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ABSTRACT Knowledge graph (KG) summarization facilitates efficient information retrieval for exploring
complex structural data. For fast information retrieval, it requires processing on redundant data. However,
it necessitates the completion of information in a summary graph. It also saves computational time during
data retrieval, storage space, in-memory visualization, and preserving structure after summarization. State-
of-the-art approaches summarize a given KG by preserving its structure at the cost of information loss.
Additionally, the approaches not preserving the underlying structure, compromise the summarization ratio
by focusing only on the compression of specific regions. In this way, these approaches either miss preserving
the original facts or the wrong prediction of inferred information. To solve these problems, we present a novel
framework for generating a lossless summary by preserving the structure through super signatures and their
corresponding corrections. The proposed approach summarizes only the naturally overlapped instanceswhile
maintaining its information and preserving the underlying Resource Description Framework RDF graph.
The resultant summary is composed of triples with positive, negative, and star corrections that are optimized
by the smart calling of two novel functions namely merge and disperse. To evaluate the effectiveness of
our proposed approach, we perform experiments on nine publicly available real-world knowledge graphs
and obtain a better summarization ratio than state-of-the-art approaches by a margin of 10% to 30% with
achieving its completeness, correctness, and compactness. In this way, the retrieval of common events and
groups by queries is accelerated in the resultant graph.

INDEX TERMS Knowledge graph, semantic web, instance-based aggregation, super signature, optimized
triples, optimized corrections.

I. INTRODUCTION
Knowledge Graphs, (KG), are heterogeneous and complex
structures that represent various types of data and their
relationships [6], [7]. Due to their heterogeneity and com-
plexity, it is difficult for humans or even machines to
perceive or even visualize them for analysis [8]. Such analysis
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requires data processing for retrieval, and correct inference
for knowledge prediction. To minimize processing overhead,
a summary graph is beneficial for aggregating concepts but
every instance of it has own significance while aggregation.
One such example is COVID-19 data [18] recently the world
faced for predicting the next disease when a new instance
added in the system. Thus, an aggregation of such concepts,
requires its instance-based aggregation during summarization
for correct inference. It also helps for future prediction of
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those events that are dependent on newly joined concepts in
KG. From aggregation with completion of summary graph,
we are able to provide ease in visualization, extraction, fast
in-memory processing, and even correct knowledge inference
by saving computational time in comparison to KG.

In KG mining, several techniques have been developed
for summarization. These techniques include bi-simulation
[4], [7], [20], [32], co-occurrence [48], [50], and semantic
similarity aggregation [44], [46], [47]. However, due to
significance labels on the edges in KG, makes the summary
graph lossy and inaccurate [1], [2]. As a result, a summary
graph generates lossy compression as discussed in several
studies [4], [20], [44], [46], [48], [50]. One technique [48]
attempted to minimize the information loss using the in-
lining mechanism for the resultant RDF graph but its prime
concern was to preserve structure only, rather than preserving
information and knowledge.

Recent studies, such as the ones present in [57], use seman-
tic summarization as graph-based summarization (GBS) and
query-based summarization (QBS) as a lossless compression.
However, these approaches still aggregate individual events
that require unique literal information in response to query
retrieval in SPARQL for individual events. Thus, the
composition of literals may be an accuracy tradeoff for lossy
dependent data in case of no corrections. However, these
approaches reduce the overall size ofKG, they may lose some
essential information for structural or data dependency [48],
[50], [57]. Thus, a summary mechanism for KG needs to
preserve information for correct knowledge inference while
preserving its structure similar to its native one for its lossless
aggregation. Moreover, it requires a reduction in size, and the
presence of property existence while maintaining structural
homomorphism between input and resultant graph. Such
challenges are key challenges for summarizing KG. As a
consequence, if the resultant summary preserves complete
information in patches or levels, it leads KG to ensure its size
reduction in each level with its completion of information and
knowledge. In that case, it accelerates the SPARQL query for
processing due to less number of triples during information
preserving.

For lossless compression of KGwhile preserving complete
information, it is necessary to identify natural overlapping
events in a KG, these events facilitate aggregation of specific
regions of the graph with minimum corrections. These
corrections are: 1) rectification (negative corrections) [56]
produce by computing valid information in case of lossy
facts, 2) (positive corrections) consider when lossy facts
are more than original facts, or 3) treats the same as input
graph in case of disjoint events (star corrections) in a
summary graph. In this way, the resultant graph ensures
the completion of data for its dependency and similarity of
structural homomorphism. In addition to it, it ensures each
individual level in a multilevel graph which is lossless and
guarantees its information about accuracy in a compact way.

In this paper, we present a novel lossless summarization
approach of KGs, named Instance-based Aggregation with

optimized Corrections and triples (IBA-OTC), which first
identifies specific overlapping regions for aggregation. Sec-
ondly, different overlapping regions create multiple signa-
tures for instance-based aggregation and ensure complete
information preservation by maintaining the correction list.
In this way, the proposed approach also reflects how the new
information/knowledge is part of the resultant repository in
case of aggregation. We demonstrate our proposed approach
in Fig. (1) using a sample KG where we first generate 1).
instance-based aggregation, then 2). optimize corrections and
3). triple optimization using two novel functions, disperse and
merge. We perform experiments on 9 publicly available real-
world KGs to obtain encouraging results. We also compare
our proposed IBA-OTC with existing work in terms of 1).
execution time and 2). compression ratio and obtain better
performance.

The contributions of this paper are as follows.
• A mechanism to trace valid correction lists for each
instance for its lossless aggregation of events.

• Mapping of natural merging events by finding specific
overlapping regions of KG for its next upcoming event.

• Introduce ‘‘merge’’ and ‘‘disperse’’ for triple optimiza-
tion in the resultant graph.

• Comparison with the state-of-the-art approaches for
detailed analysis of summarized resultant graphs.

The structure of the paper is as follows. The background
and related work will be discussed in section (II). In sec-
tion (III), we present our problem definition and elaborate
our objective on resultant summarized graph. Section (IV)
presents our methodology and explains our approach using
an illustrative example, along with a detailed explanation
of the significance of each part of our three presented
algorithms. Section (V) includes the validity proofs for our
approach, which are demonstrated through three different
properties. In section (VI), we conduct several experiments
to show the summary behavior of our approach on various
online available datasets. Finally, we conclude our paper
in section (VII) and discuss the limitations and potential
extensions of our approach in section (VIII).

II. RELATED WORK
In this section, we first discuss RDF graph summarization
and categorize the existing work into four different classes.
After providing an overview of these classes, we discuss some
state-of-the-art approaches in detail as they are quite related to
our work. We discuss these approaches in detail and compare
our own approach with them.

The first class of work, focuses on preserving structure
while doing summarization. The second class focuses on
finding approximate patterns in knowledge graphs. The third
class contains approaches for statistical metrics of KG and
the last class contains hybrid methodologies for it.

A. STRUCTURAL METHODS
The approaches belonging to this class of work, concerns
the preservation of graph structure for its summarization.
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FIGURE 1. System diagram of the proposed solution. The steps shown in red color involve in the process of optimization. The green color represents the
iterations.

Such methods [4], [7], [7] aim to structure visualization of
RDF graphs. However, the resultant graph is not suitable for
querying the information. References [15] and [17] proposed
an approach to summarize large semantics graphs using
namespaces. For this, the author used namespaces to create
summary graphs of reduced size, for the sake of more
meaningful visualization. In this summarization process,
object literals are also reduced to their data type and the
blank nodes. The main limitation of this approach likewise
discussed in [29] is to visualize summary graphs to give an
insight into the original large graph. Preserving information
is still missing in this approach which we classified as a lossy
data approach.

Recent studies presented SumMER [19], the first structural
summarization technique using machine learning techniques
for KGs. SumMER explores eight centrality measures and
then uses machine learning techniques for optimally select
most important nodes. After that, those nodes are linked
to formulate a subgraph out from the original graph.
In this approach, data completeness is still missing and
it focuses only on visualizing in addition to the subgraph
retrieval of the most significant nodes. Therefore, it is a
lossy data compression. References [48] and [87] formally
claimed another fine effort for summarizing RDF graphs by
preserving structure only using the concept of ‘‘finding node
level Co-Occurrence’’. Such effort for node merging criteria
causes a reduction in size significantly with maintaining its
property uniqueness but the main limitation of this work is
a lossy compression keeping in view the information and
knowledge in KG.Moreover, it provides an abstract summary
for visualizing the RDF graph by preserving its structure.
This summary is unable to answer several SPARQL queries
likewise from the original graph. It uses intuition of transitive
property for the inference of nodes merging. However,
inlining mechanism also miss-preserves the information and
inference in resultant KG. We question and solve this in our

approach i.e. How to preserve structure and informationwhile
summarization.

B. PATTERN MINING METHODS
This line of works reveals frequent information or infor-
mation regarding a similar entity for its summarizing task.
In [5], [11], [12], [13], and [14], a framework is presented
to model process data as a summary graph to discover
concept hierarchies for entities based on both data objects
and their interactions in summary graphs. For this, the
authors presented a new language namely BP-SPARQL,
for the explorative querying and understanding of summary
graphs from various user perspectives. We understand that its
architecture for querying, exploration, and analysis of process
graphs is an extra overhead because resultant summary graph
is not capable for querying traditional SPARQL language.
More relevant to the structure and pattern, the authors in [16]
presented a summarization method that takes into account
both the graph structure and user query history. Specifically,
the authors defined a mixed metric of node importance
that captures both the structural importance and user query
preferences. We categorize this method as a pattern mining
summarization method because of finding individual node
importance in KG. In this paper, two algorithms are proposed
to extract summaries of a given RDF graph. The gap of
lossless summarization still exists because query preferences
lack some information in this summary graph. The authors
in [22] extended the previous study, to speed up the evaluation
of potentially interesting aggregates. Results show that
their solution achieves significant execution time reductions
while presenting output to close to the original. This
approach is lossy and focuses only on interesting aggregated
events.

Reference [31] proposed a novel summarization technique
based on first-order logic rules. They formalized the problem
to explain how the rules replace triples. Basically, it is a
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top-down rule mining method to maximize the re-usability
of cached results. Idea of their approach is subjective to us
but the data dependent application still misses information of
triples when replaced with rules. In similar lines, [3], [20],
[32] presented to find Bi-Similarity among the nodes as node
merging criteria which was further staggered in [15] and [87]
for information mining. Its focus is to reduce the size by
ignoring its structure which causes complexity increase in
the graph. Therefore, the resultant graph is unable to retrieve
information as original.

C. STATISTICAL METHODS
The aim of this class of work is to explore various qualitative
measures for the statistical analysis of the graphs. References
[34], [36], and [42] used the concept of bi-simulation that
are applicable to different sub-graphs defined by different
queries. Sometimes, an actual RDF graph is critical with the
use of mixed and different vocabularies. Therefore, another
scheme of study presented in [23], [24], [25], and [26]
is to facilitate mainly the understanding of knowledge
graphs with mixed vocabularies and not for retrieval or
inference from its compact variant. However, [42] presented
an idea of identifying super nodes in KG to reduce the data
complexity. For this concern, it finds the most highlighted
concepts and identifies the important nodes in a KG. This
idea fascinates even for correct inference of knowledge but
still lossy compression cannot be tolerated in linked data
retrieval.

The authors in [38], [39], [40], [41], and [43] presented an
approach for dynamic exploration with two novel concepts.
One is responsible for granular information access while
the other is for specifying several query nodes in KG.
Notably, [43] is a sequel of [42] for identifying super
nodes. Similar to it, a pioneering work already presented
in [44] to analyze an approach based on knowledge pattern
visualization, also supports query patterns even on unknown
vocabularies. This approach is again lossy and lacks the
correct inference that we are addressing in our approach.
However, [44] explains the features that are important for the
ontological point of KG. In addition, concept and relation
ranking (CARRank) optimizes the weights of relations like
a PageRank algorithm. One reason for summarization is
the complex nature of linked data due to its diversity.
Therefore, [46] presents this idea to formulate SPARQL
queries acrossmultiple heterogeneous data sources regardless
of known or unknown to the user. The sole contribution
of this work is to discuss queries and not for summary
generation. Further, semantic summaries are understandable
with the help of schema relations. In consequence, [49]
presents RDF digest, a notion for automatically generating
the schema and visualization of RDF graphs. This work
presents two algorithms that uses both structure and meaning
of the linked repository translated in RDF/RDFS format
as summary graph. For that reason, it ignores missing
information of RDF data which is not beneficial for lossless
summarization.

D. HYBRID METHODS
In this class of work, we present a wide range of different
RDF summarization techniques. As mentioned above, the
recent contribution regarding RDF graph summarization
lacks research on some key points like fast information
retrieval, completion, and correctness from the resultant
summary graph. Therefore, schema summary, structural
refinement, and pattern identification does not cover these
points. Below, we critique and discuss in detail some hybrid
methods for summarization.

Reference [1] presents a survey of several summarization
concepts with technical aspects and implementation. Its main
aim is to enlighten several summarizationmethods for various
usage scenarios. Although, an approach leading to lossless
summarization, is still missing in this literature that’s why
[3] concentrates another survey on entity summarization lit-
erature on the previous state-of-the-art approaches. The main
focus of this research is to present the first comprehensive
survey of entity summarization in comparison to separately
reviewing all methods.

Bi-simulation, a concept discussed earlier, compresses
only the query part of a KG to give a notion in [34],
[52], [53], [54], and [55] as an adaptive structure summary
graph (ASSG). In relevance to graph size reduction, ASSG
commits a resultant graph to ensure less number of nodes
and edges with its adaptive ability to adjust its structure
in connection to graph query. ASSG also commits lossy
compression that has an impact on specific resultant queries.
Moreover, a summary tool for visualization, LODSight,
presented in [35] displays a typical combination of pred-
icates and their types in a similar way. Due to certain
reliability issues, the summary graph needs further work
for its improvements. Therefore, [36], [65], [66], [67], [68]
introduces a special variant of the database for answering
basic graph patterns for better understanding of knowledge
graph semantics. In particular, the focus of this research
is to deploy the RDBMS engine which is still a trade-
off to completely avoid preservation by generating its
signature schema of the original graph. Moreover, [37] also
critiques understanding datasets and the issue of under-
standability using the tool EXPLOD to facilitate the explo-
ration of knowledge graph summaries among interlinked
datasets.

Reference [7] presents the use of a structure index
for the RDF graph. This is a structure-oriented approach
for RDF data partitioning and query processing which
lacks the information for summary generation of RDF
graphs. In addition, [32] introduces two database styles for
generating summary graphs. Although the dataset is not a
linked data, their task specific to summarization shows it
is relevant in KG summarization. The main limitation of
this approach is generating one big homomorphic structural
graph. Thus, our approach uses a similar idea for the
identification of specific regions and multiple homomorphic
summary graphs. Another study [20], investigates such
approaches as summarizing big graphs. Reference [15]
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is a recent contribution of summarizing large knowledge
graphs using namespaces. Similar to the previous, Another
recent contribution of compression is discussed in [27]
and [89]. These approaches mainly focus on visualizing
the graph, and not query retrieval. Visualizing such graphs
only aims to give insight into the details of structure only
in an abstract way. Further, [33], [79], [80], [81], [82]
explains graph materializing to summarize reasoning from
knowledge graphs. The idea behind the abstraction is based
on equivalence classes with their refinements. This idea
behind refinements is similar to our corrections but the
resultant graph for this approach misses meta information
of the classes that we consider in our approach. For
lossless compression, an approach regarding the knowledge
graph presented in [47] as rule-based compression (RB
Compression), compresses the information by introducing
new nodes and removes verbose triples in the knowledge
base. Removing such triples may be beneficial but it requires
the identification of missing information. In [48], [56], [93],
[94], and [95], a KG summarization method is presented
using the predicate-based Co-Occurrence as a hybrid model.
The intuition behind this is to represent a KG in an entity-
relationship (ER) style which is easy to comprehend and
understand by the human. Although this model is a first fine
effort regarding KG summarization and it misses the retrieval
requests of several literal concepts. Therefore, this approach
is a lossy data compression. Another recent effort [57]
provides semantic summary of predicates especially grouped
by queries but it is also lossy due to aggregation of literal
information of KG.

Our approach is different from the existing studies and
especially the aforementioned two recent approaches because
we maintain a correction list (CL) with its three variants 1).
Positive(+ev), 2). Negitive(−ev), and 3). Star(∗) to ensure
completeness, and correctness in a compact way. We also
compare our approach by considering themetrics like method
of use, input graph type, and by focusing the problems of
completeness, correctness, and accuracy. We present detailed
comparison of existing studies in Table. (1). We compare our
approach with state-of-the-art methodologies and consider
our work as a first effort regarding RDF data aggregation with
lossless information.

III. PROBLEM DEFINITION
Given a knowledge graph (KG) in triples, our objective is
to create its lossless summary graph (K̂G′) to achieve 1)
Compactness, 2) Correctness, and 3) Completeness. In this
way, the resultant K̂G′ is a union composition of J super
signatures (T̂Q) where for every super signature T (j)

Q ∈ T̂Q
i.e T̂Q = T (1)

Q ,T (2)
Q , . . . ,T (J )

Q and their D corresponding
corrections (8̂) i.e 8̂ = {9̂(1), 9̂(2), 9̂(3), . . . , 9̂(D)

}. Our
task is to minimize each correction list 9̂(d) that generates
their corresponding super signature by identifying only
overlapping regions in KG.

IV. PROPOSED METHODOLOGY
We categorize our methodology into three modules. As a
first step, we present instance-based aggregation approach for
finding the specific overlapping regions of a KG. We then
present a solution to compute corrections and minimize
the correction list by performing correction optimization.
Lastly, we ensure the reduction of triples in a resultant graph
using triple optimization. We propose two novel functions
merge and disperse for triple optimization. The detail of each
module is explained below.

A. KNOWLEDGE GRAPH, A FORMAL DESCRIPTION
First, we describe the notations and symbols to represent
a KG consisting of H number of facts. A fact may be a
subject, an object or a literal. A set of subjects is represented
as S = {s1, s2, s3, . . . , sI } which contains I number of
subjects/objects. A set of N number of objects/literals is
expressed as S ′ = {s′1, s

′

2, s
′

3, . . . , s
′
N } and a set ofM number

of literals is represented as S ′′ = {s′′1, s
′′

2, s
′′

3, , . . . , s
′′
M }.

A predicate set is represented as P = {p1, p2, p3, , . . . , pJ }.
A single triple is (si, pj, ω), where there are K number of ω
and {ω : ω ∈ S ′ or ω ∈ S ′′}. The entire triple resources of
the input knowledge graph can be expressed as,

KG =
⋃

si∈S,pj∈P,ω

(si, pj, ω), {ω : ω ∈ S ′ or ω ∈ S ′′}

(1)

B. INSTANCE-BASED AGGREGATION
Our first step towards lossless summarization is the instance-
based aggregation. We generate super signatures, based on
each predicate separately.

1) LOCALITY SENSITIVE HASHING (LSH) BASED
AGGREGATIONS
In our instance-based summarization of a KG, rather
than performing pairwise similarity computations to obtain
signatures, we adopt LSH that can identify similar triples
with high accuracy. Similar, to the idea of [10] to group the
nodes for generating the summary of an undirected graph.
Using LSH, we generate instance-based signatures using
hash codes matching from the neighborhood of each node.
In this way, signatures with matching hash codes are grouped
with each other. Thus, restricting similarity computations
between similar nodes only, saving our computational cost in
comparison to group-based aggregation like [57]. We apply
LSH on a KG for (i) creating a minhash signature matrix
and (ii) generating signatures of similar nodes. For a
heterogeneous knowledge graph, KG, having j interacting
with H different facts, contains subjects (S), subjects/objects
(S ′) and objects/literals (S ′′). Both S and S ′ are mutually
disjoint to S ′′ which is a superset of both sets. Therefore, the
notation of single triple in KG is actually the LSH based super
signature which is represented as:

T (1)
Q = s, p1,w, (2)
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TABLE 1. Comparison of existing approaches.

TABLE 2. Annotation table for all symbols used in proposed
methodology.

where s represents a super subject that may consist of
multiple subjects while w is a super object that may also
consist of a number of objects, e.g., s = {s1, s2, s3} and

w = {s′1, s
′

2, s
′′

3}. A super subject or super object is actually
a super node consisting of a number of subjects or objects.
In other words, we consider Q number of quotients in a KG,
and the first two instances (a sub-graph), KG(1) and KG(2) are

KG(1)
=

⋃
si∈S,ω

(si, p1, ω), (3)

KG(2)
=

⋃
si∈S,ω

(si, p2, ω), (4)

For instance in an illustrative example, shown in Fig. (2),
KG(1) is the instance representing ‘‘wrote’’ and KG(2)

represents ‘‘teaches’’. All the quotients of knowledge graph
are disjoint union with each other.

KG = KG(1)
⊔ KG(2)

⊔ KG(3), . . . ,⊔KG(Q−1)
⊔ KG(Q) (5)

2) CORRECTION LIST (8).
We express a KG in (1). as,

KG = TQ ∪8 (6)

where TQ is total number of super signatures.

TQ = {T
(1)
Q ,T (2)

Q , . . . ,T (J )
Q } (7)

and 8 is the total number of correction lists

8 = {9(1), 9(2), 9(3), . . . , 9(D)
}. (8)

For a specific predicate, the (6) becomes

KG(1)
= T (1)

Q ∪9
(1) (9)

where 9(1) is the correction list for predicate p1 and each
correction in the correction list is represented as ψ . In this
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way, a correction list may consist of Z number of corrections
like, 9(1)

= {ψ
(1)
1 , ψ

(1)
2 , ψ

(1)
3 , . . . , ψ

(1)
Z }.

We introduce three different correction lists in the resultant
knowledge graph K̂G. A correction list is a set of triples that
is part of the super signature for a resultant summary graph,
as shown in Fig. (1).
• Negative Correction List (8−). In a negative correction
list 8−, a negative correction φ− indicates that a triple,
(si, pj, ω), is not part of KG with respect to its super
signature, TQ = s, p1,w. More precisely, in a query
retrieval process, a negative correction needs to be
removed.

• Positive Correction List (8+). In case of a positive
correction list8+, a positive correction φ+ shows that a
triple, (si, pj, ω), is part of KG with respect to its super
signature, TQ = s, p1,w. In a query retrieval process,
a positive correction must need to be added.

• Star Correction List (8∗). In a star correction list
8∗, a star correction φ∗ points out the situation when
both positive and negative corrections fail to produce a
smaller number of triples compared to the actual ones.
We represent these star corrections with the same as
original triples in resultant summary graph.

The detailed process of our proposed instance-based aggre-
gation and super node creation is presented in Algorithm 1.
It requires a KG, in triples format having P different
predicates and ensures all super signatures with the relevant
negative corrections. Lines 1-4 ensures the graph contains
triples with repeating predicates. Line 5-8 generates P
different signatures using LSH, whereas line 9-12 generates
its possible number of corrections for each super signature.
The computational time for Instance-based aggregation is
kO(n) and it returns the super signatures T (J )

Q , and naive
corrections 9−.

C. PROPOSED OPTIMIZATIONS FOR CORRECTIONS AND
TRIPLES
The next step is the process of minimization which consists
of two steps, 1). the corrections and the triple optimization.

1) CORRECTIONS OPTIMIZATION
In correction optimization, we deal with correction lists 8
and minimize the number of corrections in each individual
correction list 9(d), d ∈ {1, 2, 3, . . .D}. We reduce number
of corrections in a correction list by introducing the different
types of corrections types, as mentioned above. We, first,
swap all those negative corrections with positive correction(s)
for which the count of the positive corrections is lesser
than count of the negative corrections. We then introduce
a star correction which indicates that there are no benefits
of aggregation at all. As a result, the original triples of
the graph remain unchanged. In this way, the corrections
are initially pure negative, which we distribute later in
negative φ−, positive φ+ and star φ∗ corrections. To this end,
we have a mixture of corrections that ensures the correction

Algorithm 1 Instance-Based Aggregation and Super Node
Creation
Require: A knowledge graph KG with a number of

Triples T = (si, pj, ω), with predicates P =

{p1, p2, p3, , . . . , pJ }.
Ensure: The triples T (J )

Q and the correction list 9−.
//editorialization

1: input a knowledge graph KG
2: if (count(T ) ==(unique(P))) then
3: return
4: end if
5: for pj ∈ P for triples T do
6: T (j)

Q ← LSH (si, pj, ω) i ∈ {1, 2, 3, . . . , I }

7: T (j)
Q = s, pj,w

8: end for
9: for pj ∈ P for instance-based aggregated triples T (J )

Q do
10: if (∀si ∈ s, pj,∀ωi ∈ w) /∈ KG then
11: 9−← si, pj, ωi
12: end if
13: end for
14: return T (J )

Q , 9−

minimization process for 9̂(1) for a specific predicate as

9̂(1)
= {φ

(1)
− ∪ φ

(1)
+ ∪ φ

(1)
∗ } (10)

After performing the correction optimization, the Equation 9
becomes,

K̂G(1)
= T (1)

Q ∪ 9̂
(1) (11)

We update the correction list 8̂ for all available instances.
As a result, the correction lists become

8̂ = {9̂(1), 9̂(2), 9̂(3), . . . , 9̂(D)
} (12)

It is observed that the updated correction list is 9̂ < 9.
The discarded corrections are expressed as α. We present our
approach to detail optimized correction list in Algorithm 2.
It requires the output of proposed Algorithm 1. Its purpose is
to replace negative corrections 9− with positive corrections
9+ that is beneficial for reduction and then update the
correction list if the positive corrections of some events
are lesser in number in comparison to its previous negative
(-ve) corrections. Before the execution of this algorithm, each
super signature has many 9− corrections but after executing
this algorithm, the correction list updates by removing α
number of triples. In this way, updated events are 9+ in
the correction list. Note that, an event is either a part of
any super signature either with positive corrections (+ve)
or with negative corrections (-ve). Lines 1-3 generates the
positive corrections for all of the super signatures in O(n)
time and updates by comparing the count of positive with
negative. Lines 4-8 update the whole corrections list O(k)
times. We perform this using LSH to save our computational
cost. Hence, the complete computational cost for checking
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and updating is O(kn). Lines 9-12 remove all invalid or
duplicated corrections by updating KG in O(k) times.

Algorithm 2 Correction Optimization

Require: T (J )
Q , 9−.

Ensure: The optimized corrections 9̂(J ). //editorialization
1: for pj ∈ P for instance-based aggregated triples T (J )

Q do
2: if (∀si ∈ s, pj,∀ωi ∈ w) ∈ KG then
3: 9+← si, pj, ωi
4: for (∀si ∈ s) do
5: if count(9+) < count(9−) then
6: 9̂ ← 9+

7: else
8: 9̂ ← 9−

9: end if
10: end for
11: end if
12: end for
13: return 9̂

2) TRIPLES OPTIMIZATION
In case of triple optimization, we perform the process of
minimization by proposing two novel concepts of merging
and dispersing. To this end, we have instance-based super
signatures with all types of corrections, on which we perform
merging or dispersing.

a: MERGING
In merging, we take a super signature and check the merging
for every node in a super node, i.e. a super subject or super
object. If recent merging of a node in a super node contains
less or equal number of triples in summarized graph K̂G′(1)

then the triples in an actualKG(1), with respect to that specific
super signature, the process of merging is performed. More
precisely, merging is beneficial only if nodes are combined
together in such a way that the current count of triples is
reduced in summary graph K̂G′(1) is less than or equal to the
triples count in an actual graphKG(1) with respect to a specific
super signature. It is to note that the total number of triples in
the resultant sub-graph KG(1) contains its signatures and all
corrections. Mathematically,

K̂G′(1)m = T̂ (1)
Q,m ∪ 9̂

(1). (13)

b: DISPERSING
In case of dispersing, if current count of triples in a
summarized graph K̂G′(1) becomes greater than the triples
count in actual graph KG(1) from certain super signatures,
merging process becomes failed and we perform dispersing
instead. Mathematically,

K̂G′(1)d = T̂ (1)
Qd ∪ 9̂d

(1)
. (14)

We perform merging and dispersing step by step triggered

at once at a time based on the triple ratio, t (1)r =
t (1)s

t (1)a
, where t (1)a

is triple count of the actual sub-graph KG(1) and t (1)s is triple
count of the summarized sub-graph K̂G′(1) for some specific
super signature. Thus, total number of discarded corrections
is β. Mathematically,

K̂G′(1) =

{
K̂G′(1)m t (1)r ≤ 1

K̂G′(1)d otherwise
(15)

Generally, we always perform merging first, if it fails then
we try to disperse at a time. As a result, we get a new version
of sub-knowledge graphs represented as K̂G′(1) with reduced
number of triples

K̂G′(1) = K̂G′(1)m ∪ K̂G
′(1)
d . (16)

It may also be expressed as,

K̂G′(1) = T̂ (1)
Q ∪ 9̂

(1), (17)

In the end, we obtain a summarized graph for all the
instances as

K̂G′ = K̂G′(1) ⊔ K̂G′(2) ⊔ K̂G′(3) . . . ⊔ K̂G′(Q−1) ⊔ K̂G′(Q)

(18)

The details of proposedmechanism about optimized triples
is presented in Algorithm 3. It requires a KG and output of
our Algorithm 2. It ensures the final resultant graph K̂G′ in
a compact version. We call this as our cost function because
it is an iterative process that finds the optimal region of the
aggregated graph with minimum corrections. Line 1 indicates
the outer loop for examining all super signatures and Line 2
indicates the inner loop to examine subjects and objects
association of each super node in a KG. It performs the
optimized assessment on each super signature with respect to
its triple ratio tr in an iterative manner. Lines 3-5 calculates
and checks the triples ratio tr . A super signature T (J )

Q splits
into k multiple sub super signatures, if its triples ratio tr
exceeds one. Lines 6-10 performmerge and disperse function
to create multi-super signatures with optimized correction
list. We call this operation a dispersal of events that maps a
new instance of KG by creating another super signature of the
same predicate. Thus, it requires updating 9̂ by reducing β
corrections.

D. EXAMPLE EXPLANATION OF THE PROPOSED
ALGORITHMS USING A SAMPLE KNOWLEDGE GRAPH
In this section, we provide details of our proposed solution
using a sample KG.

Given a KG, we summarize it in multi-instance KGi where
i = 1, 2, 3, . . .Q. We aim to produce the summary instance
of KG for property-specific SPARQL Query in addition to
its refinements and preserving information in the summary
graph. Here, KG(1) and KG(2) are,

Professor
type
←−− P1

advises
−−−−→ P2

The above scenario is sample sub-knowledge graph which
contains two triples one depicting P1 as Professor and the
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Algorithm 3 Triples Optimization

Require: KG, T (J )
Q , 9̂.

Ensure: The graph with optimized triples, K̂G′m, K̂G
′

d and
K̂G′.

1: for ∀pj ∈ P in instance-based aggregated triples T (J )
Q do

2: for (∀si ∈ s, pj,∀ωi ∈ w) ∈ K̂G do
3: ta = triple_count(KG)
4: ts = triple_count(K̂G′)
5: tr =

ts
ta

6: if tr ≤ 1 then
7: K̂G′m = merge(K̂G) //Single Super Signatures
8: else
9: K̂G′d = disperse(K̂G) //Multiple Sub-Super

Signatures
10: end if
11: end for
12: K̂G′ = K̂G′m ∪ K̂G

′

d
13: end for
14: K̂G′ = K̂G′(1) ⊔ K̂G′(2) ⊔ K̂G′(3) . . . K̂G′(Q)

15: return K̂G′

FIGURE 2. An example for illustration of heterogeneous graph.

other showing P1 as a mentor of P2. Therefore, two summary
intakes are responsible for type and advises for this sub-graph
separately, as show below.

KG(subgraph)
= KG(type)

∪KG(advises)

In the above, the triples of type and advises are independent
so we need to preserve factful information about ′type′ in
KGtype and ′advises′ in KGadvises in two separate instances.
Here, any instance of the graph is property-specific that
responsible for its respective queries in K̂G′. Therefore, for
every query: first, it retrieves from the property-specific
instances, and second, it retrieves from the K̂G′.

Fig. (2) shows P1, P2, P3, P4, P5 representing people who
taught courses C1, C2, C3 and wrote books a1, a2, a3, and
a4, hence shows a heterogeneous KG. Visually, it is depicted
in a graph format on the left while the right side represents
its triple format. A triple is complete information of a subject
interacting with an object with a relationship of its predicate.

Our sample graph shows it contains 19 triples, 16 nodes and
19 triples.

In Fig. (3), ′wrote′ is used for explaining the complete
execution of our approach. Our proposed approach for
corrections optimization, IBA-OC, facilitates query response
for single super signatures. Similarly, proposed method for
triples optimization, IBA-OT, responds for multiple sub-
super signatures for its smart execution. Thus, a property
‘wrote’ retrieved from KG and producing KG1 as its first
instance. For this, SPARQL queries relevant to KG(1) save
computational overhead by only identifying its instance.
Moreover, any operation regarding aggregation also needs
valid corrections in K̂G′(1) for its completeness, compactness,
and correctness.

Below we present explanation of LSH-based aggregation,
Correction optimization, and triples Optimization for map-
ping the natural merging events with minimum corrections.
In below explanation, we summarize our sample KG having
nineteen triples reduced into a summary having sixteen
triples, as shown in Fig. (1). In this way, it ensures a
lossless structure in a compact way in comparison to
input KG.

1) APPLYING PROPOSED LSH-BASED AGGREGATIONS ON
OUR SAMPLE KNOWLEDGE GRAPH
Our first step is the aggregation of triples having same
predicates. For this, we use LSH for aggregation to efficiently
identify the triples having same predicates. We aggregate the
triples on the basis ofwrote, advises, teaches, takes, crsdescr ,
and type as our six TQ with thirty naive corrections ψ , in (6).
Using, the aforementioned predicates, we segregate all the
triples into groups, and then perform aggregation. The red
shaded part in Fig. (3) shows the super signature of ′wrote′

as T (wrote)
Q and its possible corrections as 9(wrote).

2) APPLYING PROPOSED CORRECTION OPTIMIZATIONS ON
OUR SAMPLE KNOWLEDGE GRAPH
Our next step is correction optimization in order to reduce
the number of negative corrections by converting them into
positive (+ve), negative (−ve), and star (*) corrections. For
this, we compute whether it is beneficial to convert triples into
super signatures. If the answer is affirmative, we compute its
super signature and find only respectiveminimum corrections
either positive (+ve) or negative (−ve) in correction list.
On the contrary, we choose the original triples as our star
(*) correction φ∗. For our sample graph, we choose triples of
advises, crsdescr , and type as star (*) correction. However,
wrote and teaches use positive as well as negative (−ev)
corrections 9̂. The yellow shaded part in Fig[3] shows
the super signature of ′wrote′ as T (wrote)

Q and its updated
correction list as 9̂(wrote). Thus, the updated corrections are
lesser than the naive corrections previously computed. i.e.,
9̂(wrote) < 9(wrote). The discarded number of corrections α
are replaced with respective positive corrections φ(wrote)+ of
subjectP2 andP5. Thus, the aggregated graph after correction
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FIGURE 3. Complete execution of Correction Optimization, IBA-OC, and Triple optimization, IBA-OT, for instance ‘wrote’ in sample Knowledge Graph.

FIGURE 4. Illustration of proposed merge function for Correction
Optimizations.

optimization shows completeness, and compactness in every
aspect.

3) APPLYING PROPOSED TRIPLES OPTIMIZATIONS ON OUR
SAMPLE KNOWLEDGE GRAPH
Lastly, we perform triple optimization and generate a
resultant summary graph by identifying the specific region
of aggregation from the graph with minimum corrections

generation. To achieve this, we use our proposed merge
and disperse functions for mapping events/triples into super
signatures as triples optimization. Fig. (4) depicts the scenario
where themerge is performed and Fig. (5) shows the dispersal
of events for a specific quotient. It is an iterative process in
which every triple, during merging, has to pass the criteria
first. In case of failure, it performs disperse. It allows merging
in all iterations except in seventh where the tr does not meet
the criteria and allows splitting of a single super signature
into two sub super signatures for ′wrote′. In consequence,
after triple optimization, the resultant graph K̂G′(wrote) is the
combination of two (02) sub super signature of wrote: T̂ (wrote)

Q
with its four (04) optimized corrections. Thus, 9̂(wrote)

preserves less number of triples with complete information
and knowledge. Note that the formation of multiple sub-
signatures may depend on the sequence of execution but it
ensures compactness.

V. KEY CONSTRAINTS FOR SUMMARIZING A
KNOWLEDGE GRAPH AND THE PROPOSED SOLUTION
In this section, we discuss three C’s (3C) key metrics of
a summary graph of a KG. From the perspective of its
correctness, a resultant summary graph is lossless if it
satisfies the following:

• Completeness: For a given KG, its summary should
ensure complete information accessible in comparison
to the original graph regardless of type of aggregation
operations during summarization.

• Compactness: The size after summarization of a KG
should guarantee lesser number of triples in comparison
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FIGURE 5. Illustration of proposed disperse function for triples
optimization.

to the input graph. In this way, reduction of triples
ensures less number of nodes, and edges as well.

• Correctness: It’s important, that what is to be added or
deleted in the resultant graph. Thus, a resultant graph
should enable the removal of false information during
retrieval and does not disturb the parent structure of input
KG.

In consideration of the above constraints, below we show
how IBA-OTC, our proposed solution, restricts the triples
limit, ensures reduction in graph size, and behaves non-
volatile in the formation of super signatures. We present the
details of IBA-OTC satisfying the aforementioned constraints
using the following theorems.
Theorem 1: (Given a KG, its resultant summary graph

K̂G′ restrict triples and ensure reduction while achieving its
completeness during aggregation).

proof: Lets given a subject s associated with predicate
p to three different instances subjects/objects/literals. Opti-
mized corrections restrict 8 and optimized triples restrict 9̂.
Thus, if KG(i) associates to the original triples and i ∈ T (i)

Q
and j ∈ 9(i) and i ∪ j > KG(i) triples ratio tr exceeds to 1.
In this case, we consider star(*) corrections, hence it is un-
shrinkable.

In detail, aggregated triples with many corrections are
only replaced by original triples or represented with pos-
itive and negative corrections in case of fewer numbers.
Consider a sub-graph with n triples having all instances
of literals/objects/subjects as different. Their association
for aggregation needs i ∪ j number of corrections. The
proposed approach is smart in a sense that it does not start
aggregation and process of correction optimization because
it restricts that if i ∪ j < n then only compute its signature
and corrections. Therefore, the resultant triples count after
optimized corrections does not exceed the original triples.
Theorem 2: (Given a KG, its resultant summary graph

K̂G′ ensures reduction in triples).

Proof for Case 1: For any specific graph, any Q
specific quotient sub-graph chooses its optimal selections
for corrections. For that purpose, the merge triggers while
promising lesser number of corrections. When the model
perform merge for all instances. Using (15).

K̂G′(1) = K̂G′(1)m tr ≤ 1

and we get from (14)
the resultant graph K̂G′(1) for an instance 1 we get.

T̂ (1)
Q ∪ 9̂

(1)
= K̂G′(1)m

if T̂ (1)
Q is one, it means the predicate has one Super Signature

and no further splitting is required throughout the complete
iteration for a specific predicate. Therefore, we get no
response from disperse part and we get from (14).

K̂G′(1)m = T̂ (1)
m ∪ 9̂

(1)

In merge case when a single super signature for any
predicate present in its resultant sub-graph then the updated
correction list is 9̂ < 9. The discarded number of
corrections is expressed as α. It means the graph size reduces
by α which ensures reduction of the resultant graph in
comparison to the input sub-graph. From (11)., we get.

KG′(1) < K̂G′(1)m − α

and it is applicable to complete disjoint resultant graph K̂G.
From (18)., we get.

= K̂G′(1)m − α1 ⊔ K̂G
′(2)
m − α2 . . . ⊔ K̂G

′(Q−1)
m

− αQ−1 ⊔ K̂G
′(Q)
m − αQ

Thus a resultant graph contains Q different sub-graphs with
only merging is reduced by.

=

⋃
pi∈Q

(KG(i)
− [α1 + α2 + α3 . . . αQ−1 + αQ]

which is expressed as:

=

⋃
pi∈Q

(KG(i)
−

Q∑
i=1

αi = K̂G′

Here, the resultant graph represents the union of all instances
reduced by

∑Q
i=1 αi in comparison to KG.

Proof for Case 2: For any specific graph, any Q
specific quotient sub-graph chooses its optimal selections
for corrections. For that purpose, the disperse triggers while
promising a lesser number of corrections.

From Equation (15).

K̂G′(1) = K̂G′(1)d

and Equation. [14] we get.

K̂G′(1) = T̂ (1)
Qd ∪ 9̂d

(1)
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generally expressed as:

K̂G′(1) =
D∑
d=1

T̂ (1)
Qd ∪ 9̂d

(1)

it means T̂ (1)
Qd are multiple and split into d different sub-

super signatures with its respective correction lists 9̂d
(1).

In case of disperse, multiple super signatures for a single
predicate first optimize by corrections and then optimize by
triples. Thus, 9̂ < 9 ( e.g.9̂ is reduced by α) and also
9̂d

(1)
< 9̂ ( e.g.9̂d

(1) is reduced by β) Therefore, (14) can
be expressed as.

K̂G′(1) =
D∑
d=1

T̂ (1)
Qd ∪ 9̂d

(1)
− [α + β]

and the resultant graph K̂G′ from (18) can be expressed as.

=

⋃
i∈Q

(KG(i)
− [

Q∑
i=1

αi +

D∑
d=1

βD]

This proves our resultant graph K̂G′ ensures lesser number
of triples with our two-stage optimization process. It first
optimizes 9 into 9̂ and then optimizes into 9̂d

(Q) for all
Q sub-quotients for splitting super signature into sub-super
signatures. Moreover, it is also possible that a graph or sub-
graph performs a mixture of merging and dispersing because
it is our iterative process and we check every approachable
instance during mapping for its suitable region.

Proof for Case 3: For any specific graph, any Q
specific quotient sub-graph chooses its optimal selections for
corrections. For that purpose, bothmerge and disperse trigger
while promising less number of corrections.

The model ensures reduction but it is lesser in comparison
to case 2. Therefore, we estimate how much the size of the
graph increases in comparison to case 2. Note, If merging fails
for all iterations we use disperse. In this way, super signatures
are the same as original triples that occur seldom. On the other
hand, for every successful merge in k ( e.g.k ≤ Q) merging
cycle, it gains by the size of γ and the overall size of the graph
is the additive factor. Hence, the resultant graph is increased
by a factor of

∑k
i=1 γi. Therefore, (18). can be expressed as.

=

⋃
i∈Q

(KG(i)
− [

Q∑
i=1

αi +

D∑
d=1

βD]+
k∑
i=1

γi

Generally, case 3 occurs because every graph has some
overlapping and non-overlapping regions.
Theorem 3: (Given a KG, its super signatures of resultant

graph K̂G′ are Non-Volatile in nature).
Case 1: Single super signature for each predicate is

formed: In case TQ are unique, the case is addressed in
optimized correction and guarantees fewer number triples
that save computational cost due to optimization when only
perform merge.

TABLE 3. Details of the datasets used for experiments.

Case 2:Multiple balanced signatures: For a hetero-
geneous graph it never happens. if the input graph is
homogeneous, the size of Q signatures split in equal size
with a fraction of b. The total time saved by the triples is bk
computational cycleswhich is ideal for uniform computations
at any region.

Case 3:Multiple but unbalanced signatures: It occurs
several times, signatures with large number of corrections
for such triples have higher b. The greater size of b
leads to the denser distribution of any sub-graph. However,
lesser b causes fewer fact aggregation with its optimized
corrections.

VI. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation
of our approach. For the experiments, we used a system
having 128 GB RAM with 6 core processors with Linux
OS (Ubuntu). All the implementations are programmed in
Python.

A. DATASETS
We perform experiments on 9 publicly available real-world
knowledge graphs, the description of these datasets shown in
Table [3]. It shows their triples as instances, unique subjects,
predicates, and objects of each KG.

To observe the impact of KG size during summarization,
we perform a series of experiments on each dataset, and
show the results of each experiment in Table. (5). Our goal
is to show the impact of reduction of K̂G after correction
optimization and K̂G′ after triple optimization with respect
to input KG.

B. EVALUATION ON DATASETS USING COMPLETE KGS
We perform the same experiments on a large knowledge
graph to further understand the effectivesness of our proposal.
For this, we add watdiv benchmark and analyse the results
on both variants (wdiv 10M, watdiv100 M). We observe
that our results further validate our claim and yield similar
reduction on large graphs. In addition, we also perform
BSBM large data. The details of all such experiments are
shown in Table (5). In a large dataset, multiple unbalanced
super signatures are formed with large triples because multi
sub-super signatures reduce the size with a higher fraction in
comparison to quotient of KG.
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TABLE 4. Experiments on real-world datasets with different size.

C. A EVALUATION EXPLANATION ON EACH DATASET
Now we present experimental details on each dataset.

1) KEGG.RN
KEGG.rn contains 1.1 M triples having 13 unique predicates.
Each subject is associated with several other objects with
13 unique predicates. Thus the predicates are repeating in

triples. Some of the notable predicates are schema#label,
kegg#xProduct , title, identifier ,.

2) AFFEMETRIX
Our second dataset for evaluating our approach is AFFET-
METRIX dataset and we choose a file RTU34.na32.annot
from bulk for experiments. It contains 69 K triples about
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TABLE 5. Table shows the reduction percentage of knowledge Graph with optimized correction and optimized triples in comparison to original
knowledge graph.

the information of several associated items with thirty-five
35 unique predicates. Some of the notable predicates are
location, process, function, scientific − name, annotation −
date, id , and type.

3) DRUG BANK
Drug Bank is our third data set for experiments. The
information in this graph consists of several drug types used
for special treatment. The subject of RDF graphs is Drug
ids while predicates are the properties of different drug ids.
The property can be its name, type, description, updated
date, predicted solution for solubility, and information of use,
etc. The objects are mostly literals or constant values which
contain 151 M triples.

4) BSBM BENCHMARK
BSBM benchmark is our fourth dataset for experiments. The
dataset contains the number of producers of the product with
its type of different reviews and their reviewer’s information.
The subject of the RDF graph is product , offers, and reviews.
Some of the notable properties are comment , Publisher −
date, lable, type and etc. BSBM is the standard benchmark
publically available in two variants. One contains 50K triples
and the other contains 100M triples as a large dataset.
We performed our experiments on both datasets to show the
scalability of our approach.

5) DBPEDIA (PERSON DATA)
Another important dataset is DBpedia (person data) where
persons are associated with (09) nine different properties
among name, type, description, Birthplace, Deathplace,
Dathdate, Birthdate, givenname and surname. It contains
6.6 M triples.

6) DBPEDIA (GEO-COORDINATES)
Our last dataset is Dbpedia (Geo-Coordinates). The dataset
contains the information of different location points with
their name, longitude, latitude and type. It contains 47.2 M
triples of information available at different points. Points are
repeated as objects of the RDF graph. As, each point is a
different value, we consider cosine distance while mapping.

7) EVALUATION ON KEGG.RN
On evaluating IBA-OTC on our first dataset, With
4000 triples of KG, the size of the remaining graph after
optimized corrections K̂G is 92.75 % which is further
optimized to 67.92 % using IBA-OT which is total 2717
triples remaining in the resultant graph K̂G′. Note that it is
lossless. In 2717 triples, 28 are super signatures T̂Q while
2689 are its optimized corrections 8̂ of each individual. Some
super signatures are not split into sub-super signatures. From
13 predicates, only six (06) predicates participate in splitting;
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FIGURE 6. Correction Optimization and Triple Optimization (Left to Right) when a single predicate is selected. (a) KEGG.rn with predicate
Kegx-Product (b) AFFEMETRIX with predicate date annotation (c) Drug Bank with predicate update date (d) BSBM with predicate Product Feature
(e) DbPedia (Person Data) with predicate birth place (f) DbPedia (Geo-coordinates) with predicate type.

the rest of seven predicates only map into one super signature
with many corrections.

8) EVALUATION ON AFFEMETRIX
On evaluation of IBA-OTC on this dataset, size of the
remaining graph after optimized corrections K̂G is 83.97%
which is further optimized to 76.91 % using optimized
corrections containing 3076 triples in K̂G′. The information
aggregates to 57 super signatures T̂Q with its 3041 optimized
corrections 8̂. Thus, a resultant graph is the union of T̂Q and
8̂. From 57 predicates, twenty-one 21 predicates with a single
super signature do not participate in the formation of super
facts, except 14 predicates.

9) EVALUATION ON DRUG BANK
To evaluate drug bank data, with 4000 triples of KG, K̂G
is 93.15 % which is further optimized to 87.12 % using
triples optimization. The total number of triples are 3485 in

K̂G′. In K̂G′, 75 are super signatures T̂Q with 3410 are the
optimized corrections 8̂. It is observed from 75 predicates,
thirty-four 34 predicates with a single super signature and
twenty-seven 27 participate in the formation of super facts.

The reason behind many predicates not participating in
compression, is actually their unique name against every
drug that leads to more corrections when aggregating through
merge or disperse. Moreover, due to the heterogeneity in
nature of such graph, some properties may seldom generate
super facts or weakly contribute to reduction of K̂G′ like
information of use, solution of and solubility. However,
strong candidates for merging are type and updateddate for
the action merge and merge after disperse when merge fail.

10) EVALUATION ON BSBM BENCHMARK
For evaluating the BSBM benchmark, K̂G is 71.75 %
which is further optimized to 69.22 % using correction
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FIGURE 7. Merging and Dispersing(Left to Right). (a) KEGG.rn with predicate Kegx-Product (b) AFFEMETRIX with predicate date annotation (c)
Drug Bank with predicate update date (d) BSBM with predicate Product Feature(e) DbPedia (Person Data) with predicate birth place (f) DbPedia
(Geo-coordinates) with predicate type.

optimization. Thus, remaining triples in the resultant graph
K̂G′ are 2769. From the K̂G′, 43 are super signatures T̂Q
and 2726 are optimized corrections. From 43 predicates, only
seven 7 participate in the super signatures that are factful
process while the remaining predicates are with a single super
signature.

11) EVALUATION ON DBPEDIA (PERSON DATA)
Another important dataset is DBpedia person data where
people are associated with nine different properties. Some
of nine properties are name, given name, surname, etc.
Our approach reduces the size to 67.19%. The percentage
reduction is 67. 19 % where the number of predicates is fixed
in size. The formation of super facts T̂Q participates 4 out of
9. Such super facts show the close mapping of events with
minimum 8̂.

12) EVALUATION ON DBPEDIA (GEO-COORDINATES)
Our last dataset for discussion and analysis is DBpedia (Geo-
Coordinates) in which information about specific places is
available. The graph contains information about several loca-
tions as subjects with four different properties. The property
count is fixed. Therefore, the graph is homogeneous but the
formation of super signatures and splitting them into multiple
super signatures that are non-uniform after formation in
resltant graph. It reduces the graph to approximately 75 %
because several coordinates locations are repeated in the
object and we consider cosine distance while mapping.

On evaluating IBA-OTC on Dbpedia (Geo-Coordinates),
the resultant graph size is only 25.07% after performing
correction optimization K̂G. It is further optimized with the
slight reduction in IBA-OT as 23.21% in K̂G′. Only one
predicate does not participate in super signature formation
while the rest of three 3 are participating in the formation of
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super signatures. The optimized correction against 47 super
signatures T̂Q is 881 tomake the resultant graph of 928 triples.

D. IMPACT OF PROPOSED OPTIMIZATIONS AND
FUNCTIONS
Weperform IBA-OC and IBA-OT to achieve completeness by
reducing the number of triples in the system. Although, our
naive approach increases the number of triples but provides
lossless aggregation as signature of each predicate with its
possible corrections. After a naive approach, we develop
a model that restricts either fewer triples or considers
the original triples of given KG. Reduction of triples is
first achieved with correction optimization (I) and second
correction optimization (II). Therefore, we discuss two more
experiments to show the impact of reduction and optimization
as follows.

a: CORRECTION OPTIMIZATION
Figure [6] shows the comparison of correction optimization
(I) and correction optimization (II). Our model ensures
the guarantee of reduction through our merge and disperse
functions in the second type of optimization. We consider
the triples count of 4000 and 2000 for experiments. It guar-
antees in reduction of triples before and after correction
optimization.

b: MERGING AND DISPERSING
Fig. (7) shows the significance reduction of merge and
disperse. It reveals that regardless of the dataset, it reduces
by some fractional amount when information maps through
our merge function and again guarantees reduction by a small
fraction when it qualifies our disperse function. The number
of triples in this experiment is the same as in Fig. (6). Thus,
the reduction of disperse function creates single or multi sub-
super signatures in the graph.

c: PREDICATE PARTICIPATION
To find about predicate participation, we perform another
experiment to show in [8] the number of predicates involved
in the formation of super signatures less in a fraction in
comparison to not participating predicates. It is basically an
ability of aggregating with minimum corrections. A higher
chance of ability means a greater chance of predicate
participation.

E. LIMITATION OF IBA-OTC
It is unable to distinguish RDF and RDFS triples. IBA-OTC
treats the same for both triples. if KG contains both triples
and it requires differentiation first before processing then it
ignores the polarity of such triples. Also, our approach is for
pre-processing for application related to retrival from KG.
Currently this work only covers how to aggregate natural
merging triples with minimum corrections that focus on the
representation of any KG in K̂G′. Also, this model is not for
retrieval of queries. However, the extension of this will cover
query retrieval.

FIGURE 8. Predicates details of participating in mapping(Merge,
Disperse) Process.

TABLE 6. Comparison of summary Ratio (SR)=(K̂G
′
) / (KG)*100) on same

datasets used by state-of-the-art approaches.

F. COMPARISON WITH STATE-OF-THE-ART APPROACHES
We also perform experiments to compare against state-of-the-
art methods. We perform these experiments on the same data
mentioned by these approaches. Below, we discuss the details
one by one.

a: SUMMARY RATIO WITH ITS COMPLETENESS
Table. (6) shows the summary ratio of the graph keeping in
view its completeness. IBA-OTC produces lesser compres-
sion but it guarantees completeness in the resultant graph.
However, it outperforms and commits more reduction in
comparison to [57]. From analysis, our approach surely
reduce significant number of triples with the assurance of
it’s 3C (Completeness, Compactness, and Correctness) as
discussed above. It also shows that regardless the nature
(homogeneous/heterogeneous) of any KG, our approach
provides a multi-level lossless summary that remove the need
of input graph to still keep in repository in secondary storage
or even memory for saving computational time as well as its
space efficiency.

b: COMPUTATIONAL TIME COMPARISON ON FORMATION
OF SUPER SIGNATURE VS SUPER NODE
Table. (7) shows the time comparison of aggregation of
instances for both GBS, and QBS. For all experiments, our
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TABLE 7. Computational Time in seconds (s) for Instance-based aggregation in Comparison with state-of-the-art approaches.

approach computes super signatures in a less computational
time in comparison to [57] and corrections efficiently in
comparison to [57]. Notably, the information is lossless and
efficient due less computational cost.

VII. CONCLUSION
We developed a novel approach, IBA-OTC, based on aggre-
gation and performed better lossless graph summarization
of a KG in comparison to state-of-the-art work in the
domain. We first established naive signatures of predicate-
based aggregation. For such aggregation, we achieve 1).
completeness. Next, we perform iterative optimization in
two phases. We first identify positive corrections (+ve)
and replace them with selective negative corrections. Also,
we identify specific natural merging regions with minimum
corrections of the graph by our two newly designed functions
merge and disperse. After optimization of triples, our
approach ensures KG’s size reduction in a lossless manner.
Moreover, we performed several experiments on large graphs
to show the reduction of different KGs. We also validate the
scalability test of our approach by conducting experiments on
large scale datasets (wat div 100 M, BSBM 100M). At the
end, we performed two more experiments to highlight the
imapct of resultant summary graph in a lossless manner with
comparisons of state-of-the-art approaches.

VIII. FUTURE WORK
Convolutional Neural Network (CNN) in deep learning (DL)
facilitates fast analysis of heterogeneous structures [73], [74],
[75], [76]. Such networks are repeatedly discussed in [30],
[77], [78], and [83] with using DL techniques. We therefore,
plan to work on a query retrieval model likewise discussed in
[84], [85], and [86] for summarizing graphs K̂G′ and apply
recurrent DL model for similarity measurement presented in
[28], [30], [73], and [90] and use long short-term memory
(LSTM) network for fast recognition of triples mapping.
Aggregating such graphs with lossless saves computational
costs for processing, in-memory visualization, and fast query
retrieval using deep transfer learning and casual relational
reasoning of input KG discussed in [51] and [92]. Due to
its complexity, we further plan to investigate how to retrieve
knowledge in a summary graph.
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