standardized residuals lie closely around

the 45-degree line, it suggests that the residuals are likely to be approximately normally distributed. In-

terpretation of histogram plot: In the histogram, the distribution looks approximately left-tailed and

suggests that residuals are not like to be approximately normally distributed. The normal distribution

and homogeneity test will be conducted for confirmation of what is suspected in Figure 5.42 and 5.43. In

order to conduct the normality and homogeneity test, this research has employed statistical tools known

as Shapiro-Wilk and Levene’s tests respectively.

5.7.1.1 Shapiro-Wilk test for Normality assumption test

H0: The dataset is derived from a normal distribution using a 5% significance level.

H1: The dataset is not derived from a normal distribution using a 5% significance level.

Figure 5.44: Shapiro-Wilk Normality Test result

Interpretation: The dataset is NOT derived from normal distribution at a 5% significant level. The

p-value is less than the significant level.

5.7.1.2 Homogeneity of variances test

H0: The variances of the four samples taken from the populations are equal to one another.

H1: The variances of the four samples taken from the populations are not equal to one another.

Levene’s and Barlett’s test

The below shows the result obtained from Levene’s and Barlett’s equality of variance test respectively.

141

Figure 5.45: Levene’s method equality of variance result

Figure 5.46: Barlett’s method equality of variance result

Interpretation: As the p-value, for both Bartlett’s test (0.0000 < 0.05) and Levene’s test (0.0000

< 0.05) is significant, we reject the null hypothesis and conclude that four algorithms do not have equal

variances. On this note, the parametric approach would not be used since the main two assumptions

of normality and homogeneity are violated. Hence, this work resulted in the use of the non-parametric

statistical approach for further analysis.

5.7.1.3 Kruskal-Wallis test

This test replaces the parametric test dues to the violation of the homoscedasticity of normality and

variance assumption.

HO: There are no significant differences among network final output loss medians for the four algorithms

at a 5% significant level.

H1: At least one of the algorithms produces the network final output loss median that is significantly

different from other algorithms at a 5% significant level.

Figure 5.47: Kruskal-Wallis Test result

Decision: There is significant evidence to reject the null hypothesis at a 5% significant level. Conclu-

sion: At least one of the algorithms produces the network final output loss median that is significantly

different from other algorithms at a 5% significant level. Since there is evidence that at least one of

the algorithms produces the network final output loss median that is significantly different from other

algorithms at a 5% significant level, hence the test will compare the algorithms pair wisely using the

142

Wilcoxon rank-sum pairwise method.

5.7.1.4 Post HOC Test

Post HOC Test

Wilcoxon rank-sum Pairwise method: The median will be compared for the difference. The median

for the final output loss is:

Figure 5.48: Final Output loss Median for the Optimization Algorithm

The analysis of each of the optimization algorithms is now performed with the Post-HOC test.

Figure 5.49: Comparison of the Proposed and MOPSO Algorithm

The null hypothesis is ruled out. It is concluded that there is a significant distinction between the

two median values of the two algorithms that were examined at the 5% significance level. This implies

that the proposed algorithm has a significantly low final output loss than the MOPSO algorithm at a 5%

significant level.

Figure 5.50: Comparison of the Proposed and NSGA-II Algorithm

The null hypothesis is ruled out. It is concluded that there is a significant distinction between the

two median values of the two algorithms that were examined at the 5% significance level. This implies

that the proposed algorithm has a significantly low final output loss than the NSGA-II algorithm at a

5% significant level.

143

Figure 5.51: Comparison of the Proposed and NSGA-III Algorithm

The null hypothesis is ruled out. It is concluded that there is a significant distinction between the

two median values of the two algorithms that were examined at the 5% significance level. This implies

that the proposed algorithm has a significantly low final output loss than the NSGA-III algorithm at a

5% significant level.

Figure 5.52: Comparison of the NSGA-II and NSGA-III Algorithm

The null hypothesis is ruled out. It is concluded that there is a significant distinction between the

two median values of the two algorithms that were examined at the 5% significance level. This implies

that the NSGA-III algorithm has a significantly low final output loss than the NSGA-II algorithm at a

5% significant level.

Figure 5.53: Comparison of the MOPSO and NSGA-III Algorithm

The null hypothesis is ruled out. It is concluded that there is a significant distinction between the

two median values of the two algorithms that were examined at the 5% significance level. This implies

that the NSGA-III algorithm has a significantly low final output loss than the MOPSO algorithm at a

5% significant level.

Figure 5.54: Comparison of the MOPSO and NSGA-II Algorithm

The null hypothesis is ruled out. It is concluded that there is a significant distinction between the two

median values of the two algorithms that were examined at the 5% significance level. This implies that the

NSGA-II algorithm has a significantly low final output loss than the MOPSO algorithm at a 5% significant

level. Further to the investigation carried out in this research using inferential statistics, the outcome

144

revealed that the proposed SCGMEL actually performed efficiently over the compared algorithms as it

ensured that the objective functions were adequately minimized, which confirmed the outcome revealed

by the descriptive analysis displayed in 5.40.

5.8 Conclusion Remarks

This section gives a summary of the proposed intelligent-based solution to address the controller place-

ment problem in SD-WAN. The controller placement problem is a problem associated with large-scale

enterprises. Such enterprises include wide-area networks (service providers). The controller placement

problem deals with the location of a suitable position to place controllers and the number of controllers

needed for such a deployment. There is a need to address this problem when there are several conflicting

objectives to be simultaneously optimized. Metaheuristic algorithms have been suggested in the litera-

ture for the placement of controllers in SD-WAN. It has been confirmed based on the investigation and

experiment conducted in this study that these metaheuristic algorithms (ANSGA-III, NSGA-II, and the

MOPSO) developed in the literature, with the exception of ANSGA-III, were associated with a scalability

challenge (where there were more than three objectives to be optimized). Yet, these solutions are known

to be computationally expensive and lack the intelligence mechanism to predict the number of controllers

required for SD-WAN deployment. The developed solutions in the literature randomly select the number

of controllers to deploy in advance, except for some solutions that used the K-means algorithm to deter-

mine the optimal number of controllers, which is limited to just one performance metric. Choosing any

number of controllers to be deployed in a network is not an effective approach because this has a direct

impact on the cost of installation, which is likely to be too low or too high for the topology. The impact

of this approach is that the overall performance of the networks may be degraded when the number of

controllers deployed is too low. On the other hand, when the number of controllers deployed is too high,

this may result in an increase in the service provider’s capital expenditure. Hence this study proposes

a stochastic computational graph model with an ensemble learning approach for the placement of SD-

WAN controllers in the presence of several competing objectives. The proposed solution is a combination

of an optimization algorithm (stochastic computational graph model) and a scalable extreme gradient

decision tree algorithm (XGBoost). The solution proposed can be used to address the controller place-

ment problem and alleviate the associated challenges with the existing metaheuristic algorithms used

in the placement of controllers. The stochastic computational graph model is used as an optimization

technique to optimise controller placement, while XGBoost is used to predict the optimal number of con-

trollers needed for deployment. This study further proposed an artificial neural network (learning vector

quantization) that further predicted the placement of controllers, especially when the network topology

expanded. The proposed solution was carried out using the network topology obtained from the Internet

Zoo topology. The proposed stochastic computational graph model was evaluated and validated with the

existing optimization algorithms. These include the ANSGA-III, NSGA-II, and MOPSO, respectively.

Execution time, average CPU utilization, and total CPU usage were used as performance metrics to

assess the performance of these models. The outcomes revealed that the proposed solution efficiently

perform better over the ANSGA-III, NSGA-II, and MOPSO, in terms of the computational resources

with percentage decrease of 99.983%, 99.985%, and 99.446% respectively. Similarly, the ensemble learn-

ing model (XGBoost) was subjected to performance evaluation with other regression models (random

forest, knn, and linear regression) using the mean absolute error performance metric tool. The outcomes

145

revealed that the proposed ensemble learning model efficiently performs better over the compared regres-

sion models with the mean absolute error of 1.855751. Finally, the proposed classification algorithms were

compared with several existing classification algorithms. The existing algorithms include knn, random

forest, logistic regression, xgboost, catboost, graph neural networks, and feed-forward neural networks.

The outcome reveals that the proposed artificial neural network classification model efficiently performs

along with the other existing algorithms. The accuracy score of the proposed learning vector quantization

is 84% as opposed to the highest accuracy score (the catboost model), which is 89%, however, in terms

of controller placement prediction, the proposed solution was able to predict similarly to the catboost

model. They both predicted six controller placements accurately out of the seven actual placements. The

prediction process time also demonstrates that the recommended classification technique outperforms

other currently employed classification algorithms. In Conclusion, the performance of the optimization

techniques (stochastic computational graph) proposed in this research, along with the existing techniques

(ANSGA-III, NSGA-II, and MOPSO), was further subjected to statistical analysis (inferential statistics)

to complement the result exhibited by the descriptive analysis in subsection 5.7.1. This helps this research

to further check if there is truly a statistical difference in the performance of the proposed and existing

optimization techniques for controller placement. The outcome of the inferential statistics, as exhibited in

5.7.1 further confirmed that the stochastic computational graph outperforms other existing optimization

techniques. As a result of the outcomes revealed by the experiment in this study, the proposed stochastic

computational graph model is therefore recommended over other existing techniques for the placement of

the controller in SD-WAN. This research has proposed a strategy that enables SDN operators to choose

the right number and placement of SDN controllers in order to get the best network performance. The

suggested framework is intelligent, scalable, and computationally efficient when compared to the most

recent optimization technique.

146

Chapter 6

Conclusion and Future Work

6.1 Introduction

In conclusion, this research effectively tackles the fundamental challenge of determining the optimal

number and placement of controllers within extensive SDN architectures, wherein the optimization must

account for a range of potentially conflicting objectives. Throughout this study, a comprehensive ex-

amination of established optimization algorithms, including NSGA-II, MOPSO, and ANSGA-III (known

for scalability), has been conducted. This review has critically assessed their limitations, encompassing

factors like scalability, computational efficiency, and notably, their lack of inherent intelligence when it

comes to determining and predicting the optimal number of controllers required for deployment.

This study’s paramount contribution lies in the introduction of two innovative optimization strategies:

the Adapted Non-Dominated Sorting Genetic Algorithm III (ANSGA-III) and the Stochastic Compu-

tational Graph with Ensemble Learning method (SCGMEL). ANSGA-III’s capabilities have been aug-

mented with a repair operator-based mechanism, leading to improvements in convergence, diversity, and

scalability compared to conventional methodologies. Simultaneously, SCGMEL capitalizes on stochastic

gradient descent, a weighted sum approach, a computational graph model, and the XGBoost algorithm,

resulting in a remarkable enhancement of computational efficiency and the ability to intelligently pre-

dict the optimal number and strategic placement of controllers. Furthermore, this research encapsulates

the development of the Improved Switch Migration Decision Algorithm (ISMDA), a vital element of the

holistic solution. ISMDA excels in facilitating balanced load distribution across controllers, showcasing

its prowess in effectively managing the distribution of workloads among underutilized controllers through

its migration efficiency strategy.

The research’s efficacy is substantiated through rigorous experimentation across diverse datasets, in-

cluding BtEurope and other datasets sourced from the Zoo topology. The results undeniably underscore

the superiority of the Collaborative and Adaptive Optimization Learning-Based Framework over pre-

vailing optimization algorithms, as evidenced by enhanced computational complexity management and

improved prediction accuracy.

In essence, this study emerges as a pivotal contributor to the SDN and SD-WAN domain by furnishing

a solution that is both scalable and intelligent, all while efficiently optimizing controller placement. The

proposed framework empowers SDN operators to make well-informed decisions pertaining to the optimal

number and strategic placement of controllers, ultimately translating to heightened network performance

147

and optimal resource utilization. The research’s commitment to open-source code and comprehensive

experimental methodologies further bolsters its credibility and applicability.

To encapsulate, this research transcends the boundaries of SD-WAN controller placement optimiza-

tion, laying a sturdy foundation for future advancements within the dynamic landscape of software-defined

networking. The novel strategies outlined herein hold the promise of revolutionizing network performance

management, effectively addressing the evolving demands of modern network environments.

6.2 Summary of Contributions

This thesis’ primary contributions are:

• In Chapter 3, ISDMA was offered as a solution to the problem of SDN load imbalance. The problem

arises if there is an excessive flow in the inbound traffic load. Module 1—the load decision-making

module; Module 2—switch selection; and Module 3—target controller selection all utilized by IS-

DMA. As soon as the load on a controller rises over a particular limit, the balancing module of the

controller is triggered to ensure that there is an appropriate distribution of load across controllers.

The balancing module searches through the controller set for the unloaded controller, taking into

account the average load status and variation among the controllers. The presented approach

strategically moves maximum-loaded switches from an overloaded controller to the most suitable

controller in a group of unloaded controllers, freeing up as many clustered resources as possible.

Additionally, this study developed a model to assess the migration’s efficiency, revealing a connec-

tion between the extent of changes in migration cost and the effectiveness of load balancing. The

developed ISMDA mechanism surpassed the existing controller adaptation and migration decision

algorithms, as well as, DALB algorithms in terms of the frequency of migration spaces, response

time, throughput, and packet loss, as determined by the results. According to the results of the

simulation that was run under the situation of bulk data flow, the developed ISMDA is more effec-

tive than the two compared algorithms (CAMD and DALB). With the ISMDA method introduced,

there is now a more balanced utilization of resources among the distributed controllers. Addition-

ally, it increases controller throughput, shortens the time needed for migration in the network,

and makes the control plane more resistant to packet loss and slow response times. In conclusion,

ISMDA demonstrates higher efficiency compared to DALB and CAMD, resulting in approximately

1% and 6.4% lower average packet loss, respectively. Moreover, it enhances controller throughput

by around 7.4% compared to CAMD and approximately 1.1% over DALB. ISMDA also outperforms

DALB and CAMD with a decrease of 5.7% and 1%, respectively, in terms of controller response

time. The improvement in the performance of the ISMDA solution is a result of the migration

efficiency strategy developed in this research.

• In Chapter 4, an ANSGA-III algorithm was suggested as a solution to address the scalability con-

cerns linked with the NSGA-II and MOPSO evolutionary techniques when dealing with more than

three objectives. In order to attain the best controller placement in SD-WAN, this investigation

integrated a repair-based operator into the established mechanical engineering-based NSGA-III

method, leading to the formulation of the proposed ANSGA-III. To compare the performance of

ANSGA-III, NSGA-II, and MOPSO evolutionary techniques, internet zoo topology datasets with

148

six objective functions were utilized. The assessment encompassed diverse metrics, such as the

percentage coefficient of variation (PCV), parallel coordinate plots (PCP), percentage difference,

and hypervolume indicator. According to the PCV analysis, ANSGA-III achieved a PCV aggregate

of 167.4841%, while NSGA-II and the MOPSO algorithm attained a PCV aggregate of 121.229%

and 78.3436%, respectively. The traceable hypervolume indicator value of ANSGA-III was the

highest among the three algorithms, at 0.94876%. NSGA-II had a detectable hypervolume indica-

tor value of 0.93646%, and the MOPSO algorithm had the lowest value at 0.89348%. The results

showed that ANSGA-III outperformed NSGA-II and MOPSO algorithms regarding convergence

and diversification when faced with scalability challenges. The experiment demonstrated that the

adapted NSGA-III successfully addressed the scalability issues related to the CPP in SD-WAN.

Consequently, the ANSGA-III method was preferred over the NSGA-II and MOPSO evolutionary

techniques, depending on specific use cases.

• In Chapter 5, a stochastic computational graph with an ensemble learning model as well as a learning

vector quantization classification algorithm were proposed to address the CPP in SD-WAN when

there are multiple goals that are at odds with each other. The same stochastic computational

graph model suggested in this study was used as a backbone along with the XGBoost model to

obtain a suitable number of controllers with respect to several conflicting objectives and enhance the

ability to predict the number of controllers suitable for SD-WAN deployment. The entire dataset

(zoo topology) in this scenario was automated in order to learn the heuristics of the combinatorial

tasks and help in the prediction of controllers. This has a positive consequence on the network’s

overall performance. The controller will not only be computed for the location, but the number of

controllers to be deployed will also be taken into consideration. This will improve the network’s

overall performance and make sure that service providers do not spend too much money on installing

controllers. Similarly, this thesis came up with a classification algorithm whose backbone runs on the

LVQ for the prediction of controller placement. This prediction of placement improves the network’s

overall performance due to the reduction in time it takes to calculate controller locations as the

network topology increases. SCGMEL exhibited exceptional computational efficiency, surpassing

ANSGA-III, NSGA-II, and MOPSO by 99.983%, 99.985%, and 99.446% respectively. The XGBoost

regression model performed significantly better in predicting the number of controllers with a mean

absolute error of 1.855751 compared to 3.829268, 3.729883, and 1.883536 for KNN, linear regression,

and random forest, respectively. The proposed LVQ-based classification method achieved a test

accuracy of 84% and accurately predicted six of the seven controller locations.

6.3 Reflection on the Research Questions and Achievement of
Objectives

• How can an enhanced migration decision algorithm for controller placement be formu-

lated to effectively tackle the complexities of SDN load balancing?

Ans: This study successfully formulated and implemented an improved switch migration decision

algorithm within the SDN architecture. The algorithm was designed to optimize the distribution of

workloads among controllers, contributing to efficient controller placement The addressed research

question led to the development of an enhanced switch migration decision algorithm targeting load

149

balancing within the SDN context. Existing literature often focuses on scenarios where incoming

traffic consists of mice flows with a low flow rate, leading to improved migration efficiency in the data

plane. However, such approaches fall short when dealing with high incoming traffic loads. This

thesis introduces novel techniques for improved switch migration, specifically designed to tackle

network issues arising from substantial inbound data traffic. In this approach, when the load on

the current controller exceeds a predefined threshold, the algorithm’s balancing unit is invoked on

each controller. This balancing unit ensures even distribution of the load across all controllers.

By evaluating the variation in load relative to the average load of all controllers, the underloaded

controller is identified. The introduced method, known as the Improved Switch Migration Decision

Algorithm (ISMDA), efficiently reallocates heavily loaded switches from an overloaded controller

to an underloaded one, optimizing the distribution of critical resources. A migration efficiency

model was also established, demonstrating a trade-off between migration cost variability and load

balancing. This innovative approach provides a practical solution to address the challenges of load

balancing in SDN environments, particularly in scenarios with high inbound data traffic loads.

• How can the optimization of SD-WAN controllers be achieved in the context of multiple

conflicting objectives, surpassing the count of three?

Ans: This research has pioneered the development of a groundbreaking repair operator-based mech-

anism, seamlessly integrated into the ANSGA-III framework. The primary objective was to achieve

optimal controller placement within SD-WAN environments

The research question focusing on optimizing SD-WAN controllers in the presence of multiple con-

flicting objectives (more than three) is addressed through the development and integration of a

repair operator-based mechanism into the Adaptive Non-Dominated Sorting Genetic Algorithm III

(ANSGA-III). Traditional optimization techniques struggle to effectively manage scenarios where

more than three objectives need simultaneous optimization. This study proposes a novel approach

by introducing a repair operator-based mechanism into the engineering-based ANSGA-III, specif-

ically designed to determine optimal controller placement. The research ensures that unfeasible

solutions are discarded during the crossover and mutation processes, and prevents the creation of

duplicate solutions that might appear as optimal outcomes. The repair operator mechanism replaces

continuous optimization features in the existing NSGA-III with discrete optimization attributes.

Furthermore, the proposed strategy enhances convergence and diversity across the Pareto Front by

employing techniques such as normalization, association, reference points, and niching approaches.

This holistic approach not only enhances the effectiveness of optimization but also enables the

concurrent optimization of multiple competitive objectives during SD-WAN controller placement.

The result is a robust, adaptable, and efficient optimization strategy that successfully addresses the

challenge of optimizing SD-WAN controllers in the presence of several conflicting objectives.

• How can machine learning methodologies be leveraged to facilitate the acquisition of

heuristics for solving intricate combinatorial optimization problems, such as the place-

ment of SD-WAN controllers?

Ans: This research has put forward a pioneering automated learning-based decision-making model

to achieve optimal controller placement. This model draws upon three key components: a stochastic

computational graph, an ensemble learning model, and learning vector quantization.

150

The research question concerning the application of machine learning to facilitate the learning of

heuristics for combinatorial optimization problems, like SD-WAN controller placement, is addressed

by proposing an automated learning-based decision-making model. This model leverages a combi-

nation of techniques, including a stochastic computational graph, an ensemble learning model, and

learning vector quantization. A comprehensive analysis of the research landscape reveals that both

exhaustive and meta-heuristic approaches come with significant computational overhead and lack

the ability to learn the intricate heuristics required for solving combinatorial optimization tasks

such as SD-WAN controller placement. In response to this challenge, this study introduces a novel

solution that capitalizes on a stochastic computational graph, an ensemble learning model, and

learning vector quantization.

This proposed solution serves a dual purpose: predicting the number and optimal placement of

controllers within an SD-WAN topology and optimizing controller placement even amidst com-

peting objectives. It effectively addresses the limitations posed by exhaustive and meta-heuristic

approaches by incorporating a stochastic and dynamic computational graph. Moreover, the en-

semble learning model is harnessed for predicting the optimal number of controllers, ensuring a

multifaceted optimization of SD-WAN controller placement while accounting for various conflicting

objectives. Furthermore, the research introduces a classification algorithm, built on the foundation

of Learning Vector Quantization (LVQ), to predict controller placement. This algorithm enhances

the capacity to determine optimal controller locations in a comprehensive manner.

In conclusion, this research delivers a sophisticated solution that harnesses machine learning’s capa-

bilities to unravel the complexities of combinatorial optimization problems in SD-WAN controller

placement. By combining the power of a stochastic computational graph, an ensemble learning

model, and learning vector quantization, this approach sets new benchmarks for predictive accu-

racy and optimization efficiency in the context of SD-WAN controller placement.

6.4 Future work

While this research has made significant contributions to optimizing Software-Defined Networking (SDN)

controller placement and load balancing, there are several avenues for future research to further enhance

the field. Some potential future work includes:

• Utilizing Graph Neural Networks (GNN) and Graph Attention Networks (GAT): In future research,

exploring the use of GNN and GAT as optimization algorithms and classification algorithms could

be highly beneficial. GNNs and GATs have shown promise in handling graph-structured data,

making them suitable for solving complex problems like controller placement and load balancing in

SD-WAN. Integrating these neural network architectures into the proposed Stochastic Computa-

tional Graph Model with Ensemble Learning (SCGMEL) and Learning Vector Quantization (LVQ)

classification algorithm can lead to more intelligent and efficient solutions.

• Extending Controller Placement to Cloud Services, 5G, and IoT: To make the controller placement

solution more versatile, future work can extend the research to manage cloud services, 5G cellu-

lar networks, and IoT devices. This would involve adapting the proposed algorithms to address

the unique requirements and challenges of these domains, considering factors like varying traffic

patterns, mobility, and resource constraints.

151

• Integration of SDN and Network Virtualization: Investigating the integration of SDN and network

virtualization to support multiple virtual networks running on a single SD-WAN architecture can

result in greater flexible and scalable network management. This approach allows network operators

to efficiently utilize resources and adapt the network to different service requirements dynamically.

• Full Integration of SD-WAN with Artificial Intelligence (AI) and Machine Learning (ML): In the

future, fully integrating SD-WAN technology with AI and ML can bring significant benefits to net-

work automation, traffic routing optimization, and proactive network management. ML models can

be employed to predict and avoid network outages before they occur, enhancing network reliability

and performance.

• Enhancing Controller Placement Objectives: Expanding the controller placement objectives to

include metrics like packet arrival and departure wait times, controller capacity, and power con-

sumption can lead to more comprehensive optimization models. Considering queuing delay and

power consumption in the optimization process can improve the overall network performance and

resource efficiency.

• Learning Vector Quantization as Regression Technique: Investigating the use of Learning Vector

Quantization (LVQ) as a regression technique instead of a classification algorithm can enhance

prediction accuracy and flexibility. Adapting LVQ to perform regression tasks can provide more

accurate predictions for the number of controllers needed, allowing for more fine-grained control

over controller placement decisions.

By addressing these future research directions, the proposed controller placement and load-balancing

solutions can be extended to tackle new challenges and adapt to the evolving landscape of SDN, cloud

services, 5G, IoT, and artificial intelligence. The combination of advanced optimization techniques,

flexible controller placement strategies, and integration with cutting-edge technologies can pave the way

for intelligent, efficient, and resilient networks in the future.

152

Appendix A

Glossary

ANSGA-III Adapted Non-dominated Sorting Genetic Algorithm III

API Application Programming Interface

ARP Address Resolution Protocol

ASIC Application Specific Integrated Circuit

BGP Border Gateway Protocol

BGP LS Border Gateway Protocol Link State

CAPEX Capital Expenditure

CORD Corporate office re-architected as a data center

CAMD Controller Adaption and Migration Decision

CPP Controller Placement Problem

CPU Central Processing Unit

DALB Distributed Algorithm and Load Balancing

DCN Data Centre Networks

EA Evolutionary Algorithm

GNN Graph Neural Networks

GAT Graph Attention Networks

ISMDA Improved Switch Migration Decision Algorithm

I2RS Interface to the Routing System

K-NN K Nearest Neighbour

LAN Local Area Networks

LISP Locator ID Separation Protocol

LBR Load Balancing Rate

LVQ Learning Vector Quantisation

ML Machine Learning

MCLVQ Multi-Class Learning Vector Quantisation

MD-SAL Model-Driven Software Engineering Layer

MDSE Model-Driven Software Engineering Layer

MOPSO Multi-Objective Particle Swarm Optimisation

NETCONF Network Configuration

NSGA-II Non-dominated Sorting Genetic Algorithm II

NSGA-III Non-dominated Sorting Genetic Algorithm II

OF-CONFIG OpenFlow Configuration

153

OVSDB Open vSwitch Database Management

PCEP Path Computational Element Protocol

POCO Pareto Optimal resilient Controller

PSO Particle Swarm Optimisation

RL Reinforcement Learning

REST API Representational State Transfer

SCGMEL Stochastic Computational Graph Method and Ensemble Learning

SDN Software Defined Networking

SD-WAN Software-Defined Wide Area Network I

SN Simulated Annealing

TLS Transport Layer Security

XGBOOST Extreme Gradient Boosting

WAN Wide Area Networks

154

Appendix B

Code Repository for the Thesis

For more information about the code developed for this thesis click on the following link in Github :

• The shortened URL:

https://tinyurl.com/2p95ad26

155

https://tinyurl.com/2p95ad26

Bibliography

[1] J. Liu, S. Zhang, N. Kato, H. Ujikawa, and K. Suzuki, “Device-to-device communications for en-

hancing quality of experience in software defined multi-tier lte-a networks,” IEEE Network, vol. 29,

no. 4, pp. 46–52, 2015.

[2] Y.-D. Lin, P.-C. Lin, C.-H. Yeh, Y.-C. Wang, and Y.-C. Lai, “An extended sdn architecture for

network function virtualization with a case study on intrusion prevention,” IEEE Network, vol. 29,

no. 3, pp. 48–53, 2015.

[3] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliability evaluation for nfv deployment

of future mobile broadband networks,” IEEE Wireless Communications, vol. 23, no. 3, pp. 90–96,

2016.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, “Openflow: enabling innovation in campus networks,” ACM SIGCOMM computer

communication review, vol. 38, no. 2, pp. 69–74, 2008.

[5] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Interfaces, attributes, and use

cases: A compass for sdn,” IEEE Communications Magazine, vol. 52, no. 6, pp. 210–217, 2014.

[6] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane for openflow,” in Proceed-

ings of the 2010 internet network management conference on Research on enterprise networking,

vol. 3, pp. 10–5555, 2010.

[7] O. Adekoya and A. Aneiba, “An adapted nondominated sorting genetic algorithm iii (nsga-iii)

with repair-based operator for solving controller placement problem in software-defined wide area

networks,” IEEE Open Journal of the Communications Society, vol. 3, pp. 888–901, 2022.

[8] V. Ahmadi and M. Khorramizadeh, “An adaptive heuristic for multi-objective controller placement

in software-defined networks,” Computers & Electrical Engineering, vol. 66, pp. 204–228, 2018.

[9] C. Gao, H. Wang, F. Zhu, L. Zhai, and S. Yi, “A particle swarm optimization algorithm for controller

placement problem in software defined network,” in International Conference on Algorithms and

Architectures for Parallel Processing, pp. 44–54, Springer, 2015.

[10] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,

“Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1,

pp. 14–76, 2014.

[11] V. Ahmadi, A. Jalili, S. M. Khorramizadeh, and M. Keshtgari, “A hybrid nsga-ii for solving multi-

objective controller placement in sdn,” in 2015 2nd International Conference on Knowledge-Based

Engineering and Innovation (KBEI), pp. 663–669, IEEE, 2015.

156

[12] K. S. Sahoo and B. Sahoo, “Camd: a switch migration based load balancing framework for software

defined networks,” IET Networks, vol. 8, no. 4, pp. 264–271, 2019.

[13] J. Hollinghurst, A. Ganesh, and T. Baugé, “Controller placement methods analysis,” in 2016 6th

International Conference on Information Communication and Management (ICICM), pp. 239–244,

IEEE, 2016.

[14] F. Bannour, S. Souihi, and A. Mellouk, “Scalability and reliability aware sdn controller placement

strategies,” in 2017 13th International Conference on Network and Service Management (CNSM),

pp. 1–4, IEEE, 2017.

[15] D. Hock, M. Hartmann, S. Gebert, T. Zinner, and P. Tran-Gia, “Poco-plc: Enabling dynamic pareto-

optimal resilient controller placement in sdn networks,” in 2014 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pp. 115–116, IEEE, 2014.

[16] L. Mamushiane, “Towards the development of an optimal sdn controller placement framework to

expedite sdn deployment in emerging markets,” Master’s thesis, Faculty of Engineering and the

Built Environment, 2019.

[17] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-

point-based nondominated sorting approach, part i: solving problems with box constraints,” IEEE

transactions on evolutionary computation, vol. 18, no. 4, pp. 577–601, 2013.

[18] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella, “Elasticon; an elastic distributed

sdn controller,” in 2014 ACM/IEEE Symposium on Architectures for Networking and Communica-

tions Systems (ANCS), pp. 17–27, IEEE, 2014.

[19] Y. Zhou, M. Zhu, L. Xiao, L. Ruan, W. Duan, D. Li, R. Liu, and M. Zhu, “A load balancing strategy

of sdn controller based on distributed decision,” in 2014 IEEE 13th International Conference on

Trust, Security and Privacy in Computing and Communications, pp. 851–856, IEEE, 2014.

[20] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,” ACM SIGCOMM

Computer Communication Review, vol. 42, no. 4, pp. 473–478, 2012.

[21] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-Gia, “Pareto-optimal

resilient controller placement in sdn-based core networks,” in Proceedings of the 2013 25th Interna-

tional Teletraffic Congress (ITC), pp. 1–9, IEEE, 2013.

[22] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-

defined networking: Past, present, and future of programmable networks,” IEEE Communications

surveys & tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[23] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State of the art

and research challenges,” Computer Networks, vol. 72, pp. 74–98, 2014.

[24] M. Awais, M. Asif, M. B. Ahmad, T. Mahmood, and S. Munir, “Comparative analysis of traditional

and software defined networks,” in 2021 Mohammad Ali Jinnah University International Conference

on Computing (MAJICC), pp. 1–6, IEEE, 2021.

[25] P. Čisar, D. Erlenvajn, and S. Maravić Čisar, “Implementation of software-defined networks using

open-source environment,” Tehnički vjesnik, vol. 25, no. Supplement 1, pp. 222–230, 2018.

157

[26] N. Gupta, M. S. Maashi, S. Tanwar, S. Badotra, M. Aljebreen, and S. Bharany, “A comparative

study of software defined networking controllers using mininet,” Electronics, vol. 11, no. 17, p. 2715,

2022.

[27] H. Farhady, H. Lee, and A. Nakao, “Software-defined networking: A survey,” Computer Networks,

vol. 81, pp. 79–95, 2015.

[28] R. Wazirali, R. Ahmad, and S. Alhiyari, “Sdn-openflow topology discovery: An overview of perfor-

mance issues,” Applied Sciences, vol. 11, no. 15, p. 6999, 2021.

[29] R. Deb and S. Roy, “A comprehensive survey of vulnerability and information security in sdn,”

Computer Networks, vol. 206, p. 108802, 2022.

[30] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for internet of things: A

survey,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1994–2008, 2017.

[31] S. Schaller and D. Hood, “Software defined networking architecture standardization,” Computer

standards & interfaces, vol. 54, pp. 197–202, 2017.

[32] G. Mine, J. Hai, L. Jin, and Z. Huiying, “A design of sd-wan-oriented wide area network access,”

in 2020 International Conference on Computer Communication and Network Security (CCNS),

pp. 174–177, IEEE, 2020.

[33] P. Segeč, M. Moravčik, J. Uratmová, J. Papán, and O. Yeremenko, “Sd-wan-architecture, functions

and benefits,” in 2020 18th International Conference on Emerging eLearning Technologies and

Applications (ICETA), pp. 593–599, IEEE, 2020.

[34] S. Wallin and C. Wikström, “Automating network and service configuration using {NETCONF}
and {YANG},” in 25th Large Installation System Administration Conference (LISA 11), 2011.

[35] B. Pfaff, B. Lantz, B. Heller, et al., “Openflow switch specification, version 1.3. 0,” Open Networking

Foundation, pp. 39–46, 2012.

[36] T. Čejka and R. Krejčí, “Configuration of open vswitch using of-config,” in NOMS 2016-2016

IEEE/IFIP Network Operations and Management Symposium, pp. 883–888, IEEE, 2016.

[37] A. Rodriguez-Natal, M. Portoles-Comeras, V. Ermagan, D. Lewis, D. Farinacci, F. Maino, and

A. Cabellos-Aparicio, “Lisp: a southbound sdn protocol?,” IEEE Communications Magazine,

vol. 53, no. 7, pp. 201–207, 2015.

[38] D. Lopez, O. G. de Dios, Q. Wu, and D. Dhody, “Pceps: Usage of tls to provide a secure transport

for the path computation element communication protocol (pcep),” tech. rep., 2017.

[39] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a model-driven sdn con-

troller architecture,” in Proceeding of IEEE International Symposium on a World of Wireless, Mo-

bile and Multimedia Networks 2014, pp. 1–6, IEEE, 2014.

[40] A. Sgambelluri, F. Paolucci, F. Cugini, L. Valcarenghi, and P. Castoldi, “Generalized sdn control

for access/metro/core integration in the framework of the interface to the routing system (i2rs),”

in 2013 IEEE Globecom Workshops (GC Wkshps), pp. 1216–1220, IEEE, 2013.

158

[41] J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit, “Sdn and openflow evolution: A standards

perspective,” Computer, vol. 47, no. 11, pp. 22–29, 2014.

[42] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, and Y. Wang, “A comprehensive survey of

interface protocols for software defined networks,” Journal of Network and Computer Applications,

vol. 156, p. 102563, 2020.

[43] A. Mendiola, J. Astorga, E. Jacob, and M. Higuero, “A survey on the contributions of software-

defined networking to traffic engineering,” IEEE Communications Surveys & Tutorials, vol. 19,

no. 2, pp. 918–953, 2016.

[44] L. Mamushiane and T. Shozi, “A qos-based evaluation of sdn controllers: Onos and opendaylight,”

in 2021 IST-Africa Conference (IST-Africa), pp. 1–10, IEEE, 2021.

[45] M. B. Dissanayake, A. Kumari, and U. Udunuwara, “Performance comparison of onosand odlcon-

trollers in,” J Res Technol Eng, vol. 2, pp. 94–105, 2021.

[46] I. Šeremet and S. Čaušević, “An analysis of reconvergence delay when using bgp-ls/pcep as south-

bound protocols,” in 2019 42nd International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), pp. 415–420, IEEE, 2019.

[47] J. Kaur, “Sdn controller (open daylight) based implementation of pcep (path computation element

protocol) for network path instantiation,” 2021.

[48] G. Huang and H. Y. Youn, “Proactive eviction of flow entry for sdn based on hidden markov model,”

Frontiers of Computer Science, vol. 14, pp. 1–10, 2020.

[49] M. Kuźniar, P. Perešíni, and D. Kostić, “What you need to know about sdn flow tables,” in Inter-

national conference on passive and active network measurement, pp. 347–359, Springer, 2015.

[50] O. Blial, M. Ben Mamoun, R. Benaini, et al., “An overview on sdn architectures with multiple

controllers,” Journal of Computer Networks and Communications, vol. 2016, 2016.

[51] M. He, A. M. Alba, E. Mansour, and W. Kellerer, “Evaluating the control and management traffic

in openstack cloud with sdn,” in 2019 IEEE 20th International Conference on High Performance

Switching and Routing (HPSR), pp. 1–6, IEEE, 2019.

[52] J.-S. Weng, J. Weng, Y. Zhang, W. Luo, and W. Lan, “Benbi: Scalable and dynamic access control

on the northbound interface of sdn-based vanet,” IEEE Transactions on Vehicular Technology,

vol. 68, no. 1, pp. 822–831, 2018.

[53] S. Askar and F. Keti, “Performance evaluation of different sdn controllers: A review,” 2021.

[54] Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P. Zhang, “Performance analysis of floodlight and ryu

sdn controllers under mininet simulator,” in 2020 IEEE/CIC International Conference on Commu-

nications in China (ICCC Workshops), pp. 85–90, IEEE, 2020.

[55] A. Azzouni, M. Nguyen, G. Pujolle, et al., “Topology discovery performance evaluation of open-

daylight and onos controllers,” in 2019 22nd Conference on Innovation in Clouds, Internet and

Networks and Workshops (ICIN), pp. 285–291, IEEE, 2019.

159

[56] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “Sdn controllers: A comparative study,” in

2016 18th mediterranean electrotechnical conference (MELECON), pp. 1–6, IEEE, 2016.

[57] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart, G. Palukar, and

W. Snow, “Central office re-architected as a data center,” IEEE Communications Magazine, vol. 54,

no. 10, pp. 96–101, 2016.

[58] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of opendaylight sdn controller,” in

2014 20th IEEE international conference on parallel and distributed systems (ICPADS), pp. 671–

676, IEEE, 2014.

[59] M. Zaher, “A comparative and analytical study for choosing the best suited sdn network operating

system for cloud data center,” Annals of Emerging Technologies in Computing (AETiC), vol. 6,

no. 1, 2022.

[60] S. Rowshanrad, V. Abdi, and M. Keshtgari, “Performance evaluation of sdn controllers: Floodlight

and opendaylight,” IIUM Engineering Journal, vol. 17, no. 2, pp. 47–57, 2016.

[61] M. Islam, N. Islam, M. Refat, et al., “Node to node performance evaluation through ryu sdn

controller,” Wireless Personal Communications, vol. 112, no. 1, pp. 555–570, 2020.

[62] A. K. Singh and S. Srivastava, “A survey and classification of controller placement problem in sdn,”

International Journal of Network Management, vol. 28, no. 3, p. e2018, 2018.

[63] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on software defined networking with multiple

controllers,” Journal of Network and Computer Applications, vol. 103, pp. 101–118, 2018.

[64] G. Wang, Y. Zhao, J. Huang, and Y. Wu, “An effective approach to controller placement in software

defined wide area networks,” IEEE Transactions on Network and Service Management, vol. 15,

no. 1, pp. 344–355, 2017.

[65] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and R. Boutaba, “Dy-

namic controller provisioning in software defined networks,” in Proceedings of the 9th International

Conference on Network and Service Management (CNSM 2013), pp. 18–25, IEEE, 2013.

[66] M. C. Penna, E. Jamhour, and M. L. Miguel, “A clustered sdn architecture for large scale wson,” in

2014 IEEE 28th International Conference on Advanced Information Networking and Applications,

pp. 374–381, IEEE, 2014.

[67] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive resource management and

control in software defined networks,” IEEE transactions on network and service management,

vol. 12, no. 1, pp. 18–33, 2015.

[68] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, “A k-means-based network partition algorithm

for controller placement in software defined network,” in 2016 IEEE International Conference on

Communications (ICC), pp. 1–6, IEEE, 2016.

[69] M. Tanha, D. Sajjadi, and J. Pan, “Enduring node failures through resilient controller placement

for software defined networks,” in 2016 IEEE Global Communications Conference (GLOBECOM),

pp. 1–7, IEEE, 2016.

160

[70] L. Mamushiane, J. Mwangama, and A. A. Lysko, “Controller placement optimization for software

defined wide area networks (sdwan),” 2021.

[71] K. S. Sahoo, S. Sahoo, A. Sarkar, B. Sahoo, and R. Dash, “On the placement of controllers for

designing a wide area software defined networks,” in TENCON 2017-2017 IEEE Region 10 Con-

ference, pp. 3123–3128, IEEE, 2017.

[72] D. Zeng, C. Teng, L. Gu, H. Yao, and Q. Liang, “Flow setup time aware minimum cost switch-

controller association in software-defined networks,” in 2015 11th International Conference on Het-

erogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE), pp. 259–264,

IEEE, 2015.

[73] M. He, A. Basta, A. Blenk, and W. Kellerer, “Modeling flow setup time for controller placement in

sdn: Evaluation for dynamic flows,” in 2017 IEEE International Conference on Communications

(ICC), pp. 1–7, IEEE, 2017.

[74] K. Sood and Y. Xiang, “The controller placement problem or the controller selection problem?,”

Journal of communications and information networks, vol. 2, no. 3, pp. 1–9, 2017.

[75] J. Nagano and N. Shinomiya, “Efficient information sharing among distributed controllers of open-

flow network with bi-connectivity,” in 2015 International Conference on Computing, Networking

and Communications (ICNC), pp. 320–324, IEEE, 2015.

[76] T. Zhang, A. Bianco, and P. Giaccone, “The role of inter-controller traffic in sdn controllers place-

ment,” in 2016 IEEE conference on network function virtualization and software defined networks

(NFV-SDN), pp. 87–92, IEEE, 2016.

[77] L. Han, Z. Li, W. Liu, K. Dai, and W. Qu, “Minimum control latency of sdn controller placement,”

in 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 2175–2180, IEEE, 2016.

[78] L. Zhu, R. Chai, and Q. Chen, “Control plane delay minimization based sdn controller placement

scheme,” in 2017 9th International Conference on Wireless Communications and Signal Processing

(WCSP), pp. 1–6, IEEE, 2017.

[79] T. Li, Z. Gu, X. Lin, S. Li, and Q. Tan, “Approximation algorithms for controller placement

problems in software defined networks,” in 2018 IEEE Third International Conference on Data

Science in Cyberspace (DSC), pp. 250–257, IEEE, 2018.

[80] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-architecture networks,” in 2011

IEEE Global Telecommunications Conference-GLOBECOM 2011, pp. 1–6, IEEE, 2011.

[81] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The sdn controller placement problem for wan,” in 2014

IEEE/CIC International Conference on Communications in China (ICCC), pp. 220–224, IEEE,

2014.

[82] P. Xiao, Z.-y. Li, S. Guo, H. Qi, W.-y. Qu, and H.-s. Yu, “Ak self-adaptive sdn controller placement

for wide area networks,” Frontiers of Information Technology & Electronic Engineering, vol. 17,

no. 7, pp. 620–633, 2016.

[83] H. Aoki and N. Shinomiya, “Controller placement problem to enhance performance in multi-domain

sdn networks,” in Proc. ICN, p. 120, 2016.

161

[84] Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia, “On the controller placement for designing a

distributed sdn control layer,” in 2014 IFIP Networking Conference, pp. 1–9, IEEE, 2014.

[85] Y. Jiménez, C. Cervelló-Pastor, and A. J. Garcia, “Defining a network management architecture,”

in 2013 21st IEEE International Conference on Network Protocols (ICNP), pp. 1–3, IEEE, 2013.

[86] M. Guo and P. Bhattacharya, “Controller placement for improving resilience of software-defined

networks,” in 2013 Fourth International Conference on Networking and Distributed Computing,

pp. 23–27, IEEE, 2013.

[87] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-optimized controller placement

for software-defined networks,” China Communications, vol. 11, no. 2, pp. 38–54, 2014.

[88] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P. Barcellos, “Survivor: An

enhanced controller placement strategy for improving sdn survivability,” in 2014 IEEE Global Com-

munications Conference, pp. 1909–1915, IEEE, 2014.

[89] N. Perrot and T. Reynaud, “Optimal placement of controllers in a resilient sdn architecture,” in

2016 12th International Conference on the Design of Reliable Communication Networks (DRCN),

pp. 145–151, IEEE, 2016.

[90] B. P. R. Killi and S. V. Rao, “Controller placement with planning for failures in software defined

networks,” in 2016 IEEE International Conference on Advanced Networks and Telecommunications

Systems (ANTS), pp. 1–6, IEEE, 2016.

[91] B. P. R. Killi and S. V. Rao, “Capacitated next controller placement in software defined networks,”

IEEE Transactions on Network and Service Management, vol. 14, no. 3, pp. 514–527, 2017.

[92] E. Calle, D. Martínez, M. Mycek, and M. Pióro, “Resilient backup controller placement in dis-

tributed sdn under critical targeted attacks,” International Journal of Critical Infrastructure Pro-

tection, vol. 33, p. 100422, 2021.

[93] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha, “Optimal controller placement in software

defined networks (sdn) using a non-zero-sum game,” in Proceeding of IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks 2014, pp. 1–6, IEEE, 2014.

[94] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller placement problem in software

defined networks,” IEEE Communications Letters, vol. 18, no. 8, pp. 1339–1342, 2014.

[95] H. Aoki, J. Nagano, and N. Shinomiya, “Network partitioning problem to reduce shared information

in openflow networks with multiple controllers,” in Proc. ICN, p. 262, 2015.

[96] J.-M. Sanner, Y. Hadjadj-Aoufi, M. Ouzzif, and G. Rubino, “Hierarchical clustering for an efficient

controllers’ placement in software defined networks,” in 2016 Global Information Infrastructure and

Networking Symposium (GIIS), pp. 1–7, IEEE, 2016.

[97] L. Yao, P. Hong, W. Zhang, J. Li, and D. Ni, “Controller placement and flow based dynamic

management problem towards sdn,” in 2015 IEEE International Conference on Communication

Workshop (ICCW), pp. 363–368, IEEE, 2015.

162

[98] S. Hegde, R. Ajayghosh, S. G. Koolagudi, and S. Bhattacharya, “Dynamic controller placement

in edge-core software defined networks,” in TENCON 2017-2017 IEEE Region 10 Conference,

pp. 3153–3158, IEEE, 2017.

[99] O. Adekoya, A. Aneiba, and M. Patwary, “An improved switch migration decision algorithm for sdn

load balancing,” IEEE Open Journal of the Communications Society, vol. 1, pp. 1602–1613, 2020.

[100] A. Ruiz-Rivera, K.-W. Chin, and S. Soh, “Greco: An energy aware controller association algorithm

for software defined networks,” IEEE communications letters, vol. 19, no. 4, pp. 541–544, 2015.

[101] A. Sallahi and M. St-Hilaire, “Optimal model for the controller placement problem in software

defined networks,” IEEE communications letters, vol. 19, no. 1, pp. 30–33, 2014.

[102] A. Sallahi and M. St-Hilaire, “Expansion model for the controller placement problem in software

defined networks,” IEEE Communications Letters, vol. 21, no. 2, pp. 274–277, 2016.

[103] S. Auroux, M. Draxler, A. Morelli, et al., “Crowd dynamic network reconfiguration in wireless

densenets,” in Proc. European Conference on Networks and Communications (EuCNC 2014), 2014.

[104] S. Auroux, M. Dräxler, A. Morelli, and V. Mancuso, “Dynamic network reconfiguration in wire-

less densenets with the crowd sdn architecture,” in 2015 European Conference on Networks and

Communications (EuCNC), pp. 144–148, IEEE, 2015.

[105] N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman, “Learning combinatorial optimiza-

tion on graphs: A survey with applications to networking,” IEEE Access, vol. 8, pp. 120388–120416,

2020.

[106] M. Lombardi and M. Milano, “Boosting combinatorial problem modeling with machine learning,”

arXiv preprint arXiv:1807.05517, 2018.

[107] A. Jalili, V. Ahmadi, M. Keshtgari, and M. Kazemi, “Controller placement in software-defined wan

using multi objective genetic algorithm,” in 2015 2nd International Conference on Knowledge-Based

Engineering and Innovation (KBEI), pp. 656–662, IEEE, 2015.

[108] L. Liao, V. Leung, Z. Li, and H.-C. Chao, “Genetic algorithms with variant particle swarm opti-

mization based mutation for generic controller placement in software-defined networks,” Symmetry,

vol. 13, no. 7, p. 1133, 2021.

[109] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimization: a method-

ological tour d’horizon,” European Journal of Operational Research, vol. 290, no. 2, pp. 405–421,

2021.

[110] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact combinatorial optimization with

graph convolutional neural networks,” Advances in Neural Information Processing Systems, vol. 32,

2019.

[111] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman, “Planet-

lab: an overlay testbed for broad-coverage services,” ACM SIGCOMM Computer Communication

Review, vol. 33, no. 3, pp. 3–12, 2003.

163

[112] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoffmann, “Heuristic

approaches to the controller placement problem in large scale sdn networks,” IEEE Transactions

on Network and Service Management, vol. 12, no. 1, pp. 4–17, 2015.

[113] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev, and P. Tran-Gia, “Spe-

cialized heuristics for the controller placement problem in large scale sdn networks,” in 2015 27th

International Teletraffic Congress, pp. 210–218, IEEE, 2015.

[114] H. S. Naning, R. Munadi, and M. Z. Effendy, “Sdn controller placement design: For large scale

production network,” in 2016 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob),

pp. 74–79, IEEE, 2016.

[115] A. Xu, S. Sun, Z. Wang, X. Wang, and L. Han, “Multi-controller load balancing mechanism based

on improved genetic algorithm,” in 2022 International Conference on Computer Communications

and Networks (ICCCN), pp. 1–8, IEEE, 2022.

[116] N. S. Radam, S. T. F. Al-Janabi, and K. S. Jasim, “Multi-controllers placement optimization in

sdn by the hybrid hsa-pso algorithm,” Computers, vol. 11, no. 7, p. 111, 2022.

[117] L. Alouache, S. Yassa, and A. Ahfir, “A multi-objective optimization approach for sdvn controllers

placement problem,” in 2022 13th International Conference on Network of the Future (NoF), pp. 1–

9, IEEE, 2022.

[118] P. Aravind, G. S. Varma, and P. P. Reddy, “Simulated annealing based optimal controller placement

in software defined networks with capacity constraint and failure awareness,” Journal of King Saud

University-Computer and Information Sciences, vol. 34, no. 8, pp. 5721–5733, 2022.

[119] J. Hemagowri and P. T. Selvan, “A hybrid evolutionary algorithm of optimized controller placement

in sdn environment,” Computer Assisted Methods in Engineering and Science, 2023.

[120] E. Borcoci, R. Badea, S. G. Obreja, and M. Vochin, “On multi-controller placement optimization

in software defined networking-based wans,” in ICN, vol. 2015, p. 273, 2015.

[121] H. Bo, W. Youke, W. Chuan’an, and W. Ying, “The controller placement problem for software-

defined networks,” in 2016 2nd IEEE International Conference on Computer and Communications

(ICCC), pp. 2435–2439, IEEE, 2016.

[122] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, “Density cluster based approach for controller

placement problem in large-scale software defined networkings,” Computer Networks, vol. 112,

pp. 24–35, 2017.

[123] B. Zhang, X. Wang, and M. Huang, “Multi-objective optimization controller placement problem in

internet-oriented software defined network,” Computer Communications, vol. 123, pp. 24–35, 2018.

[124] H. Kuang, Y. Qiu, R. Li, and X. Liu, “A hierarchical k-means algorithm for controller placement in

sdn-based wan architecture,” in 2018 10th International Conference on Measuring Technology and

Mechatronics Automation (ICMTMA), pp. 263–267, IEEE, 2018.

[125] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-guaranteed resilient con-

troller placement for software-defined wans,” IEEE Transactions on Network and Service Manage-

ment, vol. 15, no. 3, pp. 991–1005, 2018.

164

[126] S. Mohanty, P. Priyadarshini, S. Sahoo, B. Sahoo, and S. Sethi, “Metaheuristic techniques for

controller placement in software-defined networks,” in TENCON 2019-2019 IEEE Region 10 Con-

ference (TENCON), pp. 897–902, IEEE, 2019.

[127] B. Zhang, X. Wang, L. Ma, and M. Huang, “Optimal controller placement problem in internet-

oriented software defined network,” in 2016 International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), pp. 481–488, IEEE, 2016.

[128] S. Liu, H. Wang, S. Yi, and F. Zhu, “Ncpso: a solution of the controller placement problem in

software defined networks,” in International conference on algorithms and architectures for parallel

processing, pp. 213–225, Springer, 2015.

[129] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algo-

rithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[130] A. Jalili, M. Keshtgari, and R. Akbari, “Optimal controller placement in large scale software defined

networks based on modified nsga-ii,” Applied Intelligence, vol. 48, no. 9, pp. 2809–2823, 2018.

[131] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller placement in sdn,” IEEE commu-

nications surveys & tutorials, vol. 22, no. 1, pp. 472–503, 2019.

[132] A. Chehouri, R. Younes, J. Perron, and A. Ilinca, “A constraint-handling technique for genetic

algorithms using a violation factor,” arXiv preprint arXiv:1610.00976, 2016.

[133] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, “Performance assess-

ment of multiobjective optimizers: An analysis and review,” IEEE Transactions on evolutionary

computation, vol. 7, no. 2, pp. 117–132, 2003.

[134] A. P. Wierzbicki, “The use of reference objectives in multiobjective optimization,” in Multiple

criteria decision making theory and application, pp. 468–486, Springer, 1980.

[135] A. Ksentini, M. Bagaa, and T. Taleb, “On using sdn in 5g: The controller placement problem,” in

2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2016.

[136] K. S. Sahoo, B. Sahoo, R. Dash, and N. Jena, “Optimal controller selection in software defined

network using a greedy-sa algorithm,” in 2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), pp. 2342–2346, IEEE, 2016.

[137] K. S. Sahoo, B. Sahoo, R. Dash, and M. Tiwary, “Solving multi-controller placement problem in

software defined network,” in 2016 International Conference on Information Technology (ICIT),

pp. 188–192, IEEE, 2016.

[138] K. S. Sahoo, A. Sarkar, S. K. Mishra, B. Sahoo, D. Puthal, M. S. Obaidat, and B. Sadun, “Meta-

heuristic solutions for solving controller placement problem in sdn-based wan architecture,” in

ICETE 2017-Proceedings of the 14th International Joint Conference on e-Business and Telecom-

munications, 2017.

[139] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C. Gagné, “Deap: A python

framework for evolutionary algorithms,” in Proceedings of the 14th annual conference companion

on Genetic and evolutionary computation, pp. 85–92, 2012.

165

[140] H. Seada and K. Deb, “U-nsga-iii: A unified evolutionary algorithm for single, multiple, and many-

objective optimization,” COIN report, vol. 2014022, 2014.

[141] M. A. Bagha, K. Majidzadeh, M. Masdari, and Y. Farhang, “Improving delay in sdns by metaheuris-

tic controller placement,” International Journal of Industrial Electronics Control & Optimization,

vol. 5, no. 3, 2022.

[142] A. Sapkota, B. B. R. Dawadi, C. S. R. Joshi, et al., “Multi-controller placement optimization using

naked mole-rat algorithm over software-defined networking environment,” Journal of Computer

Networks and Communications, vol. 2022, 2022.

[143] V. S. Thalapala, A. Mohan, and K. Guravaiah, “Woaccpp: Wisdom of artificial crowds for controller

placement problem with latency and reliability in sdn-wan,” 2022.

[144] M. M. Kazemian and M. Mirabi, “Controller placement in software defined networks using multi-

objective antlion algorithm,” The Journal of Supercomputing, pp. 1–24, 2022.

[145] A. A. Qaffas, S. Kamal, F. Sayeed, P. Dutta, S. Joshi, and I. Alhassan, “Adaptive population-based

multi-objective optimization in sdn controllers for cost optimization,” Physical Communication,

vol. 58, p. 102006, 2023.

[146] M. Latah and L. Toker, “Artificial intelligence enabled software-defined networking: a comprehen-

sive overview,” IET networks, vol. 8, no. 2, pp. 79–99, 2019.

[147] S. J. Russell, Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[148] M. Negnevitsky, Artificial intelligence: a guide to intelligent systems. Pearson education, 2005.

[149] S. Faezi and A. Shirmarz, “A comprehensive survey on machine learning using in software defined

networks (sdn),” Human-Centric Intelligent Systems, pp. 1–32, 2023.

[150] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, and J. M. Arco, “A survey on machine

learning techniques for routing optimization in sdn,” IEEE Access, vol. 9, pp. 104582–104611, 2021.

[151] A. Lakhan, M. A. Mohammed, O. I. Obaid, C. Chakraborty, K. H. Abdulkareem, and S. Kadry,

“Efficient deep-reinforcement learning aware resource allocation in sdn-enabled fog paradigm,” Au-

tomated Software Engineering, vol. 29, pp. 1–25, 2022.

[152] Y. Tian, Y. Zhang, and H. Zhang, “Recent advances in stochastic gradient descent in deep learning,”

Mathematics, vol. 11, no. 3, p. 682, 2023.

[153] F. Huang and S. Gao, “Gradient descent ascent for minimax problems on riemannian manifolds,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[154] N. Ketkar, J. Moolayil, N. Ketkar, and J. Moolayil, “Automatic differentiation in deep learning,”

Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch, pp. 133–

145, 2021.

[155] M. J. Kochenderfer and T. A. Wheeler, Algorithms for optimization. Mit Press, 2019.

[156] Y. Wu, S. Zhou, Y. Wei, and S. Leng, “Deep reinforcement learning for controller placement in soft-

ware defined network,” in IEEE INFOCOM 2020-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pp. 1254–1259, IEEE, 2020.

166

[157] C. Chen, F. Xue, Z. Lu, Z. Tang, C. Li, et al., “Rlmr: Reinforcement learning based multipath

routing for sdn,” Wireless Communications and Mobile Computing, vol. 2022, 2022.

[158] M. Xiang, M. Chen, D. Wang, and Z. Luo, “Deep reinforcement learning-based load balancing

strategy for multiple controllers in sdn,” e-Prime-Advances in Electrical Engineering, Electronics

and Energy, vol. 2, p. 100038, 2022.

[159] A. Yazdinejad, E. Rabieinejad, A. Dehghantanha, R. M. Parizi, and G. Srivastava, “A machine

learning-based sdn controller framework for drone management,” in 2021 IEEE Globecom Work-

shops (GC Wkshps), pp. 1–6, IEEE, 2021.

[160] J. Chen, W. Xiao, X. Li, Y. Zheng, X. Huang, D. Huang, and M. Wang, “A routing optimiza-

tion method for software-defined optical transport networks based on ensembles and reinforcement

learning,” Sensors, vol. 22, no. 21, p. 8139, 2022.

[161] S. Kukkonen and K. Deb, “Improved pruning of non-dominated solutions based on crowding distance

for bi-objective optimization problems,” in 2006 IEEE International Conference on Evolutionary

Computation, pp. 1179–1186, IEEE, 2006.

[162] C. Tipantuña and X. Hesselbach, “Nfv/sdn enabled architecture for efficient adaptive management

of renewable and non-renewable energy,” IEEE Open Journal of the Communications Society, vol. 1,

pp. 357–380, 2020.

[163] C. Qi, J. Wu, G. Cheng, J. Ai, and S. Zhao, “An aware-scheduling security architecture with

priority-equal multi-controller for sdn,” China Communications, vol. 14, no. 9, pp. 144–154, 2017.

[164] G. Cheng, H. Chen, Z. Wang, and S. Chen, “Dha: Distributed decisions on the switch migration

toward a scalable sdn control plane,” in 2015 IFIP Networking Conference (IFIP Networking),

pp. 1–9, IEEE, 2015.

[165] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao, “Star: Preventing flow-table overflow

in software-defined networks,” Computer Networks, vol. 125, pp. 15–25, 2017.

[166] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an elastic distributed

sdn controller,” ACM SIGCOMM computer communication review, vol. 43, no. 4, pp. 7–12, 2013.

[167] C. Liang, R. Kawashima, and H. Matsuo, “Scalable and crash-tolerant load balancing based on

switch migration for multiple open flow controllers,” in 2014 Second International Symposium on

Computing and Networking, pp. 171–177, IEEE, 2014.

[168] W. H. F. Aly and A. M. A. Al-anazi, “Enhanced controller fault tolerant (ecft) model for software

defined networking,” in 2018 Fifth International Conference on Software Defined Systems (SDS),

pp. 217–222, IEEE, 2018.

[169] B. L. Nelson, J. Swann, D. Goldsman, and W. Song, “Simple procedures for selecting the best

simulated system when the number of alternatives is large,” Operations Research, vol. 49, no. 6,

pp. 950–963, 2001.

[170] M. Miyagi, K. Ohkubo, M. Kataoka, and S. Yoshizawa, “Performance prediction method for web-

access response time distribution using formula,” in 2004 IEEE/IFIP Network Operations and

Management Symposium (IEEE Cat. No. 04CH37507), vol. 1, pp. 905–906, IEEE, 2004.

167

[171] Y. Yuan, H. Xu, and B. Wang, “An improved nsga-iii procedure for evolutionary many-objective op-

timization,” in Proceedings of the 2014 annual conference on genetic and evolutionary computation,

pp. 661–668, 2014.

[172] G. G. Yen and H. Lu, “Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank

and density estimation,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 3, pp. 253–

274, 2003.

[173] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method for generating the pareto

surface in nonlinear multicriteria optimization problems,” SIAM journal on optimization, vol. 8,

no. 3, pp. 631–657, 1998.

[174] M. Marcisz, “Practical application of coefficient of variation,” in Proceedings of the 13th international

congress on energy and mineral resources (CIERM 2013). Santander: National Association of

Spanish Mining Engineers, pp. 202–208, 2013.

[175] H. Abdi, “Coefficient of variation,” Encyclopedia of research design, vol. 1, pp. 169–171, 2010.

[176] A. K. Thukral, R. Bhardwaj, V. Kumar, and A. Sharma, “New indices regarding the dominance and

diversity of communities, derived from sample variance and standard deviation,” Heliyon, vol. 5,

no. 10, p. e02606, 2019.

[177] D. A. Agunbiade, S. O. Folorunso, K.-K. A. Abdullah, and P. I. Ogunyinka, “Two-phase sampling

for stratification: Application to software industry,” Annals. Computer Science Series, vol. 15,

no. 2, 2017.

[178] J. Mwaura, A. P. Engelbrecht, and F. V. Nepomuceno, “Diversity measures for niching algorithms,”

Algorithms, vol. 14, no. 2, p. 36, 2021.

[179] T. J. Cole and D. G. Altman, “Statistics notes: What is a percentage difference?,” Bmj, vol. 358,

2017.

[180] M. Li, L. Zhen, and X. Yao, “How to read many-objective solution sets in parallel coordinates

[educational forum],” IEEE Computational Intelligence Magazine, vol. 12, no. 4, pp. 88–100, 2017.

[181] H. Ji and C. Dai, “A simplified hypervolume-based evolutionary algorithm for many-objective op-

timization,” Complexity, vol. 2020, 2020.

[182] K. Shang, H. Ishibuchi, L. He, and L. M. Pang, “A survey on the hypervolume indicator in evo-

lutionary multiobjective optimization,” IEEE Transactions on Evolutionary Computation, vol. 25,

no. 1, pp. 1–20, 2020.

[183] J. Blank and K. Deb, “Pymoo: Multi-objective optimization in python,” IEEE Access, vol. 8,

pp. 89497–89509, 2020.

[184] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet topology zoo,”

IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[185] Y. Tian, H. Wang, X. Zhang, and Y. Jin, “Effectiveness and efficiency of non-dominated sorting for

evolutionary multi-and many-objective optimization,” Complex & Intelligent Systems, vol. 3, no. 4,

pp. 247–263, 2017.

168

[186] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and indicator-based methods in

many-objective optimization,” in International conference on evolutionary multi-criterion optimiza-

tion, pp. 742–756, Springer, 2007.

[187] D. Brockhoff, T. Friedrich, and F. Neumann, “Analyzing hypervolume indicator based algorithms,”

in International Conference on Parallel Problem Solving from Nature, pp. 651–660, Springer, 2008.

[188] Z. Li, X. Wang, S. Ruan, Z. Li, C. Shen, and Y. Zeng, “A modified hypervolume based expected

improvement for multi-objective efficient global optimization method,” Structural and Multidisci-

plinary Optimization, vol. 58, no. 5, pp. 1961–1979, 2018.

[189] E. Yazan and M. F. Talu, “Comparison of the stochastic gradient descent based optimization tech-

niques,” in 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1–

5, IEEE, 2017.

[190] J. Chee and P. Toulis, “Convergence diagnostics for stochastic gradient descent with constant

learning rate,” in International Conference on Artificial Intelligence and Statistics, pp. 1476–1485,

PMLR, 2018.

[191] Y. Liu, Y. Gao, and W. Yin, “An improved analysis of stochastic gradient descent with momentum,”

Advances in Neural Information Processing Systems, vol. 33, pp. 18261–18271, 2020.

[192] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learning rate decay help modern neural

networks?,” arXiv preprint arXiv:1908.01878, 2019.

[193] M. Looks, M. Herreshoff, D. Hutchins, and P. Norvig, “Deep learning with dynamic computation

graphs,” arXiv preprint arXiv:1702.02181, 2017.

[194] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,

and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[195] M. Schaarschmidt, S. Mika, K. Fricke, and E. Yoneki, “Rlgraph: Modular computation graphs

for deep reinforcement learning,” Proceedings of Machine Learning and Systems, vol. 1, pp. 65–80,

2019.

[196] A. Brunel, D. Mazza, and M. Pagani, “Backpropagation in the simply typed lambda-calculus with

linear negation,” Proceedings of the ACM on Programming Languages, vol. 4, no. POPL, pp. 1–27,

2019.

[197] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic neural networks: A survey,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[198] J. Schulman, N. Heess, T. Weber, and P. Abbeel, “Gradient estimation using stochastic computation

graphs,” Advances in Neural Information Processing Systems, vol. 28, 2015.

[199] A. Bou and G. De Fabritiis, “Pytorchrl: Modular and distributed reinforcement learning in pytorch,”

arXiv preprint arXiv:2007.02622, 2020.

[200] B. Pan, “Application of xgboost algorithm in hourly pm2. 5 concentration prediction,” in IOP

conference series: earth and environmental science, vol. 113, p. 012127, IOP publishing, 2018.

169

[201] R. Gayathri, S. U. Rani, L. Čepová, M. Rajesh, and K. Kalita, “A comparative analysis of machine

learning models in prediction of mortar compressive strength,” Processes, vol. 10, no. 7, p. 1387,

2022.

[202] M. C. Korkmaz, C. Chesneau, and Z. S. Korkmaz, “The unit folded normal distribution: A new

unit probability distribution with the estimation procedures, quantile regression modeling and

educational attainment applications,” Journal of Reliability and Statistical Studies, pp. 261–298,

2022.

[203] C. M. Stein, “Estimation of the mean of a multivariate normal distribution,” The annals of Statistics,

pp. 1135–1151, 1981.

[204] Z. Yi, Y.-H. Chen, Y. Yin, K. Cheng, Y. Wang, D. Nguyen, T. Pham, and E. Kim, “Brief research

report: A comparison of robust tests for homogeneity of variance in factorial anova,” The Journal

of Experimental Education, vol. 90, no. 2, pp. 505–520, 2022.

[205] M. Kostetckaia and M. Hametner, “How sustainable development goals interlinkages influence euro-

pean union countries’ progress towards the 2030 agenda,” Sustainable Development, vol. 30, no. 5,

pp. 916–926, 2022.

[206] J. Jamco and A. M. Balami, “Analisis kruskal-wallis untuk mengetahui konsentrasi belajar maha-

siswa berdasarkan bidang minat program studi statistika fmipa unpatti,” PARAMETER: Jurnal

Matematika, Statistika dan Terapannya, vol. 1, no. 1, pp. 39–44, 2022.

[207] P. E. McKight and J. Najab, “Kruskal-wallis test,” The corsini encyclopedia of psychology, pp. 1–1,

2010.

[208] J. Liu, S. Ma, W. Xu, and L. Zhu, “A generalized wilcoxon–mann–whitney type test for multivariate

data through pairwise distance,” Journal of Multivariate Analysis, vol. 190, p. 104946, 2022.

[209] D. D. Boos and S. Duan, “Pairwise comparisons using ranks in the one-way model,” The American

Statistician, vol. 75, no. 4, pp. 414–423, 2021.

[210] D. Nova and P. A. Estévez, “A review of learning vector quantization classifiers,” Neural Computing

and Applications, vol. 25, no. 3, pp. 511–524, 2014.

[211] D. Somasundaram, F. Zhang, S. Wang, H. Ye, Z. Zhang, and B. Zhang, “Learning vector quan-

tization neural network for surface water extraction from landsat oli images,” Journal of Applied

Remote Sensing, vol. 14, no. 3, p. 032605, 2020.

[212] J. Ravichandran, M. Kaden, and T. Villmann, “Variants of recurrent learning vector quantization,”

Neurocomputing, vol. 502, pp. 27–36, 2022.

170

	Introduction
	Problem Statement
	Research Problem
	Research Questions
	Solution Overview
	Motivation
	Primary Research Aim and Objectives
	Contributions
	Thesis Structure

	A Review of Controller Placement Techniques in SDN
	Background
	SDN Architecture
	Protocols, Standards, and SDN Operations
	Open Source Software-Defined Networks Controllers
	OpenDaylight
	Floodlight
	Ryu

	Software-Defined Network Controller Placement Algorithms
	Minimising Network Latency
	Maximising Resilience and Reliability
	Load Balancing
	Decreasing Infrastructure Cost and Energy Consumption
	Combinatorial Optimization Approach
	Multi-Objective Approach
	Artificial Intelligence and Machine Learning Usages in Software Defined Networking

	Research Gaps
	Summary of Literature Review

	An Improved Switch Migration Decision Algorithm for SDN Load Balancing
	Introduction
	Developed ISMDA for SDN Controller Load Balancing Overview
	ISMDA Load Balancing Strategy
	Associated Assumptions
	ISMDA Framework Flowchart
	Load Balancing Mechanism for ISMDA Strategy
	ISMDA Algorithm 1
	Dynamic Controller Threshold (Algorithm2)
	Execute Judgment Module Load (Module 1)
	Module for switch selection (Module 2)
	Controller Selection Module (Module 3)

	Example for Demonstration

	Experimentation
	Result AND Discussion
	Verification and Validation of the Developed Improved Switch Migration Decision Algorithm for SDN Load Balancing (ISMDA)
	Conclusion Remarks

	A Scalable Solution for solving Controller Placement problem in Software-Defined Networks
	Introduction
	CPP Mathematical Design and Objective Functions
	Objective functions

	The Adapted NSGA-III (ANSGA-III) for SD-WAN Controller Placement
	The Description of the ANSGA-III as Developed
	Repair-Based Operator (RBO) Algorithm Description in the ANSGA-III
	Normalization algorithm description for the planned ANSGA-III
	Association algorithm description for the planned ANSGA-III
	 Niching technique description for the planned ANSGA-III
	Coefficient of Variation in Percentage (PCV)
	Difference in Percentage (% Diff.)
	Parallel Coordinate Plot (PCP)
	Hypervolume Performance Indicator (HPI)

	Experimentation
	Results and Discussion
	Hypervolume Analysis Results
	Convergence Analysis Results
	Percentage of Coefficient Analysis Results
	Percentage Difference Analysis Results
	Experiment Execution Time Results
	Parallel Coordinate Plot (PCP) Result

	Verification and Validation of the developed ANSGA-III
	Conclusion Remarks

	An Intelligent-based solution to address Controller Placement problem in SDN
	Introduction
	Optimization Design for Controller Placement Problem
	Objective functions

	Proposed Stochastic Computational Graph with Ensemble Learning Model for SD-WAN Controller Placement
	Stochastic Gradient Descent (SGD)
	Learning Rate
	Stochastic Gradient Descent with Momentum
	 Learning Rate Decay
	 Computational Graph
	Computational Graphs Types
	Extreme Gradient Boosting (XGBoost)
	Normal Distribution.
	Variance homogeneity or Levene's test
	Non-Parametric test of Kruskal-Wallis
	Wilcoxon rank-sum pairwise method (Post Hoc-Test)
	Learning Vector Quantization
	Example showing how LVQ works

	The Proposed Stochastic Computational Graph Model with Ensemble Learning Approach, as well as the LVQ Flowcharts and Algorithms for SD-WAN Controller Placement
	Proposed Learning Vector Quantization for the Controller Placement predictions.

	Experimentation
	Results and Discussion
	The BtEurope Dataset and initial and final controller location images
	Outcome of the proposed stochastic computational graph models
	The proposed number of controller using elbow method
	The performance comparison between the proposed solution and the existing optimization algorithms
	The performance comparison between the proposed ensemble learning model and the other regression models
	The performance comparison between the proposed classification algorithm (Learning Vector Quantization and the existing classification algorithms)

	Verification and Validation of the proposed Stochastic Computational model
	Inferential Statistical Analysis for Controller Placement Algorithms
	Shapiro-Wilk test for Normality assumption test
	Homogeneity of variances test
	Kruskal-Wallis test
	Post HOC Test

	Conclusion Remarks

	Conclusion and Future Work
	Introduction
	Summary of Contributions
	Reflection on the Research Questions and Achievement of Objectives
	Future work

	Glossary
	Code Repository for the Thesis
	Bibliography

