
BIRMINGHAM CITY UNIVERSITY

DOCTORAL THESIS

Ensembles of Pruned Deep Neural
Networks for Accurate and Privacy

Preservation in IoT Applications

Author:
Besher ALHALABI

Supervisor:
Prof. Mohamed Gaber

and Dr. Shadi Basura

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Artificial Intelligence and Data Analytics Group
School of Computing and Digital Technology

December 1, 2023

http://www.bcu.ac.uk
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
https://www.bcu.ac.uk/
https://www.bcu.ac.uk/

iii

Declaration of Authorship
I, Besher ALHALABI, declare that this thesis titled, “ Ensembles of Pruned
Deep Neural Networks for Accurate and Privacy Preservation in IoT Appli-
cations ” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date: 30-Nov-2023

v

“Thanks to my solid academic training, today I can write hundreds of words on
virtually any topic without possessing a shred of information, which is how I got a
good job in journalism.”

Dave Barry

vii
BIRMINGHAM CITY UNIVERSITY

Abstract
Faculty of Computing, Engineering and Built Environment

School of Computing and Digital Technology

Doctor of Philosophy

Ensembles of Pruned Deep Neural Networks for Accurate and Privacy
Preservation in IoT Applications

by Besher ALHALABI

The emergence of the AIoT (Artificial Intelligence of Things) represents the
powerful convergence of Artificial Intelligence (AI) with the expansive realm
of the Internet of Things (IoT). By integrating AI algorithms with the vast
network of interconnected IoT devices, we open new doors for intelligent
decision-making and edge data analysis, transforming various domains from
healthcare and transportation to agriculture and smart cities.

However, this integration raises pivotal questions: How can we ensure
deep learning models are aptly compressed and quantised to operate seam-
lessly on devices constrained by computational resources, without compro-
mising accuracy? How can these models be effectively tailored to cope with
the challenges of statistical heterogeneity and the uneven distribution of class
labels inherent in IoT applications? Furthermore, in an age where data is a
currency, how do we uphold the sanctity of privacy for the sensitive data
that IoT devices incessantly generate while also ensuring the unhampered
deployment of these advanced deep learning models?

Addressing these intricate challenges forms the crux of this thesis, with
its contributions delineated as follows:

Ensyth: A novel approach designed to synthesise pruned ensembles of
deep learning models, which not only makes optimal use of limited IoT re-
sources but also ensures a notable boost in predictability. Experimental ev-
idence gathered from CIFAR-10, CIFAR-5, and MNIST-FASHION datasets
solidify its merit, especially given its capacity to achieve high predictability.

MicroNets: Venturing into the realms of efficiency, this is a multi-phase
pruning pipeline that fuses the principles of weight pruning, channel prun-
ing. Its objective is clear: foster efficient deep ensemble learning, specially
crafted for IoT devices. Benchmark tests conducted on CIFAR-10 and CIFAR-
100 datasets demonstrate its prowess, highlighting a compression ratio of
nearly 92%, with these pruned ensembles surpassing the accuracy metrics
set by conventional models.

FedNets: Recognising the challenges of statistical heterogeneity in fed-
erated learning and the ever-growing concerns of data privacy, this innova-
tive federated learning framework is introduced. It facilitates edge devices
in their collaborative quest to train ensembles of pruned deep neural net-
works. More than just training, it ensures data privacy remains uncompro-
mised. Evaluations conducted on the Federated CIFAR-100 dataset offer a
testament to its efficacy.

HTTP://WWW.BCU.AC.UK
http://faculty.university.com
https://www.bcu.ac.uk/

viii
In this thesis, substantial contributions have been made to the AIoT ap-

plication domain. Ensyth, MicroNets, and FedNets collaboratively tackle the
challenges of efficiency, accuracy, statistical heterogeneity arising from dis-
tributed class labels, and privacy concerns inherent in deploying AI applica-
tions on IoT devices. The experimental results underscore the effectiveness of
these approaches, paving the way for their practical implementation in real-
world scenarios. By offering an integrated solution that satisfies multiple key
requirements simultaneously, this research brings us closer to the realisation
of effective and privacy-preserved AIoT systems.

ix

Acknowledgements
I wish to express my deep and sincere gratitude to God for His abundant

blessings and guidance throughout my PhD journey. His divine support and
unwavering presence have been a constant source of strength, inspiration,
and motivation, especially during the most challenging times. I am truly
grateful for His grace and for granting me the opportunity to pursue my
academic dreams.

Furthermore, I would like to extend my heartfelt appreciation to my su-
pervisors (Prof.Mohamed Gaber and Dr.Shadi Basurra) for their invaluable
support, guidance, and encouragement. Their expertise and mentorship have
been instrumental in shaping my research work and academic career, and I
am indebted to them for their generosity and patience. In particular, I would
like to offer a special thanks to Professor Mohamed Gaber for his exceptional
expertise, unwavering support, and insightful guidance, which have been
critical to the success of my research work.

Moreover, I am immensely grateful to my family, who have been my con-
stant source of love, understanding, and support. To my dear mother, my
beloved wife Hadeel, my twin brother Ali, and my amazing daughters Jolia
and Talya, I extend my deepest appreciation and admiration for their un-
wavering support and encouragement. Their presence in my life has been
a driving force behind my achievements, and I am forever grateful for their
love and care.

Lastly, I would like to honor the memory of my father, who always be-
lieved in me and encouraged me to pursue my academic goals. His unwa-
vering love, support, and encouragement will always be cherished, and I
dedicate this achievement to him.

Thank you all for being a part of this incredible journey, and for contribut-
ing to my growth and success.

Note:The research presented in this thesis was funded by Birmingham
City University as part of the STEAM scholars program and supported by
many individuals.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Preamble . 1
1.2 Motivation . 2
1.3 Problem Statement . 3
1.4 Aim and Objectives . 4
1.5 Contributions . 6
1.6 Publications . 8
1.7 Thesis Overview . 8

2 Artificial Intelligence of Things: A Comprehensive Review 11
2.1 Introduction . 11
2.2 Fundamentals of Artificial Intelligence of Things 11

2.2.1 Internet of Things: Main architecture 12
2.2.2 Fundamentals of Artificial Intelligence 14

Supervised Learning . 14
Unsupervised Learning 24
Ensemble Learning . 25

2.2.3 Graph Topology . 32
2.2.4 Federated learning . 32

The Effect of Non-independently and Identically Dis-
tributed (non-IID data) in Federated Learning 35

2.3 Bringing Machine Learning to the Edge 39
2.3.1 Software Approaches 39

Pruning . 40
Quantisation . 44
Fine-tuned Architecture 45
Low-Rank Factorisation 49
Knowledge Distillation 51
Evolutionary algorithms 53

2.3.2 Hardware Approaches 56
2.4 Artificial Intelligence of Things Main Applications 58

2.4.1 Smart Health Systems 58
2.4.2 Smart Homes . 59
2.4.3 Smart Transportation . 60

2.5 Challenges of Deploying AIoT Applications 61

xii
2.6 Discussion . 64
2.7 Summary . 66

3 EnSyth: A Pruning Approach to Synthesis of Deep Learning En-
sembles 67
3.1 Introduction . 68
3.2 Method . 70

3.2.1 Convolutional Neural Networks (CNNs) 70
3.2.2 Feed-forward Neural Networks 71
3.2.3 Net-Trim- The Pruning Method 73
3.2.4 Synthesis of Deep Learning Ensembles 74
3.2.5 Backward Elimination 75

3.3 Experiment . 77
3.3.1 LeNet-5 . 77
3.3.2 Datasets . 77

CIFAR-10 . 77
CIFAR-5 . 77
MNIST-FASHION . 78

3.3.3 Experimental Setup . 78
3.3.4 Network Training and Pruning 79
3.3.5 Synthesis of Compressed Deep Learning Ensembles . . 79

3.4 Results and Discussion . 79
3.4.1 Results of CIFAR-10 . 79
3.4.2 Results of CIFAR-5 . 81
3.4.3 Results of MNIST-FASHION 82
3.4.4 Computational Cost . 83
3.4.5 Backward elimination 84
3.4.6 Discussion . 86

3.5 Summary . 87

4 MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble Learn-
ing in IoT Devices 91
4.1 Introduction . 91
4.2 Method . 93

4.2.1 Pool Generation and Weight Pruning 93
4.2.2 Post Training Integer Quantisation 94
4.2.3 Ensemble Pruning . 94
4.2.4 Representative Selection Strategies 97

4.3 Experimental Study . 99
4.3.1 Datasets and Models . 99
4.3.2 Implementation Details 99

Model Training and Pruning 99
Integer Quantisation . 99
Ensemble Pruning . 99
Deployment to a Distributed Edge Environment 100

4.4 Experimental Setup . 100
4.5 Results and Discussion . 102

4.5.1 Results on CIFAR100 . 102
4.5.2 Results on CIFAR10 . 103

xiii
4.5.3 Energy monitoring . 105
4.5.4 Computational Complexity 108
4.5.5 Discussion . 108

4.6 Summary . 111

5 FedNets: Federated Learning on Edge Devices using Ensembles of Pruned
Deep Neural Networks 113
5.1 Introduction . 113
5.2 Method . 115

5.2.1 System Topology . 115
5.2.2 Ensemble Generation and Pruning: 115
5.2.3 Model training on Local Datasets (NON-IIDs) Update

Local Models Weights 117
5.2.4 Graph Conversion . 117
5.2.5 Graph Embedding Generation 117
5.2.6 Clustering of Embeddings 118

Selection Criteria for Representative Models 118
5.2.7 Privacy Preserving . 119

5.3 Experimental study . 120
5.3.1 Data set and Models . 121

Federated CIFAR100 for Simulation 121
ResNetV2 . 121

5.3.2 Simulation Setup . 121
5.3.3 Results and Analysis . 123

Comparison With the State of the Art 123
Ensembles Performance 125
Preserving Privacy . 126
Discussion of the Results 126

5.4 Summary . 128

6 Conclusion and Perspectives 129
6.1 Summary . 129
6.2 Future Direction . 131

6.2.1 Ensyth: Delving Deeper into Ensemble Strategies . . . 131
6.2.2 Micronets: Deep Ensemble Learning in IoT Devices . . 131
6.2.3 FedNets: Embracing Federated Learning for Enhanced

Edge Computing . 132

Bibliography 135

xv

List of Figures

1.1 Onion-like Layered Model Illustrating the Three Novel Tech-
niques Proposed in this Thesis 7

2.1 The three-layered architecture of IoT. 12
2.2 The classification Architecture. 15
2.3 The Model of an artificial neuron. 19
2.4 Architecture of a multilayer perceptron neural network. 21
2.5 Architecture of deep neural network 23
2.6 The blueprint of stacking models. 29
2.7 A typical FL-AIoT system with N participants 34
2.8 Model updates in the parameter space. Orange and green refer

to the minima of global and local objectives, respectively. . . . 36
2.9 Classification of deep learning acceleration approaches. 40
2.10 Inception model with dimension reductions. 46
2.11 Net2Net vs others . 52
2.12 The EANT2 algorithm with pruning during structural exploita-

tion. 55

3.1 Visual representation of the layers in a Convolutional Neural
Network (CNN). The input image is processed through convo-
lutional layers, followed by pooling layers for spatial down-
sampling. The output is then fed into fully connected layers
for high-level feature extraction and prediction. Each layer
performs specific operations, such as convolution and pool-
ing, which enable the network to capture spatial hierarchies
and extract meaningful features from the input data.. 72

3.2 Illustration of how Net-Trim prunes unnecessary connections,
making the network leaner and more efficient. 74

3.3 Synthesis of deep learning ensembles. 75
3.4 CIFAR10 . 82
3.5 Ensyth results using CIFAR5 . 83
3.6 Ensyth results using MNIST Fashion 84
3.7 Comparative Performance Metrics of LetNet5 Across CIFAR-

10, CIFAR-5, and MNIST Fashion Datasets 89

4.1 MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices . 97

4.2 Two raspberry pi devices connected to: Google Coral Acceler-
ator and a router . 101

4.3 CIFAR100 Accuracy Comparative: “Accuracy First“ versus “Di-
versity First“ . 102

xvi
4.4 CIFAR10 Accuracy Comparative: “Accuracy First“ versus “Di-

versity First“ . 104
4.5 Energy Consumption of Micronets’ Ensembles 107

5.1 FedNets follows a star communication topology where a server
connects with all the remote clients. The server orchestrates
the communications in each learning round, it starts by de-
ploying the global ensemble to the clients. Then, each client
shares a few members of their ensembles with the server. . . . 116

5.2 FedNets approach to convert an ANN to a graph. Each layer
will be converted to a node, and the mean value of the weights/biases
will be added as a feature to the node 118

5.3 FedNets Framework involves the following steps:-Step1: server de-
ploys deep learning ensembles to the clients and clients train them
locally; step2: Each client converts the local models into graphs as-
suming: nodes are the layers, edges are links between layers and the
attributes of the nodes are mean of weights and biases of whole lay-
ers; step3: clients generate the corresponding graph embeddings and
share them with the server; step4: the server to cluster the embed-
dings using affinity propagation and choose a representative from
each cluster, then models are deployed to clients. 120

5.4 Accuracy comparison on two clients 123
5.5 Accuracy comparison on five clients 124
5.6 Accuracy comparison on ten clients 124

xvii

List of Tables

1.1 Comparative Analysis of the Research Challenges, Existing Ap-
proaches, and The Proposed Solutions in IoT 5

2.1 Confusion Matrix . 17
2.2 Classification Matrices . 18
2.3 Summary of Neuron Pruning Methods 43
2.4 MobileNets V1 vs V2 . 48
2.5 Summary of Finedtuned Neural Network Architectures 50
2.6 Summary of Knowledge Distillation Techniques 54
2.7 Overview of Evolutionary Algorithms in Deep Learning. . . . 56
2.8 AIoT applications in different domains 61
2.9 AIoT challenges and possible directions 64

3.1 Ensyth - hyperparameters values 80
3.2 Processing Time in µs . 85

4.1 Hyperparameters, Weight pruning 100
4.2 Summary of MicroNets results on CIFAR100 103
4.3 Accuracy Comparison: “MicroNet’s Clusters“ versus “Ran-

dom Model Selection“ . 103
4.4 Effect of “MicroNets’ on the size of the models (in KB) 105
4.5 Inference (Milliseconds) and Temperature (Celsius) Results, Co/Reg

Compilation . 106
4.6 Input voltage and load current of Raspberry Pi device 106
4.7 Energy Monitoring Results for Regular Compilation Mode . . 107
4.8 Energy Monitoring Results for Co-compilation Mode 108

5.1 FedNets Hyperparameters . 122
5.2 Time required by the major steps of FedNets in seconds. . . . 125
5.3 Changes to the number of models per client 126
5.4 Statistics related to the numbers of shared models per round . 127

xix

List of Abbreviations

AI Artificial Intelligence
ML Machine Learning
IoT Internet of Things
AIoT Artificial Intelligence of Things
DNN Deep Neural Networks
ANN Artificial Neural Networks
CNN Convolutional Neural Networks
DL Deep Learning
FL Federated Learning
MBP Magnitude Based Pruning
MI Mutual Information
KD Knowledge Distillation
CPU Central Processing Unit
GPU Graphical Processing Unit
TPU Tensor Processing Unit
ACSIs Application Specific Integrated Circuits
FPGA Field Programmable Gate Arrays
CIFAR Canadian Institute For Advanced Research

xxi

Dedicated to my Family, who have been my
unwavering source of support and encouragement

throughout my academic journey. To my dear
mother, who instilled in me a love for learning and a

passion for knowledge from a young age. To my
beloved wife Hadeel, whose unwavering love and

constant encouragement have been a constant source
of strength for me. To my twin brother Ali, whose
friendship and guidance have been invaluable in
helping me navigate the challenges of academia.

And lastly, to my two beautiful daughters, who are a
constant reminder of why I do what I do, and who

motivate me to strive for excellence every day.
I also dedicate this work to the soul of my father,

who instilled in me a strong work ethic, a sense of
responsibility, and a belief in the power of education
to transform lives. Though he is no longer with us,

his memory continues to inspire and guide me.
Thank you all for your love, support, and

unwavering faith in me.

1

Chapter 1

Introduction

1.1 Preamble

The term ’Internet of Things (IoT)’ was originally coined by Kevin Ashton
and other experts in 1999 [Ashton, 2009] to describe a global network of nu-
merous and intelligent devices capable of communicating with each other
through the internet. These devices are equipped with the ability to perform
complex computational tasks, interact with users, exchange data with other
devices, and send data to centralised data centres.

Over the years, IoT has undergone a significant evolution, driven by the
advancements in the telecommunications industry such as wireless, Blue-
tooth, and 5G networks. As a result, a new generation of intelligent services
has emerged, as highlighted by recent research [Kaur et al., 2023]. Today,
IoT has transformed from old-frequency radio devices in the late 1990s to a
plethora of modern, smart devices that include wearables, energy meters,
smart home appliances, smart cities, healthcare systems, and much more
[Kaur, Yadav, and Gill, 2023], [Bellini, Nesi, and Pantaleo, 2022].

This revolutionary development has led to a massive expansion of the
IoT ecosystem, bringing about an unprecedented level of connectivity and
automation. With the increasing adoption of IoT devices, the world is wit-
nessing a new era of technological transformation, which has the potential
to change the way we live and work, enabling us to achieve more efficient,
sustainable, and secure societies.

With its potential to connect billions of devices and sensors, IoT has the
power to impact various aspects of our daily activities and create new possi-
bilities for improving our lives. For example, one of the most significant IoT
applications is in the domain of smart agriculture. By using IoT sensors to
monitor temperature, humidity, soil moisture, and other factors, farmers can
obtain real-time data that enables them to optimise irrigation, fertilisation,
and other factors that affect crop growth [Upadhyay, Yadav, and Gandhi,
2019]. This can lead to increased crop yields, reduced resource consumption,
and improved efficiency, which are critical factors in achieving sustainable
agriculture. In the manufacturing industry, IoT can be used for predictive
maintenance, where sensors are used to monitor equipment performance
and predict when maintenance is needed. This can help to reduce downtime,
improve efficiency, and prevent equipment failures which can lead to catas-
trophic consequences, thus, can save significant cost, time and effort [Him,
Poh, and Pheng, 2019]. Another application of IoT is in traffic management
systems where sensors can be used to monitor traffic flow and optimise the

2 Chapter 1. Introduction
timing of traffic lights, reducing congestion, and journey times and improv-
ing safety [Elkin and Vyatkin, 2020]. With increasing number of vehicles on
the road, IoT-based traffic management systems have become fundamental
components of smart and sustainable cities. In healthcare, IoT devices are
used to facilitate remote monitoring of patients’ health, allowing doctors to
track vital signs and other important data. This can help to improve patient
outcomes and reduce the cost of healthcare by enabling early diagnosis and
intervention [Khanna and Kaur, 2020]. Additionally, IoT has been widely
used within blockchain technology to create new applications in various do-
mains, including supply chain management, smart cities, and healthcare [Ali
et al., 2019].

Another important application for blockchain IoT-based applications is
Smart contracts. Smart contracts are self-executing contracts with the terms
of the agreement directly written into code. They automatically enforce rules,
execute actions, and facilitate transactions on a blockchain. For example, in
a supply chain scenario, a smart contract could automatically trigger a pay-
ment to a supplier once certain conditions, such as delivery confirmation, are
met, ensuring transparency and eliminating the need for intermediaries.[Dai,
Zheng, and Zhang, 2019]. Overall, the combination of IoT and blockchain has
the potential to improve the efficiency and security of various applications
by enabling the automatic execution of contracts and the secure recording of
data from connected devices.

1.2 Motivation

In the previous section, it was noted that the use of IoT devices is rapidly
increasing in modern society, resulting in vast amounts of data being gener-
ated at the network edge. Recent forecasts indicate that the number of IoT
devices in use is expected to reach 41.6 billion by 2025, generating and con-
suming around 79.4 ZBs of data [Badnakhe, 2021]. The conventional method
for analysing the generated data involves transferring it from the devices
(clients) to a central cloud server, where the analysis is conducted and the
necessary insights are generated [Ghosh and Grolinger, 2020].

To analyse this data effectively, Artificial Intelligence (AI), particularly
Deep Learning (DL), has become a critical aspect of IoT applications. With
the ability to process large amounts of data, AI algorithms are capable of con-
ducting complex machine learning tasks and generating valuable insights,
making edge devices such as IoT devices an ideal target for these tasks. As
a result, the integration of AI and IoT has given rise to a new era, the Artifi-
cial Intelligence of Things (AIoT) [Zhang and Tao, 2021], with the potential to
transform various sectors, including security, transportation, healthcare, ed-
ucation, industry, energy, agriculture, as well as our homes and cities [Zhou
et al., 2019].

However, the integration of AI and IoT also presents a range of chal-
lenges that must be addressed for the full potential of AIoT to be realised.
These challenges include data privacy, statistical heterogeneity, accuracy and
resource management. Security and privacy are critical concerns, as AIoT
systems involve the transmission of large amounts of data over networks,

1.3. Problem Statement 3
which makes them vulnerable to cyber-attacks and the leakage of sensitive
data [“Big IoT Data Analytics” 2017]. Accuracy: Within the domain of the In-
ternet of Things (IoT), clients often display a disparate distribution of class la-
bels, referred to as statistical heterogeneity [Rashma et al., 2021]. This dispar-
ity creates hurdles in ensuring reliable and exact results. As a result, there’s a
pressing need for machine learning (ML) approaches, especially deep learn-
ing algorithms, that can consistently offer precise results in the presence of
statistical heterogeneity. Finally, resource management is a critical issue, par-
ticularly when running AI applications such as deep learning on constrained
devices. This is because Deep Neural Networks (DNNs) are computation-
ally expensive, and running them on limited devices can lead to a range of
issues, such as suboptimal utilisation of processing power, memory, and net-
work bandwidth, as well as high energy consumption [Khalil et al., 2021].
To overcome these challenges, it was essential to develop innovative AI ap-
proaches in order to create efficient and privacy-enhanced AIoT networks
and applications. Federated Learning (FL) is a distributed collaborative AI
method that allows for the training of AI models at distributed AIoT devices
without requiring data sharing [Yang et al., 2019]. Most recently, the concept
of FL has been proposed as a way to build robust ML privacy-enhanced AIoT
systems (could be referred as FL-IoT). For instance, multiple IoT devices can
act as workers and communicate with an aggregator (e.g., a server) to con-
duct deep learning network training in intelligent AIoT networks [Yu et al.,
2018b]. However, FL-IoT is a relatively new field and has a lot of challenges
related to the distribution of the data among the AIoT network members.

1.3 Problem Statement

When designing and deploying resilient machine learning (ML) solutions for
resource-constrained devices, it is imperative to consider the following key
features. These features play a crucial role in ensuring the effectiveness, ef-
ficiency, and dependability of the ML system [Nguyen et al., 2021]. There-
fore, to achieve optimal performance and reliability, special attention must
be given to the following main features during the design and deployment
phases of the ML solution.

Efficiency In order to develop machine learning solutions that are suitable
for resource-constrained devices, such as Internet of Things (IoT) devices, it
is crucial to design them to be resource-efficient. Deep learning algorithms,
in particular, are known to be computationally intensive, making them dif-
ficult to run on devices with limited resources. Therefore, techniques such
as model compression and quantization can be applied to reduce the size
and complexity of the models without significantly sacrificing accuracy. Ad-
ditionally, selecting the appropriate hardware and optimising the code can
also help minimise resource usage [Zhang and Tao, 2021].

Accuracy In the realm of the Internet of Things (IoT), there is often an
uneven distribution of class labels among clients (statistical heterogeneity)

4 Chapter 1. Introduction
[Rashma et al., 2021], posing challenges in delivering dependable and pre-
cise solutions. Consequently, it becomes crucial to develop machine learning
(ML) solutions, particularly deep learning models, that can effectively de-
liver accurate outcomes. However, although providing efficient deep learn-
ing solutions for IoT devices is essential, as mentioned earlier, the accuracy
of these models can be compromised due to the necessary compression tech-
niques, leading to a potential drop in their performance.

Privacy Data privacy is a critical concern in IoT devices, as they collect and
transmit a vast amount of sensitive data. The data generated by IoT devices
can include personal information such as location, health, and financial data.
This data can be susceptible to privacy breaches, which can result in identity
theft, financial loss, and/or reputational damage. The sensitive and personal
data collected by AIoT devices must be protected from unauthorised access
and potential breaches. Therefore, it is crucial to design and implement deep
learning models that respect the sensitive data of AIoT devices.

To craft the ideal approach for designing and deploying AIoT applica-
tions, it is crucial to ensure that it satisfies several key requirements. Firstly,
it should be resource-efficient, meaning it must be designed to operate on
IoT devices without significantly impacting their available resources. Sec-
ondly, it must be capable of generating accurate decisions in the presence
of the statistical heterogeneity of class labels at the edge. Finally, it must
respect data privacy best practices to safeguard sensitive information. How-
ever, despite the significance of these requirements, to date, there is no com-
prehensive approach that can effectively address all three simultaneously.
Most existing works in the field tend to focus on just one aspect of these re-
quirements, disregarding the other two [Rodríguez, Otero, and Canal, 2023],
[Bi, Liu, and Kato, 2022], [Tang et al., 2017]. As mentioned above, apply-
ing deep learning to IoT environments yields several challenges, including
ensuring deep learning models operate effectively on IoT devices without
compromising accuracy, aptly compressing and quantising these models for
resource-constrained devices, addressing the issues of statistical heterogene-
ity in IoT data, and upholding data privacy and security. To provide a struc-
tured overview of these challenges and the innovative solutions proposed
in this research, a comprehensive table has been formulated Table 1.1. This
table delineates each research challenge, the existing approaches adopted by
the community to tackle them, the novel solutions proposed in this thesis,
and the metrics that highlight the improvements achieved.

1.4 Aim and Objectives

The main aim of this thesis is to develop effective and privacy-preserved computer
systems for deploying AI applications on the Internet of Things (IoT) devices through
the use of ensembles of pruned deep neural networks.

To achieve this aim, we identified the following objectives:

1.4. Aim and Objectives 5
Research Chal-
lenge

Adopted Ap-
proaches

Proposed Solu-
tion

Improvement Met-
rics/Measures

How deep
learning mod-
els could run
on IoT without
compromising
accuracy.

[He, Zhang,
and Sun, 2017],
[Romero et al.,
2014], [Hu et al.,
2018]

Ensyth Higher predictability lev-
els compared to a chosen
baseline, lower number of
trainable parameters, and
faster CPU execution time
compared to the baseline
model.

Ensuring deep
learning mod-
els are aptly
compressed
and quantised
to efficiently
operate on IoT.

[Sodhro et al.,
2019], [Alom et
al., 2018],[Han,
Mao, and Dally,
2015]

MicroNets Higher predictability lev-
els compared to a chosen
baseline, compression ra-
tios up to 91%, and energy
monitoring measures in-
cluding input voltage, load
current, memory footprint
(size of the model), and in-
ference time.

Tailoring mod-
els to cope with
the challenges
of statistical
heterogeneity
and the uneven
distribution
of class labels
inherent in IoT
applications.

[Konečný et al.,
2017],[Tian
et al., 2022],
[Dao et al.,
n.d.,[Liang et
al., 2020]

FedNets Higher predictability lev-
els (our approach outper-
forms two state-of-the-art
methods).

Upholding
the sanctity of
privacy for the
sensitive data
that IoT devices
incessantly gen-
erate while also
ensuring the
unhampered
deployment of
these advanced
deep learning
models.

[McMahan et
al., 2018], [Voigt
and Bussche,
2017]

FedNets Introduces a new security
mechanism to ensure pri-
vacy in federated learning.

TABLE 1.1: Comparative Analysis of the Research Challenges,
Existing Approaches, and The Proposed Solutions in IoT

• Conduct a critical review of the literature on IoT, pruning techniques,
deep learning ensembles, federated learning, and their applications in
IoT to Identify the gaps in the existing literature.

6 Chapter 1. Introduction
• Design and develop a novel approach for synthesising pruned ensem-

bles of deep learning models for better utilising of IoT resources and
achieving high predictability levels.

• Design and develop a multi-phase pruning pipeline that incorporates
weight pruning, channel pruning, and knowledge distillation for effi-
cient deep ensemble learning on IoT devices.

• Design and develop a federated learning approach that enables edge
devices to collaboratively train ensembles of pruned deep neural net-
works to tackle the statistical heterogeneity in federated learning set-
tings while preserving data privacy.

• Evaluate the proposed approaches on benchmark datasets and com-
pare their performance with state-of-the-art methods in terms of accu-
racy, efficiency, and privacy.

1.5 Contributions

The work presented in this thesis has yielded several novel contributions to
the field. Specifically, we have developed novel approaches for addressing
key challenges in the design and deployment of AIoT applications which
directly improved the efficiency, reliability, and security of such systems.

The Synthesis of Deep Learning Ensembles To address the second objec-
tive of the thesis, our first contribution is the synthesis of an ensemble of
pruned deep learning models from a baseline model, selected from a diverse
space of synthesised models [Alhalabi, Gaber, and Basurra, 2019]. The en-
semble’s diversity leads to the outperformance of the baseline model while
simultaneously eliminating the impact of compression on deep learning mod-
els by producing compressed models with better predictability measures.
Moreover, the approach achieves fast inference of the pruned models through
parallel processing while further boosting the accuracy through ensemble
learning.

Pruning Pipelines to Deep Ensemble Learning in IoT Devices To address
the third objective of the thesis, the second contribution is related to design-
ing a novel framework that enables efficient deployment of deep ensemble
learning on edge devices, maximizing the generalization of deep learning
solutions at the edge end and providing robust ML solutions in complex
IoT environments [Alhalabi, Gaber, and Basura, 2021]. This contribution
aims to develop a multi-phase pruning pipeline that generates lightweight
deep learning models capable of running on resource-limited devices with-
out compromising their performance. The pipeline can generate individual
models or ensembles and includes a new clustering-based deep ensemble
pruning technique that reduces the number of models in deep learning en-
sembles. By applying this framework, edge devices can perform complex
tasks, previously limited to high-end servers, such as real-time speech recog-
nition, image classification, and object detection.

1.5. Contributions 7
Federated Learning on Edge Devices using Ensembles of Pruned Deep
Neural Networks To accomplish the final objective of this thesis, the third
contribution aims to introduce a novel federated learning strategy for non-
iid settings [Alhalabi, Basurra, and Gaber, 2023]. The proposed approach
employs deep-ensemble learning to maximize the generalization of the mod-
els at the edge-end and enhance the overall performance across various dis-
tributions of the clients’ local data. Furthermore, this contribution presents
a unique ensemble pruning technique that minimizes the communication
overheads over the network and reduces the storage footprint of ensembles.
The affinity propagation clustering method is applied to the embeddings of
the models, considering that a graph could represent each artificial neural
network. Lastly, a novel privacy approach is described to safeguard clients’
sensitive data in the applications that require running an ensemble of mod-
els.

The thesis proposes three novel techniques that can be visualised as a
complete layered model similar to an onion graph model. This layered struc-
ture is used to emphasise that each component of the model is built upon the
previous one. The core of the layered model is the Ensyth approach, which
is surrounded by the other layers. The Micronets Approach is placed in the
second layer of the onion model, reflecting that Micronets uses Ensyth in the
generation of a diverse pool of models. Finally, the FetNets approach encap-
sulates the work that has been done in both Ensyth and Micronets and hence
it is placed in the final layer of the onion model. Figure 1.1 illustrates the
onion-like layered model.

FIGURE 1.1: Onion-like Layered Model Illustrating the Three
Novel Techniques Proposed in this Thesis

8 Chapter 1. Introduction

1.6 Publications

Our research efforts towards this thesis have resulted in the following publi-
cations:

• B. Alhalabi, M. M. Gaber and S. Basurra, "EnSyth: A Pruning Approach
to Synthesis of Deep Learning Ensembles," 2019 IEEE International Con-
ference on Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp.
3466-3473, doi: 10.1109/SMC.2019.8913944.

• Besher Alhalabi, Mohamed Medhat Gaber, Shadi Basura, "MicroNets:
A multi-phase pruning pipeline to deep ensemble learning in IoT de-
vices", Computers and Electrical Engineering, Volume 96, Part B, 2021,
107581, ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2021.107581.

• B. Alhalabi, S. Basurra and M. M. Gaber, "FedNets: Federated Learning
on Edge Devices Using Ensembles of Pruned Deep Neural Networks,"
in IEEE Access, vol. 11, pp. 30726-30738, 2023, doi: 10.1109/ACCESS.2023.3261266.

1.7 Thesis Overview

The remainder of this thesis is organised as follows:

Chatper 2 [2] provides a thorough and informative overview of Artificial
Intelligent Things (AIoT). The chapter presents a detailed account of the var-
ious components involved in building AIoT applications. Starting from the
topology of IoT devices and their applications, the chapter concludes with
an examination of the challenges associated with implementing AIoT appli-
cations in the real world.

The chapter delves into the details of the various AI algorithms that can be
employed in constructing intelligent things. Specifically, the discussion cov-
ers supervised learning, which involves training a model on labelled data to
predict outcomes, unsupervised learning, which entails training a model on
unlabelled data to identify patterns and structures, deep learning, a subfield
of machine learning that employs neural networks to learn from data, and en-
semble learning, which amalgamates multiple models to improve accuracy.
Furthermore, the chapter examines federated learning, a distributed learning
approach that enables edge devices to collectively train a shared model with-
out revealing raw data. The challenges and opportunities associated with
each of these algorithms are discussed in detail, providing a comprehensive
understanding of their capabilities and limitations. Additionally, the chapter
identifies the main gaps in this field and presents the authors’ contributions
to addressing the identified gaps. The authors’ contribution comprises inno-
vative approaches that enhance the predictability and generalisation power
of deep neural networks in compressed models.

Chatper 3 [3], we unveil our first novel approach Ensyth, as our first con-
tribution towards the realisation of the second and fifth objectives that we

1.7. Thesis Overview 9
have set forth in this thesis. Through the utilisation of deep ensemble learn-
ing, Ensyth offers superior predictability levels for pruned models while also
providing heightened generalisation capabilities for deep learning models
operating at the edge. In addition, this chapter provides the analysis of the
results obtained from subjecting our proposed approach to rigorous eval-
uations across various benchmarking datasets. These results provide com-
pelling evidence of the efficacy and versatility of Ensyth.

Chatper 4 [4] introduces our second novel approach, MicroNets, which ad-
dresses the third and fifth objectives of this thesis. This chapter describes a
multiphase pruning pipeline that enables the deployment of resource-efficient
deep ensemble learning on constrained-resource devices. It also proposes a
novel clustering-based pruning method for deep-learning ensembles. The
chapter presents the mathematical formulation of the method and its detailed
analysis on popular benchmark datasets. The experiments are performed
on actual Raspberry Pi devices. The results demonstrate the effectiveness of
MicroNets in preserving the resources of the Pi devices. The analysis covers
various metrics such as accuracy, compression ratios, inference time, voltage,
load current and temperature.

Chapter 5 [5] presents the culmination of our efforts towards the fourth
and fifth objectives of the thesis. The novel approach, named FedNets, pre-
sented in this chapter is a trailblazing concept in federated learning. Unlike
conventional methods that involve sharing the model weights, our approach
facilitates the participating edge clients to share members of their hosted en-
sembles with a privacy-centric design. Notably, the proposed technique out-
performs state-of-the-art federated learning approaches, including FedAvg
and FedYogi. The chapter comprehensively explains the proposed algorithm,
along with all experimental details related to the chosen hardware, the num-
ber of participating clients in a federated learning round, and various metrics
against benchmarking federated datasets.

Chatper 6 [6], we present a succinct summary of the extensive research that
has been meticulously presented in this thesis and elucidate upon the com-
pelling conclusions that can be drawn. Furthermore, we shall contemplate
and expound upon potential avenues for future research, which may serve
to deepen our understanding of the subject matter at hand and contribute to
the broader academic discourse.

11

Chapter 2

Artificial Intelligence of Things: A
Comprehensive Review

2.1 Introduction

This chapter has been meticulously organised to provide readers with a com-
prehensive overview of the emerging field of AIoT systems. In Section 2.2,
the fundamental concepts of AIoT systems are explored in detail, including
the architecture of IoT systems and basic AI models, with a particular em-
phasis on deep learning (DL) models and federated learning (FL).

Building upon this foundation, Section 2.3 delves deeper into the advan-
tages of combining AI and the IoT. It provides a practical example of an AIoT
system that illustrates how AI and machine learning (ML) can be brought to
the edge of the network to improve performance and reduce latency through
a comprehensive review of acceleration techniques.

Section 2.4 shifts the focus to real-world applications of AIoT systems by
providing concrete examples of how AIoT systems are being utilised in var-
ious domains, such as healthcare, agriculture, and manufacturing. These ex-
amples provide a glimpse into the potential impact of AIoT on society and
the economy, underscoring the significant role this technology is set to play
in shaping the future.

Finally, Section 2.5 highlights the main gaps in the AIoT field and intro-
duces the main contribution of the thesis in addressing these gaps. Overall,
this chapter provides a comprehensive and in-depth overview of the AIoT
field, covering fundamental concepts, practical applications, and challenges
and opportunities associated with constructing AIoT systems. As such, it is
an essential resource for readers seeking to gain a thorough understanding
of this rapidly evolving field.

2.2 Fundamentals of Artificial Intelligence of Things

This section offers a comprehensive overview of the fundamental concepts
that underpin AIoT systems, with a specific focus on the architecture of IoT
devices and the basics of Artificial Intelligence. Firstly, we provide a concise
review of the general architecture of IoT devices before delving into the in-
tricacies of AI. In doing so, we place a particular emphasis on several crucial
concepts in supervised learning, including neural networks, unsupervised

12 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
learning such as clustering, and ensemble learning. Furthermore, we explore
the practicalities of running deep learning models on AIoT devices.

Subsequently, we move on to expound upon federated learning, a cutting-
edge approach to machine learning that is of significant relevance to AIoT
systems. We discuss the most popular and advanced state-of-the-art feder-
ated learning strategies, analysing specific challenges posed by AIoT devices.

2.2.1 Internet of Things: Main architecture
The Internet of Things (IoT) is a technology that facilitates comprehensive
perception and universal connectivity by leveraging sensors, wired and wire-
less networks, and cloud computing. Numerous published studies describe
various IoT architectures [Jabraeil Jamali et al., 2020],[Mocnej et al., 2018],[Ray,
2018],[Al-Fuqaha et al., 2015]. However, to enable the connection of billions
or trillions of diverse objects via the internet, flexible and adaptable layered
architecture is required. The three-layer and five-layer architectures are the
most commonly used in business, industrial research, and applications [Al-
Qaseemi et al., 2016]. In the upcoming paragraph, we will briefly explain the
IoT three-layers architecture.

As the name suggests, the three-layer architecture consists of three layers:
the perception layer, the network layer, and the application layer. Figure 2.1
depicts a typical IoT architecture with three layers.

FIGURE 2.1: The three-layered architecture of IoT.

• Perception Layer: The perception layer is the bottommost layer in the
IoT architecture, also known as the objects/devices layer. This layer
comprises the physical devices that collect data from the environment
using various perception tools, including sensors, motors and actuators
and transmitters (such as temperature and humidity sensors, voltage
transducers, etc.), RFID tag/EPC code scanners, webcams/microphones,
and human body infrared sensors [Ray, 2018].

After collecting information, the perception layer performs the initial
processing and packaging of the data and then sends it to the applica-
tion layer. Additionally, it receives control information from the net-
work layer, which it uses to carry out the necessary control operations

2.2. Fundamentals of Artificial Intelligence of Things 13
[Zhong, Zhu, and Huang, 2017]. However, the perception layer is a
prime target for attackers looking to exploit it, often by attacking sen-
sors and other perception tools. Several common security threats re-
lated to the perception layer include:

1. Eavesdropping: This attack involves intercepting real-time trans-
missions, such as phone calls, text messages, and video streaming,
to gain unauthorized access to private communications [Burhan et
al., 2018].

2. Timing Attack: Attackers use this method in systems with lim-
ited computational power to identify weaknesses and uncover se-
crets by measuring the system’s response time to various queries
[Brumley and Boneh, 2005].

3. Replay Attack: This attack occurs when an intruder intercepts a
conversation between a sender and receiver and uses the authen-
tic information obtained to impersonate the sender. The intruder
sends the same authenticated information to the victim, present-
ing proof of their identity, leading the victim to believe it’s a valid
request. As the message is in encrypted form, the receiver may
unknowingly take the desired action of the intruder [Puthal et al.,
2016].

• The Network Layer: Also known as the Transmission Layer, serves as
a vital link between the Data Link Layer and the Application Layer,
responsible for routing and forwarding data between them [Mrabet et
al., 2020]. It also facilitates the connection of smart devices, networking
equipment, and networks, making it an attractive target for attackers.
Several security threats associated with the network layer are worth
noting:

1. Denial of Service (DoS) Attack: This is an attempt to prevent legiti-
mate users from accessing devices or network resources by flood-
ing them with excessive traffic. The attacker floods the targeted
devices or resources with superfluous requests, making it chal-
lenging or impossible for genuine users to utilize them [Prabhakar,
2017].

2. Man-in-The-Middle (MiTM) Attack: A type of cyberattack where an
attacker secretly intercepts and modifies communication between
a sender and receiver who believe they are communicating di-
rectly with each other. The attacker gains control over the commu-
nication, allowing them to alter messages as they wish. This poses
a significant threat to online security, as it gives the attacker the
ability to capture and manipulate information in real time [Conti,
Dragoni, and Lesyk, 2016].

• Application Layer: The Application Layer is a crucial component of the
IoT architecture that defines all the applications that employ the IoT
technology or in which IoT has been deployed. These applications can

14 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
range from smart homes and smart cities to smart health, among oth-
ers. It also serves as the control and decision-making layer, and it han-
dles a vast amount of data and leverages it to perform a diverse range
of tasks, including industrial control and health monitoring [Navani,
Jain, and Nehra, 2017]. However, the Application Layer is vulnerable
to several security threats and issues that can compromise the integrity,
confidentiality, and availability of data. Notably, malicious code attacks
pose a significant threat to the Application Layer. This type of cyber at-
tack uses code or software to cause harm or unauthorised access to a
computer system or network. Malware, such as viruses, worms, Tro-
jans, and ransomware, are common forms of malicious code or soft-
ware that can be used in such attacks [Deogirikar and Vidhate, 2017].
These attacks are difficult to detect and remove, and standard anti-virus
tools may not be adequate to prevent or control them. Additionally,
cross-site scripting is another type of attack that can impact the Appli-
cation Layer. In this attack, the attacker injects client-side scripts, such
as JavaScript, into a popular website that others view. This enables the
attacker to modify the website’s content for their purposes and use le-
gitimate information for illicit activities [Gupta and Gupta, 2017].

2.2.2 Fundamentals of Artificial Intelligence

Artificial Intelligence (AI) refers to the development of algorithms and com-
puter programs that mimic human intelligence, including the ability to think
and learn. The technology has witnessed remarkable growth in recent years
and has been implemented across various applications, ranging from self-
driving cars to virtual assistants like Siri and Alexa and ending with IoT de-
vices.

Machine Learning (ML), a subset of AI, is the most widely used method
for systems to learn automatically from data, identify patterns, and make de-
cisions without human intervention. ML algorithms can be classified into
three main categories: supervised learning algorithms, unsupervised learn-
ing algorithms, and reinforcement learning. Supervised learning involves
the use of labeled data to train models, while unsupervised learning involves
training models using unlabeled data. Reinforcement learning involves train-
ing agents to interact with their environment to maximize rewards.

In this section, we focus on the most popular algorithms in supervised
and unsupervised learning, including linear regression, logistic regression,
decision trees, random forests, k-means clustering, and principal component
analysis. We will also discuss various methods of ensemble learning, which
aim to combine the predictions of multiple models to improve accuracy and
robustness.

Supervised Learning

Supervised learning is a fundamental category of machine learning that is
widely used in various applications, including image classification, speech
recognition, natural language processing, and many more [Jiang, Gradus,
and Rosellini, 2020]. It involves training a model to predict an output based

2.2. Fundamentals of Artificial Intelligence of Things 15
on a given input using a labelled dataset, where the output is the correct label
for the input. The learning algorithm generates a function that can predict the
output based on the input data [Singh, Thakur, and Sharma, 2016].

The process of building a supervised learning model consists of two key
steps: training and testing. In the training phase, the model is fed with la-
belled training data, which comprises input samples and their corresponding
labels. The learning algorithm then uses these examples to learn the patterns
in the data and build a predictive model. In the testing phase, the model
is applied to new and unseen data, and the algorithm leverages the learned
patterns to make predictions about the output of the input data [Southwest
Jiaotong University, China et al., 2015]. The learning process is explained in
Figure 2.2:

FIGURE 2.2: The classification Architecture.

In supervised learning, the classification model takes input data, repre-
sented as X, and attempts to predict the output Y using the learned parame-
ters denoted as ζ. The process begins with initialising the parameters, ζ, and
then repeatedly updates the parameters through computing the gradient of
the loss function with respect to the parameters and moving in the opposite
direction of the gradient. This iterative process continues until either con-
vergence is reached or a stopping criterion is met [Goodfellow, Bengio, and
Courville, 2016].

Algorithm 1 presents the pseudo-code of the supervised learning algo-
rithm. Specifically, the algorithm defines the steps required to train a super-
vised learning model, starting from initialising the parameters, computing
the loss function, and then updating the parameters using backpropagation.
At each iteration, the algorithm adjusts the parameters based on the gradient
of the loss function, moving them in the opposite direction until convergence
is reached.

16 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
Algorithm 1 Supervised Learning Algorithm

Given: Training set (X, Y) = {(x1, y1), (x2, y2), ..., (xn, yn)}
Initialise the model parameters, θ
Repeat until convergence:
for i = 1 to n do

Compute the predicted output, ŷ = f (xi, θ).
Compute the loss function, J(θ) = L(yi, ŷ)
Compute the coefficient αt =

1
2 ln(1−et

et
)

Compute the gradients, ∇θ J(θ)
Update the parameters, θ = θ − α∇θ J(θ)

end for
Return the learned parameters, θ

where :

• X is the input data.

• xi is the ith input sample.

• Y is the target output.

• yi is the ith output sample.

• θ is the model parameter.

• f (x, θ) is the model function.

• L(yi, ŷ) is the loss function.

• ∇θ J(θ) is the gradient of the loss function with respect to the parame-
ters.

• α is the learning rate.

• n is the number of training samples.

Supervised learning can be categorised into two types based on the type of
output Y: classification and regression. In classification, the target output
consists of a fixed range of categorical values. On the other hand, regression
deals with continuous output values. The choice of supervised learning type
depends on the nature of the problem being addressed and the desired out-
come. Once the model has been trained, its accuracy needs to be evaluated.

The outcomes of Y are called predictions, and these predictions are com-
pared to the true labels of the test data to assess the accuracy of the model.
Evaluating supervised machine learning models is a crucial step in the devel-
opment process, as it allows for the determination of the model’s ability to
make accurate predictions on new and unseen data. Therefore, selecting an
appropriate evaluation technique is important for ensuring the accuracy of
the model’s predictions. There are several common techniques for evaluating
supervised machine learning models, including:

2.2. Fundamentals of Artificial Intelligence of Things 17
1. Confusion matrix: A confusion matrix is a valuable tool in evaluat-

ing the performance of a classification algorithm. It provides a concise
summary of the number of correct and incorrect predictions made by
the classifier. It presents the predicted values of the model against the
true values, providing insight into how the model is performing. The
detailed definition of the confusion matrix, including its components
such as true positive, false positive, true negative, and false negative,
can be found in Table 2.1:

Actual 1 Actual 0
Predicted 1 TP FP
Predicted 0 FN TN

TABLE 2.1: Confusion Matrix

where:

• TP (True Positive) is the number of instances that were correctly
classified as positive.

• TN (True Negative) is the number of instances that were correctly
classified as negative.

• FP (False Positive) is the number of instances that were incorrectly
classified as positive.

• FN (False Negative) is the number of instances that were incor-
rectly classified as negative.

2. Metrics: Evaluating the performance of a supervised machine learn-
ing model requires the use of various metrics, such as accuracy, preci-
sion, recall, F1-score, ROC-AUC, log loss, and others [Powers, 2020],
[Fawcett, 2006]. The selection of the right metric for a given problem
depends on the nature of the data and the desired outcome. For in-
stance, accuracy can be an effective measure for evaluating balanced
datasets, but it may not be suitable for imbalanced ones. In Table 2.2,
we provide a list of the most widely used evaluation metrics to help
researchers choose the best metrics for their particular applications.

3. Train-test split: One of the simplest ways to evaluate a supervised ma-
chine learning model is to split the available data into two disjoint sub-
sets: a training set and a test set. The model is then trained on the train-
ing set and its performance is evaluated on the test set. This approach
provides an estimate of how well the model is able to generalize to un-
seen data. It is important to ensure that the distribution of the data is
similar between the two subsets. Otherwise, the model may overfit to
the training set and perform poorly on the test set. The train-test split
is a widely used technique for evaluating supervised machine learning
models [Sammut and Webb, 2010].

18 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
Metrics name Definition Formula
Accuracy Accuracy is a common metrics used in

machine learning to evaluate the per-
formance of a classifier. It measures
the fraction of instances that were cor-
rectly classified by the classifier.

Accuracy =
TP+TN

TP+TN+FP+FN

Precision It measures the fraction of positive in-
stances that were correctly classified
by the classifier.

Precision = TP
TP+FP

Recall measures the fraction of positive in-
stances that were correctly classified
by the classifier out of all positive in-
stances.

Recall = TP
TP+FN

TABLE 2.2: Classification Matrices

4. Cross-validation: Another method of evaluating a model’s performance
is cross-validation. Cross-validation techniques, such as k-fold cross-
validation [Hastie, Friedman, and Tibshirani, 2001], are widely used for
this purpose. This technique involves dividing the data into k subsets
and generating k pairs of (train, test) datasets, denoted as D(train,j) and D(test,j)
where j = 1 to k. [Berrar, 2018]. The model is trained on each of the
k− 1 training sets and evaluated on the corresponding test set. This re-
sults in a more comprehensive evaluation of the model’s abilities since
it is tested on different subsets of the data. Cross-validation also helps
in reducing overfitting and can be used to tune hyperparameters.

Neural Networks Artificial Neural Networks (ANNs) are an essential ma-
chine learning model that is inspired by the complexity and adaptability of
the human brain. The architecture of ANNs consists of interconnected lay-
ers of "neurons," which are capable of processing and transmitting complex
information. Each neuron within the network receives input signals, per-
forms a series of computations on that input, and produces an output signal
that is transmitted to other neurons within the network. These computations
are made possible through the use of various activation functions, which
can introduce non-linearities into the network’s computation and enable it
to model complex phenomena [Goodfellow, Bengio, and Courville, 2016].

The use of ANNs is growing at an unprecedented rate in numerous fields
to address various human needs. ANNs have been shown to be highly ef-
fective in a range of applications, including image recognition, natural lan-
guage processing, speech recognition, and many others. These models can
also be deployed for a variety of tasks, including prediction, classification,
regression, and more. [Krizhevsky, Sutskever, and Hinton, 2012], [Collobert
et al., 2011], [Fridman et al., 2017]. In recent years, there has been a sig-
nificant interest in the use of ANNs for operation research in the economic
sector. Businesses are investing in ANNs to enhance their operational ef-
ficiency, reduce costs, and increase profitability. For instance, ANNs have
been employed to forecast financial time series, including stock prices and

2.2. Fundamentals of Artificial Intelligence of Things 19
currency exchange rates, with impressive accuracy [Boyacioglu, Kara, and
Baykan, 2009]. Moreover, ANNs have been used in credit risk analysis, fraud
detection, and customer segmentation, among other applications [Dharwad-
kar and Patil, 2018], [Berrada, Barramou, and Alami, 2022]. These advances
demonstrate the potential of ANNs to revolutionize the way businesses op-
erate, enabling them to gain a competitive edge in a highly dynamic and
complex environment.

A neural network can be represented as a directed acyclic graph, where
the neurons are represented by nodes and the edges represent the flow of
information. The edges have weights associated with them, which repre-
sent the strength of the connection between neurons [Li et al., 2021a]. The
fundamental building block of a neural network is the artificial neuron or
perceptron [Block, 1962]. A perceptron takes multiple inputs, performs a
weighted sum of the inputs, and then applies an activation function to the
sum to produce the output. The inputs to a perceptron are usually denoted
by x1, x2, ..., xn, the weights by w1, w2, ..., wn, and the bias by b. The weighted
sum of the inputs plus the bias is denoted by z = w1x1 + w2x2 + ... + wnxn +
b. The activation function f is applied element-wise to the weighted sum z
to produce the output y of the perceptron. Mathematically, a perceptron can
be represented as:

y = f (w1x1 + w2x2 + · · ·+ wnxn + b) (2.1)

Also Figure 2.3 shows the model of an artificial neuron.

FIGURE 2.3: The Model of an artificial neuron.

The most common activation functions used in ANNs are Sigmoid, ReLU,
Tanh, and softmax [Sharma, Sharma, and Athaiya, 2020]. In the next section,
I will briefly explain each function and its use cases.

a) Sigmoid Activation Function: The sigmoid function is the most com-
monly used activation function because it is a non-linear function. It is often
used in a binary classification problem, where the output should be between
zero and one, representing the probability of the input belonging to a certain
class [Costarelli and Spigler, 2013]. Mathematically, the Sigmoid function is

20 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
represented as:

f (x) =
1

1 + e−x (2.2)

However, it’s worth noting that the use of the Sigmoid function has been re-
placed by other functions like ReLU, Tanh, and others in many deep learning
architectures, due to the vanishing gradient problem it can cause for deep
networks [Roodschild, Gotay Sardiñas, and Will, 2020]. B) ReLU Activation
Function: ReLu stands for Rectified Linear unit and is a non-linear activa-
tion function that is commonly used in the neural network. ReLU activation
function is defined as [Costarelli and Spigler, 2013]:

f (x) = max(0, x) (2.3)

The function returns zero for any input x less than 0 and returns x for any
input x greater than or equal to 0. This means that for any negative input,
the output is always 0, and for any positive input, the output is equal to the
input. One of the main benefits of the ReLU function is that it helps to al-
leviate the vanishing gradient problem that can occur with other activation
functions like the Sigmoid function, as mentioned earlier. This is because the
derivative of the ReLU function is either zero or one, making it computation-
ally efficient and easy to train. However, the standard ReLU activation func-
tion presents the potential drawbacks of causing a neural network to explode
[Si, Harris, and Yfantis, 2018]. When a neural network experiences explod-
ing gradients, it becomes challenging to optimize the model effectively. The
weights may be updated with extremely large values, causing the network to
become unstable and produce unreliable predictions [Pascanu, Mikolov, and
Bengio, 2013]. c) Tanh Activation Function: The hyperbolic tangent (Tanh)
activation function is another commonly used activation function in artifi-
cial neural networks [Sharma, Sharma, and Athaiya, 2020]. The formula is
defined as:

f (x) =
ex − e−x

ex + e−x (2.4)

This function maps the input values to a range between -1 and 1. It has
a similar range as the Sigmoid but its output is symmetric around the ori-
gin. This makes the optimisation of the model easier as the gradient is more
consistent [Evans and Raslan, 2005]. The Tanh activation function is often
used in the hidden layers of a neural network and it’s a good choice when
the input is zero-centred. However, it can also suffer from the vanishing
gradients problem when the inputs are too high or too low, similar to the
sigmoid. d) Softmax Activation Function: The function is often used in the
output layer of a neural network that is performing multi-class classification
[Sharma, Sharma, and Athaiya, 2020]. The mathematical representation of
the function is defined as:

f (xi) =
exi

∑n
j=1 exj

(2.5)

The softmax function maps the input values to a probability distribution over
the possible classes. It is a generalisation of the sigmoid function, as it’s used

2.2. Fundamentals of Artificial Intelligence of Things 21

FIGURE 2.4: Architecture of a multilayer perceptron neural net-
work.

for multi-class classification problems. The output of the softmax function for
all the classes will be between zero and one, and the sum of the outputs will
be equal to one. This makes it easy to interpret the output as the probability
of the input belonging to each class. However, in [Yang et al., 2018c], the
authors discovered that the softmax function could limit the representational
capacity of language modelling.

While a single neuron can perform certain fundamental information pro-
cessing operations, the true strength of neural computation lies in the inter-
connectedness of neurons in a network. A neural network is a collection of
perceptrons organised into layers. The simplest neural network is a single-
layer perceptron, which is only capable of solving linearly separable prob-
lems. To solve problems that are not linearly separable, we need to use a
multi-layer perceptron (MLP) [Taud and Mas, 2018].

An MLP is a feedforward neural network that consists of an input layer,
one or more hidden layers, and an output layer. The input layer receives the
input data and the output layer produces the predictions. The hidden layers
are used to extract features from the input data and to increase the capacity
of the network to represent complex functions [Taud and Mas, 2018]; the
architecture of a multilayer perceptron neural network is shown in Figure 2.3.
The process of training a feed-forward neural network or MLP involves two
main steps: 1)- Forward Propagation: where input data is passed through the
layers of a network, and the output of each layer is used as the input for the
next layer, until the final output is produced [Maldonado and Manry, 2002].

22 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
This can be represented mathematically as:

aj
i = f (

n

∑
k=1

wj
i,kaj−1

k + bj
i) (2.6)

where:

• aj
i is the activation (output) of the ith neuron in the jth layer;

• wj
i,k is the weight of the connection between the kth neuron in the (j−

1)th layer and the ith neuron in the jth layer;

• bj
i is the bias of the i-th neuron in the j-th layer and

• f is the activation function applied element-wise to the weighted sum.

2- Backpropagation) This step involves adjusting the weights and biases to
minimise the error between the network’s predictions and the true values
[Johansson, Dowla, and Goodman, 1991]. This is typically done using an
optimisation algorithm such as stochastic gradient descent (SGD) [Ketkar,
2017]. The backpropagation algorithm starts with a random initialisation of
the weights and biases, and then iteratively updates the weights and biases
in the direction of the negative gradient of the error function with respect to
the weights and biases [Amari, 1993]. The error function is usually chosen
to be a measure of the difference between the network’s predictions and the
true values, such as mean squared error (MSE) or cross-entropy loss. The
weight update rule can be represented as:

wt
i,j = wt−1

i,j − α
∂E

∂wi,j
(2.7)

where:

• wt
i,j is the weight of the connection between the ith neuron in the input

layer and the jth neuron in the output layer at time step t;

• wt−1
i,j is the weight of the connection between the ith neuron in the input

layer and the jth neuron in the output layer at time step t− 1;

• α is the learning rate

• E is the error function

Deep Learning Deep neural networks (DNNs) are a type of artificial neu-
ral network that is composed of multiple layers. Instead of having a hidden
layer, a typical deep neural network could have multiple hidden layers and
an output layer. The network’s architecture is shown in Figure 2.5. The lay-
ers of a DNN can consist of various types of artificial neurons, such as fully
connected neurons, convolutional neurons, or recurrent neurons.

2.2. Fundamentals of Artificial Intelligence of Things 23

FIGURE 2.5: Architecture of deep neural network

Convolutional Neural Networks Convolutional Neural Networks (CNNs)
have emerged as powerful deep learning models for various computer vision
tasks. In this section, we provide an introduction to CNNs, discuss their
layers and mathematical formulas, explore their applications in the Internet
of Things (IoT), and analyse the advantages and disadvantages of IoT.

Definitions of CNNs Convolutional Neural Networks are a type of neu-
ral network specifically designed to process grid-like data, such as images.
They are composed of multiple layers, each performing specific operations
on the input data. CNNs have been widely successful in image classification,
object detection, and other computer vision tasks due to their ability to au-
tomatically learn hierarchical representations from raw pixel values [Lecun
et al., 1998], [Krizhevsky, Sutskever, and Hinton, 2012]

Layers of CNNs CNNs typically consist of several layers, including con-
volutional layers, pooling layers, and fully connected layers. Each layer
serves a specific purpose in feature extraction and classification.

• Convolutional Layers: Convolutional layers apply a set of learnable
filters (kernels) to the input image, convolving them over the image
spatially. The filters capture local spatial patterns and generate feature
maps, preserving the spatial relationships. The convolution operation
can be defined as:

Output feature map[i, j] =
M

∑
m=1

N

∑
n=1

Input feature map[i+m, j+n]×Kernel[m, n]

24 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
where M and N are the dimensions of the kernel, and i and j represent
the spatial position in the output feature map [Krizhevsky, Sutskever,
and Hinton, 2012].

• Pooling Layers: Pooling layers downsample the feature maps gener-
ated by the convolutional layers, reducing their spatial dimensions.
Common pooling operations include max pooling and average pool-
ing, which extract the most important features while reducing compu-
tational complexity.

• Fully Connected Layers: Fully connected layers take the flattened fea-
ture maps from the previous layers and connect them to the output
layer for classification or regression. These layers learn high-level rep-
resentations and capture global context

The mathematical formulas involved in CNNs include convolution op-
erations, activation functions (e.g., ReLU), pooling operations, and matrix
multiplications. These formulas define the forward pass and backward pass
computations that enable the network to learn and update its parameters
during training [Goodfellow, Bengio, and Courville, 2016].

Applications of CNNs in IoT CNNs have found numerous applica-
tions in the Internet of Things (IoT), leveraging their ability to process visual
data and extract meaningful information. Some comprehensive applications
include: Smart Surveillance Systems: CNNs can analyse video feeds from
surveillance cameras in real-time, detecting and classifying objects, tracking
movements, and identifying anomalies [Cheng et al., 2017].

Environmental Monitoring: CNNs can analyze images from IoT devices
such as drones or sensors to detect pollution, monitor wildlife, or identify
environmental changes [Leong et al., 2020].

Healthcare and Telemedicine: CNNs can aid in medical diagnosis by
analysing medical images such as X-rays, CT scans, or histopathology slides,
assisting in disease detection and treatment planning [Litjens et al., 2017].

Smart Home Devices: CNNs can enable smart home devices to under-
stand and respond to visual cues, such as facial recognition for personalised
settings or object recognition for security purposes [Yu, Antonio, and Villalba-
Mora, 2022].

Unsupervised Learning

Unsupervised learning investigates how systems can learn to categorise in-
put patterns based on the statistical relationships among the patterns in the
entire dataset [Hastie, Friedman, and Tibshirani, 2001]. In comparison to
supervised and reinforcement learning, unsupervised learning lacks specific
target outputs or evaluations for each input. Instead, the unsupervised learn-
ing process utilises preconceived biases to decide what aspects of the input’s
structure should be represented in the output [Ghahramani, 2004]. There
are different unsupervised machine learning algorithms such as Association
rule learning algorithms [Kumbhare and Chobe, 2014], Anomaly detection
algorithms [Chandola, Banerjee, and Kumar, 2009] [Agrawal and Agrawal,

2.2. Fundamentals of Artificial Intelligence of Things 25
2015], Dimensionality reduction algorithms [Huang, Wu, and Ye, 2019] [Sar-
veniazi, 2014], and Clustering algorithms [Xu and Tian, 2015] [Rokach, 2010]
[Ezugwu et al., 2022]. In the next section, I will explain K-means as an exam-
ple of unsupervised learning algorithms as it’s highly related to my contri-
butions.

K-means: K-means is a type of unsupervised learning algorithm that is
used for cluster analysis in data mining [Ahmed, Seraj, and Islam, 2020].
The goal of K-means is to partition a set of data points into k clusters, where
each data point belongs to the cluster with the nearest mean. The number
of clusters, k, is defined by the user [Ahmed, Seraj, and Islam, 2020]. The
algorithm works by first randomly initialising k cluster centres, and then it
proceeds iteratively. Algorithm .2 illustrates the main steps of the K-means
algorithm.

Algorithm 2 K-Means Algorithm

1: Requires a dataset X with n samples and m features, number of clusters
k, maximum number of iterations max_iter.

2: Initialise the centroids c1, c2, . . . , ck randomly from the dataset X.
3: for i = 1 to max_iter do
4: Assign each sample in X to the closest centroid.
5: Recalculate the centroids as the mean of the samples assigned to each

cluster.
6: if The centroids do not change then
7: break
8: end if
9: end for

10: update the final clusters and centroids.

The K-means algorithm aims to minimise an objective function known as
the squared error function, also known as the within-cluster sum of squares.
The objective function is given by the following equation [Mahdavinejad et
al., 2018]:

J(π, µ) =
N

∑
n=1

K

∑
k=1

πnk ∗ ||xn − µk||2 (2.8)

Where: πnk is the binary indicator variable as explained previously; muk is
the kth cluster centroid; xn is the nth data point. The objective function J(π, µ)
measures the sum of the squared distances between each data point xn and
its closest cluster centroid muk. The algorithm iteratively updates the cluster
centroids and the assignment of data points to clusters in order to minimize
the objective function J(π, µ). In short, the k-means algorithm aims to min-
imise the within-cluster sum of squares by iteratively updating the cluster
centroids and the assignment of data points to clusters.

Ensemble Learning

Ensemble learning is a method that combines multiple base learners, also
known as inducers, to make a decision. These techniques are widely used

26 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
in supervised machine learning, where the objective is to develop a model
that can predict the output based on a set of labelled examples [Zhou, 2021].
The key concept of ensemble learning is that multiple models are combined
together to form a more robust and accurate overall prediction. By leverag-
ing the strengths of multiple models, the errors of one model can be offset
by the others, resulting in improved performance compared to using a single
model alone [Sagi and Rokach, 2018]. This technique could be used in the
Artificial Intelligence of Things (AIoT) to improve the performance of ma-
chine learning models [Alhalabi, Gaber, and Basura, 2021]. For example, an
ensemble of models could be used to classify sensor data from IoT devices
in order to detect anomalies or make predictions about future events. This
can help to improve the reliability and accuracy of AIoT systems [Tsogbaatar
et al., 2021]. There are several ensemble learning methods will be explained
in the following.

• Bagging (Bootstrap Aggregating): Bagging is an ensemble learning
method that aims to improve the accuracy and robustness of a single
model by training multiple models on different subsets of the data and
then averaging their predictions. This technique samples the data ran-
domly (with replacement), and then trains a separate model on each
sample. By training multiple models on different subsets of the data,
the final predictions will be more robust and less sensitive to the specific
training data [Kadiyala and Kumar, 2018]. An important aspect of bag-
ging is that each model is trained independently of the others, which
means that the models can be trained in parallel to improve computa-
tional efficiency. The bagging could mathematically be represented as
[Sagi and Rokach, 2018]:

Let f 1(x), f 2(x), · · · , f n(x) be the base learners or inducers trained on
different subsets of the training data, and let x be the input feature vec-
tor for which we want to make a prediction. The final prediction made
by the ensemble is given by:

y =
1
n

n

∑
i=1

fi(x) (2.9)

where y is the final prediction, n is the number of base-learners, fi(x) is
the prediction of the ith base-learner, and x is the input feature vector.

It is worth mentioning that the formula in Formula 2.9 works on re-
gression only. For the classification task, the final prediction is usually
made by voting, where each base learner votes for a class:

y = argmaxc(
n

∑
i=1

[fi(x) = c]) (2.10)

where y is the final prediction, c is the class, n is the number of base-
learners. Bagging can be applied to many different types of models,
such as decision trees, neural networks, and support vector machines.
An example of an ensemble learning algorithm that uses bagging is
Random Forest. Random Forest is an extension of decision trees that

2.2. Fundamentals of Artificial Intelligence of Things 27
creates multiple decision trees by bagging and then averaging their pre-
dictions [Kadiyala and Kumar, 2018]. However, like any other method,
Bagging also has its own set of disadvantages [Bühlmann, 2012], which
includes: 1-) it can increase the variance of the final model;2-) Bagging
can be computationally expensive, especially when the training dataset
is large or when the base-learner is computationally intensive.

• Boosting Boosting is an ensemble learning method that aims to im-
prove the accuracy of a single model by training multiple models in se-
quence, each model attempting to correct the mistakes of the previous
model. The basic idea behind boosting is to iteratively train weak mod-
els and combine them to create a strong model. Each weak model is
trained on the same dataset, but with different weights assigned to the
data points. Data points that are misclassified by the previous model
are given higher weights so that the next model will focus more on
these points [Sagi and Rokach, 2018].

The final prediction is made by combining the predictions of all the
weak models through a weighted majority vote. The weights assigned
to each model are based on their accuracy, with more accurate models
given higher weights [Ferreira and Figueiredo, 2012]. Boosting can be
applied to many different types of models, such as decision trees, neu-
ral networks, and support vector machines. Some popular examples
of ensemble learning algorithms that use boosting are AdaBoost and
Gradient Boosting; AdaBoost is a boosting algorithm for binary classi-
fication problems, while Gradient Boosting is a more general boosting
algorithm that can be used for both regression and classification prob-
lems.

– Adaboost: This algorithm works by repeatedly training the weak
models on subsets of the data, where the subsets are chosen in
such a way that the misclassifications of the previous weak mod-
els are given more weight. This results in the final ensemble model
having higher accuracy than any of the individual weak models
[Freund and Schapire, 1997]. AdaBoost is often used in the field of
computer vision and image processing. The pseudo-code of Ad-
aboost algorithm is shown in Algorithm 3.

28 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
Algorithm 3 Adaboost Algorithm

Initialise:
wi =

1
N for all i, where N is the number of samples.

for t = 1 to T do
Train a weak classifier ht(x) using the current sample weights.

Compute the weighted error rate et =
N
∑

i=1
wi I(yi ̸= ht(xi))

Compute the coefficient αt =
1
2 ln(1−et

et
)

Update the sample weights: wi = wi ∗ e−αt∗yi∗ht(xi)

Normalize the sample weights: wi =
wi

N
∑

i=1
wi

end for
The final classifier is:

f (x) = sign(
T
∑

t=1
αtht(x))

Although Adaboost could provide a remarkable boost in accuracy [Cao
et al., 2013], it has several limitations, such as: 1)- AdaBoost is compu-
tationally expensive as it requires training multiple weak models. This
can be time-consuming, especially for large datasets;2)- Adaboost is un-
suitable for real-time prediction because of it’s sequential nature;3)- Ad-
aboost is limited to classification problems and can’t be used in the re-
gression as the goal here would be to predict a continuous value rather
than a class label. AdaBoost’s approach of adjusting the weights of the
training examples based on the misclassifications of the previous weak
models is not applicable in this context. Additionally, the weak models
used in AdaBoost are typically decision trees, which are not well-suited
for regression problems [Cao et al., 2013].

• b) Gradient Boosting: this approach follows the same boosting con-
cept where each model tries to correct the mistakes of the previous
model. However, it uses a different mathematical formula to com-
pute the final prediction. This includes tuning a shrinkage parameter
to control the learning rate and prevent overfitting [Bentéjac, Csörgő,
and Martínez-Muñoz, 2021]. The mathematical formula to compute the
gradient boosting algorithm is given by:

Fm(x) = Fm−1(x) + argminc ∑ i = 1nL(yi, Fm−1(xi) + c) (2.11)

where Fm(x) is the final prediction of the mth iteration, Fm−1(x) is the
prediction of the previous iteration, L(yi, Fm−1(xi) + c) is the loss func-
tion, c is the parameters of the new tree and x, y are the input and out-
put variables respectively. XGBoost (eXtreme Gradient Boosting) is an
optimised version of Gradient Boosting. It is specifically designed for
decision tree base learners and uses a more regularized model formal-
isation to control over-fitting, which gives it better performance [Ben-
téjac, Csörgő, and Martínez-Muñoz, 2021]. The specific loss function
used in XGBoost is called the "gradient of the gradient" (or "hessian")

2.2. Fundamentals of Artificial Intelligence of Things 29
and is represented mathematically as:

∂2L(yi, ŷi)

∂ŷ2
i

(2.12)

Where L(yi, ŷi) represents the loss function, yi represents the true label
and ŷi represents the predicted label. In addition to this, XGBoost uses
a regularisation term called "L1" and "L2" [Moore and DeNero, 2011],
which is added to the above loss function to prevent overfitting; this
regularisation term can be represented as [Mienye and Sun, 2022]:

Ω(f) = γT +
1
2

λ
T

∑
j=1

w2
j (2.13)

Where γ and λ are regularisation parameters, T is the number of trees
in the model, and wj is the score assigned to each leaf node.

• Stacking is a more complex ensemble learning method that involves
training multiple/different models, then using their predictions as in-
put to a final model. This type of ensemble learning is more powerful
than bagging and boosting, as it allows the different models to comple-
ment each other and make more accurate predictions [Sagi and Rokach,
2018]. Figure 2.6 illustrates the blueprint of any stacking model.

FIGURE 2.6: The blueprint of stacking models.

Stacking works by training multiple base models on the same input
data, then using their predictions as input features for a higher-level
model called the meta-model. The meta-model is trained to make the
final prediction based on the input from the base models [Mienye and
Sun, 2022]. The generic stacking algorithm is explained in Algorithm 4.

30 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
Algorithm 4 Generic Stacking Algorithm

Input: original dataset (X, y)
Output: trained meta-model
Split dataset into training and test sets (Xtrain, ytrain, Xtest, ytest)
Train multiple base models on Xtrain, ytrain
Use base models to make predictions on Xtest
Combine predictions to generate final predictions
Train meta-model on (predictions, ytest)
Return trained meta-model

Stacked models are known for their high accuracy and have been suc-
cessful in various machine learning competitions [Ouyang et al., 2018],
[Deotte et al., 2021]. Additionally, they offer improved diversity by util-
ising various machine learning algorithms to train the base models. An
example of using stacked models would be to combine a factorisation
model such as matrix factorisation with tree-based models like decision
trees and random forests. This combination would provide a good di-
versity as the former is trained differently from the latter [Mienye and
Sun, 2022]. However, a major limitation of stacked models is that they
can be computationally expensive when working with large training
datasets, as the entire dataset is used to train each base classifier.

In summary, Ensemble learning is a machine learning technique that com-
bines multiple models to improve the overall performance of the system.
They work together to make a final prediction. There are various ensem-
ble learning techniques, such as bagging, boosting, and stacking. Bagging is
used to reduce the variance of a single model, while boosting is used to re-
duce the bias. Stacking is used to combine the predictions of multiple mod-
els. Ensemble learning is widely used in practice, as it has been shown to
improve the performance of many machine learning tasks.

Dynamic Ensemble of Deep Learning Approaches Following the discus-
sion on ensemble learning, it’s imperative to delve into its advanced coun-
terpart: dynamic ensemble learning in the context of deep learning. This
technique has emerged as a pivotal advancement in machine learning, offer-
ing the potential to combine the strengths of multiple deep learning models
to achieve superior predictive performance. Over the past few years, several
groundbreaking studies have been conducted in this domain, shedding light
on its capabilities and applications. Dynamic ensemble of deep learning ap-
proaches is a new popular field of research that has the potential to improve
the performance of deep learning models. In this approach, multiple deep
learning models are trained on the same dataset and then combined to form
a single model. The combination of models can be done in a variety of ways,
such as averaging the predictions of the individual models [Zhang et al.,
2014], [Ganaie et al., 2022], [Simonyan and Zisserman, 2015], or using a vot-
ing scheme [Ko, Sabourin, and Britto, 2008], [Sammut and Webb, 2010]. The
advantage of dynamic ensemble of deep learning approaches is that they can

2.2. Fundamentals of Artificial Intelligence of Things 31
be more robust to noise and outliers than single deep learning models. Ad-
ditionally, they can be more accurate than single deep learning models when
the data is limited. In the upcoming section ,we review different approaches
related to dynamic ensemble learning: In the realm of ensemble learning, the
term "base learners" is used to refer to individual neural networks (NNs).
These base learners are essentially standalone classifiers that undergo train-
ing and are then amalgamated to mitigate individual errors and enhance gen-
eralisation capabilities separately. Historically, attempts have been made to
create ensembles by merging NNs, with a focus on either their accuracy or
diversity, as evidenced in previous research [Hansen and Salamon, 1990],
[Hashem, 1997], [Tang, Suganthan, and Yao, 2006]. It has been observed
that accurate and diverse NNs have the potential to form effective ensem-
bles that disperse errors across different regions of the input space [Brown
et al., 2005, [Zhang and Zhou, 2013]. In [Alam, Siddique, and Adeli, 2020]] a
new dynamic ensemble learning algorithm for designing neural network en-
sembles has been introduced. The proposed algorithm consists of two-step
process for creating an ensemble of neural networks. The first step involves
training two neural networks using different algorithms: Ash’s constructive
algorithm for dynamic node creation [Ash, 1989]] and Reed’s pruning algo-
rithm[Reed, 1993]. The second step involves creating separate training exam-
ples for each neural network and training them partially for a fixed number
of epochs.

In [Yin, Huang, and Hao, 2015] introduced a two-stage hierarchical ap-
proach to ensemble learning known as the dynamic ensemble of ensembles
(DE2). DE2 consists of component classifiers and interim ensembles, and the
final DE2 is obtained through weighted averaging. [Cruz et al., 2015] imple-
mented a two-phase dynamic ensemble selection (DES) framework. In the
first phase, DES extracts meta-features from the training data, while in the
second phase, DES employs a meta-classifier to evaluate the competence of
the base classifier before adding it to the ensemble. [Huanhuan Chen and
Xin Yao, 2009] work demonstrated that NCL treats the entire ensemble as
a single machine with the aim of minimising the mean square error (MSE)
and does not incorporate any form of regularisation during training. They
proposed a regularised NCL (RNCL) that includes a regularisation term for
the ensemble. This enables RNCL to decompose the training objectives into
sub-objectives, each of which is implemented by an individual neural net-
work. RNCL exhibits improved performance over NCL, even when dealing
with datasets containing higher levels of noise. [Conroy et al., 2016] proposes
a two-stage machine learning algorithm that can handle missing data with-
out the need for data imputation. The algorithm learns a dynamic classifier
ensemble from the incomplete dataset, with the goal of enhancing the accu-
racy of predictive models by incorporating sparsely measured features. The
first step of this algorithms involves calling AdaBoost, however one potential
limitation could be the reliance on a variant of AdaBoost for learning the low-
dimensional classifiers. AdaBoost is known to be sensitive to noisy data, and
if the missing data is imputed with noisy values, it could negatively impact
the performance of the algorithm.

32 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
2.2.3 Graph Topology
As explained earlier, deep learning has revolutionised numerous fields, from
image recognition to natural language processing. However, when it comes
to structured data such as graphs, traditional deep learning methods fall
short. This is where graph theory, a branch of mathematics, comes into play,
providing the necessary tools and concepts to handle such data structures.

Graph Theory: Definitions and Mathematical Formulations Graph the-
ory studies the properties of graphs. A graph G is defined as a pair G :=
(V, E) comprising a set V of vertices or nodes together with a set E of edges
or arcs. Each edge is a 2-element subset of V1.

The degree of a vertex is the number of edges that connect to it. For an
undirected graph, the degree of a vertex v, denoted as deg(v), is the number
of edges incident with it. In a directed graph, we distinguish between the
in-degree deg−(v) (number of incoming edges) and the out-degree deg+(v)
(number of outgoing edges) [Barioli, Fallat, and Hogben, 2004].

A path in a graph is a sequence of vertices where each adjacent pair is
connected by an edge. The length of the path is defined by the number of
edges in the path[Barioli, Fallat, and Hogben, 2004].

Importance of Graph Theory in Deep Learning The rise of graph-structured
data such as social networks, regulatory networks, citation graphs, and func-
tional brain networks, in combination with the success of deep learning in
various applications, has brought interest in generalizing deep learning mod-
els to non-Euclidean domains[ref]. In this context, graph theory plays a cru-
cial role in developing new deep learning models that can handle such data.
For instance, Graph Convolutional Networks (GCNs) are a type of neural
network designed to work directly on graphs and leverage their structural
information[Levie et al., 2019].

2.2.4 Federated learning

Federated learning (FL) is becoming increasingly important in the field of
AIoT applications. With the proliferation of connected devices in the IoT
ecosystem, federated learning offers a way to train AI models on data gener-
ated from these devices without compromising data privacy. This approach
allows for the creation of AI models that can improve the performance of IoT
applications, while still protecting the sensitive data generated by individual
devices. Additionally, federated learning can enable the creation of person-
alised AI models that can adapt to the specific needs of each user or device,
leading to more efficient and effective AI-based services. As such, the adop-
tion of federated learning is crucial to realising the full potential of AIoT and
unlocking the benefits of intelligent, connected devices.

The objective of the federated learning algorithm is to train a unified
model using data gathered from multiple distributed devices. The algorithm
works under the limitations of resources available on each device, where the
model is trained locally and periodic updates of the intermediate model are
sent to the cloud (server) [Imteaj et al., 2023]. The primary aim is to minimise

2.2. Fundamentals of Artificial Intelligence of Things 33
a loss function used for training, which can be represented by the following
equation [McMahan et al., 2017]: Overall, the goal of federated learning is to
optimise the following objective function:

min
w

F(w) =
K

∑
k=1

pkFk(w) (2.14)

where Fk(w) is the loss function on client Ck with model parameters w, and
pk is the probability of selecting client Ck in each round of training. The ob-
jective is to find the global model parameters w that minimise the overall loss
function F(w). Algorithm 5 explains the main federated learning algorithm
as explained in

Algorithm 5 Federated Learning

1: Initialize: w0
2: for t = 1, 2, . . . , T do
3: Ct← Randomly sample a subset of clients
4: for k ∈ Ct do
5: wk, t← ClientUpdate(wk, t− 1,Dk)
6: end for
7: wt← 1

|Ct| ∑ k ∈ Ctwk, t
8: end for
9:

10: return wT

In this algorithm, Ct represents the set of clients selected at iteration t, and
|Ct| is the number of clients in the set. The ClientUpdate function denotes
the local training step on client Ck, which updates the model parameters from
wk, t− 1 to wk, t. The final output of the algorithm is the global model pa-
rameters wT at the end of T iterations.

[McMahan et al., 2017] introduced the terminology of Federated Learning
(FL) along with an algorithm called Federated Averaging (FedAvg). FedAvg
comprises of multiple communication rounds between clients and the server,
interspersed with several local model update steps taken by each client. The
main difference between the general Federated Learning algorithm and Fe-
dAvg is in the model aggregation step. In FedAvg, the model parameters are
aggregated using a weighted average that takes into account the number of
data points on each client. This ensures that clients with more data have a
greater influence on the global model, which can lead to better performance
on the overall task. The model aggregation function is presented in Equa-
tion 2.15 [McMahan et al., 2017]:

wt←∑ k = 1K nk
n

wk, t (2.15)

where nk is the size of client k’s dataset and n = ∑ k = 1Knk is the total num-
ber of data points in all clients’ datasets. FedAvg also introduces a few other
modifications to the general Federated Learning algorithm, such as the use of

34 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review

FIGURE 2.7: A typical FL-AIoT system with N participants

momentum and local clipping to improve convergence and prevent the up-
date steps from being too large. These modifications are aimed at address-
ing some of the challenges that arise when training models on distributed
data sources with varying degrees of heterogeneity and non-IIDness [Li et
al., 2020b].

Most recently, FL has recently emerged as a promising approach for con-
structing IoT systems that are both intelligent and privacy-preserving [Zhai
et al., 2021], [Sun et al., 2020], [Mills, Hu, and Min, 2020]. For example, differ-
ent mobile devices could collaborate together in order to improve the search
query suggestions (used by Google Keyboard) [Yang et al., 2018b]. There are
also other benefits to applying Federated Learning in the AIoT domain, such
as: a) Privacy Enhancement: FL allows for model training without the need
for raw data at the aggregator. This minimises the risk of sensitive user infor-
mation being leaked to external third parties, which in turn provides a degree
of data privacy. Thus using FL for applications that work under Data Protec-
tion Regulations like (GDPR) could be very useful; b) Low-latency Network
Communication: The use of FL technology can decrease communication la-
tencies that arise from data transmissions because there is no obligation to
transmit generated IoT data immediately to the server. This also results in
conserving network resources, such as spectrum and transmit power, during
data training [Chen et al., 2021]. The FL concept within IoT networks com-
prises two primary components: data clients, which refer to IoT devices, and
an aggregation server situated at a base station as demonstrated in Figure 2.7

2.2. Fundamentals of Artificial Intelligence of Things 35
While federated learning offers many benefits such as privacy preserva-

tion, it also presents several challenges, particularly when dealing with non-
iid (non-independent and identically distributed) datasets. In the context of
AIoT, data generated by IoT devices is often non-iid, meaning that the data
distribution across different devices is different. This heterogeneity poses a
significant challenge in aggregating local models to create a global model that
can generalise well on unseen data. Therefore, addressing the non-iid chal-
lenge is crucial to achieving the full potential of federated learning in AIoT
applications. Research efforts are currently focused on developing new al-
gorithms and methodologies that can effectively handle non-iid data in fed-
erated learning. In the following subsection, we will delve into the impact
of the non-iid challenge and explore several approaches that have been pro-
posed to tackle it.

The Effect of Non-independently and Identically Distributed (non-IID data)
in Federated Learning

FedAvg is one of the first central aggregation strategies that orchestrates the
distributed federated learning process [McMahan et al., 2017].

FedAvg employs SGD (Stochastic Gradient Decent) to optimise the aver-
aged weights from the clients. However, SGD requires IID sampling of the
training data sets to generate an unbiased estimate of the full gradient [Bot-
tou, 2010]. In real-world applications, it’s unrealistic to assume that the data
on edge devices is following IID distribution. Actually, dealing with non-IID
datasets is a key challenge in federated learning [Li et al., 2020a]. Due to the
statistical heterogeneity between the clients’ datasets, the distribution of each
local dataset is different from the global distribution (drift in local updates).
As a result, each client’s objective is inconsistent with the global optima. Fur-
thermore, large local updates (a large number of epochs [epochs refer to the
number of times the entire training dataset is passed during the training pro-
cess].) lead to significant differences between the averaged model and global
optima, leading to low accuracy in non-IID settings [Li et al., 2021c]. Fig-
ure 2.8 explains the issue of FedAvg under non-iid settings.

As shown in the figure above, if a client performs different local updates,
then the updated global model w(t+1,0) stays close to the local minimum w1∗
rather than straying toward the true global minimum x∗.

Approaches to Deal With Non-IID Data in Federated Learning FedAvg
suffers when the heterogeneity of the data is different between clients [Karim-
ireddy et al., 2021] (non-IID datasets). This happens because the distribution
of each local dataset is very different from the global distribution. Different
works have been proposed to optimise FL on non-IID datasets, we divide
them into different categories and summarise the most recent ones:

Data-based Approaches Data-based approaches could be divided into
two main categories, namely data sharing and data augmentation. Data
sharing is a simple, yet effective approach to tackle statistical heterogene-
ity in non-iid settings. [Zhao et al., 2018] proposes to create a subset of the

36 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review

FIGURE 2.8: Model updates in the parameter space. Orange
and green refer to the minima of global and local objectives,

respectively.

data to be globally shared between the clients, hence generalising the learn-
ing task. The experiments on the CIFAR10 dataset show that the accuracy
could be increased up to 30% while globally sharing only 5% of the dataset.
Similarly, [Tuor et al., 2021] developed a mechanism to select a global subset
of the client’s data to be used in a federated learning task which is popular
in some domains like the health sector. There are notable deficiencies in the
data-sharing approaches. Initially, obtaining a uniformly distributed global
dataset is challenging due to the server’s lack of knowledge regarding data
distributions among connected clients. Additionally, distributing segments
of the global dataset to each client for model training goes against the fun-
damental motivation of privacy-preserving learning, which is a requirement
for this process.

Data augmentation methods are a set of techniques to increase the num-
ber of data samples by applying different transformations. Its mainly used
to mitigate the issues of using imbalanced datasets in ML applications [Dao
et al., n.d.]. [Duan et al., 2019] uses data augmentation to develop a self-
balancing federated learning framework that outperforms FedAvg on im-
balanced EMNIST and imbalanced CINIC-10 datasets. To address the is-
sue of Non-IID data, XorMixFL framework has been introduced by [Shin
et al., 2020] which applies a data augmentation technique. The basic concept
in XorMixFL is that each client shares its encoded seed samples (encoded
through the XOR operator) with the server for decoding. A new balanced
dataset is constructed by combining the decoded samples with the base data
samples on the server. Subsequently, a global model is trained on this re-
constructed data, which is then downloaded to each client until the training
is complete. In [Yoon et al., 2021], on the other hand, the authors suggest a
mean augmented method, which involves exchanging locally averaged batch
data with the server. The mean data received is then combined and trans-
ferred back to each client, reducing the degree of local data imbalance. In
general, the use of data augmentation techniques can greatly enhance the
learning performance of models trained on Non-IID data by replenishing
the imbalanced local data with augmentations. Nevertheless, as mentioned

2.2. Fundamentals of Artificial Intelligence of Things 37
above, many of these techniques require data sharing, which could poten-
tially increase the risk of data privacy breaches.

Algorithm-based Approaches Several algorithm-based approaches were
proposed in the literature as follows.

Local fine turning: The authors of FedProx [Li et al., 2020a], apply some
modifications to FedAvg to allow partial information aggregation. This pro-
vides convergence guarantees when learning over data from non-identical
distributions. [Li et al., 2021b] is another optimisation attempt to work on
non-idd data. The approach uses local batch normalisation to alleviate the
feature shift before averaging the clients’ models. FedNova [Wang et al.,
2021a] is another recent framework that relies on FedAvg; it normalises and
scales the local updates of the clients according to their number of local steps
before updating the global model.

Personalisation layers: edge clients are given the option to have a set
of personalised layers that will not be shared with the server. A popular ap-
proach that falls under this category is FedMA [Wang et al., 2020b] which was
originally designed to offer extra support for deep learning models, and it
works by sharing the global model in a layer-wise manner. Furthermore, LG-
FEDAVG [Liang et al., 2020] is a new federated learning framework that out-
performs FedAvg in federated learning settings. In LG-FEDAVG, the shallow
layers of the deep learning models are considered personalised layers, and
the base layers of the networks are shared with the server. In contrast to
LG-FEDAVG, FedPer [Arivazhagan et al., 2019] allows the shallow layers to
be shared with the aggregation server. FedPer and LG-GEDAVG have re-
sulted into good accuracy results, and they also reduce the communication
cost since shallow layers are lightweight when shared over the network with
the aggregation server. In general, Personalisation Layers are a promising
approach to enhance accuracy in non-iid settings.However, one major draw-
back is that the clients are not able to release the personalisation layers.

Multi-task learning (MTL) methods: are inductive transfer approaches
that aim to improve generalisation performance by learning multiple tasks
simultaneously. [Smith et al., 2018] has developed MOCHA as a new frame-
work that considers the issues of high communication cost, stragglers, and
fault tolerance in distributed multi-task settings. MOCHA employs primal-
dual optimisation to generate separate but related models for each client.
However, primal-dual optimisation is unsuitable for non-convex problems
and is limited to shallow networks.

Transfer learning (Knowledge distillation): Transfer learning allows knowl-
edge exchange between different domains to achieve higher learning rates.
Following this approach, [Chen et al., 2020] has developed FedHealth as the
first federated transfer learning framework for wearable health devices. Fed-
Health adapts the inputs from different domains by replacing fully connected
layers with an alignment layer. Similarly, [Wang et al., 2022] has developed
another federated transfer learning framework for smart manufacturing with
cross-domain applications (Fed-LTD). However, one of the main disadvan-
tages of knowledge distillation is the negative transfer issue that can lower
the clients’ performance. Negative transfer occurs when data from the source

38 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
domain and the task contribute to reduced learning performance in the tar-
get domain [Pan and Yang, 2010]. Client clustering: In the literature, two
primary types of secure data similarity evaluation methods have been intro-
duced to address this issue. One method involves evaluating the similarity
of the loss value, while the other main goal is to evaluate the similarity of
model weights. The first similarity evaluation approach, reported in [Sat-
tler, Müller, and Samek, 2019], [Ghosh et al., 2020], [Mansour et al., 2020],
involves comparing the loss values of various cluster models. The funda-
mental concept behind this technique is simple: instead of creating a single
global model, the server produces multiple global models and distributes all
cluster models to connected clients for local empirical loss computation. Each
client then updates the received cluster model with the lowest loss value and
transmits it back to the server for cluster model aggregation. The second ap-
proach involves assessing the similarity of local data and clustering based on
the local model weights. In [Briggs, Fan, and Andras, 2020], [Sattler, Müller,
and Samek, 2021] FedAvg is employed first to train and warm up the global
model, and then the model is downloaded locally to each client for local
training. Then the models are sent back to the server to be clustered based on
the weights. Client clustering is both necessary and justifiable to tackle non-
iid challenges, and this is because merging local models trained on vastly
different data can lead to negative knowledge transfer; hence, the overall per-
formance of the shared model will decline. Furthermore, creating multiple
global models instead of a single one improves the scalability and flexibil-
ity of FL systems, enabling system developers to select or combine different
cluster models to suit specific tasks. Nevertheless, this method requires ad-
ditional computation and communication resources for model training and
testing. Ensemble learning: In Fed-ensemble [Shi et al., 2021a], the authors
leverage ensemble learning to bring greater generalisation power to Feder-
ated Learning (FL). Fed-ensemble utilises random permutation to update a
group of models and then produces the prediction through model averaging.
By doing so, Fed-ensemble is able to achieve improved performance and ac-
curacy compared to traditional FL methods.

Graph representation learning: most recently, graph representation has
become a prominent topic in the ML community due to its wide applica-
tions. Different works have been proposed to use graph learning in FL.
GraphFL [Wang et al., 2020a] is specifically designed to address the chal-
lenge of non-iid using a semi-supervised node classification approach based
on graphs. First, GraphFL follows the training scheme of MAML (Model Ag-
nostic Meta-Learning) to learn a global model on a server. Then, it leverages
the traditional FL methods (e.g. FedAvg) to further improve generalisation
on training sets. FedCG [Caldarola et al., 2021] is another framework to ad-
dress the statistical heterogeneity in FL by means of GCN (Graph Convolu-
tional Networks). FedCG consists of three major steps: a-identify the clusters
that share the same data distributions; b-assign network components to the
formed clusters; c-interaction with the GCN. [Zheng et al., 2021] and [Mei
et al., 2019] preserve privacy in FL using similarity-based graph neural net-
works.

2.3. Bringing Machine Learning to the Edge 39

2.3 Bringing Machine Learning to the Edge

Deep neural networks (DNNs) have gained wide attention due to their re-
markable performance in various application domains such as computer vi-
sion, natural language processing, and self-driving cars. The key factor re-
sponsible for their success is the incorporation of a large number of hidden
layers that facilitate the learning of complex and abstract features. However,
the use of numerous layers makes deep neural networks computationally ex-
pensive, and memory-intensive, and necessitates millions of floating-point
operations (FLOPs) to be trained. This, in turn, increases energy consump-
tion and inference time, making it challenging to deploy and train DNN
models on AIoT environments and embedded systems.

To tackle preceding challenges related to the high computational cost and
memory requirements of deep neural networks, researchers have proposed
various methods to compress these models. One of the earliest attempts was
made by Reed and others [Reed, 1993], who proposed two general themes for
generating smaller neural networks: sensitivity methods and penalty terms.
Sensitivity methods involve measuring the sensitivity of neurons based on
an evaluation function and removing the less important neurons from the
network. On the other hand, penalty terms involve applying a penalty factor
to the objective function to make it smaller, which allows for the removal of
weights with lower values. Since then, researchers have developed new algo-
rithms and approaches to speed up and compress neural networks, making
them more efficient for deployment in resource-limited environments.

These approaches can be broadly classified into two main themes: software-
oriented approaches and hardware accelerators. Software-oriented approaches
focus on optimising the neural network architecture and training process
to reduce computational and memory requirements. Examples of such ap-
proaches include weight pruning, knowledge distillation, quantisation, and
low-rank factorization. Hardware accelerators, on the other hand, aim to im-
prove the performance of neural networks by offloading the computational
tasks to specialised hardware. Examples of hardware accelerators include
graphics processing units (GPUs), field-programmable gate arrays (FPGAs),
and application-specific integrated circuits (ASICs).

Figure 2.9 provides an overview of the existing approaches to accelerate
and compress deep neural networks. In the next section, we will review these
techniques in detail and highlight their advantages and limitations.

2.3.1 Software Approaches

Software approaches for accelerating deep neural networks typically involve
modifying the network architecture or adjusting the training process to pro-
duce a more efficient model. These methods can be classified into several cat-
egories such as quantisation, knowledge distillation, and pruning. In the up-
coming section, we will delve deeper into the various techniques employed
in software-oriented approaches for accelerating deep neural networks.

40 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review

FIGURE 2.9: Classification of deep learning acceleration ap-
proaches.

Pruning

Pruning is widely used not only to reduce the complexity of a neural net-
work but also to handle overfitting. Reed et al. [Reed, 1993] were among the
first researchers who categorized the ways to generate smaller neural nets,
and one of these ways is pruning. [LeCun, Denker, and Solla, 1990] and
[Hassibi, Stork, and Wolff, 1993] use the Hessian matrix to prune irrelevant
connections. Later [Han, Mao, and Dally, 2015] proposed a novel method to
prune a network, it starts by learning the important neurons through a train-
ing process, removing less important connections, and finally fine-tuning the
weights of the network. The simulation results of AlexNet show up to 9x
reduction (from 61 million parameters to 6.7 million).

These techniques are further categorised into various subcategories based
on their approach:

Neuron Pruning Neuron pruning is a technique utilised for compressing
and accelerating deep neural networks by eliminating neurons that are con-
sidered less significant to the network’s performance. The neuron pruning
process can be broken down into two primary steps: Evaluation and Prun-
ing. During the evaluation, an evaluation function is used to calculate the
importance of each neuron in the network. There are various methods for
evaluating the importance of neurons [Zeng and Yeung, 2006], such as:

Weight Decay Method : The approach involves the addition of a penalty
value to the objective functions in order to minimise them and remove the
connections with low weights. As per [Nielsen and Hansen, 2008], a new
pruning algorithm for neural networks was proposed which was able to sig-
nificantly reduce the dimensions of feed-forward networks while maintain-
ing an acceptable level of accuracy. The algorithm relied on a penalty func-
tion that effectively discouraged the existence of unnecessary neurons and

2.3. Bringing Machine Learning to the Edge 41
minimised the weights’ values. A disadvantage of the Weight Decay prun-
ing method is that it requires careful selection of the regularisation parameter,
which controls the balance between the model’s complexity and the size of
the weights.

Magnitude-based Pruning / MBP : MBP is a simple but effective way
to remove redundant connections that are set below a certain defined value.
[LeCun, Denker, and Solla, 1990], [Hassibi, Stork, and Wolff, 1993] proposed
one of the very first techniques; they assumed that each connection in a neu-
ral network has a saliency (saliency refers to the importance of a neuron
or a weight [Siddiqui et al., 2019]), the connections with low saliency fac-
tor are considered redundant and could be removed from the model safely
. The saliency calculations depend on the Hessian matrix and derivatives of
the weights. Similarly, [Hagiwara, 1994], [Wan et al., 2009] considered low
weights are good candidates to be pruned away and reduce the number of
connections in the network. In [Hagiwara, 1994], the authors proposed a
method which involves setting a threshold value for the weights and remov-
ing those that fall below it. The authors also introduce a new criterion for
removing hidden units, based on the sensitivity of the output to changes in
the input. The method starts by measuring the importance of each neuron
using the derivative of the network’s error function with respect to the neu-
ron’s output. The neurons with low importance are then removed, and the
network is retrained to fine-tune the remaining weights. The main disadvan-
tage of MBP is that it may lead to over-pruning, where important connections
may be mistakenly removed.

Cross-validation : Cross-validation is a pruning technique that relies on
both magnitude-based and penalty methods, but includes an additional val-
idation step. Initially, the dataset is divided into training and validation sets,
and pruning begins. At each pruning step, the performance of the pruned
model is cross-validated using the validation set. If the pruned model out-
performs the original network, the pruning process continues. However, if
the performance of the pruned model is worse than the original network,
the pruning is stopped, and the network is restored to its previous status.
The proposed approach was first introduced by [Huynh and Setiono, 2005].
The authors suggest adding a penalty value to the error function to minimise
the magnitude of the weights for less important connections. The method
was tested on 32 datasets, and it showed remarkable results. [Huynh and
Setiono, 2005] argue that their pruning method helps the network gener-
alise better, making it more versatile in solving diverse problems. How-
ever, Cross-validation methods are computationally expensive, especially for
larger datasets or more complex models. This is because it involves training
and evaluating multiple models, which can take a significant amount of time
and resources [Badrinarayanan, Kendall, and Cipolla, 2017].

Mutual Information : Mutual information (MI) is as a method to con-
trol the optimal number of hidden units in neural networks. Specifically, the
singular-value decomposition algorithm is used to interpret the covariance

42 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
matrix of the hidden input. A novel two-phase algorithm based on MI is pro-
posed by [Hong-Jie Xing and Bao-Gang Hu, 2009] for pruning hidden layers
and input units. In the first phase, all input features are ranked according to
their relevance to the target output, and the less important ones are identified
and safely removed based on their ranking and contribution to the network
accuracy. In the second phase, hidden units are ranked according to their
relevance measure function, and then removed one by one. Simulation re-
sults demonstrate that the proposed algorithm outperforms Support Vector
Machine (SVM) and Support Vector Regression (SVR).

Similarly, [Zhang and Qiao, 2010] proposed a simple architecture for neu-
ral networks by applying Mutual Information-based methods. They suggest
using the entropy of the neural net, calculated using a covariance matrix, to
perform hidden node pruning. This pruning approach ensures that hidden
units with low information capacity are without affecting the information ca-
pacity of the related network. One major advantage of this method is that no
training is required to minimise the cost function, and pre-processing of the
weights is avoided, resulting in reduced training time.

However, mutual information-based pruning can result in over-pruning
of the network, leading to poor performance [Mocanu et al., 2018].

Sensitivity Analysis : A considerable amount of literature has been
published on sensitivity analysis exploring its potential applications [Engel-
brecht, 2001], [Yan et al., 2020], [Zeng and Yeung, 2006], [Lauret, Fock, and
Mara, 2006], [Xu and Ho, 2006]. The general idea behind this approach is
to measure the impact of each node or weight on the objective function and
subsequently remove the least influential ones. Despite its effectiveness, one
significant drawback of sensitivity analysis is the extensive training time re-
quired, even on GPU (Graphical Processing Unit). The evaluation of all neu-
rons is a time-consuming task that could take hours, which limits its practi-
cality in real-world scenarios. In [Yan et al., 2020], the authors proposed PIY
allows for automatic pruning of neural networks by iteratively removing the
least important weights until the desired network size is reached.

Table 2.3 provides a comprehensive summary of neuron pruning meth-
ods, elucidating the primary approaches behind each and presenting poten-
tial use cases that underscore their significance in model optimisation.

Channel Pruning In the channel pruning technique, the primary aim is to
decrease the computational cost and accelerate the training process by substi-
tuting the over-parameterised convolutional filters with compressed filters.
A (1× 1) convolutional filter is used to replace a (3× 3) filter to attain a top-
notch performance, as reported in [Szegedy et al., 2016]. Following the same
trend, [Wu et al., 2016a] presented "SqueezNet," an object detection model
designed for autonomous driving, which also uses (1× 1) convolutional fil-
ters instead of (3× 3) filters to achieve accuracy comparable to that of the
well-known AlexNet model.

While each pruning technique discussed above has its strengths and lim-
itations, recent studies have shown that combining multiple pruning tech-
niques can lead to better performance than using a single technique alone.

2.3. Bringing Machine Learning to the Edge 43

Neuron Prun-
ing Method

Approaches (Citations) When to use

Weight Decay
Method

[Nielsen and Hansen,
2008]

Reducing dimen-
sions of feed-forward
networks for accu-
racy maintenance

Magnitude-
based Pruning
(MBP)

[LeCun, Denker, and Solla,
1990], [Hassibi, Stork, and
Wolff, 1993], [Siddiqui
et al., 2019], [Hagiwara,
1994], [Wan et al., 2009],
[Hagiwara, 1994]

Removing redundant
connections to main-
tain model efficiency

Cross-
validation

[Huynh and Setiono,
2005], [Badrinarayanan,
Kendall, and Cipolla,
2017]

Achieving better
network generalisa-
tion across various
problems

Mutual Infor-
mation

[Hong-Jie Xing and Bao-
Gang Hu, 2009], [Zhang
and Qiao, 2010]

Streamlining net-
work architectures;

Sensitivity
Analysis

[Engelbrecht, 2001], [Yan et
al., 2020], [Zeng and Ye-
ung, 2006], [Lauret, Fock,
and Mara, 2006]

Iterative pruning for
achieving desired
network sizes

TABLE 2.3: Summary of Neuron Pruning Methods

44 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
For instance, [Han, Mao, and Dally, 2015] proposed a three-step process that
first identifies important neurons through network training, prunes the less
important neurons, and then fine-tunes the weights through a retraining pro-
cess. [Hu et al., 2016] optimises the network’s architecture by removing ir-
relevant neurons based on statistical analysis for the neurons’ activations.
The approach is based on a fact: regardless of a network’s input, the out-
puts of a significant portion of neurons in a large network are mainly zero.
[He et al., 2019] proposes a filter pruning strategy relying on geometric me-
dian called FPGM, which considers the mutual relations between filters to re-
move the similar filter and generates compact CNNs architecture. Similarly,
[Luo and Wu, 2017] suggests another filter pruning algorithm; it evaluates
the importance of a deep learning model’ filter using the entropy-based ap-
proach. Next, the less critical filters are ignored to generate a smaller model.
[Setiono, 1997] presented a penalty function-based approach to prune deep
neural networks. This approach identifies the principle nodes in one epoch
using the Gram–Schmidt process and updates only the weights connected to
those nodes while keeping the rest of the nodes unchanged. However, one
of the major drawbacks of this method is the potential removal of important
neurons, which may decrease the accuracy of the model [Van Der Baan and
Jutten, 2000].

Quantisation

Quantisation is a crucial technique in the development of lightweight deep
neural because it aims to reduce the number of bits required to represent the
weights of neurons. This approach leads to important reductions in network
size and improves the efficiency of the neural network on AIoT devices. In
particular, K-means scalar quantization [Gong et al., 2014] has been demon-
strated as an effective method to reduce network complexity by quantising
network parameters, including weights and biases [Gong et al., 2014; Wu et
al., 2016b].

Another important application of quantisation is in speeding up the train-
ing process without significant loss of accuracy. For example, [Vanhoucke,
Senior, and Mao, 2011] used 8-bit linear quantisation to speed up the train-
ing process with little impact on accuracy. Another well-studied applica-
tion of quantization is the work in [Han, Mao, and Dally, 2015]. The author
found that applying quantisation to a pruned neural net achieves state-of-
the-art performance among all quantisation methods (it reduced AlexNet
from 240MB to 6.9MB). The approach presented in [Han, Mao, and Dally,
2015] depends on pruning the less important connections and then retrain-
ing the network. After that, it uses 8-bit quantization to shorten the number
of bits that are used to represent the weights. Finally, it applies Huffman
coding to the quantised weights to gain a more compression ratio.

Although quantisation is an essential tool to compress a neural network
size, reducing the number of bits used to represent weights and activations
can lead to accuracy loss. The degree of loss can depend on the complexity
of the model and the level of quantization applied.

2.3. Bringing Machine Learning to the Edge 45
Fine-tuned Architecture

In addition to the optimisation techniques discussed earlier, deep neural net-
works can be accelerated by fine-tuning their architecture for better infer-
ence and performance. This is a rich area of research, with a plethora of
published studies to draw upon. Noteworthy works in this field include
[Lin, Chen, and Yan, 2013], [Jin, Dundar, and Culurciello, 2014], [Ioffe and
Szegedy, 2015], [Wu et al., 2015], [Wu et al., 2016a], [Ghosh, 2017], [Zhang
et al., 2018b]. While it is beyond the scope of this thesis to provide an ex-
haustive review of this literature, we highlight in the next section the most
popular and recent works in this area.

Inception [Szegedy et al., 2014]: The Inception model represents a signifi-
cant milestone in the development of convolutional neural network (CNN)
architectures, having achieved state-of-the-art performance in both detection
and classification in the ImageNet Large-Scale Visual Recognition Challenge
2014 (ILSVRC14).

Prior to Inception, most CNN designs simply stacked convolutions of the
same filter size, as seen in popular models such as LeNet-5 [Lecun et al.,
1998], AlexNet [Krizhevsky, Sutskever, and Hinton, 2012] and ZFNet [Zeiler
and Fergus, 2013]. The Inception module’s novel design involved convolu-
tions with multiple filter sizes (1×1, 3×3, and 5×5) in a single layer, allowing
for more efficient use of the input image. To reduce the computational cost of
the more expensive 3×3 and 5×5 convolutions, additional 1×1 convolutions
were added before them. These 1×1 convolutions also served as Rectified
Linear Units (ReLU), further streamlining the network’s structure and re-
ducing computational demands. Figure 2.10 illustrate inception-v1 module.
Generally, an Inception network is the composition of the previous module
stacked together with max-pooling layers (stride=2) in the higher layers of
the network only, leaving the lower layers as traditional convolutional lay-
ers. The main advantage of this architecture is that it allows a significant
increase in the number of units without blowing up the computational com-
plexity. GoogLeNet(the winner of ILSVRC14 competition) consists of 9 In-
ception modules linearly stacked, the depth is 27 layers in total(including
pooling layers) and it worth to mention that the name was a homage to
LetNet-5 [Lecun et al., 1998] as the work mainly inspired from it.

Inception V2 and V3 : In [Szegedy et al., 2015], the authors introduced
Inception v2 and v3, which aimed to further reduce computational complex-
ity while increasing accuracy by incorporating aggressive regularization and
factorized convolutions with smaller filters. Convolutions with high filter
size are considered very computationally expensive, so in Inception v2, the
authors factorised (5 × 5) convolution to (3 × 3) convolution to boost the
computational speed. In fact, the (5× 5) filter is 2.78 times more computa-
tionally expensive than the (3× 3) filter. Besides, they factorise the filters of
size (n× n) into (1× n) and (n× 1) convolutions. Applying this technique
was 33% cheaper than applying the normal (3× 3) convolution. Inception

46 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review

FIGURE 2.10: Inception model with dimension reductions.

v3 was provided with factorised convolutions in addition to RMSProp op-
timiser, label Smoothing which is a type of regularisers that is used to pre-
vent overfitting (overfitting occurs when a model learns the training data too
well, capturing noise and outliers, which leads to poor performance on un-
seen data due to a lack of generalization [Peng and Nagata, 2020]), and batch
normalisation for the output activation.

Inception V4 [Szegedy et al., 2016]: Inception v4 is a cutting-edge deep
learning architecture that combines multiple types of convolutional layers,
such as standard convolutional layers, Inception modules, and residual con-
nections. The use of residual connections also helps to improve the flow of
information through the network, which can lead to better performance. One
of the key innovations of Inception v4 is the "Factorised Reduction" module,
which is used to reduce the number of filters in the input to the Inception
module while preserving its spatial resolution. This helps to reduce the com-
putational cost of the network while maintaining its expressive power. By
using a combination of advanced techniques, Inception v4 achieves state-of-
the-art performance on a variety of computer vision tasks.

Although Inception’s models (V2, V3 and V4) have made a significant
contribution to the field of computer vision, it is worth mentioning that the
Inception family of models also have some limitations. One of the major
challenges with this family of models is their interpretability. Due to their
complex architectures and the use of multiple filters at different scales, it can
be difficult to understand how the network is making its decisions. This lack
of interpretability can be a significant obstacle in applications where trans-
parency and explainability are important, such as in the medical or legal

2.3. Bringing Machine Learning to the Edge 47
fields [Wu, Sahoo, and Hoi, 2020].

ResNets [He et al., 2016a]: Residual Networks (ResNets) are a type of deep
neural network that uses residual connections, also known as shortcut con-
nections, between layers, allowing the network to learn the residual map-
ping between the input and output, rather than the original mapping. The
"Residual Block" is a building block of the architecture and contains two or
more layers with a shortcut connection that allows the input to bypass one
or more of those layers. By adding the output of the block to the input and
passing it through an activation function, information can flow more easily
through the network, leading to improved training of deeper architectures.
One issue related to ResNets is overfitting, especially in deeper architectures.
This is because the additional shortcut connections can lead to more complex
models that are prone to overfitting the training data [He et al., 2016b].

Xception [chollet_xception:_2016]: Xception is a convolutional neural net-
work (CNN) architecture developed as an extension of the Inception archi-
tecture [Szegedy et al., 2014] for image classification and object recognition
tasks. The primary innovation in Xception is the utilisation of depthwise
separable convolutions that aim to reduce the computational cost of the net-
work while maintaining its expressive power. In contrast to standard convo-
lutional layers where a single filter is applied to all input channels, depthwise
separable convolutions independently apply filters to each channel, reducing
the number of parameters in the network. Xception utilises a novel variant of
the Inception module called "Separable Inception" that uses depthwise sep-
arable convolutions. However, [Hendrycks and Dietterich, 2019] shows that
Xception models are relatively less robust to common corruptions and per-
turbations, such as noise, blur, and brightness changes. This suggests that
Xception may not generalise as well to real-world applications.

MobileNet [Howard et al., 2017]: MobileNet is a class of network archi-
tecture that was specifically designed for mobile and embedded devices. It
allows application developers to select a small network that meets the re-
source constraints of their applications in terms of size and latency. Fur-
thermore, developers can control two global hyperparameters to trade-off
between latency and accuracy, allowing them to choose the optimal size of
the model based on the constraints of the problem. The fundamental blocks
in MobileNet are depthwise separable convolutions, which were first intro-
duced by [SIfre and Mallat, 2014] and were later used in Inception [Szegedy
et al., 2014] to reduce the number of computational operations in the first few
layers of the network.

MobileNetV2 [Sandler et al., 2018]: the main difference between MobileNet
V1 and V2 is the use of a new module called "Inverted Residual" which is
used in the V2 version. An inverted Residuals module is a more efficient
way to increase the depth and width of the network. In contrast to the tra-
ditional residual block, this module reduces the spatial resolution of the in-
put before applying the depthwise convolution, which helps to reduce the

48 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
computation required by the network. Another key difference between Mo-
bileNet V1 and V2 is the use of linear bottlenecks. A bottleneck is a layer with
a smaller number of filters than the previous layer, which helps to reduce the
computational cost of the network. In MobileNet V1 [Howard et al., 2017],
the bottlenecks use a 1x1 convolution to reduce the number of filters, but
in MobileNet V2, linear bottlenecks are used which have no non-linearity
between the depthwise and pointwise convolution, which makes the com-
putation more efficient. Table 2.4 shows compassion between V1 and V2 in
terms of the number of parameters and the number of multiply-accumulates
(Macs) which indicates the number of multiplication operations to perform
one inference (a larger number for MAC refers to a heavy architecture).

Network Number Of Parameters MAcs
MobileNetV1 4.2M 575M
MobileNetV2 3.4M 400M

TABLE 2.4: MobileNets V1 vs V2

MobileNetV3 [Howard et al., 2019]: MobileNet V3 is the third iteration
of the MobileNet architecture, which uses an automated search algorithm
to find the best architecture for mobile devices. Unlike its predecessors, V3
employs a different search strategy, where it uses two algorithms, MnasNet
[Tan et al., 2018] and NetAdapt [Yang et al., 2018a], to achieve a better bal-
ance between computational efficiency and accuracy. MnasNet uses rein-
forcement learning to select the best configuration from a set of choices, and
then the architecture is fine-tuned with NetAdapt to trim under-utilized ac-
tivation channels in small decrements. The proposed architecture is more
efficient than its predecessors and achieves state-of-the-art performance in
mobile computer vision networks. MobileNetV3 is two times faster than Mo-
bileNetV2 with the same accuracy levels, which is a significant improvement.
The new version also introduces the "MobileNet-EdgeTPU" module, which
is optimized for edge devices. This module combines depthwise convolu-
tion, pointwise convolution, and a squeeze-and-excitation block to improve
the performance of the network. The squeeze-and-excitation block allows the
network to adjust the scale of the feature maps adaptively, which can lead to
better accuracy. However, MobileNet family models, like many deep learn-
ing models, suffer from the interpretability problem, which makes it difficult
to understand how the model reaches its decisions [Zhu et al., 2022].

AdaNet [Cortes et al., 2016]: AdaNet is a lightweight framework designed
to learn neural network architecture through a combination of reinforcement
learning and evolutionary AutoML techniques. Unlike other AutoML frame-
works, AdaNet is not only used for finding the optimal architecture but also
for learning how to create ensembles of models for better performance. The
AdaNet algorithm adapts by searching for the desired neural network ar-
chitecture as an ensemble of subnetworks with varying widths and depths,

2.3. Bringing Machine Learning to the Edge 49
creating diverse ensembles to balance performance improvement with the
number of parameters. As such, AdaNet provides a flexible and adaptive
approach to AutoML.

MorphNet [Gordon et al., 2017]: Rather than using AutoML to find the op-
timal neural network architecture, MorphNet refines an existing architecture
and optimises it for the required task. It accepts a neural network as input
and builds a new compressed network that is faster and able to provide bet-
ter performance. MorphNet goes through a loop of shrinking and expand-
ing phases. During the shrinking phase, it spots the unproductive neurons
by calculating the cost with respect to the target resource and then applies
a sparsifying regulariser. Through the expanding phase, a width multiplier
[Howard et al., 2017] is used to uniformly expand all layer sizes.

EfficientNet [Tan and Le, 2019]: The EfficientNet model employs a com-
pound scaling method that scales the network’s depth, width, and resolution
while maintaining computational efficiency. This is accomplished through a
careful balance between these parameters and the use of cutting-edge tech-
niques such as depthwise separable convolutions, squeeze-and-excitation blocks,
and network architecture search. Each EfficientNet model is designated with
a notation such as ’EfficientNet-B0’, with "B" indicating the model size and
"0" denoting the model’s accuracy. For instance, EfficientNet-B0 represents
the basic version of the architecture, while EfficientNet-B7 is the largest and
most accurate model in the family. One limitation of EfficientNet is that it
may not generalise well to tasks outside of image classification, as it was pri-
marily designed and optimized for this task. This is discussed in the original
EfficientNet paper [Tan and Le, 2019],

EfficientNet-EdgeTPU : Google’s TPU accelerators for inferencing is be-
coming a very popular trend in a deep learning community. EfficientNet-
EdgeTPU is a new generation of computer vision models that are derived
from EfficientNet [Tan and Le, 2019] and customised to run smoothly on
power-efficient hardware accelerators (eg. Google Coral). It’s able to provide
a real-time image classification performance and yields high accuracy levels
that could only be seen in sophisticated neural network architectures run-
ning in data centres. To summarise, numerous architectures and techniques
have been proposed to address the challenges of model compression, per-
formance, and generalisation. Each technique introduces a unique approach
or modification, aiming to advance the state-of-the-art and provide efficient
solutions to real-world problems. Table 2.5 provides a detailed overview of
the most popular fine-tuned neural network architectures.

Low-Rank Factorisation

The acceleration of Convolutional Neural Networks (CNNs) is a topic of sig-
nificant interest in the field of deep learning. A number of factors can be
considered in this regard, including the critical impact of convolutional op-
erations on the training process. Due to the need to convolve all neurons,

50 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
TABLE 2.5: Summary of Finedtuned Neural Network Architec-

tures

Model Key Features Remarks
Inception [Szegedy et
al., 2014]

Multiple filter sizes in a single
layer.

State-of-the-art in
ILSVRC14.

Inception V2 & V3
[Szegedy et al., 2015]

Reduced computational com-
plexity, aggressive regulariza-
tion, and factorized convolu-
tions.

Inception V4
[Szegedy et al.,
2016]

Integration of standard convo-
lutions, Inception modules, and
residual connections.

Introduced "Fac-
torised Reduction".

ResNets [He et al.,
2016a]

Residual connections between
layers.

Prone to overfitting
in deeper architec-
tures.

Xception
[chollet_xception:_2016]

Extension of Inception uses
depthwise separable convolu-
tions.

Might not general-
ize well to real-world
scenarios.

MobileNet [Howard
et al., 2017]

Designed for mobile and em-
bedded devices.

Uses depthwise sepa-
rable convolutions.

MobileNetV2 [San-
dler et al., 2018]

"Inverted Residual" module and
linear bottlenecks.

Efficiency-focused.

MobileNetV3
[Howard et al.,
2019]

Uses MnasNet and NetAdapt. Introduced
"MobileNet-
EdgeTPU" module.

AdaNet [Cortes et al.,
2016]

Uses reinforcement learning
and evolutionary AutoML tech-
niques.

For architecture
search and ensemble
creation.

MorphNet [Gordon
et al., 2017]

Refines existing architectures. Uses a loop of shrink-
ing and expanding
phases.

EfficientNet [Tan and
Le, 2019]

Compound scaling method. Designed for image
classification.

EfficientNet-
EdgeTPU [Tan
and Le, 2019]

Derived from EfficientNet. Optimized for
Google’s TPU ac-
celerators.

compressing convolutional layers is an effective approach for reducing train-
ing time. The work presented in [Jaderberg, Vedaldi, and Zisserman, 2014]
aimed to achieve this goal by constructing low-rank filters in one dimen-
sion. Another approach for accelerating CNNs is to consider the convolution
kernels, which are typically expressed as four-dimensional tensors 1 It is be-
lieved that these tensors contain a large number of redundant connections,
and thus reducing the number of neurons in them can improve compression

1a tensor is a mathematical object that generalises matrices to higher dimensions. It’s a
container which can house data in N dimensions, often used as a fundamental data structure
by neural networks [Panagakis et al., 2021].

2.3. Bringing Machine Learning to the Edge 51
ratios [Rigamonti et al., 2013]. In addition to the convolutional layers, the
input and output layers (fully connected) can also be represented as two-
dimensional matrices. This low-rank representation can be useful for reduc-
ing calculation time, as shown in [Denton et al., 2014]. It is worth noting that
all low-rank factorisation methods require decomposing filters or kernels,
which can be computationally expensive. Finally, It is worth mentioning that
factorisation approaches may not always be effective. For example, if the fil-
ters or kernels in a CNN already have a low-rank structure, then using low-
rank factorisation approaches may not result in significant improvements in
compression ratios. In fact, some studies have shown that for certain types
of CNNs, low-rank factorisation can even reduce the accuracy of the final
model [Dong, Gong, and Zhu, 2019].

Knowledge Distillation

is a widely used technique for compressing deep neural networks into shal-
lower ones, which aims to transfer the knowledge learned by the weights
in the original network (teacher network) into a smaller network (student
network). The idea of using knowledge transfer to produce compact mod-
els was first introduced by [Buciluǎ, Caruana, and Niculescu-Mizil, 2006],
and has since been adopted by many researchers as a common approach for
accelerating and compressing deep neural networks. Generally, knowledge
distillation approaches aim to compress large models into smaller ones by
learning target features using the softmax function, which transfers knowl-
edge from a teacher model (large network) to a student model (small net-
work). [Hinton, Vinyals, and Dean, 2015] extended this idea by developing a
new compression framework following the teacher-student paradigm. This
framework compresses the teacher model (an ensemble of deep neural net-
works) into a student model by training the student model to predict the out-
put of the teacher model in addition to the original classification labels. An-
other approach to knowledge distillation is the FitNet framework proposed
in [Romero et al., 2014]. FitNet allows for the training of deeper but thinner
student models using target outputs from the teacher model, guided by in-
termediate representations called "hints" to improve training and accuracy.
It distils the teacher model’s knowledge by minimising its feature map and
passing it to the student model. The experiments show that FitNet achieves
better or comparable performance to the teacher model [Hinton, Vinyals, and
Dean, 2015].

In [Yim et al., 2017], the authors identify the important information in the
teacher model, which is then transferred to a student model in terms of di-
rection flows between layers. Mathematically, to calculate the flow between
two layers, an FSP matrix is generated from the feature map of both layers
like the following:

Gi,j(x; W) =
h

∑
s=1

w

∑
t=1

F1
s,t,i
(
x; W

)
× F2

s,t,j
(
x; W

)
h× w

(2.16)

The learning phase of this method consists of two steps: 1- match FSP ma-
trices between the teacher and the student by minimising the loss function

52 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
LFSP,2- training for the original task.

“Net2Net“ [Chen, Goodfellow, and Shlens, 2015] is another technique
that was developed to accelerate the training process of deep neural nets
using knowledge transfer. This acceleration tool utilises function-preserving
transformations between the model’s architectures to achieve the required;
first, the student’s model is initialised to represent the same as the teacher’s
function, and then function transformation is applied. There are two types
of transformations; the first one is“Net2WiderNet“, where the model is re-
placed with an identical one but with more neurons in the hidden layers
(wider model); the second one is “Net2DeeperNet“, which replaces the model
with a deeper model that matches some of the features in the teachers. The
main difference between this approach and similar pre-training approaches
is the altered function that is used to represent the added layers to a neural
net’s model. Figure 2.11 shows the difference between “Net2Net“’s work-
flow and other knowledge transfer approaches. In [You et al., 2017] and

FIGURE 2.11: Net2Net vs others

instead of using one teacher model to train the student’s network, multi-
ple teacher‘s networks are collaborated to transfer their informative knowl-
edge to train a thin but deep neural network. The proposed method not only
averages the softened weights in the output layer for all teacher’s models
(dark knowledge) but also in the intermediate layers by applying dissimi-
larity constraint’s among the available examples. Although this approach
achieved remarkable results on benchmarking data sets, the computational
complexity could be a critical issue when compared with the previous ap-
proaches. In a similar manner, [Sau and Balasubramanian, 2016] developed
a simple approach “logit perturbation“ to transfer the knowledge from mul-
tiple noisy teachers to a single student. In their experiment, two teacher
models have been used: Teacher1(Network in a network Lin, Chen, and
Yan, 2013), Teacher2(modified Alexnet [Krizhevsky, Sutskever, and Hinton,
2012]), after that the geometric mean of the logist for both of them has been
calculated and passed to the logit value of the student’s model. The error

2.3. Bringing Machine Learning to the Edge 53
rate results show 20.44% for the student’s model while 21.94% for the stu-
dent that trained using Teacher1 only and 22.62% for the student that trained
using Teacher2 only, the previous results support that learning from mul-
tiple teachers could have better performance. Another interesting work in
this area is introduced in by [Zhang et al., 2018c], in this work “Deep Mu-
tual Learning (DML)“ strategy based on ensemble learning is proposed. The
knowledge distillation process in DML starts with an ensemble of untrained
students that works together to learn a specific task and learning in such a
way is significantly better than learning alone in a supervised environment.

Unlike the previous works which rely on teacher/student models to be
trained separately, [lan, Zhu, and Gong, 2018] introduced an online distil-
lation algorithm “On-the-fly Native Ensemble (ONE)“ that do a batch-wise
knowledge transfer in one phase only where both the student and the teacher
are built simultaneously without the need for an isolated training process for
both. In the training process, “ONE“ builds a multi-branch target network
by adding supplementary branches, and then a teacher model is constructed
on-the-fly using the ensemble of all branches. In the evaluation process, the
supplementary branches are removed and the trained model has converted
from a multi-branch to a single-branch again with zero-cost in time increase.
The experiences on CIFAR10/100 show that “ONE“ was not only able to
improve the generalisation and the quality of the distilled model, but also
reduce the computational complexity.

However, knowledge distillation techniques have their own limitations.
Recent studies have shown that knowledge distillation can result in a loss of
diversity in the learned representations and reduce the generalisation perfor-
mance of the student model [Furlanello et al., 2018]. The subsequent Table 2.6
offers a detailed summary of the leading knowledge distillation methods.

Evolutionary algorithms

Evolutionary algorithms have been widely used for finding optimal solu-
tions in solution spaces through the application of biological evolution op-
erators, such as crossover, mutation, and selection [Deb et al., 2002]. There
are different types of evolutionary-based techniques; however, genetic algo-
rithms (GAs) are the most popular ones [Hrstka et al., 2003] and they are
mainly used to evolve candidate solutions, followed by a selection process
that eliminates weak candidates and preserves good ones [Beasley and Chu,
1996].

Evolutionary-based techniques have been extensively employed in the
area of deep learning [Schaffer, Whitley, and Eshelman, 1992], [Angeline,
Saunders, and Pollack, 1994], [Yao and Liu, 1997], [Stanley and Miikkulainen,
2002], [Ding et al., 2013], [Xie and Yuille, 2017], including the use of genetic
algorithms for pruning neural networks, as demonstrated by Whitley [D.
Whitley, 1990], who generated multiple versions of pruned models through
reproduction, mutation, and crossover.

Similarly, [(Zhang, 1993)] developed an approach to simplify the architec-
ture of feed-forward neural networks by applying GA (Genetic Algorithms).
The problem of finding the optimal architecture for a neural network model
is considered a multi-objective optimisation problem, and the solution space

54 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
TABLE 2.6: Summary of Knowledge Distillation Techniques

Technique Description Remarks
Initial Idea [Bu-
ciluǎ, Caruana,
and Niculescu-
Mizil, 2006]

Compression by knowl-
edge transfer to produce
compact models.

Introduced the con-
cept of transferring
knowledge.

Hinton’s Ap-
proach [Hinton,
Vinyals, and
Dean, 2015]

Teacher-student paradigm
where student predicts
teacher’s output and origi-
nal labels.

Extended knowledge
transfer idea.

FitNet [Romero
et al., 2014]

Trains deeper, thinner stu-
dent models using hints
from teacher’s intermedi-
ate representations.

Improved training
and accuracy.

Directional
Flow [Yim et al.,
2017]

Transfers important info
from teacher to student in
terms of direction flows
between layers.

Utilizes FSP matrices.

Net2Net [Chen,
Goodfellow,
and Shlens,
2015]

Accelerates deep net
training using function-
preserving transforma-
tions.

Includes
"Net2WiderNet" and
"Net2DeeperNet"
transformations.

Multi-Teacher
Approach [You
et al., 2017]

Multiple teachers transfer
knowledge to a deep stu-
dent network.

Averages weights in
output and interme-
diate layers.

Logit Perturba-
tion [Sau and
Balasubrama-
nian, 2016]

Transfers knowledge from
multiple noisy teachers to
a single student.

Learning from multi-
ple teachers can im-
prove performance.

Deep Mu-
tual Learning
(DML)Zhang
et al., 2018c

Ensemble of untrained stu-
dents learn a task together.

Better than learning
alone in a supervised
environment.

On-the-fly Na-
tive Ensemble
(ONE) [lan,
Zhu, and Gong,
2018]

Online distillation with
batch-wise transfer, build-
ing student and teacher
simultaneously.

Improves generali-
sation and reduces
complexity.

is built using all the possible combinations of hidden nodes and layers, then
GA is applied to search for the optimal compressed architecture through
the existing solutions. In [Siebel, Botel, and Sommer, 2009], an evolution-
ary pruning method “Neuro-Evolution“ has been introduced to reduce the
complexity of a neural network by removing the less important neurons; the
process of pruning is done in conjunction with an evolutionary reinforcement
learning algorithm “EANT2“ [Siebel and Sommer, 2007]. As an evolutionary-
based method, “EANT2“ has an optimisation process that selects the best

2.3. Bringing Machine Learning to the Edge 55
candidates among the existing neurons to be part of the next optimal model;
during this process, the less important connections are identified and pruned
without any extra calculations. The pruning strategy is inspired by the work
in Optimal Brain Surgeon [Hassibi, Stork, and Wolff, 1993] and it depends on
calculating the covariance of the network’s parameters using Hessian matrix
and then CMA-ES [Hansen and Ostermeier, 2001] is adopted for parameters’
optimisation. The main algorithm of “EANT2“ is presented in Figure 2.12.
In [Hu et al., 2018], a novel approach to pruning convolutional neural net-

FIGURE 2.12: The EANT2 algorithm with pruning during
structural exploitation.

works (CNNs) using genetic algorithms is proposed. The approach involves
layer-by-layer pruning for a CNN model according to each layer’s sensitiv-
ity, tuning the pruned model using the knowledge distillation framework,
formulating the channel selection process as a search problem solvable effi-
ciently using genetic algorithms, and using a two-step approximation fitness
function to add extra efficiency to the genetic process.

One major drawback of using Genetic Algorithms (GA) for deep learn-
ing pruning is the high computational cost required to search for the optimal
solution in a large solution space. As the number of possible network archi-
tectures and parameters increases, the computational complexity of the GA
algorithm grows exponentially, which limits the scalability of the approach.
This can lead to long training times and significant computational resources,
which may not be feasible for large-scale deep learning models. For example,
[Hu et al., 2018] noted that the computational cost of the GA-based approach
is much higher than that of traditional pruning methods, due to the need
to search for the optimal network architecture in a large solution space. The
authors proposed a number of techniques to mitigate this issue, including us-
ing a layer-by-layer pruning approach and a two-step approximation fitness
function, but noted that these techniques only partially address the scalabil-
ity issue.

56 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
In order to provide a consolidated view of the discussed evolutionary al-

gorithms and their application in deep learning, Table 2.7 is presented below.
This table delineates the primary techniques, their brief descriptions, and the
associated references.

Technique Description Reference
Genetic Algo-
rithms (GAs)

Used to evolve candidate
solutions; applies selection
to eliminate weak candi-
dates and preserve strong
ones.

[Hrstka et al., 2003],
[Beasley and Chu,
1996]

Neural Net-
work Pruning
with GAs

Multiple versions of
pruned models generated
using reproduction, muta-
tion, and crossover.

[D. Whitley, 1990]

Simplified Ar-
chitecture of
Feed-forward
Neural Net-
works with GA

Solution space constructed
using all possible combina-
tions of nodes and layers;
GA used to find optimal
compressed architecture.

[(Zhang, 1993)]

Neuro-
Evolution
(EANT2)

Evolutionary pruning
method to reduce neural
network complexity by
removing less important
neurons. Uses an evo-
lutionary reinforcement
learning algorithm.

[Siebel, Botel, and
Sommer, 2009],
[Siebel and Sommer,
2007]

Pruning CNNs
using GAs

Layer-by-layer pruning of
CNN according to each
layer’s sensitivity, channel
selection as a search prob-
lem using GAs.

[Hu et al., 2018]

TABLE 2.7: Overview of Evolutionary Algorithms in Deep
Learning.

2.3.2 Hardware Approaches
As the field of deep learning has advanced, the demand for processing power
has become increasingly high. In order to achieve faster training and infer-
ence of deep neural networks, hardware acceleration techniques have been
developed to leverage specialised hardware resources. These hardware ap-
proaches have the potential to significantly speed up the computations in-
volved in deep learning and allow for larger and more complex models to be
trained in a reasonable amount of time. Some of the most common hardware
acceleration approaches include:

2.3. Bringing Machine Learning to the Edge 57
Graphics Processing Units (GPUs) : GPUs are specialised processors de-
signed to handle the massive amount of parallel computation required for
Deep Neural Networks (DNNs). GPUs have thousands of small cores that
can perform many simple operations in parallel, making them well-suited
for the matrix and vector operations that are common in DNNs [Nickolls
and Dally, 2010]. As a result, GPUs have become the de facto standard for
training large-scale DNNs. The development of GPU-based frameworks for
DNNs, such as TensorFlow [Abadi et al., 2016], PyTorch [Paszke et al., 2019],
and Caffe [Jia et al., 2014], has played a critical role in the widespread adop-
tion of DNNs, making it easier for researchers and practitioners to design
and train complex models efficiently. The use of GPUs has led to significant
speedups in training times for DNNs, enabling the development of more ac-
curate and sophisticated models that were previously impossible to train in
a reasonable amount of time. However, GPUs have limitations in terms of
consuming huge power, memory bandwidth, and requiring massive mem-
ory size, which can limit their scalability for larger DNN models.

Tensor Processing Units (TPUs) : Various hardware approaches have been
developed to accelerate the training and inference of DNNs. One of the most
promising approaches is the use of Tensor Processing Units (TPUs) devel-
oped by Google [Jouppi et al., 2017]. TPUs are application-specific integrated
circuits (ASICs) designed to accelerate the inference and training of DNNs.
They are particularly suited for large-scale, highly parallel DNN workloads,
as they can achieve up to a 15x speedup over GPU-based solutions [Jouppi
et al., 2017]. In addition, TPUs can be easily integrated with popular DNN
frameworks, including TensorFlow and PyTorch [Paszke et al., 2019]. Google
has also released Coral, a TPU-based USB accelerator that enables developers
to integrate TPU acceleration into edge devices such as cameras and robots
[Products n.d.]. This makes it possible to perform high-performance machine
learning tasks locally without relying on cloud-based solutions such as la-
tency and security [Xu et al., 2018].

Application-specific Integrated Circuits (ACSIs) : ASICs refer to a special-
ized category of integrated circuits (IC) that are tailored to perform a specific
function, as opposed to being designed for general-purpose use. A notewor-
thy example of the ASIC approach was presented by [Farabet et al., 2010],
who proposed a highly scalable hardware accelerator for processing large
convolutional neural networks. This accelerator consists of a Central Process-
ing Unit (CPU) that controls the configuration buses, a group of processing
tiles for performing macroscopic operators, and a dual-port memory stream-
ing engine that facilitates multiple and parallel operations on photos. This
research work inspired [Pham et al., 2012] to follow the "NeuFlow" architec-
ture proposed by [Farabet et al., 2011]. The aim of this system is to efficiently
detect, classify, and locate objects in complex scenes, leveraging a Xilinx Vir-
tex 6 FPGA platform. The system consumes only 10 watts of power, which
is significantly less than a laptop computer, while providing a speed increase
of up to 100 times in real-world applications.

58 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
Field Programmable Gate Arrays (FPGA) The traditional CPUs and GPUs
are not the optimal solutions when it comes to handling massive parallel
computations because it’s leading to high energy consumption and perfor-
mance bottlenecks. To overcome these challenges, researchers have explored
the use of specialised hardware accelerators such as Field Programmable
Gate Arrays (FPGAs) and Application-Specific Integrated Circuits (ASICs).
FPGA is rising as a promising hardware accelerator for accelerating deep
learning algorithms due to its special characteristics (customisation, high
computational capabilities, low energy consumption) [Mittal, 2018]. Many
researchers investigated the effect of FPGA on neural nets, studies showing
promising results [Ordoñez-Cardenas and Romero-Troncoso, 2008], [Peemen
et al., 2013], [Rice, Taha, and Vutsinas, 2009], [George and Hawkins, 2005].
[Farabet et al., 2011] develop a CoVNet processor using low-end DSP FPGA
(field programmable gate array). The system consists of one FPGA and an
external memory unit; the processor uses a network compiler software to
compile a trained CNN (Convolutional Neural Net) into a sequence of in-
structions, this processor was employed to recognise faces and could be eas-
ily applied on embedded devices. However, one of the main disadvantages
of FPGAs is their higher development cost and longer time-to-market com-
pared to ASICs. This is due to the need for hardware designers to program
and verify the functionality of the FPGA, which can be a time-consuming
and complex process [Mittal, 2016].

2.4 Artificial Intelligence of Things Main Applica-
tions

The adoption of AIoT applications has expanded significantly, with a signif-
icant impact on daily life quality and economic growth. This section lists
scenarios for AIoT applications in different domains such as smart homes,
smart healthcare, smart agriculture, smart grids, smart environment and the
Internet of Vehicles. Table 2.4 summarises the different application categories
with recent studies.

2.4.1 Smart Health Systems

The emergence of AIoT enabled by edge computing introduces a novel av-
enue for exploration in the medical and healthcare sector. This innovation
has already yielded various applications that include health monitoring sys-
tems, and disease diagnosis systems. Health Monitoring Systems: AIoT
presents a remarkable prospect for creating intelligent health monitoring sys-
tems that can monitor patients’ health conditions. Most recently, we have
started to witness remarkable advances in the smartwatches industry that in-
tegrates casual watch functions and smart sensors. Different sensors are used
to capture various measurements about our bodies like blood pressure, ECG,
oxygen level and even our sleep cycles [Falter et al., 2019]. Such devices are
also equipped with diagnosis functions and sounding warnings in real-time
to provide early warnings for potential health problems [Ahad, Tahir, and
Yau, 2019]. The authors in [Zhang et al., 2020] have developed smart socks to

2.4. Artificial Intelligence of Things Main Applications 59
detect early falling and monitor the symptoms of Parkinson’s disease [Bloem,
Okun, and Klein, 2021]. The socks are equipped with sensors that capture
body signals and transmit the data to nearby smart mobile phones in real-
time. This allows other applications to perform advanced analysis for the
submitted data using AI. Disease Diagnosis Systems: The recent advances
in AIoT has to lead to a new generation of AI-Based applications that help
doctors in medical diagnosis. In [Dilsizian and Siegel, 2013], (AI) is being
used in medicine and cardiac imaging to provide personalised diagnosis and
treatment. HealthFog [Tuli et al., 2020] is another smart healthcare system
that uses ensemble deep learning to automatically diagnose heart diseases
in integrated IoT and fog computing environments. HealthFog integrates
multiple data sources, including medical images and patient data, to make
accurate predictions. [Sood and Mahajan, 2018] has proposed another fog-
based healthcare system for the diagnosis and treatment of Chikungunya (a
mosquito-borne viral disease that can cause severe joint pain and fever). The
framework uses a combination of sensors, fog nodes, and cloud resources to
collect and analyse patient data in real-time. Nowadays, patients and sur-
geons have embraced Robot-assisted surgery (RAS) as a form of adjunctive
therapeutic technology. The surgical instruments, which are robotic in na-
ture, are controlled by the surgeon’s hand movements in real-time and op-
erate with small-scale precision. [Liu et al., 2020] proposes an anchor-free
convolutional neural network for real-time surgical tool detection. The CNN
model is trained to detect surgical tools in a live video stream without relying
on pre-defined anchor boxes. The proposed approach achieves high detec-
tion accuracy while maintaining real-time performance, making it suitable
for integration into robot-assisted surgical systems. In a similar manner, [Qiu
et al., 2020] has developed a real-time tracking system using deep regression
networks for robotic ophthalmic surgery. The system tracks the position of
the iris in the eye, allowing for precise and safe surgical procedures.

2.4.2 Smart Homes

The utilisation of intelligent technologies such as sensors, actuators, and ar-
tificial intelligence (AI) within our homes and buildings, has increased the
quality of our lives, safety and productivity [Shi et al., 2021b], [Sepasgozar
et al., 2019], [Hong, Shin, and Lee, 2016], [Marikyan, Papagiannidis, and Ala-
manos, 2019], [Sovacool and Furszyfer Del Rio, 2020].

[Berrezueta-Guzman et al., 2020] describes the development and evalu-
ation of a smart home environment designed to support homework activi-
ties for children. The environment consists of various technologies such as
smart lighting, interactive surfaces, and speech recognition. The study found
that the smart home environment positively impacted children’s engagement
with homework and improved their academic performance. [Wang, Gong,
and Liu, 2019] proposes a deep learning-based approach to improve human
activity recognition using WiFi-based data. Specifically, the authors investi-
gate the use of spatial diversity, which involves collecting data from multiple
WiFi access points to improve activity recognition accuracy. They compare
the performance of their approach to existing methods and show that spatial
diversity can significantly improve recognition accuracy. Additionally, [Zou

60 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
et al., 2018] has developed an occupancy-driven lighting control system for
smart buildings. The system uses WiFi signals to detect and track the occu-
pancy of a room and adjusts the lighting accordingly. The authors rely on a
machine learning algorithm for occupancy detection and a cloud-based plat-
form for control and monitoring. [Shi et al., 2020] introduces a novel floor
monitoring system that uses smart mats and deep learning technology to de-
tect and classify human activities. The system is scalable and can be used in
various applications, such as healthcare and home automation. In the same
vein, a lot of attention has been directed to developing smart home appli-
ances as they offer the potential to improve energy efficiency and increase
home security. According to [Zhou et al., 2016], smart home appliances can
improve energy efficiency and reduce household energy consumption. Also,
[Zhou et al., 2016] have found that smart appliances, such as smart ther-
mostats and lighting, can significantly reduce energy consumption without
compromising comfort. However, some security and privacy risks are asso-
ciated with smart home appliances [Panwar et al., 2019].

2.4.3 Smart Transportation

AIoT applications in transportation systems aim to improve road safety, min-
imise crash collisions and relieve traffic congestion. Autonomous driving,
also known as self-driving cars, refers to the technology in smart transporta-
tion that enables a vehicle to operate without human intervention. This tech-
nology is based on a combination of advanced sensors, software, and ma-
chine learning algorithms that allow the vehicle to sense its environment and
make decisions based on the data it collects [Talebpour and Mahmassani,
2016]. HydraMini [Wu et al., 2020] and HydraOne[Wang et al., 2019] serve
as typical examples of how embedded computing platforms are used to en-
hance the decision-making capabilities of autonomous driving technology.
HydraMinin and HydraOne are equipped with embedded computing plat-
forms that enable them to support AI (e.g., CNN) inference and traditional
computer vision analysis. This enables the vehicles to make real-time deci-
sions, such as shifting, braking, throttling, and steering based on the data
they collect. In addition, there have been advancements in developing ad-
vanced driver assistance systems (ADASs) aimed at helping drivers. For
instance, EdgeDrive is a cloud-based system that operates at the network’s
edge and is designed to provide drivers with real-time ADAS applications
such as smart navigation while driving [Maheshwari et al., 2019]. The de-
velopment of such systems marks a significant step forward in enhancing
road safety and reducing the risk of accidents on the road. In [Villanueva
et al., 2019] another assistance system is developed for detecting somnolence
(drowsiness) in drivers using a deep neural network. The proposed system
uses a camera to capture images of the driver’s face, which are then analysed
by the deep neural network to determine the level of drowsiness.

2.5. Challenges of Deploying AIoT Applications 61
Domain References Primary Objective

Health Care

[Falter et al., 2019],
[Ahad, Tahir, and Yau,
2019], [Zhang et al.,
2020]

Health monitoring systems that
utilise advanced sensors to moni-
tor patients’ conditions.

[Tuli et al., 2020], [Sood
and Mahajan, 2018],
[Dilsizian and Siegel,
2013]

Medical Diagnosis systems to sup-
port doctor in taking decisions.

[Qiu et al., 2020], [Liu
et al., 2020]

Robot-assisted Surgery systems

Smart Homes

[Vita et al., 2020],
[Wang, Gong, and Liu,
2019]

Smart home Monitoring Systems

[Zou et al., 2018], [Shi
et al., 2020]

Control System for Buildings

[Zhou et al., 2016],
[Zhou et al., 2016]

Smart Home Appliances - Energy
Management

Smart Transportation

[Wu et al., 2020],
[Wang et al., 2019]

Autonomous Vehicles

[Maheshwari et al.,
2019],[Villanueva et
al., 2019]

Driver Assistance Systems

TABLE 2.8: AIoT applications in different domains

2.5 Challenges of Deploying AIoT Applications

The AIoT is characterised by intelligent and autonomous devices that com-
municate with each other and with the cloud to perform complex tasks. How-
ever, the practical deployment of AIoT presents several challenges that must
be addressed for successful implementation including data privacy, hetero-
geneity and interoperability and resource management [Chang et al., 2021].
In the next section, I will explain the main challenges of deploying AIoT ap-
plications; Table 2.9 summarises the key challenges along with potential so-
lutions.

Security and Privacy One of the primary challenges facing the AIoT is en-
suring the security and privacy of the vast amounts of data generated by
these systems. As the number of connected devices grows, so does the risk of
cyber-attacks and data breaches. Effective security mechanisms must be im-
plemented to protect the privacy and integrity of sensitive data. Researchers
have proposed various security solutions, including blockchain-based ap-
proaches that provide secure and decentralised storage of data [Zhao et al.,
2019]. Some researchers are combining blockchain technology with the Inter-
net of Things (IoT) in the context of 6G communication networks. This ap-
proach has shown great potential for data storage and analytics [Sekaran et
al., 2020]. An alternative approach is to rely on deep learning algorithms; for

62 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
example in [Wang et al., 2021b] a novel deep learning data privacy protection
scheme based on homomorphic encryption is proposed. The scheme aims
to provide secure data sharing and analysis while preserving data privacy.
Experimental results demonstrate that the proposed scheme achieves high
accuracy and low computational overhead. In the same direction, [Xiong et
al., 2022] has developed the 2DP-FL algorithm that incorporates differential
privacy by adding noise during both the training of local models and the
distribution of the global model. Most recently, Federated Learning (FL) has
emerged as a promising solution to develop intelligent and privacy-preserving
IoT systems. As discussed earlier in this chapter, FL is a decentralized and
collaborative method of artificial intelligence, enabling data training by co-
ordinating numerous devices with a central server without sharing actual
datasets [Konečný et al., 2017].

Cooperative Mode of Operation Another critical challenge related to de-
ploying AIoT applications is finding a cooperative mode of operation among
the diverse devices involved in the AIoT ecosystem, including end devices,
edge servers, and cloud services. Each device has unique strengths and lim-
itations; balancing its capabilities is crucial to achieving efficient and effec-
tive operation. To address this challenge, researchers are exploring new ap-
proaches such as edge computing, which allows for processing data closer
to the end devices, reducing latency and increasing efficiency [Khan et al.,
2020].

Interoperability is also a significant challenge facing the AIoT ecosystem.
As the number of manufacturers and vendors increases, ensuring compat-
ibility and interoperability becomes increasingly complex. Standardisation
of communication protocols and interfaces is necessary to ensure interoper-
ability. Researchers have proposed various standardisation solutions, includ-
ing open-source frameworks that enable interoperability among different de-
vices and platforms [Latifi, 2022], [Souza, Souza, and Ciferri, 2022].

Resource management Resource management is also considered a major
challenge when it comes to deploying IoT applications. Not all IoT devices
can allocate their storage and computing resources for data training, as some
of them have limited computational capabilities that pose significant resource
constraints[Tsukada, Kondo, and Matsutani, 2020]. Training deep learning
models like DNN on IoT devices may not be feasible because of the high
CPU and battery demands involved in solving training tasks, particularly
when dealing with image and audio data [Chauhan et al., 2018]. As an ex-
ample, the VGG-16 model [Simonyan and Zisserman, 2015] comprises about
138 million parameters and necessitates nearly 550 MB of memory capac-
ity, making it impractical to make an inference on resource-limited devices
like AIoT. The research community has introduced numerous techniques for
compression and acceleration; The study presented in [Xu et al., 2019] sug-
gests a new Federated Learning architecture for mobile devices that could
be used to train deep neural networks taking into consideration the avail-
able computational resources. Another approach to cope with the limited

2.5. Challenges of Deploying AIoT Applications 63
resources of IoT devices is to rely on AI accelerators. The study presented in
[Lane et al., 2016] proposes a software-based deep learning accelerator that
facilitates AI/DL training on mobile hardware. The main concept involves
employing a range of heterogeneous processors (such as GPUs), where each
computing unit utilises unique computational resources to handle various in-
ference phases of DL models. Other techniques aim to reduce the complexity
of DNNs by removing the redundant neurons [Han, Mao, and Dally, 2015],
[Wan et al., 2013], [Wu et al., 2016b]. Another effective approach to reducing
the complexity of DNNs is to apply quantisation. Quantisation refers to the
process of reducing the number of bits needed to represent the weights of
neurons. To simplify the neural network, both [Gong et al., 2014] and [Wu
et al., 2016b] utilised k-means scalar quantization on the network’s param-
eters. An alternative approach to preserve the resources of AIoT devices is
Knowledge transfer or transfer learning. Knowledge Transfer is a technique
that has been employed to reduce the complexity of deep neural networks.
This approach involves reusing pre-trained models or their learned repre-
sentations for a new task, thereby reducing the amount of training data and
computation required. [Yosinski et al., 2014] demonstrated that transferring
knowledge from pre-trained models can lead to better performance on tasks
with limited data. Furthermore, [Pan and Yang, 2010] provides a comprehen-
sive survey of transfer learning methods, including their applications and
challenges.

Genetic Algorithms (GA) also could be utilised to prune neural networks.
In [D. Whitley, 1990], it involved generating multiple versions of the pruned
model using reproduction, mutation, and crossover. Similarly, Zhang [Zhang,
1993] used genetic algorithms to simplify the architecture of feed-forward
neural networks. The problem of finding the optimal network architecture
is a multi-objective optimization task, with the solution space containing all
possible combinations of hidden nodes. The genetic algorithm is then used to
search for the optimal architecture. In [Hu et al., 2018], a novel approach was
presented for pruning convolutional neural networks (CNNs) using genetic
algorithms. The approach involved layer-by-layer pruning based on each
layer’s sensitivity, followed by tuning using a knowledge distillation frame-
work. The channel selection process was formulated as a search problem,
which was efficiently solved using genetic algorithms. GA-based pruning
approaches are generally superior in performance as they enhance the gen-
eralization of the pruned network and use fewer parameters.

Ethics Finally, there are ethical implications of AIoT, particularly in rela-
tion to data usage and decision-making. Ensuring that AIoT systems are
transparent and accountable is critical for building trust in these technolo-
gies. Researchers have proposed various ethical solutions, including ethical
guidelines and regulations that govern data collection, processing, and use
in AIoT systems [Floridi, 2016]. [Allhoff and Henschke, 2018] examines foun-
dational ethical issues related to the Internet of Things (IoT), including issues
related to privacy, security, and autonomy. The authors argue that the design
and deployment of IoT technologies should prioritise ethical considerations
and recommend ethical guidelines for AIoT systems.

64 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
AIoT Challenge Possible direction References

Security and Privacy

Blockchain based
approaches

[Zhao et al., 2019], [Sekaran et al.,
2020]

Deep learning [Wang et al., 2021b]
Federated Learn-
ing

[Konečný et al., 2017]

Differential Pri-
vacy

[Xiong et al., 2022]

Resource Management

AI Accelerators [Lane et al., 2016]
Tuned Architec-
tures

[Xu et al., 2019]

Pruning [Han, Mao, and Dally, 2015], [Wan
et al., 2013], [Wu et al., 2016b]

Quantisation [Han, Mao, and Dally, 2015], [Wan
et al., 2013], [Wu et al., 2016b]

Genetic Algo-
rithms

[Hu et al., 2018], [Hu et al., 2018]

Knowledge Trans-
fer

[Yosinski et al., 2014], [Pan and
Yang, 2010]

Interoperability communication
standardisation

[Latifi, 2022], [Souza, Souza, and
Ciferri, 2022]

TABLE 2.9: AIoT challenges and possible directions

2.6 Discussion

As highlighted in Section 2.5, the deployment of AIoT applications in real-
world scenarios is fraught with challenges. Table 2.9 provides a summary
of the main challenges and potential solutions to overcome them. In this
section, we turn our attention to identifying the critical gaps in the existing
literature that our contributions aim to address.

In recent years, deep learning algorithms have garnered significant atten-
tion owing to their ability to achieve state-of-the-art results in a wide range of
domains [Krizhevsky, Sutskever, and Hinton, 2012], [Collobert et al., 2011],
[Fridman et al., 2017]. However, the use of deep neural networks (DNNs) in
constraint-resource devices such as AIoT can pose severe performance issues
due to their high computational complexity. To mitigate this challenge, re-
searchers have proposed various methods to compress DNNs, including us-
ing regularisers [Nowlan and Hinton, 1992],[Girosi, Jones, and Poggio, 1995],
drop connect [Wan et al., 2013], pruning [He, Zhang, and Sun, 2017], [Han,
Mao, and Dally, 2015], quantisation [Gong et al., 2014], [Wu et al., 2016b],
and fine-tuned network design [Ghosh, 2017], [Howard et al., 2017].

Despite these compression techniques, deploying compressed DNNs in
complex IoT environments remains a challenge. The noisy data generated
at the edge can negatively impact the prediction accuracy of pruned mod-
els and lead to inadequate performance for IoT applications that require sta-
ble and consistent model performance. Therefore, there is a need for new
approaches that can optimize DNNs for deployment on AIoT devices and

2.6. Discussion 65
improve their robustness to noisy data generated at the edge. In the follow-
ing sections, we present our contributions that address these key gaps in the
literature.

Furthermore, in the traditional approach to analysing IoT data, a user’s
data is transferred to a central cloud server for analysis and generation of in-
sights, as discussed in [Ghosh and Grolinger, 2020]. This method has several
drawbacks, including potential security breaches and the risk of violating
data privacy regulations such as the GDPR (General Data Protection Regula-
tion) [Voigt and Bussche, 2017]. Sensitive information is at risk when trans-
ferred to a remote server, which increases the risk of a data breach. Addi-
tionally, data protection regulations are becoming increasingly strict, and or-
ganisations that fail to comply with them risk significant legal consequences.
As a result, new approaches to analysing IoT data are necessary to maintain
data privacy and security. To address theses limitations, we have provided
three sequential novel contributions that aim to improve the deployment and
performance of AIoT applications.

In Chapter 3, we propose a novel solution to address the accuracy drop of
compressed models running on AIoT devices. Our approach leverages deep
ensemble learning to enhance the predictability of compact DNNs. We eval-
uate our proposed approach on several benchmark datasets, and our results
demonstrate its exceptional performance. In Chapter 4, To reduce DNNs de-
mand in terms of memory space, we proceed to minimize the memory usage
of executing EnSyth’s deep learning ensembles on constraint-limited devices
by introducing MicroNets. MicroNets is a comprehensive framework for op-
erating deep ensemble learning on AIoT devices. It is devised not only to
run deep learning ensembles seamlessly on AIoT devices and enhance the
precision of pruned deep learning models but also to amplify the generaliza-
tion capability at the edge. Augmenting the generalization power at the edge
is crucial because IoT devices produce noisy data owing to the surrounding
environment, which can lead DNNs to overfit.

In the final chapter of our work, Chapter 5, we present FedNets, a solu-
tion that addresses security and privacy concerns when running sensitive
applications on the edge. FedNets is a cutting-edge deep ensemble federated
learning approach that offers robust and secure machine learning solutions
on AIoT devices.

Unlike the traditional federated learning approach, where clients share
their parameters over the network to update a single global model, Fed-
Nets proposes a different approach. Here, each client runs a set of diverse
lightweight deep-learning models, similar to the approach presented in Chap-
ter 4. The participating clients work together by sharing ensemble members
instead of parameters. However, running deep ensemble learning and shar-
ing complete models in such an environment may pose a challenge. There-
fore, FedNets employs graph embedding theory to simplify calculations. This
approach optimizes resource usage and enhances the model’s accuracy with-
out compromising the system’s performance.

In non-iid settings, FedNets has achieved exceptional predictability perfor-
mance, outperforming two of the state-of-the-art federated learning strate-
gies. Overall, FedNets offers an innovative solution to security and privacy

66 Chapter 2. Artificial Intelligence of Things: A Comprehensive Review
challenges, enabling the deployment of sensitive applications on AIoT de-
vices with confidence.

2.7 Summary

In this chapter, we present an extensive and informative overview of Artifi-
cial Intelligent Things (AIoT). We provide a detailed account of the different
components involved in building AIoT applications, starting from the topol-
ogy of IoT devices and their various applications, and concluding with the
challenges associated with implementing AIoT applications in the real world.

We delve into the details of the various AI algorithms that can be em-
ployed in constructing intelligent things. Our discussion covers supervised
learning, which involves training a model on labelled data to predict out-
comes. We also explore unsupervised learning, which entails training a model
on unlabelled data to identify patterns and structures. Moreover, we delve
into deep learning, a subfield of machine learning that employs neural net-
works to learn from data, and ensemble learning, which amalgamates multi-
ple models to improve accuracy.

Furthermore, we examine federated learning, a distributed learning ap-
proach that enables edge devices to collectively train a shared model without
divulging raw data. We discuss the challenges and opportunities associated
with each of these algorithms in detail, providing a comprehensive under-
standing of their capabilities and limitations.

We also identify the main gaps in this field and present our contribu-
tion to filling the identified gaps. Our contribution comprises innovative ap-
proaches that enhance the predictability and generalisation power of deep
neural networks in compressed models.

Overall, this chapter provides a comprehensive and in-depth overview of
AI and intelligent things, enabling readers to gain a better understanding of
the opportunities and challenges involved in constructing intelligent devices
for the AIoT ecosystem. Additionally, it highlights our contribution to this
field, which seeks to address some of the identified gaps and provides novel
approaches to enhance the accuracy, generalisation power, and data privacy
of AIoT applications.

67

Chapter 3

EnSyth: A Pruning Approach to
Synthesis of Deep Learning
Ensembles

In the previous chapter, we undertook a comprehensive review of the rapidly
evolving field of Artificial Intelligence of Things (AIoT). This review began
with an exploration of the fundamental definition of IoT devices and contin-
ued on to a detailed discussion of the many challenges and gaps that cur-
rently exist in the practical application of AIoT solutions in the real world.

Building upon this foundation, in this chapter we introduce a novel deep
ensemble learning technique that has been specifically designed to enhance
the predictability of compact neural network models at the edge end of IoT
systems. This innovative approach represents a significant breakthrough in
the development of AIoT solutions, as it addresses the second and the fifth
objectives outlined in Chapter 1: namely, the need to optimise performance
at the network’s edge, and the importance of developing robust and effective
methods for dealing with the complexities of real-world data sets.

Our deep ensemble learning technique offers a range of important bene-
fits and advantages over traditional AIoT models. By leveraging the power
of ensemble learning, we are able to improve the accuracy and reliability of
our models, while also minimising the impact on system resources (memory
footprint). Furthermore, this approach is highly scalable, allowing it to be
adapted to a wide range of different IoT devices and use cases.

Overall, our novel deep ensemble learning technique represents a signif-
icant step forward in the development of AIoT solutions. By addressing key
challenges related to the practical application of AIoT technologies (resource
efficiency, reliability), we are helping to pave the way for a future in which
IoT devices are able to function more efficiently, effectively, and seamlessly
than ever before.

The technique can be summarised as follows: first, we generate a set of
diverse compressed deep learning models using different hyperparameters
for a pruning method. Next, we utilize ensemble learning to synthesize the
outputs of the compressed models to create a new pool of classifiers. Finally,
we apply backward elimination on the generated pool to explore the best-
performing combinations of models. On CIFAR-10 and CIFAR-5 datasets,
the approach we propose, called EnSyth, outperforms the predictability of
the baseline model (LetNet-5).

68 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

The approach presented in this chapter is published as a full paper titled
"EnSyth: A Pruning Approach to Synthesis of Deep Learning Ensembles" in the 2019
IEEE International Conference on Systems, Man and Cybernetics (SMC) [Alhalabi,
Gaber, and Basurra, 2019].

3.1 Introduction

Deep learning has been the focus of significant attention in the last decade due to its
impressive achievements in diverse domains [Krizhevsky, Sutskever, and Hinton,
2012], [Collobert et al., 2011], [Fridman et al., 2017]. It has emerged as a leading tool
for learning and solving complex problems. The key to its success lies in its ability to
leverage many hidden layers to learn different features hierarchically, with classifica-
tion performed by the softmax function at the output layer. However, the complexity
of deep neural networks arises from their numerous layers, making them compu-
tationally expensive. For instance, the VGG-16 model [simonyan_very_2014] con-
sists of approximately 138 million parameters and requires about 550 MB of memory
space. To put this into perspective, consider an average IoT device with a memory of
1 GB. Deploying the VGG-16 model on such a device would consume more than half
of its entire memory space. This is just for a single model. If we consider ensemble
learning, which involves training and deploying multiple models to improve accu-
racy, the memory requirements increase substantially. Given the limited memory
of IoT devices, deploying complex models like VGG-16 or implementing ensemble
learning approaches becomes impractical and often impossible. This highlights the
need for more efficient models and learning techniques that can operate within the
memory constraints of IoT devices.

Researchers have introduced various compression and acceleration strategies to
overcome the complexity of deep neural networks generating large model sizes.
Some of the compression and acceleration methods include the use of simple reg-
ularisers such as L1 and L2 to control the complexity of neural networks during
training [Demir-Kavuk et al., 2011], [Cortes, Mohri, and Rostamizadeh, 2012], [Ka-
malov and Leung, 2020], [Zhang et al., 2021].

Another approach is drop connect methods, where a subset of the network’s
weights is randomly dropped, resulting in pruned networks [Wan et al., 2013]. Neu-
ron pruning methods increase the sparsity of neural networks by removing irrele-
vant connections [Yu et al., 2018a], [Molchanov et al., 2019], [Hong-Jie Xing and Bao-
Gang Hu, 2009], [Zhang et al., 2018c], while weight pruning removes less-contributing
weights [Zhang et al., 2018a], [Han, Mao, and Dally, 2015].

Another strategy is channel pruning, where entire channels are removed instead
of a single neuron’s output [He, Zhang, and Sun, 2017]. Knowledge distillation
transfers knowledge from a larger teacher model to a smaller student model, thereby
reducing its complexity while maintaining its accuracy [Romero et al., 2014], [You
et al., 2017], [Yim et al., 2017]. Network quantisation reduces the number of bits
required to represent the network’s weights, but it may require special hardware for
acceleration [Gong et al., 2014], [Wu et al., 2016b].

Fine-tuned network design is another acceleration strategy that focuses on re-
ducing the complexity and improving the accuracy of the entire neural network.
This approach is achieved through architecture optimisation [chollet_xception:_2016],
[Howard et al., 2017]. Lastly, genetic algorithms have been widely applied to accel-
erate deep neural networks [Siebel and Sommer, 2007], [Xie and Yuille, 2017], [Hu
et al., 2018].

3.1. Introduction 69
Despite the numerous compression and acceleration strategies proposed to mit-

igate the complexity of deep neural networks, they often come with a trade-off be-
tween accuracy and model size. In particular, pruning techniques have been suc-
cessful in reducing the size of deep neural networks, but at the cost of accuracy. This
has motivated research into techniques to address the accuracy drop of pruned mod-
els, such as iterative pruning and retraining [Han, Mao, and Dally, 2015]. However,
these techniques can be computationally expensive and may not always lead to the
desired level of accuracy. To tackle this issue, we propose a novel approach that syn-
thesises deep learning ensembles from a baseline model, boosting its accuracy and
inference time performance. This approach, called EnSynth, automatically generates
a set of diverse models that complement each other in terms of their strengths and
weaknesses. By combining these models, EnSynth achieves higher accuracy than
individual pruned models and even some unpruned models, with a negligible in-
crease in model size. It achieves this by applying multiple sets of pruning methods
with varying hyperparameters, resulting in a diverse pool of pruned deep learning
models. Using this pool to form ensembles can significantly boost accuracy due to
the diversity awarded using different hyperparameters values. The potential num-
ber of ensembles that can be formed from a large pool of pruned models is 2m − 1,
where m is the number of pruned models. Exploring such a large solution space for
a large m can be computationally intensive, but can be accomplished using meta-
heuristic optimisation methods such as Genetic Algorithms [Zemouri et al., 2020],
[Wang et al., 2020c], [Xu et al., 2021]. To select the best models, EnSyth uses a simple
backward elimination method, where models of varying sizes {m, m− 1, . . . , 1} are
formed by sequentially eliminating the worst-performing pruning model. Inference
acceleration is achieved through parallel processing, where all models are used to in-
fer class labels independently, followed by a computationally efficient fusion for ma-
jority voting. EnSyth ensembles are instrumental in collaborative machine-learning
environments that operate on resource-constrained devices, where the performance
of a single model can be limited by the available resources [Gaber, Stahl, and Gomes,
2014]. The main contributions of this chapter are:

• synthesis of an ensemble of pruned deep learning models from a baseline
model from a diverse space of synthesised models. The diversity of the en-
semble makes it possible to outperform a baseline model, and

• eliminates the impact of compression on deep learning models by produc-
ing compressed models with better predictability measures. Through parallel
processing, the approach achieved fast inference of the pruned models while
boosting the accuracy through ensembling.

The chapter is organised as follows: In Section 3.2, we provide a detailed ex-
planation of the proposed technique, EnSyth, which leverages ensemble learning
to improve the performance of deep neural networks. We also include theoretical
justifications for the proposed approach, highlighting its effectiveness in mitigating
overfitting and improving the generalization capability of deep learning models.

In Section 3.3, we describe the experimental setup used to evaluate the effec-
tiveness of EnSyth on three different datasets: CIFAR-10, CIFAR-5, and MNIST-
FASHION. We present comprehensive results and analysis, comparing the perfor-
mance of EnSyth with other state-of-the-art deep learning models. Specifically, we
demonstrate that our proposed approach achieves better accuracy and generalisa-
tion performance than baseline models, while requiring fewer parameters.

In the subsequent section, we critically discuss the results obtained from the ap-
plication of EnSyth, highlighting the key strengths and limitations of our approach.

70 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

In particular, we discuss the trade-offs between model complexity and performance,
as well as the challenges associated with the selection of optimal ensemble size and
diversity.

Finally, in Section 3.5, we present the chapter’s conclusions and summarise the
main contributions of our work. We emphasise that EnSyth represents a novel and
effective approach to improve the performance and generalisation capability of deep
learning models, particularly in the context of limited training data. We also identify
potential future directions for research, including the exploration of ensemble learn-
ing in more complex and diverse datasets, as well as the development of efficient
algorithms for selecting optimal ensemble models.

3.2 Method

In this section, we provide a comprehensive overview of the approach taken to gen-
erate compressed deep learning models. Firstly, we introduce the topology of the
feed-forward neural network models used in our study. Next, we delve into the
pruning method [Aghasi, Abdi, and Romberg, 2018] used to generate compressed
models with smaller network sizes and improved efficiency. We further explain how
this method retains the most important network connections and achieves better
performance compared to traditional compression techniques.

Furthermore, we elaborate on our approach to synthesise the compressed mod-
els from a diverse range of pruned models generated. We detail how the synthesis
approach creates an ensemble of models with greater diversity than the baseline
model, leading to improved performance. Finally, we describe the selection mecha-
nism used to filter the best-compressed models from the ensemble based on perfor-
mance metrics.

3.2.1 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) have emerged as a powerful tool in the
field of deep learning, particularly for image and video processing tasks. CNNs
are specifically designed to automatically learn and extract features from raw input
data, making them well-suited for tasks such as image classification, object detec-
tion, image segmentation, and more [Lecun et al., 1998]. The architecture of CNNs
consists of multiple layers, including convolutional layers, pooling layers, and fully
connected layers. In convolutional layers, local receptive fields are convolved with
the input data, allowing the network to capture spatial hierarchies and patterns
[Krizhevsky, Sutskever, and Hinton, 2012]. The output of a convolutional layer is
obtained through the following mathematical formula:

y(i, j) = σ

(
∑
m

∑
n

x(i + m, j + n) · w(m, n) + b

)
x(i, j) : input data

w(m, n) : weight of the convolutional filter at position (m, n)
y(i, j) : resulting feature map

b : bias term
σ(·) : activation function

Pooling layers are then used to downsample the feature maps, reducing the spa-
tial dimensions and providing translational invariance (Zeiler and Fergus, 2014) [3].

3.2. Method 71
A commonly used pooling operation is max pooling, which selects the maximum
value within each pooling region. This can be represented mathematically as:

y(i, j) = max ({x(m, n)})
x(m, n) : input values within the pooling region

The output from these layers is flattened and linked to generate fully connected lay-
ers, also known as dense layers, which perform high-level feature extraction and
produce the final predictions. In a fully connected layer, each neuron is connected
to every neuron in the previous layer. The mathematical formula for the fully con-
nected layer can be expressed as:

y = σ (W · x + b)
x : input vector

W : weight matrix
b : bias vector

σ(·) : activation function

The comprehensive architecture of a CNN is illustrated in Figure 3.1, showcasing
the intricate framework that encompasses various layers and their interconnections.

Convolutional Neural Networks (CNNs) can be viewed as a specific type of feed-
forward neural network architecture. In a traditional feed-forward neural network,
each neuron in a layer is connected to all neurons in the previous layer. Similarly, in a
CNN, the fully connected layers at the end of the network operate in the same way as
in a standard feed-forward neural network, where each neuron is connected to every
neuron in the previous layer. This allows the CNN to perform high-level feature
extraction and make predictions based on the learned features. The convolutional
layers, on the other hand, utilize local receptive fields and shared weights, enabling
them to capture spatial hierarchies and patterns in the input data. This characteristic
makes CNNs particularly well-suited for image and video processing tasks [Lecun
et al., 1998]. In the upcoming section, we delve into the discussion of feed-forward
neural networks, with particular attention to the Convolutional Neural Network
(CNN) as a specialized variant within this category. This exploration is crucial as
it enables us to present the essential mathematical formalisation required for the
pruning method employed in our study.

It is important to note that all forthcoming experiments in this chapter, as well
as the remaining sections of the thesis, will exclusively focus on the utilization of
Convolutional Neural Networks (CNNs).

3.2.2 Feed-forward Neural Networks
Feed-forward neural networks are a type of artificial neural networks that are com-
monly used in supervised learning applications, where the aim is to learn a function
that maps input data to output labels. Assuming that the network is trained using
xp training example where:

1. p = 1, · · · , P;

2. xp ∈ RN : RN ;

72 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

FIGURE 3.1: Visual representation of the layers in a Convolu-
tional Neural Network (CNN). The input image is processed
through convolutional layers, followed by pooling layers for
spatial down-sampling. The output is then fed into fully con-
nected layers for high-level feature extraction and prediction.
Each layer performs specific operations, such as convolution
and pooling, which enable the network to capture spatial hier-

archies and extract meaningful features from the input data..

3.2. Method 73
Suppose X ∈ RN×P is a one-dimensional matrix representing the training samples
as X = [x1, · · · , xP], L is a layer in the network; the network’s output at the last
layer is represented by X(L) ∈ RNL×P where each column in X(L) is a response to
the corresponding training column in X. In ReLU neural network, the output of ℓth

layer is defined as :

X(ℓ) = ReLU
(

WT
ℓ X(ℓ−1) + b(ℓ)1T

)
(3.1)

where ℓ = 1, · · · , L..
If we add an additional row to both of X(ℓ−1) and Wℓ the previous formula could

be written as:
X(ℓ) = ReLU

(
WT

ℓ X(ℓ−1)
)

(3.2)

where ℓ = 1, · · · , L.. A neural network which follows one of the two previous for-
mulas(3.1,3.2) will be an ideal candidate for the pruning method, which will be de-
scribed next.

3.2.3 Net-Trim- The Pruning Method
Neural networks, especially deep ones, are composed of multiple layers. Each layer
is like a processing block, with a combination of linear and nonlinear operations.
These networks often have a vast number of parameters, sometimes in the millions.
This large number of parameters can lead to challenges:

• Storage: Storing such large models can be problematic.

• Interpretation: Understanding the role of each parameter can be complex.

• Manipulation: Adjusting or optimising the model can be cumbersome.

To tackle these challenges, a method called Net-Trim was introduced [Aghasi et al.,
2017]. Net-Trim is a post-training method applied to already trained neural net-
works. Its main goal is to simplify the network by reducing the number of pa-
rameters without significantly affecting the network’s performance. It does this by
"pruning" or removing unnecessary connections in each layer. How Does Net-Trim
Work?

• Layer-by-Layer Pruning: Net-Trim goes through each layer of the network
and decides which connections (or parameters) are essential and which can be
removed.

• Convex Optimisation and LASSO Comparison: The decision on which con-
nections to prune is made using a mathematical approach called convex op-
timisation. This ensures that a large number of parameters in the network
are set to zero, effectively removing them. If you’re familiar with the LASSO
method used in linear models [Girosi, Jones, and Poggio, 1995], Net-Trim op-
erates on a similar principle. Essentially, Net-Trim can be thought of as apply-
ing the LASSO concept to neural networks.

The process of NetTrim is summarised in Figure 3.2.
Several benefits could be obtained using Net-Trim:

• Faster Predictions: With fewer parameters, the network can make predictions
more quickly.

• Memory and Storage Efficiency: A pruned network requires less memory and
storage.

74 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

FIGURE 3.2: Illustration of how Net-Trim prunes unnecessary
connections, making the network leaner and more efficient.

• Potential for Higher Accuracy: By removing redundancies, Net-Trim can some-
times improve the network’s test accuracy.

• Better Interpretability: A simpler network is easier to understand, and with
Net-Trim, we can better identify which features are most important for the
network’s decisions.

Technical Details:
In a typical ReLU neural network, the output of each layer is given by:

Xout = ReLU
(

WXin

)
(3.3)

Where: Xout is the output matrix. W represents the weight matrix of the network.
Xin is the input matrix, with each column corresponding to a training sample.

Net-Trim introduces modifications to this structure, optimising the weight ma-
trix and potentially replacing it with a more efficient version. Furthermore, Net-Trim
has hyperparameters that can be adjusted. By tweaking these, we can obtain differ-
ent models with varying accuracy, size, and inference time. This flexibility is crucial
for our approach, where we aim to find an optimal balance for deep learning model
ensembles.

3.2.4 Synthesis of Deep Learning Ensembles
Synthesising sets of diverse compressed models into ensemble predictions is a criti-
cal element in our approach because ensemble learning will not only allow the cre-
ation of better classifiers but also overcome potential overfitting issues and provide
more generalisation to the final solution. Let m a pruned model generated by Net-
Trim and the decision of the model mi about a class wj be defined as: yi,j ∈ {0, 1}
where:

• i = 1, 2, · · · , N : N is the number of the classifiers.

• j = 1, 2, · · · , C : C is the number of classes.

if mi predicted correctly a class wj then yi,j = 1 otherwise yi,j = 0. I use plurality
voting [Zhou, 2012] as a simple ensemble learning technique to synthesise the clas-
sifiers. The prediction of each compressed model is considered as a vote, and then
the predictions which get the majority of votes will be found in the final ensemble’s
prediction. Let P = m1, · · · , mN an ensemble of pruned models mi, the final en-
semble decision about a test class in plurality voting is a class wj that receives the
maximum support η f inal(P) from all the classifiers which form the ensemble. Thus

3.2. Method 75
the output of the ensemble could be defined as:

η f inal(P) = argmaxj∈{1,··· ,C}

N

∑
i=1

yi,j

Figure 3.3 provides a brief overview of the concepts being illustrated.
Although ensembling multiple models is a powerful technique that can signifi-

cantly boost the performance of a deep learning model, it is important to note that
not all models in the ensemble contribute equally to the final predictions. Some
models may have lower predictability levels, which can negatively impact the over-
all performance. To ensure that we only consider models that are truly beneficial to
the ensemble, we propose a backward elimination scheme.

The backward elimination scheme involves iteratively removing models from
the ensemble that have the lowest predictability levels until we arrive at an optimal
combination of models that achieve the best results. By eliminating models with re-
duced predictability levels, we can improve the overall performance of the ensemble
and ensure that only the most effective models are included. In the next section, we
present our proposed back-elimination technique.

FIGURE 3.3: Synthesis of deep learning ensembles.

3.2.5 Backward Elimination
The primary aim in constructing ensembles for deployment on resource-constrained
devices is to maintain high accuracy while minimizing the ensemble’s size to con-
serve computational resources. This balance is critical, especially for real-time appli-
cations where inference speed is paramount.

76 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

Our backward elimination strategy is akin to feature selection techniques in ma-
chine learning, where non-contributing features are pruned to improve model per-
formance. We initiate this process with a comprehensive set of pruned models, each
contributing to the ensemble’s predictive power. The backward elimination process
iteratively assesses the ensemble’s performance, removing the least accurate model
in each cycle. This iterative reduction continues until we are left with the smallest
ensemble that still meets our accuracy threshold.

The term "lowest accuracy" refers to the model within the ensemble that con-
tributes the least to correct predictions in the current iteration. This is a dynamic
measure, as the contribution of each model can change depending on the compo-
sition of the ensemble. The "high predictability levels" we seek are not just high
accuracy in isolation but the ability of the ensemble to generalize well to new data,
which is a hallmark of robust models.

The backward elimination process is designed to identify the core set of models
that are most effective. The absolute minimum number of models in the ensem-
ble is not a fixed number but rather the smallest subset that can achieve accuracy
comparable to the full ensemble. This is contingent upon the diversity and comple-
mentarity of the models within the ensemble. In one scenario, a few highly diverse
models may suffice, while in another, more models may be required to capture the
complexity of the data.

Algorithm 6 delineates the backward elimination procedure. The algorithm’s
objective is to distill the ensemble to its essence, retaining only those models that are
imperative for maintaining high accuracy. This process is not merely about discard-
ing models but about understanding the synergy between them and preserving the
collective intelligence of the ensemble.

Algorithm 6 Backward Elimination for Optimal Ensemble Selection

N = Size(Ensemble)
while N > 0 do

predict← η f inal(P)
Evaluate the contribution of each model to the ensemble’s accuracy;
Identify and remove the model m with the lowest incremental accuracy
gain;
N = N − 1 ;
Reassess the ensemble’s performance without model m;

end while
end while
Return the optimally reduced ensemble that satisfies the predefined accu-
racy criteria;

In this process, we consider not only the model with the lowest accuracy but
also its incremental value to the ensemble’s performance. This nuanced approach
ensures that each model’s removal is justified not only by its standalone performance
but also by its contribution to the collective outcome. The potential scenarios for the
minimum ensemble size vary, ranging from a single, highly predictive model to a
combination of models that together provide a comprehensive understanding of the
data space. The backward elimination algorithm is thus a tool for achieving the most
efficient ensemble, tailored to the specific needs and constraints of the deployment
environment.

3.3. Experiment 77

3.3 Experiment

In this section, we aim to provide a detailed and comprehensive explanation of the
experiment conducted to evaluate the performance of our proposed method. To
begin with, let us describe the benchmarking datasets and the baseline model used
in our simulation. Next, we explain the pruning method used in our experiment. We
adopt a systematic pruning approach where we eliminate connections with the least
absolute weight magnitude iteratively. We prune the LeNet-5 model with different
values of hyperparameters. Finally, we present the results of our experiment. We
evaluate the accuracy of our method on the CIFAR10 and MNIST-FASHION datasets
and compare it with the baseline model.

3.3.1 LeNet-5
LeNet-5 [Lecun et al., 1998] is a widely-used convolutional neural network (CNN)
model known for its success in image classification tasks. The architecture consists
of two convolutional layers, each with a filter size of (3255) and (6455), respectively.
Following each convolutional layer is an average pooling layer with a filter size of
(2*2) and a stride of two. The network ends with two fully connected layers. The
overall architecture of the network can be represented as INPUT => CONV =>
POOL => CONV => POOL => FC => FC, where CONV represents the con-
volutional layer, POOL represents the average pooling layer, and FC represents the
fully connected layer. This architecture has been proven to be effective in image
recognition tasks, making it an ideal baseline model for our experiments.

3.3.2 Datasets

CIFAR-10

The CIFAR-10 [Krizhevsky, n.d.] dataset is widely used for benchmarking image
classification models. It consists of 70,000 32× 32 colour images that are categorised
into ten distinct classes, each containing 6,000 images. The dataset is divided into
two sets: a training set of 50,000 images and a testing set of 10,000 images. Each
image is labelled with one of ten categories, which include airplanes, automobiles,
birds, cats, deer, dogs, frogs, houses, ships, and trucks. The dataset is challenging
due to its relatively low resolution and the small size of the images, making it dif-
ficult for models to accurately distinguish between similar object categories. How-
ever, its popularity stems from its ability to provide a standardised benchmark for
image classification algorithms, allowing researchers to compare the performance of
different models on the same dataset.

CIFAR-5

To diversify our benchmarking dataset, we introduced a subset of CIFAR-10 consist-
ing of images from five animal categories, which we refer to as CIFAR-5. This subset
contains 30,000 images in total, with 25,000 images used for training and 5,000 for
testing. Each example in the dataset is assigned to one of the following labels: [2:
bird, 3: cat, 4: deer, 5: dog, 6: frog]. It’s worth noting that our goal in introducing
this subset is not to reduce the complexity of the dataset, but rather to provide an
alternative benchmark for evaluating the performance of our method.

78 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

MNIST-FASHION

MNIST-FASHION [Xiao, Rasul, and Vollgraf, 2017] is another benchmarking dataset
that comprises 70,000 grayscale images of fashion products categorized into ten
classes, with 7,000 images per class. The training set consists of 60,000 images while
the testing set has 10,000 images. The images in the dataset have a resolution of
28 × 28 pixels. Each example in the training and testing sets is labeled as one of
the ten classes: [0: T-shirt/top, 1: Trouser, 2: Pullover, 3: Dress, 4: Coat, 5: San-
dal, 6: Shirt, 7: Sneaker, 8: Bag, 9: Ankle boot]. This dataset is an alternative to
the traditional MNIST dataset, which has been widely used in the machine learn-
ing community for benchmarking image classification models. MNIST-FASHION
presents a more challenging task due to the complex visual features of the fashion
product images, making it a suitable dataset for evaluating the performance of im-
age classification models.

In this following section, we provide a rationale for the selection of the LeNet-5
model and the CIFAR-10 and CIFAR-5 datasets for our deep learning model synthe-
sis.

The choice of the LeNet-5 model and the CIFAR-10 and CIFAR-5 datasets for our
deep learning model synthesis was carefully considered based on several key fac-
tors. Firstly, the selection of the LeNet-5 architecture is rooted in its historical signif-
icance as a pioneering convolutional neural network (CNN) design, which has laid
the foundation for modern CNNs. The work in [Lecun et al., 1998] introduced the
LeNet architecture, marking a crucial milestone in the evolution of deep learning for
image analysis. Its relatively shallow architecture, which comprises a series of con-
volutional and pooling layers followed by fully connected layers, is well-suited for
tasks involving image classification. This choice not only pays homage to the funda-
mental work in the field but also serves as a benchmark to assess the effectiveness
of our proposed synthesis approach on a widely recognised architecture. Secondly,
the CIFAR-10, Mnist Fashion dataset was chosen due to its diverse set of 10 object
classes, making it a standard benchmark for image classification tasks. Thier small
image resolution and complex object recognition challenges make it ideal for evalu-
ating the generalisation capabilities of deep learning models. In addition to CIFAR-
10, we introduced the CIFAR-5 dataset, a novel dataset that includes a subset of five
classes from CIFAR-10. The CIFAR-5 dataset was designed to explore model gener-
alisation across diverse image classification tasks. Our choice of these datasets and
the LeNet-5 model is rooted in a well-balanced consideration of historical signifi-
cance, benchmarking opportunities, and the desire to explore the generalisation and
versatility of deep learning models. By evaluating our synthesis approach on these
datasets and architectures, we aim to showcase its adaptability and robustness in
tackling diverse image classification challenges, thereby contributing to the broader
field of deep learning research.

3.3.3 Experimental Setup
The experiment was conducted on a system with the following specifications: Ubuntu
Desktop 18.04.1 LTS operating system, Intel KVM 64-bit 2.4 GHz CPU, 16384 KB
cache, and 32 GB RAM. The software used for the experiment includes Python 3.6.7,
TensorFlow 1.10.0, and Keras 2.2.4.

3.4. Results and Discussion 79
3.3.4 Network Training and Pruning
To establish baseline models, we trained the LeNet-5 model on the proposed data
sets. The LeNet-5 baseline model achieved an accuracy of 78.4% on CIFAR-10, 73.3%
on CIFAR-5, and 90.3% on MNIST-FASHION. We then employed NetTrim [Aghasi,
Abdi, and Romberg, 2018] to prune and fine-tune the baseline models. NetTrim
offers four hyperparameters: L1, which applies L1 regularisation on the weights
of the models; L2, which applies L2 regularisation on the weights of the model;
dropout, a factor used to randomly ignore neurons during training; and Epsilon-
gain, which directly affects the accuracy and sparsity of the pruned model.

We generated 36 compressed models by varying the values of these parameters.
Table 3.1 presents a detailed overview of the combinations used to create a pool of
compressed models.

The above table represents the solution space for our method, but the real so-
lution space may contain up to 236 − 1 models where different combinations and
permutations could be obtained. The following is a summary of statistics about the
size of the 36 pruned models where only the weights and biases are saved as com-
pressed Numpy arrays [Harris et al., 2020]:

1. CIFAR-10: Max:4.2 MB, Min:1.6 MB, Avg: 2.94 MB (baseline: 4.8 MB);

2. CIFAR-5: Max: 4.2 MB, Min: 1.3 MB, Avg: 2.89 MB (baseline: 4.8 MB);

3. MNIST-FASHION: Max:7.7 MB, Min: 0.88 MB, Avg: 2.56 MB (baseline: 7.7MB);

As seen above, the model sizes have been significantly reduced, resulting in a re-
markable decrease in memory footprint. In the case of CIFAR-10, the average model
size was reduced by approximately 39% compared to the baseline, enabling more
efficient utilization of IoT resources. Similarly, for CIFAR-5, the average model size
was reduced by around 40%. For MNIST-FASHION, the reduction was even more
substantial, with the average model size shrinking by approximately 67% compared
to the original size. This significant compression not only minimises the memory
requirements but also enhances the overall utilisation of IoT resources, making the
models more lightweight and feasible for deployment in resource-constrained envi-
ronments.

3.3.5 Synthesis of Compressed Deep Learning Ensembles
The models’ weights in the current solution space are combined to form new classi-
fiers using majority voting. Next, the classifier’s predictability is evaluated against
the testing set. Then a simple backward elimination is applied to exclude the weak-
est model (i.e. the model with the lowest accuracy on the testing set). Ideally, the
elimination process should be performed on the validation set rather than the testing
set. However, as the aim of this work is to prove the existence of pruned ensembles
that could be synthesised from the same baseline model, the testing set was selected.

3.4 Results and Discussion

3.4.1 Results of CIFAR-10
The Figure 3.4, provides a visual representation of the performance comparison be-
tween the proposed method and the baseline model for the ensembles. The results

80 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

TABLE 3.1: Ensyth - hyperparameters values

Solution Hyperparameters
Space ϵ L1 L2 dropout

Set1

0.01
0.02
0.04
0.06
0.08
0.1 0 1 1
0.2
0.3
0.4
0.5
0.6
0.7

Set2

0.01
0.02
0.04
0.06
0.08
0.1 0 [0,0,0.004,0.004,0] 1
0.2
0.3
0.4
0.5
0.6
0.7

Set3

0.01
0.02
0.04
0.06
0.08
0.1
0.2 0 [0,0,0.004,0.004,0.004] 0.5
0.3
0.4
0.5
0.6
0.7

3.4. Results and Discussion 81
are depicted in a clear and concise manner, highlighting the superiority of the pro-
posed method in terms of predictability.

One of the key observations that can be made from the results is that the pre-
dictability of the ensemble models improves as the number of models in the ensem-
ble increases. But this escalation in accuracy usually stops at a point. In particular,
the results show a noticeable trend of enhanced predictability when the number of
models in a prediction ensemble ranges between 6 and 30. This suggests that an
ensemble with a moderate number of models can offer a better trade-off between
prediction accuracy and computational cost.

Additionally, the figure reveals that a significant proportion of the ensemble
models outperform the baseline model. Upon closer inspection of the data, it be-
comes apparent that 23 out of 36 models in the ensembles surpass the performance
of the baseline model. This is a promising result, as it indicates that the proposed
method can consistently improve the accuracy of the ensemble models.

Notably, the figure highlights that the highest accuracy achieved was 78.86%
from an ensemble comprising eight models. This result is particularly noteworthy,
as it demonstrates the potential of the proposed method to boost the accuracy of
prediction ensembles significantly. The empirical results from our experiments with
CIFAR-10 reveal a nuanced relationship between ensemble size and performance,
characterized by a point of inflection where the benefits of adding more models be-
gin to taper off. This trend is indicative of the principle of diminishing returns in
ensemble learning, where each additional model contributes less to predictive accu-
racy relative to the computational cost incurred [Oza and Tumer, 2008]. Achieving
the optimal balance between prediction accuracy and computational expense is thus
realised with a moderate-sized ensemble. Such a balance is crucial not only for effi-
ciency but also for maintaining a diversity that captures various data aspects without
introducing redundancy that could lead to computational waste.

This concept of balance segues into the critical role of diversity among ensem-
ble members, which significantly influences ensemble methods’ performance. The
literature on ensemble learning robustly supports the notion that a collection of di-
verse models is more effective in covering the solution space than a uniform group,
thereby enhancing the generalisation capabilities on unseen data [Kuncheva et al.,
2003]. Diversity is key because it ensures that the errors of individual models are
less likely to be correlated; hence, their aggregation tends to cancel out the errors,
leading to an improvement in overall accuracy. However, the addition of models to
an ensemble does not guarantee an increase in diversity. As the ensemble grows, the
probability of integrating models that genuinely contribute to diversity decreases,
particularly if the pool of available models lacks variety. The number of models is
less significant than the uniqueness of the perspectives each model brings to the en-
semble. Our findings demonstrate that ensembles comprising 6 to 30 models strike
a practical balance, offering robust performance while avoiding the computational
extravagance of larger ensembles. This ’sweet spot’ effectively leverages the advan-
tages of diversity without succumbing to the diminishing returns of oversized en-
sembles, thus substantiating the premise that a moderate ensemble size can indeed
present the most advantageous trade-off between prediction accuracy and compu-
tational cost [Dietterich, 2000].

3.4.2 Results of CIFAR-5
Upon examining the data presented in Figure 3.5, it becomes evident that the pro-
posed EnSyth method has achieved slightly better accuracy than the baseline model

82 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

FIGURE 3.4: CIFAR10

by leveraging the power of synthesising deep learning ensembles. Notably, the re-
sults showcase a total of 12 ensembles that outperform the baseline model, out of
the vast solution space of 236 − 1 potential solutions that were explored.

It is worth highlighting that the highest accuracy achieved through the proposed
method was 73.82%, which was attained by combining three models in an ensemble.
This result demonstrates the potential of the EnSyth method to enhance the accuracy
of prediction ensembles significantly.

In summary, the results presented in Figure 3.5 emphasise the effectiveness of
the EnSyth method in boosting the accuracy of deep learning ensembles. By syn-
thesising the ensembles, the method has achieved superior performance over the
baseline model, with a considerable number of outperforming solutions found in
the explored solution space.

3.4.3 Results of MNIST-FASHION
The results presented in Figure 3.6 shed light on the performance of the proposed En-
Syth method on the MNIST-FASHION testing set. Unlike the findings on the CIFAR-
10 dataset illustrated in Figure 3.4, none of the ensembles composed with the EnSyth
method was able to surpass the baseline model’s accuracy on this particular dataset.

This outcome can be attributed to the fact that the baseline model already achieves
a high level of accuracy on the MNIST-FASHION testing set, with a performance of
90.3%. Therefore, the proposed combinations of models failed to achieve superior
results on this dataset.

However, it is worth noting that some of the ensembles that consisted of a small
number of models (1-5) were able to achieve comparable accuracy to the baseline
model (90.21%). This observation is a clear indication that the search space of 236− 1

3.4. Results and Discussion 83

FIGURE 3.5: Ensyth results using CIFAR5

potential solutions is likely to contain a set of ensembles that can produce promising
results.

In summary, Figure 3.6 provides insights into the performance of the EnSyth
method on the MNIST-FASHION testing set. While none of the ensembles were able
to outperform the baseline model, the results suggest that the search space of poten-
tial solutions is vast and contains a set of ensembles that can produce promising
results. Ultimately, the results underscore the importance of exploring the solution
space to identify the best-performing ensembles.

3.4.4 Computational Cost
Further analysis for EnSyth shows that the ensembles generated by the method re-
quire fewer mathematical operations to make a prediction, as evidenced by the train-
able parameters count. It is assumed that the number of trainable parameters for an
ensemble is equal to the model that has the maximum number of parameters in that
ensemble. In addition, the ensembles also exhibit faster CPU execution time, making
them more efficient compared to the baseline model.

To provide further insight into this finding, Table 3.2 presents the number of
trainable parameters and the average CPU execution time for the solution space ex-
plored during the experiments. The CPU execution time was calculated by feeding
each model generated from a set of multiple solution spaces with 50 randomly se-
lected images from CIFAR10, MNIST-FASHION, and 25 images from CIFAR5. The
experiments were repeated nine times to obtain reliable measurements, and the av-
erages were calculated.

The results displayed in Table 3.2 demonstrate that the ensembles generated by
the EnSyth method exhibits a lower number of trainable parameters and faster CPU

84 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

FIGURE 3.6: Ensyth results using MNIST Fashion

execution time compared to the baseline model. This finding highlights the potential
of the proposed method to not only enhance the accuracy of prediction ensembles
but also to make them more efficient in terms of computational resources.

The stacked bar charts represented in Figure 3.7 serve as a visual representation
of the numerical data detailed in the LaTeX table provided earlier. It illustrates the
processing times (CPU) and the number of parameters (PARAMS) for various mod-
els across the CIFAR10, CIFAR5, and MNIST-FASHION datasets. For each dataset,
the models show a varied number of parameters and processing times. In general,
as the model numbers increase, there is a trend of decreasing parameters, which
is consistent across all datasets. CPU times also tend to decrease but not as con-
sistently, indicating potential optimisations in model complexity without a propor-
tional increase in processing time. The Baseline model, present in all datasets, has
the highest parameters and CPU times, serving as a reference point from which sub-
sequent models deviate. These visualisations effectively highlight the trade-offs and
balances between model complexity (as indicated by PARAMS) and efficiency (as
reflected by CPU times).

3.4.5 Backward elimination
The "lowest accuracy" within the backward elimination process is determined by
a model’s relative contribution to the ensemble’s predictive capability. This is not
solely a measure of individual model accuracy but also considers the model’s redun-
dancy and the uniqueness of its contribution to the ensemble’s diversity. A model is
identified for elimination when it offers the least incremental benefit in terms of en-
semble accuracy or when its removal does not significantly diminish the ensemble’s
performance.

3.4. Results and Discussion 85

TABLE 3.2: Processing Time in µs

Solution CIFAR10 CIFAR5 MNIST-FASHION
Space PARAMS CPU PARAMS CPU PARAMS CPU

Baseline 1663367 91389 1663367 65342 1068298 60462
model1 449125 88712 495739 55458 690727 64838
model2 434727 97337 462392 57717 515694 63037
model3 409820 92000 413032 53179 349340 54986
model4 389077 104112 377410 63897 261155 63275
model5 372406 104244 350174 54509 216367 55309
model6 357104 95805 327820 58771 186753 57215
model7 300644 89662 262180 57328 124971 71198
model8 264190 87792 230782 59406 103398 68252
model9 238728 90467 210362 50445 89496 62281
model10 220266 98415 191688 63527 81341 68114
model11 202498 96473 173373 58674 73196 71749
model12 183802 87632 156328 58764 67678 60940
model13 449591 84103 495625 49144 690725 61207
model14 435068 87470 462176 61775 515985 71292
model15 409863 81002 412918 62938 349510 57813
model16 389414 87186 377683 53196 263364 66171
model17 372045 82882 350011 54519 216602 65960
model18 357415 89725 328173 57192 186321 63897
model19 125306 87472 262669 63158 300819 65514
model20 264433 91569 230848 59841 103440 65623
model21 238866 83084 210599 65157 89636 80378
model22 220109 85930 191402 62459 81384 72368
model23 203311 94199 173371 64266 73173 71940
model24 182823 82880 155159 47629 67589 69643
model25 449578 89749 495692 65576 690728 64918
model26 435326 84622 462402 57962 516312 70715
model27 410650 93787 413068 65927 349515 88424
model28 389634 92072 377807 56507 262603 69605
model29 372273 92882 350256 61985 216909 64090
model30 357602 87173 327886 57042 186680 78473
model31 300925 88574 262159 60170 125250 61816
model32 264239 91445 230685 58797 103346 67042
model33 239254 90179 210282 58426 91338 67711
model34 219892 89763 190855 52055 81142 68332
model35 202639 95498 173020 63604 73265 72857
model36 184180 94243 157021 56694 67622 67416

86 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

"High predictability levels" refer to the ensemble’s ability to maintain high ac-
curacy consistently across various datasets and scenarios. This involves evaluating
the ensemble’s performance stability under different conditions, such as class imbal-
ances, noise, and data perturbations. Predictability is thus a multifaceted measure
that encompasses not only accuracy but also the ensemble’s robustness and reliabil-
ity.

In our results, we observed that ensembles with a moderate number of models,
specifically between 6 and 30, provided the most significant gains in predictabil-
ity without incurring excessive computational costs. This finding aligns with the
backward elimination process, which seeks to identify the smallest ensemble that
maintains high predictability levels. The absolute minimum number of models in
the ensemble is thus determined by the point at which further reductions would
lead to a notable decrease in accuracy or an increase in prediction variance.

The efficacy of the backward elimination algorithm is further substantiated by
the experimental results. For instance, in the CIFAR-10 dataset, the highest accu-
racy was achieved with an ensemble of eight models, indicating that beyond this
point, additional models contribute less to predictive performance. This supports
the use of backward elimination to systematically identify and remove models that
are less contributory, ensuring an optimal ensemble size for deployment, especially
in resource-constrained environments such as edge devices or real-time applications.

In light of these results, the backward elimination process is validated as an effec-
tive method for synthesizing compact and highly predictive ensembles, as demon-
strated by the performance improvements over the baseline model in the CIFAR-10
and CIFAR-5 datasets. While the MNIST-FASHION dataset did not see ensembles
surpassing the baseline, the process still identified ensembles with comparable ac-
curacy, emphasising the potential of the explored solution space and the backward
elimination method’s role in navigating it efficiently.

3.4.6 Discussion
As shown in Figure 3.5, EnSyth was successful in improving the accuracy of the
compressed classifier by synthesizing deep learning ensembles. Specifically, our ap-
proach achieved marginally better accuracy compared to the baseline model. Out of
the 36 solutions explored in the solution space (out of a possible 236 − 1 solutions),
we identified 12 ensembles that outperformed the baseline model. The highest accu-
racy of 73.82% was achieved by combining three models in the ensemble. Addition-
ally, the results of the CIFAR-10 testing presented in Figure 3.4 demonstrate superior
predictability for the ensembles compared to the baseline model. A noticeable trend
is observed here, indicating that the predictability of the ensembles increases when
the number of models in the ensemble is between 6 to 30. A detailed analysis of this
figure reveals that 23 out of the 36 models outperform the baseline model. Notably,
the highest accuracy achieved by the ensemble consisting of eight models is 78.86%.
Moving to the results obtained on the MNIST-FASHION testing set are presented in
Figure 3.6, it is worth noting that some ensembles with a small number of models [1–
5] achieved similar accuracy to the baseline model (90.21%). This indicates that the
real solution space of 236 − 1 is likely to contain a set of ensembles that can produce
promising results. Further examination for Table 3.2 shows that the ensembles re-
quire fewer mathematical operations for prediction compared to individual models,
based on the number of trainable parameters. Additionally, ensembles were found
to have lower CPU execution time compared to individual models.

3.5. Summary 87
Besides our aim to generate better-compressed classifiers, we are particularly

interested in exploring the space of the existing solutions in depth to identify the op-
timal combination of candidates that could be synthesised to produce better results.
With only 36 models and a simple selection technique like backward elimination,
EnSyth was able to search a small subset of the space (only 36 out of 236 − 1 possible
solutions) to find one or more ensembles that outperform the baseline model. As
such, there is a great opportunity for further investigation, this includes: (1) expand-
ing the space of the pruned models by applying different pruning methods with dif-
ferent hyperparameters; and (2) dealing with the selection of the optimal ensemble
as a multi-objective optimisation problem to find the minimum number of models
(a small ensemble) while achieving the highest possible accuracy. Furthermore, the
results from CIFAR10, CIFAR-5, and MNIST-FASHION indicate that with a small
number of models in an ensemble, the classifier can achieve high predictability lev-
els. This is particularly interesting when it comes to deploying those ensembles on
smartphones and Internet of Things (IoT) devices because the ensemble size is small
compared to the baseline model and the performance in terms of inference time and
accuracy is even better.

3.5 Summary

In this chapter, we describe EnSyth, a method to synthesise deep learning ensembles
that results in improved classifiers in terms of both inference time and accuracy. The
approach involves applying multiple pruning methods with varying hyperparame-
ters to generate a diverse pool of pruned models that can be used to form ensembles.
The number of possible ensembles is 2m− 1, where m is the number of pruned mod-
els. The approach consists of several stages. First, we train a baseline model and
then prune it using different hyperparameters to form a pool of compressed models.
After that, we employ ensemble learning to compose new predictors and search the
solution space for outperforming models.

The simulation results on CIFAR-10 and CIFAR-5 datasets reflect the effective-
ness of the proposed method in two ways: 1) improving the performance of com-
pressed models, and 2) providing better utilisation of edge resources by reducing
the number of required math operations to make an inference. The results of experi-
ments on CIFAR-10, CIFAR-5, and MNIST-FASHION datasets reveal that ensembles
with a small number of models can achieve high predictability levels compared to
the baseline models. This finding is significant for deploying these ensembles on
smartphones and AIoT devices because they could work effectively in any resource-
limited environment without causing performance issues.

In the upcoming chapter, we present an innovative approach to further reduc-
ing the memory usage of running deep learning ensembles generated by EnSyth on
resource-limited devices. Our solution is MicroNets, a comprehensive framework
that offers a complete pipeline for deploying deep learning ensembles on AIoT de-
vices with limited resources. The pipeline comprises multiple stages, including a
novel multi-phase pruning method that enables the generation of a diverse pool of
compressed models with superior generalisation power. Furthermore, our pruning
approach includes a novel technique for ensemble pruning, which reduces the mem-
ory required for inference using deep ensemble learning. The proposed approach
not only reduces the memory footprint of ensembles but also improves accuracy and
efficiency, making it suitable for deployment on resource-constrained AIoT devices.

MicroNets also includes additional features, such as efficient weight quantisa-
tion and selective activation pruning, to further reduce memory consumption and

88 Chapter 3. EnSyth: A Pruning Approach to Synthesis of Deep Learning
Ensembles

computation costs. Our framework is specifically designed to enable the effective
deployment of deep learning ensembles on edge devices while meeting resource
constraints.

3.5. Summary 89

FIGURE 3.7: Comparative Performance Metrics of LetNet5
Across CIFAR-10, CIFAR-5, and MNIST Fashion Datasets

91

Chapter 4

MicroNets: A Multi-Phase Pruning
Pipeline to Deep Ensemble
Learning in IoT Devices

In the previous chapter, we introduced a novel technique called EnSyth: A Pruning
Approach to Synthesis of Deep Learning Ensembles. This technique addresses the third
and the fifth objectives of this thesis outlined in Chapter 1.

This chapter introduces the MicroNets framework, which builds upon the re-
search discussed in the previous chapter. The framework aims not only to further
reduce the memory usage of deep learning ensembles but also to enhance their gen-
eralisation capabilities to handle the noisy data generated by AIoT (Artificial Intelli-
gence of Things) devices.

Experimental evaluations conducted on Raspberry Pis demonstrate the effective-
ness of the MicroNets approach. It successfully generates lightweight models and
leverages ensemble learning techniques, resulting in predictability levels that sur-
pass those of ResNet and CIFAR10CNN baseline models by up to 7

The proposed approach has been published as a comprehensive research paper
titled "MicroNets: A multi-phase pruning pipeline for deep ensemble learning in
IoT devices" in the Computers and Electrical Engineering Journal by Elsevier. The
paper can be found in volume 96, with the identification number 107581 [Alhalabi,
Gaber, and Basura, 2021].

4.1 Introduction

The Internet of things (IoT) has emerged as one of the major technological advances
that will contribute to forming the future of humanity [Sodhro et al., 2018], pro-
viding its potential applications, affecting our daily activities [Sodhro et al., 2021].
Those tiny devices are regarded as an optimal target for Machine Learning (ML)
and deep neural networks (DNN) applications [Ahmad et al., 2020] because they
require massive amounts of data for the generation of accurate prediction models.
However, these AI techniques are known for their thirst for substantial computa-
tional power and cannot effectively run on these computationally constrained IoT
devices. For example, deep learning models consist of millions of trainable parame-
ters, requiring extremely powerful workstations to be trained. A VGG-16 has almost
138 million parameters and requires around 550 MB of memory [Simonyan and Zis-
serman, 2015]. On the other hand, a typical RAM for an IOT device does not exceed
500 MB.

Therefore, optimising IoT-driven intelligent systems [Sodhro et al., 2019] and
pruning DNNs becomes paramount in the research community. Deploying DNNs

92Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

on edge devices brings numerous advantages, such as preserving privacy and achiev-
ing low latency. Many compression and acceleration strategies have been intro-
duced, including neuron pruning [Yu et al., 2018a], network quantisation [Alom et
al., 2018], etc. Most recently, researchers have shown great attention to deep learning
compression pipelines as combining different pruning techniques leads to higher
compression ratios [Luo, Chi, and Deng, 2019]. However, similar approaches are
not optimised to run on complex IoT environments. The nature of the noisy data
generated at the edge affects the prediction levels of the pruned models. It leads
to poor performance on IoT applications that require stable model performance.
To overcome those challenges, We propose “MicroNets” as the first deep learning
framework that enables deep ensemble learning on edge devices. “MicroNets” lead
to high compression ratios while not affecting the pruned model’s accuracy by ap-
plying pruning and quantization. More importantly, synthesising diverse classifiers
eliminates the high variance of deep learning models. Motivated by the lottery ticket
hypothesis [Frankle and Carbin, 2019], this approach starts by generating a diverse
set of pruned deep learning models using different hyperparameters of pruning al-
gorithms. The aim is to find a diverse ensemble of subnetworks (a coalition of lot-
tery tickets) instead of one to be deployed in a resource-limited environment. In
general, The framework is as a wrapper that encapsulates any deep neural network
model, providing a heuristic to generate an effective ensemble of pruned deep learn-
ing models, irrespective of the pruning method used. The only criterion that the
pruning method should provide hyperparameters that could be set with different
values to generate a diverse set of models. Overall, the main contributions of our
proposed approach are:

• a novel framework designed to enable efficient deployment of deep ensemble
learning on edge devices through deep ensemble learning, which maximises
the generalisation of deep learning solutions at the edge-end, and provides
robust ML solutions in complex IoT environments;

• a multi-phase pruning pipeline to generate light-weight deep learning models,
which runs (as individuals or ensembles) on resource-limited devices without
draining its resources; and

• a new clustering-based deep ensemble pruning technique to reduce the num-
ber of models in deep learning ensembles.

The remainder of this chapter is organised as follows: In Section 4.2, we present
our proposed approach in detail, which is designed to address the third and the fifth
objectives of this thesis outlined in Chapter 1. We discuss the underlying principles
of our approach in great detail. In Section 4.3, we provide a comprehensive overview
of the experimental setup we used to evaluate the effectiveness of our approach.
We describe the datasets we used for training and testing our models and explain
how we selected the models, edge clients, and other components of our distributed
edge environment. Moving on to Section , we present the results of our experi-
ments on the CIFAR10 and CIFAR100 datasets. We demonstrate that our approach
can achieve comparable or better accuracy than A CNN baseline model while using
fewer resources, making it a promising solution for edge computing scenarios. We
also describe the deployment of our MicroNets on a distributed edge environment,
showing that it can be easily integrated with existing systems and can improve the
system’s overall performance.

Finally, in Section 4.6, we summarise our proposed approach and its results,
highlighting its advantages and limitations. We also discuss the implications of our
work for future research in the field of edge computing. We conclude by introducing

4.2. Method 93
our next contribution, which builds on the insights and techniques presented in this
thesis to address new challenges related to data privacy and security.

4.2 Method

In this section, we describe in detail the proposed approach. We start by justifying
the rationale behind generating a pool of diverse deep learning classifiers (ensem-
ble of deep learning models). Then, We move to illustrate the ensemble’s journey
through the pruning pipeline. The first step in this journey aims to reduce net-
work complexity by applying weight pruning. The next step involves using integer
quantisation to enable efficient deployment in resource-limited environments. The
final step in the pruning pipeline reduces the number of models in the ensemble.
Here, we propose a new method to prune a deep learning ensemble by adopting a
clustering-based pruning method.

4.2.1 Pool Generation and Weight Pruning
Deep learning models can solve non-linear problems by learning via a stochastic
training algorithm. This enables them to learn complex relationships between in-
puts and outputs and approximate any mapping function. However, One major
drawback of deep learning models is high variance which makes them highly de-
pendent on (1) the training set; and (2) the conditions that have been applied to the
training process (initial weights values, loss function, optimiser function, etc.). This
could affect the network’s ability to generalise and consequently produce a model
that makes different predictions when the same conditions apply. To overcome these
challenges, we follow a similar approach applied in [Alhalabi, Gaber, and Basurra,
2019]. We start with a baseline model, and then a weight pruning method [Zhu and
Gupta, 2017] is applied. During the training process, a binary mask is added to each
elected layer for pruning. The mask has the same size and shape as the layer’s ten-
sor, determining the weights actively participating in the forward execution graph.
Then the weights in each mask are sorted according to their absolute values. The
weights with the smallest magnitude values are set to zero, leading to initial spar-
sity levels (s). During the backpropagation, the weights that had been marked in the
forward execution are not updated. This process will be executed automatically and
gradually where the sparsity is increased from an initial value (si) (typically 0) to
final sparsity (s f) over several pruning steps (n), starting at a training step (t0) with
a pruning frequency (∆t):

st = s f + (si − s f)

(
1− t− t0

n∆t

)3

, (4.1)

where t ∈ {t0, t0 +∆t, ..., t0 + n∆t}, (s,n,t,∆t) are the hyperparameters of this pruning
technique. We vary these values to generate a pool of diverse pruned deep learning
models. However, compressing the model’s size using such a pruning technique
is not adequate for AI edge devices, they do not support floating-point operations.
Thus, integer quantisation is applied as shown in the following step.

94Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

4.2.2 Post Training Integer Quantisation
We adopt 8-bit integer quantisation to approximate the floating-point values using
the following formula:

real_value = (int8_value− zero_point)× scale (4.2)

All weights are represented by int8 two’s complement values in the range [−127, 127]
with zero_point equals to (0). Similarly, activations/inputs are represented by int8
two’s complement values in the range [−128, 127] with zero_point in the range [−128, 127].
After applying integer quantisation to the proposed pool, we get a set of pruned-
quantised classifiers that have different characteristics. Some models could have ex-
cellent accuracy and inference time performance, while others may not. In the next
step, we reduce the number of learners in the pool by applying ensemble pruning
assuming the pool as an ensemble of deep-learning models.

4.2.3 Ensemble Pruning
According to [Zhou, 2012] ensemble pruning techniques could be classified into
the following categories: ordering-based pruning, optimisation-based pruning and
clustering-based pruning.

Clustering-based pruning involves a two-step process. Initially, it segregates
base models into distinct groups according to a specific criterion, aiming to posi-
tively influence the overall ensemble’s efficacy. To achieve this segregation, a vari-
ety of clustering techniques have been utilized. These include hierarchical agglom-
erative clustering [Kuncheva, 2014], deterministic annealing [Bakker and Heskes,
2003], k-means clustering [Qiang, Shang-xu, and Sheng-ying, 2005] [Lazarevic and
Obradovic, 2001], and spectral clustering [Zhang and Cao, 2014], most of which
apply some form of diversity-oriented criteria. For instance [Giacinto, Roli, and
Fumera, 2000] computed the likelihood of classifiers erring differently on a distinct
validation set. Similarly, [Lazarevic and Obradovic, 2001] considered the Euclidean
distance within the training set. Additionally, [Kuncheva, 2014] suggested the use
of a diversity matrix for both hierarchical and spectral approaches.

The subsequent phase involves the selection of a representative base learner from
each group. For example, a novel model was trained to represent each cluster’s cen-
ter in [Bakker and Heskes, 2003]. Conversely, Giacinto and colleagues [Giacinto,
Roli, and Fumera, 2000] opted for the classifier furthest from other clusters. The ap-
proach in [Lazarevic and Obradovic, 2001] involved sequentially excluding models
from the cluster, starting with the least precise. The selection criterion in [Qiang,
Shang-xu, and Sheng-ying, 2005] was the model’s classification accuracy.

An important consideration is the determination of the optimal cluster quantity,
which can be guided by the validation set’s performance metrics [Qiang, Shang-xu,
and Sheng-ying, 2005]. With fuzzy clustering approaches, the number of clusters
may be decided using indices that rely on membership values and data character-
istics, or on statistical indexes for an automatic determination [Krawczyk and Cy-
ganek, 2017].

As seen above, the clustering-based methods aim to partition the classifiers into
different clusters where the classifiers that behave similarly will be grouped. As a
result, a set of clusters with varying levels of diversity is composed. Finding such
clusters is critical to our approach as it maximises the generalisation of the final
solution and overcomes any potential overfitting issues. Although many studies
offer clustering-based ensemble pruning [Qiang, Shang-xu, and Sheng-ying, 2005],

4.2. Method 95
they do not support deep learning models and computer vision data sets. Hence, we
propose a new clustering-based pruning technique for deep learning ensembles that
aims to maximise the accuracy and diversity of the final ensemble. The following
illustrates how our approach tackles the accuracy and diversity of a deep-learning
ensemble.

Ensemble accuracy: The accuracy of an ensemble is generally improved by choos-
ing individuals with high predictability levels [Zhou, 2012]. Based on this, we do
descend-ranking to the members of the cluster. The ranking is done according to the
accuracy against a validation set (a subset of the training set). Then we pick up the
top-performing models from each generated cluster based on two strategies, which
will be explained further in (subsection- 4.2.4). This ensures only high-performing
models are part of the final deep learning ensemble that runs on the edge devices.

Ensemble diversity: Diversity in ensemble learning refers to the differences in
the predictions made by the individual classifiers within the ensemble. A diverse
ensemble is one where the classifiers make independent errors, which can lead to
better generalisation and improved performance on unseen data. The rationale is
that diverse classifiers can capture different aspects of the data, thus reducing the
likelihood of making the same errors [Kuncheva, 2014]. Different measure has been
proposed to calculate the diversity between the classifiers of an ensemble. For ex-
ample, The disagreement measure is one way to quantify diversity, calculating the
proportion of instances where two classifiers disagree in their predictions, as given
by [Kuncheva, 2014]:

Disagreement(Ci, Cj) =
1
N

N

∑
n=1

I(Ci(xn) ̸= Cj(xn)) (4.3)

Where:
Ci, Cj: Two individual classifiers within the ensemble.
N: The total number of instances in the dataset.
I: An indicator function that returns 1 if the condition is true and 0 otherwise.
xn: The nth instance in the dataset.

The Q-statistic further explores this by measuring the degree of similarity be-
tween pairs of classifiers, with its formula below:

Q(Ci, Cj) =
N11N00 − N10N01

N11N00 + N10N01
(4.4)

Where:
N11: The number of instances where both classifiers Ci and Cj correctly predict.
N00: The number of instances where both classifiers Ci and Cj incorrectly predict.
N10: The number of instances where classifier Ci is correct and Cj is incorrect.
N01: The number of instances where classifier Ci is incorrect and Cj is correct.
The above formula indicates how often classifiers make the same decision, either
correct or incorrect [Webb, 2000]. Entropy measures bring a different perspective by
assessing the unpredictability in the predictions across the ensemble ([Zhou, 2012]
encapsulated in the formula

E = −
K

∑
k=1

pk log2 pk (4.5)

Where:
E: The entropy measure for the ensemble.

96Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

pk: The proportion of classifiers that predict the k-th class.
K: The total number of classes.

Lastly, generalised diversity measures combine multiple pairwise diversity mea-
sures into a single framework, providing a comprehensive assessment of diversity
within the ensemble [Kuncheva, 2014], the formula is introduced as:

GD = f (D1, D2, . . . , DM) (4.6)

Where:
GD: The generalised diversity measure for the ensemble.
D1, D2, . . . , DM: Different diversity measures used in the ensemble.
f : A function that combines the different diversity measures into a single frame-
work.
M: The total number of diversity measures considered.

These measures of diversity are instrumental when pruning the initial pool of
models using different hyperparameter values to achieve both diversity and sparsity
within the ensemble.

Let S be the pruning set (a subset of the training set) ∈ Rm×n where m is the
number of samples and n is the number of labels. Let v be a deep learning model
∈ P, the pool of pruned-quantised models, the prediction of the model vi ∈ P for a
class cj ∈ S is yi,j ∈ [0, 1] where

• i = 1, 2, · · · , m where m is the index of models.

• j = 1, 2, · · · , n where n is the index of classes.

We construct the output of the pool P for each sample ci as:

A =

y1,1 y1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
...

. . .
...

ym,1 ym,2 · · · ym,n

As the output of the pool has been defined, we move now to define how clustering
is applied to the output of the pool A. Let’s consider x as a row vector ∈ A, the value
of x is defined as: x = [yb,1yb,2, · · · , yb,n]; such that the index b is defined as:

b = argmax

max(y1,1, y1,2, · · · , y1,n)
max(y2,1, y2,2, · · · , y2,n)

...
max(ym,1, ym,2, · · · , ym,n)

Based on this, a clustering matrix C could be defined on a total number of images

o in the pruning set as:

C =

x1
x2
...

xo

Next k-means method is applied on C and the output is represented by R, R =
kmeans(C, k) where k is the number of clusters and R = [r1, r2, · · · , ro]: ri is the index
of the cluster where xi belongs to. Once clusters are created, the best candidates from
each cluster will be selected to compose the final ensemble that will be deployed to
the distributed constraint-limited environment.

4.2. Method 97
4.2.4 Representative Selection Strategies
At this stage, different clusters are generated, and the classifiers with similar char-
acteristics are grouped into one cluster. However, each cluster may contain a large
number of models; thus, we propose two strategies to pick up the best representa-
tives from the resulting clusters using r that was defined before.

1. Accuracy first: in this strategy, we consider the accuracy of a cluster to be equal
to the average accuracy of all models belonging to this cluster. Based on this,
we rank the clusters according to their accuracy and then pick the cluster with
the highest accuracy. Next, we sort the chosen cluster’s models in descending
order (according to the accuracy against the pruning set), and pick the top 5
models. Those models will be deployed to the target IoT devices;

2. Diversity first: here, we give priority to the diversity of the final solution.
Thus, we select one classifier (best accuracy) from each generated cluster to be
deployed on the resource-limited devices.

The next step involves deploying the models to a distributed resource-constraint
environment, where each node in this environment uses max-voting [Zhou, 2012]
as an ensemble learning method. The predictions of the models are considered as
votes, and the class that receives the maximum number of votes is considered the
ensemble’s forecast. Let’s consider W = m1, · · · , mN as an ensemble of the deployed
models mi. The prediction of the ensemble for a test example using max-voting is the
class that receives the maximum support η f inal(W) from all models in the ensemble.
As such, we define the ensemble output as:

η f inal(W) = argmaxj∈{1,··· ,C}

N

∑
i=1

yi,j

;
The detailed steps of the MicroNets discussed above are elaborated further in the

Algorithm 7. Figure 4.1 depicts the process of applying MicroNets, as elaborated in
the details of this section. In the next section, we move to the experimental setup
and the results of applying this method on bench-marking datasets.

FIGURE 4.1: MicroNets: A Multi-Phase Pruning Pipeline to
Deep Ensemble Learning in IoT Devices

98Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

Algorithm 7 MicroNets pseudo-code

Choose a baseline model v;
Set N as the number of models in the pool, and initialise P as a set of deep
learning models.
weigh-pruning & interger-quantisation
for i← 1 to N do

P.Append(int_quantisation(prune(v, H))) where H = {h1, h2, · · · , hn}
are hyperparams of the prune function;

end for

Clustering-based ensemble pruning
Initialise C as a two dimensional matrix;
for all models in P do

calculate(A)
calculate(b)
x ← [yb,1yb,2, · · · , yb,n]
C.append(x);

end for
R ← kmeans(C, k) where K is the number of clusters; {the result is a set of
clusters R}
Representatives Selection Process
1.Accuracy First:
Intialise A as a list of floating point numbers;
for ri in R do

ai ← accuracy(ri);
A.append(ai);

end for
b_c ← max(desc_order(A)) where b_c is the best cluster with the highest
accuracy, desc_order(descending order);
Deploy the top 5 models in b_c to an IoT device;
2.Diversity First:
for ri in R do

for vj in ri where vj is a deep learning model do
aJ ← accuracy(vj);
A.append(aj);

end for
b_m← max(desc_order(A))

end for
Deploy the top 5 models in b_m to an IoT device;

4.3. Experimental Study 99

4.3 Experimental Study

This section evaluates the performance of MicroNets using CIFAR10CNN and ResNetV2
models on CIFAR10 and CIFAR100 datasets, respectively. Then, we provide other
results related to inference time, heat and power consumption on Raspberry Pi de-
vices. Those measures are essential to show the effectiveness of our approach in
preserving the resources of IoT devices.

4.3.1 Datasets and Models
Datasets: CIAFR-10 consists of 70,000 images (28 × 28 coloured) split into 50,000
images as a training set and 10,000 images as a testing set. The images span over 10
objects’ categories [0: airplane, 1: automobile, 2: bird, 3: cat, 4: deer, 5: dog, 6: frog,
7: house, 8: ship, 9: truck]. CIFAR-100 is similar to CIFAR10 except that it has 100
classes holding 600 images each. Models: CIFAR10-CNN is a basic convolutional
neural network (CNN) model with four convolutional layers with (32× 3× 3) filter
size for the former two and (64× 3× 3) filter size for the rest. ResNetV2: is a child
of Deep Residual Networks (RNNs) family that achieved groundbreaking work in
the deep learning community in the last few years. ResNetV2 is the second version
of ResNet and the main improvement in V2 is related to the arrangement of layers
in the residual block. The model’s input is a 299× 299 pixels, and the output is the
probability distribution for the predicted classes [He et al., 2016b].

4.3.2 Implementation Details

Model Training and Pruning

Our experimental involves two baseline models: CIFAR10-CNN and ResNetV2. The
CIFAR10-CNN model is developed from the ground up and trained on the CIFAR10
dataset, achieving a test accuracy of 74% with a model size of 9,386 KB. Conversely,
the ResNetV2 model is trained on the CIFAR100 dataset, reaching a test accuracy of
67% and a model size of 3,575 KB.

We employed the weight pruning technique as detailed in [Zhu and Gupta, 2017]
on both baseline models, which led to the formation of two distinct sets of models,
or ’pools,’ with each pool comprising one hundred individually pruned models.
To ensure a broad spectrum of model variations, we assigned a range of values to
the pruning hyperparameters, choosing these values at random within predefined
limits. The specific hyperparameters and the ranges from which their values were
selected are clearly outlined in Table 5.1.

Integer Quantisation

Following the pruning phase, we applied integer quantisation to all models in both
pools. This technique converts the models’ weights and activations to 8-bit integers,
which not only reduces the models’ sizes but also optimises them for performance
on dedicated integer arithmetic hardware like Raspberry Pi devices.

Ensemble Pruning

After applying quantization to the pools of pruned models, we proceeded to re-
fine the number of models in each pool by introducing a novel ensemble pruning
approach. This method involved organizing the models into clusters within their

100Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

TABLE 4.1: Hyperparameters, Weight pruning

Hyperparameter Values_range
Epochs [3,4,5,6,8]
Batch_size [32,64,128]
Loss [categorical_crossentropy,

mean_squared_error,
mean_absolute_error]

Optimiser [SGD,adam,Nadam,Adadelta]
Initial_sparsity [0.1,0.6](range)
Final_sparsity [0.7,0.9] (range)
Frequency [100,200,300,400]

respective pools, with the number of clusters being predetermined and denoted by
the variable K. The selection process for models within these clusters was governed
by two key principles:

• Accuracy first: In our accuracy first approach, we assign the highest priority to
the accuracy of the models. To do this, we first calculate the average accuracy
of the models within each cluster, treating this average as the representative
accuracy of the cluster itself. Following this, we rank the clusters in order of
their calculated average accuracy (descending order). From the cluster that
emerges with the highest average accuracy, we then select the top five models
that exhibit the best individual performance.

• Diversity first: In our ’Diversity first’ approach, we emphasise the selection of
a model from each cluster that not only showed strong performance metrics
but also contributed to the overall diversity of the model ensemble.

Deployment to a Distributed Edge Environment

When the chosen pruned and quantised deep learning models from the previous
step are ready to be deployed on IoT devices, each device holds two or more deep
learning models and utilises deep ensemble learning to combine the models’ predic-
tions. However, the process of combining predictions from different models requires
additional computational power. Thus, it is essential to bring ML inferencing power
to edge devices by attaching hardware accelerators. As such, we use the Coral USB
Accelerator1 to add a portable Edge TPU coprocessor to the PI devices.

4.4 Experimental Setup

The development workstation for training/pruning deep learning models is hosted
on the Google Cloud Platform with the following configuration: 8 vCPUs, 30 GB
memory. 2 × NVIDIA Tesla K80 using Tensorflow 1.15 dev. We use Raspberry PI 3
Model B v1.2 attached to Google Coral to create a real edge computing environment.
Google Coral is provided with a TPU coprocessor capable of performing 4 trillion
operations (tera-operations) per second. Figure 4.2 represents the distributed edge
environment that we use to evaluate the performance of our proposed approach.
For compatibility reasons with the Edge TPU coprocessor, all models have to be

1https://coral.ai/docs/accelerator/datasheet/

https://coral.ai/docs/accelerator/datasheet/

4.4. Experimental Setup 101
compiled before deployment using a compiler tool 2. The compiler tool provides
a vital option called Co-Compilation3 to boost the inferencing while running mul-
tiple models on the same IoT device. It allows various models to share the Edge
TPU RAM and cache their parameter data together, eliminating the need to clear
the cache each time you run a different model. In section 4.5, we investigate the
effect of co-compilation on the inferencing time. As shown in Figure 4.2, two Rasp-

FIGURE 4.2: Two raspberry pi devices connected to: Google
Coral Accelerator and a router

berry Pi nodes (running Raspbian GNU/Linux 9 (stretch) and Tensorflow-2.1.0) are
connected to Tenda F3 300Mbps router, and the Coral USB Accelerator. Node1 will
host two deep learning models, while Node2 will host three models. Additionally,
a master node (webserver) is also connected through the router to coordinate the
prediction process. First, it sends both nodes an integer as the number of required
samples that need to be tested on the testing set. Next, the nodes apply deep ensem-
ble learning and return their prediction to the server. At the server, the predictions
are combined from both nodes again to produce the final result. While performing
the predictions on Node2, we measure the energy consumption using YOTINO USB
Voltage and Current Detector Meter Capacity, Accuracy: ±1%’, furthermore we monitor
the temperature of Node2 using Etekcity Lasergrip 1080 Non-contact Digital Laser IR
Infrared Thermometer, Accuracy: ±2% or 2°C’.

2https://coral.ai/docs/edgetpu/compiler/#system-requirements
3https://coral.ai/docs/edgetpu/compiler/#co-compiling-multiple-models

https://coral.ai/docs/edgetpu/compiler/#system-requirements
https://coral.ai/docs/edgetpu/compiler/#co-compiling-multiple-models

102Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

4.5 Results and Discussion

4.5.1 Results on CIFAR100
The ResNet model is trained on CIFAR100 data set, and then weight pruning is ap-
plied to generate a pool of 100 lightweight models. The maximum accuracy in the
pruned pool is 66%, while the minimum accuracy is 1%. The model size after prun-
ing is remarkably dropped, and the average model size in the pool is 1.293 KB which
is almost 63% smaller than ResNet baseline model. A further reduction in model
size is gained through integer quantisation; the average pruned model size is only
305 KB. This represents a significant compression ratio of up to 92%, which is a key
success factor of the MicroNets towards enabling efficient deep ensemble learning
on resource-limited devices. The next step in MicroNets is to reduce the number of
models in each pool and select the best representatives based on accuracy first and
diversity first strategies. Figure 4.3 compares the results obtained after adopting the
proposed strategy for model selection and applying ensemble learning. As a side
note here, the accuracy is tested over five hundred samples on CIFAR100 testing
set, and the baseline accuracy on this subset (after quantisation) is 51%. We apply
quantisation to the baseline model to make it similar to the generated models by Mi-
croNets Also, from Figure 4.3, we can see that the synthesis of the models following

FIGURE 4.3: CIFAR100 Accuracy Comparative: “Accuracy
First“ versus “Diversity First“

the “Accuracy First” strategy was able to achieve higher accuracy than the base-
line model. The highest accuracy is achieved when an ensemble of the two models
is created (55%). On the other hand, the accuracy was remarkably dropped when
“Diversity First” is adopted when k = 3, 5, 7. However, when k = 3, the accuracy
reaches 34%.

4.5. Results and Discussion 103
Table 4.2 summarises the results on CIFAR100.

TABLE 4.2: Summary of MicroNets results on CIFAR100

Metric Result
Maximum Accuracy (Pruned Pool) 66%
Model Size (Post-Pruning) 1.293 KB (63% smaller than ResNet

baseline)
Model Size (Post-Pruning and Quan-
tization)

305 KB (92% compression ratio)

Accuracy (CIFAR100 Testing Set,
Baseline)

51%

Accuracy (Ensemble of "Accuracy
First" Models)

55%

Accuracy ("Diversity First" with k=3) 34%

4.5.2 Results on CIFAR10
The minimum accuracy of the pruned pool on CIFAR10 dataset is 1%, while the
maximum is 80% (on the training set). The average size of the models is 4,926 KB
(around 48% reduction in model size compared to the baseline). After quantisation,
the models became even smaller, and the size became 1,233 KB (approximately 87%
reduction in size). In a similar manner to CIFAR100, Figure 4.4 presents the accuracy
of MicroNets on five hundred images from CIFAR10 testing set, and the accuracy of
the baseline model on this subset reaches 78%. What stands out in Figure 4.4 is the
success of MicroNets in providing more accurate decisions than the baseline model
in both selection strategies. In the case of “Accuracy First”, all the ensembles are
able to offer outperforming results, and the maximum accuracy is reached when
the ensemble size is three (82%). In the “Diversity First” strategy, when k = 3,
the accuracy of the composed ensemble is 79%. However, the accuracy was almost
the same as the baseline, when the ensemble size is five k = 5 (77%), and when
k = 7 (76%). Furthermore, the results are shown in 4.3 compare the accuracy of the
proposed strategies against a random selection of the models.

TABLE 4.3: Accuracy Comparison: “MicroNet’s Clusters“ ver-
sus “Random Model Selection“

K Diversity First Random
CIFAR10 CIFAR100 CIFAR10 CIFAR100

3 0.798 0.344 0.398 0.178
5 0.778 0.116 0.752 0.16
7 0.76 0.136 0.754 0.118

NumberOfModels Accuracy First Random
CIFAR10 CIFAR100 CIFAR10 CIFAR100

1 0.814 0.518 0.234 0.09
2 0.81 0.55 0.208 0.072
3 0.822 0.546 0.288 0.068
4 0.81 0.53 0.282 0.058
5 0.81 0.522 0.286 0.068

104Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

FIGURE 4.4: CIFAR10 Accuracy Comparative: “Accuracy First“
versus “Diversity First“

So far, the results indicate that MicroNets can provide lightweight high perfor-
mance models in terms of size and accuracy. Table 4.4 gives more details about size
reduction (in KB) after applying the proposed pruning pipelines. It also shows the
size of the ensembles in both accuracy-first and diversity-first approaches.

It is apparent from Table 4.4 that the models are effectively compressed to reach
around 91% compression ratio. Additionally, the size of the ensembles (even when
k = 7) is still smaller than that of the baseline. Moving now to provide results related
to heating, inference time and energy consumption on Raspberry Pis, as a typical IoT
device. As explained earlier, we compile the models with the edge_tpu compiler us-
ing two different options: regular compilation process and co-compilation process.
Table 4.5 shows the results of inference time (in seconds) on a different number of
CIFAR10 testing set. It also shows the external temperature of Node2 which holds
three models in the rest mode (no inferencing) and the peak mode (while inferenc-
ing).

A closer inspection of Table 4.5 above shows that both compilation methods have
almost similar results when the number of CIFAR10 testing samples are between [1-
5]. The external temperature of Node2 has not changed (before/after inferencing)
and the average time needed to perform an inference is 3.5 seconds. However, when
we increase the number of testing samples passed to the models, Co-Compilation
shows a huge difference in the required time to perform the inference. For instance,
when we ask Node2 to make an inference on a hundred images, it takes only 4.56
seconds. On the other hand, Regular-Compilation experiences a considerable delay
in performing the same task with almost 15.5 seconds. Additionally, the external
temperature of Node2 has slightly increased while performing the prediction on 100
images (0.4 degrees). In short, we can conclude that if the devices need to perform
inference on a large number of samples, then the models should be compiled with

4.5. Results and Discussion 105
TABLE 4.4: Effect of “MicroNets’ on the size of the models (in

KB)

CIFAR10 CIFAR100

Size changes after pruning pipelines
Baseline 9,836 3,575

Pruning Applied 4,926 1,293
Quantisation Applied 1,233 305

Diversity-First
k=3 3,699 915
k=5 6,165 1,525
k=7 8,631 2,135

Accuracy-First

1 1,233 305
2 2,466 610
3 3,699 912
4 4,932 1,220
5 6,165 1,525

the Co-Compilation option as this benefits from using models parameter cashing. Re-
garding energy consumption, Figure 4.5 shows the changes of the “load current”
while Node2 performs inferencing on various samples from the CIFAR10 testing
set.

4.5.3 Energy monitoring
The energy consumption of computing devices is a critical factor to consider in con-
strained and resource-limited environments such as Internet of Things (IoT) devices,
which typically have limited battery life or power supply. In such environments, the
energy consumption of a deployed application or system needs to be monitored
and optimized to prolong the device’s battery life or minimise the need for frequent
recharging. In this sub-section, we will discuss two measurements the Input volt-
age (DCV) and the Load current(DCA) measurements captured during running Mi-
croNets on Raspberry Pi devices.

The results of the energy monitoring measurements show that the co-compilation
mode had a slightly lower load current than the regular compilation mode when
running a small number of models, but had a higher load current when running
more significant numbers of models. For example, when running 100 models, the
co-compilation mode had a load current of 0.42 DCA while the regular mode had
a load current of 0.44 DCA. However, when running only one model, both modes
had a load current of 0.3 DCA. It’s worth noting that the input voltage remained
constant at 5.03 DCV for both modes and across all numbers of models tested. These
measurements are helpful in understanding the energy consumption of a Raspberry
Pi device when using an edge TPU accelerator and can inform decisions on system
optimisation and energy efficiency.

Table 4.6 provides information on the input voltage and load current of a Rasp-
berry Pi device under three different conditions: (1) when no accelerator is attached,
(2) when a Coral accelerator is attached, and (3) when running a Tflite server. The
measurements are taken in DC volts (DCV) for input voltage and DC amperes (DCA)
for load current.

Table 4.6 shows that the input voltage remains constant at 5.03 DCV across all
three conditions. This indicates that the power supply for the device remains stable
throughout the experiments.

106Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

TABLE 4.5: Inference (Milliseconds) and Temperature (Celsius)
Results, Co/Reg Compilation

Samples Compilation Node1 Node2 Temp_idle Temp_Peak
100 co 4.242 4.562 35.9 36.2
50 co 3.790 4.018 36 36.1
25 co 3.638 3.818 36 36.1
10 co 3.518 3.612 35.9 36
5 co 3.506 3.597 35.8 35.8
4 co 3.494 3.563 36.1 36.1
3 co 3.492 3.580 35.8 35.8
2 co 3.509 3.575 36.1 36.1
1 co 3.503 3.546 36 36

100 reg 11.504 15.476 36.1 36.5
50 reg 7.605 9.544 36.1 36.4
25 reg 5.473 6.421 36.1 36.2
10 reg 4.196 4.551 36.1 36.1
5 reg 3.756 3.954 36.1 36.1
4 reg 3.693 3.874 36 36
3 reg 3.631 3.769 35.9 35.9
2 reg 3.548 3.658 36 36
1 reg 3.548 3.541 36 36

TABLE 4.6: Input voltage and load current of Raspberry Pi de-
vice

Input voltage (DCV) Load current (DCA)
No accelerator attached 5.03 0.26

With Coral attached 5.03 0.3
Running Tflite server 5.03 0.45

However, the load current varies depending on the different conditions. When
no accelerator is attached, the load current is 0.26 DCA, which increases slightly to
0.3 DCA when a Coral accelerator is attached. This suggests that the Coral accelera-
tor consumes additional power, resulting in a slightly higher load current.

The load current increases further to 0.45 DCA when running a Tflite server, in-
dicating a slightly higher power consumption when the device is running a server
workload. This increase in power consumption is expected since running a server
workload typically requires more computational resources and, therefore, more power.
In order to monitor the energy consumption of a Raspberry Pi device during oper-
ation with an edge TPU accelerator, we introduced new measurements to compare
the input voltage and load current for two different complication modes (on node2):
co-compilation and regular compilation. Co-compilation is a technique where the
code is compiled simultaneously for both the host processor and the edge TPU,
while regular compilation only compiles for the host processor. We recorded both
modes’ input voltage and load current and compared the results. The results of
the energy monitoring measurements show that the co-compilation mode requires
a slightly lower load current than the regular compilation mode when running a
small and large number of models. For example, when running 100 models, the
co-compilation mode had a load current of 0.42 DCA while the regular mode had

4.5. Results and Discussion 107

FIGURE 4.5: Energy Consumption of Micronets’ Ensembles

a load current of 0.44 DCA. Similarly, when running 2 models, the co-compilation
mode had a load current of 0.3 DAC, on the other hand, the regular compilation had
0.36 DAC. However, when running only one model, both modes had a load current
of 0.3 DCA.

It’s worth noting that the input voltage remained constant at 5.03 DCV for both
modes and across all numbers of models tested. These measurements are useful
for understanding the energy consumption of a Raspberry Pi device when using an
edge TPU accelerator and can inform decisions on system optimization and energy
efficiency. The complete results of these measurements can be found in Table 4.7 and
Table 4.8.

TABLE 4.7: Energy Monitoring Results for Regular Compila-
tion Mode

Number of models Input voltage (DCV) Load current (DCA)
100 5.03 0.44
50 5.03 0.43
25 5.03 0.36
10 5.03 0.36
5 5.03 0.36
4 5.03 0.37
3 5.03 0.36
2 5.03 0.36
1 5.03 0.3

From Figure 4.5, it can be seen that Node2 pulls (0.3 A) in the rest mode. While
making the inference(using co-complied models, and the number of samples is less
than 50), the “load current” is almost the same. The “load current” is increased

108Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

TABLE 4.8: Energy Monitoring Results for Co-compilation
Mode

Number of models Input voltage (DCV) Load current (DCA)
100 5.03 0.42
50 5.03 0.42
25 5.03 0.36
10 5.03 0.3
5 5.03 0.3
4 5.03 0.31
3 5.03 0.33
2 5.03 0.3
1 5.03 0.3

by nearly 0.12 when Node2 tries to make predictions on fifty or a hundred images.
When an inference is made with regular-complied models, the “load current” in-
creases by a small degree even when the number of testing samples is less than
fifty; it is worth mentioning that in both compilation methods, the input voltage
for Node2 during the inference has not changed (5.04 V). This indicates that co-
compilation does not only improve the inference time, but also reduces the required
energy to run ensembles on resource-limited devices.

4.5.4 Computational Complexity
To understand the complexity of the proposed method, we first need to calculate the
complexity of a deep learning model v. Assuming k is the number of layers in v,
m/n are the input/output dimensions, N is the total number of parameters, and w
is the depth of a neural network. Based on this, the complexity of a ResNet model
as a linear programming problem (LP) for a given sample of data (size D) could

be defined as: O
((

m log(m)
)
∆O(K2)/ϵn+m+N D

)
[Bienstock, Muñoz, and Pokutta,

2022]. Where G denotes to the computational graph of v, ∆ the maximum vertex
in-degree in G while ϵ > 0. Similarly, the complexity on CIFAR10CNN in LP is:

O
((

mwO(K2)/ϵ
)n+m+N D

)
. Moving now to define the complexity of the proposed

ensemble pruning technique. First, the complexity of the descending order in the
worst case is O(nlogn); k-means complexity is O(ndk+1); where n is the number of
entries that need to be clustered, k is the number of clusters and d is the number
instances in the pruning set. Given that the number of classifiers in an ensemble is
constant, the computational complexity is bounded by the complexity of the neural
network, as given.

4.5.5 Discussion
This section first outlines the key hyperparameters that define the MicroNets frame-
work, setting the stage for subsequent performance evaluations. We then present the
results of MicroNets, initially examining their memory footprint to assess the practi-
cality of deploying these ensembles on devices with constrained storage. Following
this, we discuss the accuracy outcomes of the "Accuracy First" and "Diversity First"
strategies, highlighting how these approaches influence ensemble performance. Fi-
nally, we consider the implications of MicroNets on the inference time and resource

4.5. Results and Discussion 109
usage on AIoT devices, specifically focusing on the Raspberry Pi, to gauge their effi-
ciency in edge computing environments.

In MicroNets, the selection and tuning of hyperparameters play a pivotal role
in the development and optimisation of the deep learning ensemble. The hyperpa-
rameters, such as sparsity levels (s), pruning steps (n), initial (si) and final sparsity
(s f), pruning frequency (∆t), and the number of clusters (k) for ensemble pruning,
are critical as they directly influence the model’s complexity, performance, and ulti-
mately its deployment feasibility in resource-limited environments.

The pruning technique’s hyperparameters, particularly the sparsity levels and
pruning steps, dictate the degree and pace at which the model is simplified. A
higher initial sparsity (si) may lead to a more aggressive reduction in complexity, po-
tentially at the cost of accuracy. Conversely, a gradual increase in sparsity towards
the final level (s f) over numerous pruning steps (n) allows for a more controlled
simplification, preserving the model’s ability to generalise. The pruning frequency
(∆t) further refines this process, enabling fine-tuning of the model’s response to the
pruning regimen.

The selection criteria hyperparameters, which include the accuracy and diversity-
first strategies, determine the ensemble’s composition. The accuracy-first strategy
prioritises predictive performance, potentially leading to an ensemble skewed to-
wards high-performing models that may, however, lack diversity. The diversity-
first strategy, on the other hand, ensures a heterogeneous ensemble, enhancing the
model’s robustness to varied data inputs but possibly at the expense of individual
model accuracy.

Moreover, the number of clusters (k) in the diversity-first strategy is a significant
hyperparameter that affects the balance between diversity and accuracy. A higher
number of clusters may increase diversity but can dilute the ensemble’s overall pre-
dictive power if too many low-performing models are included. Conversely, fewer
clusters might not capture the full spectrum of the data’s characteristics, leading
to a potential underfitting. The careful calibration of hyperparameters within Mi-
croNets is reflected in the experimental outcomes, which we now turn to. Micronets
employs a multi-phase pruning technique to achieve high compression ratios while
still maintaining high accuracy levels through ensemble learning. The results of the
experiments show that Micronets is capable of achieving compression ratios of up
to 91%, leading to a reduction in the memory footprint of the ensembles created. In
addition, the "Accuracy First" strategy outperforms the "Diversity First" strategy in
both the CIFAR10 and CIFAR100 datasets. On the CIFAR10 dataset, the "Accuracy
First" strategy generates ensembles that yield better results, with the highest accu-
racy achieved when the ensemble size is three, reaching 82%. In contrast, the "Diver-
sity First" strategy produces ensembles with an accuracy of 79% when k = 3. When
it comes to the CIFAR100 dataset, the "Accuracy First" approach produces models
with higher accuracy than the baseline model. The highest accuracy is achieved by
combining an ensemble of two models, with an accuracy of 55%. However, the use
of the "Diversity First" strategy results in a significant drop in accuracy when using
k = 3, 5, 7. The proposed "diversity first" approach does not appear to be very suc-
cessful when applied to the CIFAR100 dataset, possibly due to the use of majority
voting, which may not be effective for complex datasets such as CIFAR100 where the
goal is to provide accurate prediction from a pool of 100 distinct labels. Therefore,
further research is needed to explore more effective voting mechanisms for complex
datasets.

The energy monitoring measurements detailed in section4.5.3 provide a nuanced

110Chapter 4. MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble
Learning in IoT Devices

view of the power dynamics under different operational modes. Notably, the co-
compilation mode demonstrates a clear advantage in energy efficiency when scal-
ing to a larger ensemble of models, consuming less power with a load current of
0.42 DCA compared to the 0.44 DCA of the regular compilation mode for 100 mod-
els. This distinction becomes less pronounced with fewer models, where the regu-
lar mode tends to be more energy-efficient. Interestingly, when operating a single
model, both modes exhibit an identical load current of 0.3 DCA, indicating a base-
line power requirement for the Raspberry Pi devices equipped with an edge TPU
accelerator. The input voltage remains consistently at 5.03 DCV across both modes,
reinforcing the reliability of the power supply. These findings are particularly rel-
evant in the context of resource-constrained environments, where energy efficiency
translates directly into operational sustainability and cost-effectiveness. In such set-
tings, the ability to run a larger number of models without a proportional increase in
power consumption is invaluable. It implies that devices can perform more complex
tasks or run for longer periods without necessitating additional power resources or
frequent recharging, which is often a critical limitation in remote or mobile deploy-
ments.

Moreover, the co-compilation mode’s energy savings when running extensive
model ensembles suggest that it is possible to optimise system performance without
linearly scaling energy consumption. This is crucial for edge computing applications
where computational resources are limited, and power efficiency is paramount. By
reducing the energy demand per model, the co-compilation mode enables a denser
deployment of models, allowing for more sophisticated analytics and decision-making
processes on edge devices.

Future work in this domain could expand on these initial insights by exploring
the interplay between power consumption and other computational factors, such as
the workload intensity and the processor’s clock frequency. Understanding these re-
lationships will further clarify how energy efficiency can be maximised in resource-
constrained scenarios, ensuring that the computational potential of edge devices can
be fully leveraged while still operating within the tight bounds of energy availability.

Additionally, in table 4.5, we find that the proposed approach operates smoothly
on the Raspberry Pi device, which is resource-constrained, as the temperature and
current load have only slightly changed. However, there is a slight delay in making
inferences on Raspberry Pi devices, which makes it not ideal for real-time applica-
tions. Therefore, further investigation is necessary to evaluate the impact of using
fine-tuned CNN architectures, such as MobileNets, which is designed specifically to
run on resource-constrained environments. Using such networks could significantly
reduce inference time and even model size.

Despite this limitation, Micronets demonstrates its feasibility for running deep
learning ensembles on typical IoT devices, paving the way for a new generation
of advanced AI applications and limitless possibilities that could benefit from the
power of ensemble learning. For example, models generated by Micronets could be
deployed on water distribution networks for contamination detection. The sensors
in the network could collaborate to form deep learning ensembles that yield accu-
rate decisions at the edge to contain water contamination in parts of the network
rather than the entire water network. This approach could significantly improve the
efficiency and accuracy of water distribution networks, leading to improved pub-
lic health and environmental outcomes. Overall, Micronets represent a promising
avenue for expanding the capabilities of AI applications in resource-constrained en-
vironments.

4.6. Summary 111

4.6 Summary

In this chapter, we presented MicroNets which aims to enable deep ensemble learn-
ing on AI edge endpoints, leading to improving ensemble classifiers in terms of
generalisation, size, accuracy, and inference time. The experimental results on CI-
FAR10 and CIFAR100 were highly promising as the compression ratio was around
92%, and the composed ensembles could outperform the accuracy of baseline mod-
els. These findings suggest that MicroNets is a highly effective approach for run-
ning deep learning ensembles in resource-limited environments. Furthermore, we
demonstrated the ability of MicroNets to preserve the resources of distributed Rasp-
berry Pi devices while efficiently running ensemble learning.

However, we also found that the inference time may not be ideal for some time-
critical applications that require near real-time predictions. This issue is primarily
due to the fact that the architectures of these models were not optimised to run on
resource-limited environments. Nonetheless, using fine-tuned CNN architectures
such as MobileNets, which are explicitly designed to run on resource-constrained
environments, could significantly improve inference time and even model size. Fur-
ther investigations are necessary to evaluate the effect of using such networks.

Another potential area of improvement for MicroNets is its ensemble learning
technique (max voting), which has room for improvement on the CIFAR100 dataset
to enhance accuracy. While MicroNets demonstrated high accuracy on CIFAR10, it
struggled with more complex datasets such as CIFAR100, indicating that more ad-
vanced voting mechanisms may be needed for such datasets. Further exploration
is required to find more effective voting techniques that can work optimally with a
more comprehensive range of datasets.

In summary, MicroNets represents a significant breakthrough in enabling deep
ensemble learning on AI edge endpoints. The ability to run ensemble learning ef-
ficiently in resource-limited environments opens the door to new possibilities for
advanced AI applications that could significantly improve public health, environ-
mental outcomes, and other sectors. Overall, the results of this study show that
MicroNets has the potential to revolutionise the field of deep ensemble learning and
significantly impact the development of resource-efficient AI systems.

In the upcoming chapter, we will delve into the concept of FedNets: as a novel
Federated Learning Strategy explicitly designed for Edge Devices. This cutting-edge
approach utilises pruned ensembles of deep learning models, tailored to overcome
the data privacy challenges inherent in AIoT devices.

By leveraging the potential of Federated Learning, FedNets empowers Edge De-
vices to collaborate and acquire knowledge collectively, eliminating the necessity for
a centralized data repository. This methodology guarantees the privacy and security
of sensitive data while facilitating the creation of robust machine learning models,
even in scenarios where the edge devices exhibit varying distributions of class labels.

Moreover, the incorporation of pruned ensembles within FedNets facilitates the
development of exceedingly efficient models that can seamlessly operate on resource-
limited Edge Devices. Consequently, this diminishes the computational load on in-
dividual devices and paves the way for the establishment of more sustainable AIoT
systems.

Overall, the adoption of FedNets represents a significant step forward in devel-
oping secure, accurate and efficient AIoT systems that can support a wide range of
applications, from healthcare and finance to manufacturing and transportation.

113

Chapter 5

FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

In the previous chapter, we outlined a pioneering framework named MicroNets: A
multi-phase pruning pipeline to deep ensemble learning in IoT devices, built upon the En-
syth approach expounded in 3. The purpose of Micronets was to provide a robust
and resource-friendly structure suitable for resource-limited devices. Nonetheless,
the practical deployment of AIoT applications imposes constraints on data privacy
and security.

This chapter introduces a new paradigm, namely, FedNets: Federated Learning on
Edge Devices using Ensembles of Pruned Deep Neural Networks, that aims to address
the fourth and the fifth objectives of this thesis outlined in Chapter 1. The proposed
approach describes an innovative, secure, and resource-efficient federated learning
framework that operates deep learning ensembles on edge devices. To achieve this
goal, FedNets leverages the groundwork laid out in Chapter 4, utilising graph theory
to minimise communication overhead in federated learning and manage the statis-
tical heterogeneity typical of real-world applications.

It is worth noting that the approach presented in this chapter has been published
as a full paper titled "FedNets: Federated Learning on Edge Devices Using Ensem-
bles of Pruned Deep Neural Networks" in IEEEAccess Journal, Volume11 [Alhalabi,
Basurra, and Gaber, 2023].

5.1 Introduction

with the proliferation of the Internet of Things (IoT), and the launch of 5G networks,
the IoT has emerged as one of the major technological advances in our lives. We can
see their advances in different domains, including wearable smart health devices
[Ghosh, Samanta, and Chakraborty, 2021], intelligent energy networks, smart trans-
portation [Mohammadi and Al-Fuqaha, 2018] and smart building [Lui, Chan, and
Leung, 2021], [Lui, Chan, and Leung, 2022]. These tiny connected devices generate
massive amounts of data on the network edge, giving great opportunities to gener-
ate valuable insights and complete sophisticated machine learning (ML) tasks. The
traditional approach to analysing IoT data is to transfer user data (clients) to a cen-
tral cloud server. Then the server completes the analysis and generates the required
insights [Ghosh and Grolinger, 2020]. However, moving sensitive information to
a remote server can pose a significant risk to data privacy and lead to breaches of
data protection laws such as GDPR (General Data Protection Regulation) [Voigt and
Bussche, 2017]. Federated learning is a machine learning paradigm that enables the
collaborative training of a model on data that is distributed across multiple devices
or data centers without the need to transfer raw data to a central server [Yang et al.,
2019]. In the standard federated learning setting, each device contributes an inde-
pendent and identically distributed (IID) sample of data to the model. However,

114Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

most current FL strategies are not optimised to handle statistical heterogeneity, such
as non-iid (non-independent and identically distributed) data generated by differ-
ent clients [Wu, He, and Chen, 2020]. Since other clients are likely to exhibit dif-
ferent behaviour (distinct usage patterns), the local training samples may follow a
different distribution. As a result, the local models will likely become vastly dif-
ferent; hence they could reduce the accuracy and lead to slow covariance [Zhao et
al., 2018]. Furthermore, different studies raised some privacy concerns related to
sharing weights and biases by models. Sharing the model updates during the train-
ing process make it vulnerable to penetration, potentially causing leaks of sensitive
information [McMahan et al., 2018]. A number of authors have considered tackling
non-iid challenges using clustering [Huang, Tiropanis, and Konstantinidis, 2022], [Li
et al., 2023]. Clustering is a technique that can be used in non-IID federated learn-
ing to mitigate the impact of non-IID data distribution [Tian et al., 2022]. Clustering
can group devices with similar data distributions together and allow local models
to be trained on similar data; the resulting local models can then be combined to
obtain a more accurate global model [Shu et al., 2023], [Morafah et al., 2022]. Per-
sonalisation in federated learning through clustering is further emphasised in recent
academic works. Agarwal et al. discuss the role of personalisation in federated
learning, which could be enhanced by clustering techniques to tailor models to spe-
cific user groups or devices [Agarwal, Yurochkin, and Sun, 2022]. Zhao et al. de-
scribe a two-phased federated learning approach that incorporates clustering and
personalisation for more accurate predictions in applications like natural gas load
forecasting [Zhao et al., 2023]. Additionally, Yan and Long explore the concept of
personalisation disentanglement in federated learning, which could potentially be
linked to clustering methods to separate personalised components from a shared
global model [Yan and Long, 2023].

This chapter proposes a novel holistic approach to a federated learning strategy
based on ensemble learning that improves accuracy and respects privacy at the edge
end. This work is the first of its kind because it looks at federated learning from a
different perspective. Unlike traditional federated learning strategies, our approach
allows clients to collaborate by sharing complete models, not only weights. The pro-
posed framework is an iterative process that begins by initialising a pool of pruned
deep learning models (a global pool). These models are then randomly deployed
to different clients to be trained on local datasets, taking into account any discrep-
ancies in label distribution between the local and global datasets. Subsequently, the
models’ predictions are combined using ensemble learning to achieve a better gen-
eralisation performance on the local testing sets. The next step in the process is per-
sonalising the ensemble-based federated learning by clustering the models exhibit-
ing similar behaviour. However, clustering DNNs on resource-constrained devices
can be computationally expensive. To address this issue, we employ graph embed-
dings theory to reduce the complexity of the DNNs. Each ANN can be represented
as a graph, with nodes representing layers and vertices representing connections be-
tween layers. We generate embeddings of all models and then cluster them. Finally,
we select representatives of the resulting embedding clusters and ask the clients to
share the corresponding models to be part of the global pool, thus initiating a new
iteration.

Our key contributions could be summarised as follows:

• introducing a new federated learning strategy under non-iid settings; the pro-
posed approach employs deep-ensemble learning to maximise the generalisa-
tion at the edge-end and provide better performance on different distributions
of the clients’ local data;

5.2. Method 115
• proposing a novel ensemble pruning technique to reduce communication over-

heads over the network. It aims to minimise the storage footprint for ensem-
bles by applying affinity propagation clustering. The clustering is applied to
the embeddings of the models, considering that a graph could represent each
artificial neural network, and

• establishing a new privacy approach to preserve clients’ sensitive data in the
applications that require running an ensemble of models.

The chapter is structured as follows: Section 5.2 provides a detailed description
of the proposed approach, including formalization and algorithms of FedNets. In
Section 5.3, we present the experimental setup, including details about the dataset,
model, and server specifications. We also compare our accuracy results with the
state-of-the-art federated learning strategies, and report other results related to the
performance of ensembles and the privacy of clients. In Section 5.4, we conclude the
chapter by highlighting the strengths and limitations of FedNets.

5.2 Method

In this section, we describe the proposed approach by providing a summary of the
entire process and then explain each step in detail.

The proposed framework is an iterative process; it starts by initialising a pool of
pruned deep learning models (a global pool θ0). Then, the members of the proposed
pool are randomly deployed to different clients to be trained on local datasets (as-
suming the label distribution of the local datasets does not match the global one).
After that, the predictions of the models are combined using ensemble learning to
obtain a better generalisation performance on the local testing sets. The next step
in the process is to personalise the ensemble-based federated learning by clustering
the models exhibiting similar behaviour. However, clustering DNNs on devices that
are resource-constrained is expensive. Thus, we employ graph embeddings theory
to reduce the complexity of the DNNs. Since each ANN (Artificial Neural Network)
could be represented as a graph (nodes are layers, vertices are connections of layers),
we generate embeddings of all models, and then we cluster them. Finally, we choose
representatives of the resulting embedding clusters and then ask the clients to share
the corresponding models to be part of the global pool θ0 and a new iteration begins.

The following is a detailed description of the steps of FedNets and the overall
system topology.

5.2.1 System Topology
As many federated learning strategies, FetNets follows the star network communi-
cation topology where a central cloud server is connected to a network of resource-
limited devices. The server orchestrates the learning process by aggregating deep
learning ensembles from all connected clients (each communication round). Fig-
ure ?? summarises the main communication topology.

5.2.2 Ensemble Generation and Pruning:
In non-iid federated learning settings, the statistical heterogeneity of clients can vary
significantly [Wu, He, and Chen, 2020]. This led to a different distribution of the local
data on each client [Zhu et al., 2021], hence traditional federated learning settings ex-
perience a drop in accuracy [Konečný et al., 2017]. To overcome those challenges, our

116Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

FIGURE 5.1: FedNets follows a star communication topology
where a server connects with all the remote clients. The server
orchestrates the communications in each learning round, it
starts by deploying the global ensemble to the clients. Then,
each client shares a few members of their ensembles with the

server.

approach utilises deep ensemble learning to give more generalisation power at the
edge end and boost performance. Typically, any pruning process has different hy-
perparameters, and it could be challenging to set the optimal values of these param-
eters. Thus, different optimisation techniques could be used [Ahmed et al., 2022],
[Yuan et al., 2022b], [Zhao, Wang, and Mirjalili, 2022], [Yuan et al., 2022a]. However,
due to the high complexity of DNNs, we aim to prune the models before running
them at the edge end. To complete the pruning and the deployment of models, we
follow a similar approach to the one described here [Alhalabi, Gaber, and Basura,
2021]. In this work, the authors proposed a multi-phase pruning framework that
enables edge devices to run deep ensemble learning without draining the resources
of devices. However, our approach has two main differences: (1)In our approach,
we use Constant Sparsity Pruning [tfmot.sparsity.keras.ConstantSparsity | TensorFlow
Model Optimization n.d.] as a preferred alternative to weight pruning. This method,
prevalent in machine learning, systematically mitigates model complexity by cycli-
cally eliminating the least consequential parameters, thereby preserving a consistent
degree of sparsity throughout the progression of the training phase, and (2) integer
quantisation is ignored as we do not run the experiments on real devices. At the
end of this step, we have a group of N clients; each client has a group of M different
models.

5.2. Method 117
5.2.3 Model training on Local Datasets (NON-IIDs) Update

Local Models Weights
As all federated learning strategies, FedNets requires the local models (ensemble
members) to be trained on the datasets of each client. In the training process, the
models will simply learn the good values for all the weights and the bias from the
labelled examples. However, FedNets employs deep learning ensembles, thus the
training accuracy will depend on all members. To calculate the accuracy of an en-
semble: Let En = m1, · · · , mN be an ensemble of the deployed models mi. The
prediction of the ensemble for a training/testing example (x is the data feature, y
is the data label) using max-voting is the class that receives the maximum support
η f inal(W) from all members of the ensemble. Based on that, the output of the ensem-
ble could be defined as:

η f inal(W) = argmaxj∈{1,··· ,C}

N

∑
i=1

yi,j

5.2.4 Graph Conversion
Graph clustering based on embedding is a popular technique that aims to convert
graph structure and node attributes into the low dimensional feature, and split sim-
ilar nodes into non-overlapping groups [Xie, Girshick, and Farhadi, 2016], [Guo and
Dai, 2022]. The purpose of this step is to cluster models with similar properties us-
ing the graph topology and node features. To convert an artificial neural network
to a graph, let us have a k layer neural network, each layer has a set of weights
W = w1, w2, · · · , wn, the output of layer k is z = W × x + b.

A graph G = (V, E) is defined as a collection of vertices V = {v1, . . . , vn} where
vi ∈ En, edges E = {eij}n

i,j=1 where ei is a connection between li and li+1 assuming
that k is a layer in mi, and Xi = {(w1, b1), · · · , (wn, bn)} is the corresponding node
vector that holds the average weights ∑k

i=1 avg(Wk) and biases Avg(∑k
i=1(b)) in each

layer k.
Figure 5.2 shows how FedNets converts an artificial neural network into a graph.

5.2.5 Graph Embedding Generation
The representation of a node vi according to [bai_unsupervised_2019] can be calcu-
lated as :

µk
i = MLPk

Wk

(
(1 + ϵk) · µk−1

i + ∑
j∈N(i)

µk−1
j

)
(5.1)

where µi is the representation of node vi, N(i) is the neighbourhood of node Vi,
ϵ could be learnt by a hyperparameter or GD (gradient descent) and MLPk

Wk
refers

to multilayer perceptron for the kth GIN layer and weights Wk. After generating the
node embeddings, we calculate the overall graph embeddings following the same
approach described in [Bai et al., 2019]:

hG = MLPW

(
∥K

k=1ATTΘ(k) (UG)
)

(5.2)

The embedding of the input graph of graph g is UG ∈ RN×D where the n− th row,
un ∈ RD. The output of this step is an array of the corresponding graph embeddings
for each model Emi.

118Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

FIGURE 5.2: FedNets approach to convert an ANN to a graph.
Each layer will be converted to a node, and the mean value of

the weights/biases will be added as a feature to the node

5.2.6 Clustering of Embeddings
The clustering of embeddings is a critical step in the FedNets approach, which aims
to identify and utilize the most representative models for federated learning tasks.
After training, each model mi within the initial set θ0 is transformed into a two-
dimensional array Emi, which serves as a compact representation of the model’s
learned features or "embeddings". These embeddings capture the essence of the
data patterns that each model has learned.

To effectively group similar models, we employ affinity clustering on the set of
embeddings {Emi}. Affinity clustering is a technique that identifies clusters based
on the similarity of data points, which, in our case, are the embeddings of the mod-
els. This method does not require the number of clusters to be specified a priori,
which is advantageous in federated learning scenarios where the optimal number of
clusters is not known in advance.

Selection Criteria for Representative Models

Once the clusters {Ci} are formed, we proceed to select representative models from
each cluster. The selection is governed by two main criteria:

1. Cluster Size: A cluster Ci must have a size greater than a threshold value
K. This threshold is defined as a range from 1 to 20, K = {1, · · · , 20}. The
rationale behind this criterion is to ensure that the chosen cluster has a suffi-
cient number of models to be considered statistically significant and to avoid
overfitting to particularities of the training data.

5.2. Method 119
2. Model Accuracy: The accuracy acci of a model mi on a validation set VS must

exceed 55%. The validation set VS is a subset of the training data, compris-
ing 10% of it, which is held out specifically for this validation purpose. This
accuracy threshold ensures that only models with a reasonable baseline per-
formance are considered for selection.

The equation of the representation selection is provided within the formula:{
mi ∈ Ci where : cl > K where K = {1, · · · , 20}
acci > 55% on VS

(5.3)

The pseudocode of FedNets is shown in Algorithm 8. This pseudocode provides
a step-by-step procedural guide to the implementation of the FedNets approach. It
outlines the sequence of operations that are performed during the federated learn-
ing process, including the initialization of parameters, the distribution of models
to clients, the local training on clients’ devices, the transformation of models into
embeddings, the clustering process, and the selection of representative models.

Algorithm 8 FedNets pseudocode

Server
Initialise global pool θ0
for Each communication Round R, r← 1 to T do

Select N Client
for Each client i = 1, 2, .., N do

Download θr
Clienti update and receive emi

end for
GE← A f f inityPropagation(EMs)
M← RepresentativeSelection(GE)
Update Global Pool θ0 with M

end for

Client Update
Replace local ensemble θi ← θi+1
for Local Epoch e← 1 to E do

η f inal(W) = argmaxj∈{1,··· ,C}
N

∑
i=1

yi,j

end for
for Each model M in θi do

em← generatedEmbeddings(M) return em
end for

5.2.7 Privacy Preserving
Unlike the typical federated learning approaches, the proposed method provides
a privacy-preserving-by-design approach. The sharing of a subset of the local en-
semble per client makes it harder to reveal the behaviour of the users of individual

120Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

clients. Formally, if the number of models making up the ensemble in a client is n,
only m models are shared, where m < n. Thus, privacy increases when the value
τ = m

n decreases. Note that τ can be a hyperparameter when applying the proposed
method. An important factor in increasing privacy is the diversity of the ensemble.
The more diverse the ensemble is the more private the proposed method is. In other
words, with the same value for τ, the diverse ensemble is inherently more private.

For example, if n = 10 and m = 3, then τ = 0.3. This is a setting that will result in
high privacy. However, if τ = 0.9, then privacy may be compromised, because most
of the models that make up the ensemble are shared centrally, making it possible
to reproduce the data fed to the model locally. It is worth pointing out that in a
typical federated learning setting, the parameters of the model are shared centrally
(i.e. τ = 1), making the models shared by the clients vulnerable.

FIGURE 5.3: FedNets Framework involves the following steps:-
Step1: server deploys deep learning ensembles to the clients and
clients train them locally; step2: Each client converts the local models
into graphs assuming: nodes are the layers, edges are links between
layers and the attributes of the nodes are mean of weights and biases
of whole layers; step3: clients generate the corresponding graph em-
beddings and share them with the server; step4: the server to cluster
the embeddings using affinity propagation and choose a representative

from each cluster, then models are deployed to clients.

5.3 Experimental study

In this section, we first explain in detail our simulation environment and setup,
then evaluate the precision of Fed-Nets using the ResNetV2 and CIFAR100 federated
dataset. Next, we compare our results with Fed-Avg. Finally, we provide important
measures related to ensemble performance, such as inference time, required train-
ing time, and the number of models per client. Those measures are essential to give
an idea about the feasibility of running deep ensembles on resource-limited devices
(IoT). The code used in the experiment is publicly available on GitHub1.

1https://github.com/besherh/FedNets

5.3. Experimental study 121
5.3.1 Data set and Models

Federated CIFAR100 for Simulation

This dataset is specially designed to simulate non-independent and identically dis-
tributed data samples. It is derived from the original CIFAR100 dataset, and it has
50,000 training samples and 10,000 testing samples. Unlike the original dataset, the
training and testing samples are partitioned across 500 and 100 clients (respectively,
and no overlapping across the clients). The training clients’ IDs range from 0 to 499,
while the testing clients’ IDs go from 0 to 99. The data partitioning part is done
using PAM (Pachinko Allocation Method) [Li and McCallum, 2006], which is an im-
proved version of LDA (Latent Dirichlet Allocation). This approach uses a two-stage
LDA process, where each client has an associated multinomial distribution over the
coarse labels of CIFAR-100, and a coarse-to-fine label multinomial distribution for
that coarse label over the labels under that coarse label.

ResNetV2

This model belongs to the Deep Residual Networks (RNNs) family that achieved
breakthroughs in the deep learning community. ResNetV2 is the new version of
ResNet, the main improvements are related to the arrangement of the layers in resid-
ual blocks. The Model accepts an input of shape 299× 299 pixels; the output is the
probability distribution for the predicted classes [He et al., 2016b].

5.3.2 Simulation Setup
We run our simulation on a powerful workstation with multiple GPU and CPU
nodes. The following are the hardware specifications:

• CPU Nodes:5 nodes - 72 cores per node, PowerEdge R740 Server, Intel Xeon
Gold 6240 2.6G.

• GPU Nodes:2 nodes - 72 cores per node, PowerEdge R740 Server, Intel Xeon
Gold 6240 2.6G, NVIDIA(R) Tesla(TM) T4 16GB Passive, Single Slot, Full Height
GPU (2 cards per node) - 320 Turing Tensor cores and 2560 Cuda cores per
card.

All nodes have ’CentOS-8.2.2004-x86_64’ operating system installed. There are
also different hyperparameters that control the design of FedNets, starting from ini-
tialising the global pool and ending with the deployment of the models to the clients.
Table 5.1 summarises all hyperparameters that are used in the different processes of
FedNets.

As shown in Table 5.1, there are a lot of different hyperparameters that control
the process flow of FedNets. Starting from the generation of the global pool and
ending with representative selection. The values of the hyperparameters are selected
based on a ”trial and error” approach, and we only reported the values related to
the presented results.

122Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

TABLE 5.1: FedNets Hyperparameters

Phase Hyperparameter
name

Values

Training and Pruning

Epochs [2,3,4,5,6]
Batch Size [16,32,64]
Loss [Categorical Cross En-

tropy, Mean Squared
Error, Mean Absolute
Error]

Optimiser Adam
Target Sparsity [0.2,0.55]
Frequency [50,75,100]

Embeddings

Graph Classification
Model-Layer Size

[32,64]

Graph Classification
Model- Activations

ReLU

Graph Classification
Model- Dropout

0

Graph IDX - Size (100, 2)
Pair Model - opti-
miser

Adam((1e-2)

Pair Model - Loss MSE

Clustering

Validation Ratio 0.1
Accuracy Threshold 0.3
Cluster Length 10
Sample Size 60

5.3. Experimental study 123
5.3.3 Results and Analysis
We start this section by introducing some details about the baseline model and the
pool of models we used to deploy deep learning ensembles to clients. We next in-
vestigate the effectiveness of FedNets on non-iid settings. We use the federated CI-
FAR100 dataset as a benchmarking dataset and ResNetV2 as a baseline model. Ad-
ditionally, we provide accuracy comparison with state-of-the-art federated learning
algorithms including Fed-Avg and Fed-Yogi. The simulation is applied to a different
number of clients (two clients, five clients and ten clients) for four federated learn-
ing rounds, where each client has an ensemble of ten pruned models. Finally, we
provide time measures related to the performance of the deep learning ensembles
on the proposed virtual clients.

The baseline of ResNetV2 (3,575 KB) is trained on the original CIFAR100 dataset
and the accuracy of the model on the testing set is 68%. We apply constant-sparsity
pruning on ResNetV2 to generate a pool of 500 models. During the pruning process,
we use different values of the pruning hyperparameters to ensure diversity between
the pool’s members. Diversity leads to better generalisation and provides better ac-
curacy results at the edge end as shown in [Alhalabi, Gaber, and Basurra, 2019]. The
maximum accuracy in the pruned pool against a validation set (20% of the testing
set) is around 66% and the minimum is 0.05%. The pruning lead to around 37% re-
duction of the original baseline model size(the average size of the pruned models is
1,295 KB).

Comparison With the State of the Art

Here we compare the accuracy results of FedNets with two of the state of the feder-
ated learning strategies (FedAvg, FedYogi) on the federated CIFAR100 dataset. In
the next section, we provide the simulation results for different numbers of clients
(two, five, and ten clients). As shown in Figure 5.4 and when the number of clients

FIGURE 5.4: Accuracy comparison on two clients

is equal to two, FedNets accuracy is 93% and 86% in client1 and client2, respectively.
On the other hand, the accuracy of FedAvg is 56% on client1 and 14% on client2.
Similarly, the accuracy of FedYogi on client1 and client2 is 1% and 60%.

The results of the accuracy of FedNets on five different virtual clients are pre-
sented in Figure 5.5. The chart shows that FedNet’s accuracy is better than FedAvg
and FedYogi on all clients. The minimum accuracy for FedNets is 90% while the best
accuracy reached by FedNets is 80%.

Figure 5.6 compares the accuracy results between FedNets, FedAvg and FedYogi.
Looking at Figure 5.6, it’s apparent that FedNets still achieves superior performance

124Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

FIGURE 5.5: Accuracy comparison on five clients
.

and can beat the state-of-the-art methods on all clients. We can also see that the max-
imum accuracy of FedNets is 100% on the client3, the maximum accuracy of FedAvg
is 80% on client7 and client 8, and the best accuracy of FedYogi is 53% on client10.
As shown in Figures 5.4,5.5 and 5.6, there is a significant performance difference

FIGURE 5.6: Accuracy comparison on ten clients
.

between FedNets and FedAvg/FedYogi. Our proposed approach provides better ac-
curacy results on a different number of clients; the clients can share their knowledge
by exchanging the members of the ensembles, and it seems to be better than the
traditional approach of sharing the weights of the models.

5.3. Experimental study 125
Ensembles Performance

In the section above, we present the accuracy results for the federated CIFAR100
dataset. Now, we move to present the simulation results of the required time to
complete one federated learning round inFedNets. Each round consists of three main
steps: training, inferencing, and deployment. We run this simulation on CPU nodes
for four federated learning rounds. The simulation results are presented in Table 5.2.

TABLE 5.2: Time required by the major steps of FedNets in sec-
onds.

Measure Round1 Round2 Round3 Round4
2 Clients

training locally 78.03 61 54.37 43.39
ensemble inference 25.36 19.95 19.22 14.27

deployment 64.87 62.37 62.03 60.16
5 Clients

training locally 236.69 228.82 256.42 222.21
ensemble inference 74.79 77.37 75.84 72.18

deployment 82.62 93.04 80.74 81.35
10 Clients

training locally 681.45 664.27 663.02 663.76
ensemble inference 186.63 175.94 178.53 117.06

deployment 120 121.18 116.41 116.38

On closer inspection of Table 5.2, it shows that training the deep learning ensem-
bles on the local datasets is consuming most of the time. Training time is noticeably
increased when the number of clients is ten (almost 12 minutes to complete). How-
ever, the inference time of the ensembles is acceptable in most of the applications.

It can also be seen from the data in Table 5.2 that, in general, FedNets requires
a relatively long period of time to complete a federated learning round (especially
when the number of clients is rather considerable, like ten). However, we should ac-
cept the fact that FedNets is an ensemble-based approach that aims to maximise the
generalisation and accuracy at the edge end, so it requires more time to complete
a federated learning round. Additionally, we are running the simulation on CPU
nodes only. In a real-life application, resource-limited devices could be attached to
cutting-edge AI accelerators that bring the power of TPUs to the edge. We believe
that this led to a significant improvement in the time complexity of FedNets as shown
in [Alhalabi, Gaber, and Basura, 2021]. Turning now to examine the size of the com-
posed ensembles on each client after each federated learning round. This could be
directly related to the effectiveness of our approach in preserving the resources of
IoT devices. Table 5.3 displays the changes in the number of models per client (en-
semble size) after each federated learning round.

As shown in Table 5.3, FedNets reduces the size of the ensemble by 50% after
round 4 (assuming that each client starts with ten models, as explained earlier).
The simulation on both five and ten clients shows that FedNets is still able to re-
duce the number of models per ensemble which lead to reducing the required mem-
ory/storage required by the approach.

126Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

TABLE 5.3: Changes to the number of models per client

Number of models Round1 Round2 Round3 Round4
2 Clients

Client1 7 8 7 6
Client2 6 7 7 5

5 Clients
Client1 8 10 7 9
Client2 5 5 9 9
Client3 9 9 9 8
Client4 7 9 7 9
Client5 7 9 7 5

10 Clients
Client1 10 10 8 9
Client2 9 10 9 7
Client3 10 9 10 8
Client4 9 10 8 8
Client5 10 10 9 10
Client6 10 9 10 8
Client7 9 10 10 9
Client8 9 10 10 9
Client9 10 9 9 10

Client10 10 10 8 10

Preserving Privacy

As previously stated, FedNets prompts federated learning by allowing clients to
share the members of the local ensembles; at the same time, FedNets respects the
privacy of the clients.

Table 5.4 shows summary statistics about the number of shared models per client.
It is worth mentioning that the value of τ is not controlled during the simulation.
However, as explained earlier, τ could be a hyperparameter to the proposed ap-
proach which will be used to trade off accuracy with privacy by controlling the
maximum number of models to be shared with the other clients. As seen in the table,
when the number of models is equal to ten, FedNets tends to share a large number of
models (average 9.6, τ = 0.96). This could be minimised by defining τ ≤ 0.5 sharing
less than half of the models per client, forcing greater privacy. However, this may
come at the cost of compromising the accuracy of the federation.

Discussion of the Results

The results of FedNets as shown in Figures 5.4, 5.5, 5.6 indicate that the proposed
approach is effective in providing high accuracy in non-iid settings where the dis-
tribution of class labels is vastly different among clients. This will work well for ap-
plications that cannot compromise on accuracy as the quality of the output directly
impacts the reliability of the AI systems. For example, FedNets could be integrated
into AI-Based Medical Diagnosis systems to offer further data privacy assurance to
comply with Health Institutions’ Data Protection Policies. The reasons behind the
superior performance of FedNets can be attributed to several key factors:

5.3. Experimental study 127
• Ensemble of Diverse-Lightweight Models: Unlike FedAvg and FedYogi, which

share model parameters over the network to update a single global model,
FedNets takes a fundamentally different approach. It allows clients to have
ensembles of diverse, lightweight models. This diversity enables FedNets to
capture a broader range of patterns and adapt more effectively to various data
distributions present in non-iid datasets like Federated CIFAR100.

• Graph Embedding Theory: FedNets leverages graph embedding theory to re-
duce the computational complexity of running Deep Neural Networks (DNNs)
on resource-limited IoT devices. In FedNets, each DNN is treated as a graph,
from which graph embeddings are generated. This innovative approach op-
timises the utilisation of local device resources, making it well-suited for IoT
environments where computational capacity is limited.

• Dynamic Sharing of Model Components: FedNets intelligently determines
which parts of the DNN should be shared with other clients based on the clus-
tering of graph embeddings. This dynamic sharing mechanism allows clients
to collaborate efficiently while minimising redundant transmissions. In con-
trast, FedAvg and FedYogi share entire model parameters, which can lead to
excessive communication overhead.

It is possible that the results in Table 5.4 could be improved by adding the privacy
factor τ into the list of hyperparameters introduced in Table 5.1. This could be useful
when edge clients deal with very sensitive personal information, for example, smart
wearable devices. The results obtained from Table 5.2 shows that FedNets could
run on resource-limited environments effectively. However, the required time to
complete one federated round could take a reasonably long time. The observed
increase in time could be attributed to: a) using a baseline model that has not been
fully optimised to run on resource-limited devices; and b) utilising deep ensemble
learning to provide better generalisation in non-iid settings. Using edge-friendly
models like the MobilesNet family [Sandler et al., 2018] could lead to shorter training
and inference time. However, the fact that FedNets requires a relatively long period
to complete a federated round will still be valid. This limitation renders FedNets a
less desirable choice when there are no GPUs attached to the edge devices (operating
solely on CPU) and when real-time applications necessitate instantaneous inference,
such as autonomous vehicles.

TABLE 5.4: Statistics related to the numbers of shared models
per round

Metric Round1 Round2 Round3 Round4
5 Clients

Minimum 5 5 7 6
Standard Deviation 1.48 2.07 1.14 1.30

Variance 1.48 2.07 1.14 1.30
Average 7.2 8.6 8.4 8.2

10 Clients
Minimum 7 6 8 7

Standard Deviation 0.51 0.48 0.87 1.03
Variance 0.26 0.23 0.76 1.06
Average 9.6 9.7 9.1 8.8

128Chapter 5. FedNets: Federated Learning on Edge Devices using Ensembles of
Pruned Deep Neural Networks

5.4 Summary

In this chapter, we introduced a novel ensemble-based federated learning strategy
called FedNets, which addresses the challenges of training deep neural networks
(DNNs) in non-iid settings while preserving the privacy of client devices. Unlike
other federated learning strategies, FedNets allows clients to run deep learning en-
sembles instead of having one model per client. This enables clients to explore a
larger hypothesis space and achieve better generalization performance, especially in
non-iid settings where the data distribution across clients is different. Moreover, in-
stead of sharing the models’ weights to update a single global model, which is prone
to a privacy breach, our approach allows clients to share models (members of their
deep learning ensembles) to compose a shared pool of outperforming models, then
the pool is shared with all participating clients.

The experimental results on the federated CIFAR100 dataset demonstrate the ef-
fectiveness of our approach. We show that FedNets outperforms two state-of-the-art
federated learning strategies, namely Federated Learning Averaging (FedAv) and
Adaptive Federated Optimization (FedYogi), in terms of both accuracy and conver-
gence speed. We also demonstrate that the cost of running deep learning ensembles
on resource-limited edge devices is feasible, as long as appropriate architectures and
hardware accelerators are used. However, we note that the inference time of the
generated ensembles may be relatively high for applications that require instant in-
ferencing, especially when the number of clients is large.

To address this limitation, we suggest the use of GPU accelerators and fine-tuned
CNN architectures such as MobileNets, which have been shown to reduce inference
time while maintaining high accuracy significantly. We also highlight the potential
of FedNets for a new generation of AI applications that can leverage the power of
deep ensemble learning to provide more generalization power on resource-limited
devices without compromising privacy.

In conclusion, FedNets is an additional contribution to the field of federated
learning, providing a scalable and privacy-preserving approach for training DNNs
in non-iid settings. Our approach demonstrates the potential of deep learning en-
sembles to achieve better generalization performance while maintaining low re-
source consumption. We expect that FedNets will inspire further research in the area
of ensemble-based federated learning and enable new AI applications that can ben-
efit from the power of deep learning.

129

Chapter 6

Conclusion and Perspectives

6.1 Summary

The research presented in this thesis focuses on the integration of artificial intelli-
gence (AI) and the Internet of Things (IoT) to enhance the capabilities of intelligent
devices operating at the edge. The core aim of this thesis was to develop effective
and privacy-preserving computer systems for deploying AI applications on the In-
ternet of Things (IoT) devices. This aim was pursued through four key objectives.

Firstly, a critical review of the literature on IoT, pruning techniques, deep learn-
ing ensembles, federated learning, and their applications in IoT was conducted to
identify the gaps in the existing literature. This served as the basis for the novel
contributions that followed.

Secondly, a novel approach, the Ensyth method, was designed and developed
for synthesising pruned ensembles of deep learning models. This approach aimed
to make better use of IoT resources and to achieve high predictability levels, forming
the core around which the other layers of our model are arranged.

The third objective led to the development of the Micronets approach, positioned
in the second layer of the model. This approach involved the design and devel-
opment of a multi-phase pruning pipeline incorporating weight pruning, channel
pruning, and knowledge distillation. It enabled efficient deep ensemble learning on
IoT devices and served as a lever for the Ensyth approach.

Lastly, the outermost layer of the model, the FetNets approach, was developed
to enable edge devices to collaboratively train ensembles of pruned deep neural net-
works. This was aimed at tackling the statistical heterogeneity in federated learning
settings while preserving data privacy, thus encapsulating the work carried out in
both the Ensyth and Micronets layers.

All the proposed approaches were evaluated on benchmark datasets and their
performance was compared with state-of-the-art methods in terms of accuracy, effi-
ciency, and privacy (our fifth objective). Thus, it can be concluded that this thesis has
successfully addressed its objectives and main aim. The developed model reflects a
comprehensive, multi-tiered structure akin to an onion graph model, symbolising
that each segment of the model is constructed upon the foundation of the preceding
one.

Following this schematic representation of our thesis’s core constructs and con-
tributions, we delve into a comprehensive summary of the individual thesis chapters
in the ensuing section.

Chapter 2 as outlined in Section [2], provides an exhaustive and enlightening
overview of Artificial Intelligent Things (AIoT). The chapter meticulously details the
various components that go into constructing AIoT applications, beginning with the
topology of IoT devices and their applications, and culminating with an examination
of the challenges of implementing AIoT applications in real-world scenarios.

130 Chapter 6. Conclusion and Perspectives
The chapter also delves into the intricate details of the various AI algorithms

that can be employed to build intelligent things. These include supervised learning,
which involves training a model on labelled data to predict outcomes, unsupervised
learning, which entails training a model on unlabelled data to identify patterns and
structures, deep learning, a subfield of machine learning that utilizes neural net-
works to learn from data, and ensemble learning, which combines multiple models
to improve accuracy.

Additionally, Chapter 2 comprehensively examines federated learning, a dis-
tributed learning approach that enables edge devices to collaboratively train a shared
model without divulging raw data. The challenges and opportunities associated
with these algorithms are discussed in detail, providing a comprehensive under-
standing of their capabilities and limitations.

Furthermore, the chapter identifies the primary gaps in the AIoT field and presents
the author’s contribution to filling these gaps. The author’s contribution comprises
innovative approaches that enhance the predictability and generalisation power of
deep neural networks in compressed models.

Chapter 3 in this chapter discussed in Section [3], we introduce our first novel ap-
proach, named "Ensyth," which represents our initial contribution towards achiev-
ing the second and fifth objectives set forth in this thesis. By harnessing the power of
deep ensemble learning, Ensyth enhances the predictability of pruned models while
simultaneously improving the generalization capabilities of deep learning models
operating at the edge.

Moreover, this chapter presents the analysis of the results obtained from sub-
jecting Ensyth to rigorous evaluations across several benchmarking datasets. The
results provide compelling evidence of the efficacy and versatility of our proposed
approach.

Chapter 4 as discussed in Section [4], introduces our second novel approach,
called "MicroNets," which addresses the third and fifth objectives of this thesis.
This chapter presents a multiphase pruning pipeline that enables the deployment
of resource-efficient deep ensemble learning on devices with constrained resources.
Furthermore, it proposes a novel clustering-based pruning method for deep-learning
ensembles, providing a mathematical formulation of the method and detailed anal-
ysis on popular benchmark datasets.

The experiments conducted to evaluate the effectiveness of MicroNets were per-
formed on Raspberry Pi devices, and the results demonstrate its ability to preserve
the resources of the IoT (PI) device effectively. The analysis includes various met-
rics such as accuracy, compression ratios, inference time, voltage, load current, and
temperature, providing a comprehensive understanding of the effectiveness of Mi-
croNets.

Chapter5 Chapter 5, as discussed in Section [5], represents the culmination of our
efforts towards achieving the fourth and fifth objectives of the thesis. This chapter
introduces a new approach called FedNets, which is a trailblazing concept in fed-
erated learning. Unlike conventional methods that involve sharing model weights,
our approach facilitates participating edge clients to share members of their hosted
ensembles with a privacy-centric design.

Notably, our proposed technique outperforms state-of-the-art federated learning
approaches, including FedAvg and FedYogi. The chapter presents a comprehensive
explanation of the proposed algorithm and all experimental details related to the
used hardware, the number of participating clients in each federated learning round,
and various metrics against benchmarking federated datasets.

The chapter provides a detailed analysis of the results obtained from subject-
ing our proposed approach to rigorous evaluations across various benchmarking

6.2. Future Direction 131
datasets. These results provide compelling evidence of the efficacy and versatility
of FedNets, highlighting its superior performance compared to state-of-the-art fed-
erated learning methods.

6.2 Future Direction

The methodologies outlined in this dissertation unveil promising avenues for con-
tinued exploration. Balancing rigorous theoretical analysis with hands-on empirical
experimentation is essential to unlock their full potential. Herein, we will delve into
the distinct research directions stemming from each of our contributions and pro-
vide insights into why Federated Learning is central to our research motivation.

6.2.1 Ensyth: Delving Deeper into Ensemble Strategies
The Ensyth approach, as delineated in our studies, offers intriguing results and po-
tentials that beckon deeper exploration. Here are key findings and future avenues:

• Performance Analysis: The Ensyth method has shown promising accuracy
on the CIFAR5. However, its performance on the CIFAR10 was only slightly
better than the baseline. This prompts further examination, especially on more
complex datasets such as CIFAR100 and ImageNet.

• Revisiting Ensemble Techniques: The current use of the Majority Voting tech-
nique in the Ensyth approach might inadvertently favor dominant models,
overshadowing insights from less frequent predictions. Given this, there’s a
need to critically evaluate and potentially refine this ensemble strategy, espe-
cially in tackling intricate, non-linear problems with high noise levels [Diet-
terich, 2000].

• Diversification through Pruned Models: A promising direction for Ensyth in-
volves maintaining a collection of diverse, pruned models. Instead of us-
ing identical base models in traditional ensemble methods like bagging and
boosting, these base models can be derived from the Ensyth process. This
adaptation could promote greater model diversity. A further future direction
involves investigating the relationship between diversity and the accuracy of
pruned models. To this end, employing measures such as entropy [Kuncheva
and Whitaker, 2003], and variance [Melville and Mooney, 2005] can offer valu-
able insights into the ensemble’s comprehensive representation.

6.2.2 Micronets: Deep Ensemble Learning in IoT Devices
MicroNets, described as "The Multi-Phase Pruning Pipeline to Deep Ensemble Learn-
ing in IoT Devices," has showcased impressive outcomes in both accuracy and the
conservation of resources on IoT devices, notably heat, load current, and voltage.
A prominent challenge, however, is the observable latency during inference opera-
tions on Raspberry Pi devices. To address this, we propose a structured roadmap for
future research:

• Resource-Efficient CNN Models: Investigate the adoption of lightweight CNN
architectures, specifically models like MobileNets. The goal is to determine
whether such architectures can enhance inference speeds on IoT devices, es-
pecially on platforms like Raspberry Pi.

132 Chapter 6. Conclusion and Perspectives
• Ensemble Learning Techniques: Reevaluate the current ensemble learning method,

which employs max voting, by exploring alternative advanced methods. Tech-
niques like bagging and boosting should be considered to assess if they can al-
leviate the delay arising from inference tasks involving multiple models. The
overarching objective is to optimize MicroNets’ performance.

• Pruning Techniques Exploration:it is crucial to explore the impact of employ-
ing different pruning techniques for both the generated models and ensem-
bles. This investigation aims to further reduce the size of the generated mod-
els and decrease the memory footprint of the ensembles when they run on IoT
devices..

By undertaking these recommended experiments, we can gain valuable insights into
optimising MicroNets for IoT devices and potentially overcome the delay issue ex-
perienced on Raspberry Pi devices.

6.2.3 FedNets: Embracing Federated Learning for Enhanced
Edge Computing

Our research introduces an innovative approach known as FedNets: "Federated
Learning on Edge Devices using Ensembles of Pruned Deep Neural Networks." This
novel framework has yielded remarkable results, surpassing state-of-the-art Fed-
erated Learning (FL) algorithms, particularly when benchmarked against non-iid
CIFAR100 datasets. The success of FedNets can be attributed to its intricate archi-
tecture, consisting of several key components, including the Ensemble Generation
and Pruning component, the Graph Conversion and Embedding component, and
the Clustering of Embeddings component.

One of the distinguishing features of FedNets is its reliance on sharing members
of deep learning models, or even the models themselves, as opposed to the conven-
tional approach of sharing only model weights. Although these models undergo
pruning for size reduction, transmitting them over the network can still pose sig-
nificant bandwidth and latency challenges. As a result, further experimentation is
required to assess the implications of model transmission on both bandwidth usage
and latency.

Expanding on this, FedNets exhibits the potential to become a cornerstone of
the next generation of heterogeneous Federated Learning systems, particularly in
IoT (Internet of Things) environments. The framework accommodates clients with
an ensemble of models, with the knowledge embedded within each client’s models
distilled into graph embedding vectors. This design enables seamless integration of
diverse model architectures without compromising the overall system’s functional-
ity.

In the context of heterogeneous models, where each participant device or node in
a Federated Learning system employs a unique model architecture, FedNets offers
numerous advantages. These include performance optimization and the implemen-
tation of advanced ensemble learning techniques like stacking, thereby enhancing
the system’s adaptability and efficacy.

Nevertheless, navigating a Federated Learning system equipped with heteroge-
neous models presents its set of challenges. Foremost among these challenges is the
need to address increased communication overhead and ensure equitable learning
across the diverse nodes. As we delve deeper into our research, we recognize that
addressing these considerations is pivotal to unlocking the full potential of FedNets
in heterogeneous Federated Learning environments, especially in the IoT landscape.

6.2. Future Direction 133
The importance of our contribution extends beyond the realm of machine learn-

ing techniques. It aligns with the evolving landscape of IoT, where a multitude of
interconnected devices collect and process data. Traditional centralized data collec-
tion and model training approaches are not only impractical but also raise serious
concerns regarding data privacy and security. By adopting FedNets and Federated
Learning, we inherently address these concerns. Federated Learning, as exemplified
by FedNets, enables localized model training on IoT devices, eliminating the need
for raw data transmission to centralized servers. This not only reduces communi-
cation overhead but also safeguards sensitive information as data never leaves the
device boundary. Moreover, it aligns seamlessly with data protection regulations
and privacy requirements, ensuring compliance and reinforcing user trust.

Overall, we believe that these identified previous areas of investigation will sig-
nificantly advance our research and provide valuable insights into the practical ap-
plications of our proposed methods.

135

Bibliography

Abadi, Martín et al. (May 2016). TensorFlow: A system for large-scale machine
learning. arXiv:1605.08695 [cs]. DOI: 10.48550/arXiv.1605.08695. URL:
http://arxiv.org/abs/1605.08695 (visited on 01/24/2023).

Agarwal, Mayank, Mikhail Yurochkin, and Yuekai Sun (2022). “Personaliza-
tion in Federated Learning”. In: Springer International Publishing. DOI:
10.1007/978-3-030-96896-0_4. URL: http://dx.doi.org/10.1007/
978-3-030-96896-0_4.

Aghasi, Alireza, Afshin Abdi, and Justin Romberg (June 2018). “Fast Con-
vex Pruning of Deep Neural Networks”. In: arXiv:1806.06457 [cs, stat].
arXiv: 1806.06457. URL: http://arxiv.org/abs/1806.06457 (visited
on 03/26/2019).

Aghasi, Alireza et al. (2017). “Net-Trim: Convex Pruning of Deep Neural
Networks with Performance Guarantee”. In: Advances in Neural Informa-
tion Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc.,
pp. 3177–3186. URL: http://papers.nips.cc/paper/6910-net-trim-
convex - pruning - of - deep - neural - networks - with - performance -
guarantee.pdf (visited on 03/26/2019).

Agrawal, Shikha and Jitendra Agrawal (Jan. 2015). “Survey on Anomaly De-
tection using Data Mining Techniques”. en. In: Procedia Computer Science.
Knowledge-Based and Intelligent Information & Engineering Systems 19th
Annual Conference, KES-2015, Singapore, September 2015 Proceedings
60, pp. 708–713. ISSN: 1877-0509. DOI: 10 . 1016 / j . procs . 2015 . 08 .
220. URL: https://www.sciencedirect.com/science/article/pii/
S1877050915023479 (visited on 02/02/2023).

Ahad, Abdul, Mohammad Tahir, and Kok-Lim Alvin Yau (2019). “5G-Based
Smart Healthcare Network: Architecture, Taxonomy, Challenges and Fu-
ture Research Directions”. In: IEEE Access 7. Conference Name: IEEE Ac-
cess, pp. 100747–100762. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.
2930628.

Ahmad, Ijaz et al. (2020). “Machine Learning Meets Communication Net-
works: Current Trends and Future Challenges”. In: IEEE Access 8, pp. 223418–
223460. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.3041765. URL: https:
//ieeexplore.ieee.org/document/9274307/ (visited on 03/10/2023).

Ahmed, Mohiuddin, Raihan Seraj, and Syed Mohammed Shamsul Islam (Aug.
2020). “The k-means Algorithm: A Comprehensive Survey and Perfor-
mance Evaluation”. en. In: Electronics 9.8. Number: 8 Publisher: Multi-
disciplinary Digital Publishing Institute, p. 1295. ISSN: 2079-9292. DOI:
10 . 3390 / electronics9081295. URL: https : / / www . mdpi . com / 2079 -
9292/9/8/1295 (visited on 02/02/2023).

https://doi.org/10.48550/arXiv.1605.08695
http://arxiv.org/abs/1605.08695
https://doi.org/10.1007/978-3-030-96896-0_4
http://dx.doi.org/10.1007/978-3-030-96896-0_4
http://dx.doi.org/10.1007/978-3-030-96896-0_4
http://arxiv.org/abs/1806.06457
http://papers.nips.cc/paper/6910-net-trim-convex-pruning-of-deep-neural-networks-with-performance-guarantee.pdf
http://papers.nips.cc/paper/6910-net-trim-convex-pruning-of-deep-neural-networks-with-performance-guarantee.pdf
http://papers.nips.cc/paper/6910-net-trim-convex-pruning-of-deep-neural-networks-with-performance-guarantee.pdf
https://doi.org/10.1016/j.procs.2015.08.220
https://doi.org/10.1016/j.procs.2015.08.220
https://www.sciencedirect.com/science/article/pii/S1877050915023479
https://www.sciencedirect.com/science/article/pii/S1877050915023479
https://doi.org/10.1109/ACCESS.2019.2930628
https://doi.org/10.1109/ACCESS.2019.2930628
https://doi.org/10.1109/ACCESS.2020.3041765
https://ieeexplore.ieee.org/document/9274307/
https://ieeexplore.ieee.org/document/9274307/
https://doi.org/10.3390/electronics9081295
https://www.mdpi.com/2079-9292/9/8/1295
https://www.mdpi.com/2079-9292/9/8/1295

136 Bibliography
Ahmed, Shameem et al. (Aug. 2022). “Binary Simulated Normal Distribu-

tion Optimizer for feature selection: Theory and application in COVID-
19 datasets”. en. In: Expert Systems with Applications 200, p. 116834. ISSN:
09574174. DOI: 10.1016/j.eswa.2022.116834. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0957417422002871 (visited on 02/18/2023).

Al-Fuqaha, Ala et al. (2015). “Internet of Things: A Survey on Enabling Tech-
nologies, Protocols, and Applications”. In: IEEE Communications Surveys
& Tutorials 17.4, pp. 2347–2376. ISSN: 1553-877X, 2373-745X. DOI: 10.1109/
COMST.2015.2444095. URL: https://ieeexplore.ieee.org/document/
7123563/ (visited on 01/09/2023).

Al-Qaseemi, Sarah A. et al. (Dec. 2016). “IoT architecture challenges and
issues: Lack of standardization”. In: 2016 Future Technologies Conference
(FTC). San Francisco, CA, USA: IEEE, pp. 731–738. ISBN: 978-1-5090-4171-
8. DOI: 10.1109/FTC.2016.7821686. URL: http://ieeexplore.ieee.org/
document/7821686/ (visited on 01/09/2023).

Alam, Kazi Md. Rokibul, Nazmul Siddique, and Hojjat Adeli (June 2020).
“A dynamic ensemble learning algorithm for neural networks”. en. In:
Neural Computing and Applications 32.12, pp. 8675–8690. ISSN: 0941-0643,
1433-3058. DOI: 10.1007/s00521- 019- 04359- 7. URL: http://link.
springer.com/10.1007/s00521-019-04359-7 (visited on 10/26/2023).

Alhalabi, Besher, Shadi Basurra, and Mohamed Medhat Gaber (2023). “Fed-
Nets: Federated Learning on Edge Devices Using Ensembles of Pruned
Deep Neural Networks”. In: IEEE Access 11. Conference Name: IEEE Ac-
cess, pp. 30726–30738. ISSN: 2169-3536. DOI: 10 . 1109 / ACCESS . 2023 .
3261266.

Alhalabi, Besher, Mohamed Medhat Gaber, and Shadi Basura (Dec. 2021).
“MicroNets: A multi-phase pruning pipeline to deep ensemble learning in
IoT devices”. en. In: Computers & Electrical Engineering 96, p. 107581. ISSN:
00457906. DOI: 10.1016/j.compeleceng.2021.107581. URL: https://
linkinghub.elsevier.com/retrieve/pii/S0045790621005164 (visited
on 12/08/2021).

Alhalabi, Besher, Mohamed Medhat Gaber, and Shadi Basurra (Oct. 2019).
“EnSyth: A Pruning Approach to Synthesis of Deep Learning Ensem-
bles”. In: 2019 IEEE International Conference on Systems, Man and Cybernet-
ics (SMC). Bari, Italy: IEEE, pp. 3466–3473. ISBN: 978-1-72814-569-3. DOI:
10.1109/SMC.2019.8913944. URL: https://ieeexplore.ieee.org/
document/8913944/ (visited on 11/10/2022).

Ali, Muhammad Salek et al. (2019). “Applications of Blockchains in the Inter-
net of Things: A Comprehensive Survey”. In: IEEE Communications Sur-
veys & Tutorials 21.2, pp. 1676–1717. ISSN: 1553-877X, 2373-745X. DOI: 10.
1109 / COMST . 2018 . 2886932. URL: https : / / ieeexplore . ieee . org /
document/8580364/ (visited on 01/03/2023).

Allhoff, Fritz and Adam Henschke (Sept. 2018). “The Internet of Things: Foun-
dational ethical issues”. en. In: Internet of Things 1-2, pp. 55–66. ISSN: 25426605.
DOI: 10.1016/j.iot.2018.08.005. URL: https://linkinghub.elsevier.
com/retrieve/pii/S2542660518300532 (visited on 03/05/2023).

Alom, Md Zahangir et al. (July 2018). “Effective Quantization Approaches
for Recurrent Neural Networks”. In: 2018 International Joint Conference on

https://doi.org/10.1016/j.eswa.2022.116834
https://linkinghub.elsevier.com/retrieve/pii/S0957417422002871
https://linkinghub.elsevier.com/retrieve/pii/S0957417422002871
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://ieeexplore.ieee.org/document/7123563/
https://ieeexplore.ieee.org/document/7123563/
https://doi.org/10.1109/FTC.2016.7821686
http://ieeexplore.ieee.org/document/7821686/
http://ieeexplore.ieee.org/document/7821686/
https://doi.org/10.1007/s00521-019-04359-7
http://link.springer.com/10.1007/s00521-019-04359-7
http://link.springer.com/10.1007/s00521-019-04359-7
https://doi.org/10.1109/ACCESS.2023.3261266
https://doi.org/10.1109/ACCESS.2023.3261266
https://doi.org/10.1016/j.compeleceng.2021.107581
https://linkinghub.elsevier.com/retrieve/pii/S0045790621005164
https://linkinghub.elsevier.com/retrieve/pii/S0045790621005164
https://doi.org/10.1109/SMC.2019.8913944
https://ieeexplore.ieee.org/document/8913944/
https://ieeexplore.ieee.org/document/8913944/
https://doi.org/10.1109/COMST.2018.2886932
https://doi.org/10.1109/COMST.2018.2886932
https://ieeexplore.ieee.org/document/8580364/
https://ieeexplore.ieee.org/document/8580364/
https://doi.org/10.1016/j.iot.2018.08.005
https://linkinghub.elsevier.com/retrieve/pii/S2542660518300532
https://linkinghub.elsevier.com/retrieve/pii/S2542660518300532

Bibliography 137
Neural Networks (IJCNN). Rio de Janeiro: IEEE, pp. 1–8. ISBN: 978-1-5090-
6014-6. DOI: 10.1109/IJCNN.2018.8489341. URL: https://ieeexplore.
ieee.org/document/8489341/ (visited on 03/10/2023).

Amari, Shun-ichi (June 1993). “Backpropagation and stochastic gradient de-
scent method”. en. In: Neurocomputing 5.4-5, pp. 185–196. ISSN: 09252312.
DOI: 10 . 1016 / 0925 - 2312(93) 90006 - O. URL: https : / / linkinghub .
elsevier.com/retrieve/pii/092523129390006O (visited on 01/23/2023).

Angeline, P.J., G.M. Saunders, and J.B. Pollack (Jan. 1994). “An evolutionary
algorithm that constructs recurrent neural networks”. In: IEEE Transac-
tions on Neural Networks 5.1, pp. 54–65. ISSN: 10459227. DOI: 10.1109/72.
265960. URL: http://ieeexplore.ieee.org/document/265960/ (visited
on 02/22/2019).

Arivazhagan, Manoj Ghuhan et al. (Dec. 2019). “Federated Learning with
Personalization Layers”. In: arXiv:1912.00818 [cs, stat]. arXiv: 1912.00818.
URL: http://arxiv.org/abs/1912.00818 (visited on 04/15/2021).

Ash, Timur (Jan. 1989). “Dynamic Node Creation in Backpropagation Net-
works”. en. In: Connection Science 1.4, pp. 365–375. ISSN: 0954-0091, 1360-
0494. DOI: 10.1080/09540098908915647. URL: https://www.tandfonline.
com/doi/full/10.1080/09540098908915647 (visited on 10/26/2023).

Ashton, Kevin and others (2009). “That ‘internet of things’ thing”. In: 22.7,
pp. 97–114.

Badnakhe, Rahul (Feb. 2021). “How big is the IoT market?” In: URL: https:
//www.iotcentral.io/blog/iot-is-not-a-buzzword-but-necessity.

Badrinarayanan, Vijay, Alex Kendall, and Roberto Cipolla (Dec. 2017). “Seg-
Net: A Deep Convolutional Encoder-Decoder Architecture for Image Seg-
mentation”. en. In: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 39.12, pp. 2481–2495. ISSN: 0162-8828, 2160-9292, 1939-3539. DOI:
10.1109/TPAMI.2016.2644615. URL: https://ieeexplore.ieee.org/
document/7803544/ (visited on 05/29/2023).

Bai, Yunsheng et al. (June 2019). “Unsupervised Inductive Graph-Level Rep-
resentation Learning via Graph-Graph Proximity”. In: arXiv:1904.01098
[cs, stat]. arXiv: 1904.01098. URL: http://arxiv.org/abs/1904.01098
(visited on 03/15/2022).

Bakker, Bart and Tom Heskes (Mar. 2003). “Clustering ensembles of neural
network models”. en. In: Neural Networks 16.2, pp. 261–269. ISSN: 08936080.
DOI: 10.1016/S0893- 6080(02)00187- 9. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0893608002001879 (visited on 11/07/2023).

Barioli, Francesco, Shaun Fallat, and Leslie Hogben (Nov. 2004). “Computa-
tion of minimal rank and path cover number for certain graphs”. en. In:
Linear Algebra and its Applications 392, pp. 289–303. ISSN: 00243795. DOI:
10.1016/j.laa.2004.06.019. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0024379504002964 (visited on 06/13/2023).

Beasley, J.E and P.C Chu (Oct. 1996). “A genetic algorithm for the set covering
problem”. en. In: European Journal of Operational Research 94.2, pp. 392–
404. ISSN: 03772217. DOI: 10.1016/0377-2217(95)00159-X. URL: http:
//linkinghub.elsevier.com/retrieve/pii/037722179500159X (visited
on 02/25/2019).

Bellini, Pierfrancesco, Paolo Nesi, and Gianni Pantaleo (Feb. 2022). “IoT-Enabled
Smart Cities: A Review of Concepts, Frameworks and Key Technologies”.

https://doi.org/10.1109/IJCNN.2018.8489341
https://ieeexplore.ieee.org/document/8489341/
https://ieeexplore.ieee.org/document/8489341/
https://doi.org/10.1016/0925-2312(93)90006-O
https://linkinghub.elsevier.com/retrieve/pii/092523129390006O
https://linkinghub.elsevier.com/retrieve/pii/092523129390006O
https://doi.org/10.1109/72.265960
https://doi.org/10.1109/72.265960
http://ieeexplore.ieee.org/document/265960/
http://arxiv.org/abs/1912.00818
https://doi.org/10.1080/09540098908915647
https://www.tandfonline.com/doi/full/10.1080/09540098908915647
https://www.tandfonline.com/doi/full/10.1080/09540098908915647
https://www.iotcentral.io/blog/iot-is-not-a-buzzword-but-necessity
https://www.iotcentral.io/blog/iot-is-not-a-buzzword-but-necessity
https://doi.org/10.1109/TPAMI.2016.2644615
https://ieeexplore.ieee.org/document/7803544/
https://ieeexplore.ieee.org/document/7803544/
http://arxiv.org/abs/1904.01098
https://doi.org/10.1016/S0893-6080(02)00187-9
https://linkinghub.elsevier.com/retrieve/pii/S0893608002001879
https://linkinghub.elsevier.com/retrieve/pii/S0893608002001879
https://doi.org/10.1016/j.laa.2004.06.019
https://linkinghub.elsevier.com/retrieve/pii/S0024379504002964
https://linkinghub.elsevier.com/retrieve/pii/S0024379504002964
https://doi.org/10.1016/0377-2217(95)00159-X
http://linkinghub.elsevier.com/retrieve/pii/037722179500159X
http://linkinghub.elsevier.com/retrieve/pii/037722179500159X

138 Bibliography
en. In: Applied Sciences 12.3, p. 1607. ISSN: 2076-3417. DOI: 10.3390/app12031607.
URL: https : / / www . mdpi . com / 2076 - 3417 / 12 / 3 / 1607 (visited on
01/03/2023).

Bentéjac, Candice, Anna Csörgő, and Gonzalo Martínez-Muñoz (Mar. 2021).
“A comparative analysis of gradient boosting algorithms”. en. In: Arti-
ficial Intelligence Review 54.3, pp. 1937–1967. ISSN: 0269-2821, 1573-7462.
DOI: 10.1007/s10462-020-09896-5. URL: https://link.springer.com/
10.1007/s10462-020-09896-5 (visited on 01/17/2023).

Berrada, Imane Rhzioual, Fatima Zohra Barramou, and Omar Bachir Alami
(Feb. 2022). “A review of Artificial Intelligence approach for credit risk
assessment”. In: 2022 2nd International Conference on Artificial Intelligence
and Signal Processing (AISP). ISSN: 2640-5768, pp. 1–5. DOI: 10 . 1109 /
AISP53593.2022.9760655.

Berrar, Daniel (Jan. 2018). “Cross-Validation”. In: ISBN: 978-0-12-809633-8.
DOI: 10.1016/B978-0-12-809633-8.20349-X.

Berrezueta-Guzman, Jonnathan et al. (2020). “Smart-Home Environment to
Support Homework Activities for Children”. In: IEEE Access 8. Confer-
ence Name: IEEE Access, pp. 160251–160267. ISSN: 2169-3536. DOI: 10.
1109/ACCESS.2020.3020734.

Bi, Hongliang, Jiajia Liu, and Nei Kato (July 2022). “Deep Learning-Based
Privacy Preservation and Data Analytics for IoT Enabled Healthcare”.
In: IEEE Transactions on Industrial Informatics 18.7, pp. 4798–4807. ISSN:
1551-3203, 1941-0050. DOI: 10 . 1109 / TII . 2021 . 3117285. URL: https :
//ieeexplore.ieee.org/document/9565344/ (visited on 05/29/2023).

Bienstock, Daniel, Gonzalo Muñoz, and Sebastian Pokutta (Mar. 2022). Princi-
pled Deep Neural Network Training through Linear Programming. arXiv:1810.03218
[cs, math, stat]. DOI: 10.48550/arXiv.1810.03218. URL: http://arxiv.
org/abs/1810.03218 (visited on 03/10/2023).

“Big IoT Data Analytics” (2017). “Big IoT Data Analytics: Architecture, Op-
portunities, and Open Research Challenges”. In: IEEE Access 5, pp. 5247–
5261. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2689040. URL: http:
//ieeexplore.ieee.org/document/7888916/ (visited on 03/17/2022).

Block, H. D. (Jan. 1962). “The Perceptron: A Model for Brain Functioning. I”.
en. In: Reviews of Modern Physics 34.1, pp. 123–135. ISSN: 0034-6861. DOI:
10.1103/RevModPhys.34.123. URL: https://link.aps.org/doi/10.
1103/RevModPhys.34.123 (visited on 01/22/2023).

Bloem, Bastiaan R, Michael S Okun, and Christine Klein (June 2021). “Parkin-
son’s disease”. en. In: The Lancet 397.10291, pp. 2284–2303. ISSN: 01406736.
DOI: 10.1016/S0140- 6736(21)00218- X. URL: https://linkinghub.
elsevier.com/retrieve/pii/S014067362100218X (visited on 02/27/2023).

Bottou, Léon (2010). “Large-Scale Machine Learning with Stochastic Gradient
Descent”. en. In: Proceedings of COMPSTAT’2010. Ed. by Yves Lechevallier
and Gilbert Saporta. Heidelberg: Physica-Verlag HD, pp. 177–186. ISBN:
978-3-7908-2603-6 978-3-7908-2604-3. DOI: 10.1007/978-3-7908-2604-
3_16. URL: http://link.springer.com/10.1007/978-3-7908-2604-3_16
(visited on 06/27/2022).

Boyacioglu, Melek Acar, Yakup Kara, and Ömer Kaan Baykan (Mar. 2009).
“Predicting bank financial failures using neural networks, support vector
machines and multivariate statistical methods: A comparative analysis in

https://doi.org/10.3390/app12031607
https://www.mdpi.com/2076-3417/12/3/1607
https://doi.org/10.1007/s10462-020-09896-5
https://link.springer.com/10.1007/s10462-020-09896-5
https://link.springer.com/10.1007/s10462-020-09896-5
https://doi.org/10.1109/AISP53593.2022.9760655
https://doi.org/10.1109/AISP53593.2022.9760655
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1109/ACCESS.2020.3020734
https://doi.org/10.1109/ACCESS.2020.3020734
https://doi.org/10.1109/TII.2021.3117285
https://ieeexplore.ieee.org/document/9565344/
https://ieeexplore.ieee.org/document/9565344/
https://doi.org/10.48550/arXiv.1810.03218
http://arxiv.org/abs/1810.03218
http://arxiv.org/abs/1810.03218
https://doi.org/10.1109/ACCESS.2017.2689040
http://ieeexplore.ieee.org/document/7888916/
http://ieeexplore.ieee.org/document/7888916/
https://doi.org/10.1103/RevModPhys.34.123
https://link.aps.org/doi/10.1103/RevModPhys.34.123
https://link.aps.org/doi/10.1103/RevModPhys.34.123
https://doi.org/10.1016/S0140-6736(21)00218-X
https://linkinghub.elsevier.com/retrieve/pii/S014067362100218X
https://linkinghub.elsevier.com/retrieve/pii/S014067362100218X
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
http://link.springer.com/10.1007/978-3-7908-2604-3_16

Bibliography 139
the sample of savings deposit insurance fund (SDIF) transferred banks
in Turkey”. en. In: Expert Systems with Applications 36.2, pp. 3355–3366.
ISSN: 09574174. DOI: 10.1016/j.eswa.2008.01.003. URL: https://
linkinghub.elsevier.com/retrieve/pii/S095741740800078X (visited
on 01/22/2023).

Briggs, Christopher, Zhong Fan, and Peter Andras (July 2020). “Federated
learning with hierarchical clustering of local updates to improve train-
ing on non-IID data”. In: 2020 International Joint Conference on Neural Net-
works (IJCNN). ISSN: 2161-4407, pp. 1–9. DOI: 10.1109/IJCNN48605.2020.
9207469.

Brown, Gavin et al. (2005). “Managing diversity in regression ensembles.” In:
Journal of machine learning research 6.9.

Brumley, David and Dan Boneh (Aug. 2005). “Remote timing attacks are
practical”. en. In: Computer Networks 48.5, pp. 701–716. ISSN: 13891286.
DOI: 10 . 1016 / j . comnet . 2005 . 01 . 010. URL: https : / / linkinghub .
elsevier.com/retrieve/pii/S1389128605000125 (visited on 01/10/2023).

Buciluǎ, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil (2006). “Model
compression”. en. In: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’06. Philadelphia,
PA, USA: ACM Press, p. 535. ISBN: 978-1-59593-339-3. DOI: 10 . 1145 /
1150402.1150464. URL: http://portal.acm.org/citation.cfm?doid=
1150402.1150464 (visited on 02/28/2019).

Burhan, Muhammad et al. (Aug. 2018). “IoT Elements, Layered Architec-
tures and Security Issues: A Comprehensive Survey”. en. In: Sensors 18.9,
p. 2796. ISSN: 1424-8220. DOI: 10.3390/s18092796. URL: http://www.
mdpi.com/1424-8220/18/9/2796 (visited on 01/10/2023).

Bühlmann, Peter (2012). “Bagging, Boosting and Ensemble Methods”. en. In:
Handbook of Computational Statistics. Ed. by James E. Gentle, Wolfgang Karl
Härdle, and Yuichi Mori. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 985–1022. ISBN: 978-3-642-21550-6 978-3-642-21551-3. DOI: 10.1007/
978-3-642-21551-3_33. URL: http://link.springer.com/10.1007/
978-3-642-21551-3_33 (visited on 01/16/2023).

Caldarola, Debora et al. (June 2021). “Cluster-driven Graph Federated Learn-
ing over Multiple Domains”. In: 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). Nashville, TN, USA:
IEEE, pp. 2743–2752. ISBN: 978-1-66544-899-4. DOI: 10.1109/CVPRW53098.
2021.00309. URL: https://ieeexplore.ieee.org/document/9522933/
(visited on 07/04/2022).

Cao, Ying et al. (June 2013). “Advance and Prospects of AdaBoost Algo-
rithm”. en. In: Acta Automatica Sinica 39.6, pp. 745–758. ISSN: 18741029.
DOI: 10.1016/S1874- 1029(13)60052- X. URL: https://linkinghub.
elsevier.com/retrieve/pii/S187410291360052X (visited on 01/17/2023).

Chandola, Varun, Arindam Banerjee, and Vipin Kumar (July 2009). “Anomaly
detection: A survey”. In: ACM Computing Surveys 41.3, 15:1–15:58. ISSN:
0360-0300. DOI: 10.1145/1541880.1541882. URL: https://doi.org/10.
1145/1541880.1541882 (visited on 02/02/2023).

Chang, Zhuoqing et al. (Sept. 2021). “A Survey of Recent Advances in Edge-
Computing-Powered Artificial Intelligence of Things”. In: IEEE Internet
of Things Journal 8.18, pp. 13849–13875. ISSN: 2327-4662, 2372-2541. DOI:

https://doi.org/10.1016/j.eswa.2008.01.003
https://linkinghub.elsevier.com/retrieve/pii/S095741740800078X
https://linkinghub.elsevier.com/retrieve/pii/S095741740800078X
https://doi.org/10.1109/IJCNN48605.2020.9207469
https://doi.org/10.1109/IJCNN48605.2020.9207469
https://doi.org/10.1016/j.comnet.2005.01.010
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
http://portal.acm.org/citation.cfm?doid=1150402.1150464
http://portal.acm.org/citation.cfm?doid=1150402.1150464
https://doi.org/10.3390/s18092796
http://www.mdpi.com/1424-8220/18/9/2796
http://www.mdpi.com/1424-8220/18/9/2796
https://doi.org/10.1007/978-3-642-21551-3_33
https://doi.org/10.1007/978-3-642-21551-3_33
http://link.springer.com/10.1007/978-3-642-21551-3_33
http://link.springer.com/10.1007/978-3-642-21551-3_33
https://doi.org/10.1109/CVPRW53098.2021.00309
https://doi.org/10.1109/CVPRW53098.2021.00309
https://ieeexplore.ieee.org/document/9522933/
https://doi.org/10.1016/S1874-1029(13)60052-X
https://linkinghub.elsevier.com/retrieve/pii/S187410291360052X
https://linkinghub.elsevier.com/retrieve/pii/S187410291360052X
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882

140 Bibliography
10.1109/JIOT.2021.3088875. URL: https://ieeexplore.ieee.org/
document/9453402/ (visited on 03/02/2023).

Chauhan, Jagmohan et al. (May 2018). “Breathing-Based Authentication on
Resource-Constrained IoT Devices using Recurrent Neural Networks”.
In: Computer 51.5, pp. 60–67. ISSN: 0018-9162, 1558-0814. DOI: 10.1109/MC.
2018.2381119. URL: https://ieeexplore.ieee.org/document/8364655/
(visited on 03/05/2023).

Chen, Mingzhe et al. (Apr. 2021). “Communication-efficient federated learn-
ing”. In: Proceedings of the National Academy of Sciences 118.17. Publisher:
Proceedings of the National Academy of Sciences, e2024789118. DOI: 10.
1073/pnas.2024789118. URL: https://www.pnas.org/doi/10.1073/
pnas.2024789118 (visited on 02/24/2023).

Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens (Nov. 2015). “Net2Net:
Accelerating Learning via Knowledge Transfer”. en. In: arXiv:1511.05641
[cs]. arXiv: 1511.05641. URL: http://arxiv.org/abs/1511.05641 (visited
on 10/09/2018).

Chen, Yiqiang et al. (July 2020). “FedHealth: A Federated Transfer Learn-
ing Framework for Wearable Healthcare”. In: IEEE Intelligent Systems 35.4,
pp. 83–93. ISSN: 1541-1672, 1941-1294. DOI: 10.1109/MIS.2020.2988604.
URL: https://ieeexplore.ieee.org/document/9076082/ (visited on
04/15/2021).

Cheng, Yu et al. (Oct. 2017). “A Survey of Model Compression and Accel-
eration for Deep Neural Networks”. en. In: arXiv:1710.09282 [cs]. arXiv:
1710.09282. URL: http://arxiv.org/abs/1710.09282 (visited on 09/12/2018).

Collobert, Ronan et al. (2011). “Natural Language Processing (Almost) from
Scratch”. en. In: NATURAL LANGUAGE PROCESSING, p. 45.

Conroy, Bryan et al. (Mar. 2016). “A dynamic ensemble approach to robust
classification in the presence of missing data”. en. In: Machine Learning
102.3, pp. 443–463. ISSN: 0885-6125, 1573-0565. DOI: 10.1007/s10994-
015-5530-z. URL: http://link.springer.com/10.1007/s10994-015-
5530-z (visited on 10/26/2023).

Conti, Mauro, Nicola Dragoni, and Viktor Lesyk (2016). “A Survey of Man In
The Middle Attacks”. In: IEEE Communications Surveys & Tutorials 18.3,
pp. 2027–2051. ISSN: 1553-877X. DOI: 10 . 1109 / COMST . 2016 . 2548426.
URL: http : / / ieeexplore . ieee . org / document / 7442758/ (visited on
01/10/2023).

Cortes, Corinna, Mehryar Mohri, and Afshin Rostamizadeh (2012). “L2 Reg-
ularization for Learning Kernels”. In: Publisher: arXiv Version Number:
1. DOI: 10.48550/ARXIV.1205.2653. URL: https://arxiv.org/abs/1205.
2653 (visited on 10/27/2023).

Cortes, Corinna et al. (July 2016). “AdaNet: Adaptive Structural Learning of
Artificial Neural Networks”. In: arXiv:1607.01097 [cs]. arXiv: 1607.01097.
URL: http://arxiv.org/abs/1607.01097 (visited on 07/02/2019).

Costarelli, Danilo and Renato Spigler (Aug. 2013). “Approximation results
for neural network operators activated by sigmoidal functions”. en. In:
Neural Networks 44, pp. 101–106. ISSN: 08936080. DOI: 10.1016/j.neunet.
2013.03.015. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0893608013001007 (visited on 01/22/2023).

https://doi.org/10.1109/JIOT.2021.3088875
https://ieeexplore.ieee.org/document/9453402/
https://ieeexplore.ieee.org/document/9453402/
https://doi.org/10.1109/MC.2018.2381119
https://doi.org/10.1109/MC.2018.2381119
https://ieeexplore.ieee.org/document/8364655/
https://doi.org/10.1073/pnas.2024789118
https://doi.org/10.1073/pnas.2024789118
https://www.pnas.org/doi/10.1073/pnas.2024789118
https://www.pnas.org/doi/10.1073/pnas.2024789118
http://arxiv.org/abs/1511.05641
https://doi.org/10.1109/MIS.2020.2988604
https://ieeexplore.ieee.org/document/9076082/
http://arxiv.org/abs/1710.09282
https://doi.org/10.1007/s10994-015-5530-z
https://doi.org/10.1007/s10994-015-5530-z
http://link.springer.com/10.1007/s10994-015-5530-z
http://link.springer.com/10.1007/s10994-015-5530-z
https://doi.org/10.1109/COMST.2016.2548426
http://ieeexplore.ieee.org/document/7442758/
https://doi.org/10.48550/ARXIV.1205.2653
https://arxiv.org/abs/1205.2653
https://arxiv.org/abs/1205.2653
http://arxiv.org/abs/1607.01097
https://doi.org/10.1016/j.neunet.2013.03.015
https://doi.org/10.1016/j.neunet.2013.03.015
https://linkinghub.elsevier.com/retrieve/pii/S0893608013001007
https://linkinghub.elsevier.com/retrieve/pii/S0893608013001007

Bibliography 141
Cruz, Rafael M.O. et al. (May 2015). “META-DES: A dynamic ensemble se-

lection framework using meta-learning”. en. In: Pattern Recognition 48.5,
pp. 1925–1935. ISSN: 00313203. DOI: 10.1016/j.patcog.2014.12.003.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0031320314004919
(visited on 10/26/2023).

D. Whitley, C. Bogart (1990). “The Evolution of Connectivity: Pruning Neural
Networks Using Genetic Algorithms”. In.

Dai, Hong-Ning, Zibin Zheng, and Yan Zhang (Oct. 2019). “Blockchain for In-
ternet of Things: A Survey”. In: IEEE Internet of Things Journal 6.5, pp. 8076–
8094. ISSN: 2327-4662, 2372-2541. DOI: 10 . 1109 / JIOT . 2019 . 2920987.
URL: https://ieeexplore.ieee.org/document/8731639/ (visited on
01/04/2023).

Dao, Tri et al. (n.d.). “A Kernel Theory of Modern Data Augmentation”. en.
In: (), p. 10.

Deb, K. et al. (Apr. 2002). “A fast and elitist multiobjective genetic algo-
rithm: NSGA-II”. In: IEEE Transactions on Evolutionary Computation 6.2,
pp. 182–197. ISSN: 1089778X. DOI: 10.1109/4235.996017. URL: http:
//ieeexplore.ieee.org/document/996017/ (visited on 02/25/2019).

Demir-Kavuk, Ozgur et al. (Dec. 2011). “Prediction using step-wise L1, L2
regularization and feature selection for small data sets with large num-
ber of features”. en. In: BMC Bioinformatics 12.1, p. 412. ISSN: 1471-2105.
DOI: 10.1186/1471-2105-12-412. URL: https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/1471-2105-12-412 (visited on
10/27/2023).

Denton, Emily et al. (Apr. 2014). “Exploiting Linear Structure Within Convo-
lutional Networks for Efficient Evaluation”. en. In: arXiv:1404.0736 [cs].
arXiv: 1404.0736. URL: http://arxiv.org/abs/1404.0736 (visited on
10/09/2018).

Deogirikar, Jyoti and Amarsinh Vidhate (Feb. 2017). “Security attacks in IoT:
A survey”. In: 2017 International Conference on I-SMAC (IoT in Social, Mo-
bile, Analytics and Cloud) (I-SMAC). Palladam, Tamilnadu, India: IEEE,
pp. 32–37. ISBN: 978-1-5090-3242-6 978-1-5090-3243-3. DOI: 10.1109/I-
SMAC.2017.8058363. URL: http://ieeexplore.ieee.org/document/
8058363/ (visited on 01/11/2023).

Deotte, Chris et al. (Oct. 2021). “GPU Accelerated Boosted Trees and Deep
Neural Networks for Better Recommender Systems”. en. In: RecSysChal-
lenge ’21: Proceedings of the Recommender Systems Challenge 2021. Amster-
dam Netherlands: ACM, pp. 7–14. ISBN: 978-1-4503-8693-7. DOI: 10.1145/
3487572.3487605. URL: https://dl.acm.org/doi/10.1145/3487572.
3487605 (visited on 01/19/2023).

Dharwadkar, Nagaraj V. and Priyanka S. Patil (2018). “Customer retention
and credit risk analysis using ANN, SVM and DNN”. en. In: International
Journal of Society Systems Science 10.4, p. 316. ISSN: 1756-2511, 1756-252X.
DOI: 10.1504/IJSSS.2018.095601. URL: http://www.inderscience.com/
link.php?id=95601 (visited on 04/06/2023).

Dietterich, Thomas G. (2000). “Ensemble Methods in Machine Learning”. en.
In: Multiple Classifier Systems. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, pp. 1–15. ISBN: 978-3-540-45014-6. DOI: 10.1007/3-
540-45014-9_1.

https://doi.org/10.1016/j.patcog.2014.12.003
https://linkinghub.elsevier.com/retrieve/pii/S0031320314004919
https://doi.org/10.1109/JIOT.2019.2920987
https://ieeexplore.ieee.org/document/8731639/
https://doi.org/10.1109/4235.996017
http://ieeexplore.ieee.org/document/996017/
http://ieeexplore.ieee.org/document/996017/
https://doi.org/10.1186/1471-2105-12-412
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-412
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-12-412
http://arxiv.org/abs/1404.0736
https://doi.org/10.1109/I-SMAC.2017.8058363
https://doi.org/10.1109/I-SMAC.2017.8058363
http://ieeexplore.ieee.org/document/8058363/
http://ieeexplore.ieee.org/document/8058363/
https://doi.org/10.1145/3487572.3487605
https://doi.org/10.1145/3487572.3487605
https://dl.acm.org/doi/10.1145/3487572.3487605
https://dl.acm.org/doi/10.1145/3487572.3487605
https://doi.org/10.1504/IJSSS.2018.095601
http://www.inderscience.com/link.php?id=95601
http://www.inderscience.com/link.php?id=95601
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1007/3-540-45014-9_1

142 Bibliography
Dilsizian, Steven E. and Eliot L. Siegel (Dec. 2013). “Artificial Intelligence

in Medicine and Cardiac Imaging: Harnessing Big Data and Advanced
Computing to Provide Personalized Medical Diagnosis and Treatment”.
en. In: Current Cardiology Reports 16.1, p. 441. ISSN: 1534-3170. DOI: 10.
1007/s11886-013-0441-8. URL: https://doi.org/10.1007/s11886-
013-0441-8 (visited on 02/27/2023).

Ding, Shifei et al. (Mar. 2013). “Evolutionary artificial neural networks: a re-
view”. en. In: Artificial Intelligence Review 39.3, pp. 251–260. ISSN: 0269-
2821, 1573-7462. DOI: 10.1007/s10462-011-9270-6. URL: http://link.
springer.com/10.1007/s10462-011-9270-6 (visited on 02/25/2019).

Dong, Qi, Shaogang Gong, and Xiatian Zhu (June 2019). “Imbalanced Deep
Learning by Minority Class Incremental Rectification”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 41.6. Conference Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1367–
1381. ISSN: 1939-3539. DOI: 10.1109/TPAMI.2018.2832629.

Duan, Moming et al. (Nov. 2019). “Astraea: Self-Balancing Federated Learn-
ing for Improving Classification Accuracy of Mobile Deep Learning Ap-
plications”. In: 2019 IEEE 37th International Conference on Computer Design
(ICCD). Abu Dhabi, United Arab Emirates: IEEE, pp. 246–254. ISBN: 978-
1-5386-6648-7. DOI: 10.1109/ICCD46524.2019.00038. URL: https://
ieeexplore.ieee.org/document/8988732/ (visited on 06/29/2022).

Elkin, Dmitry and Valeriy Vyatkin (2020). “IoT in Traffic Management: Re-
view of Existing Methods of Road Traffic Regulation”. en. In: Applied In-
formatics and Cybernetics in Intelligent Systems. Ed. by Radek Silhavy. Vol. 1226.
Series Title: Advances in Intelligent Systems and Computing. Cham: Springer
International Publishing, pp. 536–551. ISBN: 978-3-030-51973-5 978-3-030-
51974-2. DOI: 10.1007/978-3-030-51974-2_50. URL: https://link.
springer.com/10.1007/978-3-030-51974-2_50 (visited on 01/03/2023).

Engelbrecht, A.P. (Nov. 2001). “A new pruning heuristic based on variance
analysis of sensitivity information”. In: IEEE Transactions on Neural Net-
works 12.6. Conference Name: IEEE Transactions on Neural Networks,
pp. 1386–1399. ISSN: 1941-0093. DOI: 10.1109/72.963775.

Evans, D. J. and K. R. Raslan (July 2005). “The tanh function method for solv-
ing some important non-linear partial differential equations”. In: Inter-
national Journal of Computer Mathematics 82.7. Publisher: Taylor & Fran-
cis _eprint: https://doi.org/10.1080/00207160412331336026, pp. 897–905.
ISSN: 0020-7160. DOI: 10.1080/00207160412331336026. URL: https://
doi.org/10.1080/00207160412331336026 (visited on 01/22/2023).

Ezugwu, Absalom E. et al. (Apr. 2022). “A comprehensive survey of clus-
tering algorithms: State-of-the-art machine learning applications, taxon-
omy, challenges, and future research prospects”. en. In: Engineering Ap-
plications of Artificial Intelligence 110, p. 104743. ISSN: 0952-1976. DOI: 10.
1016/j.engappai.2022.104743. URL: https://www.sciencedirect.com/
science/article/pii/S095219762200046X (visited on 02/02/2023).

Falter, Maarten et al. (Mar. 2019). “Accuracy of Apple Watch Measurements
for Heart Rate and Energy Expenditure in Patients With Cardiovascular
Disease: Cross-Sectional Study”. EN. In: JMIR mHealth and uHealth 7.3.
Company: JMIR mHealth and uHealth Distributor: JMIR mHealth and
uHealth Institution: JMIR mHealth and uHealth Label: JMIR mHealth

https://doi.org/10.1007/s11886-013-0441-8
https://doi.org/10.1007/s11886-013-0441-8
https://doi.org/10.1007/s11886-013-0441-8
https://doi.org/10.1007/s11886-013-0441-8
https://doi.org/10.1007/s10462-011-9270-6
http://link.springer.com/10.1007/s10462-011-9270-6
http://link.springer.com/10.1007/s10462-011-9270-6
https://doi.org/10.1109/TPAMI.2018.2832629
https://doi.org/10.1109/ICCD46524.2019.00038
https://ieeexplore.ieee.org/document/8988732/
https://ieeexplore.ieee.org/document/8988732/
https://doi.org/10.1007/978-3-030-51974-2_50
https://link.springer.com/10.1007/978-3-030-51974-2_50
https://link.springer.com/10.1007/978-3-030-51974-2_50
https://doi.org/10.1109/72.963775
https://doi.org/10.1080/00207160412331336026
https://doi.org/10.1080/00207160412331336026
https://doi.org/10.1080/00207160412331336026
https://doi.org/10.1016/j.engappai.2022.104743
https://doi.org/10.1016/j.engappai.2022.104743
https://www.sciencedirect.com/science/article/pii/S095219762200046X
https://www.sciencedirect.com/science/article/pii/S095219762200046X

Bibliography 143
and uHealth Publisher: JMIR Publications Inc., Toronto, Canada, e11889.
DOI: 10.2196/11889. URL: https://mhealth.jmir.org/2019/3/e11889
(visited on 02/27/2023).

Farabet, Clement et al. (May 2010). “Hardware accelerated convolutional neu-
ral networks for synthetic vision systems”. In: Proceedings of 2010 IEEE In-
ternational Symposium on Circuits and Systems. Paris, France: IEEE, pp. 257–
260. ISBN: 978-1-4244-5308-5. DOI: 10.1109/ISCAS.2010.5537908. URL:
http://ieeexplore.ieee.org/document/5537908/ (visited on 01/05/2019).

Farabet, Clement et al. (June 2011). “NeuFlow: A runtime reconfigurable dataflow
processor for vision”. In: CVPR 2011 WORKSHOPS. Colorado Springs,
CO, USA: IEEE, pp. 109–116. ISBN: 978-1-4577-0529-8. DOI: 10 . 1109 /
CVPRW.2011.5981829. URL: http://ieeexplore.ieee.org/document/
5981829/ (visited on 01/05/2019).

Fawcett, Tom (June 2006). “An introduction to ROC analysis”. en. In: Pat-
tern Recognition Letters 27.8, pp. 861–874. ISSN: 01678655. DOI: 10.1016/
j.patrec.2005.10.010. URL: https://linkinghub.elsevier.com/
retrieve/pii/S016786550500303X (visited on 01/31/2023).

Ferreira, Artur J. and Mário A. T. Figueiredo (2012). “Boosting Algorithms: A
Review of Methods, Theory, and Applications”. en. In: Ensemble Machine
Learning. Ed. by Cha Zhang and Yunqian Ma. Boston, MA: Springer US,
pp. 35–85. ISBN: 978-1-4419-9325-0 978-1-4419-9326-7. DOI: 10.1007/978-
1-4419-9326-7_2. URL: http://link.springer.com/10.1007/978-1-
4419-9326-7_2 (visited on 01/16/2023).

Floridi, Luciano, ed. (June 2016). The Routledge Handbook of Philosophy of In-
formation. en. 0th ed. Routledge. ISBN: 978-1-317-63349-5. DOI: 10.4324/
9781315757544. URL: https://www.taylorfrancis.com/books/9781317633495
(visited on 03/05/2023).

Frankle, Jonathan and Michael Carbin (Mar. 2019). “The Lottery Ticket Hy-
pothesis: Finding Sparse, Trainable Neural Networks”. In: arXiv:1803.03635
[cs]. arXiv: 1803.03635. URL: http://arxiv.org/abs/1803.03635 (visited
on 02/16/2020).

Freund, Yoav and Robert E Schapire (Aug. 1997). “A Decision-Theoretic Gen-
eralization of On-Line Learning and an Application to Boosting”. en. In:
Journal of Computer and System Sciences 55.1, pp. 119–139. ISSN: 00220000.
DOI: 10.1006/jcss.1997.1504. URL: https://linkinghub.elsevier.
com/retrieve/pii/S002200009791504X (visited on 01/16/2023).

Fridman, Lex et al. (Nov. 2017). “MIT Autonomous Vehicle Technology Study:
Large-Scale Deep Learning Based Analysis of Driver Behavior and In-
teraction with Automation”. In: arXiv:1711.06976 [cs]. arXiv: 1711.06976.
URL: http://arxiv.org/abs/1711.06976 (visited on 03/22/2019).

Furlanello, Tommaso et al. (June 2018). Born Again Neural Networks. arXiv:1805.04770
[cs, stat]. DOI: 10.48550/arXiv.1805.04770. URL: http://arxiv.org/
abs/1805.04770 (visited on 04/17/2023).

Gaber, Mohamed Medhat, Frederic Stahl, and João Bártolo Gomes (2014).
Pocket Data Mining: Big Data on Small Devices. en. Vol. 2. Studies in Big
Data. Cham: Springer International Publishing. ISBN: 978-3-319-02710-4
978-3-319-02711-1. DOI: 10 . 1007 / 978 - 3 - 319 - 02711 - 1. URL: https :
/ / link . springer . com / 10 . 1007 / 978 - 3 - 319 - 02711 - 1 (visited on
03/07/2023).

https://doi.org/10.2196/11889
https://mhealth.jmir.org/2019/3/e11889
https://doi.org/10.1109/ISCAS.2010.5537908
http://ieeexplore.ieee.org/document/5537908/
https://doi.org/10.1109/CVPRW.2011.5981829
https://doi.org/10.1109/CVPRW.2011.5981829
http://ieeexplore.ieee.org/document/5981829/
http://ieeexplore.ieee.org/document/5981829/
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://linkinghub.elsevier.com/retrieve/pii/S016786550500303X
https://linkinghub.elsevier.com/retrieve/pii/S016786550500303X
https://doi.org/10.1007/978-1-4419-9326-7_2
https://doi.org/10.1007/978-1-4419-9326-7_2
http://link.springer.com/10.1007/978-1-4419-9326-7_2
http://link.springer.com/10.1007/978-1-4419-9326-7_2
https://doi.org/10.4324/9781315757544
https://doi.org/10.4324/9781315757544
https://www.taylorfrancis.com/books/9781317633495
http://arxiv.org/abs/1803.03635
https://doi.org/10.1006/jcss.1997.1504
https://linkinghub.elsevier.com/retrieve/pii/S002200009791504X
https://linkinghub.elsevier.com/retrieve/pii/S002200009791504X
http://arxiv.org/abs/1711.06976
https://doi.org/10.48550/arXiv.1805.04770
http://arxiv.org/abs/1805.04770
http://arxiv.org/abs/1805.04770
https://doi.org/10.1007/978-3-319-02711-1
https://link.springer.com/10.1007/978-3-319-02711-1
https://link.springer.com/10.1007/978-3-319-02711-1

144 Bibliography
Ganaie, M.A. et al. (Oct. 2022). “Ensemble deep learning: A review”. en.

In: Engineering Applications of Artificial Intelligence 115, p. 105151. ISSN:
09521976. DOI: 10 . 1016 / j . engappai . 2022 . 105151. URL: https : / /
linkinghub.elsevier.com/retrieve/pii/S095219762200269X (visited
on 10/26/2023).

George, D. and J. Hawkins (2005). “A hierarchical bayesian model of invari-
ant pattern recognition in the visual cortex”. In: Proceedings. 2005 IEEE
International Joint Conference on Neural Networks, 2005. Vol. 3. Montreal,
QC, Canada: IEEE, pp. 1812–1817. ISBN: 978-0-7803-9048-5. DOI: 10.1109/
IJCNN.2005.1556155. URL: http://ieeexplore.ieee.org/document/
1556155/ (visited on 01/05/2019).

Ghahramani, Zoubin (2004). “Unsupervised Learning”. en. In: Advanced Lec-
tures on Machine Learning: ML Summer Schools 2003, Canberra, Australia,
February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lec-
tures. Ed. by Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rätsch.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 72–
112. ISBN: 978-3-540-28650-9. DOI: 10 . 1007 / 978 - 3 - 540 - 28650 - 9 _ 5.
URL: https://doi.org/10.1007/978-3-540-28650-9_5 (visited on
02/02/2023).

Ghosh, Ananda and Katarina Grolinger (2020). “Edge-Cloud Computing for
IoT Data Analytics: Embedding Intelligence in the Edge with Deep Learn-
ing”. In: IEEE Transactions on Industrial Informatics, pp. 1–1. ISSN: 1551-
3203, 1941-0050. DOI: 10.1109/TII.2020.3008711. URL: https://ieeexplore.
ieee.org/document/9139356/ (visited on 03/17/2022).

Ghosh, Avishek et al. (June 2020). “An Efficient Framework for Clustered
Federated Learning”. In: arXiv:2006.04088 [cs, stat]. arXiv: 2006.04088. URL:
http://arxiv.org/abs/2006.04088 (visited on 04/15/2021).

Ghosh, Jeet, Gopinath Samanta, and Chinmay Chakraborty (2021). “Smart
Health Care for Societies: An Insight into the Implantable and Wearable
Devices for Remote Health Monitoring”. en. In: Green Technological Inno-
vation for Sustainable Smart Societies. Ed. by Chinmay Chakraborty. Cham:
Springer International Publishing, pp. 89–113. ISBN: 978-3-030-73294-3 978-
3-030-73295-0. DOI: 10.1007/978-3-030-73295-0_5. URL: https://link.
springer.com/10.1007/978-3-030-73295-0_5 (visited on 03/17/2022).

Ghosh, Tapabrata (Jan. 2017). “QuickNet: Maximizing Efficiency and Efficacy
in Deep Architectures”. In: arXiv:1701.02291 [cs, stat]. arXiv: 1701.02291.
URL: http://arxiv.org/abs/1701.02291 (visited on 07/02/2019).

Giacinto, G., F. Roli, and G. Fumera (2000). “Design of effective multiple clas-
sifier systems by clustering of classifiers”. In: Proceedings 15th International
Conference on Pattern Recognition. ICPR-2000. Vol. 2. Barcelona, Spain: IEEE
Comput. Soc, pp. 160–163. ISBN: 978-0-7695-0750-7. DOI: 10.1109/ICPR.
2000.906039. URL: http://ieeexplore.ieee.org/document/906039/
(visited on 11/07/2023).

Girosi, Federico, Michael Jones, and Tomaso Poggio (Mar. 1995). “Regular-
ization Theory and Neural Networks Architectures”. en. In: Neural Com-
putation 7.2, pp. 219–269. ISSN: 0899-7667, 1530-888X. DOI: 10.1162/neco.
1995.7.2.219. URL: http://www.mitpressjournals.org/doi/10.1162/
neco.1995.7.2.219 (visited on 03/22/2019).

https://doi.org/10.1016/j.engappai.2022.105151
https://linkinghub.elsevier.com/retrieve/pii/S095219762200269X
https://linkinghub.elsevier.com/retrieve/pii/S095219762200269X
https://doi.org/10.1109/IJCNN.2005.1556155
https://doi.org/10.1109/IJCNN.2005.1556155
http://ieeexplore.ieee.org/document/1556155/
http://ieeexplore.ieee.org/document/1556155/
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1007/978-3-540-28650-9_5
https://doi.org/10.1109/TII.2020.3008711
https://ieeexplore.ieee.org/document/9139356/
https://ieeexplore.ieee.org/document/9139356/
http://arxiv.org/abs/2006.04088
https://doi.org/10.1007/978-3-030-73295-0_5
https://link.springer.com/10.1007/978-3-030-73295-0_5
https://link.springer.com/10.1007/978-3-030-73295-0_5
http://arxiv.org/abs/1701.02291
https://doi.org/10.1109/ICPR.2000.906039
https://doi.org/10.1109/ICPR.2000.906039
http://ieeexplore.ieee.org/document/906039/
https://doi.org/10.1162/neco.1995.7.2.219
https://doi.org/10.1162/neco.1995.7.2.219
http://www.mitpressjournals.org/doi/10.1162/neco.1995.7.2.219
http://www.mitpressjournals.org/doi/10.1162/neco.1995.7.2.219

Bibliography 145
Gong, Yunchao et al. (Dec. 2014). “Compressing Deep Convolutional Net-

works using Vector Quantization”. en. In: arXiv:1412.6115 [cs]. arXiv: 1412.6115.
URL: http://arxiv.org/abs/1412.6115 (visited on 10/09/2018).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning.
MIT Press.

Gordon, Ariel et al. (Nov. 2017). “MorphNet: Fast & Simple Resource-Constrained
Structure Learning of Deep Networks”. In: arXiv:1711.06798 [cs, stat]. arXiv:
1711.06798. URL: http://arxiv.org/abs/1711.06798 (visited on 07/02/2019).

Guo, Lin and Qun Dai (Feb. 2022). “Graph Clustering via Variational Graph
Embedding”. en. In: Pattern Recognition 122, p. 108334. ISSN: 00313203.
DOI: 10 . 1016 / j . patcog . 2021 . 108334. URL: https : / / linkinghub .
elsevier.com/retrieve/pii/S0031320321005148 (visited on 11/28/2022).

Gupta, Shashank and B. B. Gupta (Jan. 2017). “Cross-Site Scripting (XSS) at-
tacks and defense mechanisms: classification and state-of-the-art”. en. In:
International Journal of System Assurance Engineering and Management 8.S1,
pp. 512–530. ISSN: 0975-6809, 0976-4348. DOI: 10.1007/s13198-015-0376-
0. URL: http://link.springer.com/10.1007/s13198-015-0376-0 (vis-
ited on 01/12/2023).

Hagiwara, Masafumi (Apr. 1994). “A simple and effective method for re-
moval of hidden units and weights”. en. In: Neurocomputing 6.2, pp. 207–
218. ISSN: 09252312. DOI: 10.1016/0925-2312(94)90055-8. URL: http:
//linkinghub.elsevier.com/retrieve/pii/0925231294900558 (visited
on 01/02/2019).

Han, Song, Huizi Mao, and William J. Dally (Oct. 2015). “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quantization
and Huffman Coding”. en. In: arXiv:1510.00149 [cs]. arXiv: 1510.00149.
URL: http://arxiv.org/abs/1510.00149 (visited on 09/26/2018).

Hansen, L.K. and P. Salamon (Oct. 1990). “Neural network ensembles”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 12.10, pp. 993–
1001. ISSN: 01628828. DOI: 10.1109/34.58871. URL: http://ieeexplore.
ieee.org/document/58871/ (visited on 10/26/2023).

Hansen, Nikolaus and Andreas Ostermeier (June 2001). “Completely De-
randomized Self-Adaptation in Evolution Strategies”. en. In: Evolutionary
Computation 9.2, pp. 159–195. ISSN: 1063-6560, 1530-9304. DOI: 10.1162/
106365601750190398. URL: http://www.mitpressjournals.org/doi/10.
1162/106365601750190398 (visited on 02/22/2019).

Harris, Charles R. et al. (Sept. 2020). “Array programming with NumPy”.
en. In: Nature 585.7825, pp. 357–362. ISSN: 0028-0836, 1476-4687. DOI: 10.
1038/s41586-020-2649-2. URL: https://www.nature.com/articles/
s41586-020-2649-2 (visited on 04/04/2023).

Hashem, Sherif (June 1997). “Optimal Linear Combinations of Neural Net-
works”. en. In: Neural Networks 10.4, pp. 599–614. ISSN: 08936080. DOI:
10.1016/S0893-6080(96)00098-6. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0893608096000986 (visited on 10/26/2023).

Hassibi, B., D.G. Stork, and G.J. Wolff (1993). “Optimal Brain Surgeon and
general network pruning”. In: IEEE International Conference on Neural Net-
works. San Francisco, CA, USA: IEEE, pp. 293–299. ISBN: 978-0-7803-0999-
9. DOI: 10.1109/ICNN.1993.298572. URL: http://ieeexplore.ieee.org/
document/298572/ (visited on 01/02/2019).

http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1711.06798
https://doi.org/10.1016/j.patcog.2021.108334
https://linkinghub.elsevier.com/retrieve/pii/S0031320321005148
https://linkinghub.elsevier.com/retrieve/pii/S0031320321005148
https://doi.org/10.1007/s13198-015-0376-0
https://doi.org/10.1007/s13198-015-0376-0
http://link.springer.com/10.1007/s13198-015-0376-0
https://doi.org/10.1016/0925-2312(94)90055-8
http://linkinghub.elsevier.com/retrieve/pii/0925231294900558
http://linkinghub.elsevier.com/retrieve/pii/0925231294900558
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/34.58871
http://ieeexplore.ieee.org/document/58871/
http://ieeexplore.ieee.org/document/58871/
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
http://www.mitpressjournals.org/doi/10.1162/106365601750190398
http://www.mitpressjournals.org/doi/10.1162/106365601750190398
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://doi.org/10.1016/S0893-6080(96)00098-6
https://linkinghub.elsevier.com/retrieve/pii/S0893608096000986
https://linkinghub.elsevier.com/retrieve/pii/S0893608096000986
https://doi.org/10.1109/ICNN.1993.298572
http://ieeexplore.ieee.org/document/298572/
http://ieeexplore.ieee.org/document/298572/

146 Bibliography
Hastie, Trevor, Jerome Friedman, and Robert Tibshirani (2001). The Elements

of Statistical Learning. Springer Series in Statistics. New York, NY: Springer
New York. ISBN: 978-1-4899-0519-2 978-0-387-21606-5. DOI: 10.1007/978-
0-387-21606-5. URL: http://link.springer.com/10.1007/978-0-387-
21606-5 (visited on 01/31/2023).

He, Kaiming et al. (June 2016a). “Deep Residual Learning for Image Recogni-
tion”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Las Vegas, NV, USA: IEEE, pp. 770–778. ISBN: 978-1-4673-8851-
1. DOI: 10.1109/CVPR.2016.90. URL: http://ieeexplore.ieee.org/
document/7780459/ (visited on 07/08/2019).

— (July 2016b). “Identity Mappings in Deep Residual Networks”. In: arXiv:1603.05027
[cs]. arXiv: 1603.05027. URL: http://arxiv.org/abs/1603.05027 (visited
on 02/21/2020).

He, Yang et al. (July 2019). “Filter Pruning via Geometric Median for Deep
Convolutional Neural Networks Acceleration”. In: arXiv:1811.00250 [cs].
arXiv: 1811.00250. URL: http://arxiv.org/abs/1811.00250 (visited on
09/19/2020).

He, Yihui, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Ac-
celerating Very Deep Neural Networks”. In: pp. 1389–1397. (Visited on
03/22/2019).

Hendrycks, Dan and Thomas Dietterich (Mar. 2019). Benchmarking Neural
Network Robustness to Common Corruptions and Perturbations. arXiv:1903.12261
[cs, stat]. DOI: 10.48550/arXiv.1903.12261. URL: http://arxiv.org/
abs/1903.12261 (visited on 04/13/2023).

Him, Leong Chee, Yu Yong Poh, and Lee Wah Pheng (Nov. 2019). “IoT-based
Predictive Maintenance for Smart Manufacturing Systems”. In: 2019 Asia-
Pacific Signal and Information Processing Association Annual Summit and Con-
ference (APSIPA ASC). Lanzhou, China: IEEE, pp. 1942–1944. ISBN: 978-1-
72813-248-8. DOI: 10.1109/APSIPAASC47483.2019.9023106. URL: https:
//ieeexplore.ieee.org/document/9023106/ (visited on 01/03/2023).

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (Mar. 2015). “Distilling the
Knowledge in a Neural Network”. In: arXiv:1503.02531 [cs, stat]. arXiv:
1503.02531. URL: http://arxiv.org/abs/1503.02531 (visited on 01/04/2019).

Hong, Jihoon, Jungwoo Shin, and Daeho Lee (Feb. 2016). “Strategic man-
agement of next-generation connected life: Focusing on smart key and
car–home connectivity”. en. In: Technological Forecasting and Social Change
103, pp. 11–20. ISSN: 0040-1625. DOI: 10.1016/j.techfore.2015.10.
006. URL: https://www.sciencedirect.com/science/article/pii/
S0040162515002942 (visited on 02/28/2023).

Hong-Jie Xing and Bao-Gang Hu (Apr. 2009). “Two-Phase Construction of
Multilayer Perceptrons Using Information Theory”. In: IEEE Transactions
on Neural Networks 20.4, pp. 715–721. ISSN: 1045-9227, 1941-0093. DOI: 10.
1109/TNN.2008.2005604. URL: http://ieeexplore.ieee.org/document/
4796255/ (visited on 01/03/2019).

Howard, Andrew et al. (May 2019). “Searching for MobileNetV3”. In: arXiv:1905.02244
[cs]. arXiv: 1905.02244. URL: http://arxiv.org/abs/1905.02244 (visited
on 07/08/2019).

Howard, Andrew G. et al. (Apr. 2017). “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications”. In: arXiv:1704.04861

https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5
http://link.springer.com/10.1007/978-0-387-21606-5
http://link.springer.com/10.1007/978-0-387-21606-5
https://doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/7780459/
http://ieeexplore.ieee.org/document/7780459/
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1811.00250
https://doi.org/10.48550/arXiv.1903.12261
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/1903.12261
https://doi.org/10.1109/APSIPAASC47483.2019.9023106
https://ieeexplore.ieee.org/document/9023106/
https://ieeexplore.ieee.org/document/9023106/
http://arxiv.org/abs/1503.02531
https://doi.org/10.1016/j.techfore.2015.10.006
https://doi.org/10.1016/j.techfore.2015.10.006
https://www.sciencedirect.com/science/article/pii/S0040162515002942
https://www.sciencedirect.com/science/article/pii/S0040162515002942
https://doi.org/10.1109/TNN.2008.2005604
https://doi.org/10.1109/TNN.2008.2005604
http://ieeexplore.ieee.org/document/4796255/
http://ieeexplore.ieee.org/document/4796255/
http://arxiv.org/abs/1905.02244

Bibliography 147
[cs]. arXiv: 1704.04861. URL: http://arxiv.org/abs/1704.04861 (visited
on 01/04/2019).

Hrstka, O. et al. (Aug. 2003). “A competitive comparison of different types of
evolutionary algorithms”. en. In: Computers & Structures 81.18-19, pp. 1979–
1990. ISSN: 00457949. DOI: 10.1016/S0045-7949(03)00217-7. URL: http:
//linkinghub.elsevier.com/retrieve/pii/S0045794903002177 (vis-
ited on 02/25/2019).

Hu, Hengyuan et al. (July 2016). “Network Trimming: A Data-Driven Neuron
Pruning Approach towards Efficient Deep Architectures”. In: arXiv:1607.03250
[cs]. arXiv: 1607.03250. URL: http://arxiv.org/abs/1607.03250 (visited
on 09/19/2020).

Hu, Yiming et al. (May 2018). “A novel channel pruning method for deep
neural network compression”. en. In: arXiv:1805.11394 [cs, stat]. arXiv:
1805.11394. URL: http://arxiv.org/abs/1805.11394 (visited on 11/14/2018).

Huang, Wenxuan, Thanassis Tiropanis, and George Konstantinidis (2022).
“Federated Learning-Based IoT Intrusion Detection on Non-IID Data”.
en. In: Internet of Things. Ed. by Aurora González-Vidal et al. Lecture
Notes in Computer Science. Cham: Springer International Publishing, pp. 326–
337. ISBN: 978-3-031-20936-9. DOI: 10.1007/978-3-031-20936-9_26.

Huang, Xuan, Lei Wu, and Yinsong Ye (Sept. 2019). “A Review on Dimen-
sionality Reduction Techniques”. In: International Journal of Pattern Recog-
nition and Artificial Intelligence 33.10. Publisher: World Scientific Publish-
ing Co., p. 1950017. ISSN: 0218-0014. DOI: 10.1142/S0218001419500174.
URL: https://www.worldscientific.com/doi/abs/10.1142/S0218001419500174
(visited on 02/02/2023).

Huanhuan Chen and Xin Yao (Dec. 2009). “Regularized Negative Correlation
Learning for Neural Network Ensembles”. In: IEEE Transactions on Neural
Networks 20.12, pp. 1962–1979. ISSN: 1045-9227, 1941-0093. DOI: 10.1109/
TNN . 2009 . 2034144. URL: http : / / ieeexplore . ieee . org / document /
5337957/ (visited on 10/26/2023).

Huynh, T.Q. and R. Setiono (2005). “Effective neural network pruning us-
ing cross-validation”. In: Proceedings. 2005 IEEE International Joint Con-
ference on Neural Networks, 2005. Vol. 2. Montreal, Que., Canada: IEEE,
pp. 972–977. ISBN: 978-0-7803-9048-5. DOI: 10.1109/IJCNN.2005.1555984.
URL: http : / / ieeexplore . ieee . org / document / 1555984/ (visited on
01/02/2019).

Imteaj, Ahmed et al. (2023). “Federated Learning for Resource-Constrained
IoT Devices: Panoramas and State of the Art”. en. In: Federated and Transfer
Learning. Ed. by Roozbeh Razavi-Far et al. Vol. 27. Series Title: Adaptation,
Learning, and Optimization. Cham: Springer International Publishing,
pp. 7–27. ISBN: 978-3-031-11747-3 978-3-031-11748-0. DOI: 10.1007/978-
3-031-11748-0_2. URL: https://link.springer.com/10.1007/978-3-
031-11748-0_2 (visited on 02/23/2023).

Ioffe, Sergey and Christian Szegedy (Feb. 2015). “Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Covariate Shift”.
In: arXiv:1502.03167 [cs]. arXiv: 1502.03167. URL: http://arxiv.org/abs/
1502.03167 (visited on 01/04/2019).

http://arxiv.org/abs/1704.04861
https://doi.org/10.1016/S0045-7949(03)00217-7
http://linkinghub.elsevier.com/retrieve/pii/S0045794903002177
http://linkinghub.elsevier.com/retrieve/pii/S0045794903002177
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1805.11394
https://doi.org/10.1007/978-3-031-20936-9_26
https://doi.org/10.1142/S0218001419500174
https://www.worldscientific.com/doi/abs/10.1142/S0218001419500174
https://doi.org/10.1109/TNN.2009.2034144
https://doi.org/10.1109/TNN.2009.2034144
http://ieeexplore.ieee.org/document/5337957/
http://ieeexplore.ieee.org/document/5337957/
https://doi.org/10.1109/IJCNN.2005.1555984
http://ieeexplore.ieee.org/document/1555984/
https://doi.org/10.1007/978-3-031-11748-0_2
https://doi.org/10.1007/978-3-031-11748-0_2
https://link.springer.com/10.1007/978-3-031-11748-0_2
https://link.springer.com/10.1007/978-3-031-11748-0_2
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

148 Bibliography
Jabraeil Jamali, Mohammad Ali et al. (2020). “IoT Architecture”. en. In: To-

wards the Internet of Things. Series Title: EAI/Springer Innovations in Com-
munication and Computing. Cham: Springer International Publishing,
pp. 9–31. ISBN: 978-3-030-18467-4 978-3-030-18468-1. DOI: 10.1007/978-
3-030-18468-1_2. URL: http://link.springer.com/10.1007/978-3-
030-18468-1_2 (visited on 01/09/2023).

Jaderberg, Max, Andrea Vedaldi, and Andrew Zisserman (May 2014). “Speed-
ing up Convolutional Neural Networks with Low Rank Expansions”. In:
arXiv:1405.3866 [cs]. arXiv: 1405.3866. URL: http://arxiv.org/abs/1405.
3866 (visited on 01/04/2019).

Jia, Yangqing et al. (Nov. 2014). “Caffe: Convolutional Architecture for Fast
Feature Embedding”. In: Proceedings of the 22nd ACM international confer-
ence on Multimedia. MM ’14. New York, NY, USA: Association for Com-
puting Machinery, pp. 675–678. ISBN: 978-1-4503-3063-3. DOI: 10.1145/
2647868.2654889. URL: https://doi.org/10.1145/2647868.2654889
(visited on 01/24/2023).

Jiang, Tammy, Jaimie L. Gradus, and Anthony J. Rosellini (Sept. 2020). “Su-
pervised Machine Learning: A Brief Primer”. en. In: Behavior Therapy 51.5,
pp. 675–687. ISSN: 00057894. DOI: 10.1016/j.beth.2020.05.002. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0005789420300678
(visited on 01/27/2023).

Jin, Jonghoon, Aysegul Dundar, and Eugenio Culurciello (Dec. 2014). “Flat-
tened Convolutional Neural Networks for Feedforward Acceleration”. In:
arXiv:1412.5474 [cs]. arXiv: 1412.5474. URL: http://arxiv.org/abs/1412.
5474 (visited on 07/02/2019).

Johansson, E.M., F.U. Dowla, and D.M. Goodman (Jan. 1991). “BACKPROP-
AGATION LEARNING FOR MULTILAYER FEED-FORWARD NEURAL
NETWORKS USING THE CONJUGATE GRADIENT METHOD”. en. In:
International Journal of Neural Systems 02.04, pp. 291–301. ISSN: 0129-0657,
1793-6462. DOI: 10.1142/S0129065791000261. URL: https://www.worldscientific.
com/doi/abs/10.1142/S0129065791000261 (visited on 01/23/2023).

Jouppi, Norman P. et al. (June 2017). “In-datacenter performance analysis of a
tensor processing unit”. In: 2017 ACM/IEEE 44th Annual International Sym-
posium on Computer Architecture (ISCA), pp. 1–12. DOI: 10.1145/3079856.
3080246.

Kadiyala, Akhil and Ashok Kumar (Sept. 2018). “Applications of python
to evaluate the performance of bagging methods”. en. In: Environmental
Progress & Sustainable Energy 37.5, pp. 1555–1559. ISSN: 1944-7442, 1944-
7450. DOI: 10.1002/ep.13018. URL: https://onlinelibrary.wiley.com/
doi/10.1002/ep.13018 (visited on 01/16/2023).

Kamalov, Firuz and Ho Hon Leung (Nov. 2020). “Deep learning regulariza-
tion in imbalanced data”. In: 2020 International Conference on Communi-
cations, Computing, Cybersecurity, and Informatics (CCCI). Sharjah, United
Arab Emirates: IEEE, pp. 1–5. ISBN: 978-1-72817-315-3. DOI: 10 . 1109 /
CCCI49893.2020.9256674. URL: https://ieeexplore.ieee.org/document/
9256674/ (visited on 10/27/2023).

Karimireddy, Sai Praneeth et al. (Apr. 2021). “SCAFFOLD: Stochastic Con-
trolled Averaging for Federated Learning”. In: arXiv:1910.06378 [cs, math,

https://doi.org/10.1007/978-3-030-18468-1_2
https://doi.org/10.1007/978-3-030-18468-1_2
http://link.springer.com/10.1007/978-3-030-18468-1_2
http://link.springer.com/10.1007/978-3-030-18468-1_2
http://arxiv.org/abs/1405.3866
http://arxiv.org/abs/1405.3866
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1016/j.beth.2020.05.002
https://linkinghub.elsevier.com/retrieve/pii/S0005789420300678
http://arxiv.org/abs/1412.5474
http://arxiv.org/abs/1412.5474
https://doi.org/10.1142/S0129065791000261
https://www.worldscientific.com/doi/abs/10.1142/S0129065791000261
https://www.worldscientific.com/doi/abs/10.1142/S0129065791000261
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1002/ep.13018
https://onlinelibrary.wiley.com/doi/10.1002/ep.13018
https://onlinelibrary.wiley.com/doi/10.1002/ep.13018
https://doi.org/10.1109/CCCI49893.2020.9256674
https://doi.org/10.1109/CCCI49893.2020.9256674
https://ieeexplore.ieee.org/document/9256674/
https://ieeexplore.ieee.org/document/9256674/

Bibliography 149
stat]. arXiv: 1910.06378. URL: http://arxiv.org/abs/1910.06378 (visited
on 03/18/2022).

Kaur, Jaspinder, Sudeep Yadav, and Harjot Singh Gill (2023). “Internet of
Things (IoT) for Sensor-Based Smart Farming: Challenges and Opportu-
nities”. en. In: IoT Based Smart Applications. Ed. by Nidhi Sindhwani et al.
Series Title: EAI/Springer Innovations in Communication and Comput-
ing. Cham: Springer International Publishing, pp. 151–164. ISBN: 978-3-
031-04523-3 978-3-031-04524-0. DOI: 10.1007/978- 3- 031- 04524- 0_9.
URL: https://link.springer.com/10.1007/978-3-031-04524-0_9
(visited on 01/03/2023).

Kaur, Jaspinder et al. (2023). “Implementation of IoT in Various Domains”.
en. In: IoT Based Smart Applications. Ed. by Nidhi Sindhwani et al. Se-
ries Title: EAI/Springer Innovations in Communication and Computing.
Cham: Springer International Publishing, pp. 165–178. ISBN: 978-3-031-
04523-3 978-3-031-04524-0. DOI: 10.1007/978-3-031-04524-0_10. URL:
https://link.springer.com/10.1007/978-3-031-04524-0_10 (visited
on 01/03/2023).

Ketkar, Nikhil (2017). “Stochastic Gradient Descent”. en. In: Deep Learning
with Python. Berkeley, CA: Apress, pp. 113–132. ISBN: 978-1-4842-2765-7
978-1-4842-2766-4. DOI: 10.1007/978- 1- 4842- 2766- 4_8. URL: http:
//link.springer.com/10.1007/978- 1- 4842- 2766- 4_8 (visited on
01/23/2023).

Khalil, Ruhul Amin et al. (July 2021). “Deep Learning in the Industrial In-
ternet of Things: Potentials, Challenges, and Emerging Applications”. In:
IEEE Internet of Things Journal 8.14. Conference Name: IEEE Internet of
Things Journal, pp. 11016–11040. ISSN: 2327-4662. DOI: 10.1109/JIOT.
2021.3051414.

Khan, Latif U. et al. (Oct. 2020). “Edge-Computing-Enabled Smart Cities: A
Comprehensive Survey”. In: IEEE Internet of Things Journal 7.10, pp. 10200–
10232. ISSN: 2327-4662, 2372-2541. DOI: 10.1109/JIOT.2020.2987070.
URL: https://ieeexplore.ieee.org/document/9063670/ (visited on
03/05/2023).

Khanna, Abhishek and Sanmeet Kaur (Sept. 2020). “Internet of Things (IoT),
Applications and Challenges: A Comprehensive Review”. en. In: Wireless
Personal Communications 114.2, pp. 1687–1762. ISSN: 0929-6212, 1572-834X.
DOI: 10.1007/s11277-020-07446-4. URL: https://link.springer.com/
10.1007/s11277-020-07446-4 (visited on 01/03/2023).

Ko, Albert H.R., Robert Sabourin, and Alceu Souza Britto Jr. (May 2008).
“From dynamic classifier selection to dynamic ensemble selection”. en.
In: Pattern Recognition 41.5, pp. 1718–1731. ISSN: 00313203. DOI: 10.1016/
j.patcog.2007.10.015. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0031320307004499 (visited on 10/26/2023).

Konečný, Jakub et al. (Oct. 2017). “Federated Learning: Strategies for Improv-
ing Communication Efficiency”. In: arXiv:1610.05492 [cs]. arXiv: 1610.05492.
URL: http://arxiv.org/abs/1610.05492 (visited on 02/06/2020).

Krawczyk, Bartosz and Bogusław Cyganek (May 2017). “Selecting locally
specialised classifiers for one-class classification ensembles”. en. In: Pat-
tern Analysis and Applications 20.2, pp. 427–439. ISSN: 1433-7541, 1433-755X.

http://arxiv.org/abs/1910.06378
https://doi.org/10.1007/978-3-031-04524-0_9
https://link.springer.com/10.1007/978-3-031-04524-0_9
https://doi.org/10.1007/978-3-031-04524-0_10
https://link.springer.com/10.1007/978-3-031-04524-0_10
https://doi.org/10.1007/978-1-4842-2766-4_8
http://link.springer.com/10.1007/978-1-4842-2766-4_8
http://link.springer.com/10.1007/978-1-4842-2766-4_8
https://doi.org/10.1109/JIOT.2021.3051414
https://doi.org/10.1109/JIOT.2021.3051414
https://doi.org/10.1109/JIOT.2020.2987070
https://ieeexplore.ieee.org/document/9063670/
https://doi.org/10.1007/s11277-020-07446-4
https://link.springer.com/10.1007/s11277-020-07446-4
https://link.springer.com/10.1007/s11277-020-07446-4
https://doi.org/10.1016/j.patcog.2007.10.015
https://doi.org/10.1016/j.patcog.2007.10.015
https://linkinghub.elsevier.com/retrieve/pii/S0031320307004499
https://linkinghub.elsevier.com/retrieve/pii/S0031320307004499
http://arxiv.org/abs/1610.05492

150 Bibliography
DOI: 10.1007/s10044-015-0505-z. URL: http://link.springer.com/
10.1007/s10044-015-0505-z (visited on 11/07/2023).

Krizhevsky, Alex (n.d.). “Learning Multiple Layers of Features from Tiny Im-
ages”. en. In: (), p. 60.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., pp. 1097–1105. URL: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf (visited on 03/05/2019).

Kumbhare, Trupti A and Santosh V Chobe (2014). “An Overview of Associa-
tion Rule Mining Algorithms”. en. In: 5.

Kuncheva, L.I. et al. (Apr. 2003). “Limits on the majority vote accuracy in
classifier fusion”. In: Pattern Analysis & Applications 6.1, pp. 22–31. ISSN:
1433-7541, 1433-755X. DOI: 10.1007/s10044- 002- 0173- 7. URL: http:
/ / link . springer . com / 10 . 1007 / s10044 - 002 - 0173 - 7 (visited on
11/09/2023).

Kuncheva, Ludmila I (2014). Combining pattern classifiers: methods and algo-
rithms. John Wiley & Sons.

Kuncheva, Ludmila I. and Christopher J. Whitaker (2003). “Measures of Di-
versity in Classifier Ensembles and Their Relationship with the Ensemble
Accuracy”. In: Machine Learning 51.2, pp. 181–207. ISSN: 08856125. DOI:
10.1023/A:1022859003006. URL: http://link.springer.com/10.1023/
A:1022859003006 (visited on 01/20/2020).

lan, xu, Xiatian Zhu, and Shaogang Gong (2018). “Knowledge Distillation by
On-the-Fly Native Ensemble”. In: Advances in Neural Information Process-
ing Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., pp. 7517–
7527. URL: http://papers.nips.cc/paper/7980-knowledge-distillation-
by-on-the-fly-native-ensemble.pdf.

Lane, Nicholas D. et al. (Apr. 2016). “DeepX: A Software Accelerator for
Low-Power Deep Learning Inference on Mobile Devices”. In: 2016 15th
ACM/IEEE International Conference on Information Processing in Sensor Net-
works (IPSN). Vienna, Austria: IEEE, pp. 1–12. ISBN: 978-1-5090-0802-5.
DOI: 10.1109/IPSN.2016.7460664. URL: http://ieeexplore.ieee.
org/document/7460664/ (visited on 03/05/2023).

Latifi, Shahram (May 2022). ITNG 2022 19th International Conference on Infor-
mation Technology-New Generations. en. Google-Books-ID: 6BVuEAAAQBAJ.
Springer Nature. ISBN: 978-3-030-97652-1.

Lauret, P., E. Fock, and T.A. Mara (Mar. 2006). “A Node Pruning Algorithm
Based on a Fourier Amplitude Sensitivity Test Method”. en. In: IEEE Trans-
actions on Neural Networks 17.2, pp. 273–293. ISSN: 1045-9227. DOI: 10 .
1109/TNN.2006.871707. URL: http://ieeexplore.ieee.org/document/
1603616/ (visited on 01/03/2019).

Lazarevic, A. and Z. Obradovic (2001). “Effective pruning of neural network
classifier ensembles”. In: IJCNN’01. International Joint Conference on Neural
Networks. Proceedings (Cat. No.01CH37222). Vol. 2. Washington, DC, USA:
IEEE, pp. 796–801. ISBN: 978-0-7803-7044-9. DOI: 10.1109/IJCNN.2001.
939461. URL: http://ieeexplore.ieee.org/document/939461/ (visited
on 11/07/2023).

https://doi.org/10.1007/s10044-015-0505-z
http://link.springer.com/10.1007/s10044-015-0505-z
http://link.springer.com/10.1007/s10044-015-0505-z
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1007/s10044-002-0173-7
http://link.springer.com/10.1007/s10044-002-0173-7
http://link.springer.com/10.1007/s10044-002-0173-7
https://doi.org/10.1023/A:1022859003006
http://link.springer.com/10.1023/A:1022859003006
http://link.springer.com/10.1023/A:1022859003006
http://papers.nips.cc/paper/7980-knowledge-distillation-by-on-the-fly-native-ensemble.pdf
http://papers.nips.cc/paper/7980-knowledge-distillation-by-on-the-fly-native-ensemble.pdf
https://doi.org/10.1109/IPSN.2016.7460664
http://ieeexplore.ieee.org/document/7460664/
http://ieeexplore.ieee.org/document/7460664/
https://doi.org/10.1109/TNN.2006.871707
https://doi.org/10.1109/TNN.2006.871707
http://ieeexplore.ieee.org/document/1603616/
http://ieeexplore.ieee.org/document/1603616/
https://doi.org/10.1109/IJCNN.2001.939461
https://doi.org/10.1109/IJCNN.2001.939461
http://ieeexplore.ieee.org/document/939461/

Bibliography 151
Lecun, Y. et al. (Nov. 1998). “Gradient-based learning applied to document

recognition”. In: Proceedings of the IEEE 86.11. Conference Name: Proceed-
ings of the IEEE, pp. 2278–2324. ISSN: 1558-2256. DOI: 10.1109/5.726791.

LeCun, Yann, John S. Denker, and Sara A. Solla (1990). “Optimal Brain Dam-
age”. In: Advances in Neural Information Processing Systems 2. Ed. by D. S.
Touretzky. Morgan-Kaufmann, pp. 598–605. URL: http://papers.nips.
cc/paper/250-optimal-brain-damage.pdf.

Leong, Mei Chee et al. (Jan. 2020). “Semi-CNN Architecture for Effective
Spatio-Temporal Learning in Action Recognition”. en. In: Applied Sciences
10.2, p. 557. ISSN: 2076-3417. DOI: 10.3390/app10020557. URL: https:
//www.mdpi.com/2076-3417/10/2/557 (visited on 06/24/2022).

Levie, Ron et al. (Jan. 2019). “CayleyNets: Graph Convolutional Neural Net-
works With Complex Rational Spectral Filters”. en. In: IEEE Transactions
on Signal Processing 67.1, pp. 97–109. ISSN: 1053-587X, 1941-0476. DOI: 10.
1109/TSP.2018.2879624. URL: https://ieeexplore.ieee.org/document/
8521593/ (visited on 06/13/2023).

Li, Qin et al. (May 2021a). “Directed Acyclic Graph Neural Network for Hu-
man Motion Prediction”. In: 2021 IEEE International Conference on Robotics
and Automation (ICRA). Xi’an, China: IEEE, pp. 3197–3204. ISBN: 978-1-
72819-077-8. DOI: 10.1109/ICRA48506.2021.9561540. URL: https://
ieeexplore.ieee.org/document/9561540/ (visited on 01/22/2023).

Li, Tian et al. (May 2020a). “Federated Learning: Challenges, Methods, and
Future Directions”. In: IEEE Signal Processing Magazine 37.3, pp. 50–60.
ISSN: 1053-5888, 1558-0792. DOI: 10.1109/MSP.2020.2975749. URL: https:
//ieeexplore.ieee.org/document/9084352/ (visited on 06/28/2022).

Li, Wei and Andrew McCallum (2006). “Pachinko allocation: DAG-structured
mixture models of topic correlations”. en. In: Proceedings of the 23rd in-
ternational conference on Machine learning - ICML ’06. Pittsburgh, Pennsyl-
vania: ACM Press, pp. 577–584. ISBN: 978-1-59593-383-6. DOI: 10.1145/
1143844.1143917. URL: http://portal.acm.org/citation.cfm?doid=
1143844.1143917 (visited on 12/12/2022).

Li, Xiang et al. (June 2020b). On the Convergence of FedAvg on Non-IID Data.
arXiv:1907.02189 [cs, math, stat]. URL: http://arxiv.org/abs/1907.
02189 (visited on 02/23/2023).

Li, Xiaoxiao et al. (May 2021b). “FedBN: Federated Learning on Non-IID
Features via Local Batch Normalization”. In: arXiv:2102.07623 [cs]. arXiv:
2102.07623. URL: http://arxiv.org/abs/2102.07623 (visited on 03/18/2022).

Li, Yiwei et al. (Jan. 2023). Differentially Private Federated Clustering over Non-
IID Data. arXiv:2301.00955 [cs]. DOI: 10.48550/arXiv.2301.00955. URL:
http://arxiv.org/abs/2301.00955 (visited on 02/22/2023).

Li, Yiying et al. (Jan. 2021c). “FedH2L: Federated Learning with Model and
Statistical Heterogeneity”. In: arXiv:2101.11296 [cs]. arXiv: 2101.11296. URL:
http://arxiv.org/abs/2101.11296 (visited on 04/22/2021).

Liang, Paul Pu et al. (2020). “Think Locally, Act Globally: Federated Learn-
ing with Local and Global Representations”. In: Publisher: arXiv Version
Number: 3. DOI: 10.48550/ARXIV.2001.01523. URL: https://arxiv.org/
abs/2001.01523 (visited on 06/30/2022).

https://doi.org/10.1109/5.726791
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
https://doi.org/10.3390/app10020557
https://www.mdpi.com/2076-3417/10/2/557
https://www.mdpi.com/2076-3417/10/2/557
https://doi.org/10.1109/TSP.2018.2879624
https://doi.org/10.1109/TSP.2018.2879624
https://ieeexplore.ieee.org/document/8521593/
https://ieeexplore.ieee.org/document/8521593/
https://doi.org/10.1109/ICRA48506.2021.9561540
https://ieeexplore.ieee.org/document/9561540/
https://ieeexplore.ieee.org/document/9561540/
https://doi.org/10.1109/MSP.2020.2975749
https://ieeexplore.ieee.org/document/9084352/
https://ieeexplore.ieee.org/document/9084352/
https://doi.org/10.1145/1143844.1143917
https://doi.org/10.1145/1143844.1143917
http://portal.acm.org/citation.cfm?doid=1143844.1143917
http://portal.acm.org/citation.cfm?doid=1143844.1143917
http://arxiv.org/abs/1907.02189
http://arxiv.org/abs/1907.02189
http://arxiv.org/abs/2102.07623
https://doi.org/10.48550/arXiv.2301.00955
http://arxiv.org/abs/2301.00955
http://arxiv.org/abs/2101.11296
https://doi.org/10.48550/ARXIV.2001.01523
https://arxiv.org/abs/2001.01523
https://arxiv.org/abs/2001.01523

152 Bibliography
Lin, Min, Qiang Chen, and Shuicheng Yan (Dec. 2013). “Network In Net-

work”. In: arXiv:1312.4400 [cs]. arXiv: 1312.4400. URL: http : / / arxiv .
org/abs/1312.4400 (visited on 03/05/2019).

Litjens, Geert et al. (Dec. 2017). “A survey on deep learning in medical image
analysis”. en. In: Medical Image Analysis 42, pp. 60–88. ISSN: 13618415. DOI:
10.1016/j.media.2017.07.005. URL: https://linkinghub.elsevier.
com/retrieve/pii/S1361841517301135 (visited on 05/22/2023).

Liu, Yuying et al. (2020). “An Anchor-Free Convolutional Neural Network
for Real-Time Surgical Tool Detection in Robot-Assisted Surgery”. In: IEEE
Access 8, pp. 78193–78201. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.
2989807. URL: https://ieeexplore.ieee.org/document/9076706/ (vis-
ited on 02/28/2023).

Lui, Andrew Kwok-Fai, Yin-Hei Chan, and Man-Fai Leung (Dec. 2021). “Mod-
elling of Destinations for Data-driven Pedestrian Trajectory Prediction in
Public Buildings”. In: 2021 IEEE International Conference on Big Data (Big
Data). Orlando, FL, USA: IEEE, pp. 1709–1717. ISBN: 978-1-66543-902-2.
DOI: 10.1109/BigData52589.2021.9671813. URL: https://ieeexplore.
ieee.org/document/9671813/ (visited on 02/18/2023).

— (Apr. 2022). “Modelling of Pedestrian Movements near an Amenity in
Walkways of Public Buildings”. In: 2022 8th International Conference on
Control, Automation and Robotics (ICCAR). Xiamen, China: IEEE, pp. 394–
400. ISBN: 978-1-66548-116-8. DOI: 10.1109/ICCAR55106.2022.9782667.
URL: https://ieeexplore.ieee.org/document/9782667/ (visited on
02/18/2023).

Luo, Jian-Hao and Jianxin Wu (June 2017). “An Entropy-based Pruning Method
for CNN Compression”. In: arXiv:1706.05791 [cs]. arXiv: 1706.05791. URL:
http://arxiv.org/abs/1706.05791 (visited on 09/19/2020).

Luo, Xiao, Weilai Chi, and Minghua Deng (Nov. 2019). “Deepprune: Learn-
ing Efficient and Interpretable Convolutional Networks Through Weight
Pruning for Predicting DNA-Protein Binding”. In: Frontiers in Genetics 10,
p. 1145. ISSN: 1664-8021. DOI: 10.3389/fgene.2019.01145. URL: https:
//www.frontiersin.org/article/10.3389/fgene.2019.01145/full
(visited on 03/10/2023).

Mahdavinejad, Mohammad Saeid et al. (Aug. 2018). “Machine learning for
internet of things data analysis: a survey”. en. In: Digital Communications
and Networks 4.3, pp. 161–175. ISSN: 23528648. DOI: 10.1016/j.dcan.
2017.10.002. URL: https://linkinghub.elsevier.com/retrieve/pii/
S235286481730247X (visited on 12/21/2019).

Maheshwari, Sumit et al. (Apr. 2019). “EdgeDrive: Supporting Advanced
Driver Assistance Systems using Mobile Edge Clouds Networks”. In: IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). Paris, France: IEEE, pp. 1–6. ISBN: 978-1-72811-
878-9. DOI: 10.1109/INFCOMW.2019.8845256. URL: https://ieeexplore.
ieee.org/document/8845256/ (visited on 02/28/2023).

Maldonado, F.J. and M.T. Manry (2002). “Optimal pruning of feedforward
neural networks based upon the Schmidt procedure”. In: Conference Record
of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers,

http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
https://doi.org/10.1016/j.media.2017.07.005
https://linkinghub.elsevier.com/retrieve/pii/S1361841517301135
https://linkinghub.elsevier.com/retrieve/pii/S1361841517301135
https://doi.org/10.1109/ACCESS.2020.2989807
https://doi.org/10.1109/ACCESS.2020.2989807
https://ieeexplore.ieee.org/document/9076706/
https://doi.org/10.1109/BigData52589.2021.9671813
https://ieeexplore.ieee.org/document/9671813/
https://ieeexplore.ieee.org/document/9671813/
https://doi.org/10.1109/ICCAR55106.2022.9782667
https://ieeexplore.ieee.org/document/9782667/
http://arxiv.org/abs/1706.05791
https://doi.org/10.3389/fgene.2019.01145
https://www.frontiersin.org/article/10.3389/fgene.2019.01145/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01145/full
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.1016/j.dcan.2017.10.002
https://linkinghub.elsevier.com/retrieve/pii/S235286481730247X
https://linkinghub.elsevier.com/retrieve/pii/S235286481730247X
https://doi.org/10.1109/INFCOMW.2019.8845256
https://ieeexplore.ieee.org/document/8845256/
https://ieeexplore.ieee.org/document/8845256/

Bibliography 153
2002. Vol. 2. Pacific Grove, CA, USA: IEEE, pp. 1024–1028. ISBN: 978-0-
7803-7576-5. DOI: 10.1109/ACSSC.2002.1196939. URL: http://ieeexplore.
ieee.org/document/1196939/ (visited on 01/22/2023).

Mansour, Yishay et al. (July 2020). “Three Approaches for Personalization
with Applications to Federated Learning”. In: arXiv:2002.10619 [cs, stat].
arXiv: 2002.10619. URL: http://arxiv.org/abs/2002.10619 (visited on
04/16/2021).

Marikyan, Davit, Savvas Papagiannidis, and Eleftherios Alamanos (Jan. 2019).
“A systematic review of the smart home literature: A user perspective”.
en. In: Technological Forecasting and Social Change 138, pp. 139–154. ISSN:
0040-1625. DOI: 10.1016/j.techfore.2018.08.015. URL: https://www.
sciencedirect.com/science/article/pii/S0040162517315676 (visited
on 02/28/2023).

McMahan, Brendan et al. (Apr. 2017). “Communication-Efficient Learning of
Deep Networks from Decentralized Data”. en. In: Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics. ISSN: 2640-
3498. PMLR, pp. 1273–1282. URL: https://proceedings.mlr.press/v54/
mcmahan17a.html (visited on 02/23/2023).

McMahan, H. Brendan et al. (Feb. 2018). “Learning Differentially Private Re-
current Language Models”. In: arXiv:1710.06963 [cs]. arXiv: 1710.06963.
URL: http://arxiv.org/abs/1710.06963 (visited on 03/17/2022).

Mei, Guangxu et al. (Dec. 2019). “SGNN: A Graph Neural Network Based
Federated Learning Approach by Hiding Structure”. In: 2019 IEEE Inter-
national Conference on Big Data (Big Data). Los Angeles, CA, USA: IEEE,
pp. 2560–2568. ISBN: 978-1-72810-858-2. DOI: 10 . 1109 / BigData47090 .
2019.9005983. URL: https://ieeexplore.ieee.org/document/9005983/
(visited on 07/05/2022).

Melville, P. and R. J. Mooney (2005). “Diverse ensembles for active learn-
ing”. In: Proceedings of the 22nd international conference on Machine learning.
ACM, pp. 584–591.

Mienye, Ibomoiye Domor and Yanxia Sun (2022). “A Survey of Ensemble
Learning: Concepts, Algorithms, Applications, and Prospects”. In: IEEE
Access 10, pp. 99129–99149. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2022.
3207287. URL: https://ieeexplore.ieee.org/document/9893798/ (vis-
ited on 01/18/2023).

Mills, Jed, Jia Hu, and Geyong Min (July 2020). “Communication-Efficient
Federated Learning for Wireless Edge Intelligence in IoT”. In: IEEE Inter-
net of Things Journal 7.7. Conference Name: IEEE Internet of Things Jour-
nal, pp. 5986–5994. ISSN: 2327-4662. DOI: 10.1109/JIOT.2019.2956615.

Mittal, Sparsh (Feb. 2016). “A Survey of Techniques for Architecting and
Managing Asymmetric Multicore Processors”. In: ACM Computing Sur-
veys 48.3, 45:1–45:38. ISSN: 0360-0300. DOI: 10.1145/2856125. URL: https:
//dl.acm.org/doi/10.1145/2856125 (visited on 04/18/2023).

— (Oct. 2018). “A survey of FPGA-based accelerators for convolutional neu-
ral networks”. en. In: Neural Computing and Applications. ISSN: 0941-0643,
1433-3058. DOI: 10 . 1007 / s00521 - 018 - 3761 - 1. URL: http : / / link .
springer.com/10.1007/s00521-018-3761-1 (visited on 01/02/2019).

Mocanu, Decebal Constantin et al. (June 2018). “Scalable training of artificial
neural networks with adaptive sparse connectivity inspired by network

https://doi.org/10.1109/ACSSC.2002.1196939
http://ieeexplore.ieee.org/document/1196939/
http://ieeexplore.ieee.org/document/1196939/
http://arxiv.org/abs/2002.10619
https://doi.org/10.1016/j.techfore.2018.08.015
https://www.sciencedirect.com/science/article/pii/S0040162517315676
https://www.sciencedirect.com/science/article/pii/S0040162517315676
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
http://arxiv.org/abs/1710.06963
https://doi.org/10.1109/BigData47090.2019.9005983
https://doi.org/10.1109/BigData47090.2019.9005983
https://ieeexplore.ieee.org/document/9005983/
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1109/ACCESS.2022.3207287
https://ieeexplore.ieee.org/document/9893798/
https://doi.org/10.1109/JIOT.2019.2956615
https://doi.org/10.1145/2856125
https://dl.acm.org/doi/10.1145/2856125
https://dl.acm.org/doi/10.1145/2856125
https://doi.org/10.1007/s00521-018-3761-1
http://link.springer.com/10.1007/s00521-018-3761-1
http://link.springer.com/10.1007/s00521-018-3761-1

154 Bibliography
science”. en. In: Nature Communications 9.1. Number: 1 Publisher: Nature
Publishing Group, p. 2383. ISSN: 2041-1723. DOI: 10.1038/s41467-018-
04316-3. URL: https://www.nature.com/articles/s41467-018-04316-3
(visited on 04/11/2023).

Mocnej, Jozef et al. (2018). “Decentralised IoT Architecture for Efficient Re-
sources Utilisation”. en. In: IFAC-PapersOnLine 51.6, pp. 168–173. ISSN:
24058963. DOI: 10.1016/j.ifacol.2018.07.148. URL: https://linkinghub.
elsevier.com/retrieve/pii/S2405896318308942 (visited on 01/09/2023).

Mohammadi, Mehdi and Ala Al-Fuqaha (Feb. 2018). “Enabling Cognitive
Smart Cities Using Big Data and Machine Learning: Approaches and Chal-
lenges”. In: IEEE Communications Magazine 56.2, pp. 94–101. ISSN: 0163-
6804. DOI: 10.1109/MCOM.2018.1700298. URL: http://ieeexplore.ieee.
org/document/8291121/ (visited on 06/16/2022).

Molchanov, Pavlo et al. (June 2019). “Importance Estimation for Neural Net-
work Pruning”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR).

Moore, Robert C. and John DeNero (2011). “L1 and L2 Regularization for
Multiclass Hinge Loss Models”. In: Symposium on Machine Learning in
Speech and Natural Language Processing. URL: http : / / www . ttic . edu /
sigml/symposium2011/papers/Moore+DeNero_Regularization.pdf.

Morafah, Mahdi et al. (Aug. 2022). FLIS: Clustered Federated Learning via In-
ference Similarity for Non-IID Data Distribution. arXiv:2208.09754 [cs]. DOI:
10.48550/arXiv.2208.09754. URL: http://arxiv.org/abs/2208.09754
(visited on 02/20/2023).

Mrabet, Hichem et al. (June 2020). “A Survey of IoT Security Based on a Lay-
ered Architecture of Sensing and Data Analysis”. en. In: Sensors 20.13,
p. 3625. ISSN: 1424-8220. DOI: 10.3390/s20133625. URL: https://www.
mdpi.com/1424-8220/20/13/3625 (visited on 01/10/2023).

Navani, Deepika, Sanjeev Jain, and Maninder Singh Nehra (Dec. 2017). “The
Internet of Things (IoT): A Study of Architectural Elements”. In: 2017 13th
International Conference on Signal-Image Technology & Internet-Based Systems
(SITIS). Jaipur, India: IEEE, pp. 473–478. ISBN: 978-1-5386-4283-2. DOI: 10.
1109/SITIS.2017.83. URL: http://ieeexplore.ieee.org/document/
8334789/ (visited on 01/11/2023).

Nguyen, Dinh C. et al. (2021). “Federated Learning for Internet of Things:
A Comprehensive Survey”. In: IEEE Communications Surveys & Tutorials
23.3. arXiv:2104.07914 [eess], pp. 1622–1658. ISSN: 1553-877X, 2373-745X.
DOI: 10.1109/COMST.2021.3075439. URL: http://arxiv.org/abs/2104.
07914 (visited on 10/25/2022).

Nickolls, John and William J. Dally (Mar. 2010). “The GPU Computing Era”.
In: IEEE Micro 30.2. Conference Name: IEEE Micro, pp. 56–69. ISSN: 1937-
4143. DOI: 10.1109/MM.2010.41.

Nielsen, Andreas Brinch and Lars Kai Hansen (June 2008). “Structure learn-
ing by pruning in independent component analysis”. en. In: Neurocom-
puting 71.10-12, pp. 2281–2290. ISSN: 09252312. DOI: 10.1016/j.neucom.
2007.09.016. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0925231208000994 (visited on 01/02/2019).

Nowlan, Steven J. and Geoffrey E. Hinton (July 1992). “Simplifying neural
networks by soft weight-sharing”. In: Neural Computation 4.4, pp. 473–

https://doi.org/10.1038/s41467-018-04316-3
https://doi.org/10.1038/s41467-018-04316-3
https://www.nature.com/articles/s41467-018-04316-3
https://doi.org/10.1016/j.ifacol.2018.07.148
https://linkinghub.elsevier.com/retrieve/pii/S2405896318308942
https://linkinghub.elsevier.com/retrieve/pii/S2405896318308942
https://doi.org/10.1109/MCOM.2018.1700298
http://ieeexplore.ieee.org/document/8291121/
http://ieeexplore.ieee.org/document/8291121/
http://www.ttic.edu/sigml/symposium2011/papers/Moore+DeNero_Regularization.pdf
http://www.ttic.edu/sigml/symposium2011/papers/Moore+DeNero_Regularization.pdf
https://doi.org/10.48550/arXiv.2208.09754
http://arxiv.org/abs/2208.09754
https://doi.org/10.3390/s20133625
https://www.mdpi.com/1424-8220/20/13/3625
https://www.mdpi.com/1424-8220/20/13/3625
https://doi.org/10.1109/SITIS.2017.83
https://doi.org/10.1109/SITIS.2017.83
http://ieeexplore.ieee.org/document/8334789/
http://ieeexplore.ieee.org/document/8334789/
https://doi.org/10.1109/COMST.2021.3075439
http://arxiv.org/abs/2104.07914
http://arxiv.org/abs/2104.07914
https://doi.org/10.1109/MM.2010.41
https://doi.org/10.1016/j.neucom.2007.09.016
https://doi.org/10.1016/j.neucom.2007.09.016
https://linkinghub.elsevier.com/retrieve/pii/S0925231208000994
https://linkinghub.elsevier.com/retrieve/pii/S0925231208000994

Bibliography 155
493. ISSN: 0899-7667. DOI: 10.1162/neco.1992.4.4.473. URL: http:
//dl.acm.org.ezproxy.bcu.ac.uk/citation.cfm?id=148167.148169
(visited on 03/22/2019).

Ordoñez-Cardenas, Ernesto and Rene de J. Romero-Troncoso (2008). “Mlp
neural network and on-line backpropagation learning implementation in
a low-cost fpga”. en. In: Proceedings of the 18th ACM Great Lakes symposium
on VLSI - GLSVLSI ’08. Orlando, Florida, USA: ACM Press, p. 333. ISBN:
978-1-59593-999-9. DOI: 10.1145/1366110.1366188. URL: http://portal.
acm.org/citation.cfm?doid=1366110.1366188 (visited on 01/05/2019).

Ouyang, Zhiyou et al. (2018). “Multi-View Stacking Ensemble for Power Con-
sumption Anomaly Detection in the Context of Industrial Internet of Things”.
In: IEEE Access 6, pp. 9623–9631. ISSN: 2169-3536. DOI: 10.1109/ACCESS.
2018.2805908. URL: http://ieeexplore.ieee.org/document/8291600/
(visited on 01/19/2023).

Oza, Nikunj C. and Kagan Tumer (Jan. 2008). “Classifier ensembles: Select
real-world applications”. en. In: Information Fusion 9.1, pp. 4–20. ISSN:
15662535. DOI: 10.1016/j.inffus.2007.07.002. URL: https://linkinghub.
elsevier.com/retrieve/pii/S1566253507000620 (visited on 11/09/2023).

Pan, Sinno Jialin and Qiang Yang (Oct. 2010). “A Survey on Transfer Learn-
ing”. In: IEEE Transactions on Knowledge and Data Engineering 22.10, pp. 1345–
1359. ISSN: 1041-4347. DOI: 10 . 1109 / TKDE . 2009 . 191. URL: http : / /
ieeexplore.ieee.org/document/5288526/ (visited on 07/01/2022).

Panagakis, Yannis et al. (May 2021). “Tensor Methods in Computer Vision
and Deep Learning”. In: Proceedings of the IEEE 109.5, pp. 863–890. ISSN:
0018-9219, 1558-2256. DOI: 10.1109/JPROC.2021.3074329. URL: https:
//ieeexplore.ieee.org/document/9420085/ (visited on 05/29/2023).

Panwar, Nisha et al. (May 2019). Smart Home Survey on Security and Privacy.
arXiv:1904.05476 [cs]. URL: http://arxiv.org/abs/1904.05476 (visited
on 02/28/2023).

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (May 2013). “On the
difficulty of training recurrent neural networks”. en. In: Proceedings of the
30th International Conference on Machine Learning. ISSN: 1938-7228. PMLR,
pp. 1310–1318. URL: https://proceedings.mlr.press/v28/pascanu13.
html (visited on 04/13/2023).

Paszke, Adam et al. (Dec. 2019). PyTorch: An Imperative Style, High-Performance
Deep Learning Library. arXiv:1912.01703 [cs, stat]. DOI: 10.48550/arXiv.
1912 . 01703. URL: http : / / arxiv . org / abs / 1912 . 01703 (visited on
01/24/2023).

Peemen, Maurice et al. (Oct. 2013). “Memory-centric accelerator design for
Convolutional Neural Networks”. In: 2013 IEEE 31st International Confer-
ence on Computer Design (ICCD). Asheville, NC, USA: IEEE, pp. 13–19.
ISBN: 978-1-4799-2987-0. DOI: 10.1109/ICCD.2013.6657019. URL: http:
//ieeexplore.ieee.org/document/6657019/ (visited on 01/05/2019).

Peng, Yaohao and Mateus Hiro Nagata (Oct. 2020). “An empirical overview
of nonlinearity and overfitting in machine learning using COVID-19 data”.
en. In: Chaos, Solitons & Fractals 139, p. 110055. ISSN: 0960-0779. DOI: 10.
1016/j.chaos.2020.110055. URL: https://www.sciencedirect.com/
science/article/pii/S0960077920304525 (visited on 05/29/2023).

https://doi.org/10.1162/neco.1992.4.4.473
http://dl.acm.org.ezproxy.bcu.ac.uk/citation.cfm?id=148167.148169
http://dl.acm.org.ezproxy.bcu.ac.uk/citation.cfm?id=148167.148169
https://doi.org/10.1145/1366110.1366188
http://portal.acm.org/citation.cfm?doid=1366110.1366188
http://portal.acm.org/citation.cfm?doid=1366110.1366188
https://doi.org/10.1109/ACCESS.2018.2805908
https://doi.org/10.1109/ACCESS.2018.2805908
http://ieeexplore.ieee.org/document/8291600/
https://doi.org/10.1016/j.inffus.2007.07.002
https://linkinghub.elsevier.com/retrieve/pii/S1566253507000620
https://linkinghub.elsevier.com/retrieve/pii/S1566253507000620
https://doi.org/10.1109/TKDE.2009.191
http://ieeexplore.ieee.org/document/5288526/
http://ieeexplore.ieee.org/document/5288526/
https://doi.org/10.1109/JPROC.2021.3074329
https://ieeexplore.ieee.org/document/9420085/
https://ieeexplore.ieee.org/document/9420085/
http://arxiv.org/abs/1904.05476
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1109/ICCD.2013.6657019
http://ieeexplore.ieee.org/document/6657019/
http://ieeexplore.ieee.org/document/6657019/
https://doi.org/10.1016/j.chaos.2020.110055
https://doi.org/10.1016/j.chaos.2020.110055
https://www.sciencedirect.com/science/article/pii/S0960077920304525
https://www.sciencedirect.com/science/article/pii/S0960077920304525

156 Bibliography
Pham, Phi-Hung et al. (Aug. 2012). “NeuFlow: Dataflow vision processing

system-on-a-chip”. In: 2012 IEEE 55th International Midwest Symposium
on Circuits and Systems (MWSCAS). Boise, ID, USA: IEEE, pp. 1044–1047.
ISBN: 978-1-4673-2527-1 978-1-4673-2526-4 978-1-4673-2525-7. DOI: 10.1109/
MWSCAS.2012.6292202. URL: http://ieeexplore.ieee.org/document/
6292202/ (visited on 01/05/2019).

Powers, David M. W. (2020). “Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation”. In: Publisher: arXiv
Version Number: 1. DOI: 10.48550/ARXIV.2010.16061. URL: https://
arxiv.org/abs/2010.16061 (visited on 01/31/2023).

Prabhakar, Shruthi (2017). “NETWORK SECURITY IN DIGITALIZATION:
ATTACKS AND DEFENCE”. en. In: 5.

Products (n.d.). en-us. URL: https://coral.ai/products/ (visited on 04/18/2023).
Puthal, Deepak et al. (May 2016). “Threats to Networking Cloud and Edge

Datacenters in the Internet of Things”. In: IEEE Cloud Computing 3.3, pp. 64–
71. ISSN: 2325-6095. DOI: 10.1109/MCC.2016.63. URL: http://ieeexplore.
ieee.org/document/7503493/ (visited on 01/10/2023).

Qiang, Fu, Hu Shang-xu, and Zhao Sheng-ying (May 2005). “Clustering-based
selective neural network ensemble”. en. In: Journal of Zhejiang University-
SCIENCE A 6.5, pp. 387–392. ISSN: 1673-565X, 1862-1775. DOI: 10.1631/
jzus.2005.A0387. URL: http://link.springer.com/10.1631/jzus.
2005.A0387 (visited on 11/07/2023).

Qiu, Huaiyu et al. (2020). “Real-Time Iris Tracking Using Deep Regression
Networks for Robotic Ophthalmic Surgery”. In: IEEE Access 8. Confer-
ence Name: IEEE Access, pp. 50648–50658. ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2020.2980005.

Rashma, B. M. et al. (2021). “Handling Heterogeneity in an IoT Infrastruc-
ture”. en. In: Advances in Machine Learning and Computational Intelligence.
Ed. by Srikanta Patnaik, Xin-She Yang, and Ishwar K. Sethi. Series Ti-
tle: Algorithms for Intelligent Systems. Singapore: Springer Singapore,
pp. 635–643. ISBN: 9789811552427 9789811552434. DOI: 10.1007/978-981-
15-5243-4_60. URL: http://link.springer.com/10.1007/978-981-15-
5243-4_60 (visited on 05/29/2023).

Ray, P.P. (July 2018). “A survey on Internet of Things architectures”. en. In:
Journal of King Saud University - Computer and Information Sciences 30.3,
pp. 291–319. ISSN: 13191578. DOI: 10.1016/j.jksuci.2016.10.003. URL:
https://linkinghub.elsevier.com/retrieve/pii/S1319157816300799
(visited on 01/09/2023).

Reed, R. (Sept. 1993). “Pruning algorithms-a survey”. In: IEEE Transactions
on Neural Networks 4.5, pp. 740–747. ISSN: 10459227. DOI: 10.1109/72.
248452. URL: http://ieeexplore.ieee.org/document/248452/ (visited
on 01/02/2019).

Rice, Kenneth L., Tarek M. Taha, and Christopher N. Vutsinas (Jan. 2009).
“Scaling analysis of a neocortex inspired cognitive model on the Cray
XD1”. en. In: The Journal of Supercomputing 47.1, pp. 21–43. ISSN: 0920-
8542, 1573-0484. DOI: 10.1007/s11227-008-0195-z. URL: http://link.
springer.com/10.1007/s11227-008-0195-z (visited on 01/05/2019).

Rigamonti, Roberto et al. (June 2013). “Learning Separable Filters”. In: 2013
IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR,

https://doi.org/10.1109/MWSCAS.2012.6292202
https://doi.org/10.1109/MWSCAS.2012.6292202
http://ieeexplore.ieee.org/document/6292202/
http://ieeexplore.ieee.org/document/6292202/
https://doi.org/10.48550/ARXIV.2010.16061
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061
https://coral.ai/products/
https://doi.org/10.1109/MCC.2016.63
http://ieeexplore.ieee.org/document/7503493/
http://ieeexplore.ieee.org/document/7503493/
https://doi.org/10.1631/jzus.2005.A0387
https://doi.org/10.1631/jzus.2005.A0387
http://link.springer.com/10.1631/jzus.2005.A0387
http://link.springer.com/10.1631/jzus.2005.A0387
https://doi.org/10.1109/ACCESS.2020.2980005
https://doi.org/10.1109/ACCESS.2020.2980005
https://doi.org/10.1007/978-981-15-5243-4_60
https://doi.org/10.1007/978-981-15-5243-4_60
http://link.springer.com/10.1007/978-981-15-5243-4_60
http://link.springer.com/10.1007/978-981-15-5243-4_60
https://doi.org/10.1016/j.jksuci.2016.10.003
https://linkinghub.elsevier.com/retrieve/pii/S1319157816300799
https://doi.org/10.1109/72.248452
https://doi.org/10.1109/72.248452
http://ieeexplore.ieee.org/document/248452/
https://doi.org/10.1007/s11227-008-0195-z
http://link.springer.com/10.1007/s11227-008-0195-z
http://link.springer.com/10.1007/s11227-008-0195-z

Bibliography 157
USA: IEEE, pp. 2754–2761. ISBN: 978-0-7695-4989-7. DOI: 10.1109/CVPR.
2013.355. URL: http://ieeexplore.ieee.org/document/6619199/ (vis-
ited on 01/23/2023).

Rodríguez, Eva, Beatriz Otero, and Ramon Canal (Jan. 2023). “A Survey of
Machine and Deep Learning Methods for Privacy Protection in the Inter-
net of Things”. en. In: Sensors 23.3, p. 1252. ISSN: 1424-8220. DOI: 10.3390/
s23031252. URL: https://www.mdpi.com/1424-8220/23/3/1252 (visited
on 05/29/2023).

Rokach, Lior (2010). “A survey of Clustering Algorithms”. en. In: Data Mining
and Knowledge Discovery Handbook. Ed. by Oded Maimon and Lior Rokach.
Boston, MA: Springer US, pp. 269–298. ISBN: 978-0-387-09823-4. DOI: 10.
1007/978-0-387-09823-4_14. URL: https://doi.org/10.1007/978-0-
387-09823-4_14 (visited on 02/02/2023).

Romero, Adriana et al. (Dec. 2014). “FitNets: Hints for Thin Deep Nets”. en.
In: arXiv:1412.6550 [cs]. arXiv: 1412.6550. URL: http://arxiv.org/abs/
1412.6550 (visited on 10/09/2018).

Roodschild, Matías, Jorge Gotay Sardiñas, and Adrián Will (Dec. 2020). “A
new approach for the vanishing gradient problem on sigmoid activation”.
en. In: Progress in Artificial Intelligence 9.4, pp. 351–360. ISSN: 2192-6352,
2192-6360. DOI: 10.1007/s13748- 020- 00218- y. URL: https://link.
springer.com/10.1007/s13748-020-00218-y (visited on 01/22/2023).

Sagi, Omer and Lior Rokach (July 2018). “Ensemble learning: A survey”. en.
In: WIREs Data Mining and Knowledge Discovery 8.4. ISSN: 1942-4787, 1942-
4795. DOI: 10.1002/widm.1249. URL: https://onlinelibrary.wiley.
com/doi/10.1002/widm.1249 (visited on 01/16/2023).

Sammut, Claude and Geoffrey I. Webb, eds. (2010). Encyclopedia of Machine
Learning. en. Boston, MA: Springer US. ISBN: 978-0-387-30768-8 978-0-387-
30164-8. DOI: 10 . 1007 / 978 - 0 - 387 - 30164 - 8. URL: http : / / link .
springer.com/10.1007/978-0-387-30164-8 (visited on 01/31/2023).

Sandler, Mark et al. (Jan. 2018). “MobileNetV2: Inverted Residuals and Linear
Bottlenecks”. In: arXiv:1801.04381 [cs]. arXiv: 1801.04381. URL: http://
arxiv.org/abs/1801.04381 (visited on 07/08/2019).

Sarveniazi, Alireza (Mar. 2014). “An Actual Survey of Dimensionality Re-
duction”. en. In: American Journal of Computational Mathematics 2014. Pub-
lisher: Scientific Research Publishing. ISSN: 2161-1211. DOI: 10 . 4236 /
ajcm.2014.42006. URL: http://www.scirp.org/journal/PaperInformation.
aspx?PaperID=43977 (visited on 02/02/2023).

Sattler, Felix, Klaus-Robert Müller, and Wojciech Samek (Oct. 2019). “Clus-
tered Federated Learning: Model-Agnostic Distributed Multi-Task Opti-
mization under Privacy Constraints”. In: arXiv:1910.01991 [cs, stat]. arXiv:
1910.01991. URL: http://arxiv.org/abs/1910.01991 (visited on 04/15/2021).

— (Aug. 2021). “Clustered Federated Learning: Model-Agnostic Distributed
Multitask Optimization Under Privacy Constraints”. In: IEEE Transactions
on Neural Networks and Learning Systems 32.8. Conference Name: IEEE
Transactions on Neural Networks and Learning Systems, pp. 3710–3722.
ISSN: 2162-2388. DOI: 10.1109/TNNLS.2020.3015958.

Sau, Bharat Bhusan and Vineeth N. Balasubramanian (Oct. 2016). “Deep Model
Compression: Distilling Knowledge from Noisy Teachers”. In: arXiv:1610.09650

https://doi.org/10.1109/CVPR.2013.355
https://doi.org/10.1109/CVPR.2013.355
http://ieeexplore.ieee.org/document/6619199/
https://doi.org/10.3390/s23031252
https://doi.org/10.3390/s23031252
https://www.mdpi.com/1424-8220/23/3/1252
https://doi.org/10.1007/978-0-387-09823-4_14
https://doi.org/10.1007/978-0-387-09823-4_14
https://doi.org/10.1007/978-0-387-09823-4_14
https://doi.org/10.1007/978-0-387-09823-4_14
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550
https://doi.org/10.1007/s13748-020-00218-y
https://link.springer.com/10.1007/s13748-020-00218-y
https://link.springer.com/10.1007/s13748-020-00218-y
https://doi.org/10.1002/widm.1249
https://onlinelibrary.wiley.com/doi/10.1002/widm.1249
https://onlinelibrary.wiley.com/doi/10.1002/widm.1249
https://doi.org/10.1007/978-0-387-30164-8
http://link.springer.com/10.1007/978-0-387-30164-8
http://link.springer.com/10.1007/978-0-387-30164-8
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://doi.org/10.4236/ajcm.2014.42006
https://doi.org/10.4236/ajcm.2014.42006
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=43977
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=43977
http://arxiv.org/abs/1910.01991
https://doi.org/10.1109/TNNLS.2020.3015958

158 Bibliography
[cs]. arXiv: 1610.09650. URL: http://arxiv.org/abs/1610.09650 (visited
on 03/05/2019).

Schaffer, J.D., D. Whitley, and L.J. Eshelman (1992). “Combinations of genetic
algorithms and neural networks: a survey of the state of the art”. In: [Pro-
ceedings] COGANN-92: International Workshop on Combinations of Genetic
Algorithms and Neural Networks. Baltimore, MD, USA: IEEE Comput. Soc.
Press, pp. 1–37. ISBN: 978-0-8186-2787-3. DOI: 10.1109/COGANN.1992.
273950. URL: http://ieeexplore.ieee.org/document/273950/ (visited
on 02/22/2019).

Sekaran, Ramesh et al. (2020). “Survival Study on Blockchain Based 6G-Enabled
Mobile Edge Computation for IoT Automation”. In: IEEE Access 8, pp. 143453–
143463. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.3013946. URL: https:
//ieeexplore.ieee.org/document/9159552/ (visited on 03/02/2023).

Sepasgozar, Samad M. E. et al. (May 2019). “Implementing citizen centric
technology in developing smart cities: A model for predicting the accep-
tance of urban technologies”. en. In: Technological Forecasting and Social
Change. Understanding Smart Cities: Innovation ecosystems, technolog-
ical advancements, and societal challenges 142, pp. 105–116. ISSN: 0040-
1625. DOI: 10.1016/j.techfore.2018.09.012. URL: https://www.
sciencedirect.com/science/article/pii/S004016251731870X (visited
on 02/28/2023).

Setiono, Rudy (Jan. 1997). “A Penalty-Function Approach for Pruning Feed-
forward Neural Networks”. en. In: Neural Computation 9.1, pp. 185–204.
ISSN: 0899-7667, 1530-888X. DOI: 10.1162/neco.1997.9.1.185. URL:
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.1.185
(visited on 01/02/2019).

Sharma, Siddharth, Simone Sharma, and Anidhya Athaiya (May 2020). “AC-
TIVATION FUNCTIONS IN NEURAL NETWORKS”. en. In: International
Journal of Engineering Applied Sciences and Technology 04.12, pp. 310–316.
ISSN: 24552143. DOI: 10.33564/IJEAST.2020.v04i12.054. URL: https:
//www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf (visited on
01/22/2023).

Shi, Naichen et al. (July 2021a). Fed-ensemble: Improving Generalization through
Model Ensembling in Federated Learning. arXiv:2107.10663 [cs, stat]. URL:
http://arxiv.org/abs/2107.10663 (visited on 07/04/2022).

Shi, Qiongfeng et al. (Sept. 2020). “Deep learning enabled smart mats as
a scalable floor monitoring system”. en. In: Nature Communications 11.1.
Number: 1 Publisher: Nature Publishing Group, p. 4609. ISSN: 2041-1723.
DOI: 10.1038/s41467-020-18471-z. URL: https://www.nature.com/
articles/s41467-020-18471-z (visited on 02/28/2023).

Shi, Qiongfeng et al. (Nov. 2021b). “Artificial Intelligence of Things (AIoT)
Enabled Floor Monitoring System for Smart Home Applications”. In: ACS
Nano 15.11. Publisher: American Chemical Society, pp. 18312–18326. ISSN:
1936-0851. DOI: 10.1021/acsnano.1c07579. URL: https://doi.org/10.
1021/acsnano.1c07579 (visited on 02/28/2023).

Shin, MyungJae et al. (June 2020). XOR Mixup: Privacy-Preserving Data Aug-
mentation for One-Shot Federated Learning. arXiv:2006.05148 [cs, eess]. URL:
http://arxiv.org/abs/2006.05148 (visited on 02/20/2023).

http://arxiv.org/abs/1610.09650
https://doi.org/10.1109/COGANN.1992.273950
https://doi.org/10.1109/COGANN.1992.273950
http://ieeexplore.ieee.org/document/273950/
https://doi.org/10.1109/ACCESS.2020.3013946
https://ieeexplore.ieee.org/document/9159552/
https://ieeexplore.ieee.org/document/9159552/
https://doi.org/10.1016/j.techfore.2018.09.012
https://www.sciencedirect.com/science/article/pii/S004016251731870X
https://www.sciencedirect.com/science/article/pii/S004016251731870X
https://doi.org/10.1162/neco.1997.9.1.185
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.1.185
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
http://arxiv.org/abs/2107.10663
https://doi.org/10.1038/s41467-020-18471-z
https://www.nature.com/articles/s41467-020-18471-z
https://www.nature.com/articles/s41467-020-18471-z
https://doi.org/10.1021/acsnano.1c07579
https://doi.org/10.1021/acsnano.1c07579
https://doi.org/10.1021/acsnano.1c07579
http://arxiv.org/abs/2006.05148

Bibliography 159
Shu, Jiangang et al. (Feb. 2023). “Clustered Federated Multitask Learning on

Non-IID Data With Enhanced Privacy”. In: IEEE Internet of Things Journal
10.4. Conference Name: IEEE Internet of Things Journal, pp. 3453–3467.
ISSN: 2327-4662. DOI: 10.1109/JIOT.2022.3228893.

Si, Jiong, Sarah L. Harris, and Evangelos Yfantis (Nov. 2018). “A Dynamic
ReLU on Neural Network”. In: 2018 IEEE 13th Dallas Circuits and Systems
Conference (DCAS), pp. 1–6. DOI: 10.1109/DCAS.2018.8620116.

Siddiqui, Shoaib Ahmed et al. (2019). “TSViz: Demystification of Deep Learn-
ing Models for Time-Series Analysis”. en. In: IEEE Access 7, pp. 67027–
67040. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2912823. URL: https:
//ieeexplore.ieee.org/document/8695734/ (visited on 05/29/2023).

Siebel, Nils T., Jonas Botel, and Gerald Sommer (June 2009). “Efficient neu-
ral network pruning during neuro-evolution”. In: 2009 International Joint
Conference on Neural Networks. Atlanta, Ga, USA: IEEE, pp. 2920–2927.
ISBN: 978-1-4244-3548-7. DOI: 10.1109/IJCNN.2009.5179035. URL: http:
//ieeexplore.ieee.org/document/5179035/ (visited on 02/20/2019).

Siebel, Nils T. and Gerald Sommer (Oct. 2007). “Evolutionary reinforcement
learning of artificial neural networks”. In: International Journal of Hybrid
Intelligent Systems 4.3. Ed. by M. Köppen and R. Weber, pp. 171–183. ISSN:
18758819, 14485869. DOI: 10.3233/HIS-2007-4304. (Visited on 02/22/2019).

SIfre, Laurent and Stéphane Mallat (Mar. 2014). “Rigid-Motion Scattering
for Texture Classification”. In: arXiv:1403.1687 [cs]. arXiv: 1403.1687. URL:
http://arxiv.org/abs/1403.1687 (visited on 01/04/2019).

Simonyan, Karen and Andrew Zisserman (Apr. 2015). Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. arXiv:1409.1556 [cs]. DOI:
10.48550/arXiv.1409.1556. URL: http://arxiv.org/abs/1409.1556
(visited on 03/10/2023).

Singh, Amanpreet, Narina Thakur, and Aakanksha Sharma (Mar. 2016). “A
review of supervised machine learning algorithms”. In: 2016 3rd Interna-
tional Conference on Computing for Sustainable Global Development (INDIA-
Com), pp. 1310–1315.

Smith, Virginia et al. (Feb. 2018). “Federated Multi-Task Learning”. In: arXiv:1705.10467
[cs, stat]. arXiv: 1705.10467. URL: http://arxiv.org/abs/1705.10467
(visited on 04/23/2021).

Sodhro, Ali Hassan et al. (Apr. 2018). “5G-Based Transmission Power Con-
trol Mechanism in Fog Computing for Internet of Things Devices”. en. In:
Sustainability 10.4. Number: 4 Publisher: Multidisciplinary Digital Pub-
lishing Institute, p. 1258. ISSN: 2071-1050. DOI: 10.3390/su10041258. URL:
https://www.mdpi.com/2071-1050/10/4/1258 (visited on 03/10/2023).

Sodhro, Ali Hassan et al. (Dec. 2019). “Quality of Service Optimization in an
IoT-Driven Intelligent Transportation System”. In: IEEE Wireless Commu-
nications 26.6, pp. 10–17. ISSN: 1536-1284, 1558-0687. DOI: 10.1109/MWC.
001.1900085. URL: https://ieeexplore.ieee.org/document/8938178/
(visited on 03/10/2023).

Sodhro, Ali Hassan et al. (June 2021). “Toward Convergence of AI and IoT
for Energy-Efficient Communication in Smart Homes”. In: IEEE Inter-
net of Things Journal 8.12, pp. 9664–9671. ISSN: 2327-4662, 2372-2541. DOI:
10.1109/JIOT.2020.3023667. URL: https://ieeexplore.ieee.org/
document/9195506/ (visited on 03/10/2023).

https://doi.org/10.1109/JIOT.2022.3228893
https://doi.org/10.1109/DCAS.2018.8620116
https://doi.org/10.1109/ACCESS.2019.2912823
https://ieeexplore.ieee.org/document/8695734/
https://ieeexplore.ieee.org/document/8695734/
https://doi.org/10.1109/IJCNN.2009.5179035
http://ieeexplore.ieee.org/document/5179035/
http://ieeexplore.ieee.org/document/5179035/
https://doi.org/10.3233/HIS-2007-4304
http://arxiv.org/abs/1403.1687
https://doi.org/10.48550/arXiv.1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1705.10467
https://doi.org/10.3390/su10041258
https://www.mdpi.com/2071-1050/10/4/1258
https://doi.org/10.1109/MWC.001.1900085
https://doi.org/10.1109/MWC.001.1900085
https://ieeexplore.ieee.org/document/8938178/
https://doi.org/10.1109/JIOT.2020.3023667
https://ieeexplore.ieee.org/document/9195506/
https://ieeexplore.ieee.org/document/9195506/

160 Bibliography
Sood, Sandeep K. and Isha Mahajan (Apr. 2018). “A Fog-Based Healthcare

Framework for Chikungunya”. In: IEEE Internet of Things Journal 5.2. Con-
ference Name: IEEE Internet of Things Journal, pp. 794–801. ISSN: 2327-
4662. DOI: 10.1109/JIOT.2017.2768407.

Southwest Jiaotong University, China et al. (Apr. 2015). “SUPERVISED MA-
CHINE LEARNING APPROACHES: A SURVEY”. en. In: ICTACT Journal
on Soft Computing 05.03, pp. 946–952. ISSN: 09766561, 22296956. DOI: 10.
21917/ijsc.2015.0133. URL: http://ictactjournals.in/ArticleDetails.
aspx?id=1785 (visited on 01/27/2023).

Souza, Pedro Lopes de Lopes de, Wanderley Lopes de Lopes de Souza, and
Ricardo Rodrigues Ciferri (2022). “Semantic Interoperability in the Inter-
net of Things: A Systematic Literature Review”. en. In: ITNG 2022 19th
International Conference on Information Technology-New Generations. Ed. by
Shahram Latifi. Vol. 1421. Series Title: Advances in Intelligent Systems
and Computing. Cham: Springer International Publishing, pp. 333–340.
ISBN: 978-3-030-97651-4 978-3-030-97652-1. DOI: 10.1007/978- 3- 030-
97652-1_40. URL: https://link.springer.com/10.1007/978-3-030-
97652-1_40 (visited on 03/05/2023).

Sovacool, Benjamin K. and Dylan D. Furszyfer Del Rio (Mar. 2020). “Smart
home technologies in Europe: A critical review of concepts, benefits, risks
and policies”. en. In: Renewable and Sustainable Energy Reviews 120, p. 109663.
ISSN: 1364-0321. DOI: 10.1016/j.rser.2019.109663. URL: https://www.
sciencedirect.com/science/article/pii/S1364032119308688 (visited
on 02/28/2023).

Stanley, Kenneth O. and Risto Miikkulainen (June 2002). “Evolving Neural
Networks through Augmenting Topologies”. en. In: Evolutionary Compu-
tation 10.2, pp. 99–127. ISSN: 1063-6560, 1530-9304. DOI: 10.1162/106365602320169811.
URL: http://www.mitpressjournals.org/doi/10.1162/106365602320169811
(visited on 02/22/2019).

Sun, Haifeng et al. (Nov. 2020). “Toward Communication-Efficient Federated
Learning in the Internet of Things With Edge Computing”. In: IEEE Inter-
net of Things Journal 7.11. Conference Name: IEEE Internet of Things Jour-
nal, pp. 11053–11067. ISSN: 2327-4662. DOI: 10.1109/JIOT.2020.2994596.

Szegedy, Christian et al. (Sept. 2014). “Going Deeper with Convolutions”. In:
arXiv:1409.4842 [cs]. arXiv: 1409.4842. URL: http://arxiv.org/abs/1409.
4842 (visited on 07/08/2019).

Szegedy, Christian et al. (Dec. 2015). “Rethinking the Inception Architecture
for Computer Vision”. en. In: arXiv:1512.00567 [cs]. arXiv: 1512.00567. URL:
http://arxiv.org/abs/1512.00567 (visited on 07/29/2019).

Szegedy, Christian et al. (Feb. 2016). “Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning”. In: arXiv:1602.07261 [cs].
arXiv: 1602.07261. URL: http://arxiv.org/abs/1602.07261 (visited on
01/04/2019).

Talebpour, Alireza and Hani S. Mahmassani (Oct. 2016). “Influence of con-
nected and autonomous vehicles on traffic flow stability and through-
put”. en. In: Transportation Research Part C: Emerging Technologies 71, pp. 143–
163. ISSN: 0968090X. DOI: 10.1016/j.trc.2016.07.007. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S0968090X16301140 (vis-
ited on 02/28/2023).

https://doi.org/10.1109/JIOT.2017.2768407
https://doi.org/10.21917/ijsc.2015.0133
https://doi.org/10.21917/ijsc.2015.0133
http://ictactjournals.in/ArticleDetails.aspx?id=1785
http://ictactjournals.in/ArticleDetails.aspx?id=1785
https://doi.org/10.1007/978-3-030-97652-1_40
https://doi.org/10.1007/978-3-030-97652-1_40
https://link.springer.com/10.1007/978-3-030-97652-1_40
https://link.springer.com/10.1007/978-3-030-97652-1_40
https://doi.org/10.1016/j.rser.2019.109663
https://www.sciencedirect.com/science/article/pii/S1364032119308688
https://www.sciencedirect.com/science/article/pii/S1364032119308688
https://doi.org/10.1162/106365602320169811
http://www.mitpressjournals.org/doi/10.1162/106365602320169811
https://doi.org/10.1109/JIOT.2020.2994596
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1602.07261
https://doi.org/10.1016/j.trc.2016.07.007
https://linkinghub.elsevier.com/retrieve/pii/S0968090X16301140
https://linkinghub.elsevier.com/retrieve/pii/S0968090X16301140

Bibliography 161
Tan, Mingxing and Quoc V. Le (Nov. 2019). “EfficientNet: Rethinking Model

Scaling for Convolutional Neural Networks”. In: arXiv:1905.11946 [cs, stat].
arXiv: 1905.11946. URL: http://arxiv.org/abs/1905.11946 (visited on
05/06/2020).

Tan, Mingxing et al. (July 2018). “MnasNet: Platform-Aware Neural Archi-
tecture Search for Mobile”. en. In: arXiv:1807.11626 [cs]. arXiv: 1807.11626.
URL: http://arxiv.org/abs/1807.11626 (visited on 09/12/2018).

Tang, E. K., P. N. Suganthan, and X. Yao (Oct. 2006). “An analysis of diver-
sity measures”. en. In: Machine Learning 65.1, pp. 247–271. ISSN: 0885-6125,
1573-0565. DOI: 10 . 1007 / s10994 - 006 - 9449 - 2. URL: http : / / link .
springer.com/10.1007/s10994-006-9449-2 (visited on 10/26/2023).

Tang, Jie et al. (2017). “Enabling Deep Learning on IoT Devices”. In: Com-
puter 50.10, pp. 92–96. ISSN: 0018-9162. DOI: 10.1109/MC.2017.3641648.
URL: http : / / ieeexplore . ieee . org / document / 8057306/ (visited on
05/29/2023).

Taud, H. and J.F. Mas (2018). “Multilayer Perceptron (MLP)”. en. In: Geomatic
Approaches for Modeling Land Change Scenarios. Ed. by María Teresa Ca-
macho Olmedo et al. Lecture Notes in Geoinformation and Cartography.
Cham: Springer International Publishing, pp. 451–455. ISBN: 978-3-319-
60801-3. DOI: 10.1007/978-3-319-60801-3_27. URL: https://doi.org/
10.1007/978-3-319-60801-3_27 (visited on 01/22/2023).

tfmot.sparsity.keras.ConstantSparsity | TensorFlow Model Optimization (n.d.).
URL: https://www.tensorflow.org/model_optimization/api_docs/
python/tfmot/sparsity/keras/ConstantSparsity (visited on 06/13/2023).

Tian, Pu et al. (Oct. 2022). “WSCC: A Weight-Similarity-Based Client Clus-
tering Approach for Non-IID Federated Learning”. In: IEEE Internet of
Things Journal 9.20. Conference Name: IEEE Internet of Things Journal,
pp. 20243–20256. ISSN: 2327-4662. DOI: 10.1109/JIOT.2022.3175149.

Tsogbaatar, Enkhtur et al. (June 2021). “DeL-IoT: A deep ensemble learn-
ing approach to uncover anomalies in IoT”. en. In: Internet of Things 14,
p. 100391. ISSN: 25426605. DOI: 10.1016/j.iot.2021.100391. URL: https:
//linkinghub.elsevier.com/retrieve/pii/S2542660521000354 (vis-
ited on 01/18/2023).

Tsukada, Mineto, Masaaki Kondo, and Hiroki Matsutani (2020). “A Neu-
ral Network-Based On-device Learning Anomaly Detector for Edge De-
vices”. In: IEEE Transactions on Computers, pp. 1–1. ISSN: 0018-9340, 1557-
9956, 2326-3814. DOI: 10.1109/TC.2020.2973631. URL: https://ieeexplore.
ieee.org/document/9000710/ (visited on 03/05/2023).

Tuli, Shreshth et al. (Mar. 2020). “HealthFog: An ensemble deep learning
based Smart Healthcare System for Automatic Diagnosis of Heart Dis-
eases in integrated IoT and fog computing environments”. en. In: Future
Generation Computer Systems 104, pp. 187–200. ISSN: 0167-739X. DOI: 10.
1016/j.future.2019.10.043. URL: https://www.sciencedirect.com/
science/article/pii/S0167739X19313391 (visited on 02/28/2023).

Tuor, Tiffany et al. (Jan. 2021). “Overcoming Noisy and Irrelevant Data in
Federated Learning”. In: 2020 25th International Conference on Pattern Recog-
nition (ICPR). Milan, Italy: IEEE, pp. 5020–5027. ISBN: 978-1-72818-808-9.
DOI: 10.1109/ICPR48806.2021.9412599. URL: https://ieeexplore.
ieee.org/document/9412599/ (visited on 06/29/2022).

http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1807.11626
https://doi.org/10.1007/s10994-006-9449-2
http://link.springer.com/10.1007/s10994-006-9449-2
http://link.springer.com/10.1007/s10994-006-9449-2
https://doi.org/10.1109/MC.2017.3641648
http://ieeexplore.ieee.org/document/8057306/
https://doi.org/10.1007/978-3-319-60801-3_27
https://doi.org/10.1007/978-3-319-60801-3_27
https://doi.org/10.1007/978-3-319-60801-3_27
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/ConstantSparsity
https://www.tensorflow.org/model_optimization/api_docs/python/tfmot/sparsity/keras/ConstantSparsity
https://doi.org/10.1109/JIOT.2022.3175149
https://doi.org/10.1016/j.iot.2021.100391
https://linkinghub.elsevier.com/retrieve/pii/S2542660521000354
https://linkinghub.elsevier.com/retrieve/pii/S2542660521000354
https://doi.org/10.1109/TC.2020.2973631
https://ieeexplore.ieee.org/document/9000710/
https://ieeexplore.ieee.org/document/9000710/
https://doi.org/10.1016/j.future.2019.10.043
https://doi.org/10.1016/j.future.2019.10.043
https://www.sciencedirect.com/science/article/pii/S0167739X19313391
https://www.sciencedirect.com/science/article/pii/S0167739X19313391
https://doi.org/10.1109/ICPR48806.2021.9412599
https://ieeexplore.ieee.org/document/9412599/
https://ieeexplore.ieee.org/document/9412599/

162 Bibliography
Upadhyay, Kartik, Ashwani Kumar Yadav, and Palak Gandhi (2019). “A Re-

view of Internet of Things from Indian Perspective”. In: Engineering Vi-
bration, Communication and Information Processing. Ed. by Kanad Ray et al.
Vol. 478. Series Title: Lecture Notes in Electrical Engineering. Singapore:
Springer Singapore, pp. 621–632. ISBN: 9789811316418 9789811316425. DOI:
10.1007/978-981-13-1642-5_55. URL: http://link.springer.com/10.
1007/978-981-13-1642-5_55 (visited on 01/03/2023).

Van Der Baan, Mirko and Christian Jutten (July 2000). “Neural networks in
geophysical applications”. en. In: GEOPHYSICS 65.4, pp. 1032–1047. ISSN:
0016-8033, 1942-2156. DOI: 10.1190/1.1444797. URL: https://library.
seg.org/doi/10.1190/1.1444797 (visited on 05/29/2023).

Vanhoucke, Vincent, Andrew Senior, and Mark Z. Mao (2011). “Improving
the speed of neural networks on CPUs”. In: Deep Learning and Unsuper-
vised Feature Learning Workshop, NIPS 2011.

Villanueva, Alonica et al. (July 2019). “Somnolence Detection System Utiliz-
ing Deep Neural Network”. In: 2019 International Conference on Information
and Communications Technology (ICOIACT). Yogyakarta, Indonesia: IEEE,
pp. 602–607. ISBN: 978-1-72811-655-6. DOI: 10.1109/ICOIACT46704.2019.
8938460. URL: https://ieeexplore.ieee.org/document/8938460/ (vis-
ited on 02/28/2023).

Vita, Fabrizio de et al. (Sept. 2020). “Quantitative Analysis of Deep Leaf: a
Plant Disease Detector on the Smart Edge”. In: 2020 IEEE International
Conference on Smart Computing (SMARTCOMP), pp. 49–56. DOI: 10.1109/
SMARTCOMP50058.2020.00027.

Voigt, Paul and Axel von dem Bussche (2017). The EU General Data Protection
Regulation (GDPR). en. Cham: Springer International Publishing. ISBN:
978-3-319-57958-0 978-3-319-57959-7. DOI: 10.1007/978-3-319-57959-7.
URL: http://link.springer.com/10.1007/978-3-319-57959-7 (visited
on 03/17/2022).

Wan, Li et al. (June 2013). “Regularization of neural networks using drop-
connect”. In: JMLR.org, pp. III–1058. URL: http://dl.acm.org.ezproxy.
bcu.ac.uk/citation.cfm?id=3042817.3043055 (visited on 03/22/2019).

Wan, Weishui et al. (Jan. 2009). “Enhancing the generalization ability of neu-
ral networks through controlling the hidden layers”. en. In: Applied Soft
Computing 9.1, pp. 404–414. ISSN: 15684946. DOI: 10.1016/j.asoc.2008.
01 . 013. URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S1568494608000902 (visited on 01/02/2019).

Wang, Binghui et al. (Dec. 2020a). GraphFL: A Federated Learning Framework for
Semi-Supervised Node Classification on Graphs. arXiv:2012.04187 [cs, stat].
URL: http://arxiv.org/abs/2012.04187 (visited on 07/04/2022).

Wang, Fangxin, Wei Gong, and Jiangchuan Liu (Apr. 2019). “On Spatial Di-
versity in WiFi-Based Human Activity Recognition: A Deep Learning-
Based Approach”. In: IEEE Internet of Things Journal 6.2. Conference Name:
IEEE Internet of Things Journal, pp. 2035–2047. ISSN: 2327-4662. DOI: 10.
1109/JIOT.2018.2871445.

Wang, Hongyi et al. (Feb. 2020b). “Federated Learning with Matched Averag-
ing”. In: arXiv:2002.06440 [cs, stat]. arXiv: 2002.06440. URL: http://arxiv.
org/abs/2002.06440 (visited on 03/18/2022).

https://doi.org/10.1007/978-981-13-1642-5_55
http://link.springer.com/10.1007/978-981-13-1642-5_55
http://link.springer.com/10.1007/978-981-13-1642-5_55
https://doi.org/10.1190/1.1444797
https://library.seg.org/doi/10.1190/1.1444797
https://library.seg.org/doi/10.1190/1.1444797
https://doi.org/10.1109/ICOIACT46704.2019.8938460
https://doi.org/10.1109/ICOIACT46704.2019.8938460
https://ieeexplore.ieee.org/document/8938460/
https://doi.org/10.1109/SMARTCOMP50058.2020.00027
https://doi.org/10.1109/SMARTCOMP50058.2020.00027
https://doi.org/10.1007/978-3-319-57959-7
http://link.springer.com/10.1007/978-3-319-57959-7
http://dl.acm.org.ezproxy.bcu.ac.uk/citation.cfm?id=3042817.3043055
http://dl.acm.org.ezproxy.bcu.ac.uk/citation.cfm?id=3042817.3043055
https://doi.org/10.1016/j.asoc.2008.01.013
https://doi.org/10.1016/j.asoc.2008.01.013
https://linkinghub.elsevier.com/retrieve/pii/S1568494608000902
https://linkinghub.elsevier.com/retrieve/pii/S1568494608000902
http://arxiv.org/abs/2012.04187
https://doi.org/10.1109/JIOT.2018.2871445
https://doi.org/10.1109/JIOT.2018.2871445
http://arxiv.org/abs/2002.06440
http://arxiv.org/abs/2002.06440

Bibliography 163
Wang, Jianyu et al. (2021a). “A Novel Framework for the Analysis and Design

of Heterogeneous Federated Learning”. In: IEEE Transactions on Signal
Processing 69, pp. 5234–5249. ISSN: 1053-587X, 1941-0476. DOI: 10.1109/
TSP.2021.3106104. URL: https://ieeexplore.ieee.org/document/
9521822/ (visited on 06/29/2022).

Wang, Yansheng et al. (Aug. 2022). “Fed-LTD: Towards Cross-Platform Ride
Hailing via Federated Learning to Dispatch”. en. In: Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
Washington DC USA: ACM, pp. 4079–4089. ISBN: 978-1-4503-9385-0. DOI:
10.1145/3534678.3539047. URL: https://dl.acm.org/doi/10.1145/
3534678.3539047 (visited on 12/20/2022).

Wang, Yichuan et al. (June 2021b). “Deep Learning Data Privacy Protection
Based on Homomorphic Encryption in AIoT”. en. In: Mobile Information
Systems 2021. Ed. by Xiaohong Jiang, pp. 1–11. ISSN: 1875-905X, 1574-
017X. DOI: 10.1155/2021/5510857. URL: https://www.hindawi.com/
journals/misy/2021/5510857/ (visited on 03/02/2023).

Wang, Yifan et al. (2019). “HydraOne: An Indoor Experimental Research and
Education Platform for CAVs”. en. In: pp. 1–7.

Wang, Zhenyu et al. (Sept. 2020c). “Network pruning using sparse learning
and genetic algorithm”. en. In: Neurocomputing 404, pp. 247–256. ISSN:
09252312. DOI: 10.1016/j.neucom.2020.03.082. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0925231220304690 (visited on 10/27/2023).

Webb, Geoffrey I. (2000). “MultiBoosting: A Technique for Combining Boost-
ing and Wagging”. In: Machine Learning 40.2, pp. 159–196. ISSN: 08856125.
DOI: 10.1023/A:1007659514849. URL: http://link.springer.com/10.
1023/A:1007659514849 (visited on 11/07/2023).

Wu, Bichen et al. (Dec. 2016a). “SqueezeDet: Unified, Small, Low Power Fully
Convolutional Neural Networks for Real-Time Object Detection for Au-
tonomous Driving”. In: arXiv:1612.01051 [cs]. arXiv: 1612.01051. URL: http:
//arxiv.org/abs/1612.01051 (visited on 01/04/2019).

Wu, Jiaxiang et al. (Dec. 2015). “Quantized Convolutional Neural Networks
for Mobile Devices”. In: arXiv:1512.06473 [cs]. arXiv: 1512.06473. URL: http:
//arxiv.org/abs/1512.06473 (visited on 07/02/2019).

— (June 2016b). “Quantized Convolutional Neural Networks for Mobile De-
vices”. en. In: 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). Las Vegas, NV, USA: IEEE, pp. 4820–4828. ISBN: 978-1-4673-
8851-1. DOI: 10.1109/CVPR.2016.521. URL: http://ieeexplore.ieee.
org/document/7780890/ (visited on 10/09/2018).

Wu, Qiong, Kaiwen He, and Xu Chen (2020). “Personalized Federated Learn-
ing for Intelligent IoT Applications: A Cloud-Edge Based Framework”.
In: IEEE Open Journal of the Computer Society 1, pp. 35–44. ISSN: 2644-1268.
DOI: 10.1109/OJCS.2020.2993259. URL: https://ieeexplore.ieee.org/
document/9090366/ (visited on 04/15/2021).

Wu, Tianze et al. (Feb. 2020). “HydraMini: An FPGA-based Affordable Re-
search and Education Platform for Autonomous Driving”. In: 2020 Inter-
national Conference on Connected and Autonomous Driving (MetroCAD). De-
troit, MI, USA: IEEE, pp. 45–52. ISBN: 978-1-72816-059-7. DOI: 10.1109/
MetroCAD48866 . 2020 . 00016. URL: https : / / ieeexplore . ieee . org /
document/9138641/ (visited on 02/28/2023).

https://doi.org/10.1109/TSP.2021.3106104
https://doi.org/10.1109/TSP.2021.3106104
https://ieeexplore.ieee.org/document/9521822/
https://ieeexplore.ieee.org/document/9521822/
https://doi.org/10.1145/3534678.3539047
https://dl.acm.org/doi/10.1145/3534678.3539047
https://dl.acm.org/doi/10.1145/3534678.3539047
https://doi.org/10.1155/2021/5510857
https://www.hindawi.com/journals/misy/2021/5510857/
https://www.hindawi.com/journals/misy/2021/5510857/
https://doi.org/10.1016/j.neucom.2020.03.082
https://linkinghub.elsevier.com/retrieve/pii/S0925231220304690
https://linkinghub.elsevier.com/retrieve/pii/S0925231220304690
https://doi.org/10.1023/A:1007659514849
http://link.springer.com/10.1023/A:1007659514849
http://link.springer.com/10.1023/A:1007659514849
http://arxiv.org/abs/1612.01051
http://arxiv.org/abs/1612.01051
http://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1512.06473
https://doi.org/10.1109/CVPR.2016.521
http://ieeexplore.ieee.org/document/7780890/
http://ieeexplore.ieee.org/document/7780890/
https://doi.org/10.1109/OJCS.2020.2993259
https://ieeexplore.ieee.org/document/9090366/
https://ieeexplore.ieee.org/document/9090366/
https://doi.org/10.1109/MetroCAD48866.2020.00016
https://doi.org/10.1109/MetroCAD48866.2020.00016
https://ieeexplore.ieee.org/document/9138641/
https://ieeexplore.ieee.org/document/9138641/

164 Bibliography
Wu, Xiongwei, Doyen Sahoo, and Steven C. H. Hoi (July 2020). “Recent ad-

vances in deep learning for object detection”. en. In: Neurocomputing 396,
pp. 39–64. ISSN: 0925-2312. DOI: 10.1016/j.neucom.2020.01.085. URL:
https://www.sciencedirect.com/science/article/pii/S0925231220301430
(visited on 04/13/2023).

Xiao, Han, Kashif Rasul, and Roland Vollgraf (Aug. 2017). “Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Algorithms”.
In: arXiv:1708.07747 [cs, stat]. arXiv: 1708.07747. URL: http://arxiv.org/
abs/1708.07747 (visited on 03/24/2019).

Xie, Junyuan, Ross Girshick, and Ali Farhadi (May 2016). Unsupervised Deep
Embedding for Clustering Analysis. arXiv:1511.06335 [cs]. URL: http : / /
arxiv.org/abs/1511.06335 (visited on 11/28/2022).

Xie, Lingxi and Alan Yuille (Oct. 2017). “Genetic CNN”. In: 2017 IEEE In-
ternational Conference on Computer Vision (ICCV). Venice: IEEE, pp. 1388–
1397. ISBN: 978-1-5386-1032-9. DOI: 10.1109/ICCV.2017.154. URL: http:
//ieeexplore.ieee.org/document/8237416/ (visited on 02/25/2019).

Xiong, Zuobin et al. (Feb. 2022). “Privacy Threat and Defense for Federated
Learning With Non-i.i.d. Data in AIoT”. In: IEEE Transactions on Industrial
Informatics 18.2, pp. 1310–1321. ISSN: 1551-3203, 1941-0050. DOI: 10.1109/
TII.2021.3073925. URL: https://ieeexplore.ieee.org/document/
9408373/ (visited on 03/02/2023).

Xu, Dongkuan and Yingjie Tian (June 2015). “A Comprehensive Survey of
Clustering Algorithms”. en. In: Annals of Data Science 2.2, pp. 165–193.
ISSN: 2198-5804, 2198-5812. DOI: 10 . 1007 / s40745 - 015 - 0040 - 1. URL:
http://link.springer.com/10.1007/s40745-015-0040-1 (visited on
02/02/2023).

Xu, Hansong et al. (2018). “A Survey on Industrial Internet of Things: A
Cyber-Physical Systems Perspective”. In: IEEE Access 6, pp. 78238–78259.
ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2884906. URL: https://
ieeexplore.ieee.org/document/8558534/ (visited on 02/16/2020).

Xu, Jinhua and Daniel W.C. Ho (Dec. 2006). “A new training and pruning
algorithm based on node dependence and Jacobian rank deficiency”. en.
In: Neurocomputing 70.1-3, pp. 544–558. ISSN: 09252312. DOI: 10 . 1016 /
j . neucom . 2005 . 11 . 005. URL: http : / / linkinghub . elsevier . com /
retrieve/pii/S0925231206000075 (visited on 01/03/2019).

Xu, Ke et al. (Sept. 2021). “GenExp: Multi-objective pruning for deep neural
network based on genetic algorithm”. en. In: Neurocomputing 451, pp. 81–
94. ISSN: 09252312. DOI: 10.1016/j.neucom.2021.04.022. URL: https://
linkinghub.elsevier.com/retrieve/pii/S092523122100549X (visited
on 10/27/2023).

Xu, Zirui et al. (Dec. 2019). ELFISH: Resource-Aware Federated Learning on Het-
erogeneous Edge Devices.

Yan, Peng and Guodong Long (2023). “Personalization Disentanglement for
Federated Learning”. In: Proceedings of the IEEE International Conference on
Multimedia and Expo (ICME). IEEE. DOI: 10.1109/icme55011.2023.00062.
URL: http://dx.doi.org/10.1109/icme55011.2023.00062.

https://doi.org/10.1016/j.neucom.2020.01.085
https://www.sciencedirect.com/science/article/pii/S0925231220301430
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1511.06335
http://arxiv.org/abs/1511.06335
https://doi.org/10.1109/ICCV.2017.154
http://ieeexplore.ieee.org/document/8237416/
http://ieeexplore.ieee.org/document/8237416/
https://doi.org/10.1109/TII.2021.3073925
https://doi.org/10.1109/TII.2021.3073925
https://ieeexplore.ieee.org/document/9408373/
https://ieeexplore.ieee.org/document/9408373/
https://doi.org/10.1007/s40745-015-0040-1
http://link.springer.com/10.1007/s40745-015-0040-1
https://doi.org/10.1109/ACCESS.2018.2884906
https://ieeexplore.ieee.org/document/8558534/
https://ieeexplore.ieee.org/document/8558534/
https://doi.org/10.1016/j.neucom.2005.11.005
https://doi.org/10.1016/j.neucom.2005.11.005
http://linkinghub.elsevier.com/retrieve/pii/S0925231206000075
http://linkinghub.elsevier.com/retrieve/pii/S0925231206000075
https://doi.org/10.1016/j.neucom.2021.04.022
https://linkinghub.elsevier.com/retrieve/pii/S092523122100549X
https://linkinghub.elsevier.com/retrieve/pii/S092523122100549X
https://doi.org/10.1109/icme55011.2023.00062
http://dx.doi.org/10.1109/icme55011.2023.00062

Bibliography 165
Yan, Zhaoyi et al. (Aug. 2020). “Prune it Yourself: Automated Pruning by

Multiple Level Sensitivity”. In: 2020 IEEE Conference on Multimedia Infor-
mation Processing and Retrieval (MIPR), pp. 73–78. DOI: 10.1109/MIPR49039.
2020.00022.

Yang, Qiang et al. (Mar. 2019). “Federated Machine Learning: Concept and
Applications”. en. In: ACM Transactions on Intelligent Systems and Technol-
ogy 10.2, pp. 1–19. ISSN: 2157-6904, 2157-6912. DOI: 10.1145/3298981. URL:
https://dl.acm.org/doi/10.1145/3298981 (visited on 03/17/2022).

Yang, Tien-Ju et al. (Sept. 2018a). “NetAdapt: Platform-Aware Neural Net-
work Adaptation for Mobile Applications”. In: arXiv:1804.03230 [cs]. arXiv:
1804.03230. URL: http://arxiv.org/abs/1804.03230 (visited on 05/04/2020).

Yang, Timothy et al. (Dec. 2018b). Applied Federated Learning: Improving Google
Keyboard Query Suggestions. arXiv:1812.02903 [cs, stat]. URL: http://arxiv.
org/abs/1812.02903 (visited on 02/23/2023).

Yang, Zhilin et al. (Mar. 2018c). Breaking the Softmax Bottleneck: A High-Rank
RNN Language Model. arXiv:1711.03953 [cs]. DOI: 10.48550/arXiv.1711.
03953. URL: http://arxiv.org/abs/1711.03953 (visited on 01/22/2023).

Yao, X. and Y. Liu (May 1997). “A new evolutionary system for evolving
artificial neural networks”. In: IEEE Transactions on Neural Networks 8.3,
pp. 694–713. ISSN: 10459227. DOI: 10.1109/72.572107. URL: http://
ieeexplore.ieee.org/document/572107/ (visited on 02/22/2019).

Yim, Junho et al. (July 2017). “A Gift from Knowledge Distillation: Fast Op-
timization, Network Minimization and Transfer Learning”. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,
HI: IEEE, pp. 7130–7138. ISBN: 978-1-5386-0457-1. DOI: 10.1109/CVPR.
2017.754. URL: http://ieeexplore.ieee.org/document/8100237/ (vis-
ited on 02/28/2019).

Yin, Xu-Cheng, Kaizhu Huang, and Hong-Wei Hao (Oct. 2015). “DE2: Dy-
namic ensemble of ensembles for learning nonstationary data”. en. In:
Neurocomputing 165, pp. 14–22. ISSN: 09252312. DOI: 10.1016/j.neucom.
2014.06.092. URL: https://linkinghub.elsevier.com/retrieve/pii/
S0925231215004270 (visited on 10/26/2023).

Yoon, Tehrim et al. (2021). “FEDMIX: APPROXIMATION OF MIXUP UN-
DER MEAN AUGMENTED FEDERATED LEARNING”. en. In.

Yosinski, Jason et al. (2014). “How transferable are features in deep neural
networks?” In: Advances in Neural Information Processing Systems. Vol. 27.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper/
2014/hash/375c71349b295fbe2dcdca9206f20a06- Abstract.html (vis-
ited on 03/14/2023).

You, Shan et al. (2017). “Learning from Multiple Teacher Networks”. en. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’17. Halifax, NS, Canada: ACM Press,
pp. 1285–1294. ISBN: 978-1-4503-4887-4. DOI: 10.1145/3097983.3098135.
URL: http://dl.acm.org/citation.cfm?doid=3097983.3098135 (visited
on 02/28/2019).

https://doi.org/10.1109/MIPR49039.2020.00022
https://doi.org/10.1109/MIPR49039.2020.00022
https://doi.org/10.1145/3298981
https://dl.acm.org/doi/10.1145/3298981
http://arxiv.org/abs/1804.03230
http://arxiv.org/abs/1812.02903
http://arxiv.org/abs/1812.02903
https://doi.org/10.48550/arXiv.1711.03953
https://doi.org/10.48550/arXiv.1711.03953
http://arxiv.org/abs/1711.03953
https://doi.org/10.1109/72.572107
http://ieeexplore.ieee.org/document/572107/
http://ieeexplore.ieee.org/document/572107/
https://doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1109/CVPR.2017.754
http://ieeexplore.ieee.org/document/8100237/
https://doi.org/10.1016/j.neucom.2014.06.092
https://doi.org/10.1016/j.neucom.2014.06.092
https://linkinghub.elsevier.com/retrieve/pii/S0925231215004270
https://linkinghub.elsevier.com/retrieve/pii/S0925231215004270
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://doi.org/10.1145/3097983.3098135
http://dl.acm.org/citation.cfm?doid=3097983.3098135

166 Bibliography
Yu, Jiyeon, Angelica de Antonio, and Elena Villalba-Mora (Feb. 2022). “Deep

Learning (CNN, RNN) Applications for Smart Homes: A Systematic Re-
view”. en. In: Computers 11.2. Number: 2 Publisher: Multidisciplinary Dig-
ital Publishing Institute, p. 26. ISSN: 2073-431X. DOI: 10.3390/computers11020026.
URL: https://www.mdpi.com/2073-431X/11/2/26 (visited on 05/22/2023).

Yu, Ruichi et al. (2018a). “NISP: Pruning Networks Using Neuron Impor-
tance Score Propagation”. In: pp. 9194–9203. URL: https://openaccess.
thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_
CVPR_2018_paper.html (visited on 03/10/2023).

Yu, Zhengxin et al. (Dec. 2018b). “Federated Learning Based Proactive Con-
tent Caching in Edge Computing”. In: 2018 IEEE Global Communications
Conference (GLOBECOM). Abu Dhabi, United Arab Emirates: IEEE, pp. 1–
6. ISBN: 978-1-5386-4727-1. DOI: 10.1109/GLOCOM.2018.8647616. URL:
https://ieeexplore.ieee.org/document/8647616/ (visited on 01/05/2023).

Yuan, Yongliang et al. (Aug. 2022a). “Alpine skiing optimization: A new bio-
inspired optimization algorithm”. en. In: Advances in Engineering Software
170, p. 103158. ISSN: 09659978. DOI: 10.1016/j.advengsoft.2022.103158.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0965997822000692
(visited on 02/18/2023).

Yuan, Yongliang et al. (July 2022b). “Optimization of an auto drum fashioned
brake using the elite opposition-based learning and chaotic k-best gravi-
tational search strategy based grey wolf optimizer algorithm”. en. In: Ap-
plied Soft Computing 123, p. 108947. ISSN: 15684946. DOI: 10.1016/j.asoc.
2022.108947. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1568494622002927 (visited on 02/18/2023).

Zeiler, Matthew D. and Rob Fergus (Nov. 2013). “Visualizing and Under-
standing Convolutional Networks”. In: arXiv:1311.2901 [cs]. arXiv: 1311.2901.
URL: http://arxiv.org/abs/1311.2901 (visited on 07/09/2019).

Zemouri, Ryad et al. (Dec. 2020). “A new growing pruning deep learning
neural network algorithm (GP-DLNN)”. en. In: Neural Computing and Ap-
plications 32.24, pp. 18143–18159. ISSN: 0941-0643, 1433-3058. DOI: 10.1007/
s00521- 019- 04196- 8. URL: http://link.springer.com/10.1007/
s00521-019-04196-8 (visited on 10/27/2023).

Zeng, Xiaoqin and Daniel S. Yeung (Mar. 2006). “Hidden neuron pruning
of multilayer perceptrons using a quantified sensitivity measure”. en. In:
Neurocomputing 69.7-9, pp. 825–837. ISSN: 09252312. DOI: 10 . 1016 / j .
neucom.2005.04.010. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0925231205001852 (visited on 01/03/2019).

Zhai, Shaolei et al. (2021). “Dynamic Federated Learning for GMEC With
Time-Varying Wireless Link”. In: IEEE Access 9. Conference Name: IEEE
Access, pp. 10400–10412. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2021.
3050172.

Zhang, Byoung-Tak (1993). “Evolving Optimal Neural Networks Using Ge-
netic Algorithms with Occam’s Razor”. en. In: p. 22.

Zhang, Heng et al. (Dec. 2021). “L1-L2 norm regularization via forward-
backward splitting for fluorescence molecular tomography”. en. In: Biomed-
ical Optics Express 12.12, p. 7807. ISSN: 2156-7085, 2156-7085. DOI: 10.1364/
BOE.435932. URL: https://opg.optica.org/abstract.cfm?URI=boe-12-
12-7807 (visited on 10/27/2023).

https://doi.org/10.3390/computers11020026
https://www.mdpi.com/2073-431X/11/2/26
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://doi.org/10.1109/GLOCOM.2018.8647616
https://ieeexplore.ieee.org/document/8647616/
https://doi.org/10.1016/j.advengsoft.2022.103158
https://linkinghub.elsevier.com/retrieve/pii/S0965997822000692
https://doi.org/10.1016/j.asoc.2022.108947
https://doi.org/10.1016/j.asoc.2022.108947
https://linkinghub.elsevier.com/retrieve/pii/S1568494622002927
https://linkinghub.elsevier.com/retrieve/pii/S1568494622002927
http://arxiv.org/abs/1311.2901
https://doi.org/10.1007/s00521-019-04196-8
https://doi.org/10.1007/s00521-019-04196-8
http://link.springer.com/10.1007/s00521-019-04196-8
http://link.springer.com/10.1007/s00521-019-04196-8
https://doi.org/10.1016/j.neucom.2005.04.010
https://doi.org/10.1016/j.neucom.2005.04.010
http://linkinghub.elsevier.com/retrieve/pii/S0925231205001852
http://linkinghub.elsevier.com/retrieve/pii/S0925231205001852
https://doi.org/10.1109/ACCESS.2021.3050172
https://doi.org/10.1109/ACCESS.2021.3050172
https://doi.org/10.1364/BOE.435932
https://doi.org/10.1364/BOE.435932
https://opg.optica.org/abstract.cfm?URI=boe-12-12-7807
https://opg.optica.org/abstract.cfm?URI=boe-12-12-7807

Bibliography 167
Zhang, Huaxiang and Linlin Cao (Sept. 2014). “A spectral clustering based

ensemble pruning approach”. en. In: Neurocomputing 139, pp. 289–297.
ISSN: 09252312. DOI: 10.1016/j.neucom.2014.02.030. URL: https://
linkinghub.elsevier.com/retrieve/pii/S0925231214004299 (visited
on 11/07/2023).

Zhang, Jing and Dacheng Tao (May 2021). “Empowering Things With In-
telligence: A Survey of the Progress, Challenges, and Opportunities in
Artificial Intelligence of Things”. In: IEEE Internet of Things Journal 8.10,
pp. 7789–7817. ISSN: 2327-4662, 2372-2541. DOI: 10 . 1109 / JIOT . 2020 .
3039359. URL: https://ieeexplore.ieee.org/document/9264235/ (vis-
ited on 01/05/2023).

Zhang, Min-Ling and Zhi-Hua Zhou (Jan. 2013). “Exploiting unlabeled data
to enhance ensemble diversity”. en. In: Data Mining and Knowledge Discov-
ery 26.1, pp. 98–129. ISSN: 1384-5810, 1573-756X. DOI: 10.1007/s10618-
011-0243-9. URL: http://link.springer.com/10.1007/s10618-011-
0243-9 (visited on 10/26/2023).

Zhang, Tianyun et al. (Sept. 2018a). “A Systematic DNN Weight Pruning
Framework using Alternating Direction Method of Multipliers”. In: Pro-
ceedings of the European Conference on Computer Vision (ECCV).

Zhang, Xiangyu et al. (June 2018b). “ShuffleNet: An Extremely Efficient Con-
volutional Neural Network for Mobile Devices”. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE,
pp. 6848–6856. ISBN: 978-1-5386-6420-9. DOI: 10.1109/CVPR.2018.00716.
URL: https://ieeexplore.ieee.org/document/8578814/ (visited on
07/08/2019).

Zhang, Ying et al. (June 2018c). “Deep Mutual Learning”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:
IEEE, pp. 4320–4328. ISBN: 978-1-5386-6420-9. DOI: 10.1109/CVPR.2018.
00454. URL: https://ieeexplore.ieee.org/document/8578552/ (visited
on 03/06/2019).

Zhang, Yong et al. (2014). “A Weighted Voting Classifier Based on Differential
Evolution”. en. In: Abstract and Applied Analysis 2014, pp. 1–6. ISSN: 1085-
3375, 1687-0409. DOI: 10.1155/2014/376950. URL: http://www.hindawi.
com/journals/aaa/2014/376950/ (visited on 10/26/2023).

Zhang, Zhaozhao and Junfei Qiao (Aug. 2010). “A node pruning algorithm
for feedforward neural network based on neural complexity”. In: 2010 In-
ternational Conference on Intelligent Control and Information Processing. Dalian,
China: IEEE, pp. 406–410. ISBN: 978-1-4244-7047-1. DOI: 10.1109/ICICIP.
2010.5564272. URL: http://ieeexplore.ieee.org/document/5564272/
(visited on 01/03/2019).

Zhang, Zixuan et al. (Jan. 2020). “Smart Triboelectric Socks for Enabling Ar-
tificial Intelligence of Things (AIoT) Based Smart Home and Healthcare”.
In: 2020 IEEE 33rd International Conference on Micro Electro Mechanical Sys-
tems (MEMS). ISSN: 2160-1968, pp. 80–83. DOI: 10.1109/MEMS46641.2020.
9056149.

Zhao, Shubao et al. (2023). “Two-Phased Federated Learning with Cluster-
ing and Personalization for Natural Gas Load Forecasting”. In: Springer
International Publishing. DOI: 10.1007/978-3-031-28996-5_10. URL:
http://dx.doi.org/10.1007/978-3-031-28996-5_10.

https://doi.org/10.1016/j.neucom.2014.02.030
https://linkinghub.elsevier.com/retrieve/pii/S0925231214004299
https://linkinghub.elsevier.com/retrieve/pii/S0925231214004299
https://doi.org/10.1109/JIOT.2020.3039359
https://doi.org/10.1109/JIOT.2020.3039359
https://ieeexplore.ieee.org/document/9264235/
https://doi.org/10.1007/s10618-011-0243-9
https://doi.org/10.1007/s10618-011-0243-9
http://link.springer.com/10.1007/s10618-011-0243-9
http://link.springer.com/10.1007/s10618-011-0243-9
https://doi.org/10.1109/CVPR.2018.00716
https://ieeexplore.ieee.org/document/8578814/
https://doi.org/10.1109/CVPR.2018.00454
https://doi.org/10.1109/CVPR.2018.00454
https://ieeexplore.ieee.org/document/8578552/
https://doi.org/10.1155/2014/376950
http://www.hindawi.com/journals/aaa/2014/376950/
http://www.hindawi.com/journals/aaa/2014/376950/
https://doi.org/10.1109/ICICIP.2010.5564272
https://doi.org/10.1109/ICICIP.2010.5564272
http://ieeexplore.ieee.org/document/5564272/
https://doi.org/10.1109/MEMS46641.2020.9056149
https://doi.org/10.1109/MEMS46641.2020.9056149
https://doi.org/10.1007/978-3-031-28996-5_10
http://dx.doi.org/10.1007/978-3-031-28996-5_10

168 Bibliography
Zhao, Weiguo, Liying Wang, and Seyedali Mirjalili (Jan. 2022). “Artificial

hummingbird algorithm: A new bio-inspired optimizer with its engineer-
ing applications”. en. In: Computer Methods in Applied Mechanics and Engi-
neering 388, p. 114194. ISSN: 00457825. DOI: 10.1016/j.cma.2021.114194.
URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782521005259
(visited on 02/18/2023).

Zhao, Yanqi et al. (Oct. 2019). “Blockchain based privacy-preserving software
updates with proof-of-delivery for Internet of Things”. en. In: Journal of
Parallel and Distributed Computing 132, pp. 141–149. ISSN: 07437315. DOI:
10.1016/j.jpdc.2019.06.001. URL: https://linkinghub.elsevier.
com/retrieve/pii/S074373151930098X (visited on 03/02/2023).

Zhao, Yue et al. (June 2018). Federated Learning with Non-IID Data. Tech. rep.
arXiv:1806.00582. arXiv:1806.00582 [cs, stat] type: article. arXiv. URL: http:
//arxiv.org/abs/1806.00582 (visited on 06/29/2022).

Zheng, Longfei et al. (May 2021). “ASFGNN: Automated separated-federated
graph neural network”. en. In: Peer-to-Peer Networking and Applications
14.3, pp. 1692–1704. ISSN: 1936-6442, 1936-6450. DOI: 10.1007/s12083-
021-01074-w. URL: https://link.springer.com/10.1007/s12083-021-
01074-w (visited on 07/05/2022).

Zhong, Chang-le, Zhen Zhu, and Ren-Gen Huang (Oct. 2017). “Study on the
IOT Architecture and Access Technology”. In: 2017 16th International Sym-
posium on Distributed Computing and Applications to Business, Engineering
and Science (DCABES). Anyang: IEEE, pp. 113–116. ISBN: 978-1-5386-2162-
2. DOI: 10.1109/DCABES.2017.32. URL: http://ieeexplore.ieee.org/
document/8253048/ (visited on 01/10/2023).

Zhou, Bin et al. (Aug. 2016). “Smart home energy management systems: Con-
cept, configurations, and scheduling strategies”. en. In: Renewable and Sus-
tainable Energy Reviews 61, pp. 30–40. ISSN: 1364-0321. DOI: 10.1016/j.
rser.2016.03.047. URL: https://www.sciencedirect.com/science/
article/pii/S1364032116002823 (visited on 02/28/2023).

Zhou, Zhi et al. (Aug. 2019). “Edge Intelligence: Paving the Last Mile of Arti-
ficial Intelligence With Edge Computing”. In: Proceedings of the IEEE 107.8,
pp. 1738–1762. ISSN: 0018-9219, 1558-2256. DOI: 10.1109/JPROC.2019.
2918951. URL: https://ieeexplore.ieee.org/document/8736011/ (vis-
ited on 01/05/2023).

Zhou, Zhi-Hua (June 2012). Ensemble Methods: Foundations and Algorithms. en.
1st ed. Chapman and Hall/CRC. ISBN: 978-1-4398-3005-5. DOI: 10.1201/
b12207. URL: https://www.taylorfrancis.com/books/9781439830055
(visited on 12/30/2019).

— (2021). “Ensemble Learning”. en. In: Machine Learning. Singapore: Springer
Singapore, pp. 181–210. ISBN: 9789811519666 9789811519673. DOI: 10 .
1007/978- 981- 15- 1967- 3_8. URL: https://link. springer. com /
10.1007/978-981-15-1967-3_8 (visited on 01/16/2023).

Zhu, Fu et al. (June 2022). “An Improved MobileNet Network with Wavelet
Energy and Global Average Pooling for Rotating Machinery Fault Diag-
nosis”. In: Sensors (Basel, Switzerland) 22.12, p. 4427. ISSN: 1424-8220. DOI:
10 . 3390 / s22124427. URL: https : / / www . ncbi . nlm . nih . gov / pmc /
articles/PMC9228785/ (visited on 04/13/2023).

https://doi.org/10.1016/j.cma.2021.114194
https://linkinghub.elsevier.com/retrieve/pii/S0045782521005259
https://doi.org/10.1016/j.jpdc.2019.06.001
https://linkinghub.elsevier.com/retrieve/pii/S074373151930098X
https://linkinghub.elsevier.com/retrieve/pii/S074373151930098X
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582
https://doi.org/10.1007/s12083-021-01074-w
https://doi.org/10.1007/s12083-021-01074-w
https://link.springer.com/10.1007/s12083-021-01074-w
https://link.springer.com/10.1007/s12083-021-01074-w
https://doi.org/10.1109/DCABES.2017.32
http://ieeexplore.ieee.org/document/8253048/
http://ieeexplore.ieee.org/document/8253048/
https://doi.org/10.1016/j.rser.2016.03.047
https://doi.org/10.1016/j.rser.2016.03.047
https://www.sciencedirect.com/science/article/pii/S1364032116002823
https://www.sciencedirect.com/science/article/pii/S1364032116002823
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.1109/JPROC.2019.2918951
https://ieeexplore.ieee.org/document/8736011/
https://doi.org/10.1201/b12207
https://doi.org/10.1201/b12207
https://www.taylorfrancis.com/books/9781439830055
https://doi.org/10.1007/978-981-15-1967-3_8
https://doi.org/10.1007/978-981-15-1967-3_8
https://link.springer.com/10.1007/978-981-15-1967-3_8
https://link.springer.com/10.1007/978-981-15-1967-3_8
https://doi.org/10.3390/s22124427
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228785/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228785/

Bibliography 169
Zhu, Hangyu et al. (Nov. 2021). “Federated learning on non-IID data: A sur-

vey”. en. In: Neurocomputing 465, pp. 371–390. ISSN: 09252312. DOI: 10.
1016/j.neucom.2021.07.098. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0925231221013254 (visited on 03/15/2022).

Zhu, Michael and Suyog Gupta (Oct. 2017). “To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression”. en. In: arXiv:1710.01878
[cs, stat]. arXiv: 1710.01878. URL: http://arxiv.org/abs/1710.01878
(visited on 11/06/2018).

Zou, Han et al. (Jan. 2018). “WinLight: A WiFi-based occupancy-driven light-
ing control system for smart building”. en. In: Energy and Buildings 158,
pp. 924–938. ISSN: 0378-7788. DOI: 10.1016/j.enbuild.2017.09.001.
URL: https://www.sciencedirect.com/science/article/pii/S0378778817313907
(visited on 02/28/2023).

https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/10.1016/j.neucom.2021.07.098
https://linkinghub.elsevier.com/retrieve/pii/S0925231221013254
https://linkinghub.elsevier.com/retrieve/pii/S0925231221013254
http://arxiv.org/abs/1710.01878
https://doi.org/10.1016/j.enbuild.2017.09.001
https://www.sciencedirect.com/science/article/pii/S0378778817313907

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Preamble
	Motivation
	Problem Statement
	Aim and Objectives
	Contributions
	Publications
	Thesis Overview

	Artificial Intelligence of Things: A Comprehensive Review
	Introduction
	Fundamentals of Artificial Intelligence of Things
	Internet of Things: Main architecture
	Fundamentals of Artificial Intelligence
	Supervised Learning
	Unsupervised Learning
	Ensemble Learning

	Graph Topology
	Federated learning
	The Effect of Non-independently and Identically Distributed (non-IID data) in Federated Learning

	Bringing Machine Learning to the Edge
	Software Approaches
	Pruning
	Quantisation
	Fine-tuned Architecture
	Low-Rank Factorisation
	Knowledge Distillation
	Evolutionary algorithms

	Hardware Approaches

	Artificial Intelligence of Things Main Applications
	Smart Health Systems
	Smart Homes
	Smart Transportation

	Challenges of Deploying AIoT Applications
	Discussion
	Summary

	EnSyth: A Pruning Approach to Synthesis of Deep Learning Ensembles
	Introduction
	Method
	Convolutional Neural Networks (CNNs)
	Feed-forward Neural Networks
	Net-Trim- The Pruning Method
	Synthesis of Deep Learning Ensembles
	Backward Elimination

	Experiment
	LeNet-5
	Datasets
	CIFAR-10
	CIFAR-5
	MNIST-FASHION

	Experimental Setup
	Network Training and Pruning
	Synthesis of Compressed Deep Learning Ensembles

	Results and Discussion
	Results of CIFAR-10
	Results of CIFAR-5
	Results of MNIST-FASHION
	Computational Cost
	Backward elimination
	Discussion

	Summary

	MicroNets: A Multi-Phase Pruning Pipeline to Deep Ensemble Learning in IoT Devices
	Introduction
	Method
	Pool Generation and Weight Pruning
	Post Training Integer Quantisation
	Ensemble Pruning
	Representative Selection Strategies

	Experimental Study
	Datasets and Models
	Implementation Details
	Model Training and Pruning
	Integer Quantisation
	Ensemble Pruning
	Deployment to a Distributed Edge Environment

	Experimental Setup
	Results and Discussion
	Results on CIFAR100
	Results on CIFAR10
	Energy monitoring
	Computational Complexity
	Discussion

	Summary

	FedNets: Federated Learning on Edge Devices using Ensembles of Pruned Deep Neural Networks
	Introduction
	Method
	System Topology
	Ensemble Generation and Pruning:
	Model training on Local Datasets (NON-IIDs) Update Local Models Weights
	Graph Conversion
	Graph Embedding Generation
	Clustering of Embeddings
	Selection Criteria for Representative Models

	Privacy Preserving

	Experimental study
	Data set and Models
	Federated CIFAR100 for Simulation
	ResNetV2

	Simulation Setup
	Results and Analysis
	Comparison With the State of the Art
	Ensembles Performance
	Preserving Privacy
	Discussion of the Results

	Summary

	Conclusion and Perspectives
	Summary
	Future Direction
	Ensyth: Delving Deeper into Ensemble Strategies
	Micronets: Deep Ensemble Learning in IoT Devices
	FedNets: Embracing Federated Learning for Enhanced Edge Computing

	Bibliography

