
Deep Learning Methods for Sample-based
Electronic Music

Jake Drysdale

19th May 2023

A thesis submitted for the degree of

Doctor of Philosophy

Sound and Music Analysis Group

Digital Media Technology Lab

Faculty of Computing, Engineering and the Built Environment

Birmingham City University

Abstract

Sample-based electronic music (SBEM) encompasses various genres centred around the practice of

sampling—the act of repurposing existing audio to create new music. Contemporary SBEM production

involves navigating digital collections of audio, which include both libraries of samples and recorded music.

The proliferation of digital music access, sample libraries, and online resource services have introduced

challenges in navigating and managing these extensive collections of musical material. Selecting suitable

samples from these sources is a meticulous and time-consuming task, requiring music producers to

employ aesthetic judgement. Despite technological advancements, many SBEM producers still utilise

laborious methods—established decades ago—for obtaining and manipulating music samples. This thesis

proposes deep learning, a subfield of machine learning that develops algorithms to decipher intricate

data relationships without explicit programming, as a potential solution. This research primarily explores

the potential of deep learning models in SBEM, with a specific focus on developing automated tools for

the analysis and generation of electronic music samples, towards enriching the creative experience for

music producers.

To this end, a novel deep learning system designed for automatic instrumentation role classification in

SBEM is introduced. This system identifies samples based on their specific roles within a composition—

such as melody, bass, and drums—and exhibits versatility across various SBEM production tasks.

Through a series of experiments, the capacity of the system to automatically label unstructured sample

collections, generate high-level summaries of SBEM arrangements, and retrieve samples with desired

characteristics from existing recordings is demonstrated. Additionally, a neural audio synthesis system

that facilitates the continuous exploration and interpolation of sounds generated from a collection

of drum samples is presented. This system employs a generative adversarial network (GAN), further

modified to interact with the generated outputs. The evaluations highlight the effectiveness of the

proposed conditional style-based GAN in generating a diverse range of high-quality drum samples.

Various systematic approaches for interacting with the network and navigating the generative space are

investigated, demonstrating novel methods of sample manipulation. Collectively, these contributions

aim to foster further exploration and advancements at the intersection of deep learning and SBEM.

i

Acknowledgements

I extend my profound gratitude to my supervisor, Jason Hockman, for presenting me with the immense

opportunity to conduct research on a subject I am passionate about. His guidance, feedback, expert

knowledge, unyielding belief in my capabilities, and inspiring words of motivation during challenging

times have been invaluable. I would like to thank my supervisory team Ryan Stables and Cham Athwal

for their support throughout my PhD journey, which has significantly helped develop my research. I

am deeply grateful for the thoughtful review and recommendations for enhancements offered by my

dissertation committee— Mick Grierson, Ian Williams, and Franco Cheung. A massive thank you to all

the past and present members of the DMT lab and SoMA group—Jason Hockman, Ryan Stables, Cham

Athwal, Matthew Cheshire, Maciej Tomczak, Mattia Colombo, Sam Smith, Sean Enderby, Nicholas

Jillings, Niccolò Granieri, Carl Southall, Islah Ali-MacLachlan, Tychonas Michailidis, Alastair Jamieson,

Christina Karpodini, Alan Dolhasz, William Wilson, Ben West, and Yonghao Wang. There have been

moments when each of you has provided indispensable insights, inspiring conversations, and unwavering

support.

I would like to thank all the researchers I have worked with—Jason Hockman, Maciej Tomczak, António

Ramires, Matthew Cheshire, Patricio López-Serrano, and Xavier Serra—working with each one of you

has been a pleasure. To Matthew Davies, Jordan Smith, Philippe Esling, Javier Nistal, Antoine Lavault,

and Eduardo Fonseca for the fruitful research discussions, which have been a source of inspiration and

have greatly enriched my understanding of the field.

This thesis would not have been possible without the emotional support and motivation from the family

and friends, I am so lucky to have around me. To Harriet, my girlfriend, thank you for your patience, for

putting up with me and for always being there when times have been tough. I am eternally grateful to

my parents, Sarah and Paul Drysdale, whose love and support have been my backbone. A big thanks

and love to my Nan and Grandparents. A special thanks to my brother Jimi, and the Saturn Sound

collective—Isaac, Adam, Lewis, Levi, and Jacob, your friendship and support has made this journey

more enjoyable.

iii

Contents

Abstract i

Acknowledgements iii

Acronyms xv

Mathematical Notation xvii

1 Introduction 1

1.1 Motivation . 4

1.2 Aim and Objectives . 5

1.3 Contributions . 6

1.4 Open Source Implementations and Datasets . 6

1.5 Publications . 7

1.6 Thesis Structure . 7

2 Review of Sample-based Electronic Music Production Literature 9

2.1 Music Sampling: An Overview . 10

2.1.1 Origins . 10

2.1.2 Breakbeats . 12

2.1.3 Modern Sampling Technology . 14

2.1.4 Sample Typology . 16

2.2 Sample-based Electronic Music Production . 17

2.2.1 Sample Sourcing . 18

2.2.2 Sample Selection . 19

2.2.3 Sample Manipulation . 21

2.2.4 Arrangement and Structure . 23

2.3 Drum Creation in Sample-based Music . 24

2.3.1 The Drum Kit . 25

2.3.2 Drum Machines and Virtual Drumming Software 27

2.3.3 Drum Synthesis . 28

2.4 Related Research . 30

2.4.1 Music Tagging . 30

2.4.2 Instrumentation Role Classification . 32

2.4.3 Structure Analysis . 32

2.4.4 Sample Identification . 33

v

vi CONTENTS

2.4.5 Sample Retrieval . 34

2.4.6 Neural Audio Synthesis . 36

2.5 Chapter Summary . 39

3 Deep Learning Preliminaries 41

3.1 Mutli-layer Perceptrons . 42

3.2 Convolutional Neural Networks . 45

3.2.1 Convolutional Layers . 45

3.2.2 Pooling Layers . 47

3.3 Training Procedures . 47

3.3.1 Loss Functions . 47

3.3.2 Parameter Optimisation . 48

3.3.3 Initialisation . 50

3.3.4 Regularisation . 50

3.4 Audio Representations . 53

3.4.1 Raw Audio Waveform . 53

3.4.2 Short-Time Fourier Transform . 54

3.4.3 Linear Spectrogram . 54

3.4.4 Logarthimic Spectrogram . 55

3.4.5 Mel Spectrogram . 55

3.5 Deep Generative Models . 55

3.5.1 Autoregressive Models . 57

3.5.2 Variational Autoencoders . 58

3.5.3 Generative Adversarial Networks . 60

3.5.4 Upsampling Layers . 62

3.5.5 Conditioning . 63

3.5.6 Latent Space Manipulation . 64

3.6 Chapter Summary . 66

4 Analysing SBEM with Automatic Instrumentation Role Classification 67

4.1 Instrumentation Roles . 68

4.2 Method . 70

4.2.1 Architectures . 71

4.2.2 Network Training . 73

4.2.3 Loop Activation Transcription . 73

4.3 Evaluation 1: Automatic Instrumentation Role Classification 74

4.3.1 Evaluation Methodology . 74

4.3.2 Evaluation Data . 74

4.3.3 Results and Discussion . 76

4.4 Evaluation 2: Loop Activation Transcription . 77

4.4.1 Evaluation Methodology . 78

4.4.2 Evaluation Data . 78

4.4.3 Results and Discussion . 79

4.5 Evaluation 3: Automatic Retrieval of Samples from Existing Recordings 82

4.5.1 Evaluation Methodology . 83

CONTENTS vii

4.5.2 Evaluation Data . 85

4.5.3 Results and Discussion . 85

4.6 Conclusions . 86

4.7 Chapter Summary . 88

5 Drum Sample Synthesis with Generative Adversarial Networks 89

5.1 Method . 91

5.1.1 Implementation . 92

5.1.2 Network Training . 94

5.2 Evaluation Methodology . 95

5.2.1 Evaluation Data . 95

5.2.2 Network Hyperparameters . 95

5.2.3 Evaluation Metrics . 96

5.3 Results and Discussion . 98

5.3.1 Evaluation Results . 98

5.3.2 Generation Quality . 100

5.4 Latent Space Exploration . 101

5.4.1 Interpolation . 102

5.4.2 Layer-wise Control . 103

5.4.3 Arithmetic . 104

5.4.4 Dimensionality Reduction . 105

5.4.5 Embedding Existing Audio into the Latent Space 108

5.5 Additional Experiments . 109

5.5.1 Generating Drum Loops . 110

5.5.2 Multimodal Conditioning . 111

5.6 Chapter Summary . 113

6 Conclusions 115

6.1 Summary . 116

6.2 Contributions . 117

6.3 Future Work . 119

6.4 Final Thoughts . 121

Appendices 145

A Publications 145

List of Figures

2.1 Akai MPC3000 digital sampling drum machine and sequencer. 12

2.2 An excerpt from Amen, Brother (1969) by The Winstons. Above is an audio waveform and

below a Mel-scaled log spectrogram. The area highlighted in red displays the location of the

Amen break sample. 13

2.3 An example of a typical home music production setup. 14

2.4 Mel-scaled log spectrograms for a piano one-shot (left) and a piano one-loop (right). The

sample on the left is single piano chord played for 0.25 seconds. The sample on the right is

a one-bar chord sequence repeated four times to create an eight second, four-bar piano loop. 16

2.5 Searching for records to sample (i.e., crate digging) in SJ Records, an independent record

store located in Stratford-upon-Avon, UK. 18

2.6 Examples of sampling browsing interfaces. Splice sample browser (left), hierarchically

structured folders of samples (centre), Ableton Live’s built-in browser (right). 20

2.7 Examples of commercially available products for automatic organisation of drum samples,

XLN XO (left) and Algonaut Atlas (right). Drum samples are mapped onto a two dimensional

space and colour coded based on their type (e.g., kick, snare, hi-hat, and clap). 21

2.8 Segmenting a breakbeat sample using Ableton Simpler. Samples are segmented automatically

using the transient information (vertical lines in waveform display). The sensitivity parameter

can be used to adjust the number of segment locations and additional segments can be

added manually. Once segments are acceptable to the producer, rhythmic modifications can

be made by rearranging the segments using MIDI information. 22

2.9 Rearranging a segmented breakbeat sample to create a rhythmic variation. The top left is

the waveform of the original sample and corresponding piano roll MIDI data. The right side

shows a transformed version, achieved by reordering the segments. 22

2.10 An example of music being arranged in a digital audio workstation. 23

2.11 An illustration of the standard western drum kit. 25

2.12 Waveform and spectrogram audio representations of common drum kit components—kick

drum, snare drum, hi-hat, and crash cymbal, respectively. 26

2.13 Roland TR-909 drum machine (left), XLN Audio Addictive Drums 2 (right). 27

2.14 A demonstration of the pitch (red) and amplitude (blue) envelope parameters used to

synthesise a kick drum. 29

3.1 An illustration of a single neuron for inputs x, corresponding weights w, bias b, and activation

function σ applied to the weighted some of the inputs. 42

3.2 An illustration of a multi-layer perceptron combined of densely connected neurons within

input, hidden and output layers. 43

ix

x LIST OF FIGURES

3.3 An illustration of a basic CNN architecture consisting of a stack of convolutional and pooling

layers that systematically extract relevant features from the input. This is followed by a

classification stage comprised of a densely connected layer and the predicted output neurons. 45

3.4 Illustration of the convolution operation in a convolutional layer. The input feature map

(left) is convolved with the weight matrix (centre) to produce the output feature map (right).

Green areas highlight the regions where matrix multiplication has been applied, resulting in

the corresponding output value in the output feature map. 46

3.5 Training (light green) and validation (dark red) loss curves, where the vertical dotted line

represents when early stopping occurs (i.e., the optimal model capacity). 51

3.6 Visualising a drum loop using various audio representations: raw audio waveform (top left),

linear spectrogram (top right), logarithmic spectrogram (bottom left), and Mel spectrogram

(bottom right). Each representation highlights different aspects of the audio signal, offering

unique levels of detail and emphasis. 54

3.7 A basic autoregressive neural network architecture, illustrating the input neurons feeding

into the network and the output neurons responsible for generating predictions based on the

learned temporal dependencies. 57

3.8 Illustration of a variational autoencoder (VAE). Input data samples from the training data

X are fed into the encoder, which maps each sample x to the parameters of a normal

distribution, defined by mean µpxq and variance σpxq in the latent space. The decoder

receives random samples from the latent space z as input and generates an approximation

of the original data, denoted as X̂. 58

3.9 Diagram of a Generative Adversarial Network (GAN). The generator network G receives

random samples from a latent space Z and generates synthetic data, while the discriminator

network D attempts to distinguish between real samples x from the training data and fake

samples x̂ from the generator. 60

3.10 Probability distributions for generated data pgpxq, training data pdpxq, and discriminator

Dpxq. 61

3.11 Upsampling feature maps using transposed convolution for 2-dimensional feature map (left)

and 1-dimensional feature map (right). The process begins with the expansion of the feature

maps by padding the input with zeros to achieve the desired output size. These expanded

feature maps are then convolved with trainable filters to obtain the upsampled feature map. 63

3.12 Morphing between female and male faces using interpolation in the latent space of a

generative adversarial network. 64

4.1 A depiction of a simplified SBEM composition structure, created using five loop layers. At the

top, a log-scaled STFT power spectrogram is presented, while at the bottom, corresponding

instrumentation role activations are displayed at four-bar intervals. These activations include:

chords, melody, sound effects (fx), bass, and drums. 68

4.2 AIRC system overview block diagram. Audio loops are input into the network as a spectro-

gram representation. The front-end extracts features from the incoming spectrogram and

subsequent convolutional layers learn a latent representation. Predictions are made using a

pooling layer to summarise the information learnt by the network. 70

LIST OF FIGURES xi

4.3 Block diagram illustrating the configuration of the vertical filter network with auto-pooling.

The black rectangles denote various vertical convolution filter sizes used in the front-end

to extract information from an incoming spectrogram. The intermediate layers of the

network are summarised into predictions using a time-distributed dense layer and auto-pool,

a trainable operator that can adapt to data characteristics by interpolating between min-,

max-, or average-pooling. 72

4.4 Bar graph depicting the mean loop activation transcription accuracy (%) for the three

template variations of artificial SBEM compositions. Previous methods (NMFD and NTF)

are represented by blue and the two best performing AIRC configurations (SF-CNN GMP and

SF-CNN AUTO) are shown in red. 80

4.5 Estimated loop activation structure of Joyspark (2020) by Om Unit using the proposed AIRC

system. Log-scaled STFT power spectrogram of the EM composition (top) and estimated

templates corresponding to the loop activations showing predictions for each class: chords

(C), melody (M), sound effects (F), bass (B), and drums (D) at four-bar intervals (bottom). 82

4.6 An excerpt from Amen, Brother (1969) by The Winstons. Above is an audio waveform

and below are the instrumentation role activations. The area highlighted in red displays the

location of the Amen break sample. 84

4.7 Estimated location of the breakbeat in Amen, Brother (1969) by The Winstons using the

proposed model. Predicted role activations (top), predicted breakbeat location (middle) and

ground truth location (bottom). 87

5.1 General overview of the proposed system for drum sample synthesis: Generator G is trained

to generate audio given a latent variable z. Discriminator D is trained to minimise the

Wasserstein distance between the generated distribution and the observed distribution. . 91

5.2 Overview of the proposed conditional drum synthesis system, consisting of a generator and

discriminator network. The generator network takes a latent vector z and a drum class

condition as input, and generates a waveform through a series of upsampling layers. The

discriminator network, mirroring the generator, takes a waveform and condition as input.

Through downsampling layers, features are extracted from the input, which are then used to

compute the Wasserstein distance between the real and generated distributions. 92

5.3 An overview of the style-based generator network consisting of a mapping network (left) and

a generator (right). 94

5.4 Example waveforms (top) and spectrograms (bottom) for two generated instances of kick,

snare, and cymbal drum sounds, respectively. 101

5.5 Latent space interpolation for kick, snare, and cymbal drum sounds, respectively. The figure

displays waveform and spectrogram representations of 10 intermediate steps between two

points in the latent space for each drum type. 103

5.6 Visualising interpolation between two points in the latent space with varying fixed network

layers. The figure displays four rows, each representing the effect of fixing an increasing

number of layers during the interpolation process. Each row consists of 8 intermediate steps

between the two points. As more layers are fixed, a larger portion of the original generation

characteristics is retained in the generated output. 104

5.7 Latent space arithmetic operations applied to kick drums, illustrating the effects of combining

different latent codes w through addition, subtraction, and multiplication 105

xii LIST OF FIGURES

5.8 Exploration of the first three principal components (PCs) in the latent space for drum sound

generation. The 3D scatter plot (top left) displays axes representing the direction of each PC.

Drum sounds are generated at points along linear paths traversing the PC space, with paths

color-coded to indicate their respective PCs. The resulting generated audio is visualised in

corresponding plots for kick (a), snare (b), and cymbal (c) samples. 106

5.9 UMAP embeddings and waveform generations of drum samples. The top section features

three individual UMAP embeddings for 20000 intermediate latent vectors of kick (left),

snare (centre), and cymbal (right) drum samples. Black crosses within the embeddings mark

the points used for generating the corresponding sounds, which are displayed as waveform

generations in the lower section. 107

5.10 Overview of encoding an input into the latent space and regenerating a drum sample. . . 108

5.11 Beatbox drum sounds regenerated using the encoder and generator. Top row shows kick

drum sounds, middle row shows snare drum sounds, and bottom row shows cymbal sounds.

For each drum type, the input sound is mapped into the latent space using the encoder and

then regenerated using the generator to create the output sound. 109

5.12 Overview of drum loop generation system. 110

5.13 A prototype GUI for snare drum synthesis. Top left buttons select snare type condition,

while below, the dampening condition can be chosen. The mixer section provides sliders for

controlling amplitudes of various microphone positions. The bottom set of sliders allows for

latent space navigation using the first five principal components. 113

List of Tables

4.1 Distribution (%) of instrumentation roles within the FSLD. 75

4.2 Distribution (%) of instrumentation roles in the test set. 75

4.3 Distribution (%) of loops annotated as having a single instrumentation role within the FSLD. 75

4.4 AIRC performance comparison for various model, pooling method, and training data configu-

rations. The PR-AUC, ROC-AUC values, and individual role accuracies (%) are provided for

each configuration, where bold indicates the highest scores. 76

4.5 Loop activation transcription accuracy results (%) for the AIRC configurations evaluated on

the artificial dataset. The mean accuracy over all roles and individual role accuracies are

provided, with bold indicating the highest scores. 79

4.6 Loop activation transcription accuracy results (%) for the AIRC configurations evaluated on

the empirical dataset. The mean accuracy over all roles and individual role accuracies are

provided, with bold indicating the highest scores. 81

4.7 Breakbeat identification results for various model, pooling method, and training data

configurations. The table includes the F-measure, precision, and recall values for each

configurations. Bold values indicate the highest scores. 86

5.1 Network training hyperparameters for evaluation. 96

5.2 Results for experiments comparing the real and generated data for different model configura-

tions, where bold indicates the best scores for FAD and Inception Score. A higher inception

score demonstrates that a model can produce generations that capture the semantic modes

of the real data distribution. |D|self nearest neighbour values indicate intra-class diversity

relative to the real test data. |D|train nearest neighbour indicates the distance between

the training data and generated data. The Fréchet audio distance (FAD) is reported for

the generative models under mixed conditions (overall), as well as intra-class FAD for the

individual conditions of kick, snare, and cymbal. A lower FAD indicates that the generated

and real data distributions are more similar. 99

xiii

Acronyms

AIRC automatic instrumentation role classification

AdaIN adaptive instance normalisation

ADT automatic drum transcription

AI artificial intelligence

AMT automatic music tagging

AR autoregressive

BCE binary cross-entropy

BPM beats per minute

CNN convolutional neural network

DAW digital audio workstation

DGM deep generative model

DJ disc jockey

EM electronic music

EQ equaliser

FSLD Freesound loop dataset

GAN generative adversarial network

GP gradient penalty

GPU graphics processing unit

HJDB hardcore, jungle, and drum and bass

IRAM instrumentation role activation map

LAT loop activation transcription

MIREX music information retrieval evaluation exchange

MIR music information retrieval

MLP multi-layer perceptron

MPC music production center

xv

xvi Acronyms

MSE mean square error

NMF non-negative matrix factorisation

NTF non-negative tensor factorisation

PCA principal component analysis

PR-AUC area under precision-recall curve

ROC-AUC area under receiver operating characteristic curve

SBEM sample-based electronic music

SOM self-organising maps

STFT short-time Fourier transform

t-SNE student-t stochastic neighbour embedding

UMAP uniform manifold approximation and projection

VAE variational autoencoder

VDS virtual drumming software

VST virtual studio technology

WGAN Wasserstein generative adversarial network

WGAN-GP Wasserstein GAN with gradient penalty

Mathematical Notation

x A vector

X A matrix

|x| The absolute value of x

xi The i-th element of vector x

Xi˚ The i-th row of matrix X

X˚j The j-th column of matrix X

XT the transpose of matrix X

X´1 the inverse of matrix X

x P X Set membership, x is an element of X

X P Rm,n X is an m by n matrix containing real numbers

x Ð x ` 1 x becomes x ` 1

x ” y x is equivalent to y

x ¨ y Inner product of x and y

x d y Element-wise multiplication of x and y

r0, 1] Range with minimum value of 0 and maximum value of 1

mink,maxk Extrema operations with respect to an integer value k

xvii

Chapter 1

Introduction

The transformative practice of repurposing existing audio material to create new music—–known as

sampling—–has revolutionised music production and continues to be an essential technique in the

present day. Driven by advancements in digital audio technology, sampling has substantially influenced

the development of modern music, sparking a cultural shift within the industry. Affordable tools for

audio production and digital sampling have enabled individuals with varying musical expertise to explore

music creation through the use of samples. As a result, sample-based electronic music (SBEM) has

gained widespread popularity in recent years, emphasising the growing importance of sampling in the

contemporary music landscape. One of the key attributes of SBEM, and a main justification for the

relevance of this work, is its continual appropriation of new technology used for creative purposes.

The creative possibilities in SBEM are virtually boundless, and deep learning models have emerged

as potent tools for enhancing and streamlining the production process. In recent years, the fields

of music information retrieval (MIR) and deep learning have made significant progress in providing

solutions and methodologies to various music-related challenges. Nevertheless, there is untapped

potential for developing specialised tools that simplify complex music creation paradigms and workflows

in contemporary production, working towards enriching the creative experience for music producers.

The roots of sampling can be traced back to the 1940s with the pioneering tape recording experiments

led by Pierre Schaeffer, a prominent figure in the evolution of modern music. Schaeffer is acclaimed

for his contributions to musique concrète, an innovative approach that seamlessly merged science and

engineering with artistic expression and compositional methods (Holmes, 2012). The techniques and

practices rooted in musique concrète gained broader exposure through their integration into popular

television. A prime example is Delia Derbyshire’s adaptation and realisation of Ron Grainer’s title theme

for the television series Doctor Who in 1963, which brought musique concrète and tape manipulation to

a wider audience (Butler, 2014). As early sample-based instrument technologies emerged, influential

artists such as The Beatles and David Bowie began incorporating sampling into their work (Griffin,

2016; Heyman, 2021). In the early 1970s, sampling approaches were further pioneered through the

development of dub music. This innovative method involved remixing existing recordings, creatively

applying electronic effects, and transforming studio technologies into instruments for composition and

real-time improvisation. Key figures in this movement included Jamaican recording engineers Osbourne

Ruddock (known as ”King Tubby”), Errol Thompson, and Lee ”Scratch” Perry (Veal, 2013).

1

2 CHAPTER 1. INTRODUCTION

This laid the foundation for sampling to gain further prominence during the rise of hip-hop in the 1980s

when digital sampling technologies became more affordable and accessible to home producers. This

democratisation of technology, along with the willingness of artists to explore creative possibilities,

significantly impacted the landscape of music. Sampling allowed music creators to traverse the timeline

of pre-existing music, connecting and fusing musical ideas from across the globe in ways previously

unattainable before the rise of this technology (Reynolds, 2011). From the inception of hip-hop music to

the present day, percussion solos from 1960s and 1980s jazz and funk—–known as breakbeats—–have

remained highly sought-after samples for many music producers (Ewoodzie Jr, 2017). Hardcore, jungle,

and drum and bass (HJDB) are three interconnected genres that emerged in the early 1990s, distinguished

by their employment of fast-paced breakbeats, manipulation, and rhythmic transformation techniques

(Hockman, 2014). These genres expanded upon the foundations established by traditional hip-hop,

further enriching the diverse landscape of music production. In the present day, sampling is prevalent

across many genres of music, and modern producers have adapted to incorporate this technique into

their creative processes. It has become an integral part of contemporary music production, with a

significant proportion of today’s popular music being composed with samples (Morey and McIntyre,

2014).

Initially, SBEM producers sourced samples from vinyl records through a process known as crate digging.

However, they have since adapted their selection methods to accommodate the digital age, obtaining

large corpora of sampled recordings from existing digital recordings or via royalty-free resources to

circumvent copyright issues. Digital crate digging has emerged as the contemporary alternative to

sampling music from vinyl records. Producers may now explore online platforms such as Youtube and

Tracklib1 to find music containing suitable sampling material for their productions. Additionally, online

stores provide access to thousands of samples and loops—–segments of music material prepared for

seamless repetition. With the expansive assortment of music and audio sample libraries available today,

methods for selecting, organising, and manipulating samples are still limited by the boundaries of current

technology. Despite their origins dating back decades, labour-intensive techniques for acquiring and

modifying music samples persist as common practices among many producers, particularly those striving

to uncover rare and inventive samples within the vast array of existing music.

Deep learning, a subfield of machine learning research, focuses on the development and understanding of

algorithms capable of learning intricate relationships from data without the need for explicit programming

(Goodfellow et al., 2016). As a result of advancements in deep learning, our interactions with digital

information and media have been transformed and will continue to evolve across various domains,

including computer vision (Chai et al., 2021), speech recognition (Li, 2022), natural language processing

(Lauriola et al., 2022), and medical diagnosis (Islam et al., 2021). Concurrently, significant progress

has been made in developing deep learning models capable of generating highly realistic and diverse

outputs in the domains of text (Radford et al., 2019), images (Karras et al., 2021), and speech (Yang

et al., 2021). For instance, text-based generative models like GPT-3 (Brown et al., 2020) and BERT

(Devlin et al., 2019) have demonstrated impressive capabilities in natural language understanding and

generation, enabling them to perform tasks such as language translation, summarisation, and dialogue

generation.

Within the realm of music-related applications, deep learning techniques can be broadly categorised into

two areas: music information retrieval (MIR) and music generation. MIR is a multidisciplinary field that

1https://www.tracklib.com/

https://www.tracklib.com/

3

focuses on developing methods for the analysis and characterisation of meaningful information from

music data. This can include tasks such as genre classification (Ndou et al., 2021), recommendation

systems (Mart́ın-Gutiérrez et al., 2020), automatic music transcription (Benetos et al., 2018; Wu et al.,

2018), and music source separation (Hennequin et al., 2020). Deep learning can also be employed to

generate new music content by analysing and extracting features from existing recordings, creating

learned representations of these musical elements. Applications of this technique include the development

of powerful neural audio synthesisers (Engel et al., 2019; Kong et al., 2020) and models capable of

generating complete musical compositions (Dhariwal et al., 2020; Shen et al., 2022). These advanced

tools not only lower the creative barriers imposed by traditional music production workflows, which often

come with steep learning curves, but also provide valuable knowledge, education, and new insights into

the production process.

The primary aim of this thesis is to explore the potential of deep learning models in the context SBEM,

with a focus on developing automated tools that can facilitate producers in realising their creative

concepts. The process of locating appropriate samples for novel compositions has been a long-standing

challenge in SBEM (Rodgers, 2003), whether it pertains to uncovering samples embedded within

existing music (Chang, 2009) or navigating through extensive sample libraries (Andersen and Knees,

2016). Building upon genre-specific knowledge of the unique characteristics of SBEM, this thesis aims

to enhance the creative process within this genre by devising systems that automate various SBEM

tasks. These tasks include sourcing suitable samples from existing music and sample libraries, creating

high-level overviews of SBEM arrangements, and generating highly controllable sounds that can be

manipulated to smoothly transition between existing elements within sample collections. Through a

series of experiments, the thesis demonstrates the development and implementation of novel deep

learning tools tailored specifically for SBEM production. The research outcomes encompass the thesis

itself, open-source implementations and datasets for sample analysis and generation. Collectively, these

contributions are designed to foster further exploration and advancements at the intersection of deep

learning and SBEM.

4 CHAPTER 1. INTRODUCTION

1.1 Motivation

Creating music is a complex and subjective endeavour, grounded in structure, skill, and intention. It

involves a series of informed decisions that weave together various combinations of vibrations, which

can be harmonious or inharmonious, depending on the desired outcome. These decisions are rooted in a

high-level understanding of the musical algorithms required to achieve a specific outcome. The creative

process of producing new music often involves borrowing and reinterpreting ideas from the past, drawing

inspiration from established patterns and techniques while adding a personal touch (Burkholder, 1994).

Frequently occurring combinations of musical algorithms, influenced by instruments, playing styles, music

theory, and cultural traditions, give rise to distinct music genres and sub-genres. Musicians can learn and

reinterpret these practices and workflows to express themselves while preserving specific characteristics

that listeners would find familiar. This delicate interplay between innovation and familiarity allows artists

to create unique compositions that resonate with audiences, building upon established musical elements

while pushing the boundaries of creativity.

SBEM comprises genres that predominantly adopt the practice of sampling, a contemporary form

of borrowing that resides at the nexus of technology and artistry. The global success of SBEM has

been driven by innovative music producers who utilise production software and techniques to creatively

repurpose audio. The growing popularity of SBEM genres has also spurred increased attention on their

analysis within the fields of MIR, computational musicology, and audio processing (López-Serrano, 2019;

Hockman, 2014). Hockman and Davies (2015) emphasised the importance of genre-specific approaches

in MIR research, positing that understanding how a particular type of music is created can inform the

development of new technologies tailored to the specific needs of producers. Developing genre-specific

knowledge about a particular type of music can contribute to the creation of systems better suited to

the needs of music makers.

Driven by my passion as an electronic music producer, this thesis aims to explore innovative techniques

that empower producers to discover, reinterpret, and seamlessly integrate music samples, revitalising

the sounds of the past with a fresh and dynamic perspective. The process of creating music can be

significantly impeded by laborious tasks that disrupt a seamless creative flow, thereby affecting sustained

periods of focused concentration. In electronic music production, sample retrieval remains a critical

challenge within the creative process (Andersen and Knees, 2016). While commercial companies like

Splice2 and Loopcloud3 provide extensive databases of annotated sample libraries, the sheer volume of

available content can be overwhelming. Additionally, producers often come across unstructured samples

in their personal collections, particularly when sourced from existing recordings, and must rely on their

own retrieval strategies, sometimes resorting to randomness.

Sampling from existing music rather than sample libraries presents unique creative opportunities, fostering

inspiration and a personalised sound while honouring specific eras, artists, or musical styles. However,

the current absence of efficient tools specifically designed for locating samples in existing recordings

compels producers to rely on their critical listening skills as they navigate through extensive amounts of

music. This process requires producers to identify captivating elements within a piece, extract them,

and seamlessly integrate these samples into their own compositions. The automatic generation of a

sample library, derived from a vast collection of existing records and systematically labelled according to

2https://splice.com/
3https://sounds.loopcloud.com

https://splice.com/
https://sounds.loopcloud.com

1.2. AIM AND OBJECTIVES 5

its musical function or role, has the potential to offer an invaluable resource for producers and stimulate

innovation in the realm of electronic music production.

An important aspect of composing music with existing recordings is that the samples preserve their

inherent acoustic properties, resulting in limited options for modification and precise control, particularly in

comparison to synthesisers and other electronic instruments. Additionally, the techniques for transforming

samples have largely remained stagnant since the early 1990s, constrained by the intrinsic transformational

potential tied to the timbral and rhythmic qualities of the source material. In contrast, synthesis

techniques afford finer control over sound characteristics, yet struggle to accurately emulate the nuanced

and complex nature of real-world instruments. One potential solution to address these limitations could

be the development of a synthesiser designed to effectively mimic a given collection of samples, offering

both the authenticity of the original sounds and the flexibility of synthesised instruments.

Addressing these challenges is a critical area of inquiry in music technology research, as designing

effective interfaces for music production data exploration holds the potential to significantly improve

the listening experience and creative process. Furthermore, the development of efficient, and engaging

methods for navigating and organising the wealth of musical content is essential not only for music

producers but also for the broader audio research community. In recent years, substantial advancements

have been made in the fields of MIR and deep learning, offering solutions and methodologies for a wide

range of music-related challenges. However, there remains untapped potential in developing tailored

tools for more specialised tasks, catering to the needs of both professional and amateur music creators.

The digital landscape has significantly broadened the accessibility of music-related services and resources,

offering numerous advantages while simultaneously increasing the need for efficient navigation and

organisation of extensive music collections. Leading music streaming platforms, such as Spotify and

YouTube, employ artificial intelligence-driven music recommendation systems to help users explore the

vast content available on their platforms. In these systems, the importance of MIR and deep learning

methods, such as for content analysis, continues to grow. Simultaneously, deep learning-based music

production tools are gaining traction, providing innovative means for users to engage with and create

music. Numerous deep learning production tools are now commercially available, such as iZotope RX4

and Spleeter (Hennequin et al., 2020), which facilitate the separation of tracks into individual stems

such as vocals, bass, and percussion; neural audio synthesisers such as Magenta NSynth (Engel et al.,

2017) and Bytedance Mawf5 provide users with intuitive control over timbre and dynamics, empowering

them to explore novel sounds that would be challenging to produce with traditional synthesisers; and

cost-effective automatic mixing and mastering services such as MixGenius Landr6. Moreover, AI-based

music contests (Huang et al., 2020) are emerging as a trend, further highlighting the growing influence

of deep learning and artificial intelligence technologies in the world of music production and fostering a

competitive environment that encourages innovation and creativity.

1.2 Aim and Objectives

The aim of this thesis is to develop novel deep learning-based systems specifically tailored towards

assisting in SBEM production. This thesis is centred around three key objectives:

4https://www.izotope.com/en/products/rx.html
5https://mawf.io/
6https://www.landr.com

https://www.izotope.com/en/products/rx.html
https://mawf.io/
https://www.landr.com

6 CHAPTER 1. INTRODUCTION

• To design and optimise a deep learning system that automatically labels samples based on their

functional roles within SBEM, and extends its capabilities to generate high-level summaries of

SBEM, ultimately enabling the detection of samples in existing music.

• To design a deep generative model for synthesising a collection of drum samples, enabling the

continuous exploration of intermediate samples.

• To investigate and propose systematic approaches for interacting with the latent space of the

generative model, facilitating novel and creative manipulation of samples.

1.3 Contributions

The objectives outlined above are supported by the following contributions:

• Design and optimisation of modular deep learning models for analysing the structural role a sample

occupies within a musical composition. (Chapter 4)

• Comprehensive evaluation of the deep learning models through three experiments: automatic

instrumentation role classification, loop activation transcription, and detecting samples in existing

recordings, providing insights into the performance and applications within SBEM. (Chapter 4)

• Development of a deep generative model for conditional synthesis of drum samples, guided by a

compact latent space representation. (Chapter 5)

• Application of dimensionality reduction techniques to facilitate exploration of the latent space in

deep generative models for drum synthesis. (Chapter 5)

• Development of an encoder model for controlling drum synthesis with input audio. (Chapter 5)

• Open-source TensorFlow7 implementation of the models for drum sample synthesis, complete with

pre-trained weights, training data, a command-line interface for training the models on new data,

and prototype GUI for controlling the model.

1.4 Open Source Implementations and Datasets

• Neural drum sample synthesiser: Open source implementation for training and inference.

https://github.com/SoMA-group/style-drumsynth

• Prototype graphical user interfaces: Interfaces for controlling drum sample synthesis.

https://jake-drysdale.github.io/tools.html

• Drum sample dataset: Dataset of kick, snare, and cymbals.

https://github.com/SoMA-group/ADS

• Instrumentation role dataset: Dataset of annotated SBEM compositions.

https://jake-drysdale.github.io/research.html

7https://www.tensorflow.org/

https://github.com/SoMA-group/style-drumsynth
https://jake-drysdale.github.io/tools.html
https://github.com/SoMA-group/ADS
https://jake-drysdale.github.io/research.html
https://www.tensorflow.org/

1.5. PUBLICATIONS 7

1.5 Publications

The following papers have been published as part of this thesis:

• Drysdale, J., Tomczak, M., Hockman, J. (2020), Adversarial Synthesis of Drum Sounds, in

Proceedings of the International Conference on Digital Audio Effects (DAFX), Vienna, Austria.

• Drysdale, J., Tomczak, M., Hockman, J. (2021), Style-based Drum Synthesis with GAN Inversion,

in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR).

• Drysdale, J., Ramires, A., Serra, X. and Hockman, J. (2022), Improved Automatic Instrumenta-

tion Role Classification and Loop Activation Transcription, in Proceedings of the International

Conference on Digital Audio Effects (DAFX), Vienna, Austria.

It is important to emphasise the collaborative nature of the research that contributed to the relevant

chapters of my work. As the lead author, I played a central role in the publications on drum synthesis,

elements of which have been adapted and expanded upon in Chapter 5. My colleague, António

Ramires, and I shared authorship equally on the publication focusing on automatic instrumentation role

classification. This work has also been adapted and extensively elaborated upon in Chapter 4. Our

mutual research interests and collaborative efforts ensured a rigorous and comprehensive data analysis,

which led to a deeper understanding of the research subject.

The following publications are associated with deep generative models for drum sample processing but

do not contribute directly to this thesis:

• Cheshire, M., Drysdale, J., Enderby, S., Tomczak, M. and Hockman, J. (2022), Deep Audio

Effects for Snare Drum Recording Transformations, in Journal of the Audio Engineering Society

(JAES), Special Issue: New Trends in Audio Effects.

• Tomczak, M., Drysdale, J. and Hockman, J. (2019), Drum Translation for Timbral and Rhythmic

Transformation, in Proceedings of the International Conference on Digital Audio Effects (DAFX)

Birmingham, United Kingdom.

1.6 Thesis Structure

The remainder of this thesis is divided into five chapters and structured as follows: Chapters 2 and 3

provide background information and literature reviews, and Chapters 4 and 5 provide the main research

projects. Chapter 6 summarises the main findings from Chapters 1 through to 5 and presents possible

directions for future work. The following provides a more detailed explanation of each chapter.

Chapter 2 provides a brief overview of the history, fundamental concepts, and technologies related to

SBEM production, as described in the literature. This is essential to elucidate existing limitations and

provide context for the research discussed in this thesis. It begins by tracing the origins and evolution

of sampling, along with the development of new technologies. Common issues faced in SBEM are

discussed, as well as the diverse practices employed by producers when composing music with samples.

An overview of the characteristics of drums and the various techniques that SBEM producers employ

to integrate them into their compositions is also provided. Finally, a review of MIR and deep learning

research related to the analysis and generation of electronic music samples is given. This comprehensive

8 CHAPTER 1. INTRODUCTION

examination of key topics lays the foundation for understanding the contributions of the thesis and sets

the stage for further exploration in subsequent chapters.

Chapter 3 provides an overview of deep neural networks for analysis and generation, introducing

commonly used architectures for this task, along with their advantages and disadvantages. Core

principles related to neural networks, training procedures, deep generative models, and strategies

for manipulating the latent space are examined. These preliminaries are crucial for understanding

the performance and capabilities of the implemented systems, offering the necessary context for the

investigations presented throughout the thesis.

Chapter 4 introduces a novel system for automatically labelling samples based on their functional roles

within SBEM. The system is further enhanced to provide high-level summaries of SBEM arrangements,

and to detect samples in existing recordings. The proposed system is evaluated through three experiments:

instrumentation role classification, loop activation transcription, and the identification of potential

samples in existing recordings. In the first experiment, several deep learning architectures are evaluated,

with a particular focus on their ability to accurately label samples according to various instrumentation

roles, such as bass, melody, and drums. The second experiment delves into the analysis of structural

characteristics of SBEM, using the proposed system to generate high-level summaries. The performance

of the system is compared to previous approaches for loop activation transcription, a related task that

involves estimating the locations in which loops occur throughout a piece of music. The system is further

evaluated on a dataset of full-length SBEM compositions with annotated structural roles, demonstrating

the applicability to authentic music scenarios and ability to accurately estimate the annotations. In

the third experiment, a novel approach for the automatic retrieval of samples from existing recordings

is introduced. The proposed deep learning architectures are evaluated on their ability to identify the

location of breakbeats within funk, soul, and jazz recordings.

Chapter 5 introduces a novel deep learning system for synthesising drum samples. The system serves

as a method for creating new, highly controllable samples from a collection, offering the ability to

seamlessly morph between generations of these samples. The chapter commences with details of the

system implementation and training procedures. The proposed system is then evaluated against a

baseline system, featuring an analysis of attributes from the generated audio and an exploration of

potential applications and system limitations. Systematic approaches for interacting with the latent

space are proposed, involving the identification of synthesis parameters through various dimensionality

reduction techniques. To further demonstrate the versatility and potential for customisation of the

system, the chapter also presents supplementary experiments involving the use of different conditioning

techniques. Subsequently, a prototype graphic user interface is showcased, illustrating how the system

and identified synthesis parameters could be seamlessly integrated into an audio plugin.

The thesis is concluded in Chapter 6 with a summary of findings across Chapters 2 to 5, a critique of

the methods used in this work, and suggestions for further improvement and further work in this area.

Chapter 2

Review of Sample-based Electronic

Music Production Literature

Sample-based electronic music (SBEM) describes a variety of music genres that are centred around

the practice of sampling, which is to select, record, edit and process existing recordings to create new

compositions or performances. SBEM is predominantly constructed using samples, either exclusively or

in combination with synthesised audio components (Rodgers, 2003). As opposed to traditional music

composition, where a composer may think in terms of melody, harmony and lyrics, sample-based music

producers create musical collages primarily using the pre-recorded material that is available to them

(Morey and McIntyre, 2014). The process of composing music with samples can involve complex music

theory; however, music producers make use of distinct skill sets, workflow and tools that are specifically

tailored towards the production of SBEM. Although sampling is often linked to hip-hop, in which music

makers often use short segments of funk, soul and jazz for building music compositions, sampling has

become a prevalent practice in a large majority of popular music.

The proliferation of sampling, driven by advancements in audio production and digital technologies,

has substantially shaped the evolution of modern music, sparking a cultural transformation within the

industry. Affordable audio production tools have empowered individuals of varying musical expertise to

explore music creation through the use of samples (Rose, 1994). Sampling enables music creators to

traverse the timeline of pre-existing music, connecting and combining musical ideas from across the

globe in ways that could not have been achieved prior to the advent of sampling (Reynolds, 2011).

Considering the abundance of music and audio sample libraries available at present, techniques for

identifying, organising and processing samples are bound by the limitations of current technology. Many

of the laborious methods for obtaining and manipulating music samples originated decades ago and are

still standard practice for many producers (Rodgers, 2003; Andersen and Knees, 2016).

This chapter offers a comprehensive synopsis of the fundamental concepts and systems related to

SBEM production as described in the literature. The aim of this synopsis is to elucidate existing

limitations and provide context for the research discussed in this thesis. The contents of this chapter

can summarised as follows. Section 2.1 presents a concise history of sampling, technology, and typology.

Section 2.2 delves into the core practices involved in SBEM, specifically focusing on sample sourcing,

selection, manipulation, and arrangement. Section 2.3 outlines the characteristics of drums and the

various techniques employed to integrate them into an SBEM composition. Section 2.4 reviews music

9

10 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

information retrieval (MIR) and deep learning research related to the analysis and generation of samples.

A chapter summary is provided in Section 2.5.

2.1 Music Sampling: An Overview

The re-purposing of audio material to create new music—known as sampling—has revolutionised the

development of popular electronic music genres, and remains an essential technique in music to this

day. Fundamentally, digital sampling is a process that involves the digital analysis and recording of

an analogue signal for the purposes of audio playback and manipulation (Johnson, 1987). Sampling,

in the context of electronic music production, is a practice that utilises digital audio technology to

isolate, manipulate and rearrange segments of audio—or samples—from existing recordings to create

new musical compositions. Sampling is a cultural practice that involves adapting existing works to create

new ones. It is a modern form of adaptation rooted in a long-standing artistic aesthetic of borrowing,

quoting, and repurposing (Sanjek, 1992).

2.1.1 Origins

The creative process of producing new music often involves borrowing and reinterpreting ideas from

the past, drawing inspiration from established patterns and techniques while adding a personal touch

(Burkholder, 1994). Throughout history, eminent composers such as Bach, Mozart, and Beethoven have

drawn upon the works of their predecessors to craft new compositions (Arewa, 2005; Brandes, 2007).

They borrowed melodies, harmonies, and rhythms to advance musical development, with listeners enjoying

the transformations of familiar motifs within evolving musical styles. In the same vein, Nirvana’s Come

as You Are (1992) is a clear adaptation of the lead riff from Killing Joke’s Eighties (1984). Analogously,

sampling entails extracting a component from an existing recording and ingeniously recontextualising it

to create a new composition.

The idea of creating music with samples originated around the 1940s, when composers such as Pierre

Schaeffer and John Cage began to expand on the harmonic, rhythmic and timbral restrictions imposed

by the western orchestra by experimenting with magnetic tape to repurpose and modify recorded audio

from sources such as radio broadcasts, field recordings and various mechanical noises (Holmes, 2012).

Schaeffer laid the groundwork for SBEM production through the development of musique concrète, an

early form of avant-garde electronic music that is characterised by the use of tapes, sound design, and

looping to create new collages of music from existing sounds (Sinnreich, 2010). In contrast to other

traditional music, musique concrète was not defined by the particular sounds used in a composition, but

by a particular approach to listening and composing, in which any sound can be transformed into musical

material through the application of the right techniques (Emmerson, 2018). During this era, composers

discovered that, by physically cutting and joining magnetic tape through editing and splicing techniques,

they could sequence pre-recorded sounds in space and time to create music without the need for human

performers. By splicing sections of tape together, they could make samples recorded on magnetic

tape repeatable in an end-to-end loop. Additionally, the attack and decay of recorded sounds could

be manipulated by cutting tape with sloped angles. Holmes (2012) describes a three-step process for

composing music with tape. First, the recording of raw material on to magnetic tape. Second, listening

to the tapes, extracting sections to be used in the composition and storing them for ease of access.

2.1. MUSIC SAMPLING: AN OVERVIEW 11

Third, manipulating and arranging the chosen segments of tape into a desired sequence. Although

the practice of composing with magnetic tape is almost obsolete today, there are many parallels with

modern SBEM production. The continued use of fundamental concepts and terminology (e.g., splice,

loop, record) in SBEM highlights the enduring relevance of these techniques and their contribution to

the evolution of electronic music production.

During the mid-20th century, early forms of sampling technology were introduced such as the Mellotron,

a keyboard instrument capable of triggering segments of audio recorded to tape with each key. The

term sampling was coined by the manufacturers of the Fairlight Computer Music Instrument (CMI), the

first commercially available digital synthesiser to adopt a sampling function (Davies, 1996). However,

due to the expensive cost of early technology, sampling was exclusively available to only the wealthiest

of producers and musicians. The advent of digital sampling technology in the mid-1980s, specifically

affordable samplers like the Akai Music Production Center (MPC), revolutionised the landscape of music

production. For the first time, professional-quality recordings could be incorporated into home studio

productions. Later in the decade, the introduction of the Akai s1000 further democratised sampling

technology, making it accessible to a wider range of musicians.

The practice of sampling achieved mainstream appreciation and became ubiquitous in popular music such

as hip-hop, rock, and electronic (Chang, 2009). It allowed producers to create music from their homes

without the need for expensive studio time or access to musicians. Pre-recorded audio could be loaded

into a sampler and played back using a musical instrument digital interface (MIDI) keyboard, trigger pad,

or sequencer. Instead of practising an instrument or performing with a band, sample-based producers

would search for sounds from recorded music and arrange them into new compositions. Sampling

opened up new creative possibilities for producers by allowing them to integrate diverse elements from

various genres, time periods, and cultural traditions into their compositions. Although early sampling

technologies were limited in terms of computer memory and audio processing potential, these constraints

stimulated creativity, artistic choices, and new genres of music (Hockman, 2014).

One highly influential figure in hip-hop who had a significant impact on the sound of the genre in the

1990s and 2000s is James Dewitt Yancey, better known as J Dilla (Charnas, 2022). J Dilla was widely

recognised for his innovative use of sampling and his signature soulful, melodic production style. He

was a pioneer in the use of the Akai MPC, a digital sampling drum machine and sequencer that was

popular in the 1990s and is still used today by many electronic music producers. The Akai MPC, a

powerful and versatile tool for electronic music creation, has been employed in numerous classic hip-hop

tracks and has been favoured by renowned producers such as Dr. Dre, Kanye West and Pete Rock

(Magazine, 2004; Producer’s Edge, 2008). Figure 2.1 displays the Akai MPC3000 (Linn, 1994), which

features a built-in sampler, drum pads, and a variety of control knobs and buttons for manipulating

samples and creating music. J Dilla used the MPC3000 extensively in his production work and was

known for his innovative approach to finding unique samples and using them in unexpected ways to

create complex and dynamic music (Charnas, 2022). One of his notable techniques was to program

samples using slight imperfections to emulate a more humanised rhythm. His creative use of the Akai

MPC played a significant role in shaping the sound of modern hip-hop and his influence can still be

heard in the music of today (Charnas, 2022).

12 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Figure 2.1: Akai MPC3000 digital sampling drum machine and sequencer.

2.1.2 Breakbeats

Since the birth of sample-based music to the present day, percussion solos—or breakbeats—are the

most sought-after samples for many music producers. A breakbeat is a percussion-only passage that can

appear anywhere in any music, although typically it occurs towards the end of a funk song (Katz, 2012).

SBEM producers use breakbeats as an essential building block to form a rhythmic foundation when

composing music. The usage of breakbeats in music was initiated around the birth of hip-hop and is

often credited to Clive Campbell (better known as Kool Herc) who discovered that partygoers favoured

breakbeat sections from funk records during the 1970s (Katz, 2012). By taking a drum solo out of its

original context, Kool Herc pioneered a new style of music by repeating the breakbeat section of a record

using a turntable. As this early style of hip-hop music began to grow in popularity, other disc jockeys

(DJ) such as Grandmaster Flash went on to develop more sophisticated ways of looping breakbeats

through the use of two turntables, a mixing interface and two copies of the same record (Katz, 2012).

Through developments in digital sampling technology, it became possible to record and store breakbeats

from vinyl records to digital memory. This facilitated the potential for more sophisticated manipulation

of breakbeats such as layering and resequencing.

Primarily sourced from samples of funk and jazz recordings from the 1960s to 1980s, breakbeat usage

provided the foundation for many musical genres. Several influential genres that developed from

breakbeat-focused music and the use of sampling technology are hardcore, jungle, and drum and bass

(HJDB). HJDB are three related genres that are characterised by fast tempi, breakbeats and distorted

bass sounds. Hockman (2014) provides a comprehensive examination of the history, production methods,

and computational analysis of these genres. The selection and creative usage of breakbeats are often-used

attributes in the determination of an artist’s ability within HJDB and its many sub-genres (Hockman

and Davies, 2015). Breakbeat selection is the process of choosing one or more breakbeats from the

vast amount of existing pre-recorded music to use within a new production. Music producers often

dedicate a considerable amount of time searching through and listening to vinyl records or digital

music to find unique and interesting breakbeats (Joyce, 2022). Once identified, breakbeats can be

recorded and segmented using a digital sampler, then rearranged or looped using a sequencer or tracking

software (Hockman, 2014). Other prevalent transformations include layering, distortion, pitch-shifting

and time-stretching, which can be achieved using audio editing software and analogue effect units.

2.1. MUSIC SAMPLING: AN OVERVIEW 13

Am
pl

itu
de

Fr
eq

ue
nc

y
(H

z)

Time (s)

Figure 2.2: An excerpt from Amen, Brother (1969) by The Winstons. Above is an audio waveform

and below a Mel-scaled log spectrogram. The area highlighted in red displays the location of the Amen

break sample.

One of the most iconic breakbeats was originally sampled from the drum solo in The Winstons’ Amen,

Brother (1969) (The Economist, 2011). The drum solo in Amen, Brother (known as the Amen break)

was performed by the drummer Gregory Coleman and lasted just under seven seconds. The Amen break

became extremely popular in the late 1980s and early 1990s due to its widespread use in hip-hop and

HJDB (Hockman, 2014). The sample from Amen, Brother has been described as one of the most widely

used and influential breakbeats in popular music (Reynolds, 2012). It holds the distinction of being

the most sampled record on the WhoSampled website (WhoSampled, 2023), a platform dedicated to

cataloguing and documenting sampled music, which relies on user contributions to enrich its database.

The Amen break has a strong cultural significance within the hip-hop and electronic dance music scenes,

which has contributed to its enduring popularity (The Economist, 2011).

Figure 2.2 illustrates an excerpt of Amen, Brother in the form of an audio waveform and spectrogram,

displaying the start and end locations to splice and isolate the breakbeat from the surrounding instru-

mentation. At a glance, it can be seen from the highlighted area of the waveform that the percussion

is isolated; at this section the waveform is more sparse and the transient content produced by the

percussion is more visible. Additionally, close inspection of the spectrogram reveals that, during the

breakbeat section, there is an absence of harmonic frequencies (bright parallel lines) arising from other

musical elements (e.g., horns and piano). These qualities make the Amen break a desirable sample

for DJs and producers due to its ease of manipulation and looping. Furthermore, the breakbeat has a

powerful and energetic sound that is well-suited for use in fast-paced, high-energy music (Hockman,

2014).

Due to the significant role that breakbeats play in popular music, a growing amount of academic

research has been dedicated towards computational strategies for breakbeats analysis and manipulation.

Nick Collins pioneered various research towards automating production techniques associated with

the manipulation of breakbeats including segmentation (Collins, 2001b), resequencing (Collins, 2002)

and algorithmic composition (Collins, 2001a). Hockman et al. (2012) present a genre-specific method

for downbeat detection specifically designed for HJDB genres, which are characterised by fast tempo,

14 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Figure 2.3: An example of a typical home music production setup.

breakbeat usage, high note density, and emphasis on offbeats. Hockman (2014) provides an ethnographic

and technological study of breakbeats in HJDB genres, covering the history, track creation process,

analysis techniques, and several interviews with established HJDB musicians and record label owners.

Hockman and Davies (2015) propose the task of breakbeat classification, developing a system for

identifying which breakbeats are sampled in a given composition as well as a specialised system for

automatic segmentation and classification of the individual drum sounds. López-Serrano et al. (2017)

established a first baseline for automatically identifying the location of breakbeats in digital music

recordings by adapting an approach previously used for singing voice detection. Frane (2017) examined

the microtiming of classic breakbeats focusing primarily on sixteenth-note swing—a systematic delay of

even-numbered sixteenth-note divisions of the pulse. Furthermore, Dittmar and Müller (2016) proposed

a method for reverse engineering breakbeats using score-informed source separation to extract and

isolate individual drum hits from the drum sound mixture.

2.1.3 Modern Sampling Technology

In the present day, affordable music production technologies for incorporating and manipulating samples

have democratised the SBEM creation process, allowing users with varying levels of musical knowledge

to experiment in the creation of SBEM from the comfort of their homes (Reuter, 2022). Sampling has

become ever more accessible to potential music makers; memory constraints are no longer an issue,

there is an abundance of free and affordable music and sample libraries, and many producers have access

to powerful digital audio workstations (DAW) such as Ableton Live1 and Logic Pro.2 Figure 2.3 shows

an example of a home music production set-up consisting of a pair of monitors, a hardware controller,

and a computer with a DAW. DAWs revolutionised music recording and production by transitioning

from analogue and digital tapes to computer-based storage systems, such as hard disk drives (HDD)

and solid-state drives (SSD), for managing and storing digital audio data (Marrington et al., 2017).

1https://www.ableton.com
2https://www.apple.com/uk/logic-pro

https://www.ableton.com
https://www.apple.com/uk/logic-pro

2.1. MUSIC SAMPLING: AN OVERVIEW 15

Larger storage capacities and faster access times offered by HDDs and SSDs enable more efficient music

production workflows and greater creative freedom. These storage systems support complex projects,

enhance performance, streamline collaboration, and help producers adapt to evolving audio technology.

Many SBEM producers create music with a DAW, using its grid-like interface to arrange, manipulate and

mix samples. A DAW is a graphical environment on a computer screen that facilitates the manipulation

of MIDI data and digital audio. The interface design influences creative decision-making and workflow,

with various features such as the main sequencer interface, mixer, piano roll for MIDI editing, waveform

display, and traditional score (Marrington et al., 2017). DAWs typically feature multiple channels,

drawing inspiration from tape-based systems, with each channel representing an individual audio track.

Each channel contains a stream of audio that can be edited, processed, and enhanced using a chain of

audio effects, such as equalisation, compression, and reverb. These effects are used to sculpt and shape

each sound, adding depth, character, and interest to the music. The sum of the individual channels,

when combined, results in an overall mixture of audio that forms the final piece of music (Bartlett and

Bartlett, 2009). DAWs often include built-in sampling capabilities, and many also offer a range of virtual

instruments and effects that can be used to create and manipulate sounds.

Modern software samplers, such as Native Instruments Kontakt,3 Steinberg HALion,4 offer advanced

sampling capabilities and features for producers. These samplers can be used to create digital instruments

within a DAW using pre-recorded audio. They include a number of built-in effects, such as filters, pitch

shifting, and amplitude envelope control, which allow producers to shape and transform the sound of the

recordings within a plug-in. Software samplers often come with professionally designed multi-sampled

libraries, comprising a vast collection of audio recordings of instruments played in various styles and

captured using diverse microphone techniques. However, creating such extensive libraries demands

considerable time, effort, and financial resources, often requiring expensive studios and professional

musicians for high-quality results. Despite their versatility, these samplers are inherently limited in terms

of control, as users can only trigger and manipulate the recorded samples with standard audio processing

options. The techniques for transforming samples have largely remained stagnant since the early 1990s,

constrained by the intrinsic transformational potential tied to the timbral and rhythmic qualities of the

source material.

To facilitate interactive music creation and performance, various hardware digital sampling devices

have been developed to work alongside DAWs. For example, as seen in Figure 2.3, the Ableton Push

is a hardware device with a grid of velocity-sensitive pads, physical dials and buttons for triggering

sounds, sequencing, and controlling parameters in Ableton Live.5 Modern sampling hardware typically

integrates a software platform with an array of hardware controls, providing users with a more intuitive

approach to navigate and edit their music than the traditional computer, mouse, and keyboard setup.

Hardware sampling devices are popular among electronic musicians as they facilitate music creation and

performance, offering a hands-on, tactile approach using both the software and hardware components of

the system (Kladder, 2016).

3https://www.native-instruments.com/en/products/komplete/samplers/kontakt-7
4https://www.steinberg.net/vst-instruments/halion
5https://www.ableton.com/en/push

https://www.native-instruments.com/en/products/komplete/samplers/kontakt-7
https://www.steinberg.net/vst-instruments/halion
https://www.ableton.com/en/push

16 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE
Fr

eq
ue

nc
y

(H
z)

Time (s)

Figure 2.4: Mel-scaled log spectrograms for a piano one-shot (left) and a piano one-loop (right). The

sample on the left is single piano chord played for 0.25 seconds. The sample on the right is a one-bar

chord sequence repeated four times to create an eight second, four-bar piano loop.

2.1.4 Sample Typology

A typology for different types of music samples can serve as an invaluable tool for producers, musicians,

and musicologists by offering a systematic framework for understanding, organising, and appreciating the

diverse range of sampling techniques and their applications across various music genres. Categorising

samples based on their musical elements, purposes, or characteristics, not only facilitates the effective

management of extensive sample libraries but also enables producers to make informed decisions in

selecting samples for specific creative goals. Frequently sampled musical elements include: drums, such

as breakbeats and single percussive strikes; bass lines, for example, bass guitars or double bass; vocal or

spoken word excerpts; and melodic elements, for instance, lead guitars and piano melodies (Hockman,

2014; Sewell, 2013). Other sounds that are sampled include field recordings, radio and television extracts,

and industrial or mechanical sounds (Holmes, 2012; Landy, 2012). Moreover, the length of a sample

can vary depending on its intended use, ranging from a single cycle of a waveform for the development

of a synthetic instrument (Bristow-Johnson, 1996) to an entire phrase, such as the chorus of another

piece of music (Sewell, 2013).

Several researchers have devoted their efforts to creating a typology of sampled material to enable the

comparison and analysis of sampling trends. Through a combination of analysis and ethnography, Sewell

(2013) developed a typology of sampling in hip-hop music to identify the sounds used in sample-based

music, differentiate the treatments of sampled sounds and describe the sampling styles of music producers.

Samples are divided into three main types: structural samples, surface samples, and lyric samples;

structural samples create the rhythmic foundation, surface samples overlay the foundation, and lyric

samples provide words or phrases. Ratcliffe (2014) proposed an alternative sampling for electronic dance

music using a classification system to group sounds into one of four main categories: short isolated

fragments (i.e., one-shots), loops and phrases, larger elements, and transformed material. In modern

collections, samples are often categorised into one-shots and loops. Figure 2.4 displays spectrograms for

a one-shot (left) and a loop (right).

One-shot: A one-shot is a type of audio sample that is associated with a single event sound, such as

a strike of a drum, a piano note, or a guitar chord. One-shots can be sequenced using MIDI information

to precisely adjust their pitch and timing, allowing for the creation of dynamic music phrases. One

of the most prevalent usages of one-shots in SBEM is for creating drum patterns, typically using kick

drums, snare drums and cymbals. One-shots can be triggered using the performance pads built into a

sampler, or drum machines and virtual drumming software to simulate an acoustic drum kit, enabling

2.2. SAMPLE-BASED ELECTRONIC MUSIC PRODUCTION 17

live performance and improvisation. Drum one-shots can be created by recording percussion instruments

or using electronic instruments to generate percussive sounds through synthesis techniques (Section

2.3.1). SBEM producers may also segment longer samples into individual one-shots, providing more

flexible control when creating original sequences and variations.

Loop: The term loop is often used to describe a type of sample, usually of short duration (between

one to four bars in length), that has been prepared for seamless repetition (Stillar, 2005). A loop can be

created by sampling a section from a pre-recorded piece of music, extracting a short phrase from a solo

instrument recording, or through the use of MIDI and a selection of one-shots. To facilitate seamless

repetition, the loop start and end points must be carefully selected to ensure a musical idea is resolved

(Collins, 2014). These loops often serve as the primary material from which music makers can create

compositions through various editing and combinatory processes (e.g., layering, splicing, rearranging).

Additionally, loops are an essential structural component of SBEM, and are often associated with a

particular role. Alongside the growing interest in creating music with loops, academic literature on

assisting loop-based music production has increased. There are several methods for automated loop

extraction from pre-existing music (Shi and Mysore, 2018; Smith and Goto, 2018; Smith et al., 2019),

and loop creation (Cocharro et al., 2014; Alain et al., 2020; Chandna et al., 2021).

Many commercial companies, such as Splice6 and Loopcloud,7 have curated large databases of one-shots

and loops, which can help both professional and amateur producers to create music without expert

knowledge of music theory (e.g., chords, scales, notation). In contemporary music production, loops are

often categorised based on the role they occupy in a piece of music (i.e., instrumentation roles) such as

bass, melody, or effects, rather than specific instruments. This approach to categorisation is evident in

established sample libraries, including Splice and Loopcloud. Given that SBEM production is significantly

influenced by aesthetic preferences (Schloss, 2014), producers frequently select samples based on their

functional roles within the musical arrangement. By categorising samples based on their instrumentation

roles, it is easier to understand how they contribute to the composition and how they will interact with

other elements within the piece. Moreover, producers can explore a broader range of traditional and

synthesised timbres without being constrained by the instrument specificity, which may be difficult to

determine when dealing with heavily processed or experimental samples. This focus on functional roles

encourages creativity and experimentation, allowing producers to explore new combinations of sounds

and instruments. For instance, when a producer seeks a sample to fulfil the bass role in their music,

they can search for loops labelled accordingly and be provided with candidates from various instruments,

such as bass guitars, pianos, or synthesisers.

2.2 Sample-based Electronic Music Production

SBEM producers typically engage in the process of locating and selecting a variety of samples, which

are then skillfully combined and arranged to create a cohesive musical composition (Rodgers, 2003;

Morey and McIntyre, 2014; López-Serrano, 2019). Samples can be sourced from a variety of different

resources such as pre-recorded music and online sample stores (López-Serrano et al., 2017; Shelvock,

2020). Selecting samples that sound coherent together is a highly subjective endeavour, and often relies

on the aesthetic judgement of a music producer to assess their suitability within the current musical

6https://splice.com
7https://sounds.loopcloud.com

https://splice.com
https://sounds.loopcloud.com

18 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Figure 2.5: Searching for records to sample (i.e., crate digging) in SJ Records, an independent record

store located in Stratford-upon-Avon, UK.

context (Morey and McIntyre, 2014). After obtaining a collection of samples, producers employ various

techniques to modify their characteristics, including pitch shifting, time stretching, and layering (Jackson,

2016). These samples are then typically arranged into a composition using a DAW. Another key task is

the creation of a drum track, as it provides an underlying structure and rhythmic foundation for the

composition. This section provides an overview of the techniques and tools that are typically used in

the process of creating music using samples.

2.2.1 Sample Sourcing

Originally, SBEM producers sourced samples by visiting record stores, flea markets and thrift shops to

seek vinyl records that may contain sampling material (Vályi, 2010). Upon acquiring a record, producers

engage in a meticulous listening process, attentively listening to the entire content in search of an

appealing section to sample (López-Serrano et al., 2017). This process is referred to as crate digging

and involves physically searching through crates of vinyl records to find musical material that can be

reused in a new composition (as seen in Figure 2.5). It has granted producers access to an array of

global musical material that would have otherwise remained unreachable, fostering the ability to traverse

and connect decades of sound and music (Reynolds, 2011). Crate digging can be a time-consuming

and often frustrating process as it requires patience and persistence. However, for some individuals, the

excitement of the search and the feeling of accomplishment that comes with discovering a rare record or

track makes the effort worthwhile (Ahmed et al., 2012; Jackson, 2016).

There’s something on every record. You can make any record into a beat. I mean, even in

the early days, cats made music out of anything. I collect music. Music that sounds good

and I make samples with real music.

- Pete Rock (Producer’s Edge, 2008)

There are different strategies that crate diggers use when searching for records or tracks. For example,

some producers may focus on a particular genre or era, while others look for records or tracks by specific

2.2. SAMPLE-BASED ELECTRONIC MUSIC PRODUCTION 19

artists or labels (Vályi, 2010; Ahmed et al., 2012). Once an interesting record has been found, it can be

recorded into a digital audio system and a sample can be extracted using a sampler or DAW. As an

alternative to crate digging, companies such as Zero-G8 produced sample packs consisting of a variety

of royalty-free samples, including breakbeats, bass lines, melodies and sound effects (Snoman, 2012;

Hockman, 2014). These samples can be used as a source of inspiration or to quickly find and incorporate

new sounds into their music.

With the proliferation of music on the internet, music producers have adapted to take advantage of the

abundance of digital music and samples available online. Digital crate digging is the modern alternative

to sampling music from vinyl records and sample CDs; instead, producers search through websites such

as YouTube and Beatport9 in search of existing music to sample from. Producers can also obtain

samples from cloud-based online services such as Splice and Loopcloud, or by using community-based

sites like Looperman and Freesound, which offer thousands of free loops and samples (Shelvock, 2020).

Online sample stores are curated collections of ready-made audio samples that enable producers to focus

on other creative aspects of music production instead of the tedious task of sourcing samples from

pre-recorded music and the technicality of sound design and recording. These stores offer a wide range

of loops and one-shots from a variety of genres, such as hip-hop, house, and jazz. They also offer sample

packs created by popular artists and producers, which can inspire creativity and accelerate the music

production process. It is important to note that while some of these sources may offer high-quality,

royalty-free samples created by professionals, others may be accessed illegally, which can result in legal

and ethical issues. Tracklib is a recent music service that allows producers to browse a large catalogue of

original music tracks and sample them legally for use in their own music productions.10 It solves many

legal and ethical issues surrounding sampling and music clearance by providing a streamlined process for

obtaining the necessary licenses and permissions for the samples used in a composition.

2.2.2 Sample Selection

Sample selection is a meticulous retrieval task in which music producers use their aesthetic judgement to

listen and identify samples from the collections available to them. This task typically involves searching

for samples, from a potentially large library, to use in new musical compositions. This process requires

practice, experimentation, and trial and error to identify samples with particular attributes, such as

sparseness, instrumentation, and desirable timbral characteristics (Andersen and Knees, 2016; Hockman,

2014). Efficient organisation, indexing, and retrieval of audio libraries play a pivotal role in the selection

processes of music composers and producers (Andersen and Knees, 2016; Jackson, 2016). In the context

of online sample stores, the navigation process typically involves a semantic approach, whereby users

have a particular structure of meaning in mind when searching for samples and associated metadata

or tags. These music tags are descriptive keywords that provide information about the audio content

from the perspective of the listener, such as instrument (e.g, guitar, piano, synthesiser), role (e.g.,

melody, bass, drums), genre (e.g., hip-hop, jungle, techno) and type (i.e., loop or one-shot). Sample

libraries produced for commercial use are often structured and include descriptive tags that enable

efficient retrieval of desired sounds. Splice is a widely recognised and utilised online sample store that

offers music producers access to a broad selection of high-quality sounds and loops, drawn from an

8https://zero-g.co.uk
9https://www.beatport.com/

10https://www.tracklib.com

https://zero-g.co.uk
https://www.beatport.com/
https://www.tracklib.com

20 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Figure 2.6: Examples of sampling browsing interfaces. Splice sample browser (left), hierarchically

structured folders of samples (centre), Ableton Live’s built-in browser (right).

extensive library featuring works from prominent artists and producers. As depicted in the left of Figure

2.6, the Splice user interface incorporates a tag-based browsing and filtering system, enabling users to

explore and discover new sounds for use in their musical projects. However, not all sample stores provide

this functionality, and producers may also encounter unstructured samples in their personal collections,

especially if they have sourced them from pre-recorded music. Producers who frequently sample from

various existing recordings and neglect to label or organise them appropriately may find themselves with

a collection of unstructured samples. Without effective categorisation or metadata, locating specific

sounds for use in future projects can become laborious. In such cases, producers often develop their

own systems for organising and searching their samples (Andersen and Knees, 2016). In a series of

interviews with accomplished music producers, Andersen and Knees (2016) identify the challenges these

professionals encounter when navigating their personal sound collections.

Sometimes, when you don’t know what you are looking for, and you’re just going randomly

through your samples, that might be helpful, but most of the time I have something in

mind that I am looking for, and I am just going through all these sound files, and I am just

waiting for the sound which I had in mind to suddenly appear. Or what comes the closest

to what I had in mind. So I think that most of the time, I know what I am looking for, and

then it is just a matter of time before I find it. - TOK002 (Andersen and Knees, 2016)

The centre of Figure 2.6 shows an example of a hierarchical folder structure often used by producers

to organise their sample packs. Manual annotation of samples for organisational purposes can be a

challenging and time-consuming task, especially when dealing with large audio collections. DAWs often

feature browsing interfaces that facilitate text-based retrieval of audio files by scanning the computer

directory for matching filenames and allowing users to preview samples within the DAW. For example,

the Ableton Live browsing system shown on the right side of Figure 2.6, enables users to locate samples

using a text-based search, provided that the sample filenames are labelled with appropriate text identifiers.

Moreover, the colour-coding system in Ableton Live enables users to tag and organise their own samples

on the fly, simplifying the process of locating them in future sessions. Owing to the advantages conferred

by music tags and metadata, numerous studies have focused on developing scalable systems capable of

automatically generating tags for music (see Section 2.4.1).

Music tags, while useful in filtering and selecting samples through text-based queries, may be limited in

their ability to encapsulate the intricate and subtle qualities of sound. This can make it difficult for users

to align the predefined semantic structure with their own individual perception and understanding of the

sounds (Andersen and Knees, 2016). Furthermore, utilising broadly semantic tags for searching can

still lead to unwieldy selections, particularly when browsing large collections of samples. The challenges

2.2. SAMPLE-BASED ELECTRONIC MUSIC PRODUCTION 21

Figure 2.7: Examples of commercially available products for automatic organisation of drum samples,

XLN XO (left) and Algonaut Atlas (right). Drum samples are mapped onto a two dimensional space

and colour coded based on their type (e.g., kick, snare, hi-hat, and clap).

associated with sample selection have prompted research into more efficient methods of organising and

navigating collections of samples (see Section 2.4.5). A number of commercial products and companies

offer solutions for organising sample collections including, XLN XO11 and Algonaught Atlas.12 As shown

in Figure 2.7, these tools provide a framework in which samples with similar attributes are located

in proximity to one another on a two-dimensional interface, thus facilitating the search and selection

process.

2.2.3 Sample Manipulation

Sample manipulation refers here to the various techniques that can be used to transform a sample, such

as by changing its pitch, tempo, timbre, or other characteristics. Pitch transformation, for example, can

be used to ensure that samples are harmonically compatible when combined in a composition. Adjusting

the tempo can also help producers to achieve a desired rhythmic feel or fit samples into a specific tempo.

The ability to manipulate samples opens up a vast range of creative possibilities for producers and helps

them to push the boundaries of what is possible with sound. Sample flipping is a term often used

within the SBEM community to describe this process of transforming previously existing material in new

and innovative ways (Kruse, 2016). Some examples of transforming a sample include layering multiple

samples to create a more complex and textured sound; applying audio effects such as equalisation,

reverb, or delay to modify the timbre and dynamics; and using time-stretching or pitch-shifting to change

the duration, tempo or pitch of a sample to correspond with other elements in the composition.

HJDB music brought about several innovations in the studio, and one of them was the introduction

of a new sonic texture achieved by pushing the time-stretch algorithm of Akai S series sampler to

produce audible artifacts (Hockman, 2014). The time-stretched effect has a very distinct and instantly

recognisable sound, with a stuttering, metallic quality. The production of Dead Dred’s Dred Bass (1994)

is a widely recognised example of the advanced sample manipulation techniques that emerged from

HJDB. The track showcases the use of several intricate methods, including time-stretched vocal samples,

a skillfully manipulated Amen breakbeat with pitched individual drum hits, and a reversed and distorted

synthesised bass sound (Hockman, 2014). These techniques were subsequently adopted and replicated

11https://www.xlnaudio.com/products/xo
12https://algonaut.audio/

https://www.xlnaudio.com/products/xo
https://algonaut.audio/

22 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Figure 2.8: Segmenting a breakbeat sample using Ableton Simpler. Samples are segmented automati-

cally using the transient information (vertical lines in waveform display). The sensitivity parameter can

be used to adjust the number of segment locations and additional segments can be added manually.

Once segments are acceptable to the producer, rhythmic modifications can be made by rearranging the

segments using MIDI information.

1 2 3 4 5 6 7 8 9 10 1311 12

1

-1

0

Am
pl

itu
de

Segment Segment
1 1 3 4 5 6 7 1 3 6 8

1

-1

0

(a) (b)

Pi
an

o
Ro

ll

Figure 2.9: Rearranging a segmented breakbeat sample to create a rhythmic variation. The top left is

the waveform of the original sample and corresponding piano roll MIDI data. The right side shows a

transformed version, achieved by reordering the segments.

in numerous later productions within the genre. Another frequently used technique is to divide a sample

into several segments (often termed chopping) and rearrange them into a new pattern (Morey and

McIntyre, 2014). This technique is especially prevalent in HJDB, in which rhythmic modifications are a

key aspect of the genre (Hockman, 2014; Joyce, 2022).

Figure 2.8 shows a breakbeat imported into Ableton Simpler, a sampling instrument that allows a user to

playback and manipulate samples in a variety of ways. Similar to many other modern samplers, Simpler

incorporates a semi-automated segmentation feature that detects segment boundaries by analysing

the transient envelope of the waveform. A sensitivity parameter can be used to adjust the number

segment locations and additional segments can be added by manually clicking on the waveform. Once a

user has selected the desired segment boundaries using a software sampler, rhythmic modifications can

be made by rearranging the segments using MIDI data. Figure 2.9 demonstrates the rearrangement

of a breakbeat sampled from Humpty Dump (1973) by The Vibrettes. The top of Figure 2.9 (a)

shows the original waveform and the segment boundaries identified using an automatic segmentation

functionality. Below shows the Ableton piano roll, a graphical representation of MIDI data associated

with the segment boundaries. Figure 2.9 (b) shows a rhythmic transformation created by reordering

the MIDI data to create an alternative drum pattern. It is worth noting that the example shown uses

2.2. SAMPLE-BASED ELECTRONIC MUSIC PRODUCTION 23

Figure 2.10: An example of music being arranged in a digital audio workstation.

a segmented breakbeat sample; however, this technique can be applied to any sample whether it is a

chord progression, melody or bass line.

2.2.4 Arrangement and Structure

Arranging is a crucial aspect of SBEM, which involves organising samples into a coherent composition.

SBEM producers most often compose musical arrangements in a DAW using a cut-and-paste method

to repeatedly trigger and overlay samples over the course of the track (Morey and McIntyre, 2014).

A prevalent technique involves the sequential introduction and removal of various samples at certain

time intervals, resulting in a layered structure (Snoman, 2012). Through progressively layering different

samples, applying effects (e.g., equalisation, reverb, delay), and automating their parameters, producers

can create a sense of depth and movement in their tracks. The layered structure can be used to build

tension and release, create dynamic contrasts, and add complexity to a track. This technique is widely

used in electronic music genres such as hip-hop, HJDB, house, and techno (Schloss, 2014; Hockman,

2014; Butler, 2006).

Figure 2.10 presents an example of music being arranged in a DAW software, in which the horisontal

coloured bars represent the tracks for audio and MIDI information. In this example, the different

instruments are grouped and colour coded based on their specific role in the composition: drums, bass,

chords, melody, fx, and vocals. For example, the bright green group of tracks comprise different drum

and percussion samples, and it can be seen how they are activated over the course of the composition.

Grouping tracks based on their instrumentation role provides several advantages in the music production

process. This method facilitates a well-organised arrangement, makes it easier to comprehend instrument

positions, and enables individual processing of groups which can help to create a balanced mix (Snoman,

2012). Furthermore, focusing on the roles rather than specific instruments simplifies the arrangement

process, allowing producers to concentrate on the overall composition. Adopting such an approach helps

maintain a clear and efficient workflow while working on various aspects of the arrangement.

24 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Unlike many popular music genres, which typically follow a verse-chorus form, SBEM music often follows

a loop-based structure that begins with a sparse introduction that progressively increases in complexity

by adding and removing further music material. Furthermore, SBEM producers often structure their

tracks in a way that is conducive to DJ performance and mixing, with the intention of facilitating

a seamless transition between songs during a DJ set (Butler, 2006). This type of structure can be

referred to as a DJ-friendly mix; however, producers may release a shorter version of the full track

for commercial radio or television (Snoman, 2012). Butler (2006) describes the prototypical form of

electronic music using five phases: introduction, buildup, core, breakdown, and outro. The introduction

phase contains the fewest number of layers and is often the simplest part of a composition. Its purpose

is to establish the primary musical theme and shape audience anticipation for what the track will

subsequently provide. For DJ-friendly arrangements, the introduction often includes a simple drum

loop that facilitates beat-matching—a skill which involves ensuring that two tracks are playing at

the same tempo (or fraction or multiple thereof) and have their relevant metrical pulses (e.g., beats)

aligned. Following the introduction, the buildup phase creates anticipation and musical tension by

introducing new layers. The buildup phrase often includes sound effects, repetitive melodic motifs, and

drum rolls—a technique in which the drum is played rapidly in succession. A prevalent technique used

by producers to create tension during the buildup, is to automate the parameters of audio effects to

gradually increase or decrease the volume, frequency, or pitch of the various layers and loops. The core

phase (sometimes referred to as the drop), is the main section of a composition, in which the majority

of layers are active. Depending on the genre, this phase can vary in terms of complexity; however, it is

typically the most exciting and pleasurable moment for listeners. The core accommodates the main

hook—the most memorable part of a composition—which can be represented by a melody, bassline

or breakbeat depending on the genre. Solberg (2014) explored the correlations between the intense

emotional experiences and production techniques used by EM producers to emphasise the drop. The

breakdown phase is utilised to drastically reduce the energy through the removal of the main elements

and layers. Its purpose is to provide a momentary pause and an opportunity to reset the energy level after

a high-intensity core. The outro is the final phase of an arrangement, in which layers are progressively

reduced to silence. Similar to the introduction, a DJ-friendly mix will include a simple drum loop to

facilitate a transition into the next song.

2.3 Drum Creation in Sample-based Music

Drums and percussion play a significant role in shaping the rhythmic foundation of many music genres,

particularly in SBEM (Greenwald, 2002; Morey and McIntyre, 2014). However, in contrast to genres

such as pop and rock, where vocals or guitars are the most dominant elements, drums are typically at

the forefront of many SBEM productions and play a crucial role in shaping the overall sound and quality

of a composition (Hockman, 2014). Furthermore, many SBEM genres are differentiated by the choice

of drum sounds, tempo, and rhythmic patterns, such as the use of the Roland TR-909 drum sounds at

around 120 BPM and an isochronous kick drum rhythm in house music (Butler, 2006) or the use of

fast-paced breakbeats in HJDB (Hockman, 2014). These distinct timbral qualities and rhythmic patterns

are essential in defining the characteristics of each genre. Hence, music producers spend a great deal of

time and effort into the creation of drum sounds and rhythmic patterns that are coherent and interesting

(Hewitt, 2009). There are several methods for incorporating drums into an SBEM composition including

2.3. DRUM CREATION IN SAMPLE-BASED MUSIC 25

Kick drum

Floor tom

Ride cymbal
Crash cymbal

Rack toms
Hi-hat

Snare drum

Figure 2.11: An illustration of the standard western drum kit.

recording a physical drum set, sampling percussion elements from existing recordings, and synthesising

drum sounds from scratch.

2.3.1 The Drum Kit

The main types of drums that are sought after by SBEM producers are based around the modern drum

kit. The drum kit is a fundamental component of the typical rhythm section and finds its application in

various traditional music genres, spanning from rock, pop, blues and jazz. It is comprised of multiple

instruments that are played independently by a single musician (i.e., a drummer). Figure 2.11 illustrates

a standard drum kit consisting of a kick drum, a snare drum, cymbals and toms.

Kick drum: A kick drum—otherwise known as a bass drum—is the largest drum in the standard

drum kit and one of the most important elements in modern dance music. It provides the essential

low-frequency foundation and is often used to establish phrasing by accentuating the downbeat positions,

giving a sense that a song is driving forward (Greenwald, 2002). The kick drum is composed of two

drumheads encapsulated in a shell: the batter head, which is the striking side of the drum, and the

resonant head, which responds to the impact of the batter head (Rossing et al., 2014). It is played using

a foot-operated pedal, which is connected to a beater. When the drummer presses the pedal, the beater

strikes the batter head, creating the initial transient of the drum sound which typically lasts for a few

milliseconds. The impact of the hit causes the rest of the drum to resonate over a longer period. The

sound of an acoustic kick drum is determined by various factors, including the tension of the drumheads,

the diameter and construction of the shell, and the materials used for the shell, the drumheads and

the beater (Rossing et al., 2014). These variables affect the pitch and timbral characteristics of the

drum, allowing drummers to achieve a wide range of sounds to suit different musical styles. In addition,

the decay time of an acoustic kick drum can be altered by using a blanket or duvet placed inside the

drum to dampen the vibrations (Bartlett and Bartlett, 2009). This technique is often used in recording

studios and live performances to achieve a more controlled sound.

26 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Figure 2.12: Waveform and spectrogram audio representations of common drum kit components—kick

drum, snare drum, hi-hat, and crash cymbal, respectively.

Snare drum: The snare drum is made of a cylindrical drum shell, usually consisting of metal or wood,

and features a series of snare wires that are stretched across the resonant head of the drum. When

the batter head of the drum is stuck, these wires vibrate against the resonant head, producing a sharp

staccato sound. The presence of snare wires causes the vibrational modes of the drum to become more

complex and unpredictable, while also creating a unique, inharmonic noise that contributes to the overall

character of the snare (Rossing et al., 1992). The snare drum can be struck in a variety of ways, each

resulting in a unique sound. For example, the velocity of the strike plays a significant role in the sound

produced, with a softer hit resulting in a quieter and more muted sound (referred to as ghost notes),

while a harder strike produces a sharper and more vibrant tone, often exciting the snare wires to a

greater degree. In addition, striking both the drum head and rim simultaneously (known as a rimshot)

creates a distinct sound characterised by its sharp attack and high volume. These playing techniques

provide the drummer with a wide range of sonic possibilities and are often used to add texture and

dynamics to a musical performance (Southall, 2019). In hip-hop and jungle music, the snare drum is

often used to emphasise beats two and four, while ghost notes are used between accented beats to add

colour and texture (Greenwald, 2002; Hockman, 2014).

Cymbals: Cymbals are a type of idiophone, which are self-sounding instruments that produce sound

through the vibration of their own metallic material (Marcuse, 1975). Flat circular plates are used

to create cymbals, which produce bending waves that travel both circularly and across the diameter

(Fletcher and Rossing, 1998). Cymbals are typically made of an alloy comprised of varying amounts of

copper, tin and silver, each with its unique tonal character (Petrella, 2002). The sound of a cymbal also

depends on its diameter, curvature and thickness, with more random modes producing inharmonic and

non-definable pitch profiles that are similar to full spectrum noise (Fletcher and Rossing, 1998). Other

contributing factors of the sound depend upon the position of the cymbal that is struck (e.g., the bell or

profile), the velocity it is struck, and the material used to strike it (e.g., a wooden stick, mallet, or soft

beater) (Rossing, 2001). The hi-hat comprises two cymbals mounted on a stand and the interaction

between them is controlled using a foot pedal. Hi-hats play a fundamental role in drumming and are

widely used to maintain rhythm. The hi-hat can be played in an open (i.e., open hi-hat) or closed

(i.e., closed hi-hat) position, with a closed position producing a dampened, less energetic sound and an

open position resulting in more energetic noise. The opening and closing of the hi-hat cymbals creates

distinct sound variations that can be utilised to add depth and texture to a performance. Other cymbals

commonly used in drum kits include the ride, crash, and splash cymbals. These cymbals are typically

2.3. DRUM CREATION IN SAMPLE-BASED MUSIC 27

Figure 2.13: Roland TR-909 drum machine (left), XLN Audio Addictive Drums 2 (right).

used to emphasise specific musical sections and build the energy and momentum of a performance

(Southall, 2019).

Toms and other percussion: The standard drum kit also includes rack toms, which are mounted to

the kick drum; and floor toms, which are usually positioned under the ride cymbal. Toms are often used

in drum fills and solos that typically occur during transitional points in music (e.g., between verse and

chorus) (Stewart, 2000). The drum kit can often be accompanied by other percussion instruments such

as bongos, congas, hand claps, tambourines, and shakers. (Greenwald, 2002).

Producers may choose to use live recorded drums rather than synthesised drums for a variety of reasons.

Firstly, the use of live drums can provide a more authentic and natural sound, which is often sought

after in genres such as rock, jazz, and blues. The variations in performance and unpredictability that

come with live drumming can make the sound more organic and can complement the overall rhythm

(Greenwald, 2002). Secondly, the unique acoustic qualities of live drums, which are influenced by the

room, microphone placement, and other factors, can add character and depth to the sound (Bartlett and

Bartlett, 2009). Furthermore, different recording techniques such as close-miking or room-miking can be

used with live drums to achieve different tonal and spatial characteristic (Toulson, 2021). Additionally,

some producers simply prefer the aesthetic of live drum recordings over synthesised sounds for their

specific style of production or mixing (Hockman, 2014).

2.3.2 Drum Machines and Virtual Drumming Software

In addition to the vast collections of pre-recorded drum samples available on the internet, various

commercial tools and equipment have been designed to create and manipulate drum samples, providing

even more opportunities for experimentation and customisation. These tools provide a cost-effective

and efficient way to explore different drum sounds and techniques, eliminating the need for expensive

recording equipment or a live drummer. The drum machine—an electronic instrument for creating

percussion sounds and programming drum patterns—has had a lasting impact on popular music since the

release of the Roland TR-808 in the 1980s and its predecessor the TR-909. Drum machines are popular

electronic instruments that imitate a drum kit through the creation and arrangement of synthesised

percussion sounds. The left side of Figure 2.13 displays the front panel of the Roland TR-909, which

includes various parameters for tuning the pitch, timbre, and dynamics of different types of drums.

Additionally, it features a row of sixteen keys at the bottom that allow drum events to be programmed

and provide a visual representation of a 16-step sequence.

28 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

Another example is virtual drumming software (VDS), which simulates the recording and tuning

parameters of acoustic drum kits, allowing users to create realistic and expressive drum sounds without

the need for recording equipment or a live drummer. Typically, VDS is sample-based and includes

carefully curated and processed recordings of live drummers to capture the nuances of different drumming

styles and techniques. Moreover, VDS is controlled through MIDI and often includes libraries of symbolic

drum loops that can be sequenced to create complex rhythmic patterns, providing users with a wealth of

creative possibilities. Examples of VDS software include XLN Audio’s Addictive Drums,13 FXpansion’s

BFD314 and Toontrack’s SuperiorDrummer.15 The user interface of Addictive Drums 2 is displayed

on the right side of Figure 2.13. It features a diverse range of instruments from the drum kit, which

can be easily replaced or edited through an array of processing functionalities such as compression,

saturation, and reverb. At the bottom of the interface, there are several volume faders that enable

the user to balance the mix of individual drum sounds, as well as adjust the levels of the microphones

used during recording, such as overheads and room mics. Despite the high quality of virtual drumming

software libraries, the user experience of these applications can be negatively impacted by their large size,

suboptimal user interfaces, and an excessive amount of complex parameters. Furthermore, the level of

control over a sound can be limited by the fact that transformations are tied to multi-sample recordings.

2.3.3 Drum Synthesis

As an alternative to sampling, music producers can create drum sounds using a wide variety of synthesis

techniques. Synthesis provides a considerable amount of control and flexibility, allowing the characteristics

of a drum sound, such as the pitch and timbre, to be carefully sculpted by the user. Music producers

will often use a combination of synthesis and sampling techniques in order to achieve a balance of both

precision and character in their productions. There are numerous commercially available synthesisers

and audio plug-ins, such as the Arturia DrumBrute16, the Sonic Academy Kick 2,17 and Blck Noir by

Endorphin.es,18 that offer different interfaces and functionalities to assist music producers in crafting

their desired drum sounds.

Perhaps the simplest method for synthesising audio is additive synthesis, in which complex sounds can

be created by combining multiple discrete sinusoidal waveforms (Smith, 2010). Figure 2.14 demonstrates

how a simple kick drum can be created by modulating the amplitude and pitch of a single sinusoidal

waveform over time. This simulates a beater striking the stretched surface (i.e., batter head) of an

acoustic kick drum, which creates an initial high-frequency sound that drops in pitch and amplitude

over a short period of time. A wide range of sounds with more complex timbres can be created by

adding more sinusoidal waveforms of different frequencies, amplitudes and phases. Although the additive

synthesis parameters are somewhat close to human perception, this method can become computationally

expensive as many components are required to model the rich texture of natural sounds. Another option

is subtractive synthesis, in which a sound source containing many harmonics, such as a sawtooth, square

waveform, or a noise signal, is manipulated by subtracting frequencies using a filter (or bank of filters)

(Miranda, 2012). Subtractive synthesis offers less precision than additive synthesis in terms of individual

13https://www.xlnaudio.com/products/addictive_drums_2
14https://www.fxpansion.com/products/bfd3
15https://www.toontrack.com/product/superior-drummer-3
16https://www.arturia.com/products/drumbrute
17https://www.sonicacademy.com/products/kick-2
18https://www.endorphin.es/modules/p/blck-noir

https://www.xlnaudio.com/products/addictive_drums_2
https://www.fxpansion.com/products/bfd3
https://www.toontrack.com/product/superior-drummer-3
https://www.arturia.com/products/drumbrute
https://www.sonicacademy.com/products/kick-2
https://www.endorphin.es/modules/p/blck-noir

2.3. DRUM CREATION IN SAMPLE-BASED MUSIC 29

Figure 2.14: A demonstration of the pitch (red) and amplitude (blue) envelope parameters used to

synthesise a kick drum.

harmonic control; however, it is computationally efficient, intuitive, and easy to control, making it a

popular choice in electronic music production (Miranda, 2012). Furthermore, subtractive synthesis

is often correlated with the production of warm and sonorous sounds and is implemented in popular

analogue drum machines (e.g., Roland TR-808 and TR-909). Frequency modulation (FM) synthesis

(Chowning, 1973) is another synthesis technique that can be used to create percussion sounds. FM

synthesis can create complex waveforms by modulating the frequency of a carrier signal with various

other signals. For example, the frequency of a basic sine wave can be modulated using a series of sine

waves at different frequencies to emulate the inharmonic partials heard in a cymbal. The Karplus-Strong

algorithm (Karplus and Strong, 1983) can also be used to synthesise percussive sounds. Karplus–Strong

synthesis uses a delay line to create a synthetic sound that mimics the behaviour of a vibrating medium,

such as a plucked string or a struck drum. The energy loss of a string or a drum is simulated using

a buffer of samples and a feedback loop to excite the buffer, which in turn creates the sound. By

shortening the delay time and increasing the feedback gain, the Karplus–Strong algorithm can be used

to generate percussive sounds that have a sharp attack and a short decay, similar to those of a drum or

a cymbal.

Physical modelling is a method of sound synthesis that mimics the behaviour of real-world physical

systems to create sounds. In this approach, the physical properties of percussion instruments are

simulated using mathematical models. By applying the principles of acoustics and elasticity, these

techniques provide a physical representation of the main vibrating components of musical instruments

through the use of partial differential equations (Rabenstein and Trautmann, 2001). This allows the

accurate synthesis of a wide range of sounds that cannot be easily reproduced using traditional waveform

synthesis methods. Physical models have been developed for snare drums (Torin et al., 2014), bass

drums (Bilbao et al., 2019), and a variety of other percussion instruments (Fontana and Rocchesso,

1998; Bilbao and Webb, 2013; Bilbao et al., 2019). Physical modelling of sound is highly regarded for

its desirable characteristics in synthesis, control, and expressiveness. However, it has some limitations,

30 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

such as the control parameters not being directly related to the produced sound and a high number of

parameters being required to model realistic data (Serra, 2007).

2.4 Related Research

The previous sections have provided an overview of music sampling and the standard practices employed

in SBEM production, emphasising the fundamental concepts of sample sourcing, selection, manipulation,

and arrangement. Modern SBEM production often entails exploring digital audio collections, such as

sample libraries and recorded music, while carefully selecting samples based on aesthetic judgment.

Producers then adapt, manipulate, and arrange these samples to create unique compositions. This

section offers an in-depth examination of research related to SBEM, concentrating on techniques for the

automated analysis, retrieval, and generation of electronic music samples. The objective of this review

is to showcase both the advancements and current constraints in the existing body of research, thereby

contextualising the systems developed in this thesis within the wider scope of SBEM research.

2.4.1 Music Tagging

In the field of MIR, there has been a substantial effort in researching and developing techniques for

automatic music tagging (AMT) as a means of addressing the labour-intensive process of manual

annotation. AMT is a subtask of music classification, a broad field that encompasses any process of

categorising music based on its features or characteristics, such as genre, style, and instrumentation.

Music classification can be based on a variety of factors and may involve objective or subjective criteria.

For example, music could be classified based on its tempo, genre, or lyrics, or it could be classified

according to cultural or historical contexts. Automatic music classification is typically achieved using

machine learning algorithms to automatically assign musical audio into predefined categories or classes

based on its audio content. Features, such as tempo, pitch, and key, are extracted from the audio and

provided as input to a machine learning model. The model is trained through the use of a labelled

dataset of musical examples, and as a result of this process, it develops the capability to accurately

predict the relevant categories for newly introduced musical content. This can be useful for a variety of

applications, such as music recommendation systems, music databases, and music education. There

are many music classification tasks including, genre classification (Tzanetakis and Cook, 2002; Collins,

2012), artist identification (Mandel and Ellis, 2005), instrument classification (Marques and Moreno,

1999; Heittola et al., 2009), and music similarity (Slaney et al., 2008). To perform automatic music

classification, algorithms typically extract features from the audio content of the music, such as tempo,

pitch, and key, and use these features as input to a machine learning model. Some prevalent algorithms

for automatic music classification include clustering, k-nearest neighbours, support vector machines

and neural networks. Overall, automatic music classification has the potential to make the process of

organising and labelling music more efficient and accurate, eliminating the laborious task of human

annotation.

AMT is a multi-label classification problem, in which a single instance of audio can be assigned to multiple

attributes. AMT can be of use in music streaming services, music libraries, and other applications

where it is necessary to quickly and accurately identify the meta-data for a large number of music files

using tags. Estimating music tags from audio requires the extraction of appropriate acoustic features.

2.4. RELATED RESEARCH 31

Conventionally, AMT was achieved using classification models that learn a mapping between a predefined

vocabulary of semantic tags and human-engineered audio features that describe rhythmic, timbral and

tonal content (Tzanetakis and Cook, 2002; Mandel et al., 2011; Sordo et al., 2012). The main limitation

of this type of approach is that considerable expertise about the problem is required to design features

that uncover relevant information in the input. Additionally, the models rely on the capacity of the

hand-crafted features to capture relevant information from the audio, which may not be particularly

optimised for the task.

Current AMT methods utilise data-driven deep learning architectures to jointly optimise feature extraction

and classification. Deep learning systems utilise neural networks to learn an internal representation for

both audio feature detection and classification, reducing the requirement for manual feature engineering.

Neural networks are trained using annotated data and can estimate multiple classes associated with

a song or excerpt. Convolutional neural networks (CNNs) (described in detail in Chapter 3) are a

type of deep learning architecture that emulates the human visual system by utilising trainable filters

to extract patterns from images. Motivated by the success in the computer vision domain, CNNs

have been adopted by MIR researchers to tackle various audio classification problems. One of the key

preprocessing steps in applying CNNs to audio-related tasks is the transformation of raw audio data into

a time-frequency representation, such as a spectrogram. This transformation is often necessary as it

allows for the representation of audio signals in a format that better captures the temporal and spectral

characteristics inherent in audio data.

Choi et al. (2016) presented a fully convolutional neural network for AMT that uses multiple stacks

of convolutional layers to observe local harmonic structures at different time-frequency resolutions.

As an alternative, Pons et al. (2018) investigate architectures that incorporate domain knowledge by

designing musically-motivated filters. Custom vertical and horizontal filter sizes are used to efficiently

model the timbral and temporal characteristics present in spectrograms. Lee et al. (2018) propose an

end-to-end learning strategy for AMT that operates directly on raw audio samples using sample-level

filters that analyse short segments of the audio signal. Sample-level filters are able to extract local

features, providing a fine-grained representation of the audio data. The benefit of learning directly

from raw audio is that the networks can autonomously discover frequency decompositions and learn

features that are invariant to phase and translation without assumptions imposed by engineered audio

input representations (Dieleman and Schrauwen, 2014). Choi et al. (2017) present a convolutional

recurrent neural network for AMT, in which a CNN is utilised for local feature extraction and a recurrent

neural network for temporal summarisation of the extracted features. This hybrid approach enables the

model to account for the sequential nature of music. An alternative approach, to achieve temporal

summarisation of the extracted features, is to use a transformer architecture (Devlin et al., 2019) with

the self-attention mechanism, as discussed in (Won et al., 2019, 2021a). The self-attention mechanism

allows the model to weigh the importance of different elements in the sequence as it processes them,

rather than using a fixed ordering as in recurrent neural networks. Transformers have also been proposed

to jointly model both spectral and temporal sequences of an input time-frequency representation (Lu

et al., 2021). Furthermore, Won et al. (2020a) consider the role of harmonic structure in human auditory

perception and present a harmonically-stacked trainable representation that takes advantage of the

harmonic information to yield more efficient audio representations.

It is often difficult to directly compare the performance of the various deep learning methods for a

specific task due to differences in software versions and training data used in the evaluations. To help

32 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

mitigate this issue for AMT, Won et al. (2020b) evaluated various CNN architectures under a consistent

experimental set-up. The aforementioned CNN-based ATM models are trained using three annotated

music tagging datasets: MagnaTagATune (Law et al., 2009), Million Song Dataset (Bertin-Mahieux

et al., 2011), and MTG-Jamendo (Bogdanov et al., 2019). These datasets contain a variety of different

tags including, genre, instrument and mood. Model performances are evaluated using the area under

receiver operating characteristic curve (ROC-AUC) and the area under precision-recall curve (PR-AUC)

evaluation metrics. Additionally, the authors investigate the robustness of each model by assessing

their ability to generalise to audio deformations introduced by applying time stretching, pitch shifting,

dynamic range compression and the addition of white noise. In their experiments, a CNN trained

on log-scaled Mel spectrograms of short audio excerpts performed best when training on the original

dataset; however, when trained on the augmented data, the harmonic CNN showed better generalisation

abilities against each of the different audio effects. In a recent approach, (Won et al., 2021b) proposed

multimodal metric learning for tag-based music retrieval, which establishes a distance metric to measure

data similarity, enabling direct nearest neighbour searches in the embedding space.

2.4.2 Instrumentation Role Classification

Established sample libraries commonly categorise samples by their role in a composition, such as bass,

melody, and sound effects (Section 2.1.4). Automatic instrumentation role classification (AIRC) is

a recently proposed MIR task that involves automatically labelling audio loops based on these roles.

By automatically labelling audio loops according to their specific role, producers can more efficiently

organise, manage, and navigate their personal collections of samples. With sufficient training data,

automatic music tagging systems can be employed to predict the instrumentation roles of samples (Ching

et al., 2020). Research in AIRC has been facilitated by the development of the Freesound loop dataset

(FSLD) (Ramires et al., 2020b), a large public collection of loops and corresponding instrumentation

role annotations from Freesound. Ching et al. (2020) benchmarked AIRC performance of deep learning

and other machine learning models using a subset of loops from FSLD, with the best performing model

being a harmonic CNN (Won et al., 2020a). Despite this, there is potential for further exploration and

improvement, such as investigating alternative models and examining additional applications of AIRC.

2.4.3 Structure Analysis

The analysis and visualisation of music structure can play a crucial role in promoting and enriching the

understanding and appreciation of musical works among diverse audiences, including listeners, performers,

composers, and musicologists. Music structure analysis involves dissecting a musical composition into its

fundamental components and elucidating the connections among them. This process involves identifying

elements such as musical form (e.g., AABA, sonata-allegro), sections (e.g., verse, chorus, bridge),

transitions, key changes, and repetitions. These insights are invaluable for efficiently navigating extensive

music collections to locate specific segments of tracks with desired musical characteristics or structural

elements. This utility is especially evident in sample discovery and sample-based music production. For

example, Levy et al. (2006) proposed a method for characterising the high-level structure of music based

on the consistent distribution of timbre-types, which can be loosely associated with specific combinations

of instruments. By analysing timbral features and segmenting the music based on these timbre-types,

this approach can identify structural segments within a piece of music. Moreover, this approach has the

2.4. RELATED RESEARCH 33

potential to assist in sample discovery by enabling listeners to search for sections of songs with a similar

overall timbre.

Within the field of MIR, several researchers have developed methods to assist with the analysis of

electronic music (EM) structure and arrangement. Rocha et al. (2013) developed an algorithm to identify

key structural sections in EM by segmenting compositions and subsequently evaluating the timbral

similarity between the segments. Scarfe et al. (2014) proposed an algorithm capable of segmenting a

full EM DJ mix into individual tracks using self-similarity. Yadati et al. (2014) and Aljanaki et al. (2014)

present strategies for locating the most anticipated section of electronic dance music (referred to as the

drop), using user-generated tags from online social platforms. Alternatively, Glazyrin (2014) investigate

the problem of separating a full DJ mix into single tracks using an iterative algorithm based on spectral

features. Vande Veire and De Bie (2018) proposed an automated DJ system for drum and bass music

that utilises several genre-specific MIR techniques for beat tracking, downbeat tracking, and structural

segmentation, to obtain an understanding of the musical structure. More recently, Kim et al. (2020)

present a method for aligning a mix to its original music tracks, from which cue points are obtained and

used to segment a continuous DJ mix into individual tracks.

Loop activation transcription (LAT) is a task that derives key structural information from loop-based

music (Smith and Goto, 2018). LAT involves identifying the types of loops (e.g., instrumentation roles),

and their active periods within a composition. This information could serve as a valuable visual aid for

producers and DJs, enabling them to anticipate upcoming sounds (e.g., drums, bass). Furthermore,

would be particularly beneficial for tasks such as automatic DJing (Vande Veire and De Bie, 2018),

mashups (Davies et al., 2014), and the identification of key structural events in SBEM (Yadati et al.,

2014). To this end, López-Serrano et al. (2016) proposed a method for transcribing loop activations

using non-negative matrix factorisation (NMF) deconvolution Smaragdis (2004) to estimate spectral

templates and rhythmic activations from magnitude spectrograms. Additionally, Seetharaman and

Pardo (2016) proposed an NMF method for the simultaneous segmentation and source separation of

loop-based music. Building on this research, Smith and Goto (2018) introduced an alternative method

for source separation and the LAT using non-negative tensor factorisation (FitzGerald et al., 2006).

This approach was subsequently integrated into an interface designed to facilitate the extraction and

remixing of loops (Smith et al., 2019). While the aforementioned approaches allow for the separation

of mixed audio into the constituent loops, they rely on non-varying repetitions of loops and do not

optimise independence between roles. This presents a challenge when transcribing loop activations

in more intricate SBEM compositions, where multiple instruments may fulfil the same role and often

exhibit variations through automation and resequencing (Section 2.2.4). SBEM compositions frequently

feature numerous instances of melodic, harmonic, and percussive content, with the instruments and

timbre changing while maintaining their original role within the piece. This complexity makes it difficult

to enforce separation between the roles with NMF-based methods, resulting in multiple templates for

each role.

2.4.4 Sample Identification

Knowing the source of a sample can provide valuable information about the history and origins of the

sample, as well as help with legal and ethical issues related to crediting the original music (Van Balen

et al., 2012). This knowledge can also be beneficial for organising music collections based on sample

34 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

usage. For example, a DJ could search their collection for tracks that have incorporated the well-known

Amen break. Due to these benefits, researchers have addressed the problem of detecting the use of

samples in pre-recorded music. Van Balen et al. (2012) introduced the problem of automatic sample

identification, situating it in the field of content-based music retrieval. The proposed system utilises an

audio fingerprinting technique (Wang et al., 2003) that extracts content-based signatures from audio to

detect whether a query song contains a sample inside a given music collection. Dittmar et al. (2012)

present a toolbox based on NMF to facilitate the inspection of suspected music plagiarism (i.e. the

use of another work while presenting it as original music). Their proposed system can detect sampled

material by deriving spectral templates from a source sample through NMF, then detecting the presence

of the template in the target song. Whitney (2013) also present a method based on NMF; however,

their automatic sample recognition system is suited to hip-hop and is robust to audio manipulations

prevalent in the genre, such as frequency equalisation, time-stretching, and pitch modifications. Gururani

and Lerch (2017) propose an alternative system that employs dynamic time warping (Müller, 2007)

to compute an alignment path between NMF activations of a song and a query sample. Features are

extracted from the alignment path and used to train a random forest classifier (Breiman, 2001) that

learns to detect the presence of a sample in a given song.

In addition to sample identification, researchers have delved into the related task of determining whether

a song can be considered a derivative work of another. Notably, Casey and Slaney (2006b) introduced an

algorithm tailored for discovering similarities between songs, primarily by analysing intersections between

segments of audio data. This algorithm utilises locality-sensitive hashing, a technique for approximating

similarity within a dataset of audio shingles—short, overlapping segments of audio features. Once these

shingles are hashed, they can be utilised to create an index or data structure that allows for efficient

storage and retrieval of similar shingles. This approach has proven effective for remix detection (Casey

and Slaney, 2007), where identifying derivative works and their original sources is crucial. Moreover, its

application could extend to the retrieval of similar audio samples that closely resemble a reference.

2.4.5 Sample Retrieval

The process of retrieving samples continues to be a crucial challenge in the creative process of producing

electronic music (Andersen and Knees, 2016). Automatic sample retrieval concerns the task of developing

methods that can facilitate the navigation of collections of music samples. Several MIR studies have

focused on the development of browsing interfaces that can facilitate the navigation of collections of

drum samples. Pampalk et al. (2004) introduced an approach for automatically structuring drum loops,

in which similar loops are clustered based on a similarity measure and then hierarchically organised

using self-organising maps (SOM) (Kohonen, 2001). Drum sample retrieval has also been approached

through a query-by-vocal, in which a vocalised input imitating a drum sound, is provided to a system

that searches for corresponding sounds in a database of drum samples (Kapur et al., 2004; Gillet and

Richard, 2005; Mehrabi et al., 2018; Delgado et al., 2022). Fried et al. (2014) proposed a system that

arranges audio samples in a two-dimensional layout based on user preferences for efficient navigation

within collections of snare drum and synth sounds. Shier et al. (2017) presented a browsing interface for

kick and snare samples based on feature similarity, in which features are extracted from the audio using

the Essentia Library (Bogdanov et al., 2013) and principal component analysis (PCA) is used to reduce

the dimensionality of the feature space. Drum samples could then be mapped to a grid interface using

the first two dimensions obtained from PCA. Dimensionality reduction for drum sample retrieval has

2.4. RELATED RESEARCH 35

also been explored using a student-t stochastic neighbour embedding (t-SNE) (Turquois et al., 2016),

and Shier et al. (2021) evaluated various other manifold learning techniques for dimensionality reduction

tasks. López-Serrano et al. (2017) presented a system for the retrieval breakbeat samples in funk, soul,

and jazz recordings. The system leverages an approach for automatic singing voice detection (Lehner

et al., 2014), and incorporates features obtained through harmonic-residual-percussive source separation

to identify the location of breakbeats in the original recordings. Bruford et al. (2019) presented a visual

interface for navigating libraries of symbolic drum loops, in which SOMs are used to map symbolic

drum loops onto a two-dimensional space according to rhythmic similarity. Kim and Nam (2020) took

inspiration from music producers who use reference songs to find instrument samples and propose a

query-by-example system that takes mixed audio as a query and retrieves single audio samples. Sample

retrieval has also been approached through visual sketches, that express the mental model associated

with a sound, to query a database of samples (Knees and Andersen, 2016; Engeln et al., 2021). More

recently, Lattner (2022) proposed a system for automatic drum sample retrieval based on aesthetic

principles learned from the data, assisting producers by automatically ranking the samples in their library

by how well they fit the current musical context at different stages of the production process.

Multiple methods in literature have followed the adaption of corpus-based concatenative synthesis to

jointly extract and organise samples from a database of pre-recorded music Coleman (2007); Schwarz

et al. (2006). These methods rely on a two-stage process: 1) sample segmentation through onset

detection to segment pre-existing music into samples at each of the estimated onsets (Dupont et al.,

2009; Coleman, 2007) or by identifying repeated patterns though self-similarity (Ong and Streich, 2008;

Streich and Ong, 2008), and 2) organisation of extracted samples based on the similarity between

hand-crafted features that describe musical properties such as timbre, harmony and rhythm (Streich

and Ong, 2008; Coleman, 2007; Dupont et al., 2009; Roma and Serra, 2015). The samples are then

visualised as graphical objects in a graphical user interface (GUI), where a user can search for sounds of

interest using feature descriptors as navigation controls. The main limitation of these systems is that

they are designed with pre-assumptions that a given collection samples will have an interesting variation

along a given set of feature descriptors. Roma et al. (2019) addressed this issue, presenting an alternative

framework for learning features directly from a corpus of samples and comparing various dimensionality

reduction techniques to map high-dimensional summaries of sounds into a lower-dimensional space.

In addition to these methods, audio similarity-based retrieval techniques could contribute to the discovery

of audio samples within extensive music collections. For example, Casey and Slaney (2006a) introduced

a method that leverages temporal sequences of harmonic features to identify musical passages within a

collection of compositions that are similar to a requested song. This method would enable producers to

search their music catalogue for potential samples that relate to a given reference. Moreover, methods

for automatically separating an audio recording into isolated sources could enhance the sample retrieval

process. Topel and Casey (2011) demonstrated the use of probabilistic latent component analysis-based

decomposition to retrieve specific sonic components from music and then utilised these samples to

compose new music. These approaches provide alternative means for discovering and extracting audio

samples from existing collections of music, facilitating more efficient sample retrieval and new ways to

compose music.

Other related MIR studies have been proposed to assist in the retrieval of compatible audio segments

based on various criteria. Kitahara et al. (2015) presented a loop sequencer that automatically selects

music loops in techno music based on temporal evolution of features related to excitement. Inspired by

36 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

music mashups—music compositions that are created through the combination of two or more songs to

create a hybrid recording (Shiga, 2007)—multiple systems exist for assessing the compatibility of musical

segments. Davies et al. (2014) presented a measure of mashability that considers rhythmic, harmonic

and spectral compatibility of phrase segments. Systems for creating automatic music mashups rely on

three main sub tasks: 1) rhythm analysis to identify beat and downbeat locations, 2) structural analysis

for identifying musical phrases and 3) a measure of mashability. The mashability measure has shown to

be useful in applications including ’The CrossSong Puzzle’ (Smith et al., 2017) and for singing voice

identification (Lee and Nam, 2019). Shi and Mysore (2018) presented an interactive system for creating

and selecting loops from pre-recorded music. Loops are identified by dividing a song into segments and

measuring the similarity of each segment using features that describe harmony, timbre and energy. The

main limitation of the aforementioned approaches is that the hand-crafted representations cannot fully

describe all features in a musical segment and it can be possible for audio segments to be compatible

despite different harmonic and rhythmic content.

More recent approaches that assess mashability utilise deep learning algorithms that can capture complex

compatibility relationships between two segments of musical audio. Chen et al. (2020) presented a

method for automatically combining loops using a neural network that estimates the compatibility

between two one-bar loops. As a labelled dataset to train a model for this particular task does not exist,

the authors propose a data generation pipeline for creating positive data using a loop extraction algorithm

(Smith and Goto, 2018) and compare various strategies for choosing negative examples, such as random

combinations of loops, reversing and rearranging beat segments. Huang et al. (2021) constructed a

data generation pipeline by taking advantage of music source separation algorithms (Andreas et al.,

2017; Prétet et al., 2019) to separate pre-recorded music into isolated stems (e.g., vocals, drums, and

bass). Positive examples for training their model are achieved using stem tracks from the same song

as well as random combinations of stems with matching key and tempo. Random combinations of

stems with different keys and tempo are used negative examples. Alternatively, Bernardo and Bernardes

(2021) compute a population of compatible mashups through from loop recombinations an artificial

immune system algorithm (De Castro and Timmis, 2002). The creation of optimal mashability is

achieved by finding local minima in a feature space that objectively represents the harmonic and rhythmic

compatibility of the audio loops.

Existing research on sample retrieval has primarily focused on devising methods to assist in navigating

sample collections. Apart from the breakbeat retrieval system proposed by López-Serrano et al. (2017),

automated systems that assess existing music recordings and pinpoint samples meeting specific criteria

have received limited attention. Moreover, while numerous systems offer methods and interfaces for

identifying samples, organising them, and evaluating their compatibility based on similar characteristics,

the capacity to continuously explore and uncover intermediate samples within collections would represent

a valuable advancement.

2.4.6 Neural Audio Synthesis

Producers are frequently constrained by the limited timbre diversity offered by sample packs or synthesis

techniques. As a result, they often need to use complex production techniques such as layering,

compression, and equalisation to achieve their desired sound. Moreover, the process of navigating

through sample packs or making adjustments to synthesiser controls can prove time-consuming and

2.4. RELATED RESEARCH 37

demanding, significantly impeding the creative flow. A new and promising approach to synthesis is

through the use of deep learning models. Neural audio synthesis employs deep learning models to

manage the synthesis process, allowing for continuous exploration of a diverse range of sounds (Esling

et al., 2018a; Engel et al., 2019, 2020). These models can learn expressive and intuitive latent variables,

enabling more effective sound exploration and synthesis. Neural audio synthesis has demonstrated

significant success in experimental settings and has led to the development of production-ready music

creation tools, such as Mawf,19 Neurorack,20 and DrumGAN.21

Neural audio synthesis has emerged through advancements in deep generative models (DGM), including

neural autoregressive (AR) models (Bengio et al., 2001; Uria et al., 2014a), variational autoencoders

(VAE) (Kingma and Welling, 2014) and generative adversarial networks (GAN) (Goodfellow et al., 2014).

A comprehensive exploration of these models is provided in Section 3.5. With appropriate training

data, DGMs can learn the underlying patterns and structures of audio signals, offering innovative ways

to efficiently generate audio. These models enable the creation of new audio samples without being

restricted to hand-designed components, such as oscillators and wavetables, or a specific synthesis

process, such as those discussed in Section 2.3.3.

Sarroff and Casey (2014) demonstrated the use of autoencoders (AE) as synthesisers, introducing an

interactive musical audio synthesis system. AEs consist of two neural networks: an encoder, which learns

to extract a compact encoding from an input, and a decoder, which learns to invert the encoding back

to its original form, allowing for data compression and reconstruction. The system learns a high-level

representation from audio data by training an AE to reconstruct spectrograms from a diverse dataset of

music spanning various genres. Interaction with the system is enabled through a real-time interface,

where users gain access to the innermost hidden layer of the AE for interaction. This allows for audio

streaming through the model, and users can modify the hidden units to manipulate specific aspects

of the input audio. Alternatively, the encoder can be substituted with a subset of arbitrary hidden

units, which can then be processed by the decoder to synthesize audio without the need for an initial

input. Another influential contribution in this field was the NSynth (Engel et al., 2017), a deep learning

system for generating music notes from a wide range of acoustics and electronic instruments. The

system builds upon WaveNet (van den Oord et al., 2016) with an AE architecture to learn a manifold of

embeddings that allows for morphing and interpolation between generated instrument sounds. WaveNet

is an AR model that functions by sequentially predicting each waveform sample (see Section 3.5.1).

While capable of generating high-quality audio, sequential waveform generation comes at the expense of

resource-intensive and potentially slow inference.

VAEs and GANs offer the advantage of parallelised training and generation, which can significantly

accelerate the training process and allow for more efficient generation of new audio samples. In contrast

to conventional AEs, which establish a fixed and deterministic encoding for each input, VAEs operate by

learning a probabilistic latent space, where every point in the latent space corresponds to a probability

distribution. This probabilistic nature enables smooth interpolation between data points, making VAEs

particularly suitable for data generation tasks. Esling et al. (2018a) demonstrated the capabilities of

VAEs in generating and continuously exploring instrument sounds through the navigation of a latent

space regularised to match perceptual distances collected from timbre studies. On the other hand,

GANs map complex data distributions to low-dimensional latent spaces through an adversarial training

19https://mawf.io
20http://acids.ircam.fr/neurorack
21https://www.steinberg.net/vst-instruments/backbone

https://mawf.io
http://acids.ircam.fr/neurorack
https://www.steinberg.net/vst-instruments/backbone

38 CHAPTER 2. REVIEW OF SBEM PRODUCTION LITERATURE

strategy (Goodfellow et al., 2014). Donahue et al. (2019) introduced GANs for musical audio using a

modified deep convolutional GAN (Radford et al., 2016) that operates on raw audio data. Alternatively,

Engel et al. (2019) proposed GANSynth, which leveraged improvements in the training stability of

GANs (Karras et al., 2017; Arjovsky et al., 2017; Gulrajani et al., 2017) to generate magnitude and

instantaneous frequency spectrograms that are used to approximate the time-domain signal.

An emerging area within neural audio synthesis research concentrates on synthesising drum sounds.

Aouameur et al. (2019) introduced a system for real-time generation of drum sounds using a DGM.

The DGM consists of a conditional Wasserstein autoencoder (Tolstikhin et al., 2018) that learns a

mapping between a latent space and a dataset of spectrograms extracted from a collection of labelled

drum sounds. The model is coupled with a spectrogram inversion model consisting of a multi-head

CNN that is trained separately to reconstruct the waveform associated with each spectrogram. Ramires

et al. (2020a) presented a system for synthesising drum sounds with control over high-level timbral

characteristics of the sounds. Their approach utilises a feedforward CNN architecture based on Wave

U-Net (Stoller et al., 2018) that is conditioned on a set of timbral features. The features are derived

from the Audio Commons collection of perceptual models (Pearce et al., 2017), which describe high-level

timbral characteristics such as boominess, warmth, and brightness. These characteristics are based on a

predefined set of audio features, informed by frequently used search terms on the Freesound website.

The main limitation of this approach is that it learns a deterministic mapping between the input features

and the corresponding waveform, thereby constraining the capacity to capture the variability within

the data. Nistal et al. (2020) elaborated on this idea using a progressive growing Wasserstein GAN

conditioned on the same set of timbral features. An auxiliary regression loss term is utilised in the

discriminator during training, which allows for continuous control over the conditional features when

generating audio. Lavault et al. (2022) proposed an alternative style-based generator for drum synthesis,

which is conditioned using a differentiable implementation of the perceptual features (Pearce et al.,

2017).

While employing GANs conditioned on timbral attributes allows for semantic control over the output, a

complete representation of these features might not be achievable, especially when dealing with limited

datasets. An alternative approach to explore is to derive synthesis controls from the latent space of the

generator network through an unsupervised process. Ramires et al. (2022) evaluated various methods for

obtaining synthesis parameters from the latent space of an adapted version of style-based GAN (Karras

et al., 2020b) for drum synthesis. The user evaluation revealed that most participants found the synthesis

parameters obtained from an unsupervised closed-form factorisation approach to be preferable, despite

these parameters lacking clear semantic meaning in comparison to those derived from conditioning on

timbral characteristics. Although some experienced users might desire more semantically meaningful

synthesis parameters, the participants appreciated the opportunity to discover new timbres without

requiring in-depth music production knowledge. Additionally, it was observed by the participants that

some semantic parameters were redundant and not orthogonal to one another. Another approach to

neural drum synthesis was proposed by Rouard and Hadjeres (2021), which builds upon developments in

diffusion process modelling with stochastic differential equations (Song et al., 2021).

2.5. CHAPTER SUMMARY 39

2.5 Chapter Summary

This chapter has provided a comprehensive exploration of the history, core concepts, and technologies

associated with SBEM production, laying the groundwork for the research presented in the thesis. The

origins and evolution of sampling were traced, emphasising the influence of technological advancements

on the practice. Through an examination of the practices of sample sourcing, selection, manipulation,

and arrangement, the common challenges and the diverse approaches adopted by producers when

working with samples in contemporary SBEM production scenarios were identified. The chapter also

discussed the unique characteristics of drums and the variety of techniques utilised by producers to

integrate them into SBEM compositions. Furthermore, it presented a comprehensive review of music

information retrieval and deep learning research, highlighting their potential to address the identified

challenges associated with SBEM production. The growing adoption of deep learning methodologies

in related MIR fields, combined with their demonstrated high performance, served as motivation to

integrate deep learning-based systems in the approaches presented in subsequent chapters, with the aim

of assisting in SBEM production.

Contemporary SBEM production entails exploring digital collections of audio, comprising both libraries

of samples and recorded music. Selecting samples from these sources constitutes a meticulous retrieval

task, during which music producers leverage their aesthetic judgment to listen and discern samples

suitable for use in their compositions. Online sample libraries generally include tags for easy navigation;

however, personal collections of samples may become unmanageable if individuals frequently sample

from various recordings without appropriately labelling or organising them. A significant body of research

has focused on automating music tagging, yet the specific domain of music sample tagging has not

been extensively studied. Furthermore, while existing research on sample identification and retrieval has

primarily focused on examining samples previously used by producers and the development of methods

to facilitate the navigation of sample collections, an area that has received limited attention is the use of

automated systems to assess existing music recordings and locate samples that meet particular criteria.

Moreover, neural audio synthesis offers the potential to manipulate and create seamless transitions

between existing elements within sample collections, thereby addressing the challenge of limited timbre

diversity often encountered in such collections. This approach can also help reduce the creative barriers

associated with complex synthesis techniques, which typically involve steep learning curves.

To this end, Chapter 4 presents a deep learning system for the automatic classification of samples based on

their instrumentation roles (e.g., percussion, chords, melody). Through a series of evaluations, the system

is shown to effectively label samples according to their functional roles, generate a high-level summary

of SBEM arrangements, and identify sample-able material in existing recordings. Additionally, Chapter

5 introduces a neural audio synthesis system that facilitates continuous exploration and manipulation

of sounds generated from a collection of drum samples. Functional control over the generation and

transformation of drum samples is achieved using dimensionality reduction techniques to identify synthesis

parameters from the underlying structure of the generator network. Furthermore, an encoder network is

proposed to project input drum samples into this structure, which enables the re-synthesis of similar

samples that can be modified using the learned synthesis controls. The forthcoming Chapter 3 will

outline the fundamental deep learning techniques required to accomplish these solutions.

Chapter 3

Deep Learning Preliminaries

The previous chapter presented an overview of SBEM production practices and related technologies,

highlighting the advantages and disadvantages of existing systems designed to assist in the creation

process. This chapter will introduce the fundamental concepts of deep learning and provide an overview

of the techniques used throughout the thesis. These preliminaries are essential to understand the

concepts referred to throughout this thesis and the capabilities of the proposed systems.

The term deep learning refers to a family of machine learning methods within the field of artificial

intelligence (AI), composed of multiple non-linear processing modules that can learn complex relationships

from data without the need for explicit programming. A representation is learned from data using

hierarchically structured layers that progressively extract more abstract characteristics, offering an

advantage over traditional machine learning methods that require human-engineered features. The

principal component of a deep learning model is an artificial neural network, which is a machine learning

algorithm inspired by the biological neural network that constitutes the human brain. Artificial neural

networks seek to exploit latent structures in a given input data distribution by learning feature hierarchies,

where higher-level features are formed by the composition of lower-level features. Deep learning systems

can be broadly classified into three data-driven optimisation approaches: 1) supervised methods, which

use input data and corresponding labels during training, 2) unsupervised methods, which infer a function

to describe latent structure from unlabeled data, and 3) semi-supervised learning, which involves training

with only a subset of labelled input data. Additionally, deep learning algorithms can be distinguished as

discriminative, where the goal is to identify decision boundaries between various classes in a dataset, or

generative, which learn the probability distribution of a dataset and can generate new data instances.

Driven by widespread access to data and the necessary computing power, deep learning has enabled

solutions to a diverse range of problems in fields such as computer vision (Voulodimos et al., 2018),

autonomous driving (Grigorescu et al., 2020), medical diagnosis (Bakator and Radosav, 2018), and

natural language processing (Otter et al., 2020). While deep learning has been extensively explored for

data analysis and processing tasks, recent advancements in deep generative learning techniques have

unlocked enormous potential for creative applications. For instance, neural style transfer enables the

production of new images that combine the content of an arbitrary photograph with the appearance

of well-known artworks (Gatys et al., 2016). StyleGAN (Karras et al., 2019) has been employed to

generate realistic human faces that are indistinguishable from real photographs, as well as to edit and

morph facial characteristics. DALL-E (Ramesh et al., 2021) uses text-to-image co-creativity to generate

41

42 CHAPTER 3. DEEP LEARNING PRELIMINARIES

x1

x2

x3

ỹ1

ỹ2

σ
∑

……

x2

x1

xN wNj

w2j

bj

ỹj

w1j

Input Layer Hidden Layers Output layerSingle NeuronFigure 3.1: An illustration of a single neuron for inputs x, corresponding weights w, bias b, and

activation function σ applied to the weighted some of the inputs.

aesthetically pleasing images from descriptions in natural language, providing a novel way of creating art

with AI. Recent research has also begun to investigate ways in which deep learning systems can support

humans in the creative process (Main et al., 2022; Louie et al., 2022).

Within the realm of music-related applications, deep learning techniques have been successfully applied to

music information retrieval (MIR) tasks such as genre classification (Ndou et al., 2021), recommendation

systems (Mart́ın-Gutiérrez et al., 2020), automatic music transcription (Benetos et al., 2018; Wu

et al., 2018), and music source separation (Hennequin et al., 2020). Deep learning can also be

employed to generate new music content by analysing and extracting features from existing recordings,

subsequently forming learned representations of musical elements. Applications of this technique include

the development of powerful neural audio synthesisers (Engel et al., 2017; Esling et al., 2018a; Engel

et al., 2019) and models capable of generating complete musical compositions (Carr and Zukowski,

2018; Dhariwal et al., 2020; Shen et al., 2022).

3.1 Mutli-layer Perceptrons

Multi-layer perceptrons (MLP) are the fundamental component of many deep learning systems. They

are a supervised machine learning approach that can learn to approximate any continuous function

fp¨q : RN Ñ Ro, where N is the number of input features and o is the number outputs. An MLP is

a feedforward neural network comprised of multiple densely connected layers of artificial neurons that

define a mapping y “ f˚pxq. Feedforward implies that information flows through the network in a

forward direction, from input x to output y.

Figure 3.1 depicts a single neuron, which comprises a set of inputs, weights, bias and an activation

function. A single neuron is a mathematical function that receives N inputs xi, where i is the index for

a given input. Each input xi is multiplied by weighted value wi, which affects the amount of influence

an input will have upon the output. The output of a neuron is calculated by summing the weighted

values of each input and applying an activation function σ as follows:

ỹ “ σpb `

N
ÿ

i“0

xi ¨ wiq, (3.1)

where ỹ represents the output activation, N is the number of inputs, and wi is the weighted value

associated the input xi. The bias value b is a learnable parameter that is added to the weighted

3.1. MUTLI-LAYER PERCEPTRONS 43

x1

x2

x3

ỹ1

ỹ2

σ
∑

……

x2

x1

xN wNj

w2j

bj

ỹj

w1j

Input Layer Hidden Layers Output layerSingle Neuron

Figure 3.2: An illustration of a multi-layer perceptron combined of densely connected neurons within

input, hidden and output layers.

sum of inputs before being passed through the activation function. The bias allows the neuron to

adjust its output independently of the input, which enables the neuron to produce an output even if

the input values are small or absent. An MLP consists of multiple neurons which are organised into

layers, an input layer, one or more hidden layers, and an output layer as illustrated in Figure 3.2. The

input layer is designed to receive training data and pass it into the network. The output layer is the

final layer of a neural network which produces predictions given the information learned by the rest of

the network. Hidden layers are the intermediate layers between the input and output which perform

non-linear transformations to the input data.

The activation function σ is a differentiable, non-linear transformation that is applied to the weighted

sum of the neuron inputs. Activation functions introduce non-linearity, which allow neural networks to

learn and perform more complex problems. They are an important hyperparameter when designing neural

network architectures and multiple non-linear functions have been proposed for various applications.

One of the key considerations is to select a function that is differentiable, as training a neural network

(see Section 3.3) involves calculating the gradient of the activation function. Additionally, the choice of

activation function influences the capacity and performance of a neural network, and different activation

functions are often used at different stages of a model to perform specific tasks. The hyperbolic tangent

function (tanh) is frequently employed to normalise the output of a neural network into a range of

r´1, 1s. This produces a zero-centered output, which is particularly advantageous for generating audio

signals, as it allows the network to effectively capture and preserve the symmetry of audio signals. The

tanh activation is calculated as:

tanhpvq “
1 ´ e´2v

1 ´ e´2v
. (3.2)

The sigmoid function maps input values to the range of r0, 1s using an exponential scale. Sigmoid

activation functions are useful for binary classification tasks where a real number needs to be converted

to a probability. The sigmoid function equation is:

sigmoidpvq “
1

1 ` e´v
. (3.3)

44 CHAPTER 3. DEEP LEARNING PRELIMINARIES

The rectified linear unit function (ReLU) thresholds input values at 0, which returns positive values

and turns negative values to 0. ReLU is much simpler and faster to compute compared to the sigmoid

function, which requires exponentiation. The calculation for the ReLU activation is:

relupvq “

$

&

%

0, for v ă 0,

v, for v ě 0.
(3.4)

The gradient of the ReLU function is either 0 when v ă 0 or 1 when v ě 0, which allows the model

to learn and update its parameters even when the input is large, whereas the sigmoid function has a

saturating gradient when the input is large. By having a constant gradient of 1 for positive input values,

ReLU also helps to avoid the vanishing gradient problem. Vanishing gradient refers to a phenomenon in

which the gradients of a models weights become very small as they are propagated through multiple

layers. This issue can impede the learning process as, during training, gradients are multiplied by the

weights at each layer while being propagated through the network. If the weights are small, the gradients

may diminish to an extent that they are insufficient for effectively updating the parameters of the model.

The leaky rectified linear unit (LReLU) is a modified version of the ReLU activation, where input values

less than zero are multiplied by a fixed scalar. In the ReLU function, neurons that receive an input value

less than 0 will output a constant value of 0 for all subsequent forward passes. LReLU adds a slope in

the negative range to allow small negative values when the input is less than zero. By allowing a small

non-zero gradient for negative input values, the model can continue to learn even when the input is

negative. The equation for the LReLU activation is:

lrelupvq “

$

&

%

αv, for v ă 0,

v, for v ě 0,
(3.5)

in which, α is a hyper-parameter that determines the degree that negative values leak through the

activation.

Another variation of the ReLU is the exponential linear unit (ELU) activation which introduces an

exponential non-linearity on negative input values and is calculated as:

elupvq “

$

&

%

αpev ´ 1q, if v ă 0,

v, if v ě 0.
(3.6)

ReLU and its variants are commonly used as activation functions in the hidden layers of neural networks

because they are computationally efficient and have a simple, non-linear form that is easy to optimise

using gradient-based methods (see Section 3.3.2). Overall, the choice of activation function depends

on the specific requirements of the model and the characteristics of the data. In practice, it is often

necessary to experiment with different activation functions to find the one that works best for a particular

use case.

3.2. CONVOLUTIONAL NEURAL NETWORKS 45

Input

Dense

Predictions

FlatternPooling Convolutions

… …
…

PoolingConvolutions

Feature maps

Feature extraction Classificiation

Figure 3.3: An illustration of a basic CNN architecture consisting of a stack of convolutional and pooling

layers that systematically extract relevant features from the input. This is followed by a classification

stage comprised of a densely connected layer and the predicted output neurons.

3.2 Convolutional Neural Networks

Convolutional neural networks (CNN) were inspired by the hierarchical receptive field model of the animal

visual cortex (Fukushima, 1980) and have become one of the most widely used deep learning architectures,

particularly in the field of computer vision. While the MLPs described in Section 3.1 are not designed to

consider the ordering of inputs, CNNs take into account the spatial and temporal relationships present

in structured data, such as the adjacency of pixels in images and the time-frequency relationship in

audio spectrograms. Unlike MLPs, which have a connection between every neuron in each layer (i.e.,

fully connected), the neurons in CNNs use sparse connections, which reduces the number of parameters

required for training. This makes them more efficient for processing higher-dimensional data such as

images and spectrograms, which often require a large number of parameters. CNNs were originally

developed to analyse two-dimensional data, but they can be adapted to process one-dimensional data,

such as raw audio waveforms (Dieleman and Schrauwen, 2014). This modification enables the network

to learn an end-to-end representation of one-dimensional sequences and has made CNNs a flexible tool

for various audio applications, including speech recognition (Tzirakis et al., 2018), environmental sound

classification (Abdoli et al., 2019), and automatic music tagging (Pons et al., 2018).

Figure 3.3 visualises a basic CNN architecture, which is formed by stacking convolution layers, pooling

layers, and a densely connected layer. The network is typically divided into two stages: a feature

extraction stage, where convolutional and pooling layers learn hierarchical representations of the input

data, and a classification stage, where the output of the last pooling layer is flattened and fed to a

densely connected layer that maps the features to the final output predictions. By stacking multiple

convolution and pooling layers, the network can learn increasingly complex and abstract features. The

earlier convolution layers use learned filters to extract low-level features (e.g., edges, corners) from the

input data, while later convolution layers extract coarse features (e.g., shapes, objects).

3.2.1 Convolutional Layers

The convolutional layer is a fundamental building block of a CNN, providing the network with the ability

to automatically learn spatial and temporal features from raw input data. Convolutional layers operate

by systematically applying trainable filters to an input through convolution operations that summarise

the presence of detected features. The input to a convolutional layer is usually a four-dimensional tensor

46 CHAPTER 3. DEEP LEARNING PRELIMINARIES

Input
feature map

Weight
matrix

Output
feature map

Figure 3.4: Illustration of the convolution operation in a convolutional layer. The input feature map

(left) is convolved with the weight matrix (centre) to produce the output feature map (right). Green

areas highlight the regions where matrix multiplication has been applied, resulting in the corresponding

output value in the output feature map.

t P Rbˆwˆhˆc, with batch size b, width w, height h, and depth c. The batch size b is the number of

input samples to be processed during a model update. Dimensions w and h correspond to the width

and height of an input respectively. Channels c correspond to the depth, for example, separate channels

for red, green and blue (RGB) colours in an image.

The filters—also referred to as kernels—are a small matrix (e.g., 3 ˆ 3 or 5 ˆ 5) of weights that are

learned during training. Each filter is shifted along the spatial dimensionality of an input matrix and

for the receptive field in every position, the sum of the element-wise multiplication (i.e., dot product)

between the filter and input is calculated. Figure 3.4 illustrates the dot product between a filter and the

receptive field of the an input. The output of the convolutional operation is referred to as a feature

map Hj , which is the result of convolving an input matrix Xi with weight matrix Wij and applying an

activation function σ, where i and j denote the input and output dimensions respectively. A feature

map can be calculated as follows:

Hj “ σpBj `

l
ÿ

i“0

Xi ˚ Wijq, (3.7)

where the convolution operation is denoted by ˚, the number of input channels are indicated by l and Bj

is the bias. Each component of the feature map Hj is analogous to the output of a neuron. Therefore,

neurons are only connected to a small local region in the input image, and the receptive field is equal to

3.3. TRAINING PROCEDURES 47

the size of the filter. As the neurons are sparsely connected in this manner, fewer parameters need to

be calculated, which can improve computational efficiency and training time. Another advantageous

characteristic of convolutional layers is that they support a degree of translation invariance, in which the

learned features can appear anywhere in an input, regardless of their spatial position.

The final output of the convolutional layer is the result of stacking the resulting feature maps of every

filter along the channel dimension. The size of the output is determined by three hyperparameters:

depth, which is the number of learnable filters; stride, the step size in which a filter is shifted across the

spatial dimensions of an input; and padding, a process used to maintain the input shape by appending

additional values to its border. Same padding is a technique that ensures that the size of the feature

map remains unchanged during the convolution. Unless stated otherwise, same padding is used in all

systems implemented in subsequent chapters.

3.2.2 Pooling Layers

Pooling layers are usually incorporated between two successive convolutional layers to progressively

reduce the spatial resolution of the feature maps while maintaining the most important information. They

have a comparable operation mode to convolutional layers but instead of learnable filters, operations

such as max-, min-, and average-pooling are applied to summarise nearby neurons. For example, the

max-pooling operation calculates the maximum value for a patch of neighbouring neurons in a feature

map. The size of the pooling operation is usually a 2 ˆ 2 matrix with a stride of 2, which reduces the

size of each feature map by a factor of 2. By aggregating information from neighbouring neurons and

limiting the dimensionality of the input data, pooling layers reduce the number of parameters in the

network. This makes the network more efficient and helps to prevent overfitting (see Section 3.3.4).

Pooling layers can also achieve partial invariance to local translation—for example, the precise location

of an object in an image or the ability to recognise musical patterns in a way that is partially invariant

to small timing differences.

3.3 Training Procedures

The weights and biases in the hidden layers of a neural network represent tunable parameters Θ which

are updated to calculate a mapping between inputs and outputs through a process called training. An

output ŷ is calculated by parsing input data x through the network, from input layer to the output layer

using forward path transfer function ŷ “ fntpΘ, xq. The training procedure involves finding an optimal

set of network parameters that minimise the difference between the desired output y and the predicted

output ŷ using a loss function L that represents the error between the two as a single number.

3.3.1 Loss Functions

A loss function is a function for evaluating the performance of neural network whilst training on a

dataset. Loss functions calculate the difference between target output y and approximated output ỹ as

a single number that represents the overall loss L. There exist multiple different loss functions, each

better suited for particular tasks and models. Mean square error (MSE) measures the average squared

difference between observed and predicted values and is often used in regression tasks where the goal

48 CHAPTER 3. DEEP LEARNING PRELIMINARIES

is to predict a continuous output variable based on one or more input variables. MSE is calculated as

follows:

LMSE “
1

N

N
ÿ

i“n

pyn ´ ỹnq2, (3.8)

where N represents the dimensionality of the output layer and yn is the nth element of output vector y.

For classification problems with multiple classes, the categorical cross-entropy (CE) loss can be used.

CE is calculated as:

LCE “ ´

N
ÿ

n“1

yn logpỹq. (3.9)

For binary classification tasks a sigmoid activation can be used in the final layer with the binary

cross-entropy (BCE) loss. BCE can be calculated as follows:

LBCE “ ´
1

N

N
ÿ

n“1

yn ¨ logp ppỹnqq ` p1 ´ ynq ¨ log p1 ´ ppỹnqq. (3.10)

3.3.2 Parameter Optimisation

Finding optimal network parameters for a given training dataset can be achieved using an optimisation

algorithm to iteratively search through a space of possible parameter values. Parameter optimisation

is the process of incrementally updating the network parameters Θ pΘ “ rW,Bsq to minimise (or

maximise) the loss L and reach optimal prediction accuracy. The layered structure of a neural network

enables weight updates through backpropagation, a method for computing the gradient of a loss function

with respect to all the trainable parameters (Rumelhart et al., 1986). Backpropagation calculates a

gradient of a loss function L with respect to all network weights (elements in Θ):

G “ ∇ΘLpΘ, x, yq. (3.11)

The gradient ∇Θ is a vector that represents the rate of change of the loss function L with respect to

each element of Θ. By recursively applying the chain rule in the backward direction of the network,

starting from the output layer and moving towards the input layer, ∇Θ is computed by taking the partial

derivatives of L with respect to each parameter and assembling them into a single vector. These partial

derivatives indicate the direction in which to update the model parameters Θ to minimise the loss

function. If the derivative for every activation function in the network is known, automatic differentiation

can be used to calculate the gradients G for each of the trainable parameters. The gradients are then

used to incrementally update the model parameters using an optimisation algorithm such as gradient

descent, which reduces the error by iteratively adjusting the weights in the direction of steepest descent.

Each incremental update, termed an iteration, is calculated by subtracting the gradient of the loss

function with respect to the parameters multiplied by a learning rate:

3.3. TRAINING PROCEDURES 49

Θ Ð Θ ´ α ¨ G, (3.12)

where α is the learning rate, a hyperparameter that determines the step size for each update. The

dataset for training a neural network consists of multiple pairs of corresponding input and output data.

One complete cycle through all observations in the training dataset is referred to as an epoch.

There are three different strategies for updating the model parameters using the training examples: batch

gradient descent, which uses gradients computed over the entire training set; stochastic gradient descent,

where each update is calculated for individual training examples; and mini-batch gradient descent, which

uses a small subset (i.e., a mini-batch) of the training data per parameter update. Stochastic gradient

descent offers faster convergence and requires less memory compared to batch gradient descent, but

can be sensitive to noise in the training data and may converge to a suboptimal solution. Mini-batch

gradient descent offers a trade-off between the advantages and disadvantages of batch and stochastic

gradient descent. It enables efficient use of computational resources, while also being less sensitive to

noise, thus providing a smoother convergence trajectory due to the averaging of gradients over each

batch. Graphics processing units (GPU) are particularly well-suited for batch processing as they can

efficiently process large amounts of data in parallel. By dividing the data into batches, the GPU can

process each batch in parallel, reducing the overall processing time. The memory size of the GPU is an

important consideration when training deep learning models, as it can limit the batch size, the number

of processes that can be done simultaneously, and the size of the model that can be loaded into memory.

The chief goal of an optimisation algorithm is to locate the set of parameters that produces the lowest

possible error on the training data with regard to the loss function L (i.e., global minima). However,

the standard gradient descent is prone to converging at a suboptimal solution that produces poor

performance (i.e., local minima). The learning rate α controls the degree of a model update and

subsequently how quickly the model converges to an optimal solution. If the value for α is set too

small, then gradient updates cannot escape the local minima, whereas a value too large can result in

drastic updates and divergent behaviour. There are several techniques to address the problem of local

minima in optimisation. For example, stochastic gradient descent (SGD) with momentum (Sutton, 1986)

uses short-term memory of previous gradients to increase the learning rate and accelerate convergence

by adding momentum at each iteration, thus helping to overcome local minima. Other examples of

gradient descent variations include: adaptive gradient algorithm (Duchi et al., 2011), root mean square

propagation (Tieleman et al., 2012), and adaptive moment estimation (Adam) (Kingma and Ba, 2015).

Adam is a popular optimisation algorithm that combines the benefits of several optimisation algorithms

and is used for training the systems implemented throughout this thesis. In Adam, the model parameters

are updated using a combination of the gradient and an exponentially decaying average of past gradients

mt (i.e., the first moment) and square gradients vt (i.e., the second moment):

mt Ð β1 ¨ mt´1 ` p1 ´ β1q ¨ gt, (3.13)

vt Ð β2 ¨ vt´1 ` p1 ´ β2q ¨ g2t , (3.14)

50 CHAPTER 3. DEEP LEARNING PRELIMINARIES

where gt is the current gradient, and β1 and β2 control the decay rates for the moving averages mt and

vt respectively. The algorithm also incorporates a bias correction term to adjust for the fact that the

moving averages are initialised at zero, leading to moment estimates that are biased towards zero during

the early stages of the optimisation. The bias-corrected estimates m̂t and v̂t are calculated as follows:

m̂t “
mt

1 ´ βt
1

, (3.15)

v̂t “
vt

1 ´ βt
2

. (3.16)

The parameter update is then calculated using:

Θ Ð Θ ´ α ¨
m̂t

?
v̂t ` ϵ

, (3.17)

where ϵ is a small constant added to prevent division by zero (e.g., ϵ “ 10´8), ensuring numerical

stability when computing the adaptive learning rates for each parameter in the model. One of the

main advantages of Adam is that it can adapt the learning rates of each parameter individually, rather

than using a fixed learning rate for all parameters. This makes the optimisation process more efficient

as larger updates can be performed on sparse parameters and smaller updates can be performed on

abundant parameters. The adaptive learning rate can help to overcome some of the limitations of fixed

learning rates in gradient descent, such as slow convergence or diverging from the optimal solution.

3.3.3 Initialisation

Initialisation refers to the process of defining the initial values for the model parameters Θ prior to

training. Selecting an appropriate method for parameter initialisation is a crucial step that ultimately

affects the likelihood of the global minima being reached. In general, the parameters in a neural network

are randomly initialised using some form of probability distribution to ensure that each neuron learns

different features that have varying influences on the loss. For instance, the uniform initialisation method

entails random initialisation of network parameters from a uniform distribution between two values,

often within the range of ´1 and 1. On the other hand, the Xavier initialisation (Glorot and Bengio,

2010) method randomly initialises the parameters using a normal distribution with a mean of 0 and a

standard deviation that is proportional to the square root of the number of neurons. Similarly, the He

initialisation (He et al., 2015) method randomly initialises the parameters using a normal distribution

with a mean of 0 and a standard deviation that is proportional to the square root of the number of

neurons divided by 2. Differences in convergence rate and final performance of a neural network can be

attributed to varying initialisation methods. As such, the choice of initialisation techniques should be

tailored to the specific neural network architecture and problem context.

3.3.4 Regularisation

Regularisation refers to a set of techniques which are used to improve the capacity of a model to

generalise to new, unseen data. Generalisation allows the information learnt by a deep learning algorithm

3.3. TRAINING PROCEDURES 51

epoch

lo
ss

optimal
capacity

training
loss

validation
loss

overfittingunderfitting

early
stopping

Figure 3.5: Training (light green) and validation (dark red) loss curves, where the vertical dotted line

represents when early stopping occurs (i.e., the optimal model capacity).

to be applied in other contexts. Overfitting occurs when a model accurately represents the training data

but fails to generalise to new data. The data used for training a model is usually a small sample of the

real data associated with a particular problem. Consequently, model parameters may be adapted to

fit the training dataset too closely. This can result in poor performance on test data and inaccurate

predictions for new, unseen data. Conversely, underfitting occurs when a system does not accurately

represent the training data or test data. Training a network that generalises well for a given objective

is typically achieved by combining different regularisation methods. Presented below are a variety of

regularisation techniques that can be employed to achieve optimal model capacity, where the model is

neither too simple to capture relevant patterns in the data nor too complex, and thus prone to overfitting

or poor performance on new data.

Early Stopping

Early stopping is a regularisation technique that seeks to stop training before the model starts to overfit

to the training data. Training a model for too many epochs will result in overfitting, whereas training

for an insufficient number of epochs will result in underfitting. This strategy aims to identify the epoch

in which optimal model capacity can be achieved by splitting training data into three separate sub-sets:

training data, used to update the gradients and fit the parameters of the model; validation data, used

to provide an unbiased evaluation of model performance during training; and test data, used to assess

the performance of the final model. During training, a validation loss is calculated to monitor the effect

of training on the isolated validation data. Figure 3.5 illustrates the training and validation loss for a

model trained without early stopping. The point in which the validation loss begins to increase is good

indication that the model has begun to overfit and training can be stopped at this epoch (illustrated by

the vertical dotted line in Figure 3.5).

L1 and L2 norm regularisation

Adding a penalty term to the loss function L limits the modelling capabilities of a neural network

and can help to counteract overfitting. L1 norm regularisation involves adding a penalty term that is

proportional to the sum of the absolute values of the weights:

L1 “ L ` λ ¨
ÿ

|w|, (3.18)

52 CHAPTER 3. DEEP LEARNING PRELIMINARIES

where λ is a tunable hyperparameter that controls the strength of the regularisation. This encourages

the model to have sparse weight values, as many of the weights may become 0. On the other hand, L2

norm regularisation penalises the squared magnitude of the weights:

L2 “ L ` λ ¨
ÿ

w2. (3.19)

This encourages the model to have small but non-zero weight values. Both L1 and L2 norm regularisation

can be used alone or in combination to control the complexity of a model and counteract overfitting. The

choice between regularisation methods is often dependent on the problem context and the characteristics

of the data used in training.

Batch Normalisation

Batch normalisation (Ioffe and Szegedy, 2015) is a method that accelerates training and improves the

performance of a neural network by normalising the activations between each layer to have a mean of 0

and a variance of 1 across a mini-batch of input data. As described in Section 3.3.2, training a neural

network requires calculating the gradient of the loss function with respect to the model parameters.

During training, the distribution of the neuron activations in a layer can change, which can make it

difficult for the gradients to flow through the network and update the parameters effectively. Batch

normalisation ensures that the neuron activations are roughly in the same range, making it easier for the

gradients to flow through the network and update the parameters effectively. Batch normalisation is

implemented by first calculating the mean µF and variance σ2
F of features F “ tx1 . . . xmu across a

mini-batch with m examples as follows:

µF “
1

m

m
ÿ

i“1

xi, (3.20)

σ2
F “

1

m

m
ÿ

i“1

pxi ´ µF q2. (3.21)

For each feature xi, the mean is subtracted and then divided by the variance before scaling and shifting

with two learnable parameters λF and βF as follows:

x̂i “
xi ´ µF
a

σ2
F ´ ϵ

, (3.22)

yi “ λF x̂i ` βF , (3.23)

where ϵ is a small constant added to avoid dividing by 0 and yi is the batch normalised output. Batch

normalisation ensures that the distribution of the activations stays relatively stable whilst training the

network and can dramatically reduce the required number of training epochs.

Dropout

Dropout (Srivastava et al., 2014) is a simple regularisation technique that helps avoid overfitting by

randomly disabling a fraction of the connections between the neurons in two adjacent layers of a neural

3.4. AUDIO REPRESENTATIONS 53

network during training. This means that the input to each neuron can come from a randomly selected

subset of the neurons in the previous layer for each training example, which prevents the network from

relying too heavily on any one neuron or feature. For each training iteration, neurons are randomly

disabled with a frequency of rate r, which is the likelihood that a given neuron will be temporarily

removed from the network. Neurons that are retained during training are scaled up by 1
1´r such that the

sum over all inputs is unchanged. As a result, a thinner network is created, with the architecture slightly

varying between iteration. Probabilistically disabling connections can be used to simulate having a large

number of different network architectures without the expense of additional computational resources

required for training and multiple models. Disabled neurons are re-enabled during inference, which can

be interpreted as using an ensemble of the multiple thinner networks to make a prediction. This process

prevents neurons from co-adapting during training and encourages the network to learn a more efficient

representation (i.e., fewer redundant or irrelevant features) of the input data.

Data Augmentation

Data augmentation is a method often used to prevent overfitting when there is insufficient training

data available. The approach involves applying various transformations to an existing dataset using

domain-specific knowledge to artificially create additional examples. This method can be particularly

useful for addressing imbalanced datasets. The type of transformations applied will depend on the

specific application; for instance, when working with images, transformations such as rotation, re-scaling

and cropping can be used, while in the context of audio signals, techniques such as manipulating the

pitch, amplitude envelope, or duration can be used. It is crucial to design a careful augmentation strategy

that considers the given task to ensure that the approach does not negatively impact performance or

stray too far from the original objective. Ultimately, the target application and the properties of the

trained model will guide the choice of augmentation techniques to use.

3.4 Audio Representations

For a neural network to process an audio signal, it requires a digital representation of that signal. Neural

networks can benefit from specific representations of audio data depending on the task and network

architecture. Extracting musical information from raw audio signals can be challenging due to their

complexity and variability. Time-frequency representations offer a more discernible perspective of the

audio signal, simplifying analysis and processing. This section presents typical audio representations,

as depicted in Figure 3.6, which are often used as input for training deep learning models in various

analysis and generation tasks.

3.4.1 Raw Audio Waveform

The lowest level audio representation used in deep learning is the sampled raw audio waveform, for

example, a mono WAV file sampled at 44.1 kHz with 16-bit resolution. This uncompressed audio

representation, illustrated in Figure 3.6, consists of a series of waveform samples x “ rx1, ..., xns, where

each sample xn depicts the amplitude value of the signal at that particular time step. Training with raw

audio data allows a neural network to build an internal representation without any prior assumptions.

However, time-domain representations can be computationally expensive and may not efficiently capture

frequency information.

54 CHAPTER 3. DEEP LEARNING PRELIMINARIES

Figure 3.6: Visualising a drum loop using various audio representations: raw audio waveform (top left),

linear spectrogram (top right), logarithmic spectrogram (bottom left), and Mel spectrogram (bottom

right). Each representation highlights different aspects of the audio signal, offering unique levels of

detail and emphasis.

3.4.2 Short-Time Fourier Transform

The short-time Fourier transform (STFT) is a widely used technique to transform audio data into the

time-frequency domain that captures the frequency content of the signal over time. To compute the

STFT, an audio file of N samples is divided into T frames, each containing p samples. Typically, a Hann

window ω is applied to these frames to smooth out boundary discontinuities, using a hop size δ of p
4

samples. This process results in framed audio features A with a dimensionality of p ˆ T , where the size

of each frame influences a balance between temporal and spectral precision. A frequency representation

X of each frame A is then calculated using the discrete Fourier transform. This leads to a p
2 ˆ T

representation, with p
2 representing the number of frequency bins. The STFT can be represented by the

following equation:

Xpk, tq “

N´1
ÿ

n“0

xpnqwpn ´ tδqe
´2πjkn

N , (3.24)

where k denotes the frequency bin index, t denotes the frame index, and j represents the imaginary

number unit.

3.4.3 Linear Spectrogram

The linear spectrogram can be obtained by squaring the magnitudes of the STFT X, as shown in the

following equation:

S “ |X|2. (3.25)

In Figure 3.6, a linear spectrogram is displayed with the vertical axis representing frequency and the

horiontal axis representing time. Magnitude values in the spectrogram are mapped to a decibel scale,

where the gradient from yellow to blue indicates the signal amplitude in decibels at the corresponding

time and frequency.

3.5. DEEP GENERATIVE MODELS 55

3.4.4 Logarthimic Spectrogram

The large number of frequency bins (p2) in linear spectrograms can result in a computationally expensive

training process. To reduce complexity and better align with human perception of loudness, the linear

frequency bins in Hertz (Hz) can be converted to a logarithmic scale using b bands per octave. The

logarithmic spectrogram is calculated by applying a filter bank FB through matrix multiplication in the

frequency domain. The filters of the logarithmic filter bank FB can be derived using:

FBk,b “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, k ă gpb ´ 1q

k´gpb´1q

gpbq´gpb´1q
, gpb ´ 1q ď k ď gpbq

gpb`1q´k
gpb`1q´gpbq

, gpbq ď k ď gpb ` 1q

0, k ą gpb ` 1q,

(3.26)

in which gpq represents the boundaries of logarithmically-spaced frequency bins, with b P B as an index

that identifies the specific frequency bin to which a given frequency belongs.

3.4.5 Mel Spectrogram

Mel spectrograms are an audio representation that takes into account the human auditory system

(Moore, 2012). They are created by converting frequency values from cycles per second (Hz) to the Mel

scale, which is a perceptually uniform scale of pitches. The Mel scale reduces the resolution of higher

frequencies, while retaining the most relevant information, which helps to reduce the overall size of the

representation. A linear spectrogram S is transformed into a Mel spectrogram M using a Mel filter

bank, consisting of η Mel bands (typically η “ 128). The frequency f in Hz is converted to the Mel

scale m using:

m “ 2595 log10p1 `
f

700
q. (3.27)

The Mel filter banks F are created using Equation 3.26; however, gpq is replaced by the Mel-spaced

frequencies derived from Equation 3.27 and B “ η. The resulting Mel filter bank is then used to

transform a linear spectrogram S into a Mel spectrogram M through matrix multiplication. Figure 3.6

provides a visual representation of the resulting Mel spectrogram.

3.5 Deep Generative Models

Deep generative models (DGM) are a family of deep neural networks that learn complex functional

mappings to approximate high-dimensional probability distributions from training data. The aim is to

model the true but unknown data distribution of a training dataset for the purpose of generating new data

samples with similar statistical properties. DGMs are provided with a finite set of N training examples

X “ tx1, ..., xNu drawn independently from the true data distribution function pdpX q and learn a model

pθpX q that estimates this distribution. During training, the most plausible network parameters θ˚ are

56 CHAPTER 3. DEEP LEARNING PRELIMINARIES

learnt to minimise some notion of distance between pdpX q and pθpX q. This optimisation task can be

formulated as follows:

θ˚ “ min
θ

Dppd, pθq, (3.28)

where θ are the network parameters and D is a measure of divergence between the data distribution pd

and the model distribution pθ.

Some of the differences between the different types of DGMs can be eliminated by focusing on the

versions of models that learn via the principle of maximum likelihood estimation (MLE). The principle

of MLE is to learn the network parameters θ which maximise the probability of obtaining the training

samples x P X given the model pθpxq. For computational simplicity and numerical stability, it is more

convenient to do this in log space (i.e., a sum rather than a product over examples). This process of

MLE for parameters θ can be formulated as follows:

θMLE “ max
θ

N
ÿ

i“1

log pθpxiq, (3.29)

where N is the number of data observations. In practice, only a subset of data observations are available

from the true data distribution, which is defined as the empirical distribution p̂d. The MLE can also be

interpreted as minimising the degree of dissimilarity between the empirical distribution p̂dpxq and the

model distribution pθpxq measured by the Kullback–Leibler (KL) divergence (Goodfellow et al., 2016).

The KL divergence can be calculated using:

DKLpp̂d } pθq “ Ex„p̂d
rlog p̂dpxq ´ log pθpxqs, (3.30)

where the } operator indicates divergence between the two distributions and Ex„p̂d
is an expectation

with respect to the empirical distribution p̂d. The parameters of a generative model can be trained to

minimise the KL divergence using:

θ˚ “ min
θ

Ex„p̂d
r´ log pθpxqs. (3.31)

Once trained, generative models can generate new data samples x̂ „ pθpxq that follow the same

probabilistic distribution of the given training dataset. To gain control over the samples drawn from

the generative model, the maximum likelihood estimation can be generalised to estimate a conditional

probability pθpx|cq in order to predict x given a conditioning variable c. If X represents all of the inputs

and C all the observed conditions, then the conditional MLE can be formulated as:

θMLE “ max
θ

Dppd, pθpX|Cqq. (3.32)

The conditional information can be provided as inputs to a generative model that enables targetted

control over data generation. For the sake of clarity, the theoretical descriptions that follow this section

will assume unconditional modelling.

3.5. DEEP GENERATIVE MODELS 57

x̂3x̂2x̂1

x̂n−1

x̂n
…

…x1 x2 x3

Output

Input

Figure 3.7: A basic autoregressive neural network architecture, illustrating the input neurons feeding

into the network and the output neurons responsible for generating predictions based on the learned

temporal dependencies.

DGMs address the core task of density estimation, which is to learn a model pθpxq that approximates

the underlying structure of the training data pdpxq (i.e., the probability density). Different approaches

to deep generative modelling can be categorised by comparing the strategies employed to compute or

approximate the likelihood of the training data given the model parameters and their corresponding

gradients (Goodfellow, 2016). The probability density can be estimated explicitly by defining a density

function pθpxq and learning the parameters that maximise the likelihood of this function with respect to

the training data. For example, autoregressive (AR) networks (Section 3.5.1) learn through a carefully

designed parametric function that is able to capture the complexity of the data distribution and remain

computationally tractable. In contrast, variational autoencoders (VAE) (Section 3.5.2) involve a density

function with an intractable distribution of latent variables responsible for generating the observed data.

This complexity makes direct optimisation challenging, so approximations to the likelihood, such as

maximising a lower-bound, are used for effective model training. Generative adversarial networks (GAN)

(Section 3.5.3), on the other hand, learn a model capable of sampling from pθpxq without explicitly

defining it, enabling the generation of new data resembling the original dataset by sampling from a

simple probability distribution (e.g., Gaussian).

3.5.1 Autoregressive Models

Autoregressive (AR) models explicitly capture the relationships between various points in a sequence of

data, allowing them to model the underlying structure and dependencies. This is achieved by defining

an explicit density function that is computationally tractable. AR models are based on the concept of

autoregression, which is a method used to model the current output of a system as a function of its

previous outputs. This is particularly useful for time series data, as future time steps can be predicted by

evaluating the values of all preceding time steps (Bengio et al., 2001; Uria et al., 2014b). AR networks

are specifically designed to model sequential data (See Figure. 3.7), where the input is an n-dimensional

sequence x “ x1, . . . , xn. The joint probability of an input sequence x is decomposed into a product of

conditional probabilities using the chain rule as follows:

pθpxq “

n
ź

i“1

pθpxi|x1, . . . , xi´1q. (3.33)

The conditional distributions over each xi can be modelled using a deep neural network, which predicts

the ith variable xi by multiplying the probabilities of all of the preceding i ´ 1 variables. After defining

58 CHAPTER 3. DEEP LEARNING PRELIMINARIES

Decoder
network

Encoder
network

X̂EX

ϵ

D
σ(x)

µ(x)

z

Mean

Variance
Training
Data

Generated
Data

Figure 3.8: Illustration of a variational autoencoder (VAE). Input data samples from the training data

X are fed into the encoder, which maps each sample x to the parameters of a normal distribution,

defined by mean µpxq and variance σpxq in the latent space. The decoder receives random samples

from the latent space z as input and generates an approximation of the original data, denoted as X̂.

this explicit density function, the parameters of the neural network θ are optimised to maximise the

likelihood of training data. The conditional nature of AR models allows them to be trained using a

supervised approach, which facilitates the evaluation of their predictive accuracy.

This approach is well-suited for raw audio signals, where each element xi in the sequence corresponds to

the amplitude value of the waveform at a discrete time step (i.e., sample). However, the high temporal

resolution of audio data (i.e., many samples per second) can require a complex model with a large

number of parameters to accurately capture the temporal patterns in the data. For example, a 1-second

audio signal at CD quality has a sampling rate of 44100 Hz and a bit depth of 16 bits, which allows

for a total of 6553644100 possible sequences. Modelling such high-dimensional data can result in slow

training and inference for audio generation. As audio can exhibit patterns at multiple time scales, several

techniques have been proposed to improve the receptive field and memory capacity of AR models. This

has been achieved through hierarchical structured recurrent neural networks that can model long-term

dependencies (Mehri et al., 2017) or through the use of CNNs with causal dilated convolutions (van den

Oord et al., 2016), which increases the receptive field of convolutional filters without increasing the

number of parameters.

3.5.2 Variational Autoencoders

A variational autoencoder (VAE) (Kingma and Welling, 2014) is a generative model that uses a

probabilistic framework to learn a compact representation of the input data in a continuous, lower-

dimensional latent (i.e., hidden) space. The latent space can be sampled to generate novel data with

statistical properties similar to the training data. VAEs use approximations of the true density function

through variational inference to maximise the likelihood of the training data. Variational inference

approximates the posterior distribution of the latent variables given the observed data using simpler, more

tractable distributions. To achieve this approximation, the parameters of the approximating distribution

are iteratively adjusted to enhance its resemblance to the true distribution. By using this technique, the

model is more efficient and scalable when handling complex data (e.g., images and audio), which can

help mitigate some of the challenges associated with the design requirements of models with tractable

density functions.

3.5. DEEP GENERATIVE MODELS 59

It can be assumed that the underlying structure in a complex data distribution x can be parameterised

by a set of latent (i.e., hidden) variables z. VAEs are designed to learn a latent representation of x

using two connected neural networks: an encoder and a decoder network (illustrated in Figure 3.8). The

encoder network qϕpz|xq learns parameters ϕ that approximate the unknown posterior distribution ppz|xq

of the latent variables z given the observed data x. In a standard autoencoder the encoder output is a

single latent vector; whereas in a VAE, the encoder maps x to the parameters of a normal distribution,

which is defined by a mean µpxq and variance σpxq in latet space z. Learning the mean and variance of

a normal distribution allows the VAE to capture the uncertainty in the data and generate new samples

that are similar to the original data. This is often modelled as an isotropic Gaussian distribution, in

which case the encoder can be defined as:

qϕpz|xq “ N pz|µϕpxq, σϕpxqq. (3.34)

The decoder pθpx|zq, with parameters θ, receives random samples z̃ „ qϕpz|xq as input and generates

an approximation of the original data x̃. To facilitate this stochastic sampling process during the

optimisation of parameters ϕ and θ, Kingma and Welling (2014) propose to reparameterise the latent

variable z̃ using a differentiable transformation z̃ “ gϕpϵ, xq, in which ϵ is a random variable sampled

from a distribution ppϵq that is independent of x or ϕ. After reparameterisation, ẑ can be expressed as:

ẑ “ µϕpxq ` σϕpxq d ϵ, (3.35)

where d is the element-wise product and ϵ is sampled from N p0, Iq. The encoder and decoder networks

can then be trained simultaneously to maximise the evidence lower-bound (ELBO) (Jordan et al., 1999)

of the data log-likelihood pθpxq as follows:

log pθpxq ě ´DKLpqϕpz|xq } pθpzqq ` Ez„qϕpz|xqrlog pθpx|zqs

” Lpϕ, θ, xq,
(3.36)

where the ELBO is denoted as Lpθ, ϕ, xq. The first term in Equation (3.36) is the KL divergence

between the approximate posterior and the prior distribution, KLpqϕpz|xq|pθpzqq. The prior over the

latent variables z is typically a normal distribution ppzq “ N p0, Iq. Minimising this term encourages the

encoder to produce distributions that are close to prior, which helps to regularise the organisation of

the latent space. The second term in (3.36) maximises the expected log-likelihood of the data x under

the approximate posterior distribution qϕpz|xq. This is a measure of error between the input x and the

reconstructed x̃ and is typically calculated using the MSE or BCE (Section 3.3.1).

VAEs are an efficient representation learning framework for generative modelling, with fast training,

generation and encoding time; however, due to the variational approximation (i.e., the discrepancy

between the ELBO and the exact likelihood function), they often produce lower-quality, blurred samples

compared to other generative modelling approaches (Huang et al., 2018). Adversarial autoencoders

(Makhzani et al., 2015) have been proposed to address the limitations of VAEs by introducing an

adversarial loss term that encourages the generated samples to be indistinguishable from the true data

distribution. This loss term is combined with the reconstruction loss from the autoencoder to create a

hybrid loss function that enables the network to learn a more accurate and representative latent space.

60 CHAPTER 3. DEEP LEARNING PRELIMINARIES

x̃

xX
real (1)

fake (0)
or

Dataset Data (real)
example

Data (fake)
example

Generator
network

Discriminator
network

z
Latent variable /

input noise

Training

G

D

Figure 3.9: Diagram of a Generative Adversarial Network (GAN). The generator network G receives

random samples from a latent space Z and generates synthetic data, while the discriminator network D

attempts to distinguish between real samples x from the training data and fake samples x̂ from the

generator.

3.5.3 Generative Adversarial Networks

A generative adversarial network (GAN) (Goodfellow et al., 2014) is a deep learning framework that

can learn to produce realistic samples of a given dataset from low-dimensional latent vectors. This

is achieved by training two competing (i.e., adversarial) neural networks: a generative model (i.e.,

generator) and a discriminative model (i.e., discriminator). This type of learning framework does not

rely on the specification of output distributions, avoiding the issue of approximating many intractable

probabilistic computations. Alternatively, the generator implicitly defines a probability density function

by interacting indirectly with the true data distribution pdpxq. The generator represents a complex

transformation from a simple distribution pdpzq to pdpxq, where the architecture provides the family of

possible distributions to sample from and the parameters θ select a distribution from within that family

(Goodfellow et al., 2016).

The original GAN framework as proposed by Goodfellow et al. (2014) defines an adversarial game-

theoretic scenario between the generator network and the discriminator network as illustrated in Figure

3.9. The generator G : Rm Ñ Rn is used to learn a mapping between the training data space X

and the latent space Z, where Z = Rdz . The dimensionality of the latent space dz depends on the

application but it typically has a much lower dimensionality than the generated data. Latent variables

z P Z are sampled from a known prior ppzq, which is modelled with a simple distribution (e.g., Gaussian,

Uniform). A new example x̂ can be generated by providing G with a latent variable z „ ppzq such that

x̂ “ Gpz; θgq, where θg denotes parameters of the generator. The discriminator D : Rn Ñ r0, 1s learns

to estimate the probability c that a given sample comes from the training data distribution x „ pdpxq

such that c “ Dpx; θdq, where θd denotes parameters of the discriminator. The GAN learning objective

aims at finding a min-max optimisation of value function V between the pair of G and D (i.e., Nash

equilibrium) as follows:

3.5. DEEP GENERATIVE MODELS 61

D(x)

pd(x)

pg(x)
D(x)

pd(x)

pg(x)
D(x)

pd(x)

pg(x)

D(x)

pd(x) pg(x)

(a) (b) (c) (d)

Figure 3.10: Probability distributions for generated data pgpxq, training data pdpxq, and discriminator

Dpxq.

min
G

max
D

V pG,Dq “ Ex„pdpxqrlogDpxqs ` Ez„ppzqrlogp1 ´ DpGpzqqqs. (3.37)

Both networks are designed to facilitate training through backpropagation. To generate output data x̂,

the generator takes a latent variable z, and processes it through a stack of upsampling (see Section

3.5.4) and convolutional layers. The discriminator uses the generated output to estimate a divergence

measure between the training data distribution pdpxq and generated data distribution pgpxq. Training

is performed through an iterative process that involves providing the discriminator with alternating

samples from the generator (i.e., fake samples) and the training dataset (i.e., real samples). Figure 3.10

illustrates the progression of the probability distributions of the generator pgpxq and the training data

pdpxq over the course of training. In the initial stage of training, the distributions of pgpxq and pdpxq

exhibit significant differences. After several iterations of discriminator training, the optimal discriminator

D is obtained, enabling accurate discrimination between real and generated samples. As generator

training continues, pgpxq becomes more similar to pdpxq, and the distributions begin to overlap. Finally,

when pgpxq “ pdpxq, the generator generates samples that are indistinguishable from the training data,

as demonstrated in Figure 3.10 (d).

GANs are designed to accurately recover the underlying data distribution pdpxq at the Nash equilibrium,

provided that the model is sufficiently large and the data is infinite. However, the simultaneous training

of two models utilising the original GAN formulation introduces several challenges. One prominent

issue is the vanishing gradient problem, which arises when the discriminator becomes overly confident

in distinguishing between real and generated examples, causing the outputs of D to be too close to

either 0 or 1 (Arjovsky and Bottou, 2017). Subsequently, the gradients provided to the generator start

diminishing, leading to slow learning and unstable training. Mode collapse is another frequently observed

issue, which occurs when the generator produces a limited set of similar samples, resulting in reduced

variability in the generated data distribution. To address these issues, Arjovsky et al. (2017) proposed

minimising the Wasserstein distance, also known as the Earth-Mover distance, between the generated

and training data distributions. This distance, denoted by W ppg, pdq, can be informally described as the

least expense involved in transferring mass to convert distribution pg into distribution pd, wherein the

cost is determined by the product of mass and the distance over which it is transported. The Wasserstein

distance is computationally intractable; however, it can be simplified using the Kantorovich-Rubinstein

duality (Villani, 2009). The resulting objective function is:

min
G

max
D:||D||Lď1

“ Ex„pdpxqrDpxqs ` Ez„ppzqrDpGpzqqs, (3.38)

62 CHAPTER 3. DEEP LEARNING PRELIMINARIES

where the discriminator D is employed to approximate the supremum (least upper bound) over a set

of all 1-Lipschitz functions. This approach deviates from the standard GAN framework, where D is

typically trained as a binary classifier to distinguish between real and generated samples. Instead, the

discriminator is now tasked with assigning high and low Wasserstein distances to the samples. Under

an optimal discriminator, minimising the objective function with respect to the generator parameters

minimises W ppg, pdq. The Lipschitz constraint is imposed on the discriminator to restrict the range of

gradients with respect to the input data, by ensuring that its function is 1-Lipschitz continuous. This

constraint is crucial as it provides better gradients to the generator during training, ultimately leading to

improved convergence and stability. To enforce the Lipschitz constraint, Arjovsky et al. (2017) proposed

the application of a simple clipping function to restrict the maximum weight value in D. To prevent

optimisation issues arising from a clipping window that is either too small or too large, Gulrajani et al.

(2017) proposed a gradient penalty (GP) that enforces the constraint by adding an additional term to

the loss function of the discriminator. GP introduces a penalty based on the norm of the gradients of

the discriminator function for random samples x̂ „ pg. Minimising the GP term limits the range of

gradients, which helps improve the stability and convergence of the GAN training, especially in cases

where the discriminator function may violate the Lipschitz constraint. GP is weighted by a coefficient λ,

which is used to balance the strength of the gradient penalty relative to the discriminator loss.

Progressive Growing GAN

Progressive growing of GANs (PGGAN) (Karras et al., 2017) is an extension of the original GAN

architecture that uses an alternative training method that allows the model to progressively improve

the resolution of the generated images during training. In a PGGAN, the generator and discriminator

networks are trained to generate and discriminate high-resolution images, respectively. However, instead

of training the networks on high-resolution images from the beginning, the networks are first trained

on low-resolution images, and the resolution of the generated images is gradually increased during

training. This allows the networks to progressively improve the quality of the generated data, starting

from low-resolution data and gradually increasing the resolution as training progresses. This training

method can allow GANs to generate high-resolution images with fine details and realistic textures, which

can be difficult to achieve using traditional GAN training procedures.

3.5.4 Upsampling Layers

Upsampling layers are a fundamental component of DGMs, particularly in symmetrical network archi-

tectures such as variational autoencoders (Section 3.5.2) and generative adversarial networks (Section

3.5.3). They enable the spatial dimensions of the input to be increased, allowing the network to generate

progressively higher-resolution outputs. There are several ways to implement upsampling, including

transposed convolutions, interpolation upsamplers, and subpixel convolutions. Figure 3.11 provides a

visual representation of how a transposed convolution operates when upsampling 2-dimensional and

1-dimensional input data. Transposed convolutions (Zeiler and Fergus, 2014) perform upsampling by

first expanding the input feature map with zeros, effectively increasing the spatial dimensions of the

input. The resulting feature map is then convolved with a set of trainable filters, which are controlled by

the parameters for filter size and stride, to produce an output feature map that is larger than the input.

On the other hand, interpolation methods, such as linear or nearest neighbor, upsample the input feature

map by computing new values based on the existing values. Linear interpolation calculates the new

3.5. DEEP GENERATIVE MODELS 63

Input ()4 × 4

Padded Input ()8 × 8

9 × 1

Feature Map ()8 × 8

3 × 3

Input ()4 × 1

Feature Map ()16 × 1

Padded Input ()16 × 1

Figure 3.11: Upsampling feature maps using transposed convolution for 2-dimensional feature map

(left) and 1-dimensional feature map (right). The process begins with the expansion of the feature maps

by padding the input with zeros to achieve the desired output size. These expanded feature maps are

then convolved with trainable filters to obtain the upsampled feature map.

values by taking a weighted average of neighbouring points. In contrast, nearest neighbour interpolation

assigns the new values based on the closest existing value. Both methods fill the feature maps with

these newly computed values instead of zeros during the upsampling process. These interpolated values

are then used as inputs to a standard convolution layer. Alternatively, subpixel convolution is a method

that uses a convolutional layer to upsample the signal along the channel axis. The output of this layer

is then reshaped using a periodic shuffle operation (Shi et al., 2016), which reorders the convolution

output to match the desired output shape.

Upsampling layers are typically controlled by a parameter that determines the factor in which an input

feature map is upsampled. The choice of upsampling method can impact the quality of the output

data, with each method leading to different types of visual or audio artifacts. In the case of audio

data, transposed and subpixel convolutions are prone to introduce tonal artifacts, whereas interpolation

upsamplers can introduce filtering artifacts, which can be perceptually preferable (Pons et al., 2021).

3.5.5 Conditioning

DGMs can be designed to perform a specific task or make a prediction based on additional input

information (Equation 3.32). Conditioning can be useful in a variety of situations where the DGM

output depends on some external factors or context. This is particularly useful for enabling the training

process to learn the conditional probability distribution of the data x given the labels y. For example, a

DGM can be trained to generate specific instrument sounds based on a set of input conditions, such as

the type of instrument (e.g., guitar) or its pitch (i.e., frequency). In this scenario, the input conditions

would guide the generation of the output audio, providing users with more control over the generated

sounds. Methods for categorical conditioning commonly involve encoding conditional labels y as one-hot

vectors and concatenating them with the input data (Mirza and Osindero, 2014); however, this can

lead to undesirable behaviour such as cross-over between classes. Alternatively, an embedding layer

can be implemented as a weight matrix that maps discrete conditioning variables to continuous vectors

(Akata et al., 2015). A class-specific encoding is achieved by passing y through the embedding layer

with a dimensionality of e. Consequently, each input class is associated with a distinct e-element vector

representation. During the training process, the weights of the embedding layer are learned, allowing the

resulting vectors to capture the relationships between the conditional variables and their corresponding

outputs.

64 CHAPTER 3. DEEP LEARNING PRELIMINARIES

Figure 3.12: Morphing between female and male faces using interpolation in the latent space of a

generative adversarial network.

3.5.6 Latent Space Manipulation

Various strategies can be employed to facilitate interactions with DGMs, including conditioning the

input based on specific attributes or desired features, regularising the latent space, or altering the model

architecture. These approaches allow for enhanced control and adaptability within the generative process.

Nonetheless, the viability and methods for facilitating control may differ according to the properties of

the training data and the intended application. The output of a DGM predominantly depends on the

quality and volume of the data utilised during training, which highlights the importance of meticulously

curating training data as one of the most effective means to govern the output of deep generative

models.

The latent space is a representation of compressed data that captures the salient features of the

training data in a lower dimensional space. In DGMs, the latent space represents the variables that are

responsible for generating new data. It is an abstract space where different dimensions of the space

represent different aspects or features of the data. New data is generated from a trained generative

model by providing it with a sample from the latent space (i.e., a latent vector). By manipulating

the dimensions of the latent vector, it is possible to control the output of the DGM and generate

new samples with specific features or attributes. Latent space interpolation is a typical manipulation

technique in generative models, which involves generating intermediate data points by computing the

linear or spherical path between two vectors in the latent space. Figure 3.12 demonstrates morphing

between female and male faces by interpolating the latent space of a GAN. This technique enables the

creation of novel data points that combine the attributes of two original data points. Enhanced control

over the content generation process can be attained by learning a disentangled latent representation,

where each dimension encapsulates the salient characteristics of the training data, all the while exhibiting

relative invariance to changes in other factors (Bengio et al., 2013). For a dataset of human faces,

an efficient disentangled representation could assign separate sets of dimensions to specific attributes,

including age, hairstyle, head rotation, and the presence or absence of eyeglasses. In contrast, for a

dataset of musical instrument samples, the disentangled representation could assign separate sets of

dimensions to pitch, instrument, and playing technique (Bitton et al., 2019). However, in cases where

learning is unsupervised, the latent dimensions may not be related to perceptual properties, and thus,

may not offer sufficient control over the generative process.

During the training process, the representation of latent dimensions can be explicitly guided by utilising

regularisation and conditioning techniques, which contribute to a more controlled and refined model

structure. Chen et al. (2016) proposed a modification to the GAN objective that encourages it to learn

semantic and meaningful representations from image data by maximising the mutual information between

a small subset of the noise variables and the training data. Higgins et al. (2017) introduced a variation

3.5. DEEP GENERATIVE MODELS 65

of the VAE framework, aiming to learn disentangled representations by incorporating a hyperparameter

in the objective function to balance the trade-off between reconstruction quality and latent variable

disentanglement. Within the audio domain, VAE modifications have been proposed to regularise latent

spaces, aligning them with perceptual distances obtained from timbre studies (Esling et al., 2018b,a).

Adversarial autoencoder variations have also been proposed, which regularise latent spaces based on

timbre and playing techniques (Bitton et al., 2019), as well as for transforming rhythmic and timbral

attributes of drum recordings (Tomczak et al., 2020).

Inspired by style transfer literature (Huang and Belongie, 2017), researchers have proposed several

alternative generator architectures for GANs that facilitate unsupervised separation of semantic attributes,

including hairstyle, face shape, and the presence of glasses, when trained on human faces (Karras et al.,

2019, 2020b, 2021). In style-based generators, a mapping network is utilised to convert the input

latent vector into an intermediate latent space, which yields a disentangled representation of high-level

attributes and low-level details embedded in the space. Contrasting with traditional GANs, where latent

vectors are directly supplied to the input layer of the generator, the intermediate latent vectors are

used to modulate the layers of the style-based generator through learned affine transformations. The

intermediate latent vectors can be incorporated by modulating the activations of convolution layers

through adaptive instance normalisation (AdaIN) (Karras et al., 2019) or by modulating the weights of

the convolutional layers through weight demodulation (Karras et al., 2020b). The mapping network and

affine transformations serve as a mechanism to draw samples for each style from a learned distribution,

while the generator network operates as a means to synthesise new data based on a collection of styles.

The aforementioned methods can aid in disentangling semantic attributes; however, the high-dimensional

structure of the latent space poses challenges in understanding and manipulating the relationships

between individual dimensions and their corresponding effects on the generated outputs. To enhance

user interaction with DGMs, various techniques have been proposed to identify meaningful directions in

the latent space that correspond with human-understandable concepts. By finding and understanding

these latent directions, operations such as interpolation, extrapolation, or attribute manipulation can

be performed in the latent space. Latent directions can be discerned through supervised approaches,

a process which typically involves the following steps: sampling a multitude of latent vectors from

the latent space; generating corresponding outputs (e.g., images, audio); annotating the generated

outputs with pre-defined labels based on their attributes, such as object class, colour, size, or style; and

training a classifier to establish a mapping between the latent codes and the assigned labels. Supervised

approaches have been proposed to represent both discrete (Shen et al., 2020; Jahanian et al., 2020) and

continuous factors of variation (Plumerault et al., 2020; Nistal et al., 2020). Alternatively, to circumvent

the need for pre-defined classifiers, dimensionality reduction techniques have been employed to uncover

latent directions that govern the majority of the variance in the generated outputs in an unsupervised

manner (Härkönen et al., 2020; Shen and Zhou, 2021).

DGMs are typically trained to fit a target data distribution, which inherently limits their creative abilities.

In the field of computational; creativity, the term active divergence (Berns and Colton, 2020) refers to

methods that enable generative models to produce novel and creative outcomes that diverge from the

training data. In contrast to typical generative models, where the goal is to minimise the divergence

between a given data distribution and approximate distribution, active divergence methods aim to seek

the creation of a new distribution that does not resemble the data distribution or any other known data

distributions (Broad et al., 2021a). Such techniques for active divergence include training generative

66 CHAPTER 3. DEEP LEARNING PRELIMINARIES

models without data (Broad and Grierson, 2021), fine-tuning pre-trained models to diverge from the

original training data (Broad et al., 2020), and integrating deterministic transformation layers into the

architecture of pre-trained models (Broad et al., 2021b). Furthermore, Collins et al. (2020) investigated

autoencoders as audio effects units, demonstrating that manipulating the internal layers of a trained

model (weights, biases and activations) provides as a creative tool for morphing audio in real-time.

These approaches offer a promising avenue for advancing the interactivity of DGMs by intentionally

challenging models to produce creative results.

3.6 Chapter Summary

This chapter has provided a comprehensive introduction to the various architectures and approaches

commonly employed in deep learning, highlighting their respective strengths and weaknesses. Core

principles related to neural networks, training procedures, deep generative models, and strategies for

manipulating the latent space have been examined. These concepts and techniques are essential

for understanding the performance and capabilities of the deep learning approaches employed in the

thesis, facilitating a thorough evaluation of the research presented in the following chapters. Deep

learning models are effective at analysis and generation due to their ability to learn complex, non-linear

relationships between input and output data, which makes them particularly suited for tasks involving

high-dimensional and diverse data, such as music. Given sufficient labelled data, deep learning models

can be trained to extract features from data with minimal human intervention. This capability proves

highly valuable in automating music analysis tasks such as music classification, recommendation, or

transcription, as it streamlines the analytical process, enhances overall efficiency, and enables fast and

scalable labelling that would otherwise require labour-intensive human annotation. Conversely, deep

generative models learn the underlying structure of training data and capture the distribution within

a compact latent space. The latent space can be sampled to create new data that exhibits similar

statistical properties, and its manipulation allows for expressive interactions with the generative process,

unlocking unprecedented creative potential.

Despite considerable advancements in the field of deep learning, there remains untapped potential for its

application in SBEM production, a creative endeavour encompassing various labour-intensive tasks that

are well-suited for automation. To address this, Chapters 4 and 5 introduce novel deep learning systems

aimed at assisting in SBEM production through focused efforts in analysis and generation. The following

chapter introduces a new system for labelling samples based on their specific functions within SBEM

through the task of automatic instrumentation role classification (AIRC). These labels can assist music

producers in identifying compatible samples within unstructured audio databases, generating high-level

summaries of SBEM arrangements, and automatically retrieving material suitable for sampling from

existing recordings.

Chapter 4

Analysing SBEM with Automatic

Instrumentation Role Classification

Chapter 2 delved into sample-based electronic music (SBEM) production, emphasising how technological

advancements have shaped the process. Through an examination of the practices of sample sourcing

(Section 2.2.1), selection (Section 2.2.2), manipulation (Section 2.2.3), and arrangement (Section 2.2.4),

the chapter offered insights into SBEM production. Additionally, it addressed the current challenges and

laborious tasks that producers face and discussed related research that could assist in overcoming these

obstacles (Section 2.4). In Chapter 3, the preliminaries of deep learning were discussed, introducing

various techniques and architectures commonly employed in the field, and highlighting their respective

strengths and weaknesses for analysis and generation tasks. In this chapter, a new deep learning system is

introduced for automatically labelling samples based on their specific functions within SBEM through the

task of automatic instrumentation role classification (AIRC). AIRC is a music tagging task that estimates

the presence of active instrumentation role groups within audio recordings. The proposed system is

designed to automatically label the instrumentation roles of audio samples, which may represent a single

role, including chords, melody, bass, drums, sound effects, or a combination of these roles. Automatically

assigning these labels to samples can simplify and streamline the production process by facilitating the

identification of samples with specific functions within unorganised audio databases. Moreover, this

system can be used to generate high-level summaries of SBEM arrangements by identifying the various

instrumentation roles used throughout the composition, and for automatically retrieving samples with

desirable characteristics from existing recordings.

The main contents of this chapter can be summarised as follows. Section 4.1 presents an overview of

instrumentation roles and their relevance in SBEM production. Section 4.2 provides the method for

AIRC with the implementation and training specifications of the various architectures considered. In

Section 4.3 the architectures are evaluated in order to determine the optimal configuration for AIRC.

In Section 4.4, the structural characteristics of loop-based music are analysed through AIRC, and the

performance is compared to that of previous approaches for loop activation transcription, a task that

involves estimating the locations in which loops occur throughout a piece of music. To exhibit the

capabilities of the AIRC system in identifying sections of music appropriate for sampling, Section 4.5

assesses its ability in detecting the locations of breakbeats (Section 2.1.2) within funk, soul, or jazz

recordings. The chapter summary is provided in Section 4.7.

67

68 CHAPTER 4. ANALYSING SBEM WITH AIRC

192

192

Fr
eq

ue
nc

y
(H

z)

chords

melody

bass

drums

fxRo
le

s

Duration (bars)

Time (s)

Figure 4.1: A depiction of a simplified SBEM composition structure, created using five loop layers.

At the top, a log-scaled STFT power spectrogram is presented, while at the bottom, corresponding

instrumentation role activations are displayed at four-bar intervals. These activations include: chords,

melody, sound effects (fx), bass, and drums.

4.1 Instrumentation Roles

In contemporary music production, the practice of categorising musical loops by their instrumentation

roles, such as bass, melody, or effects, rather than specific instruments, has gained popularity (Section

2.1.4). This approach to categorisation is evident in established sample libraries, including Splice1

and Loopcloud2. Annotating with instrumentation roles allows producers to explore a wide range of

traditional and synthesised timbres without being limited by instrument specificity, which may be difficult

to determine when dealing with heavily processed or experimental samples.

Loops often provide as the foundational material that producers use to create and arrange compositions

through a variety of editing and combinatory processes, such as layering, splicing, and the application of

audio effects (Section 2.1.4). A commonly employed compositional technique involves the repetitive

activation and layering of loops, which serve to establish an underlying musical structure (Section 2.2.4).

Figure 4.1 demonstrates the structure of a simplified composition constructed by layering and repeating

loops with distinct functional roles. The composition commences with the activation of a drum loop.

Following one cycle, a melody loop is incorporated alongside the drums. In the subsequent cycle, the

drums are removed, and two additional layers are introduced: a chord loop and a sound effects (fx) loop.

During the next cycle, drums are reintroduced, accompanied by a bass loop, while all other loops are

1https://splice.com
2https://www.loopcloud.com

https://splice.com
https://www.loopcloud.com

4.1. INSTRUMENTATION ROLES 69

removed. Throughout this simplified composition, these loops are selectively activated and deactivated

to establish the overall structure.

At present, few resources exist to assist producers in structuring or arranging samples into a finished

piece of music (Section 2.4.3). The analysis and visualisation of music structure can play a crucial role in

promoting and enriching the understanding and appreciation of musical works among diverse audiences,

including listeners, performers, composers, and musicologists. Loop activation transcription (LAT) is a

task that leverages the loop-based structure inherent to SBEM. It aims to estimate the roles of loop

occurrences within a composition to provide a high-level summary of its arrangement and underlying

structure (López-Serrano et al., 2016). Contrary to traditional music transcription that prioritises specific

notes or instruments, and structure analysis tasks that investigate phrases such as chorus and verse,

LAT concentrates on the transcription of SBEM recordings by highlighting key structural components,

encompassing chords, melody, sound effects, bass, and drums. This transcription process offers a

valuable solution to analyse existing SBEM recordings by deconstructing them into their constituent

elements. This can be visualised in the form of an instrumentation role activation map (IRAM), in

which instrumentation roles and their corresponding activations are displayed in a manner akin to the

simplified representation shown in Figure 4.1. The IRAM can provide new insights into the underlying

structures of SBEM and has many potential use cases in music production and performance such as

automatically generating tracks using a set of loops and a reference song, providing visual cues for DJs

to anticipate upcoming song events, or to facilitate MIR systems that rely on structural information such

as automatic DJ systems (Vande Veire and De Bie, 2018) and music mashups (Davies et al., 2014).

The two recent methods for LAT (López-Serrano et al., 2016; Smith and Goto, 2018) are based on

non-negative matrix factorisation (NMF), and while these apporaches allow for the separation of mixed

audio into the constituent loops, they rely on non-varying repetitions of loops and do not optimise

independence between roles. This presents a challenge when transcribing loop activations in more

intricate electronic music compositions, where multiple instruments may fulfil the same role and often

exhibit variations through automation and resequencing. This complexity makes it difficult to enforce

separation between the roles, resulting in multiple templates for each role. SBEM compositions frequently

feature numerous instances of melodic, harmonic, and percussive content, with the instruments and

timbre changing while maintaining their original role within the piece. For instance, a sparse drum loop

might be used in the introduction, whereas a more dense and complex drum loop could be used during

the core section (Section 2.2.4). Similarly, a composition may transition between different synthesiser

sounds or alternate between various breakbeats, as described by Hockman (2014). These changes deliver

variety without disrupting the underlying structure.

Building on the understanding of activations and instrumentation roles of loops, this knowledge can also

be applied to locate sample-able material within existing recordings. By leveraging automated systems

that recognise and analyse these roles, it becomes possible to identify and extract samples that meet

specific criteria. While existing research on sample identification (Section 2.4.4) and retrieval Section

2.4.5) has primarily focused on examining samples previously used by producers and the development

of methods to facilitate the navigation of sample collections, the utilisation of automated systems to

assess existing music recordings for potential sample material has received limited attention. Automatic

retrieval of sample-able material could save considerable time and effort, as producers would no longer

need to listen through extensive amounts of music and rely on aural perception to find samples fitting

specific roles, such as drums or melody. This approach offers an automated method for crate digging

70 CHAPTER 4. ANALYSING SBEM WITH AIRC

Fr
on

t-e
nd

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

B
at

ch
N

or
m

al
iz

at
io

n

M
ax

P
oo

lin
g

C
on

v:
12

8
(3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

v:
12

8
(4

,1
)

B
at

ch
N

or
m

al
iz

at
io

n

T
im

e
D

is
tr

ib
ut

ed
D

en
se

A
ut

oP
oo

l

P
re

di
ct

io
ns

Frequency

T
im

e

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

B
at

ch
N

or
m

al
iz

at
io

n

M
ax

P
oo

lin
g

C
on

v:
12

8
(3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

v:
12

8
(4

,1
)

B
at

ch
N

or
m

al
iz

at
io

n

T
im

e
D

is
tr

ib
ut

ed
D

en
se

A
ut

oP
oo

l

P
re

di
ct

io
ns

Frequency

T
im

e

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

B
at

ch
N

or
m

al
iz

at
io

n

M
ax

P
oo

lin
g

C
on

v:
12

8
(3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

v:
12

8
(4

,1
)

B
at

ch
N

or
m

al
iz

at
io

n

T
im

e
D

is
tr

ib
ut

ed
D

en
se

A
ut

oP
oo

l

P
re

di
ct

io
ns

Frequency

T
im

e

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

B
at

ch
N

or
m

al
iz

at
io

n

M
ax

P
oo

lin
g

C
on

v:
12

8
(3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

v:
12

8
(4

,1
)

B
at

ch
N

or
m

al
iz

at
io

n

T
im

e
D

is
tr

ib
ut

ed
D

en
se

A
ut

oP
oo

l

P
re

di
ct

io
ns

Frequency

T
im

e

1
1
0
0
1

melody
chords

fx
bass
drums

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

B
at

ch
N

or
m

al
iz

at
io

n

M
ax

P
oo

lin
g

C
on

v:
12

8
(3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

v:
12

8
(4

,1
)

B
at

ch
N

or
m

al
iz

at
io

n

T
im

e
D

is
tr

ib
ut

ed
D

en
se

A
ut

oP
oo

l

P
re

di
ct

io
ns

Frequency

T
im

e

Su
m

m
ar

is
at

io
n

Ba
tc

h
N

or
m

al
is

at
io

n

Ba
tc

h
N

or
m

al
is

at
io

n
C

on
vo

lu
tio

n

C
on

vo
lu

tio
n

M
ax

 P
oo

lin
g

M
ax

 P
oo

lin
g

Figure 4.2: AIRC system overview block diagram. Audio loops are input into the network as a

spectrogram representation. The front-end extracts features from the incoming spectrogram and

subsequent convolutional layers learn a latent representation. Predictions are made using a pooling layer

to summarise the information learnt by the network.

(Section 2.2.1), serving as an invaluable tool for artists to quickly identify potential samples within

extensive digital recording collections. Additionally, this approach could be used as a preprocessing stage

in breakbeat classification (Hockman and Davies, 2015) by identifying the location of the breakbeat

prior to classification. This would be beneficial to websites like WhoSampled3, which currently depend

on user input for cataloguing the usage of samples in music.

The system proposed in this chapter expands on the AIRC problem formalisation established by Ching et al.

(2020), to full SBEM compositions where multiple instrumentation roles are active concurrently (Drysdale

et al., 2022). Research in AIRC has been facilitated by the development of the Freesound Loop Dataset

(FSLD) (Ramires et al., 2020b), a large public collection of loops and corresponding instrumentation

role annotations from Freesound.4 The annotations in FSLD encompass chords, melody, bass, sound

effects, drums, and vocals. In their experiments, Ching et al. (2020) observed that overusing single labels

resulted in reduced accuracy and increased bias due to limited coverage of multi-label annotations in the

FSLD. To address this class imbalance, this chapter introduces a novel data augmentation technique

and explores its application in combination with various CNN architectures (Section 3.2) and pooling

operations to improve performance. The resulting system yields a state-of-the-art AIRC system that

has potential applications in various areas of music production, including sample recommendation,

transcription, and structure analysis.

4.2 Method

This study evaluates several CNN architectures (Section 3.2) to identify the optimal system for AIRC.

Prior studies have shown that automatic music tagging systems exhibit enhanced performance when

using spectrograms instead of raw audio signals (Won et al., 2020b), especially when limited training

data is available (Pons et al., 2018), as is the case for the FSLD (Ramires et al., 2020b). Figure 4.2

offers a general system overview, demonstrating that audio loops are input into the network in the

form of spectrogram representations (Section 3.4), and the network subsequently generates multi-label

predictions. The front-end encompasses the primary filters that engage with an incoming spectrogram to

3https://www.whosampled.com
4https://freesound.org/

https://www.whosampled.com
https://freesound.org/

4.2. METHOD 71

extract features, while the subsequent convolutional layers serve to learn a latent representation, which

is then summarised to make the instrumentation role predictions. Each architecture utilises different

front-end configurations and pooling operations (Section 3.2.2), which derive the final predictions by

summarising the information learned by the network.

The diversity of musical audio data used in AIRC, ranging from tonal melodies to heavily processed

experimental samples, prompts experimentation with architectures intended for a variety of sound

classification tasks. Three different front-ends are considered: general domain square filters; vertical

filters (Pons et al., 2017), tailored towards capturing the timbre of melodic instruments; and previous

state-of-the-art for AIRC—harmonic band-pass filters (Won et al., 2020a), which capture harmonic

relationships while preserving spectral and temporal information. In order to refine the final AIRC

predictions, two methods for summarising the information extracted from the final convolutional layers

of a CNN are examined. The standard approach is to use global max-pooling (GMP); however, this

infers strict assumptions about the label characteristics of the data. In the closely related field of sound

event detection, auto-pooling (McFee et al., 2018) has been introduced as a method for automatically

selecting the most suitable pooling operation by interpolating between max-, mean-, and min-pooling

during the training process.

4.2.1 Architectures

Each network receives audio input in the form of log-scaled Mel spectrogram representations (Section

3.4.5), with features being extracted through stacks of convolutional layers. The output predictions

provide values between r0., 1.s, indicating the presence of active instrumentation roles. For each network,

the input layer is a four-dimensional tensor t P Rbˆwˆhˆc, with batch size b, number of frames w,

number of frequency bins h, and channels c.

Square Filter Network

The square filter network (SF-CNN) is designed around the utilisation of small, square filters in its

front-end layer. This design is motivated by the fact that square filters make minimal assumptions

about the local characteristics of the input spectrogram, potentially allowing any structure to be learned

through the hierarchical combination of small-context representations. Additionally, previous research

has shown that with sufficient data, assumption-free models employing general domain square filters

tend to achieve enhanced performance in the domain of automatic music tagging (Pons et al., 2018;

Won et al., 2020b). The SF-CNN contains four 2-D convolutional layers with 128 small-square filters of

size 3 ˆ 3 and same padding. After each convolutional layer, batch normalisation is applied with an

ELU activation function. Each convolutional layer, except for the final one, is followed by strided p2, 2q

max-pooling. The final convolutional layer uses a summarisation pooling layer before making predictions.

Vertical Filter Network

The vertical filter network (VF-CNN) is motivated by the strategy proposed by Pons et al. (2017), which

incorporates domain knowledge into the design of the filters used in the front-end of the model. This

approach uses rectangular filters to more efficiently capture the timbral characteristics and temporal

patterns of spectrograms. It has been shown to perform well in automatic music tagging and musical

instrument recognition when limited training data is available (Pons et al., 2017). Figure 4.3 provides an

overview of the VF-CNN architecture configuration. The input spectrogram is set to be of size 500 ˆ 128

72 CHAPTER 4. ANALYSING SBEM WITH AIRC

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

B
at

ch
N

or
m

al
iz

at
io

n

M
ax

P
oo

lin
g

C
on

v:
12

8
(3

,3
)

B
at

ch
 N

or
m

al
iz

at
io

n

M
ax

 P
oo

lin
g

C
on

v:
12

8
(4

,1
)

B
at

ch
N

or
m

al
iz

at
io

n

T
im

e
D

is
tr

ib
ut

ed
D

en
se

A
ut

oP
oo

l

P
re

di
ct

io
ns

Frequency

T
im

e

C
on

v:
12

8
(8

,1
)

Figure 4.3: Block diagram illustrating the configuration of the vertical filter network with auto-pooling.

The black rectangles denote various vertical convolution filter sizes used in the front-end to extract

information from an incoming spectrogram. The intermediate layers of the network are summarised into

predictions using a time-distributed dense layer and auto-pool, a trainable operator that can adapt to

data characteristics by interpolating between min-, max-, or average-pooling.

to accommodate for longer observations of audio loops (see Section 4.2.2). The front-end utilises several

vertical convolution filter sizes (black rectangles in Figure 4.3) to efficiently model timbral characteristics

present in the spectrogram. Custom filter sizes are used to capture both wide (e.g., chords, bass) and

shallow spectral shapes (e.g, drums). The numbers and sizes of filters applied in the front-end are as

follows: 128 filters of sizes 5 ˆ 1 and 80 ˆ 1; 64 filters of sizes 5 ˆ 3 and 80 ˆ 3; and 32 filters of sizes

5 ˆ 5 and 80 ˆ 5.

All convolutions in the front-end use same padding, and max-pooling is applied to obtain a 16 ˆ 16

summary of each feature map. This is followed by two 2-D convolutional layers, each featuring batch

normalisation (Ioffe and Szegedy, 2015) and exponential linear unit (ELU) (Clevert et al., 2016) activation

functions. The first 2-D convolutional layer is followed by strided p2, 2q max-pooling. After the final

2-D convolutional layer, a summarisation pooling layer is used to condense the information learned by

previous layers and make predictions.

Harmonic Filter Network

Ching et al. (2020) approached AIRC using a CNN with a data-driven harmonic filter-based front-end

(H-CNN) (Won et al., 2020a). The benefit of a harmonically stacked trainable representation is that it

can capture harmonic relationships while preserving spectral and temporal information. This method is

designed to focus on the harmonic content of the input signal, emphasising the frequency relationships

that are prominent in pitched instruments. However, AIRC encompasses percussion and noise-like sound

effects, and the distinct characteristics of these sounds often lie in their transient nature and distinct

attack-decay patterns, rather than in well-defined harmonic structures. The H-CNN architecture (Ching

et al., 2020) was re-implemented to use as a baseline to test our proposed models. The input t is

passed through a set of triangular band-pass filters to obtain a tensor representing it as six harmonics.

Harmonic structure is captured by treating the harmonics as channels and processed by a 2-D CNN. The

CNN consists of seven convolution layers and a fully connected layer. All but the final convolutional

layer is followed by 2 ˆ 2 max-pooling, batch normalization and a ReLU activation function. Global

max-pooling is applied to the final convolutional layer. The output layer is a 5-way fully-connected layer

with a sigmoid activation function and a 50% dropout.

4.2. METHOD 73

Summarisation Pooling

Two pooling operations were considered for summarising the information learned in the final convolutional

layers: standard global max-pooling (GMP) and auto-pooling (AUTO). For configurations employing GMP,

the final convolutional layer of the network is summarised through max-pooling and then provided to a

dense layer consisting of r output neurons, sigmoid activation functions and a 50% dropout.

Following McFee et al. (2018), for the configurations that use AUTO, the final convolutional layer uses a

filter size p8, 1q. This is followed by batch normalisation and a time-distributed dense layer with a sigmoid

activation function and r output nodes, where r is equal to the number of classes. In a time-distributed

dense layer, the dense layer is applied to each time step in the p8, 1q input sequence separately, preserving

the temporal structure of the data. The output of the time-distributed dense layer is provided to

the auto-pooling layer, a trainable pooling operator capable of adapting to data characteristics by

interpolating between min-, max-, or average-pooling (McFee et al., 2018). This approach enables the

model to learn distinct weights for each time step, potentially capturing the temporal dynamics within

the input spectrogram, thereby increasing its robustness against time-frequency shifts and perturbations.

Loss Function

AIRC constitutes a multi-label binary classification task; therefore, binary cross-entropy (BCE) (Equation

3.10) is used as the loss function for updating the parameters of each model. In the multi-label setting,

each label is considered a separate binary classification problem. A sigmoid activation (Equation 3.3)

is applied to the output of each model, mapping the logits to probabilities in the range of 0 to 1 and

representing the likelihood of each label being present. The BCE loss is calculated independently for

each label, and the errors over all labels are summed.

4.2.2 Network Training

Input audio is pre-processed through resampling and conversion to a spectrogram representation. Audio

loops are resampled to 16kHz and the short-time Fourier transform (STFT) of each loop is calculated

using a window size of 512 samples and a hop size of 256 samples. For the H-CNN, magnitudes of

STFT are provided as input to the model. For the SF-CNN and VF-CNN, the inputs are log-scaled Mel

spectrograms (Section 3.4.5) with 128 Mel-frequency bands. All models are trained using the Adam

optimiser (Section 3.3.2), with a learning rate 1e–4, and each iteration processes a mini-batch of 8

examples. In order to promote equalised learning, all weights are initialised using He’s constant (He

et al., 2015). Following Pons et al. (2017), each model uses L2-norm regularisation (Equation 3.19) of

filter weights to encourage loudness invariance, except for the harmonic CNN-based models, which use

a weight decay of 1e–4 (Won et al., 2020a). Early stopping (Section 3.3.4) is used to complete the

training once the model performance ceases to improve over 15 epochs. The epoch that achieves the

best accuracy on the validation set is used for testing.

4.2.3 Loop Activation Transcription

Loop activation transcription involves predicting the loop activations of instrumentation roles as they

occur over time. Taking advantage of the grid-based structure and consequently fixed tempo of loop-

based SBEM (Section 2.2.4), AIRC can analyse the loop structure of a given composition. Instrumental

role predictions for complete SBEM compositions are achieved by processing audio files through the

74 CHAPTER 4. ANALYSING SBEM WITH AIRC

AIRC system in four-bar segments and evaluating the resulting activations. By dividing a full-length

SBEM composition into these segments, AIRC can extract instrumentation role activations for each

segment, resulting in a form of structural transcription. The AIRC system inherently ensures distinct

separation between instrumentation roles, providing a robust solution capable of adapting to variations

such as instrument changes and resequencing. This sets it apart from NMF-based approaches, which

require loops to be precise repetitions of themselves.

4.3 Evaluation 1: Automatic Instrumentation Role Classification

In the following section, the optimal configuration for the AIRC is identified by evaluating the proposed

architecture configurations and data augmentation technique. Specifically, the ability of the system to

accurately label audio loops within the FSLD according to their instrumentation roles, which include

chords, melody, bass, sound effects, and drums, is assessed. The resulting system could facilitate labelling

large sample libraries (Section 2.2.1), particularly those created by music producers who frequently

record and splice samples from diverse sources, including vinyl records and digital recordings. Such

collections may contain a vast number of audio files that would necessitate considerable human effort to

label manually.

4.3.1 Evaluation Methodology

In order to ascertain the optimal configuration for AIRC, the architectures (i.e., VF-CNN, SF-CNN, and

H-CNN) and pooling strategies (i.e., GMP and AUTO) presented in Section 4.2 are evaluated. Following

Pons et al. (2018); Ching et al. (2020); Won et al. (2020b), two sets of performance measurements

are used for the evaluation: the area under the receiver operating characteristic curve (ROC-AUC) and

the area under the precision-recall curve (PR-AUC). ROC-AUC indicates how the number of correctly

classified positive examples varies with the number of incorrectly classified negative examples. However,

when dealing with an imbalanced class distribution, such as in the FSLD, this measurement can present

an overly optimistic view of model performance (Davis and Goadrich, 2006). In such cases, PR-AUC

provides a more informative indication of model performance. PR-AUC focuses on the relationship

between precision and recall (See Section 4.5.1), which are particularly relevant when dealing with

imbalanced datasets, as they better capture the ability to correctly identify the minority class instances

(Davis and Goadrich, 2006). Both PR-AUC and ROC-AUC are calculated on a test set for each of

the models under evaluation, providing a more comprehensive understanding of model performance.

While Ching et al. (2020) also calculates the F-measure score, it was decided to omit this evaluation

metric because it depends on a decision threshold applied to the per-class output scores. In contrast,

ROC-AUC and PR-AUC measure model performance globally, integrating all possible thresholds.

4.3.2 Evaluation Data

The Freesound Loop Dataset (FSLD) (Ramires et al., 2020b) is used to train and evaluate the

architectures described in Section 4.2.1. The FSLD contains a large public collection of audio loops

uploaded to Freesound (Font et al., 2013) under Creative Commons licensing. The dataset includes

various annotations such as tempo, key, and instrumentation roles. Among these annotations, the

4.3. EVALUATION 1: AUTOMATIC INSTRUMENTATION ROLE CLASSIFICATION 75

multi-label annotation of loop instrumentation roles is the most relevant for this study. The possible

roles encompass chords, melody, sound effects (fx), bass, drums, and vocals. These annotations are

crucial for evaluating the performance of the different models on classifying audio loops based on their

instrumentation roles. The FSLD contains 2936 loops, with 1531 loops annotated as having a single

instrumentation role, while 1405 loops are annotated as having multiple roles. As evident from the class

distribution in Table 4.1, the classes in this dataset exhibit significant imbalance.

Drums 54.95 Fx 24.80

Bass 19.10 Melody 21.31

Chords 11.90 Vocal 2.29

Table 4.1: Distribution (%) of instrumentation roles within the FSLD.

In order to adapt the dataset for the task at hand, various modifications are applied to the data. First,

all vocal loops are removed as they do not provide sufficient training and testing material. To ensure all

remaining loops have a consistent length, adjustments are made to their tempo and duration. Loops are

time-stretched to 120 beats per minute (BPM), the most prevalent tempo in the FSLD, which minimises

the extent of time-stretching and accommodates the majority of examples in the dataset (Ramires et al.,

2020b). Loops exceeding four bars in length are trimmed to exactly four bars (i.e., 8 seconds), while

loops shorter than four bars are trimmed to either one or two bars and subsequently repeated until they

span four bars. Loops with multiple instrumentation roles are separated from those with only one role,

and 70% of each group are randomly selected for training while 30% were reserved for validation and

testing. From the latter split, 60% is used for testing (Table 4.2) and 40% for validation.

Drums 27.59 Fx 23.17

Bass 20.33 Melody 18.15

Chords 10.77

Table 4.2: Distribution (%) of instrumentation roles in the test set.

Besides using the previously described training set of the FSLD, a data augmentation procedure was

applied to handle the main imbalance issues on the dataset. These are 1) the lesser presence of loops

with more than one instrumentation role (i.e., multi-label) compared to the ones with just one role (i.e.,

single-label) and; 2) the number of loops for each instrumentation role class, shown in Table 4.3. The

data augmentation procedure utilises common production techniques that are used in commercial music

recordings including key matching, tempo matching and the use of audio effects such as distortion,

reverb and chorus.

Drums 929 Fx 222

Bass 92 Melody 174

Chords 102

Table 4.3: Distribution (%) of loops annotated as having a single instrumentation role within the FSLD.

Ramires and Serra (2019) proposed an augmentation strategy that applies audio effects to one-shot

instrument sounds, aiming to enhance the robustness of models to audio effects. Given that the data

utilised in AIRC comprises loops already processed with audio effects, this data augmentation approach

76 CHAPTER 4. ANALYSING SBEM WITH AIRC

Model Pooling Dataset PR-AUC ROC-AUC Bass Fx Drums Chords Melody

SF-CNN GMP FSLD-OG 68.74 83.83 58.72 63.11 95.97 64.74 61.14

SF-CNN GMP FSLD-AUG 68.40 81.59 62.21 59.80 95.93 62.39 61.68

SF-CNN AUTO FSLD-OG 71.28 85.12 57.76 59.18 95.98 73.20 70.30

SF-CNN AUTO FSLD-AUG 68.15 82.19 55.12 68.30 98.03 58.81 60.49

VF-CNN GMP FSLD-OG 70.62 85.72 53.83 71.73 97.84 64.90 64.78

VF-CNN GMP FSLD-AUG 65.60 80.99 47.11 64.92 97.62 63.11 55.22

VF-CNN AUTO FSLD-OG 66.98 82.52 57.59 66.43 95.75 50.37 64.77

VF-CNN AUTO FSLD-AUG 67.47 81.40 46.18 67.10 97.05 56.13 70.89

H-CNN GMP FSLD-OG 61.83 80.39 53.65 42.21 94.10 60.30 58.89

H-CNN GMP FSLD-AUG 59.18 77.34 40.30 57.05 94.60 47.92 56.01

Table 4.4: AIRC performance comparison for various model, pooling method, and training data

configurations. The PR-AUC, ROC-AUC values, and individual role accuracies (%) are provided for

each configuration, where bold indicates the highest scores.

is extended and adapted to balance the distribution of instrumentation roles across the loops in the

dataset. This is achieved by first processing the loops through one of the following audio effects:

reverb, delay, flanging, chorus, tube saturation, and bitcrushing, resulting in 1000 loops for each of

the r classes under observation (r “ 5), totalling 5000 loops. Following (Ramires and Serra, 2019),

the augmentation effects were applied to each loop using the MrsWatson5 command-line audio plugin

host and TAL Software6 audio plug-ins with the default factory preset parameters. Additional data

with multiple instrumentation roles present is then created by overlapping loops from each augmented

single-label class. To ensure that all single and multi-role classes contain an equal number of loops,

the number of possible combinations
`

r
k

˘

is calculated, where k is the number of instrumentation roles

in the combination (2 ď k ď 5). The loops featuring multiple instrumentation roles are created by

harmonically combining the single instrumentation role loops. Single-role loops with compatible modes

(e.g., major and minor) are selected for combination, and before merging, the loops are pitch-shifted to

their average key. This augmentation process emulates techniques commonly used by SBEM producers

when combining samples from different sources (Section 2.2.3).

Upon removal of the original multi-role loops of the training set, this process results in a total of

25000 loops that can be used for training. To evaluate the effectiveness of the augmentation procedure

(FSLD-AUG), the accuracy of models trained with FSLD-AUG is compared to those trained with the

original dataset (FSLD-OG) using the same test and validation data. The models are evaluated using

use the macro-average (MA) of the PR-AUC and of the ROC-AUC as a global metric. For individual

instrumentation roles, only the PR-AUC is displayed. Due to the imbalance of the FSLD-OG, which also

affects the test set (Table 4.2), MA is used to provide an average accuracy over each class.

4.3.3 Results and Discussion

Table 4.4 presents the results of the AIRC evaluation of the models described in Section 4.2. The

ROC-AUC performance measure is consistently higher than PR-AUC. As previously mentioned in Section

5https://github.com/teragonaudio/MrsWatson
6https://tal-software.com/products

https://github.com/teragonaudio/MrsWatson
https://tal-software.com/products

4.4. EVALUATION 2: LOOP ACTIVATION TRANSCRIPTION 77

4.3, ROC-AUC metric can lead to over-optimistic scores when the dataset is unbalanced, which is the

case for the FSLD-OG. However, the augmentation procedure used to create the FSLD-AUG dataset has

balanced the distribution of instrumentation roles, potentially making ROC-AUC a more meaningful

metric for comparing model performance trained with this dataset. The best-performing models w.r.t

PR-AUC are the SF-CNN with AUTO (71.28%) followed by the VF-CNN with GMP (70.61%). Both models

surpass the previous state-of-the-art, H-CNN trained on FSLD (61.82%) by a substantial margin. The

SF-CNN model generally outperforms its VF-CNN counterpart on both the FSLD-OG and FSLD-AUG

datasets. While vertical filters have been demonstrated to produce comparatively better results with

tonal musical audio Pons (2019), the data employed in AIRC comprise more experimental and heavily

processed audio. The results suggest that the use of general-domain square filters in SF-CNN could

potentially provide better performance for handling non-standard types of audio that are commonly

encountered in SBEM production. This finding is in accordance with the automatic music tagging

evaluation conducted by Won et al. (2020b), where a simple square-filter CNN trained on short excerpts

of full music recordings outperformed models that incorporated domain knowledge in their design on a

variety of different datasets.

The overall best-performing model in terms of PR-AUC is the SF-CNN with AUTO pooling trained on

the FSLD-OG. However, by closely inspecting the results achieved for individual instrumentation roles,

it can be seen that it surpasses the PR-AUC achieved by other models in the Chords class by almost

10%, while not achieving such a high result in Bass, Fx and Drums. The most accurately predicted

instrumentation role for all models is Drums, which is expected as this role had the largest number of

examples in the FSLD. The systems generally perform worst on Bass and Melody roles, which are among

the fewest occurrences in the original FSLD. The accuracy for predicting the Bass role is improved

considerably when using a combination of the SF-CNN model with GMP pooling and the FSLD-AUG

dataset. On the other hand, the Fx role is predicted with the highest accuracy when the VF-CNN model is

trained with the FSLD-OG dataset and GMP pooling. While the best three performing models in terms of

PR-AUC are trained on the FSLD-OG, it can be seen that the Bass, Drums and Melody role predictions

tend to benefit from training with the FSLD-AUG. As each configuration performs better at predicting

different instrumentation roles, it is possible to use a combination of the models for classifying individual

instrumentation roles. This combination would lead to an average PR-AUC of 75.21%, substantially

surpassing each model.

4.4 Evaluation 2: Loop Activation Transcription

As described in Section 4.2.3, LAT can be executed by partitioning a full composition into separate

four-bar sections and performing AIRC on each of these segments to identify the active roles. This

method produces a high-level summary of the arrangement, represented as an instrumentation role

activation map (IRAM). LAT differs from the previous task as it concentrates on complete SBEM

compositions, where samples are combined and arranged throughout the composition using various

combinatory processes such as layering, applying audio effects, and automation. Additionally, it is more

likely that the observed sections will encompass multiple instances of different instrumentation roles, as

discussed in Section 2.2.4. The subsequent evaluation illustrates the performance of the proposed AIRC

system in executing this task.

78 CHAPTER 4. ANALYSING SBEM WITH AIRC

4.4.1 Evaluation Methodology

The aim of this evaluation is to investigate the capacity of AIRC for predicting loop activations in SBEM

compositions through a comparison of the architecture configurations presented in Section 4.2.1. The

best-performing configurations are then compared with the results of the previous approaches to loop

activation transcription proposed by López-Serrano et al. (2016) and Smith and Goto (2018). Following

these previous approaches, the loop activation predictions are evaluated against a ground truth in terms

of accuracy. Since accuracy evaluation requires a binary transcription, a repeated k-fold cross-validation

method is employed together with a grid search to identify the best threshold for binarising the predictions

of each role. In order to investigate the generalisation of the proposed models, two-fold cross-validation

is repeated ten times, for which one fold is used as a validation set to identify thresholds and the other

is reserved for computing accuracy against the ground truth. Thresholds for each class are identified by

performing a grid search over a range between 0.01 and 1 with a step size of 0.01, then selecting the

thresholds which yield the highest accuracy on the validation set.

4.4.2 Evaluation Data

Artificial Dataset

The proposed models are applied to the dataset used by López-Serrano et al. (2016); Smith and Goto

(2018). This dataset comprises simplified SBEM compositions, constructed by generating templates

using four-bar loops. Designated as the Artificial dataset, it demonstrates a simplified approach to SBEM

composition by employing loops that are iteratively added and removed. The automatic arrangement

method provided by Smith and Goto (2018) is used to generate 21 compositions across seven electronic

music genres and three templates–composed, factorial and shuffled factorial. In the composed template,

loops are introduced and removed iteratively in a manner typical of SBEM structure. The factorial

template contains all possible combinations of the individual loops, arranged iteratively. The shuffled

factorial template contains the same loop combinations, with shuffled ordering. The factorial and shuffled

factorial templates are designed to evaluate the model performance on all possible loop combinations

within the Artificial dataset. In contrast, the composed template emulates typical SBEM compositions

with respect to the iterative introduction and removal of loops throughout the piece (Section 2.2.4).

Following the AIRC procedure (Section 4.3.2), the generated compositions are time-stretched from their

annotated tempo to 120 BPM and divided into four-bar loops, which are provided as input to the AIRC

system.

Empirical Dataset

Within SBEM, loops are generally created from pre-recorded musical segments that are reiterated

throughout a piece (Section 2.1.4). In contrast to the compositions in the artificially generated dataset,

modern SBEM compositions often exhibit variations in loops, partially due to the advanced capabilities

of contemporary production sampling software, DAW, which facilitate the creation of such variations

with ease. DAWs provide an extensive collection of tools that facilitate the processes of automation and

resequencing, enabling producers to introduce variations in sample characteristics, such as pitch, timbre,

or rhythm pattern. Furthermore, compositions may feature multiple instances of melodic, harmonic, and

percussive content, with the instruments changing while maintaining their original role within the piece

(Section 2.2.4).

4.4. EVALUATION 2: LOOP ACTIVATION TRANSCRIPTION 79

Model Pooling Dataset Mean Bass Drums Fx Melody

SF-CNN GMP FSLD-OG 81.8 69.2 100.0 63.4 94.6

SF-CNN GMP FSLD-AUG 86.2 71.7 100.0 79.6 93.2

SF-CNN AUTO FSLD-OG 81.0 66.9 97.3 71.6 88.4

SF-CNN AUTO FSLD-AUG 86.9 68.3 100.0 85.7 93.4

VF-CNN GMP FSLD-OG 80.9 69.0 99.3 65.8 89.4

VF-CNN GMP FSLD-AUG 84.7 71.7 100.0 75.7 91.4

VF-CNN AUTO FSLD-OG 80.2 63.7 98.6 63.1 95.3

VF-CNN AUTO FSLD-AUG 82.5 74.2 99.7 79.7 76.6

H-CNN GMP FSLD-OG 75.1 71.8 96.1 55.6 76.7

H-CNN GMP FSLD-AUG 79.5 53.1 95.8 81.6 87.6

Table 4.5: Loop activation transcription accuracy results (%) for the AIRC configurations evaluated on

the artificial dataset. The mean accuracy over all roles and individual role accuracies are provided, with

bold indicating the highest scores.

To assess the performance of the AIRC system in analysing the structure of SBEM compositions featuring

such variations, a dataset of ten empirically annotated compositions was compiled. The dataset covers

several popular SBEM genres such as hip-hop, drum and bass, techno, house and garage, with a tempo

range of 120-175 BPM. The music was sourced from Soundcloud7 and Bandcamp 8 and are available

under a Creative Commons license. Ground truth annotations were obtained by listening to each

composition and labeling the active instrumentation roles at four-bar intervals. Following the artificial

dataset, the possible roles include bass, drums, fx, and melody. The annotations for each track were

saved a matrix of binary values, in which rows correspond to individual roles, and columns indicate the

presence (1) or absence (0) of that role during each four-bar interval. These annotations provide a

reference for assessing the performance of the AIRC system in accurately identifying the instrumentation

within SBEM compositions. The dataset and corresponding annotations can be accessed from the

following link.9

The compositions from both Artificial and Empirical datasets are time-stretched from their original

tempo to 120 BPM and divided into four-bar loops, which are provided as input to the AIRC systems.

Subsequently, the output of the AIRC systems are evaluated against the corresponding ground truth

annotations to assess their accuracy.

4.4.3 Results and Discussion

Artificial Dataset

Table 4.5 presents the LAT results using the AIRC configurations (Section 4.2) to transcribe the

compositions in the Artifical dataset. The table provides the mean classification accuracy over the

instrumentation roles and classification accuracy for each individual role (i.e., bass, drums, fx and

melody). The overall best performing model uses the SF-CNN with AUTO pooling configuration trained

using the FSLD-AUG dataset (86.9%) followed by the SF-CNN with GMP (86.2%). The evaluation results

7https://soundcloud.com
8https://bandcamp.com/
9https://jake-drysdale.github.io/research.html

https://soundcloud.com
https://bandcamp.com/
https://jake-drysdale.github.io/research.html

80 CHAPTER 4. ANALYSING SBEM WITH AIRC

Figure 4.4: Bar graph depicting the mean loop activation transcription accuracy (%) for the three

template variations of artificial SBEM compositions. Previous methods (NMFD and NTF) are represented

by blue and the two best performing AIRC configurations (SF-CNN GMP and SF-CNN AUTO) are shown in

red.

reveal that models trained with the augmentation technique (FSLD-AUG) exhibit enhanced performance

in transcribing artificial compositions when compared to those trained on the FSLD-OG. The observed

difference could be attributed to the balanced distribution of all possible role combinations achieved

through the augmentation process, which accommodates the common occurrence of multiple active roles

within a given loop structure in the compositions. Drums are classified most accurately for all model

configurations with four models achieving 100% accuracy. This was anticipated as the Drum role has

the largest number of samples in the FSLD dataset, and is usually the most prominent element in SBEM

compositions. In some cases, the VF-CNN configuration seems to improve the performance of Melody

and Bass roles, which could suggest that the classification of roles containing melodic instruments

benefit from using vertical filters at the front-end of the system.

Figure 4.4 presents loop activation transcription results for the three template variations using the two

best performing AIRC configurations (i.e., SF-CNN-GMP and SF-CNN-AUTO) compared with the NMFD

(López-Serrano et al., 2016) and NTF (Smith and Goto, 2018) methods previously proposed for LAT.

The AIRC architectures outperform the previous methods in regards to accuracy for the composed

layout, with SF-CNN-GMP (light red) achieving the highest score. NTF (dark blue) achieves the best

performance for the factorial layouts closely followed by the SF-CNN-AUTO architecture. As mentioned

in Smith and Goto (2018), an additional shortcoming of the NTF and NMFD approaches is that the

algorithms depend on loop roles not co-occurring throughout the composition. The proposed AIRC

approach enforces independence between the different roles, thus making it more suitable for transcribing

loop activations of real-world EM compositions, in which loops often vary through automation and

resequencing. Furthermore, the AIRC system has a considerably faster runtime than NTF („30 secs

per composition) and NMFD („10 mins per composition). Predictions for a full EM composition are

calculated in under a second using AIRC, which could be beneficial when analysing larger collections of

music.

4.4. EVALUATION 2: LOOP ACTIVATION TRANSCRIPTION 81

Model Pooling Dataset Mean Bass Drums Fx Melody

SF-CNN GMP FSLD-OG 81.9 73.8 64.4 92.1 97.4

SF-CNN GMP FSLD-AUG 81.0 72.8 62.1 89.5 99.7

SF-CNN AUTO FSLD-OG 88.6 98.3 82.3 86.2 87.6

SF-CNN AUTO FSLD-AUG 87.5 85.9 73.5 92.7 97.7

VF-CNN GMP FSLD-OG 89.4 94.8 68.9 97.0 96.9

VF-CNN GMP FSLD-AUG 80.5 79.5 54.7 88.2 99.6

VF-CNN AUTO FSLD-OG 81.6 55.4 88.0 83.6 99.3

VF-CNN AUTO FSLD-AUG 78.6 89.6 58.3 68.2 98.2

H-CNN GMP FSLD-OG 78.6 79.2 61.3 75.9 97.9

H-CNN GMP FSLD-AUG 78.4 73.5 57.7 83.9 98.5

Table 4.6: Loop activation transcription accuracy results (%) for the AIRC configurations evaluated on

the empirical dataset. The mean accuracy over all roles and individual role accuracies are provided, with

bold indicating the highest scores.

Empirical Dataset

NMF-based approaches enable the separation of mixed audio into the individual loop sources; however,

they face challenges with variation and automation, making it arduous to enforce separation between

the instrumentation roles and leading to multiple templates for each role. This limitation is problematic

when a high-level summary of a composition is desired. In contrast, the AIRC system does not rely on

loops being exact repetitions of themselves, allowing for more flexibility and variation. For instance,

different instruments can be used throughout the composition while still maintaining their intended

role, which is achievable due to the capacity of the AIRC system to consider the wider context of each

segment, rather than relying solely on the exact repetition of loops. As a result, comparisons between

the AIRC system and NMF-based methods on the empirical dataset were not possible. Instead, the

various AIRC configurations were compared to identify the optimal method for this task.

Table 4.6 presents the loop activation transcription results obtained using the AIRC configurations

(Section 4.2) for transcribing the compositions in the Empirical dataset. The highest performing model,

in terms of mean accuracy, is the VF-CNN with GMP trained on the FSLD-OG (89.4%), closely followed

by the SF-CNN with AUTO pooling (88.6%). However, there is a considerable decline in performance

for the drum class in the VF-CNN GMP model, while the SF-CNN AUTO model demonstrates consistently

strong performance across all roles. The results indicate that configurations with AUTO pooling perform

significantly better at classifying drums in comparison to those that utilise GMP. Moreover, Melody is

classified most accurately for most model configurations with four models achieving above 99% accuracy.

In each configuration, there is a trade-off between the accuracy of role classifications. Considering this, a

hybrid approach that combines the strengths of different models might serve as a more effective solution.

The results indicate that the examples in the empirical dataset yield better loop activation transcription

performance when training with the FSLD-OG than the FSLD-AUG. The reason for this may lie in the fact

that the examples in the augmented dataset were combined using an artificial technique, while loops in

real-world compositions are typically combined by human producers with careful attention to balancing

amplitude levels, equalisation, and other factors. While the augmentation technique includes features

such as key matching and time-stretching to more effectively combine loops, human producers are likely

better equipped to make decisions about which loops fit together best. Improving the augmentation

82 CHAPTER 4. ANALYSING SBEM WITH AIRC
Ro

le
s

Duration (bars)

Time (s)

chords
melody

bass
drums

fx

Fr
eq

ue
nc

y
(H

z)

Active

Inactive

+0 dB

-20 dB

-40 dB

-60 dB

-80 dB

Figure 4.5: Estimated loop activation structure of Joyspark (2020) by Om Unit using the proposed AIRC

system. Log-scaled STFT power spectrogram of the EM composition (top) and estimated templates

corresponding to the loop activations showing predictions for each class: chords (C), melody (M), sound

effects (F), bass (B), and drums (D) at four-bar intervals (bottom).

technique to more closely resemble the way real producers combine loops, such as by introducing

equalisation and balancing amplitude levels of combined loops, may lead to better system performance.

In SBEM compositions, samples of different instruments often appear louder or quieter in a mix. As in

the artificial datasets (López-Serrano et al., 2016; Smith and Goto, 2018), the augmentation technique

currently sums loops together without considering how amplitude levels would typically be balanced by

a producer.

Figure 4.5 presents an instrumentation role activation map (IRAM) of the composition Joyspark (2020)

by Om Unit10 using the proposed AIRC method for loop activation transcription. For visualisation and

comparison, a log-scaled STFT power spectrum of the EM composition is shown above the IRAM. The

IRAM allows us to visualise activations for each role over the duration of the EM composition, where

each square is a measurement of four bars. Furthermore, it can be seen see how each role develops

throughout the EM composition. For example, the melody role activations progressively increase between

bars 1–41, which corresponds with a synthesiser arpeggio that is gradually introduced by automating the

cut-off frequency of a low-pass filter. Additionally, the chord role activations increase between bars 1–49

in correlation with the chords in this section that gradually increase in volume. Activations for the drum

role also correlate well with the composition as can be seen between bars 49–81 and 97–129—the only

sections that contain drums. Finally, the key structural sections of the composition are easily identifiable.

For example, the introduction to the composition (bars 1–49) begins relatively sparse in the composition

and IRAM; whereas, bars 49–81 and 97–129 are quite clearly the core of the piece—that is, the most

energetic sections of the composition typically established by the drop (Yadati et al., 2014).

4.5 Evaluation 3: Automatic Retrieval of Samples from Existing

Recordings

When searching for samples in existing music recordings (i.e., crate digging), SBEM producers usually

listen to a wide range of music, from different genres and time periods, analysing tracks for specific

10https://omunit.bandcamp.com/track/joyspark-bandcamp-exclusive

https://omunit.bandcamp.com/track/joyspark-bandcamp-exclusive

4.5. EVALUATION 3: AUTOMATIC RETRIEVAL OF SAMPLES FROM EXISTING RECORDINGS83

sections or elements that could be incorporated into their own productions (Section 2.2.1). This process

is a meticulous listening process that requires attentively listening to the entire content in search

of an appealing section to sample (López-Serrano et al., 2017). Producers often listen for isolated

sections of music containing melodies, drums, basslines, and sound effects (Ableton, 2012; Kim, 2015;

Weiss, 2016). Isolated instrumental components hold significant appeal due to their versatility and

potential for integration into new compositions. For example, when sampling breakbeats, the presence

of other harmonic music or instruments can restrict their flexibility and adaptability (Hockman, 2014;

López-Serrano et al., 2017). These samples can be readily modified and serve as the rhythmic foundation

in the development of new musical compositions (Morey and McIntyre, 2014). For example, a producer

may select a breakbeat from a funk recording and employ it as the foundation for a hip-hop piece, while

integrating their own creative elements on top. Alternatively, they might take a solo instrument from a

jazz performance (e.g., a saxophone) and divide it into phrases or individual notes, subsequently using

these segments to create personalised melodic motifs within their own production 2.2.3. The following

section proposes a new approach for the automatic retrieval of samples from existing recordings using

the AIRC system. This approach aims to streamline the process of finding suitable samples from large

collections of music.

While the previous evaluations (Section 4.3 and Section 4.4) demonstrate the capability of the AIRC

system to identify isolated instrumentation roles in loop-based music, there is a need to investigate

its performance on genres commonly sampled in SBEM. Currently, there is no existing ground truth

dataset that provides annotated locations of sampled sections in existing music recordings, which makes

it difficult to evaluate the effectiveness of algorithms designed for this task. However, there is a dataset

available for the closely related task of breakbeat detection, which involves identifying passages that only

contain isolated drums in funk, soul, or jazz recordings (López-Serrano et al., 2017). This dataset, as

described by López-Serrano et al. (2017), is used in this section to evaluate the AIRC system for sampled

section detection, as it shares similarities with the task of breakbeat detection in terms of the need

to identify specific portions of a musical track. Although the breakbeat detection dataset is designed

to identify drum-only sections, the system evaluated on this dataset has the potential to generalise to

other types of audio samples in music recordings, such as melody, chords, and bass. As such, while the

primary focus of this evaluation is on the ability of the AIRC system to detect drum-only sections, its

broader implications suggest potential benefits for music producers seeking to identify suitable sample

sections in a track that include other types of audio samples beyond drums (e.g., chords, melody, bass).

Figure 4.6 presents a selected portion of Amen, Brother (1969) by The Winstons, which displays the

waveform, ground truth instrumentation role activations, and the location of the breakbeat section. As

can be observed, the breakbeat section is characterised by its homogeneous instrumentation, which

sharply contrasts with neighbouring segments that feature additional active roles. The absence of

tonal and harmonic content in this particular segment renders it a highly suitable candidate for sample

extraction. This quality affords producers the greatest degree of flexibility when incorporating their own

tonal and harmonic content, thereby circumventing the risk of dissonant compositions (Section 2.1.2).

4.5.1 Evaluation Methodology

The identification of breakbeats constitutes a binary classification task, where each observation is

classified as either having a breakbeat or not having a breakbeat. To evaluate the performance of the

84 CHAPTER 4. ANALYSING SBEM WITH AIRC
Am

pl
itu

de

1

-1

0

chords

melody

fx

bass

drums

Ro
le

s

0 2 4 6 8 10 12 14
Time (s)

Figure 4.6: An excerpt from Amen, Brother (1969) by The Winstons. Above is an audio waveform

and below are the instrumentation role activations. The area highlighted in red displays the location of

the Amen break sample.

proposed AIRC system in identifying breakbeat sections in pre-recorded music, precision, recall, and

F-measure metrics are used. An observation is either a true positive (TP), which is a valid breakbeat

prediction; a false positive (FP), which is an invalid breakbeat prediction, or a false negative (FN), which

represents instances where a breakbeat section in the ground truth data was not identified by the model.

Precision (P) measures the proportion of TP predictions among the observations classified as positive

by the model. It indicates how accurate the model is when predicting positive instances, and a high

precision score suggests that the model is making fewer FP predictions. The precision is calculated as

follows:

P “
TP

TP ` FP
. (4.1)

Recall (R) measures the proportion of true positives (TP) that are correctly classified by the model out

of all actual positive instances in the dataset. It indicates how well the model is able to identify positive

instances, and a high recall score suggests that the model is making fewer FN predictions. The recall is

calculated as follows:

R “
TP

TP ` FN
. (4.2)

The F-measure (F) takes both precision and recall into account is calculated as follows:

F “ 2 ¨
P ¨ R

P ` R
. (4.3)

To determine the optimal thresholds for binarising the AIRC predictions in identifying breakbeat sections

in pre-recorded music, the evaluation involves employing a cross-fold validation and grid-search approach

on a validation subset of the evaluation data (Subsection 4.5.2). Specifically, the thresholds are identified

by performing a grid search over a range between 0.01 and 1 with a step size of 0.01, and then

selecting thresholds that provide the highest accuracy on the validation set. To reduce the computational

complexity involved in optimising all possible thresholds for all classes and all models, the study proposes

4.5. EVALUATION 3: AUTOMATIC RETRIEVAL OF SAMPLES FROM EXISTING RECORDINGS85

a simplified rule: if all roles apart from drums are below a certain threshold and drums is above that

threshold, the composition is classified as a breakbeat; otherwise, it is classified as non-breakbeat. Finally,

the performance of the AIRC system is evaluated by identifying the thresholds that achieve the highest

F-measure on the validation data, which is then tested on a test split using the thresholds obtained

from validation.

4.5.2 Evaluation Data

To evaluate the AIRC system for detecting sections suitable for sampling, the breakbeat dataset compiled

by López-Serrano et al. (2017) is utilised. The dataset consists of 280 full recordings spanning various

genres, including funk, soul and jazz. All audio files are mono WAV files sampled at 22050 Hz with

16-bit resolution. Each recording is annotated with time intervals enclosing the breakbeat section and

predicted tempo. In the dataset, the minimum breakbeat length is 0.84 seconds, the mean length is

10.23 seconds, and the maximum length is 224.84 seconds.

The music present in the evaluation data differs from the SBEM music used in Section 4.4 in that it

lacks a grid-based structure and often exhibits tempo fluctuations, making it difficult to partition the

recordings into metrical segments. To overcome this challenge, downbeat detection is used to identify

the locations of downbeats, which are subsequently used to segment the evaluation data appropriately.

The state-of-the-art downbeat detection algorithm proposed by Böck et al. (2016) is employed, which

achieves an F-measure of 0.97 on the HJDB dataset Hockman et al. (2012), a dataset that includes

genres characterised by their use of breakbeats.

Given that the annotations do not consider any metrical structure, the ground truth time intervals

are snapped to the nearest downbeat to facilitate comparison with predicted locations. Furthermore,

the AIRC system expects input segments of eight seconds (i.e., four bars at 120 BPM); however, the

annotated breakbeats can be as short as 0.84 seconds. To avoid retraining the models on shorter

segments, recordings are time-stretched to 120 BPM using the tempo annotations, sliced into bar-length

segments at each downbeat and concatenated to form four-bar segments.

4.5.3 Results and Discussion

Table 4.7 shows the mean F-measure, precision, and recall results for breakbeat identification using AIRC

configurations. The best-performing model is the SF-CNN with GMP trained on the unaugmented FSLD,

achieving high recall (85%), indicating that a high percentage of the actual breakbeats in the audio were

correctly identified, and a low rate of false negatives. The precision ensures that the predicted breakbeats

are accurate and that the system is not producing false positives that could lead to incorrect analysis

of the audio. The recall could be considered the most important metric for breakbeat idenfication,

as it indicates how well the system is capturing actual breakbeats in the music. Although precision

is significantly lower than the recall, indicating that some non-breakbeat sections have been classified

as breakbeats, these sections could be filtered out through manual refinement, which is an acceptable

trade-off as the system is capturing a good deal of the actual breakbeats.

In general, the models trained without the proposed data augmentation technique (FSLD-AUG) out-

performed those trained with it for this task. This was somewhat expected since the effects applied

through the augmentation technique, such as distortion, pitch-shifting, and bitcrushing, are less likely

86 CHAPTER 4. ANALYSING SBEM WITH AIRC

Model Pooling Dataset F-measure Precision Recall

SF-CNN GMP FSLD-OG 0.67 0.63 0.85

SF-CNN GMP FSLD-AUG 0.64 0.64 0.79

SF-CNN AUTO FSLD-OG 0.64 0.64 0.78

SF-CNN AUTO FSLD-AUG 0.65 0.67 0.73

VF-CNN GMP FSLD-OG 0.65 0.66 0.74

VF-CNN GMP FSLD-AUG 0.61 0.62 0.77

VF-CNN AUTO FSLD-OG 0.61 0.58 0.80

VF-CNN AUTO FSLD-AUG 0.49 0.48 0.70

H-CNN GMP FSLD-OG 0.43 0.42 0.60

H-CNN GMP FSLD-AUG 0.41 0.41 0.55

Table 4.7: Breakbeat identification results for various model, pooling method, and training data

configurations. The table includes the F-measure, precision, and recall values for each configurations.

Bold values indicate the highest scores.

to be apparent in funk, soul, and jazz music. In most instances, the SF-CNN models demonstrated

superior performance compared to the VF-CNN models, implying that square filters appear to generalise

more effectively for tasks of this nature. A noteworthy finding from this experiment is that despite

being trained on electronic music loops from Freesound, the AIRC system can successfully identify

breakbeats in a variety of different genres that use contrasting production techniques, instrumentation,

and are often recorded from vinyl. Jazz, funk, and soul music have different sound characteristics and

often more complex structures, making them less predictable than loop-based electronic music. Despite

these differences, the AIRC system was still able to successfully identify breakbeats in these genres,

demonstrating its versatility and applicability beyond its original training data. This discovery carries

notable significance, especially considering the limited availability of datasets with annotated sample

regions, providing a valuable workaround for sample detection in such music where existing datasets are

not sufficient to train a deep learning model.

Figure 4.7 illustrates the role predictions, breakbeat predictions (blue line), and ground truth annotations

(red line) for the song Amen, Brother (1969) by The Winstons. In the breakbeat region, drum predictions

are prominently indicated by the yellow hue, while all other role predictions remain subdued (dark blue).

For Amen, Brother, an iconic example, the predicted locations align accurately with the ground truth

data. By leveraging this information, the breakbeat section can be efficiently extracted from the original

recording, eliminating the need for a producer to listen to the entire track. This method saves both

time and effort, particularly when searching for breakbeats in a large music collection.

4.6 Conclusions

The evaluations conducted in this study have provided insights into the performance and effectiveness

of various CNN-based front-ends, pooling strategies, and a data augmentation technique for AIRC, LAT,

and the detection of samples in existing records. The results from the AIRC evaluation (Section 4.3)

demonstrate that employing the SF-CNN with AUTO pooling significantly enhances performance (71.28%)

compared to the previous H-CNN baseline (61.83%) in terms of PR-AUC. The AUTO pooling method

enables the model to capture the temporal dynamics within the input spectrogram, thereby increasing

4.6. CONCLUSIONS 87

drums
bass

fx
melody
chords

Figure 4.7: Estimated location of the breakbeat in Amen, Brother (1969) by The Winstons using the

proposed model. Predicted role activations (top), predicted breakbeat location (middle) and ground

truth location (bottom).

its robustness against time-frequency shifts and perturbations, leading to improved accuracy. Although

the augmented dataset (FSLD-AUG) did not enhance the overall performance of AIRC, it contributed to

improved accuracy for some of the less represented instrumentation roles, such as Bass and Melody,

within the FSLD. As each configuration performs better at predicting different instrumentation roles, it

is possible to use a combination of the models for classifying individual instrumentation roles, which

would lead to an average PR-AUC of 75.21%.

The second evaluation (Section 4.4) demonstrated the effectiveness of AIRC for transcribing the

instrumentation role activations in SBEM compositions. The results for the artificial dataset of simplified

SBEM compositions revealed that models trained with the FSLD-AUG dataset exhibited enhanced

performance. Compared to the previous NMF-based approaches to LAT, the AIRC system improved

performance on the composed layouts by 10%, while achieving similar accuracy on the factorial layouts.

A major advantage of the AIRC system is its capability to operate without depending on loops being

precise duplicates, while simultaneously ensuring clear separation between instrumentation roles. This

distinguishes it from NMF-based methods, which necessitate exact repetition of loops, constraining

their adaptability in comparison. The AIRC system offers a robust solution for LAT that can adjust to

variations, such as instrument changes and resequencing. As a result, AIRC proved highly effective in

transcribing instrumentation role activations in real-world SBEM compositions. In terms of accuracy,

the best performing configurations for this task were the VF-CNN with GMP, achieving 89.5%, and the

SF-CNN with AUTO pooling, attaining 88.6%.

The third evaluation (Section 4.5) demonstrated the capacity of the AIRC system for identifying the

location of breakbeats in funk, soul and jazz recordings. Despite being trained on data sourced from a

community-based collection of user-uploaded loops and samples (FSLD), the models can be applied to

fully produced music recordings from various genres and styles. The best performing model for breakbeat

detection in terms of F-measure was the SF-CNN with GMP trained on the FSLD-OG. The high recall

of 0.85 achieved in the breakbeat identification task indicates that the model can accurately detect a

88 CHAPTER 4. ANALYSING SBEM WITH AIRC

considerable proportion of breakbeat locations within the music. Although the lower precision rate points

to some false identifications, the high recall rate suggests that a substantial portion of the predicted

segments likely contain breakbeats. These results demonstrate the potential of the AIRC system for

identifying sample-able material from large collections of existing music. Additionally, the prediction

thresholds could be tuned and manually refined to allow the system to be more or less lenient when

searching for samples of a particular instrumentation role.

In conclusion, the results of each evaluation reveal that the selection of model configuration affects the

accuracy of instrumentation role classifications. While the SF-CNN with AUTO pooling, trained with the

FSLD-OG, consistently performed well across all tasks, a hybrid approach that combines the strengths of

different models might enable more reliable classification of loops within collections of audio.

4.7 Chapter Summary

This chapter introduced a new deep learning system designed for automatic instrumentation role

classification, enabling the identification of samples based on their specific functions within SBEM. The

system is adept at determining the instrumentation roles of audio samples, which may represent single

roles, such as chords, melody, bass, drums, and sound effects, or a combination of these roles. The

versatility of the system was demonstrated by conducting three experiments, each representing distinct

SBEM production tasks (Section 2.2). The first experiment identified the optimal configuration for

AIRC through a comparison of various CNN-based architecture configurations. AIRC can assist in the

production process through efficient labelling and organisation of unstructured sample collections, which

in turn facilitates the identification of samples with particular structural roles or characteristics. In

the second experiment, AIRC was employed to generate high-level summaries of SBEM arrangements

by identifying the different instrumentation roles present throughout a composition. The resulting

instrumentation role activation map serves as a visual guide, assisting producers in understanding the

structural roles of individual sections within a full SBEM composition. Additionally, this visualisation

enables listeners to appreciate the relationships between various musical elements and gain a deeper

understanding of the composition. The third experiment showcased the automatic retrieval of samples

with desired characteristics from existing recordings. This can assist SBEM producers by eliminating the

time-consuming process of attentively listening to an entire recording to find samples that fit specific

roles in their music. It is important to acknowledge that the sample detection system would depend on

the user-provided music recordings, and thus the quality and suitability of the identified samples still rely

on individual taste and preference. Consequently, the system does not diminish a producer’s sampling

abilities or the pursuit of finding unique and personalised samples. The system could be utilised with an

SBEM producer’s personal collection of tracks across various genres, generating a new sample library

from the existing recordings.

Overall, this chapter has provided insights into the performance of deep learning systems within the

context of SBEM analysis. The next chapter employs deep generative models to learn the underlying

characteristics of a drum sample collection, thereby facilitating the continuous generation and exploration

of intermediate samples.

Chapter 5

Drum Sample Synthesis with

Generative Adversarial Networks

Drums and percussion play a significant role in shaping the rhythmic foundation of SBEM (Section 2.3).

Integrating drum samples into an SBEM composition may involve the time-consuming task of browsing

music and sample libraries for suitable drum recordings (Section 2.2.2) or using traditional synthesis

techniques (Section 2.3.3), which demand mastery over numerous parameters and provide limited control

over sound generation. In light of these challenges, neural audio synthesis (Section 2.4.6) emerges

as a solution, offering the capability to generate and manipulate audio samples effectively. Neural

audio synthesis enables the generation of new audio samples without being restricted to hand-designed

components, such as oscillators and wavetables, or a specific synthesis process such as those discussed

in Section 2.3.3. This approach can help overcome the restricted timbre diversity in sample collections

and alleviates the challenges associated with complex synthesis techniques, which typically involve steep

learning curves.

In the previous chapter, a deep learning system was introduced for analysing SBEM through instru-

mentation role classification. This chapter shifts focus to the deep generative modelling paradigm

(Section 3.5) and presents a system for synthesising drum samples using GANs. While neural audio

synthesis can be approached through deep generative models such as autoregressive (AR) models

(Section 3.5.1), variational autoencoders (VAE) (Section 3.5.2), and GANs (Section 3.5.3), each method

has its limitations. Although AR models can produce high-quality audio, the sequential waveform

generation process comes at the expense of resource-intensive and potentially slow inference. In contrast,

both VAEs and GANs are capable of generating samples in parallel, providing faster and more efficient

synthesis processes. This parallel generation capability is particularly desirable in the context of SBEM

production, where producers require timely feedback when creating and refining sounds. However, VAEs

employ variational approximations that have been known to produce blurry outcomes in both image

(Huang et al., 2018) and audio (Aouameur et al., 2019) generation. GANs, on the other hand, learn to

produce precise samples through an adversarial learning strategy, in which a generator and discriminator

network are trained simultaneously in a competitive manner until the generator can produce examples

that are indistinguishable from the training data. While this can lead to some modes of the data being

underrepresented, the combination of fast inference and precision makes GANs a suitable choice for

synthesising drum sounds in SBEM production.

89

90 CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

The choice of audio representation (Section 3.4) used for training neural audio synthesisers is another

important design consideration. GANs for audio synthesis have been successfully trained using both

raw audio (Donahue et al., 2019) and perceptually-informed spectrogram representations (Engel et al.,

2019). Unlike audio analysis tasks, which often only require the magnitude of the spectrogram, achieving

accurate audio generation heavily relies on preserving phase information. While the magnitude of the

spectrogram represents the energy distribution across different frequencies over time, phase information

describes the relative position of the waveform at each frequency component. Most perceptually-informed

spectrograms discard phase information and are thus non-invertible. While the missing phase information

can be estimated through lossy estimations (Griffin and Lim, 1984) and learned inversion models (Arık

et al., 2018; Shen et al., 2018), these methods require an additional processing stage and often introduce

undesirable artifacts.

To address this challenge, Engel et al. (2019) proposed to model phase as instantaneous frequencies,

which capture the local frequency content of a signal at any given point in time and can be used for

approximate inverse linear transformation. While this representation is suited for representing signals

with well-defined, stable frequencies, such as those produced by pitched instruments, drums often have

a more complex and less defined harmonic structure, which makes it considerably harder to model the

phase relationships between different frequency components. Percussive instruments produce transient

and non-periodic waveforms (Karplus and Strong, 1983), meaning their frequency components and

phase relationships change rapidly over time. This rapid change makes it challenging for a model to

learn and generate accurate phase information for percussive instruments, as the phase relationships

between different frequency components are less predictable and more difficult to capture. Generating

raw audio directly avoids the need to reconstruct the audio signal from its time-frequency representation,

thus preserving phase coherence naturally. This can be particularly beneficial for drum sounds, where

phase information plays a crucial role in accurately reproducing the transients and preserving the overall

sound quality.

For these reasons, a GAN that operates on raw audio waveforms is adopted for synthesising drum

samples in SBEM production. The system is designed to be lightweight, in that it is capable of achieving

high-quality audio generation with a relatively small training dataset, which emulates the personal

collection of drum sounds typically used by music producers. The system utilises high-level conditioning

to categorise drum sounds into specific types, and further employs a compact latent space with low

dimensionality, enabling intuitive synthesis control over a diverse range of drum sounds. Furthermore,

the interpolation of the latent space constitutes an effective technique for navigating, fine-tuning, and

blending the generated drum samples. While existing tools for navigating sample collections have allowed

sounds with similar characteristics to be positioned closely together in a 2-dimensional space (Section

2.2.2 and Section 2.4.5), the proposed system enables continuous exploration of intermediate samples,

facilitating the discovery of sounds that possess combined characteristics of neighbouring samples. The

system is realised through a conditional Wasserstein GAN (Section 3.5.3) trained with a dataset of

labelled drums sounds. Conditioning is achieved with the three main percussion instruments from the

common drum kit—that is, kick drum, snare drum, and cymbals—and the system can generate a diverse

range of sounds from each class.

The main contents of this chapter can be summarised as follows: Section 5.1 presents the proposed

methodology to drum sample synthesis and details the different architecture configurations and training

procedures. Section 5.2 presents the evaluation methodology, which includes a description of the

5.1. METHOD 91

G
D

x̃

Real

Fake
Generator
network

Discriminator
network

z

Latent variable

Training

Drum waveforms Wasserstein
distance

Figure 5.1: General overview of the proposed system for drum sample synthesis: Generator G is trained

to generate audio given a latent variable z. Discriminator D is trained to minimise the Wasserstein

distance between the generated distribution and the observed distribution.

dataset, the experiment hyperparameters, and the metrics used for evaluating the performance of the

different architectures. The evaluation results and discussion are provided in 5.3. Section 5.4 introduces

several strategies for controlling synthesis by means of manipulating the latent space. In 5.5, additional

experiments are provided, which explore alternative use cases for the proposed system. The chapter

summary is provided in 5.6.

5.1 Method

A general overview of the proposed method for drum sample synthesis is presented in Figure 5.1.

Generator G is trained to generate drum sample waveforms given a latent vector z, and discriminator

D is trained to estimate the Wasserstein distance between the generated and observed distributions

W ppg, pdq (Section 3.5.3). Both networks are optimised simultaneously until G can produce drum

samples that are indistinguishable from the observed training data. The system is trained using a

collection of one-shot drum samples and subsequently generates new drum samples by sampling from

the latent space of the generator.

The GAN framework defines an adversarial game between generator network G and discriminator network

D (Section 3.5.3). G is used to learn mappings from a noise space Z to drum data space X. Z = Rdz ,

where dz is a hyperparameter that controls the dimensionality of Z. Latent variables z P Z are sampled

from a known prior ppzq, which is modelled with a Gaussian distribution. X is the drum data space

that represents the input to D or output of G. As training data, drum samples T are drawn from a real

distribution pT pxq. By sampling from ppzq, G can be used to generate drums that represent a synthetic

distribution qpxq. In order to facilitate conditional generation (Section 3.5.5), the objective function

from Equation 3.38 (Section 3.5.3) is updated as follows:

min
G

max
D:||D||Lď1

“ Ex,y„pT px,yqrDpx, yqs ` Ez„ppzq,y„ppyqrDpGpz, yq, yqs, (5.1)

92 CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

Downsampling block

waveform

waveform condition

Wasserstein distance

Downsampling block

…

Input block

…

Upsampling block

condition

Generator Discriminator

n-1 resolutions n-1 resolutions

Input block

Output layer

Upsampling block

Output layer

Figure 5.2: Overview of the proposed conditional drum synthesis system, consisting of a generator and

discriminator network. The generator network takes a latent vector z and a drum class condition as input,

and generates a waveform through a series of upsampling layers. The discriminator network, mirroring

the generator, takes a waveform and condition as input. Through downsampling layers, features are

extracted from the input, which are then used to compute the Wasserstein distance between the real

and generated distributions.

in which ppyq is the prior conditioning distribution. Conditioning the system on labels allows for the

targeted generation of drum sounds from a specific category. Under an optimal discriminator, minimising

the objective function with respect to the generator parameters minimises W ppg, pdq.

5.1.1 Implementation

The proposed approach to drum sample synthesis builds upon the architecture of WaveGAN (Donahue

et al., 2019) but is designed specifically for the conditional audio generation of kick drum, snare drum

and cymbal samples. In order to achieve improved quality and controllability, two new systems are

developed: a conditional WaveGAN (Drysdale et al., 2020) and a conditional style-based WaveGAN

(Drysdale et al., 2021).

Conditional WaveGAN

The conditional WaveGAN system extends the architecture of WaveGAN (Donahue et al., 2019) for the

conditional audio generation of a variety of different drum sounds. Conditioning provides deterministic

control over the generated output, enabling targeted synthesis that would allow producers to selectively

create specific drum sounds. Figure 5.2 provides an overview of the conditional WaveGAN architecture

consisting of a generator G (left) and discriminator D (right). The generator contains an input block

which receives a conditioning variable y and a latent vector z. In order to learn a drum-specific encoding,

y is passed through an embedding layer (Section 3.5.5) with a dimensionality e “ 3, such that each

5.1. METHOD 93

of the three drum classes are mapped to a different e-element vector representation that is learned by

G (e “ 3). Within the input block, the embedding layer and latent vector z are scaled to the initial

size of the network using dense layers and then concatenated together. The concatenated result is then

passed through a series of n upsampling blocks that systematically increase the resolution of the input.

The upsampling process combines one-dimensional nearest neighbour upsampling (Section 3.5.4), in

combination with a one-dimensional convolutional layer with a filter size of 16 and rectified linear unit

(ReLU) activation function (Equation 3.4). These upsampling blocks are applied iteratively, increasing

the number of audio samples by an upsampling factor of s at each step. The final waveform is derived

from the output layer which uses a hyperbolic tangent (tanh) activation function (Equation 3.2).

The discriminator network D mirrors the architecture in G. D begins with an input block that receives

an audio signal and conditioning variable y as input. In D, y is passed through an identical embedding

layer to that in G and is scaled to the size of the input waveform using a dense layer and reshaping.

This representation is then concatenated with the input waveform and passed through a series of n

downsampling blocks. Each downsampling block consists of a convolutional layer with a stride of s and

filter size of 16, and a leaky ReLU activation with α = 0.2 (Equation 3.5). Thus, at each stage of the

discriminator, the input waveform is decreased by a factor of s. Additionally, the downsampling blocks

include a phase shuffle module (Donahue et al., 2019) that randomly perturbs the phase at each layer

of D. Phase shuffle forces D to become invariant to the phase of the input waveform and is controlled

by hyperparameter p that perturbs the phase of a layer’s activations by -p to p samples. This is to help

prevent an optimisation problem that can occur when D learns to reject generated audio with artifact

frequencies that always occur at a particular phase (Donahue et al., 2019). The final layer of D is a

dense layer with a linear activation function that outputs the authenticity of the input audio sample

through the Wasserstein distance.

Conditional Style-based WaveGAN

The style-based architecture incorporates several modifications to the conditional WaveGAN generator

network, resulting in an enhanced representation of factors of variation within the model. Specifically,

the architecture improves the interpolation properties of the latent space, which enables smoother and

more predictable transitions between different generative outputs. By introducing these modifications,

the style-based architecture improves the ability of the generator network to generate high-quality audio

with greater control over specific audio features.

Figure 5.3 provides an overview of the style-based generator, which is composed of a mapping network

and an adapted generator network. In the original GAN formulation, output signal generation is

controlled by feeding latent vector z with conditioning information to the input layer of the generator.

G is decomposed into a series of L intermediate layers G1...GL. Thus, the first layer produces features

f1 “ G1pzq and the subsequent layers produce features as a function of the output of the previous layer,

such that fl “ Ĝlpzq ” Glpfl´1q. In a style-based GAN formalisation (Karras et al., 2019, 2020b),

latent space Z is transformed into an intermediate space W using mapping network M : Z ÝÑ W.

An intermediate latent vector w is derived by passing z and y to a mapping network M , such that

w “ Mpz, yq, where y P Rk is a one-hot encoding representing k drum instruments (i.e., kick drum,

snare drum and hi-hat). To enhance the efficacy of the mapping network, the generator function G

is modified to accept a fixed constant value as input, while intermediate latent vectors w P W, are

provided to each upsampling layer fl “ Glpfl´1, wq.

94 CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

waveform

…

Upsampling block

condition

Generator

n-1 resolutions

Output layer

Upsampling block

noiseconstant

Dense

Dense

Mapping

… n-2 mapping

Input block Dense

Figure 5.3: An overview of the style-based generator network consisting of a mapping network (left)

and a generator (right).

The mapping network M is a conditional multilayer perceptron, that learns to create disentangled

features that are integrated at each upsampling block of the generator network G through adaptive

instance normalisation (AdaIN) (Karras et al., 2019). For the lth hidden layer output activations AdaIN

is defined as:

AdaINpfl, wlq “ wl
fl ´ µpflq

σpflq
` wl, (5.2)

where, mean µ and standard deviation σ are computed across features for each channel and sample.

The generator is trained to output audio waveforms given a latent vector w for each upsampling block

with affine transform A. Additionally, Gaussian noise is added to each upsampling block using per-layer

scaling factors B to introduce stochastic variation at each layer.

5.1.2 Network Training

In order to optimise the objective function (Equation 5.1) and reach an equilibrium, alternating updates

between networks G and D are performed. At each training iteration, the parameters of network D are

updated r times for each G parameter update. The proposed models aim to minimise the Wasserstein

distance between the training data distribution and the generated data distribution. To enforce the

Lipschitz constraint, a gradient penalty (GP) with a coefficient of λ is applied, as discussed in Section

3.5.3. Models are trained on an NVIDIA 2080ti GPU for „100000 iterations using the Adam optimiser

(Kingma and Ba, 2015) with a learning rate 2e´4, β1 “ 0.5, β2 “ 0.99, where each iteration takes

a mini-batch of 64 examples. For the style-based generator, synthesis is performed by integrating

an intermediate vector w at each upsampling block of G through AdaIN. In accordance with Karras

et al. (2019), mixing regularisation is employed to prevent the network from assuming that adjacent

5.2. EVALUATION METHODOLOGY 95

upsampling blocks are correlated. This is achieved by generating two intermediate vectors w1 and w2 by

passing latent vectors z1, z2 through the mapping network M . During training, each upsampling block

is provided with different intermediate vectors by randomly selecting either w1 or w2.

5.2 Evaluation Methodology

The following section presents the methodology used to evaluate the quality of generations produced by

various configurations of the proposed GAN model for drum sample generation. In order to determine the

optimal configuration for drum sample waveform generation, the conditional WaveGAN (CW-GAN) and

conditional style-based WaveGAN (CSW-GAN) architectures, presented in Section 5.1.1, are evaluated.

Additionally, an unconditional WaveGAN (UW-GAN) is included as a baseline, which is based on the

original implementation of WaveGAN by Donahue et al. (2019). This model serves as a benchmark to

compare the performance of the proposed architecture modifications. While WaveGAN was originally

trained using a large latent dimensionality (dz “ 100), the proposed system aims to allow producers

to interactively navigate a compact representation of drum samples. A smaller dimensionality offers

benefits such as easier visualisation, control, and interpretability. In the context of SBEM production,

this facilitates more intuitive browsing and fine-tuning of samples. However, it is essential to find a

balance between maintaining high-quality generations and a compact representation when designing

generative models for audio synthesis. For comparison, the CW-GAN and CSW-GAN architectures are

trained and evaluated using latent dimensionality dz values of 3, 16, 64, and 100. This allows for a

thorough examination of how varying the latent dimensionality affects the quality and diversity of the

generated drum samples.

5.2.1 Evaluation Data

For all experiments, networks are trained using raw audio waveforms. A dataset of oneshot drums

samples D was complied from a wide variety of commercial sample libraries. Drum samples were

categorised manually into k domains comprising kick, snare and cymbal samples. Each domain contains

3000 individual samples resulting in a total dataset size of 9000 samples. Prior to preprocessing, all

samples in the dataset were mono 16-bit PCM audio files sampled at 44.1kHz, with a mean audio

length of 18234 samples (i.e., 0.41s). In order to reduce computational requirements for the purpose of

this evaluation, it was determined that the audio files would be downsampled from 44.1kHz to 16kHz.

The training data audio length is selected to be the nearest power of two (T “ 8192) to satisfy the

symmetric structure of networks G and D. Each training sample is trimmed or zero-padded to ensure a

constant length of T samples. All waveforms are normalised and a short linear fade of samples is applied

to the start and end of each waveform to ensure that they consistently begin and end at 0 amplitude.

For validation purposes, an additional 1000 drum samples (evenly distributed across the three classes)

was collected as test data, resulting in a data split of 90% for training and 10% for testing.

5.2.2 Network Hyperparameters

In Table 5.1, a list of hyperparameter values used for training the architectures discussed in Section 5.1.1

is provided. Hyperparameters were initially selected based on previous research (Donahue et al., 2019)

96 CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

Name Value

Input data type 16-bit PCM (requantised to 32-bit float)

Audio sampling rate 16000

Model data type 32-bit float

Audio length 8192 samples (0.557 seconds)

Num channels (c) 1

Batch size (b) 64

Number of resolutions (n) 9

Stride (s) 2

Phase Shuffle (p) 2

Loss Wasserstein-GP (Gulrajani et al., 2017)

GP coefficient (λ) 10

D updates per G (r) 3

Optimiser Adam (α “ 1e ´ 4, β1 “ 0.5, β2 “ 0.9)

Table 5.1: Network training hyperparameters for evaluation.

and then fine-tuned through a trial and error process to achieve a balance between generation quality,

computational capacity, and training time. To investigate the relationship between the latent space

dimensionality (dz) and generation quality, each architecture is trained four times with dz values of 3,

16, 64, 100. The input data type is mono (c “ 1) 16-bit PCM audio sampled at 16kHz and requantised

to 32-bit floating point data. The audio length (T) is set to 8192 samples—which is equivalent to 0.557

seconds at 16kHz sampling rate. To allow for the generation of T samples, each model consists of 9

resolutions with a scaling factor 2, thus at each stage of G and D, audio is upsampled or downsampled

by a factor of 2 respectively. The model dimensionality parameter corresponds with how many trainable

filters are used during training, and can be used to increase or decrease the size and complexity of the

model. Models are trained using a gradient penalty coefficient (λ = 10) and D is updated 3 times per

G update.

5.2.3 Evaluation Metrics

The primary objective of the proposed model is to generate novel samples with statistical properties

that closely match those of the training data. In contrast to typical machine learning models, GANs

lack a single objective function that can be used to evaluate their performance. GANs are trained with

an adversarial loss that does not provide a direct measure of the quality of the generated samples, and

the generations do not necessarily correspond to any specific, predefined ground truth. This makes it

challenging to evaluate the quality of generated samples and compare between different GAN models.

As a result, evaluating the quality of generated samples often requires generating a large number of

examples and comparing their overall distributions. Manual human evaluation would be impractical and

time-consuming due to the large number of examples involved. To address the challenge of evaluating

the quality of generated samples in the absence of a predefined ground truth, several reference-free

evaluation metrics have been proposed to compare the distribution of generated samples to that of the

real data. Following (Donahue et al., 2019; Engel et al., 2019), three sets of performance measurements

are used in the evaluation: inception score (IS), nearest neighbour distance (NND), and Fréchet audio

5.2. EVALUATION METHODOLOGY 97

distance (FAD). Each metric provides a different insight to the performance of the models. The metrics

were calculated on a set of 20000 generations produced by each model.

Inception Score

The inception score (IS) (Salimans et al., 2016) is an evaluation metric that has been proposed to

evaluate the performance of GANs. IS computes the KL divergence between the conditional class

distribution ppy|xq and the marginal class distribution ppyq over the generated data, and is defined as:

IS “ exppEx„pgDKLpppy|xq } ppyqqq, (5.3)

where x „ pg indicates that x is a sample from pg. Following (Donahue et al., 2019), the conditional

class distribution ppy|xq is obtained by applying a pre-trained audio classifier to the audio generations.

The audio classifier is a CNN architecture similar to the square-filter AIRC model (Section 4.2.1), that

is trained on the dataset of labelled drum sounds (kick, snare, cymbal) from Section 5.2.1. Audio is

input into the classifier as log-scaled Mel spectrograms (Section 3.4.5) with 128 Mel-frequency bands.

The Mel spectrograms are processed through four convolutional and pooling layers. The final layer is

a fully-connected layer with three outputs and a softmax activation function, depicting the presence

of each class as decimal probabilities. A train–validation–test split of 80%{10%{10% is applied to the

dataset and early stopping is performed on the minimum negative log-likelihood of the validation set.

The classifier achieves 97% accuracy on the test set.

Given model scores ppy|xq, the IS is calculated over 20000 generated samples. The IS score seeks to

capture two properties: audio quality, whether the generations be classified into a specific class, and

audio diversity, whether a diverse range of different classes can be generated. A high IS score implies the

generative model can generate distinct audio from each class (i.e., low entropy for conditional posteriors)

and there is variety in the generator output (i.e., high entropy for the marginal over all classes). This is

an indication that a model can produce generations that capture the semantic modes of the real data

distribution. IS will penalise models whose generations cannot be classified into a single class with high

confidence, as well as models whose examples belong to only a few of all the possible classes. Salimans

et al. (2016) suggest, in their experiments, IS correlates well with the human judgment of image quality;

however, IS fails to capture intra-class diversity, meaning that a class-conditional model that memorises

one example per class will achieve a high IS (Barratt and Sharma, 2018).

Nearest Neighbour Comparisons

Nearest neighbour comparisons can serve as a useful tool to evaluate the quality of generative models

by assessing the extent to which a high inception score is a result of either limited intra-class diversity or

overfitting of the training data. Specifically, such comparisons allow for an assessment of the diversity

and variability of generated samples within each class, thus providing a means of diagnosing mode

collapse and other pathologies that may arise in the course of model training. Donahue et al. (2019)

proposed two metrics to determine if a high inception score has been caused by either of these two

undesirable cases. The metric |D|self quantifies the diversity of a set of 1000 examples by measuring

the average Euclidean distance to their nearest neighbor within the set, excluding the example itself.

A higher value of |D|self signifies greater diversity among the samples. On the other hand, |D|train

measures the average Euclidean distance of a set of 1000 examples to their closest neighbor within the

real training set. A distance of 0 indicates that the generative model only reproduces examples from the

98 CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

training set. However, a high value of |D|train would suggest that the generative model has deviated

from the original training objective. Hence, a balance must be achieved to ensure that the generated

samples possess sufficient diversity while remaining faithful to the training set. As in IS, distances are

calculated using Mel spectrograms. |D|self and |D|train are reported on relative to those of the real test

set in Section 5.3.

Fréchet Audio Distance

The Fréchet Audio Distance (FAD) (Kilgour et al., 2019) has been widely adopted due to its sensitivity

to small changes in the real distribution (i.e., noise), computational efficiency, and close correlation

with human perception. In contrast to the inception score, FAD can detect intra-class diversity and

penalise a model that is affected by mode collapse. The FAD compares embedding statistics generated

on an evaluation set with embedding statistics generated on the training data. To compute the FAD, a

pre-trained audio classification network (Hershey et al., 2017) is used to embed the real and generated

audio into a lower-dimensional space. The real and generated audio embeddings are then summarised

as multivariate Gaussian distributions by calculating the means and covariances. The Fréchet distance

between the two distributions is then calculated as follows:

FAD “ ||µb ´ µe||2 ` trpΣe ` Σb ´ 2
a

ΣbΣeq, (5.4)

where (µe , Σe) and (µb , Σb) are the mean and covariances of the embedding of real and generated

data respectively and tr is a trace of the matrix. A lower FAD signifies that the synthetic and real data

distributions are more similar.

The audio classification network used for generating the embeddings is based on the VGG architecture

(Simonyan and Zisserman, 2015) and is trained on a large dataset of YouTube videos with over 3000

classes (Abu-El-Haija et al., 2016).

5.3 Results and Discussion

This section presents the results of the evaluation, with a comprehensive discussion of the generation

quality. This entails an examination of the various attributes of the generated audio, while also considering

the potential applications and limitations associated with the proposed approach.

5.3.1 Evaluation Results

Table 5.2 presents the results of the three evaluation metrics: inception Score (IS), nearest neighbour

distances (NND), and Fréchet audio distance (FAD). The table presents the results of the proposed

generative models (CW-GAN and CSW-GAN) trained with different values of the latent dimensionality (dz),

along with the unconditional baseline model (UW-GAN) that was trained using dz “ 100. The metrics are

computed on generated drum sounds produced by the different architecture configurations and compared

with the real training and test data. Across most model configurations, the IS closely matches that of

the real data, indicating that the generated audio samples are diverse and representative of the entire

data distribution while still being identifiable as belonging to specific classes. Models trained with lower

dz values generally achieved lower IS, suggesting that higher dz values may be necessary to capture

5.3. RESULTS AND DISCUSSION 99

Fréchet Audio Distance Inception Score Nearest Neighbour

Experiment Overall Kick Snare Cymbal Overall |D|self |D|train

Real (train) 0.00 0.00 0.00 0.00 2.93 0.97 0.00

Real (test) 0.04 0.05 0.10 0.11 2.86 1.00 1.00

UW-GAN 4.80 - - - 2.66 1.40 7.61

CW-GAN (dz “ 100) 2.74 3.98 3.99 1.55 2.73 1.21 5.31

CW-GAN (dz “ 64) 2.97 3.38 4.18 2.54 2.70 1.33 3.11

CW-GAN (dz “ 16) 4.53 5.08 5.90 3.66 2.72 1.47 7.66

CW-GAN (dz “ 3) 5.32 4.31 7.73 5.18 2.65 1.27 7.85

CSW-GAN (dz “ 100) 1.48 2.06 1.88 1.41 2.80 1.18 5.07

CSW-GAN (dz “ 64) 1.98 2.17 2.97 2.00 2.79 1.29 6.10

CSW-GAN (dz “ 16) 2.78 4.14 4.54 3.44 2.73 1.24 7.70

CSW-GAN (dz “ 3) 4.29 5.17 5.30 4.49 2.61 1.16 8.57

Table 5.2: Results for experiments comparing the real and generated data for different model

configurations, where bold indicates the best scores for FAD and Inception Score. A higher inception

score demonstrates that a model can produce generations that capture the semantic modes of the

real data distribution. |D|self nearest neighbour values indicate intra-class diversity relative to the real

test data. |D|train nearest neighbour indicates the distance between the training data and generated

data. The Fréchet audio distance (FAD) is reported for the generative models under mixed conditions

(overall), as well as intra-class FAD for the individual conditions of kick, snare, and cymbal. A lower

FAD indicates that the generated and real data distributions are more similar.

the semantic modes of the real data distribution. All experiments produce |D|self and |D|train that is

higher than the real test data, indicating that the high IS is not a result of mode collapse or overfitting

to the training data. The |D|self values are reduced for models with lower dz values, which indicates

a correlation between the size of dz and the amount of variety a model can generate. |D|train is also

higher for models with a lower dz values, indicating that generations deviate further from those in the

real data when using a smaller latent dimensionality.

The overall FAD is reported for the generative models, as well as intra-class FAD for the individual

conditions of kick, snare, and cymbal. The conditional models generally demonstrate a lower FAD

compared to the unconditional baseline model, indicating higher quality in generating perceptually similar

samples to the real data. These results reveal that the conditioning improved the ability of the model to

learn the complexities of the training data distribution with respect to each class. Furthermore, the

effectiveness of the conditions suggests that they can be a valuable tool for drum synthesis, allowing

for the targeted generation of drum sounds from a specific category. The exception to this trend is

observed in the conditional models trained using dz “ 3, which exhibit a higher FAD compared to the

unconditional baseline model. This finding provides support for the hypothesis that the use of a low

value for the latent dimensionality dz may lead to lower performance due to the limited expressiveness of

the latent space. Overall the best performing model, with scores highlighted in bold, is the style-based

generator with a latent dimensionality of dz “ 100. The style-based generator architecture considerably

improves the quality of generations and provides greater control over the synthesis process.

.

100CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

5.3.2 Generation Quality

The highest-performing models, which are the style-based and conditional models with dz “ 100, were

scaled up by increasing the number of parameters and adding two additional layers to generate audio at

a sample rate of 44.1 kHz. Audio examples for each model are provided on the accompanying webpage.1

Alongside the perceptually-motivated evaluation metrics (Section 5.3.1), which allow for comparison

between different models, informal listening tests were conducted to assess the generation quality of audio

samples from each class. It is worth noting that subtle differences between some of the models would

be challenging for human evaluation to consistently discern. In contrast, the perceptually-motivated

evaluation metrics offer a more consistent and objective measure for comparing the performance of

these models. While formal human evaluations could provide additional insights, the subjective nature

of audio perception and the specific context of SBEM production make it challenging to design and

conduct such evaluations. Nevertheless, the audio examples provided on the accompanying website offer

a qualitative perspective on the generated audio, allowing readers to form their own interpretation and

complement the quantitative evaluation metrics used in this study.

Incorporating class labels as a conditioning factor into the generative model results in an improvement

in overall audio quality and removes overlap between different classes of audio samples. The style-based

architecture produces generations of audio that are generally more pleasing to the ear, with the snare

and cymbal sounds in particular exhibiting a higher level of realism and richness. Real snare drums and

cymbals produce an inharmonic sound that is characterised by a broad frequency spectrum, with energy

distributed across a wide range of frequencies. In electronic music production, synthesised white noise

can be used to approximate the sound they produce. By introducing random noise at each layer of the

style-based generator network, the model is able to learn the characteristics of more complex and realistic

snare drums and cymbals, with subtle variations in tonal balance, decay, and resonance. Moreover,

the noise introduces stochastic variation to the generations, which mirrors the natural variation and

unpredictability present in acoustic drums and analogue synthesisers. This variation is important, as it

means that no two sounds are exactly the same, adding depth and nuance to the synthesised audio.

During inference, the amount of noise provided to each layer of the network can be adjusted without

affecting the overall structure of the generations, allowing further fine-grained control over synthesis.

Figure 5.4 presents examples of two generated instances for each of kicks, snares, and cymbals. The

figure demonstrates the diversity and richness of the synthesised drum sounds, showcasing system

capacity to generate distinct instances of each drum type while maintaining their characteristic timbral

qualities. Kick drums provide the essential low-frequency foundation in SBEM and can be characterised

by an initial high-frequency sound that drops in pitch and amplitude over a short period of time (Section

2.3.1). The fundamental frequency of a kick drum typically ranges between 50–145Hz (Rossing et al.,

2014). Upon examining the first pair of spectrograms in Figure 5.4, it becomes evident that the

generated kick drums exhibit these characteristics. Both examples display a rapid decrease in frequency,

with the loudest frequencies falling within a similar low-frequency range. On the other hand, snare drums

can be characterised by sharp staccato sound and burst of high-frequency noise (Section 2.3.1). Typical

fundamental frequency ranges of acoustic snare drums are between 100–200Hz (Owsinski, 2017). Similar

traits are discernible in the spectrograms of the generated snare drum examples, featuring a prominent

peak at approximately 200Hz, enveloped by a spectrum of broadband noise. Cymbals are distinctive

1https://jake-drysdale.github.io/research.html

https://jake-drysdale.github.io/research.html

5.4. LATENT SPACE EXPLORATION 101

Figure 5.4: Example waveforms (top) and spectrograms (bottom) for two generated instances of kick,

snare, and cymbal drum sounds, respectively.

in that they often lack a well-defined fundamental tone. Instead, they produce a broad spectrum of

frequencies, contributing to a sustained wash of high-frequency overtones and complex resonances

(Section 2.3.1). These characteristics are also evident in the spectrogram examples, showcasing a closed

hi-hat and a crash cymbal.

As can be heard from the audio examples, some artifacts remain as a result of the upsampling layers in

the generator network; however, their impact on the overall quality of the drum sounds is minimal. In

most cases, these artifacts can be removed with simple post-processing techniques, such as amplitude

fading or equalisation. Current methods for upsampling within neural audio synthesis models are known

for introducing unwanted artifacts (Pons et al., 2021), and further research into more robust methods

could prove essential in enhancing audio quality, especially when working with limited training datasets.

While the quality of the generated audio can be enhanced through network expansion, additional training

data, and prolonged training periods, the audio examples produced by the current system showcase its

ability to synthesise audio using a lightweight network with a dataset size comparable to the personal

sample collection of an SBEM producer. From a creative standpoint, the imperfections and artifacts

found in the generations may be appealing to producers looking to achieve a low-fidelity sound, which is

desirable some styles modern hip-hop (Winston and Saywood, 2019). An additional desirable attribute

of the synthesised audio is its coherency, which gives the impression that all sounds originate from a

single source. This effect is akin to recording drums in a specific room with a particular reverb time or

using an analogue drum synthesiser with distinct electronic components. The coherence of the generated

audio is highly desirable in music production, as producers frequently seek to achieve it through bus

or group processing (Izotope, 2021). Combining sounds from disparate sources can often result in a

disjointed sound, making the ability to generate coherent audio from a single model a valuable tool for

music producers.

5.4 Latent Space Exploration

The evaluation has confirmed that the proposed conditional style-based GAN (CSW-GAN) is effective in

generating a diverse range of high-quality drum samples. As mentioned in Section 2.1.3, techniques for

transforming samples have largely remained unchanged since the early 1990s, constrained by the intrinsic

102CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

transformational potential tied to the timbral and rhythmic qualities of the source material. GANs offer

a promising avenue for overcoming the limitations of traditional sample transformation techniques by

providing new ways of manipulating samples. This section investigates various systematic approaches

for interacting with the network and navigating the generative space. The aim is to exert influence

over the generated content and showcase novel methods of sample manipulation. These approaches

primarily involve creative exploration and subjective artistic choices, which may vary significantly between

individuals. Nevertheless, these techniques provide new opportunities for timbral modifications and

enable producers to discover and create unique samples using the system.

The proposed system allows for the generation of a specific type of drum sample through an input latent

vector and conditional value. Continuous exploration and fine-tuning of the possible generations can

be achieved by varying the values of the latent vector. The latent dimensions are akin to synthesis

parameters, in that changing the values of the dimensions yields changes to the outcome of the generation.

While a higher latent dimensionality can lead to better quality and diverse generated audio, it also

poses a significant challenge for controllability due to its complexity and large number of dimensions.

Specifically, there are far too many dimensions to effectively explore, demanding that the values for each

dimension much be adjusted separately. A system with a smaller latent dimensionality would be more

efficient in terms of interactively exploring and manipulating the sample generation space. For instance,

models trained with a latent dimensionality of dz “ 3 only require navigation through three dimensions,

making it easier to control and manipulate generations.

5.4.1 Interpolation

The proposed system learns to map points in the latent space to the generated waveforms. The

structure of the latent space can be explored by interpolating between two known locations. Spherical

interpolation (slerp) (Shoemake, 1985) is the most appropriate way of interpolating the latent space

Z of GAN with a Gaussian prior (White, 2016). Slerp treats the interpolation as a curved path on an

n-dimensional hypersphere, helping to avoid sampling from locations that are highly unlikely given the

prior of the model. Interpolation can also be performed in the intermediate latent space W ; however,

linear interpolation is preferred as the vectors in W are not normalised in any way (Karras et al., 2019).

Figure 5.5 illustrates navigating through the latent space W using linear interpolation to transition

between different kick drums, snares, and cymbals. For each drum class, a linear path consisting of

10 steps is created between two w vectors. The generator is then supplied with each w vector along

the path, resulting in the output of a corresponding waveform. Changes in audio characteristics are

continuous without abrupt variations during traversal of the latent space. Larger steps in the latent

space are perceptually equivalent to smoothly mixing amplitudes between distinct drum sounds whereas

smaller adjustments result in subtle changes in timbral characteristics. Minute adjustments can be made

in any direction within the latent space to fine-tune a waveform or generate slight variations. Subtle

variations in timbre have the potential to produce humanised variation in programmed drum sequences,

thereby providing a more natural sensibility. Furthermore, sampling from improbable points in the w

space can produce distorted and corrupted audio signals, which may present more abstract possibilities

(Broad et al., 2020).

5.4. LATENT SPACE EXPLORATION 103

Figure 5.5: Latent space interpolation for kick, snare, and cymbal drum sounds, respectively. The

figure displays waveform and spectrogram representations of 10 intermediate steps between two points

in the latent space for each drum type.

5.4.2 Layer-wise Control

Generating audio with a specific latent vector w can be fine-tuned through layer-wise edits. This involves

modifying only the w inputs within a selected range of layers, while keeping the other layers unchanged.

This approach allows for more refined control over audio synthesis, particularly in drum sound generation,

as it enables minor adjustments to the sound without altering its main features. For instance, if a certain

sound is identified as desirable in the latent space, the earlier layers of the network can be frozen to

preserve the essential characteristics of the sound, while the later layers can be adjusted to explore finer

details. Combining this approach with the synthesis parameters obtained from dimensionality reduction

(See Section 5.4.4) enhances control precision.

Figure 5.6 illustrates the impact of fixing different layers of the network while interpolating between

two points in the latent space. As the number of fixed layers increases, the preserved characteristics of

the drum become more pronounced. This offers insights into the features governed by distinct network

layers and the interaction between latent space parameters and various network layers. For instance,

step 8 in the last row of Figure 5.6 closely resembles the original generation (step 1) but incorporates

some higher frequency transient content from step 8 in the first row, which corresponds to the second

point in the latent space interpolation. This suggests that the high-frequency content is influenced by

the later layers of the network. By assigning distinct latent vectors to different layers, this approach

enables the generation of hybrid drum samples, seamlessly merging features from diverse sounds. In

a music production context, one could manipulate the latent space to produce a desired sound and

104CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

Figure 5.6: Visualising interpolation between two points in the latent space with varying fixed network

layers. The figure displays four rows, each representing the effect of fixing an increasing number of layers

during the interpolation process. Each row consists of 8 intermediate steps between the two points.

As more layers are fixed, a larger portion of the original generation characteristics is retained in the

generated output.

then automate the latent vectors supplied to the later layers of the generator network, creating dynamic

variations while maintaining the fundamental characteristics. This fusion of distinct attributes results in

unique and tailored samples, allowing for precise fine-tuning and honing in on desired sonic elements.

5.4.3 Arithmetic

Latent vector arithmetic is another technique that allows for control over the generated content

by performing arithmetic operations within the latent space. This approach leverages the semantic

relationships encoded in the latent space, leading to shared transformations across the generated samples.

By adding, subtracting, or combining latent vectors in other ways, it is possible to create new samples

that exhibit desired properties or characteristics. Two latent vectors, which generate two different drum

samples, can be combined and provided to the generator network to create a hybrid of the two sounds.

This technique is similar to the spectral mutation technique described by Zölzer et al. (2002), in which

the magnitude and phase of one or two time-frequency representations are modified and combined to

create a hybrid sound

Figure 5.7 demonstrates the effects of combining w vectors using various arithmetic operations. The first

column displays the original w vectors, while the subsequent columns present the resulting waveforms

obtained by combining the vectors in different ways. The combination of vectors can be controlled by

adjusting scaling factors, for instance, by computing pw1 ˚ 0.3q ` pw2 ˚ 0.7q. This opens up interesting

creative possibilities for producers to explore when designing drum samples, as the latent vector values

can be manipulated during a live coding performance (Collins et al., 2003) or automated within a DAW.

5.4. LATENT SPACE EXPLORATION 105

Figure 5.7: Latent space arithmetic operations applied to kick drums, illustrating the effects of

combining different latent codes w through addition, subtraction, and multiplication

5.4.4 Dimensionality Reduction

Dimensionality reduction is a technique used in machine learning and data analysis to reduce the number

of features or variables in a dataset while retaining as much of the relevant information as possible.

The latent space Z is a distribution of vectors generated from a Gaussian distribution that does not

inherently possess semantic meaning. Conversely, the intermediate space W is obtained by transforming

the vectors from the latent space Z through a non-linear mapping function. This transformation enables

the manipulation of the w vectors to control specific aspects of the generated audio. Dimensionality

reduction techniques can be applied to W to reduce its high dimensionality and extract features that

contribute to the variations in the generated audio. By reducing the dimensionality of W , users can

more effectively explore the generation space and achieve greater control over the synthesised drum

sounds.

Principal Component Analysis

Principal component analysis (PCA) is a well-established technique utilised within the field of data

analysis for dimensionality reduction. PCA identifies a set of orthogonal axes, known as principal

components, that successively capture the maximum variance in the data. The principal components

are akin to new uncorrelated features that are ordered by their contribution to the total variance in the

data. This process allows for the preservation of the most important information contained within the

intermediate latent space W of the style-based generator, while also enhancing controllability for audio

synthesis. PCA is applied within the intermediate latent space W to derive a set of coordinates that

emphasise variation in timbre.

Following Härkönen et al. (2020), principal axes of ppwq are identified with PCA. To this end, N random

vectors are sampled from Z and the corresponding w values are computed using the mapping network

M . PCA can be computed on the w values to obtain a basis V for W . After performing PCA, six

principal components were found to explain 90% of the variance in the intermediate space W . The

principal components can be utilised to control the generator by varying PCA coordinates scaled by

control parameter p such that w1 “ w ` V p. Each pi entry of p is a separate synthesis parameter that

is initialised with zeros until modified by a user.

106CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

(a)

(b) (c)

Figure 5.8: Exploration of the first three principal components (PCs) in the latent space for drum

sound generation. The 3D scatter plot (top left) displays axes representing the direction of each PC.

Drum sounds are generated at points along linear paths traversing the PC space, with paths color-coded

to indicate their respective PCs. The resulting generated audio is visualised in corresponding plots for

kick (a), snare (b), and cymbal (c) samples.

Figure 5.8 demonstrates the effects of manipulating the first three principal components of the w vector

on the characteristics of kick (a), snare (b), and cymbal (c) samples. The original generations, with

unmodified w vectors, occupy the centre and are labelled by a green square. The 3D scatter plot

depicts the direction of each principal component, while the coloured shapes indicate the combination

of directions used to manipulate the drum samples. By modifying the principal components, crucial

aspects of the generation can be adjusted, including the attack, decay, and frequency content, as

demonstrated in the figure. The visualisation reveals how manipulating the principal components can

affect the characteristics of the generated samples, and provides insight into the underlying structure of

the audio sample space.

Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) is a manifold learning

technique for dimensionality reduction. In contrast to PCA, which aims to preserve the pairwise distance

structure among all data samples, other dimensionality reduction methods such as UMAP and t-SNE

(van der Maaten and Hinton, 2008) emphasise the preservation of local distances over global distances.

While PCA produces a linear transformation of the original data that is easier to interpret, UMAP and

5.4. LATENT SPACE EXPLORATION 107

Figure 5.9: UMAP embeddings and waveform generations of drum samples. The top section features

three individual UMAP embeddings for 20000 intermediate latent vectors of kick (left), snare (centre),

and cymbal (right) drum samples. Black crosses within the embeddings mark the points used for

generating the corresponding sounds, which are displayed as waveform generations in the lower section.

t-SNE are capable of generating low-dimensional representations of data that better capture non-linear

relationships. UMAP has the added advantage of being faster computationally than t-SNE and is

capable of preserving the distance between points that are far in the embedding space. Additionally,

UMAP supports inverse transformations, in which high-dimensional data can be approximated given a

location in the low-dimensional embedding space.

UMAP estimates a manifold by constructing a fuzzy topological representation of the high-dimensional

data, which is then optimised to produce a low-dimensional embedding that preserves both the local and

global structure of the data (McInnes et al., 2018). UMAP has several hyperparameters that impact

the resulting embedding, including the dimensionality of the low-dimensional embedding space, the size

of the neighbourhood used to estimate the manifold structure of the data, and the minimum distance

apart that points are allowed to be. To demonstrate how UMAP can be used to control drum sample

generation, a two-dimensional manifold mapping with 5 neighbours and a minimum distance of 0.2

is created from 20000 64-dimensional w vectors for individual classes kick, snare, and cymbal. The

hyperparameters were determined through a series of preliminary experiments, resulting in a uniform

and comprehensible space for navigation.

Figure 5.9 presents the resulting two-dimensional UMAP embeddnigs for each class of drum samples.

By applying the inverse UMAP transform, higher-dimensional w vectors can be derived from the two-

dimensional space, facilitating the generation of new drum samples. The black crosses in the figure

highlight positions within the embedding space from which samples were generated. The lower portion of

the figure provides examples of drum samples produced from these specific locations in the embeddings.

108CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

Input OutputPredicted latent code

Figure 5.10: Overview of encoding an input into the latent space and regenerating a drum sample.

The examples demonstrate that the UMAP embeddings organise different drum generations according to

their timbral characteristics in a coherent way. For instance, in the kick drum space, moving downwards

along the y-axis produces kick drums with a longer decay, while moving along the x-axis affects the

initial transients, with the right side having more detailed and prominent transients. Similar observations

can be made for other types of drums as well, for example, the cymbal embedding effectively distributes

different types of cymbals (e.g., hi-hats and crash cymbals).

5.4.5 Embedding Existing Audio into the Latent Space

Music producers often employ various techniques (e.g., layering, pitch-shifting, and time-stretching) to

create variations of existing drum recordings (Section 2.2.3). To allow for the manipulation of existing

audio material using the proposed system, a separate encoder is trained to embed a given waveform

into the intermediate latent space of the pre-trained generator. By estimating the latent vector w for an

existing sound, the input can be reconstructed by the generator model and variations can be made by

modifying w using any of the aforementioned exploration techniques (i.e., interpolation, varying principal

coordinates, and layer-wise editing).

Following recent advances in the image domain (Xia et al., 2023), an encoder network E is trained

separately to embed a given waveform into the intermediate latent space of the pre-trained generator.

Figure 5.10 illustrates encoding audio input and regenerating an output given the predicted latent

vector. The predicted latent vectors are fed into the generator to synthesise drum sounds with similar

characteristics to the input waveform. E replicates the architecture of the discriminator network

D; however, the model is unconditional and its final dense layer has been modified to match the

dimensionality of w, which has a size of dw “ 100. Using a dataset complied of 10000 drum sounds

generated with pre-trained network G, E is trained to minimise the mean square error (MSE) between

the ground truth latent vectors w and the predicted latent vectors ŵ, as expressed by the following

formula:

LE “ MSEpw, ŵq “ ||w ´ ŵ||22. (5.5)

A train–validation–test split of 80%{10%{10% is applied to the generated dataset and early stopping is

performed on the validation set. E is achieves 87% accuracy on the test set.

Figure 5.11 presents examples of beat-box (i.e., vocal percussion) drum sounds and their reconstruction

using the proposed method. While the reconstructions may not be perfect, they share key characteristics

with their counterparts, such as the amplitude envelope shape and frequency content. This approach

enables synthesis control by using sounds as input, even for timbres not encountered during training.

5.5. ADDITIONAL EXPERIMENTS 109

Figure 5.11: Beatbox drum sounds regenerated using the encoder and generator. Top row shows kick

drum sounds, middle row shows snare drum sounds, and bottom row shows cymbal sounds. For each

drum type, the input sound is mapped into the latent space using the encoder and then regenerated

using the generator to create the output sound.

The encoder identifies generations in the latent space that exhibit shared characteristics with the input

sounds, effectively creating a form of tone transfer. The proposed functionality has been evaluated by

Nistal et al. (2022) and subsequently integrated into the DrumGAN VST.2 This feature can provide

music producers with greater flexibility and creativity in generating unique timbres by manipulating

synthesis with input audio.

5.5 Additional Experiments

Building upon the evaluation in Section 5.3, which demonstrated that the system performs well when

conditioned on distinct drum classes, this section outlines a series of supplementary experiments involving

the use of different conditioning techniques within the proposed system. These additional experiments

aim to further showcase the versatility and potential for customisation of the system. These conditioning

approaches enable the system to learn additional features from the input data, resulting in synthesised

sounds that are better aligned with the intended attributes. Specifically, the experiments focus on

the effects of conditioning on the positions of 1
16 -note segments, enabling the generation of one-bar

drum loops (Section 5.5.1), and multimodal recording parameters, allowing for the generation of snare

2https://www.steinberg.net/vst-instruments/backbone

https://www.steinberg.net/vst-instruments/backbone

110CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

G

D

original breakbeats augmented segments

quantisation

segmentation

augmentation

generated segments
latent vector

and
condition

Wasserstein
distance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.12: Overview of drum loop generation system.

drum sounds with targeted characteristics (Section 5.5.2). Furthermore, a prototype graphical user

interface is presented, which integrates all the synthesis techniques outlined previously in this chapter.

The outputs of these experiments provide valuable insights into the capabilities and limitations of the

proposed system, and highlight potential directions for future research.

5.5.1 Generating Drum Loops

While synthesising one-shot drum samples has its applications, SBEM producers often prefer to work

with longer instances of drum recordings, such as breakbeats (Section 2.1.2). This approach allows

for the preservation of rhythmic properties, which can provide a more natural and cohesive feel in

comparison to manually programmed drum patterns (Section 2.2.3). However, the implementation

of GANs for generating audio waveforms with increased durations faces challenges due to the larger

models and extended training times necessary to produce high-resolution audio. Despite the benefits

of fast parallelised training and inference, the need for increased memory to load the model constrains

the length of audio samples that can be generated. In order to generate longer instances of audio,

such as breakbeats, one possible workaround is to segment the longer loop into smaller sections, each

labelled according to its position, and use these labels as conditioning information for the system. By

conditioning the system in this way, it can generate a sequence of smaller audio segments that can be

concatenated to produce a longer audio sequence, effectively circumventing the memory limitations of

the model.

Figure 5.12 provides an overview of the drum loop generation method. Labels are used to condition

the system on an integer value, which determines the desired 16th-note segment. The first condition

corresponds to the first 1
16 -note segment of each drum loop, the second condition to the second 1

16 -note

segment, continuing in this manner for subsequent segments. Synthesis is controlled by an input latent

vector and condition, enabling continuous exploration and interpolation of the generated waveforms at

different timing positions. To train the system, twenty drum loops created from popular breakbeats,

such as Amen (The Winstons, 1969), Funky Drummer (James Brown, 1970), Think (Lyn Collins 1972),

and Apache (Incredible Bongo Band, 1973), were selected. Each drum loop is reduced to the length of

one bar and quantised in Ableton Live using a 16th-note resolution. The quantised breakbeats were then

sliced into 1
16 -note segments, resulting in an initial 20 examples per condition. To ensure consistent

5.5. ADDITIONAL EXPERIMENTS 111

training, the drum loops are required to be at a uniform tempo. Consequently, a tempo of 161.5 beats

per minute was selected for this purpose. This tempo was chosen based on the sample rate of 44.1kHz,

which results in each 1
16 -note segment consisting of 4096 samples—the nearest power of 2 that aligns

with the symmetric structure of the generator and discriminator networks. To increase the size of the

dataset, the individual drum segments were augmented using common music production techniques for

manipulating breakbeats such as pitch shifting, re-sampling, and distortion (Section 2.2.3.

To generate a drum loop, the system generates a waveform for each of the 16 conditions using the

same latent code for each condition. The system is reminiscent of a drum machine, empowering users

to resequence and substitute audio at various locations. By traversing the latent space, a wide range

of characteristics from different breakbeats can be explored. The interpolation of the latent space

enables smooth transitions in the generated output, where large steps can be used to select different

breakbeats and small steps to make subtle adjustments in timbre or rhythmic pattern. The provided

audio examples for this experiment can be accessed through the corresponding webpage.3 A technique

commonly used by music producers is to alternate between multiple breakbeats over the course of a

composition (Hockman, 2014). The unique feature of this system lies in its ability to facilitate seamless

morphing between multiple breakbeats. This feature can be further leveraged to create mashups of

different breakbeats using different latent codes for each condition. Specifically, the capacity of the

system for resequencing and substituting audio at different locations enables the combination of multiple

breakbeats, thus generating unique, hybrid drum loop variations.

The resulting system can be combined with the breakbeat detection system (Section 4.5), thus creating

a production tool that can synthesise new drum sounds based on breakbeats detected in existing music.

As an example, breakbeats that have been extracted from a collection of funk and jazz recordings

could be utilised as training data for the generative model. To generate drum loops, the system can

be conditioned on labels that indicate the position of the segmented breakbeats. For one-shot drum

generation, an automatic drum transcription system (Southall et al., 2017) could be deployed to label

the segments according to drum type (i.e., kick, snare, and cymbal). This pipeline presents a unique

method for generating drum sounds that are consistent with the characteristics of a specified dataset of

existing music.

5.5.2 Multimodal Conditioning

The proposed GAN architecture can be modified to generate data that exhibits diverse features or

properties by conditioning it on input data labelled with multiple tags, each representing a unique

condition. Given that sufficient labels are available, this approach enables further control over the

generated output through various inputs and allows for the exploration of condition variations through

the latent space. Such control is particularly beneficial for audio synthesis, as it provides more extensive

control over the synthesis process. By incorporating multiple conditions, the generated audio can be

customised to meet specific requirements, resulting in a more refined and adaptable output.

To support multiple conditions, the style-based generator (Section 5.1.1) is modified to accept multiple

inputs. Each input is passed through a dedicated embedding layer, generating an individual encoding for

every condition. The outputs from these layers are subsequently concatenated with the latent vector

z, forming a unified representation that encapsulates both the latent features and condition-specific

3https://jake-drysdale.github.io/research.html

https://jake-drysdale.github.io/research.html

112CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

information. This composite representation is then fed through the mapping network M , yielding an

intermediate latent vector w. This vector serves to control the synthesis process, enabling more refined

and customisable data generation that takes into account the characteristics of multiple conditions.

To achieve this, a comprehensive dataset with multiple labels for each audio instance is required. Cheshire

(2020) curated an extensive acoustic snare drum dataset (SDDS),4 featuring multi-velocity recordings

of ten different snare drums. Each drum was captured with 53 studio microphones, using various

commercial dampening techniques. For this experiment, three recording characteristics are selected

from the SDDS to condition the model: snare type, microphone position, and dampening. The snare

type varies in dimensions, shell and head materials, as well as batter head tuning, reflecting the diverse

construction of snare drums. The microphone position represents multiple placements that emulate

various real-world recording techniques, capturing the nuances of different recording setups. Finally,

the dampening characteristic refers to the dampening product, such as Big Fat Snare Drum, Snare

Weight, Moongel, which are employed to alter the timbre of the snare. Snare batter head dampening is

a common practice when recording drums (Seymour, 2010; D’Virgilio, 2014), which serves to modify

the tonal characteristics of a snare by influencing aspects such as decay time, overtones, and frequency

content.

A prototype graphical user interface (GUI)5 has been developed to exhibit the potential of the system

for generating drum samples with multiple conditions and the aforementioned synthesis techniques

(Section 5.4), as showcased in Figure 5.13. This GUI integrates the CSW-GAN and facilitates interaction

and manipulation of the network to create a wide range of customisable snare drums. The buttons on

the top left facilitate the selection of the snare type condition (e.g., Maple, Premier, Yamaha). Below

those buttons, the dampening condition (e.g., Big Fat Snare, Moon Gel, undampened) can be selected.

Further below, the mixer section allows the amplitude of various microphone positions (e.g., overhead,

top mic, bottom mic) to be manipulated using sliders. This is accomplished by generating five separate

snare drums, each corresponding to one of the five microphone positions, and enabling the amplitude

of each generation to be controlled by individual sliders. The generated outputs are then combined,

and their overall amplitude can be adjusted using the master slider. The bottom set of sliders provides

the ability to explore variations by navigating the latent space using the first five principal components,

which correspond to the most substantial variance. Preliminary listening tests reveal that the first

principal component controls velocity, while the others manage various characteristics related to the

different microphones used during recording.

The system enables the generation of various snare drums by utilising conditions to fix specific char-

acteristics of the snare drum recordings and explore variations by navigating the latent space. This

approach emulates a mixing scenario where recordings from different microphones are present. The

principal components simplify the navigation process by reducing the dimensionality of the latent space

from 100 dimensions to 5 dimensions. These components influence characteristics of the drums that

were not explicitly provided as conditions during training, such as velocity, microphone type, and other

intricate features learned by the network. Although the current implementation conditions the system

based on snare recording parameters available from the dataset, the system could also be adapted

to accommodate other types of information for different applications. For instance, metadata from

online sample libraries like Splice, which include tags related to genre, pitch, and duration, could be

4http://dmtlab.bcu.ac.uk/matthewcheshire/audio/sdds
5https://jake-drysdale.github.io/tools.html

http://dmtlab.bcu.ac.uk/matthewcheshire/audio/sdds
https://jake-drysdale.github.io/tools.html

5.6. CHAPTER SUMMARY 113

Figure 5.13: A prototype GUI for snare drum synthesis. Top left buttons select snare type condition,

while below, the dampening condition can be chosen. The mixer section provides sliders for controlling

amplitudes of various microphone positions. The bottom set of sliders allows for latent space navigation

using the first five principal components.

used as conditioning inputs to cater to distinct needs. In cases where a collection of sounds lack such

metadata, a automatic tagging system, such as the system proposed in Chapter 2, could be employed.

This model could be trained on a large collection where metadata is available, and subsequently used to

automatically label the collection of samples.

5.6 Chapter Summary

This chapter introduced a novel deep learning system developed to generate customisable drum sounds

based on a sample collection. The system demonstrated the ability to seamlessly transition between

generated sounds, thereby enhancing drum sample selection and manipulation. While existing tools for

navigating sample collections have allowed sounds with similar characteristics to be positioned closely

together in a space, the system presented in this chapter enables continuous exploration of intermediate

samples, facilitating the discovery of sounds that possess combined characteristics of neighbouring

samples. Through the implementation of label conditioning, individual layer control, and dimensionality

reduction, the system facilitated efficient navigation of the latent space. The evaluation indicated

that these modifications led to improvements in audio quality, as assessed by widely-used generative

model evaluation metrics. These enhancements provided a more deterministic and adaptable approach

to generating drum sounds while maintaining a high level of precision and versatility. Moreover, an

114CHAPTER 5. DRUM SAMPLE SYNTHESIS WITH GENERATIVE ADVERSARIAL NETWORKS

encoder model was developed to project incoming sounds onto the latent space, enabling synthesis to

be controlled by audio input. Subsequent investigations demonstrated the versatility of the system when

conditioned on various types of information, enabling different applications such as generating drum

loops and adjusting snare drum recording parameters. A prototype graphic user interface was presented,

demonstrating how the model and identified synthesis parameters could be integrated into a plugin

format.

Overall, this chapter has provided insights into the performance of a deep generative model trained

on a dataset that emulates the drum sound collection typically used by SBEM producers. The study

demonstrates that the system can learn and generalise effectively from limited data, which makes it

a promising tool for producers with their own unique sample collections. By substituting the training

data with their personal sample collection, SBEM producers could tailor the system to their own styles

and creative needs. The next chapter will conclude the thesis with a summary of the main findings of

this and the previous chapters. This is followed by recommendations for future work to improve of the

performances of the systems proposed in this thesis.

Chapter 6

Conclusions

Expounded in Chapters 1 and 2, music sampling has radically reshaped the landscape of music creation.

It has brought a new level of versatility to the art of composition, enabling musicians to integrate a

plethora of sounds from a wide variety of sources into their work. This revolutionary approach has

given birth to an unprecedented age of innovation and creativity in the music industry. However, the

modern era of digitised music access and production tools, coupled with extensive sample libraries, has

introduced a fresh set of challenges. The volume and complexity of options available can become a

hindrance, introducing a multitude of tasks that can disrupt the creative process. These complexities

can divert the focus of musicians from pure creativity to the laborious management of digital resources.

The primary focus of this thesis was the application of deep learning techniques to SBEM. The research

introduced novel systems designed to foster a more intuitive and efficient interaction with music samples.

These proposed methodologies were aimed towards enabling producers to more effectively utilise the vast

resources available to them, and alleviating the technical burdens and complexities that have emerged in

the current digital music landscape.

In the rapidly evolving landscape of SBEM production, innovative tools and techniques are invaluable.

Several systems have been developed throughout this thesis to address evolving needs of producers and

enhance their creative workflow. These systems provide practical solutions to common challenges faced

by SBEM producers, ultimately streamlining the sample discovery process. A deep learning system for

analysing music samples through automatic instrumentation role classification (AIRC) was introduced.

The system is capable of automatically identifying the roles of various instruments within a given audio

sample, serving as a valuable tool for organising sample collections, analysing the structure of SBEM, and

identifying material suitable for sampling in existing recordings. By efficiently identifying instrumental

roles associated with audio samples in large collections, the system significantly reduces the time and

effort required for producers to curate and locate the ideal sound materials for their creative endeavors.

Additionally, a deep generative model for synthesising drum samples was developed. By incorporating

several architectural modifications and applying dimensionality reduction techniques to the latent space,

a novel method for interacting with collections of drum samples was established. Furthermore, the

system simplifies the synthesis procedure by harnessing a low-dimensional latent space, resulting in a

more intuitive approach with fewer parameters to manage than conventional synthesisers. Evaluation

results from the proposed systems indicated that the integrated deep learning techniques can effectively

aid in the analysis and generation of electronic music samples. While these systems exhibit substantial

potential, it is important to recognise that there is still scope for improvement and further investigation

115

116 CHAPTER 6. CONCLUSIONS

within the wider realm of music analysis and generation. By continuing research and development in this

area, not only will the capabilities of music analysis and generation systems be expanded, but artists and

producers will be empowered with more advanced and intuitive tools for engaging with their creative

work. In the following sections, a comprehensive summary of the key contents and contributions of the

main chapters in this thesis is provided, along with a discussion of potential avenues for future research.

6.1 Summary

Chapter 4 introduced a novel deep learning system designed for automatic instrumentation role classifica-

tion (AIRC), enabling the identification of samples based on their specific functions within SBEM (e.g.,

bass, chords, drums). The chapter began by presenting the methodology, implementation, and training

details of various deep learning architecture configurations considered for AIRC. As the data used in

AIRC encompassed a range of musical audio types, from tonal melodies to experimental sound effects,

this motivated the exploration of architecture configurations suited for diverse sound classification tasks.

Each configuration employed different front-end filter shapes to learn a representation from spectrograms

and applied various pooling operations to derive the final predictions by summarising the information

learnt by the network. The versatility of the system was demonstrated by conducting three distinct

experiments, each representing a different SBEM production task: AIRC, loop activation transcription

(LAT), and detecting samples in existing recordings.

The first experiment identified the optimal architecture configuration for AIRC. The models were

trained and evaluated using the Freesound loop dataset (FSLD), a large public collection of loops

and corresponding instrumentation role annotations extracted from the Freesound website. A novel

data augmentation technique that incorporated typical music production techniques for mixing loops

was introduced to address the limited coverage of multi-label annotations within the FSLD. The

results from the AIRC evaluation revealed that the optimal configuration for this task was the square

filter convolutional neural network with auto-pooling (SF-CNN-AUTO). This configuration significantly

outperformed the baseline model, demonstrating substantially higher scores in both area under the

receiver operating characteristic curve (ROC-AUC) and area under the precision-recall curve (PR-AUC).

In the second experiment, AIRC was employed to generate high-level summaries of SBEM arrangements by

identifying the different instrumentation roles present throughout a composition. The performance of the

proposed system was compared to previous approaches to loop activation transcription (LAT), a task that

involves predicting the locations in which loops of a particular instrumentation role occur throughout

a piece of music. When trained using the augmentation strategy, the AIRC system demonstrated

competitive performance compared to the previous approaches for LAT, while offering a significantly

faster runtime. A major advantage of the AIRC system is its capability to operate without depending on

loops being precise duplicates, while simultaneously ensuring clear separation between instrumentation

roles. This distinguished it from the previously proposed methods, which necessitate exact repetition of

loops, constraining their adaptability in comparison. In order to demonstrate the ability of the AIRC

system to accurately estimate instrumentation roles in authentic music scenarios, it was evaluated on

a dataset of full-length SBEM compositions with annotated structural roles. The evaluation results

revealed that AIRC is effective in transcribing instrumentation role activations in real-world SBEM

compositions, highlighting the potential for practical applications in music production and analysis of

SBEM compositions.

6.2. CONTRIBUTIONS 117

In the third experiment, a novel approach for the automatic retrieval of samples from existing recordings

was introduced, utilising the proposed AIRC system. The proposed architecture configurations were

evaluated in their ability to identify the location of breakbeats in a dataset of funk, soul, and jazz

recordings. Despite being trained on data sourced from a community-based collection of user-uploaded

loops and samples (FSLD), the models were successfully applied to fully produced music recordings from

various genres and styles. The results demonstrated the potential of the AIRC system for identifying

sample-able material from large collections of existing music.

In Chapter 5, a novel deep learning system for synthesising drum samples was introduced. The system

serves as a method for creating new, highly controllable samples from a collection, offering the ability to

seamlessly morph between generations of these samples. The chapter discussed the implementation

details of a conditional generative adversarial network (GAN) architecture for drum sample synthesis

and the procedures involved in the training process. It also proposed modifications to the generator

network that enhance interactions with the system and evaluated the impact of these components

with perceptually motivated evaluation metrics. The conditional style-based WaveGAN (CSW-GAN)

architecture emerged as the best performing model, demonstrating substantial enhancements in audio

quality. Compared to the baseline model, it achieved improved scores in terms of Inception score (IS)

and Fréchet audio distance (FAD). Furthermore, the chapter explored an analysis of the attributes of

the generated audio, examining potential applications and limitations of the system. Techniques for

engaging with the system and investigating the generation space were proposed, aiming to achieve

more deterministic control over the output. This involved exploring the latent space of the CSW-GAN

through an unsupervised process using a range of dimensionality reduction techniques to identify synthesis

parameters. Moreover, an encoder model was developed to project incoming sounds onto the latent space,

enabling synthesis to be controlled by arbitrary sounds from various sources. Subsequent investigations

demonstrated the versatility of the system when conditioned on various types of information, enabling

different applications such as generating drum loops and adjusting snare drum recording parameters. A

prototype graphic user interface was presented, demonstrating how the model and identified synthesis

parameters could be integrated into a plugin format.

6.2 Contributions

As highlighted in Chapter 2, historical constraints associated with memory, financial resources, and a

limited selection of tools made music production less accessible. Nevertheless, these very limitations

often encouraged producers to refine their skills with specific tools and techniques, thereby fostering

creativity and innovation. In contrast, modern advancements have alleviated many of these constraints,

but the vast array of options can sometimes impede creativity by overwhelming producers with an

abundance of audio material or intricate production techniques. Through a series of experiments,

this thesis demonstrated the development and implementation of novel deep learning tools tailored

specifically for SBEM. By providing efficient and scalable methods, these tools would enable producers

to concentrate on their creative tasks, rather than spending time laboriously organising their collections

to find the desired sounds while in a creative flow.

The first significant contribution of this thesis is the design and optimisation of a deep learning system

capable of analysing the structural role a sample occupies within a SBEM composition through AIRC

(Chapter 4). The system excels in determining the instrumentation roles of electronic music samples,

118 CHAPTER 6. CONCLUSIONS

whether these represent singular roles—such as chords, melody, bass, drums, and sound effects—or

a combination thereof. Evaluation results highlighted the efficacy of the proposed system in labelling

collections of samples, analysing the structure of SBEM, and identifying samples within existing music.

Additionally, a novel data augmentation technique was introduced, utilising SBEM production techniques

to combine samples. This technique enhanced the representation of samples with multiple roles and

demonstrated improved performance when transcribing the activations of loops in the Artificial dataset.

The proposed system presents substantial potential for the automatic labelling of large, unstructured

sample collections. This could prove beneficial for online platforms like Splice or Freesound, which

currently operate based on manual labelling procedures. It is particularly advantageous in the context of

user-created sample collections, given its ability to process samples originating from an assortment of

sources, such as vinyl records and digital recordings. Moreover, such collections may contain a vast

number of audio files that would necessitate considerable human effort to organise manually.

Utilising the AIRC system, the structure of existing recordings can be analysed in the form of an

instrumentation role activation map (IRAM), yielding valuable insights into arrangement and composition,

or identifying sections suitable for sampling. This presents a powerful solution for deconstructing existing

recordings into their constituent elements, including instrumentation roles and their corresponding

locations, with numerous potential applications in music production and performance. The system can

be employed to visualise the fundamental structure of a song, automatically generate tracks using a set

of loops and a reference song, provide visual cues for DJs to anticipate upcoming song events, or support

MIR systems that rely on structural information, such as automatic DJ systems and music mashups.

Additionally, the AIRC system can be used to detect material suitable for sampling in existing music,

offering SBEM producers an effective tool for uncovering unique elements to incorporate into their

own creative work. The system offers an automated approach to crate digging, and could serve as

an invaluable tool for artists to quickly identify potential samples within extensive digital recording

collections. The system could be utilised with an SBEM producer’s personal collection of tracks across

various genres, generating a new sample library from the existing recordings. Furthermore, the thresholds

can be fine-tuned to be more or less stringent, which can be particularly useful for narrowing down

potential candidates in larger collections or increasing the pool of candidates in smaller collections.

The second key contribution of this thesis is the development of a deep generative model for synthesising

drum samples, designed to emulate the data on which it is trained, while simultaneously offering the

capability to discover intermediate samples between existing ones. While methods for organising similar

drum samples based on perceptual audio features already exist, the proposed approach maps a collection

of samples to a compact latent space. This enables the generation of new samples by leveraging

the statistical properties of the training data, offering the ability to seamlessly morph and interpolate

between generations. Evaluation results highlighted the capacity of the proposed model to generate

a diverse range of class-specific drum sounds, and exploration of the latent space revealed that the

system can serve as a music production tool that fosters creative sound experimentation. Through

the application of dimensionality reduction, layer-wise editing, latent space interpolation, and encoding

incoming sounds into the latent space, the ability to generate unique and customisable drum sounds

with a high degree of precision and control is demonstrated. The system can also be conditioned on

various types of descriptive information, enabling numerous applications such as generating drum loops

and adjusting snare drum recording parameters. Additionally, a prototype graphical user interface was

developed, showcasing how interactions with the model through the conditions and derived synthesis

6.3. FUTURE WORK 119

parameters can be seamlessly integrated into an audio plugin. Open-source implementations of the

systems are provided on the accompanying webpages, complete with pre-trained weights, training data,

and command-line interfaces for inference and training the system on new data.12

Although the primary focus of this thesis revolved around SBEM, the modular deep learning framework

can be easily adapted for other tasks related to MIR and audio generation. By supplying alternative

training data and labels, the presented systems can be tailored to accommodate various scenarios and

individual user requirements. The aspiration is that these systems will enrich the growing body of

research dedicated to supporting music production, particularly for producers who skillfully reinterpret

music from the past.

.

6.3 Future Work

The research presented in this thesis has investigated the potential of deep learning to assist in SBEM

production; however, there are still numerous directions to be explored in order to enhance the presented

systems. This section discusses some possible directions for future work.

Efficiency and Sustainability in Deep Learning Systems

Over time, the constraints on memory and computational resources have continuously evolved. In the

past, limitations were primarily imposed by the capacity of hardware samplers. Today, however, the

quality and duration of audio generated by deep learning systems are largely dictated by computing power

and GPU memory. While training with larger amounts of data and models can enhance audio quality

and duration, it also comes with the cost of increased energy consumption and carbon footprint—a

growing concern in the era of deep learning. Therefore, a potential direction for future work could

involve the design of more efficient models that require fewer resources. Such an approach would not

only help in reducing energy consumption but would also make these systems more accessible for devices

with limited computational capacity such as mobile phones and embedded systems, including Eurorack

modules or Raspberry Pi devices.

Training Data

The performance of deep learning systems presented in Chapters 4 and 5 are largely dependent on the

quality and volume of the data used during training. This underscores the importance of careful curation

of training data as one of the most effective strategies to improve future systems. Traditional methods

of data collection and human annotation can often be labour-intensive and time-consuming. Therefore,

an alternative approach could involve leveraging information from readily available online databases,

which often contain a wealth of pre-labelled and categorised data. For instance, Splice offers a vast

library of high-quality audio samples labelled with tags, which could be used to train deep learning

models for sample classification and generation. However, to ethically and legally utilise this data, it is

necessary to acquire the appropriate permissions or licenses. Similarly, WhoSampled offers a unique

resource by cataloging instances of music sampling, complete with timestamps. This detailed database

provides invaluable insights into the use and context of samples within a track. Such information could

be instrumental in enhancing the performance of sample detection systems.

1https://github.com/SoMA-group/style-drumsynth
2https://jake-drysdale.github.io/tools.html

https://github.com/SoMA-group/style-drumsynth
https://jake-drysdale.github.io/tools.html

120 CHAPTER 6. CONCLUSIONS

Data Augmentation

Although the augmentation technique presented in Chapter 4 incorporates features such as key matching

and time-stretching to enhance loop combination, human producers might still have a superior ability to

discern the best loop pairings. Future research could aim to refine this technique to better mimic the

methods producers employ when combining loops. For instance, introducing equalisation and balancing

amplitude levels of combined loops could potentially improve system performance. Furthermore, a model

could be employed to access the compatibility of loops before combining them (Chen et al., 2020).

These enhancements would be particularly advantageous when training models on other datasets that

may lack representations of samples with multiple roles.

Data augmentation could further enhance the systems presented in Chapter 5, particularly when training

on the personal drum sample collection of a music producer, which might be insufficient in size. Training

GANs with limited data often results in discriminator overfitting, leading to training divergence. Karras

et al. (2020a) proposed an adaptive discriminator augmentation mechanism that markedly stabilises

training under data-limited conditions for images. This technique holds the potential to be adapted for

audio data, facilitating training even on limited datasets.

Transfer Learning

Another compelling direction for future research involves exploring the potential of transfer learning. This

approach involves applying the knowledge acquired from solving one task to a related task. While deep

generative models typically require large volumes of data for effective training, transfer learning could

provide an avenue for models to be fine-tuned using smaller datasets. This method can save significant

computational resources and time, making it an efficient strategy for improving the performance of these

systems. This approach could enable a balance between the quality of the audio generations and the

aesthetic preferences of the user. For instance, if a producer has a specific style or genre they prefer, the

system presented in Chapter 5 could be fine-tuned using a subset of data that aligns with this preference.

This way, the output of the model would be more likely to match the unique style of producer, leading

to a more personalised user experience.

Improved Control and Creative Interactions

In Chapter 5, the deep generative model demonstrated high performance when conditioned on a variety

of drum types. The additional experiments implemented new strategies, such as position-based drum

segment conditioning and multimodal snare generation under multiple conditions. Given appropriate

labelled data, the conditioning possibilities for the system are endless. Future research could explore

conditioning strategies based on specific drum types, such as tom-toms, claps, ride cymbals, and bongos;

MIDI information like drum patterns and velocity; or variations in recording techniques, including

microphone positioning, drum tuning, and room reverberation. Furthermore, exploring methods to

dissociate and manipulate the underlying factors of data variation (i.e., latent space disentanglement)

would be worthwhile. When combined with conditioning, this could empower users to maintain certain

characteristics while continuously exploring other factors of variation.

Another promising avenue for exploration involves developing methods that allow generative models to

yield novel and creative outputs that diverge from their training data. Broad et al. (2021a) describe

several techniques for active divergence in the image domain, which could potentially be adapted for

audio data. These approaches could significantly expand the possibilities for creative manipulation of

samples, a crucial aspect in genres such as hardcore, jungle, and drum and bass.

6.4. FINAL THOUGHTS 121

Improved Evaluation Metrics for DGMs

Evaluating generative models remains a complex issue, particularly for GANs, which lack paired inputs

and outputs and require reference-free metrics. The evaluation metrics used in Chapter 5, such as the

inception score and Frechét audio distance, are currently standard in the field. However, these only

provide a general overview of system performance. Future work could focus on developing new metrics

that assess more specific audio characteristics in different DGM-based systems, such as timbre, pitch,

and amplitude envelopes. Moreover, the development of metrics to assess continuity within the latent

space could prove beneficial, facilitating the monitoring of smoothness and disentanglement therein.

While such a metric has been established in the image domain (Karras et al., 2021), adapting it for

audio information would necessitate significant modifications.

User Studies

The evaluations conducted in Chapters 4 and 5 have yielded important insights into both the capabilities

and limitations of the proposed deep learning systems within the scope of SBEM production. These

insights serve as a foundation for the further development and refinement of these systems. For future

work, it would be beneficial to explore methodologies for conducting user studies. Such studies could

concentrate on discerning how users interact with the deep learning systems, pinpointing any challenges

or obstacles they encounter, and collecting feedback on their overall experience. The insights gleaned

from such studies could then be used to refine the systems and better integrate them into user workflows.

By tailoring the deep learning systems to align more closely with the needs and preferences of users, it is

anticipated that user interactions and overall effectiveness could be significantly enhanced.

Audio Plug-ins

Another direction for future work is to embed the system presented in Chapter 5 into an audio plug-in

format (e.g., a virtual studio instrument) that can be utilised within a DAW. A prototype GUI was

presented to demonstrate how the proposed approaches of interacting with the system could be integrated

into an audio plug-in; however, future work could evaluate different interfaces with established SBEM

producers to inform and improve the breadth of the design goals. Furthermore, the experimental dataset

used for training could be replaced with the personal sample collections of SBEM producers and custom

tags could be defined for conditioning.

6.4 Final Thoughts

This project originated from my personal curiosity to explore innovative methods for automating and

enhancing labor-intensive and monotonous processes encountered when creating music with samples.

From my own experience, producing electronic music and working with samples is often an improvised

process. Very rarely do I have an exact idea in our mind of what I want to create; usually, it’s just

a feeling or a source of inspiration (e.g., other music, a film, a life event), a set of tools, and a drive

to experiment with sound. With the multitude of music production techniques, composition methods,

sample libraries, and other musical resources available online, creating high-quality, original music can

be challenging. Through the continued development of new tools, I envision alleviating the technical

burden and automating laborious tasks, making the process of producing electronic music more intuitive

and allowing producers to improvise with greater ease.

122 CHAPTER 6. CONCLUSIONS

Machine learning algorithms are often designed and trained to flawlessly accomplish a specific task.

However, one of the distinct aspects of music is that there is no definitive right answer, leaving it up to

the producer to determine what resonates with their creative vision. While there may not be a single

correct approach, producers often adhere to certain rules or workflows that align with the genre or style

they are expressing themselves through. These established conventions provide a sense of familiarity and

consistency, which can be particularly appealing to listeners, especially those on the dance floor who

seek to connect with the music in a visceral way. Balancing the desire for innovation with the need for

familiarity is an ongoing challenge for music producers, as they strive to create works that resonate with

audiences. By leveraging machine learning techniques that can analyse and understand these intricate

patterns and structures, producers may be better equipped to navigate this delicate balance and create

compositions that are both engaging and innovative.

Despite speculations about AI potentially dominating a large portion of the creative industry, I hope it

will instead expand the scope of creative possibilities and establish unprecedented avenues for musical

expression. Consequently, the process of music production may undergo a significant transformation,

leading us to encounter ways of creating music that were once thought inconceivable. Owing to the vast

array of passionate and skilled musicians and producers, the limits of creative potential will persistently

be challenged and expanded. As technology and AI increasingly intertwine with the music production

process, artists will gain a greater capacity to push the boundaries of their craft, ushering in continued

growth and evolution in the music domain. Much like the revolutionary impact of digital sampling

capabilities on music creation, AI and deep learning could similarly redefine the methods of crafting and

consuming music. My hope is that this work will inspire future contributions, fostering an enhanced

understanding of music and offering greater creative control in music production.

Bibliography

Abdoli, S., Cardinal, P. and Koerich, A. L. (2019), End-to-End Environmental Sound Classification

Using a 1D Convolutional Neural Network, in Expert Systems with Applications, 136(1), pp. 252–63.

(cit. on p. 45.)

Ableton (2012), DJ Olive: The Audio Janitor Takes Live Dubwise, Accessed 3 January 2023, https:

//www.ableton.com/en/pages/artists/dj_olive. (cit. on p. 83.)

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B. and Vijayanarasimhan,

S. (2016), YouTube-8M: A Large-Scale Video Classification Benchmark, in CoRR abs/2006.00751.

(cit. on p. 98.)

Ahmed, A., Benford, S. and Crabtree, A. (2012), Digging in the Crates: An Ethnographic Study of DJs’

Work, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin,

Texas, USA, pp. 1805–14. (cit. on pp. 18 and 19.)

Akata, Z., Perronnin, F., Harchaoui, Z. and Schmid, C. (2015), Label-embedding for Image Classification,

in IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7), pp. 1425–38. (cit. on p.

63.)

Alain, G., Chevalier-Boisvert, M., Osterrath, F. and Piche-Taillefer, R. (2020), DeepDrummer: Generating

Drum Loops using Deep Learning and a Human in the Loop, in Proceedings of the Joint Conference

on AI Music Creativity, pp. 81–91. (cit. on p. 17.)

Aljanaki, A., Soleymani, M., Wiering, F., Veltkamp, R., Larson, M., Ionescu, B., Anguera, X. et al. (2014),

A Multimodal Approach to Drop Detection in Electronic Dance Music, in MediaEval Multimedia

Benchmark Workshop, Barcelona, Spain. (cit. on p. 33.)

Andersen, K. and Knees, P. (2016), Conversations with Expert Users in Music Retrieval and Research

Challenges for Creative MIR, in Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), New York City, USA, pp. 122–28. (cit. on pp. 3, 4, 9, 19, 20, and 34.)

Andreas, J., Eric, H., Nicola, M., Rachel, B., Aparna, K. and Tillman, W. (2017), Singing Voice

Separation with Deep U-net Convolutional Networks, in Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), pp. 23–27. (cit. on p. 36.)

Aouameur, C., Esling, P. and Hadjeres, G. (2019), Neural Drum Machine: An Interactive System for

Real-time Synthesis of Drum Sounds, in Proceedings of the International Conference on Computational

Creativity (ICCC), Charlotte, USA, pp. 92–9. (cit. on pp. 38 and 89.)

Arewa, O. (2005), From JC Bach to Hip hop: Musical Borrowing, Copyright and Cultural Context, in

North Carolina Law Review, 84(1), p. 547. (cit. on p. 10.)

123

https://www.ableton.com/en/pages/artists/dj_olive
https://www.ableton.com/en/pages/artists/dj_olive

124 BIBLIOGRAPHY

Arık, S. Ö., Jun, H. and Diamos, G. (2018), Fast Spectrogram Inversion using Multi-head Convolutional

Neural Networks, in IEEE Signal Processing Letters, 26(1), pp. 94–8. (cit. on p. 90.)

Arjovsky, M. and Bottou, L. (2017), Towards Principled Methods for Training Generative Adversarial

Networks, in Proceedings of the International Conference on Learning Representations (ICLR), Toulon,

France. (cit. on p. 61.)

Arjovsky, M., Chintala, S. and Bottou, L. (2017), Wasserstein GAN, in Proceedings of the International

Conference on Machine Learning (ICML), Sydney, Australia, pp. 214–23. (cit. on pp. 38, 61, and 62.)

Bakator, M. and Radosav, D. (2018), Deep Learning and Medical Diagnosis: A Review of Literature, in

Multimodal Technologies and Interaction, 2(3), pp. 1–12. (cit. on p. 41.)

Barratt, S. T. and Sharma, R. (2018), A Note on the Inception Score, in Corr, volume CoRR:

abs/1801.01973. (cit. on p. 97.)

Bartlett, B. and Bartlett, J. (2009), Practical Recording Techniques: The Step-by-Step Approach to

Professional Audio Recording, Focal Press, Waltham, USA. (cit. on pp. 15, 25, and 27.)

Benetos, E., Dixon, S., Duan, Z. and Ewert, S. (2018), Automatic Music Transcription: An Overview,

in IEEE Signal Processing Magazine, 36(1), pp. 20–30. (cit. on pp. 3 and 42.)

Bengio, Y., Courville, A. and Vincent, P. (2013), Representation Learning: A Review and New Perspec-

tives, in IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), pp. 1798–828. (cit.

on p. 64.)

Bengio, Y., Ducharme, R. and Vincent, P. (2001), A Neural Probabilistic Language Model, in Advances

in Neural Information Processing Systems, 13(1), pp. 932–38. (cit. on pp. 37 and 57.)

Bernardo, G. and Bernardes, G. (2021), Leveraging Compatibility and Diversity in Computational Music

Mashup Creation, in Proceedings of the International Audio Mostly Conference, Trento, Italy, p.

248–55. (cit. on p. 36.)

Berns, S. and Colton, S. (2020), Bridging Generative Deep Learning and Computational Creativity, in

Proceedings of the International Conference on Computational Creativity (ICCC), Coimbra, Portugal,

pp. 406–9. (cit. on p. 65.)

Bertin-Mahieux, T., Ellis, D. P., Whitman, B. and Lamere, P. (2011), The Million Song Dataset, in

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Miami,

USA, pp. 591–96. (cit. on p. 32.)

Bilbao, S., Desvages, C., Ducceschi, M., Hamilton, B., Harrison-Harsley, R., Torin, A. and Webb, C.

(2019), Physical Modeling, Algorithms, and Sound Synthesis: The NESS Project, in Computer Music

Journal, 43(3), pp. 15–30. (cit. on p. 29.)

Bilbao, S. and Webb, C. J. (2013), Physical Modeling of Timpani Drums in 3D on GPGPUs, in Journal

of the Audio Engineering Society (JAES), 61(10), pp. 737–48. (cit. on p. 29.)

Bitton, A., Esling, P., Caillon, A. and Fouilleul, M. (2019), Assisted Sound Sample Generation with

Musical Conditioning in Adversarial Auto-Encoders, in Proceedings of the International Conference on

Digital Audio Effects (DAFX), Birmingham, UK. (cit. on pp. 64 and 65.)

BIBLIOGRAPHY 125

Böck, S., Krebs, F. and Widmer, G. (2016), Joint Beat and Downbeat Tracking with Recurrent Neural

Networks, in Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), New York City, USA, pp. 255–61. (cit. on p. 85.)

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon, J.,

Zapata, J. and Serra, X. (2013), Essentia: An Open-Source Library for Sound and Music Analysis, in

Proceedings of the ACM International Conference on Multimedia, Barcelona, Spain, p. 855–58. (cit.

on p. 34.)

Bogdanov, D., Won, M., Tovstogan, P., Porter, A. and Serra, X. (2019), The MTG-Jamendo Dataset

for Automatic Music Tagging, in International Conference on Machine Learning ICLM, Long Beach,

USA. (cit. on p. 32.)

Brandes, L. F. (2007), From Mozart to Hip-Hop: The Impact of Bridgeport v. Dimension Films on

Musical Creativity, in UCLA Entertainment Law Review, 14(1), pp. 93–128. (cit. on p. 10.)

Breiman, L. (2001), Random Forests, in Machine Learning, 45(1), pp. 5–32. (cit. on p. 34.)

Bristow-Johnson, R. (1996), Wavetable Synthesis 101, A Fundamental Perspective, in Audio Engineering

Society (AES) Convention, Los Angeles, USA. (cit. on p. 16.)

Broad, T., Berns, S., Colton, S. and Grierson, M. (2021a), Active Divergence with Generative Deep

Learning-A Survey and Taxonomy, in Proceedings of the International Conference on Computational

Creativity (ICCC), Mexico City, Mexico, pp. 227–36. (cit. on pp. 65 and 120.)

Broad, T. and Grierson, M. (2021), Searching for an (Un)stable Equilibrium: Experiments in Training

Generative Models without Data, in Proceedings of the Machine Learning for Creativity and Design

Workshop at the Conference on Neural Information Processing Systems (NIPS), Vancouver, Canada.

(cit. on p. 66.)

Broad, T., Leymarie, F. F. and Grierson, M. (2020), Amplifying The Uncanny, in Proceedings of the

Conference on Computation, Communication, Aesthetics and X (xCoAx), Graz, Austria, pp. 33–44.

(cit. on pp. 66 and 102.)

Broad, T., Leymarie, F. F. and Grierson, M. (2021b), Network Bending: Expressive Manipulation of

Deep Generative Models, in Proceedings of the International Conference on Artificial Intelligence in

Music, Sound, Art and Design (Evo-MUSART), pp. 20–36. (cit. on p. 66.)

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,

Sastry, G., Askell, A. et al. (2020), Language Models are Few-shot Learners, in Advances in Neural

Information Processing Systems (NIPS), 33(1), pp. 1877–901. (cit. on p. 2.)

Bruford, F., Barthet, M., McDonald, S. and Sandler, M. B. (2019), Groove Explorer: An Intelligent

Visual Interface for Drum Loop Library Navigation, in Joint Proceedings of the ACM IUI Workshops

co-located with the ACM Conference on Intelligent User Interfaces, Los Angeles, USA. (cit. on p.

35.)

Burkholder, J. P. (1994), The Uses of Existing Music: Musical Borrowings as a Field, in Notes, the

Quarterly Journal of the Music Library Association, 50(3), pp. 851–70. (cit. on pp. 4 and 10.)

Butler, D. (2014), ‘Way out-of This World!’ Delia Derbyshire, Doctor Who and the British Public’s

Awareness of Electronic Music in the 1960s, in Critical Studies in Television, 9(1), pp. 62–76. (cit.

on p. 1.)

126 BIBLIOGRAPHY

Butler, M. J. (2006), Unlocking the Groove: Rhythm, Meter, and Musical Design in Electronic Dance

Music, Indiana University Press, Bloomington, USA. (cit. on pp. 23 and 24.)

Carr, C. and Zukowski, Z. (2018), Generating Albums with SamplerNN to Imitate Metal, Rock, and

Punk Bands, in CoRR abs/1811.06633. (cit. on p. 42.)

Casey, M. and Slaney, M. (2006a), The Importance of Sequences in Musical Similarity, in Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toulouse,

France, pp. 5–8. (cit. on p. 35.)

Casey, M. and Slaney, M. (2007), Fast Recognition of Remixed Music Audio, in Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Honolulu, Hawaii,

pp. 1425–8. (cit. on p. 34.)

Casey, M. A. and Slaney, M. (2006b), Song Intersection by Approximate Nearest Neighbor Search, in

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Victoria,

Canada, pp. 144–9. (cit. on p. 34.)

Chai, J., Zeng, H., Li, A. and Ngai, E. W. (2021), Deep Learning in Computer Vision: A Critical Review

of Emerging Techniques and Application Scenarios, in Machine Learning with Applications (MLWA),

6(1), pp. 1–13. (cit. on p. 2.)

Chandna, P., Ramires, A., Serra, X. and Gómez, E. (2021), LoopNet: Musical Loop Synthesis Conditioned

on Intuitive Musical Parameters, in Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Toronto, Canada, pp. 3395–99. (cit. on p. 17.)

Chang, V. (2009), Records That Play: The Present Past in Sampling Practice, in Popular Music, 28(2),

pp. 143–59. (cit. on pp. 3 and 11.)

Charnas, D. (2022), Dilla Time: The Life and Afterlife of J Dilla, the Hip-hop Producer Who Reinvented

Rhythm, Swift Press, London, UK. (cit. on p. 11.)

Chen, B.-Y., Smith, J. B. and Yang, Y.-H. (2020), Neural Loop Combiner: Neural Network Models for

Assessing the Compatibility of Loops, in Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), Montréal, Canada, pp. 424–31. (cit. on pp. 36 and 120.)

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. and Abbeel, P. (2016), InfoGAN:

Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, in

Proceedings of the Neural Information Processing Systems (NIPS), Barcelona, Spain, p. 2180–88.

(cit. on p. 64.)

Cheshire, M. (2020), Snare Drum Data Set (SDDS): More Snare Drums Than You Can Shake a Stick

At, in Audio Engineering Society (AES) Convention. (cit. on p. 112.)

Ching, J., Ramires, A. and Yang, Y. (2020), Instrument Role Classification: Auto-tagging for Loop

Based Music, in Proceedings of the Joint Conference on AI Music Creativity, Stockholm, Sweden, pp.

196–202. (cit. on pp. 32, 70, 72, and 74.)

Choi, K., Fazekas, G. and Sandler, M. (2016), Automatic Tagging Using Deep Convolutional Neural

Networks, in Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), New York City, USA, pp. 805–11. (cit. on p. 31.)

BIBLIOGRAPHY 127

Choi, K., Fazekas, G., Sandler, M. and Cho, K. (2017), Convolutional Recurrent Neural Networks for

Music Classification, in Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), New Orleans, USA, pp. 2392–96. (cit. on p. 31.)

Chowning, J. M. (1973), The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,

in Journal of the Audio Engineering Society (JAES), 21(7), pp. 526–34. (cit. on p. 29.)

Clevert, D., Unterthiner, T. and Hochreiter, S. (2016), Fast and Accurate Deep Network Learning

by Exponential Linear Units (ELUs), in Proceedings of the International Conference on Learning

Representations (ICLR), San Juan, Puerto Rico, pp. 1–14. (cit. on p. 72.)

Cocharro, D., Sioros, G., Caetano, M. F. and Davies, M. E. P. (2014), Real-time Manipulation of

Syncopation in Audio Loops, in Joint Proceedings of the International Computer Music Conference

(ICMC) and the Sound and Music Computing Conference (SMC), Athens, Greece, pp. 536–41. (cit.

on p. 17.)

Coleman, G. (2007), Mused: Navigating the Personal Sample Library, in Proceedings of the International

Computer Music Conference (ICMC), Copenhagen, Denmark, pp. 324–7. (cit. on p. 35.)

Collins, M. (2014), In the Box Music Production: Advanced Tools and Techniques for Pro Tools, CRC

Press, Boca Ranton, USA. (cit. on p. 17.)

Collins, N. (2001a), Algorithmic Composition Methods for Breakbeat Science, in Proceedings of Music

Without Walls, Leicester, UK, pp. 21–3. (cit. on p. 13.)

Collins, N. (2001b), Further Automatic Breakbeat Cutting Methods, in Proceedings of the Generative

Art Conference, Milan, Italy. (cit. on p. 13.)

Collins, N. (2002), Interactive Evolution of Breakbeat Cut Sequences, in Proceedings of Cybersonica,

Institute of Contemporary Arts, London, UK. (cit. on p. 13.)

Collins, N. (2012), Influence in Early Electronic Dance Music: An Audio Content Analysis Investigation,

in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Porto,

Portugal, pp. 1–6. (cit. on p. 30.)

Collins, N., McLean, A., Rohrhuber, J. and Ward, A. (2003), Live Coding in Laptop Performance, in

Organised Sound, 8(3), pp. 321–30. (cit. on p. 104.)

Collins, N., Ruzicka, V. and Grierson, M. (2020), Remixing AIs: Mind Swaps, Hybrainity, and Splicing

Musical Models, in Proceedings of the Joint Conference on AI Music Creativity. (cit. on p. 66.)

Davies, H. (1996), A History of Sampling, in Organised Sound, 1(1), pp. 3–11. (cit. on p. 11.)

Davies, M. E. P., Hamel, P., Yoshii, K. and Goto, M. (2014), AutoMashUpper: Automatic Creation of

Multi-song Music Mashups, in , 22(12), pp. 1726–37. (cit. on pp. 33, 36, and 69.)

Davis, J. and Goadrich, M. (2006), The Relationship Between Precision-Recall and ROC Curves, in

Proceedings of the International Conference on Machine Learning (ICML), Pittsburgh, Pennsylvania,

pp. 233–40. (cit. on p. 74.)

De Castro, L. N. and Timmis, J. (2002), An Artificial Immune Network for Multimodal Function

Optimization, in Proceedings of the Congress on Evolutionary Computation (CEC), 1(1), Honolulu,

USA, pp. 699–704. (cit. on p. 36.)

128 BIBLIOGRAPHY

Delgado, A., Saitis, C., Benetos, E. and Sandler, M. (2022), Deep Conditional Representation Learning

for Drum Sample Retrieval by Vocalisation, in CoRR abs/2204.04651. (cit. on p. 34.)

Devlin, J., Chang, M., Lee, K. and Toutanova, K. (2019), BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding, in Proceedings of the Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, (NAACL-

HLT), Minneapolis, USA, pp. 4171–86. (cit. on pp. 2 and 31.)

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A. and Sutskever, I. (2020), Jukebox: A

Generative Model for Music, in CoRR abs/2005.00341. (cit. on pp. 3 and 42.)

Dieleman, S. and Schrauwen, B. (2014), End-to-end Learning for Music Audio, in Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy,

pp. 6964–8. (cit. on pp. 31 and 45.)

Dittmar, C., Hildebrand, K. F., Gärtner, D., Winges, M., Müller, F. and Aichroth, P. (2012), Audio

Forensics Meets Music Information Retrieval—A Toolbox for Inspection of Music Plagiarism, in

Proceedings of the European Signal Processing Conference (EUSIPCO), Bucharest, Romania, pp.

1249–53. (cit. on p. 34.)

Dittmar, C. and Müller, M. (2016), Reverse Engineering the Amen Break—Score-informed Separation

and Restoration Applied to Drum Recordings, in IEEE/ACM Transactions on Audio, Speech, and

Language Processing (TASLP), 24(9), pp. 1535–47. (cit. on p. 14.)

Donahue, C., McAuley, J. J. and Puckette, M. S. (2019), Adversarial Audio Synthesis, in Proceedings

of the International Conference on Learning Representations (ICLR), New Orleans, USA. (cit. on pp.

38, 90, 92, 93, 95, 96, and 97.)

Drysdale, J., Ramires, A., Serra, X. and Hockman, J. (2022), Improved Automatic Instrumentation Role

Classification and Loop Activation Transcription, in Proceedings of the International Conference on

Digital Audio Effects (DAFX), Vienna, Austria, pp. 264–71. (cit. on p. 70.)

Drysdale, J., Tomczak, M. and Hockman, J. (2020), Adversarial Synthesis of Drum Sounds, in

Proceedings of the International Conference on Digital Audio Effects (DAFX), Vienna, Austria, pp.

167–72. (cit. on p. 92.)

Drysdale, J., Tomczak, M. and Hockman, J. (2021), Style-based Drum Synthesis with GAN Inversion,

in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR). (cit.

on p. 92.)

Duchi, J., Hazan, E. and Singer, Y. (2011), Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization, in Journal of Machine Learning Research (JMLR), 12(61), pp. 2121–59.

(cit. on p. 49.)

Dupont, S., Dubuisson, T., Urbain, J., Sebbe, R., d’Alessandro, N. and Frisson, C. (2009), Audiocycle:

Browsing Musical Loop Libraries, in International Workshop on Content-Based Multimedia Indexing

(CBMI), Chania, Crete, pp. 73–80. (cit. on p. 35.)

D’Virgilio, N. (2014), How to Control Drum Sustain with Dampening, Accessed 12 March 2021, https:

//www.sweetwater.com/insync/how-to-control-drum-sustain-with-dampening. (cit. on p.

112.)

https://www.sweetwater.com/insync/how-to-control-drum-sustain-with-dampening
https://www.sweetwater.com/insync/how-to-control-drum-sustain-with-dampening

BIBLIOGRAPHY 129

Emmerson, S. (2018), The Routledge Research Companion to Electronic Music: Reaching Out with

Technology, Routledge, Abingdon, UK. (cit. on p. 10.)

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C. and Roberts, A. (2019), GANSynth:

Adversarial Neural Audio Synthesis, in Proceedings of the International Conference on Learning

Representations (ICLR), New Orleans, Louisiana, USA. (cit. on pp. 3, 37, 38, 42, 90, and 96.)

Engel, J., Hantrakul, L. H., Gu, C. and Roberts, A. (2020), DDSP: Differentiable Digital Signal

Processing, in Proceedings of the International Conference on Learning Representations (ICLR), Addis

Ababa, Ethiopia. (cit. on p. 37.)

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D. and Simonyan, K. (2017), Neural

Audio Synthesis of Musical Notes with WaveNet Autoencoders, in Proceedings of the International

Conference on Machine Learning (ICML), pp. 1068–77. (cit. on pp. 5, 37, and 42.)

Engeln, L., Le, N. L., McGinity, M. and Groh, R. (2021), Similarity Analysis of Visual Sketch-Based

Search for Sounds, in Proceedings of the International Audio Mostly Conference, Trento, Italy, p.

101–8. (cit. on p. 35.)

Esling, P., Chemla-Romeu-Santos, A. and Bitton, A. (2018a), Bridging Audio Analysis, Perception and

Synthesis with Perceptually-regularized Variational Timbre Spaces, in Proceedings of the International

Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 175–81. (cit. on pp.

37, 42, and 65.)

Esling, P., Chemla-Romeu-Santos, A. and Bitton, A. (2018b), Generative Timbre Spaces: Regularizing

Variational Auto-encoders with Perceptual Metrics, in Proceedings of the International Conference on

Digital Audio Effects (DAFX), Aveiro, Portugal, pp. 369–76. (cit. on p. 65.)

Ewoodzie Jr, J. C. (2017), Break Beats in the Bronx: Rediscovering Hip-hop’s Early Years, UNC Press

Books. (cit. on p. 2.)

FitzGerald, D., Cranitch, M. and Coyle, E. (2006), Sound Source Separation Using Shifted Non-Negative

Tensor Factorisation, in Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Toulouse, France, pp. 653–6. (cit. on p. 33.)

Fletcher, N. H. and Rossing, T. D. (1998), The Physics of Musical Instruments, Springer, New York,

USA. (cit. on p. 26.)

Font, F., Roma, G. and Serra, X. (2013), Freesound Technical Demo, in ACM International Conference

on Multimedia, pp. 411–412. (cit. on p. 74.)

Fontana, F. and Rocchesso, D. (1998), Physical Modeling of Membranes for Percussion Instruments, in

Acta Acustica United with Acustica, 84(3), pp. 529–42. (cit. on p. 29.)

Frane, A. V. (2017), Swing Rhythm in Classic Drum Breaks from Hip-hop’s Breakbeat Canon, in Music

Perception: An Interdisciplinary Journal, 34(3), pp. 291–302. (cit. on p. 14.)

Fried, O., Jin, Z., Oda, R. and Finkelstein, A. (2014), AudioQuilt: 2D Arrangements of Audio Samples

using Metric Learning and Kernelized Sorting, in International Conference on New Interfaces for

Musical Expression (NIME), London, UK, pp. 281–6. (cit. on p. 34.)

Fukushima, K. (1980), Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of

Pattern Recognition Unaffected by Shift in Position, in Biological Cybernetics, 36(4), pp. 193–202.

(cit. on p. 45.)

130 BIBLIOGRAPHY

Gatys, L. A., Ecker, A. S. and Bethge, M. (2016), Image Style Transfer using Convolutional Neural

Networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, USA, pp. 2414–23. (cit. on p. 41.)

Gillet, O. and Richard, G. (2005), Drum Loops Retrieval from Spoken Queries, in Journal of Intelligent

Information Systems (JIIS), 24(2), pp. 159–77. (cit. on p. 34.)

Glazyrin, N. (2014), Towards Automatic Content-Based Separation of DJ Mixes into Single Tracks, in

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Taipei,

Taiwan, pp. 149–54. (cit. on p. 33.)

Glorot, X. and Bengio, Y. (2010), Understanding the Difficulty of Training Deep Feedforward Neural

Networks, in Proceedings of the International Conference on Artificial Intelligence and Statistics

(AISTATS), Sardinia, Italy, pp. 249–56. (cit. on p. 50.)

Goodfellow, I. (2016), NIPS 2016 Tutorial: Generative Adversarial Networks, in Proceedings of the

Neural Information Processing Systems (NIPS), Barcelona, Spain. (cit. on p. 57.)

Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press, Cambridge, USA. (cit.

on pp. 2, 56, and 60.)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and

Bengio, Y. (2014), Generative Adversarial Nets, in Proceedings of the Neural Information Processing

Systems (NIPS), Montréal, Canada, pp. 2672–80. (cit. on pp. 37, 38, and 60.)

Greenwald, J. (2002), Hip-Hop Drumming: The Rhyme May Define, but the Groove Makes You Move,

in Black Music Research Journal, 22(2), pp. 259–71. (cit. on pp. 24, 25, 26, and 27.)

Griffin, D. and Lim, J. (1984), Signal Estimation from Modified Short-time Fourier Transform, in IEEE

Transactions on Acoustics, Speech, and Signal Processing, 32(2), pp. 236–43. (cit. on p. 90.)

Griffin, R. (2016), David Bowie: The Golden Years, Omnibus Press, London, USA. (cit. on p. 1.)

Grigorescu, S., Trasnea, B., Cocias, T. and Macesanu, G. (2020), A Survey of Deep Learning Techniques

for Autonomous Driving, in Journal of Field Robotics (JFR), 37(3), pp. 362–86. (cit. on p. 41.)

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A. C. (2017), Improved Training

of Wasserstein GANs, in Proceedings of the Neural Information Processing Systems (NIPS), Long

Beach, California, USA, pp. 5767–77. (cit. on pp. 38, 62, and 96.)

Gururani, S. and Lerch, A. (2017), Automatic Sample Detection in Polyphonic Music, in Proceedings of

the International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China, pp.

264–71. (cit. on p. 34.)

Härkönen, E., Hertzman, A., Lehtinen, J. and Paris, S. (2020), GANSpace: Discovering Interpretable

GAN Controls, in Proceedings of the Neural Information Processing Systems (NIPS), pp. 9841–50.

(cit. on pp. 65 and 105.)

He, K., Zhang, X., Ren, S. and Sun, J. (2015), Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification, in Proceedings of the IEEE international conference on

computer vision, pp. 1026–1034. (cit. on pp. 50 and 73.)

BIBLIOGRAPHY 131

Heittola, T., Klapuri, A. and Virtanen, T. (2009), Musical Instrument Recognition in Polyphonic Audio

Using Source-Filter Model for Sound Separation, in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Kobe, Japan, pp. 327–32. (cit. on p. 30.)

Hennequin, R., Khlif, A., Voituret, F. and Moussallam, M. (2020), Spleeter: A Fast and Efficient Music

Source Separation Tool with Pre-Trained Model, in Journal of Open Source Software, 5(50), pp. 1–4.

(cit. on pp. 3, 5, and 42.)

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R. C., Plakal, M., Platt, D.,

Saurous, R. A., Seybold, B. et al. (2017), CNN Architectures for Large-Scale Audio Classification,

in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), New Orleans, USA, pp. 131–5. (cit. on p. 98.)

Hewitt, M. (2009), Composition for Computer Musicians, Course Technology, Huntington Beach, USA.

(cit. on p. 24.)

Heyman, M. (2021), Recreating the Beatles: The Analogues and Historically Informed Performance, in

Journal of Popular Music Studies (JPMS), 33(2), pp. 77–98. (cit. on p. 1.)

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S. and Lerchner,

A. (2017), beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, in

Proceedings of the International Conference on Learning Representations (ICLR), pp. 1–22. (cit. on

p. 64.)

Hockman, J. (2014), An Ethnographic and Technological Study of Breakbeats in Hardcore, Jungle and

Drum & Bass, PhD Thesis, McGill University. (cit. on pp. 2, 4, 11, 12, 13, 14, 16, 19, 21, 22, 23,

24, 26, 27, 69, 83, and 111.)

Hockman, J., Davies, M. E. P. and Fujinaga, I. (2012), One in the Jungle: Downbeat Detection

in Hardcore, Jungle, and Drum and Bass, in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), Porto, Portugal, pp. 167–74. (cit. on pp. 13 and 85.)

Hockman, J. A. and Davies, M. (2015), Computational Strategies for Breakbeat Classification and

Resequencing in Hardcore, Jungle, and Drum and Bass, in Proceedings of the International Conference

on Digital Audio Effects (DAFX), Trondheim, Norway. (cit. on pp. 4, 12, 14, and 70.)

Holmes, T. (2012), Electronic and Experimental Music: Technology, Music, and Culture, Routledge,

Abingdon, UK. (cit. on pp. 1, 10, and 16.)

Huang, C.-Z. A., Koops, H. V., Newton-Rex, E., Dinculescu, M. and Cai, C. J. (2020), AI Song Contest:

Human-AI Co-creation in Songwriting, in CoRR abs/2010.05388. (cit. on p. 5.)

Huang, H., li, z., He, R., Sun, Z. and Tan, T. (2018), IntroVAE: Introspective Variational Autoencoders

for Photographic Image Synthesis, in Advances in Neural Information Processing Systems (NIPS),

31(1), pp. 52–63. (cit. on pp. 59 and 89.)

Huang, J., Wang, J.-C., Smith, J. B. L., Song, X. and Wang, Y. (2021), Modeling the Compatibility

of Stem Tracks to Generate Music Mashups, in Proceedings of the AAAI Conference on Artificial

Intelligence, pp. 187–95. (cit. on p. 36.)

Huang, X. and Belongie, S. (2017), Arbitrary Style Transfer in Real-time with Adaptive Instance

Normalization, in Proceedings of the IEEE International Conference on Computer Vision (ICCV),

Venice, Italy, pp. 1501–10. (cit. on p. 65.)

132 BIBLIOGRAPHY

Ioffe, S. and Szegedy, C. (2015), Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift, in Proceedings of the International Conference on Machine Learning (ICML),

Lille, France, pp. 448–56. (cit. on pp. 52 and 72.)

Islam, M. M., Karray, F., Alhajj, R. and Zeng, J. (2021), A Review on Deep Learning Techniques for the

Diagnosis of Novel Coronavirus (COVID-19), in IEEE Access, 9(1), pp. 30,551–72. (cit. on p. 2.)

Izotope (2021), Mix Bus 101: Why, When, and How to Group Tracks into a Bus, Accessed 11 December

2022, https://www.izotope.com/en/learn/mix-buses-101.html. (cit. on p. 101.)

Jackson, G. (2016), Modern Approaches: Sampling, Accessed 27 August 2022, https://daily.

redbullmusicacademy.com/2016/07/modern-approaches-sampling. (cit. on pp. 18 and 19.)

Jahanian, A., Chai, L. and Isola, P. (2020), On the ”Steerability” of Generative Adversarial Networks,

in Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa,

Ethiopia. (cit. on p. 65.)

Johnson, E. S. (1987), Protecting Distinctive Sounds: The Challenge of Digital Sampling, in Journal on

Law and Technology, 2(1), p. 273. (cit. on p. 10.)

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K. (1999), An Introduction to Variational

Methods for Graphical Models, in Machine Learning, 37(1), pp. 183–233. (cit. on p. 59.)

Joyce, J. (2022), Paradox: Breakbeat Mastery, Accessed 5 January 2023, https://www.ableton.com/

en/blog/paradox-breakbeat-mastery. (cit. on pp. 12 and 22.)

Kapur, A., Benning, M. and Tzanetakis, G. (2004), Query-by-Beat-Boxing: Music retrieval for the

DJ, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),

Barcelona, Spain, pp. 170–77. (cit. on p. 34.)

Karplus, K. and Strong, A. (1983), Digital Synthesis of Plucked-String and Drum Timbres, in Computer

Music Journal, 7(2), pp. 43–55. (cit. on pp. 29 and 90.)

Karras, T., Aila, T., Laine, S. and Lehtinen, J. (2017), Progressive Growing of GANs for Improved Quality,

Stability, and Variation, in Proceedings of the International Conference on Learning Representations

(ICLR), Toulon, France. (cit. on pp. 38 and 62.)

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J. and Aila, T. (2020a), Training Generative

Adversarial Networks with Limited Data, in Advances in Neural Information Processing Systems

(NIPS), 33(1), pp. 12,104–14. (cit. on p. 120.)

Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J. and Aila, T. (2021), Alias-free

Generative Adversarial Networks, in Advances in Neural Information Processing Systems (NIPS),

34(1), pp. 852–63. (cit. on pp. 2, 65, and 121.)

Karras, T., Laine, S. and Aila, T. (2019), A Style-based Generator Architecture for Generative Adversarial

Networks, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Long Beach, California, USA, pp. 4401–10. (cit. on pp. 41, 65, 93, 94, and 102.)

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J. and Aila, T. (2020b), Analyzing and

Improving the Image Quality of StyleGAN, in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), Seattle, Washington, USA, pp. 8110–19. (cit. on pp. 38,

65, and 93.)

https://www.izotope.com/en/learn/mix-buses-101.html
https://daily.redbullmusicacademy.com/2016/07/modern-approaches-sampling
https://daily.redbullmusicacademy.com/2016/07/modern-approaches-sampling
https://www.ableton.com/en/blog/paradox-breakbeat-mastery
https://www.ableton.com/en/blog/paradox-breakbeat-mastery

BIBLIOGRAPHY 133

Katz, M. (2012), Groove Music: The Art and Culture of the Hip-hop DJ, Oxford University Press on

Demand, Oxford, UK. (cit. on p. 12.)

Kilgour, K., Zuluaga, M., Roblek, D. and Sharifi, M. (2019), Fréchet Audio Distance: A Reference-Free

Metric for Evaluating Music Enhancement Algorithms, in In Proceedings of the Interspeech, Graz,

Austria, pp. 2350–4. (cit. on p. 98.)

Kim, S. (2015), A-Track, Accessed 27 January 2023, https://www.interviewmagazine.com/music/

a-trak. (cit. on p. 83.)

Kim, T., Choi, M., Sacks, E., Yang, Y.-H. and Nam, J. (2020), A Computational Analysis of Real-World

DJ Mixes using Mix-To-Track Subsequence Alignment, in Proceedings of the International Society for

Music Information Retrieval Conference (ISMIR), Montréal, Canada, pp. 764–70. (cit. on p. 33.)

Kim, W. and Nam, J. (2020), Drum Sample Retrieval from Mixed Audio via a Joint Embedding Space

of Mixed and Single Audio Samples, in Audio Engineering Society (AES) Convention. (cit. on p. 35.)

Kingma, D. P. and Ba, J. (2015), Adam: A Method for Stochastic Optimization, in Proceedings of

the International Conference on Learning Representations (ICLR), San Diego, USA. (cit. on pp. 49

and 94.)

Kingma, D. P. and Welling, M. (2014), Auto-Encoding Variational Bayes, in Proceedings of the

International Conference on Learning Representations (ICLR), Alberta, Canada. (cit. on pp. 37, 58,

and 59.)

Kitahara, T., Iijima, K., Okada, M., Yamashita, Y. and Tsuruoka, A. (2015), A Loop Sequencer that

Selects Music Loops Based on the Degree of Excitement, in Proceedings of the Sound and Music

Computing Conference (SMC), Maynooth, Ireland, pp. 435–8. (cit. on p. 35.)

Kladder, J. (2016), Maschine-itivity: How I Found My Creativity Using a Digital Sampling Device to

Compose Music, in Journal of Music, Technology & Education (JMTE), 9(3), pp. 289–313. (cit. on

p. 15.)

Knees, P. and Andersen, K. (2016), Searching for Audio by Sketching Mental Images of Sound: A

Brave New Idea for Audio Retrieval in Creative Music Production, in Proceedings of the ACM on

International Conference on Multimedia Retrieval (ICMR), New York City, USA, pp. 95–102. (cit. on

p. 35.)

Kohonen, T. (2001), Self-Organizing Maps, Springer, Berlin, Germany. (cit. on p. 34.)

Kong, Z., Ping, W., Huang, J., Zhao, K. and Catanzaro, B. (2020), DiffWave: A Versatile Diffusion

Model for Audio Synthesis, in Proceedings of the International Conference on Learning Representations

(ICLR), Vienna, Austria. (cit. on p. 3.)

Kruse, A. J. (2016), Being Hip-Hop: Beyond Skills and Songs, in General Music Today, 30(1), pp. 53–8.

(cit. on p. 21.)

Landy, L. (2012), Making Music with Sounds, Routledge, Abingdon, UK. (cit. on p. 16.)

Lattner, S. (2022), SampleMatch: Drum Sample Retrieval by Musical Context, in Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), Bengaluru, India, pp. 781–8.

(cit. on p. 35.)

https://www.interviewmagazine.com/music/a-trak
https://www.interviewmagazine.com/music/a-trak

134 BIBLIOGRAPHY

Lauriola, I., Lavelli, A. and Aiolli, F. (2022), An Introduction to Deep Learning in Natural Language

Processing: Models, Techniques, and Tools, in Neurocomputing, 470(1), pp. 443–56. (cit. on p. 2.)

Lavault, A., Roebel, A. and Voiry, M. (2022), StyleWaveGAN: Style-based Synthesis of Drum Sounds

using Generative Adversarial Networks for Higher Audio Quality, in Proceedings of the European

Signal Processing Conference (EUSIPCO), pp. 234–38. (cit. on p. 38.)

Law, E., West, K., Mandel, M., Bay, M. and Stephen Downie, J. (2009), Evaluation of algorithms using

games: The case of music tagging, in Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), pp. 387–392. (cit. on p. 32.)

Lee, J., Park, J., Kim, K. L. and Nam, J. (2018), SampleCNN: End-to-End Deep Convolutional Neural

Networks Using Very Small Filters for Music Classification, in Applied Sciences, 8(1). (cit. on p. 31.)

Lee, K. and Nam, J. (2019), Learning a Joint Embedding Space of Monophonic and Mixed Music

Signals for Singing Voice, in Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), Delft, Netherlands, pp. 295–302. (cit. on p. 36.)

Lehner, B., Widmer, G. and Sonnleitner, R. (2014), On the Reduction of False Positives in Singing Voice

Detection, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Florence, Italy, pp. 7480–4. (cit. on p. 35.)

Levy, M., Sandler, M. and Casey, M. (2006), Extraction of High-Level Musical Structure from Audio Data

and Its Application to Thumbnail Generation, in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Toulouse, France, pp. 13–6. (cit. on p. 32.)

Li, J. (2022), Recent Advances in End-to-End Automatic Speech Recognition, in APSIPA Transactions

on Signal and Information Processing, 11(1), pp. 1–38. (cit. on p. 2.)

Linn, R. (1994), MPC3000 MIDI Production Center: Software Version 3.0 Operator’s Manual, Akai

Electric Company, LTD. (cit. on p. 11.)

López-Serrano, P. (2019), Analyzing Sample-based Electronic Music using Audio Processing Techniques,

Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). (cit. on pp. 4 and 17.)

López-Serrano, P., Dittmar, C., Driedger, J. and Müller, M. (2016), Towards Modeling and Decomposing

Loop-Based Electronic Music, in Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), New York City, USA, pp. 502–8. (cit. on pp. 33, 69, 78, 80, and 82.)

López-Serrano, P., Dittmar, C. and Müller, M. (2017), Finding Drum Breaks in Digital Music Recordings,

in Proceedings of the International Symposium on Computer Music Multidisciplinary Research (CMMR),

Porto, Portugal, pp. 111–22. (cit. on pp. 14, 17, 18, 35, 36, 83, and 85.)

Louie, R., Engel, J. and Huang, C.-Z. A. (2022), Expressive Communication: Evaluating Developments

in Generative Models and Steering Interfaces for Music Creation, in International Conference on

Intelligent User Interfaces (IUI), Helsinki, Finland, pp. 405–17. (cit. on p. 42.)

Lu, W., Wang, J.-C., Won, M., Choi, K. and Song, X. (2021), SpecTNT: a Time-Frequency Transformer

for Music Audio, in Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), pp. 396–403. (cit. on p. 31.)

Magazine, S. (2004), Dr. Dre - The Ultimate Interview, in Scratch Magazine, p. 73–80. (cit. on p. 11.)

BIBLIOGRAPHY 135

Main, A., Grierson, M., Yamada-Rice, D. and Murr, J. (2022), Augmenting Personal Creativity with

Artificial Intelligence: Workshop Proposal for Creativity and Cognition, in Creativity and Cognition,

Venice, Italy, p. 462–65. (cit. on p. 42.)

Makhzani, A., Shlens, J., Jaitly, N. and Goodfellow, I. J. (2015), Adversarial Autoencoders, in CoRR

abs/1511.05644. (cit. on p. 59.)

Mandel, M. I. and Ellis, D. (2005), Song-Level Features and Support Vector Machines for Music

Classification, in Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), London, UK, pp. 594–9. (cit. on p. 30.)

Mandel, M. I., Pascanu, R., Eck, D., Bengio, Y., Aiello, L. M., Schifanella, R. and Menczer, F. (2011),

Contextual Tag Inference, in ACM Transactions on Multimedia Computing, Communications, and

Applications (TOMM), 7(1), pp. 1–18. (cit. on p. 31.)

Marcuse, S. (1975), A Survey of Musical Instruments, Harper, New York City, USA. (cit. on p. 26.)

Marques, J. and Moreno, P. J. (1999), A Study of Musical Instrument Classification Using Gaussian

Mixture Models and Support Vector Machines, in Cambridge Research Laboratory Technical Report

Series (CRL), 4(1). (cit. on p. 30.)

Marrington, M. et al. (2017), Composing with the Digital Audio Workstation, in The Singer-Songwriter

Handbook, pp. 77–89. (cit. on pp. 14 and 15.)

Mart́ın-Gutiérrez, D., Peñaloza, G. H., Belmonte-Hernández, A. and Garćıa, F. Á. (2020), A Multimodal

End-to-End Deep Learning Architecture for Music Popularity Prediction, in IEEE Access, 8(1), pp.

39,361–74. (cit. on pp. 3 and 42.)

McFee, B., Salamon, J. and Bello, J. P. (2018), Adaptive Pooling Operators for Weakly Labeled Sound

Event Detection, in IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP),

26(11), pp. 2180–93. (cit. on pp. 71 and 73.)

McInnes, L., Healy, J., Saul, N. and Großberger, L. (2018), UMAP: Uniform Manifold Approximation

and Projection, in Journal of Open Source Software, 3(29), p. 861. (cit. on pp. 106 and 107.)

Mehrabi, A., Choi, K., Dixon, S. and Sandler, M. (2018), Similarity Measures for Vocal-Based Drum

Sample Retrieval Using Deep Convolutional Auto-Encoders, in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, pp. 356–60.

(cit. on p. 34.)

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A. C. and Bengio, Y.

(2017), SampleRNN: An Unconditional End-to-End Neural Audio Generation Model, in Proceedings

of the International Conference on Learning Representations (ICLR), Toulon, France. (cit. on p. 58.)

Miranda, E. (2012), Computer Sound Design: Synthesis Techniques and Programming, Routledge,

Abingdon, UK. (cit. on pp. 28 and 29.)

Mirza, M. and Osindero, S. (2014), Conditional Generative Adversarial Nets, in CoRR abs/1411.1784.

(cit. on p. 63.)

Moore, B. C. (2012), An Introduction to the Psychology of Hearing, Brill, Leiden, Netherlands. (cit. on

p. 55.)

136 BIBLIOGRAPHY

Morey, J. and McIntyre, P. (2014), The Creative Studio Practice of Contemporary Dance Music Sampling

Composers, in Dancecult: Journal of Electronic Dance Music Culture, 6(1), pp. 41–60. (cit. on pp.

2, 9, 17, 18, 22, 23, 24, and 83.)

Müller, M. (2007), Dynamic Time Warping, in Information Retrieval for Music and Motion, pp. 69–84.

(cit. on p. 34.)

Ndou, N., Ajoodha, R. and Jadhav, A. (2021), Music Genre Classification: A Review of Deep-Learning

and Traditional Machine-Learning Approaches, in IEEE International IOT, Electronics and Mechatronics

Conference (IEMTRONICS), Toronto, Canada, pp. 1–6. (cit. on pp. 3 and 42.)

Nistal, J., Aouameur, C., Velarde, I. and Lattner, S. (2022), DrumGAN VST: A Plugin for Drum

Sound Analysis/Synthesis with Autoencoding Generative Adversarial Networks, in Proceedings of the

International Conference on Machine Learning (ICML), Baltimore, Maryland, USA. (cit. on p. 109.)

Nistal, J., Lattner, S. and Richard, G. (2020), DrumGAN: Synthesis of Drum Sounds with Timbral

Feature Conditioning Using Generative Adversarial Networks, in Proceedings of the International

Society for Music Information Retrieval Conference (ISMIR), Montréal, Canada, pp. 590–7. (cit. on

pp. 38 and 65.)

Ong, B. S. and Streich, S. (2008), Music Loop Extraction from Digital Audio Signals, in IEEE International

Conference on Multimedia and Expo (ICME), Hannover, Germany, pp. 681–4, IEEE. (cit. on p. 35.)

Otter, D. W., Medina, J. R. and Kalita, J. K. (2020), A Survey of the Usages of Deep Learning for

Natural Language Processing, in IEEE Transactions on Neural Networks and Learning Systems, 32(2),

pp. 604–24. (cit. on p. 41.)

Owsinski, B. (2017), The Recording Engineer’s Handbook: 4th Edition, Bobby Owsinski Media Group.

(cit. on p. 100.)

Pampalk, E., Hlavac, P. and Herrera, P. (2004), Hierarchical Organization and Visualization of Drum

Sample Libraries, in Proceedings of the International Conference on Digital Audio Effects (DAFX),

Naples, Italy, pp. 3–8. (cit. on p. 34.)

Pearce, A., Brookes, T. and Mason, R. (2017), Timbral Attributes for Sound Effect Library Searching,

in Audio Engineering Society (AES) International Conference on Semantic Audio, Erlangen, Germany.

(cit. on p. 38.)

Petrella, N. (2002), The Ultimate Guide to Cymbals, Carl Fischer, New York City, USA. (cit. on p. 26.)

Plumerault, A., Borgne, H. L. and Hudelot, C. (2020), Controlling Generative Models with Continuous

Factors of Variations, in Proceedings of the International Conference on Learning Representations

(ICLR), Addis Ababa, Ethiopia. (cit. on p. 65.)

Pons, J. (2019), Deep Neural Networks for Music and Audio Tagging, Ph.D. thesis, Universitat Pompeu

Fabra. (cit. on p. 77.)

Pons, J., Nieto, O., Prockup, M., Schmidt, E., Ehmann, A. and Serra, X. (2018), End-to-end Learning

for Music Audio Tagging at Scale, in Proceedings of the International Society for Music Information

Retrieval Conference (ISMIR), Paris, France, pp. 637–44. (cit. on pp. 31, 45, 70, 71, and 74.)

Pons, J., Pascual, S., Cengarle, G. and Serrà, J. (2021), Upsampling Artifacts in Neural Audio Synthesis,

in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Toronto, Canada, pp. 3005–9. (cit. on pp. 63 and 101.)

BIBLIOGRAPHY 137

Pons, J., Slizovskaia, O., Gong, R., Gómez, E. and Serra, X. (2017), Timbre Analysis of Music Audio

Signals with Convolutional Neural Networks, in Proceedings of the European Signal Processing

Conference (EUSIPCO), Kos island, Greece, pp. 2744–8. (cit. on pp. 71 and 73.)

Prétet, L., Hennequin, R., Royo-Letelier, J. and Vaglio, A. (2019), Singing Voice Separation: A Study

on Training Data, in Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Brighton, UK, pp. 506–10. (cit. on p. 36.)

Producer’s Edge (2008), Issue 03 Pete Rock, in Producer’s Edge, p. 112–15. (cit. on pp. 11 and 18.)

Rabenstein, R. and Trautmann, L. (2001), Digital Sound Synthesis by Physical Modelling, in Proceedings

of the International Symposium on Image and Signal Processing and Analysis (ISPA) in Conjunction

with the International Conference on Information Technology Interfaces (ITI), Pula, Croatia, pp.

12–23. (cit. on p. 29.)

Radford, A., Metz, L. and Chintala, S. (2016), Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks, in Proceedings of the International Conference on

Learning Representations (ICLR), San Juan, Puerto Rico. (cit. on p. 38.)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. et al. (2019), Language Models are

Unsupervised Multitask Learners, in OpenAI Blog, 1(8), p. 9. (cit. on p. 2.)

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M. and Sutskever, I. (2021),

Zero-Shot Text-to-Image Generation, in Proceedings of the International Conference on Machine

Learning (ICML), pp. 8821–31. (cit. on p. 41.)

Ramires, A., Chandna, P., Favory, X., Gómez, E. and Serra, X. (2020a), Neural Percussive Synthesis

Parameterised by High-Level Timbral Features, in Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, pp. 786–90. (cit. on p. 38.)

Ramires, A., Font, F., Bogdanov, D., Smith, J. B. L., Yang, Y.-H., Ching, J., Chen, B.-Y., Wu, Y.-K.,

Wei-Han, H. and Serra, X. (2020b), The Freesound Loop Dataset and Annotation Tool, in Proceedings

of the International Society for Music Information Retrieval Conference (ISMIR), Montréal, Canada,

pp. 288–93. (cit. on pp. 32, 70, 74, and 75.)

Ramires, A., Juras, J., Parker, J. D. and Serra, X. (2022), A Study of Control Methods for Percussive

Sound Synthesis Based on GANs, in Proceedings of the International Conference on Digital Audio

Effects (DAFX), Vienna, Austria, pp. 224–31. (cit. on p. 38.)

Ramires, A. and Serra, X. (2019), Data Augmentation for Instrument Classification Robust to Audio

Effects, in Proceedings of the International Conference on Digital Audio Effects (DAFX), Birmingham,

UK. (cit. on pp. 75 and 76.)

Ratcliffe, R. (2014), A Proposed Typology of Sampled Material within Electronic Dance Music, in

Dancecult: Journal of Electronic Dance Music Culture, 6(1), pp. 97–122. (cit. on p. 16.)

Reuter, A. (2022), Who let the DAWs out? The Digital in a New Generation of the Digital Audio

Workstation, in Popular Music and Society, 45(2), pp. 113–28. (cit. on p. 14.)

Reynolds, S. (2011), Retromania: Pop Culture’s Addiction to Its Own Past, Faber and Faber, London,

UK. (cit. on pp. 2, 9, and 18.)

Reynolds, S. (2012), Energy Flash: A Journey Through Rave Music and Dance Culture, Soft Skull Press,

Berkeley, USA. (cit. on p. 13.)

138 BIBLIOGRAPHY

Rocha, B., Bogaards, N. and Honingh, A. (2013), Segmentation and Timbre Similarity in Electronic

Dance Music, in Proceedings of the Sound and Music Computing Conference (SMC), Stockholm,

Sweden. (cit. on p. 33.)

Rodgers, T. (2003), On the Process and Aesthetics of Sampling in Electronic Music Production, in

Organised Sound, 8(3). (cit. on pp. 3, 9, and 17.)

Roma, G., Green, O. and Tremblay, P. A. (2019), Adaptive Mapping of Sound Collections for Data-driven

Musical Interfaces., in International Conference on New Interfaces for Musical Expression (NIME),

Porto Alegre, Brazil, pp. 313–18. (cit. on p. 35.)

Roma, G. and Serra, X. (2015), Music Performance by Discovering Community Loops, in Proceedings

of the Web Audio Conference (WAV), Paris, France. (cit. on p. 35.)

Rose, T. (1994), Black Noise: Rap Music and Black Culture in Contemporary America, Wesleyan

University Press, Middletown, USA. (cit. on p. 9.)

Rossing, T. D. (2001), Science of Percussion Instruments, World Scientific Publishing, Singapore. (cit.

on p. 26.)

Rossing, T. D., Bork, I., Zhao, H. and Fystrom, D. O. (1992), Acoustics of Snare Drums, in The Journal

of the Acoustical Society of America (JASA), 92(1), pp. 84–94. (cit. on p. 26.)

Rossing, T. D., Moore, R. F. and A., W. P. (2014), The Science of Sound, Pearson Publishing, London,

UK. (cit. on pp. 25 and 100.)

Rouard, S. and Hadjeres, G. (2021), CRASH: Raw Audio Score-based Generative Modeling for Control-

lable High-resolution Drum Sound Synthesis, in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), pp. 579–84. (cit. on p. 38.)

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986), Learning Representations by Back-

Propagating Errors, in Nature, 323(1), pp. 533–36. (cit. on p. 48.)

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X. and Chen, X. (2016),

Improved Techniques for Training GANs, in Advances in Neural Information Processing Systems

(NIPS), 29(1), pp. 2234–42. (cit. on p. 97.)

Sanjek, D. (1992), Don’t Have to DJ No More: Sampling and the ”Autonomous” Creator, in Cardozo

Arts Entertainment Law Journal (AELJ), 10(1), pp. 607–23. (cit. on p. 10.)

Sarroff, A. and Casey, M. A. (2014), Musical Audio Synthesis Using Autoencoding Neural Nets, in

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Taipei,

Taiwan. (cit. on p. 37.)

Scarfe, T., Koolen, W. and Kalnishkan, Y. (2014), Segmentation of Electronic Dance Music, in

International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications.

(cit. on p. 33.)

Schloss, J. G. (2014), Making Beats: The Art of Sample-based Hip-hop, Wesleyan University Press,

Middletown, USA. (cit. on pp. 17 and 23.)

Schwarz, D., Beller, G., Verbrugghe, B. and Britton, S. (2006), Real-time Corpus-based Concatenative

Synthesis with Catart, in Proceedings of the International Conference on Digital Audio Effects (DAFX),

Montréal, Canada, pp. 279–82. (cit. on p. 35.)

BIBLIOGRAPHY 139

Seetharaman, P. and Pardo, B. (2016), Simultaneous Separation and Segmentation in Layered Music, in

Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), New

York City, USA, pp. 495–501. (cit. on p. 33.)

Serra, X. (2007), State of the Art and Future Directions in Musical Sound Synthesis, in IEEE Workshop

on Multimedia Signal Processing (MMSP), Chania, Greece, pp. 9–12. (cit. on p. 30.)

Sewell, A. (2013), A Typology of Sampling in Hip-hop, Ph.D. thesis, Indiana University. (cit. on p. 16.)

Seymour, M. (2010), Engineer’s Guide To Tuning and Damping Drums, Accessed 12 March 2021, https:

//www.soundonsound.com/techniques/engineers-guide-tuning-and-damping-drums. (cit.

on p. 112.)

Shelvock, M. T. (2020), Cloud-based Music Production: Sampling, Synthesis, and Hip-hop, CRC Press,

Boca Raton, USA. (cit. on pp. 17 and 19.)

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., Chen, Z., Zhang, Y., Wang, Y.,

Skerrv-Ryareting the Latent Space of GANs for Semantin, R. et al. (2018), Natural TTS Synthesis by

Conditioning WaveNet on Mel Spectrogram Predictions, in Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, pp. 4779–83.

(cit. on p. 90.)

Shen, Y., Gu, J., Tang, X. and Zhou, B. (2020), Interpreting the Latent Space of GANs for Semantic Face

Editing, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 9243–52. (cit. on p. 65.)

Shen, Y., Gu, J., Tang, X. and Zhou, B. (2022), Musika! Fast Infinite Waveform Music Generation,

in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),

Bengaluru, India, pp. 543–50. (cit. on pp. 3 and 42.)

Shen, Y. and Zhou, B. (2021), Closed-form Factorization of Latent Semantics in GANs, in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1532–40.

(cit. on p. 65.)

Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D. and Wang, Z. (2016),

Real-time Single Image and Video Super-resolution using an Efficient Sub-pixel Convolutional Neural

Network, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, USA, pp. 1874–83. (cit. on p. 63.)

Shi, Z. and Mysore, G. J. (2018), LoopMaker: Automatic Creation of Music Loops from Pre-Recorded

Music, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montréal,

Canada. (cit. on pp. 17 and 36.)

Shier, J., McNally, K. and Tzanetakis, G. (2017), Sieve: A Plugin for the Automatic Classification

and Intelligent Browsing of Kick and Snare Samples, in Workshop on Intelligent Music Production

(WIMP), Manchester, UK. (cit. on p. 34.)

Shier, J., McNally, K., Tzanetakis, G. and Brooks, K. G. (2021), Manifold Learning Methods for

Visualization and Browsing of Drum Machine Samples, in Journal of the Audio Engineering Society

(JAES), 69(1), pp. 40–53. (cit. on p. 35.)

Shiga, J. (2007), Copy-and-Persist: The Logic of Mash-Up Culture, in Critical Studies in Media

Communication (CSMC), 24(2), pp. 93–114. (cit. on p. 36.)

https://www.soundonsound.com/techniques/engineers-guide-tuning-and-damping-drums
https://www.soundonsound.com/techniques/engineers-guide-tuning-and-damping-drums

140 BIBLIOGRAPHY

Shoemake, K. (1985), Animating Rotation with Quaternion Curves, in Proceedings of the Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), New York City, USA, p.

245–54. (cit. on p. 102.)

Simonyan, K. and Zisserman, A. (2015), Very Deep Convolutional Networks for Large-Scale Image

Recognition, in Proceedings of the International Conference on Learning Representations (ICLR), San

Diego, USA. (cit. on p. 98.)

Sinnreich, A. (2010), Mashed Up: Music, Technology, and the Rise of Configurable Culture, University

of Massachusetts Press, Amherst, USA. (cit. on p. 10.)

Slaney, M., Weinberger, K. and White, W. (2008), Learning a Metric for Music Similarity, in Proceedings

of the International Society for Music Information Retrieval Conference (ISMIR), Philadelphia, USA,

pp. 313–18. (cit. on p. 30.)

Smaragdis, P. (2004), Non-Negative Matrix Factor Deconvolution: Extraction of Multiple Sound Sources

from Monophonic Inputs, in Proceedings of the International Conference on Independent Component

Analysis and Signal Separation (ICA), Granada, Spain, pp. 494–9. (cit. on p. 33.)

Smith, J. B. and Goto, M. (2018), Nonnegative Tensor Factorization for Source Separation of Loops

in Audio, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Calgary, Canada, pp. 171–75. (cit. on pp. 17, 33, 36, 69, 78, 80, and 82.)

Smith, J. B., Kawasaki, Y. and Goto, M. (2019), Unmixer: An Interface for Extracting and Remixing

Loops., in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),

Delft, Netherlands, pp. 824–31. (cit. on pp. 17 and 33.)

Smith, J. B. L., Kato, J., Fukayama, S., Percival, G. and Goto, M. (2017), The CrossSong Puzzle:

Developing a Logic Puzzle for Musical Thinking, in Journal of New Music Research (JNMR), 46(3),

pp. 213–28. (cit. on p. 36.)

Smith, J. O. (2010), Physical Audio Signal Processing for Virtual Musical Instruments and Digital Audio

Effects, W3K Publishing. (cit. on p. 28.)

Snoman, R. (2012), The Dance Music Manual: Tools, Toys and Techniques, CRC Press, Boca Raton,

USA. (cit. on pp. 19, 23, and 24.)

Solberg, R. (2014), “Waiting for the Bass to Drop”: Correlations Between Intense Emotional Experiences

and Production Techniques in Build-up and Drop Sections of Electronic Dance Music, in Dancecult,

6(1), pp. 61–82. (cit. on p. 24.)

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S. and Poole, B. (2021), Score-Based

Generative Modeling through Stochastic Differential Equations, in Proceedings of the International

Conference on Learning Representations (ICLR). (cit. on p. 38.)

Sordo, M. et al. (2012), Semantic Annotation of Music Collections: A Computational Approach, Ph.D.

thesis, Universitat Pompeu Fabra. (cit. on p. 31.)

Southall, C. (2019), Automatic Drum Transcription Using Deep Learning, Ph.D. thesis, Birmingham

City University. (cit. on pp. 26 and 27.)

Southall, C., Stables, R. and Hockman, J. (2017), Automatic Drum Transcription for Polyphonic

Recordings Using Soft Attention Mechanisms and Convolutional Neural Networks, in Proceedings of

BIBLIOGRAPHY 141

the International Society for Music Information Retrieval Conference (ISMIR), Suzhou, China, pp.

606–12. (cit. on p. 111.)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014), Dropout: A

Simple Way to Prevent Neural Networks from Overfitting, in The Journal of Machine Learning

Research (JMLR), 15(1), pp. 1929–58. (cit. on p. 52.)

Stewart, A. (2000), ‘Funky Drummer’: New Orleans, James Brown and the Rhythmic Transformation of

American Popular Music, in Popular Music, 19(3), pp. 293–318. (cit. on p. 27.)

Stillar, G. (2005), Loops as Genre Resources, in Folia Linguistica, 39(1), pp. 197–212. (cit. on p. 17.)

Stoller, D., Ewert, S. and Dixon, S. (2018), Wave-U-Net: A Multi-Scale Neural Network for End-to-End

Audio Source Separation, in Proceedings of the International Society for Music Information Retrieval

Conference (ISMIR), Paris, France, p. 334–40. (cit. on p. 38.)

Streich, S. and Ong, B. S. (2008), A Music Loop Explorer System, in Proceedings of International

Computer Music Conference (ICMC), Belfast, Ireland. (cit. on p. 35.)

Sutton, R. (1986), Two Problems with Back Propagation and Other Steepest Descent Learning

Procedures for Networks, in Proceedings of the Annual Conference of the Cognitive Science Society,

Amherst, USA, pp. 823–32. (cit. on p. 49.)

The Economist (2011), Seven Seconds of Fire, in The Economist, p. 145–6. (cit. on p. 13.)

Tieleman, T., Hinton, G. et al. (2012), Lecture 6.5 - RMSprop: Divide the Gradient by a Running

Average of Its Recent Magnitude, in COURSERA: Neural Networks for Machine Learning, pp. 26–31.

(cit. on p. 49.)

Tolstikhin, I., Bousquet, O., Gelly, S. and Schölkopf, B. (2018), Wasserstein Auto-Encoders, in

Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, Canada.

(cit. on p. 38.)

Tomczak, M., Goto, M. and Hockman, J. (2020), Drum Synthesis and Rhythmic Transformation with

Adversarial Autoencoders, in Proceedings of the ACM International Conference on Multimedia, Seattle,

USA, p. 2427–35. (cit. on p. 65.)

Topel, S. S. and Casey, M. A. (2011), Elementary Sources: Latent Component Analysis for Music

Composition, in Proceedings of the International Society for Music Information Retrieval Conference

(ISMIR), Miami, Florida, pp. 579–84. (cit. on p. 35.)

Torin, A., Hamilton, B. and Bilbao, S. (2014), An Energy Conserving Finite Difference Scheme for the

Simulation of Collisions in Snare Drums., in Proceedings of the International Conference on Digital

Audio Effects (DAFX), Erlangen, Germany, pp. 145–52. (cit. on p. 29.)

Toulson, R. (2021), Drum Sound and Drum Tuning: Bridging Science and Creativity, CRC Press, Boca

Raton, USA. (cit. on p. 27.)

Turquois, C., Hermant, M., Gómez-Maŕın, D. and Jordà, S. (2016), Exploring the Benefits of 2D

Visualizations for Drum Samples Retrieval, in Proceedings of the ACM on Conference on Human

Information Interaction and Retrieval (CHIIR), Carrboro, USA, p. 329–32. (cit. on p. 35.)

Tzanetakis, G. and Cook, P. (2002), Musical Genre Classification of Audio Signals, in IEEE Transactions

on Speech and Audio Processing, 10(5), pp. 293–302. (cit. on pp. 30 and 31.)

142 BIBLIOGRAPHY

Tzirakis, P., Zhang, J. and Schuller, B. W. (2018), End-to-End Speech Emotion Recognition Using

Deep Neural Networks, in Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Calgary, Canada, pp. 5089–93. (cit. on p. 45.)

Uria, B., Murray, I. and Larochelle, H. (2014a), A Deep and Tractable Density Estimator, in Proceedings

of the International Conference on Machine Learning (ICML), Bejing, China, pp. 467–75. (cit. on p.

37.)

Uria, B., Murray, I. and Larochelle, H. (2014b), A Deep and Tractable Density Estimator, in Proceedings

of the International Conference on Machine Learning (ICML), Beijing, China, pp. 467–75. (cit. on p.

57.)

Vályi, G. (2010), Digging in the Crates: Practices of Identity and Belonging in a Translocal Record

Collecting Scene, Ph.D. thesis, Goldsmiths, University of London. (cit. on pp. 18 and 19.)

Van Balen, J., Haro, M., Serra, J. et al. (2012), Automatic Identification of Samples in Hip Hop Music,

in Proceedings of the International Symposium on Computer Music Modeling and Retrieval (CMMR),

London, UK, pp. 544–51. (cit. on pp. 33 and 34.)

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N.,

Senior, A. and Kavukcuoglu, K. (2016), WaveNet: A Generative Model for Raw Audio, in Proceedings

of the ISCA Speech Synthesis Workshop, Sunnyvale, USA, p. 125. (cit. on pp. 37 and 58.)

van der Maaten, L. and Hinton, G. E. (2008), Visualizing Data using t-SNE, in Journal of Machine

Learning Research (JMLR), 9(1), pp. 2579–605. (cit. on p. 106.)

Vande Veire, L. and De Bie, T. (2018), From Raw Audio to a Seamless Mix: Creating an Automated

DJ System for Drum and Bass, in EURASIP Journal on Audio, Speech, and Music Processing, pp.

1–21. (cit. on pp. 33 and 69.)

Veal, M. (2013), Dub: Soundscapes and Shattered Songs in Jamaican Reggae, Wesleyan University

Press, Middletown, USA. (cit. on p. 1.)

Villani, C. (2009), Optimal Transport: Old and New, Springer, Berlin, Germany. (cit. on p. 61.)

Voulodimos, A., Doulamis, N., Doulamis, A. and Protopapadakis, E. (2018), Deep Learning for Computer

Vision: A Brief Review, in Computational Intelligence and Neuroscience. (cit. on p. 41.)

Wang, A. et al. (2003), An Industrial Strength Audio Search Algorithm, in Proceedings of the International

Society for Music Information Retrieval Conference (ISMIR), volume 2003, Baltimore, USA, pp. 7–13.

(cit. on p. 34.)

Weiss, H. (2016), Out of the Shadows, Accessed 27 January 2023, https://www.interviewmagazine.

com/music/dj-shadow. (cit. on p. 83.)

White, T. (2016), Sampling Generative Networks: Notes on a Few Effective Techniques, in CoRR

abs/1609.04468. (cit. on p. 102.)

Whitney, J. L. (2013), Automatic Recognition of Samples in Hip-hop Music Through Non-negative

Matrix Factorization, Master’s thesis, University of Miami. (cit. on p. 34.)

WhoSampled (2023), Amen, Brother by The Winstons, Accessed 3 January 2023, https://www.

whosampled.com/The-Winstons/Amen,-Brother/. (cit. on p. 13.)

https://www.interviewmagazine.com/music/dj-shadow
https://www.interviewmagazine.com/music/dj-shadow
https://www.whosampled.com/The-Winstons/Amen,-Brother/
https://www.whosampled.com/The-Winstons/Amen,-Brother/

BIBLIOGRAPHY 143

Winston, E. and Saywood, L. (2019), Beats to Relax/Study to: Contradiction and Paradox in Lofi Hip

hop, in Journal of the International Association for the Study of Popular Music (IASPM), 9(2), pp.

40–54. (cit. on p. 101.)

Won, M., Choi, K. and Serra, X. (2021a), Semi-Supervised Music Tagging Transformer, in Proceedings

of the International Society for Music Information Retrieval Conference (ISMIR), pp. 769–76. (cit.

on p. 31.)

Won, M., Chun, S., Nieto, O. and Serra, X. (2020a), Data-Driven Harmonic Filters for Audio Represen-

tation Learning, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 536–40. (cit. on pp. 31, 32, 71, 72, and 73.)

Won, M., Chun, S. and Serra, X. (2019), Toward Interpretable Music Tagging with Self-attention, in

CoRR abs/1906.04972. (cit. on p. 31.)

Won, M., Ferraro, A., Bogdanov, D. and Serra, X. (2020b), Evaluation of CNN-Based Automatic Music

Tagging Models, in CoRR abs/2006.00751. (cit. on pp. 32, 70, 71, 74, and 77.)

Won, M., Oramas, S., Nieto, O., Gouyon, F. and Serra, X. (2021b), Multimodal Metric Learning for

Tag-based Music Retrieval, in Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Toronto, Canada, pp. 591–95. (cit. on p. 32.)

Wu, C.-W., Dittmar, C., Southall, C., Vogl, R., Widmer, G., Hockman, J., Müller, M. and Lerch, A.

(2018), A Review of Automatic Drum Transcription, in IEEE/ACM Transactions on Audio, Speech,

and Language Processing (TASLP), 26(9), pp. 1457–1483. (cit. on pp. 3 and 42.)

Xia, W., Zhang, Y., Yang, Y., Xue, J.-H., Zhou, B. and Yang, M.-H. (2023), GAN Inversion: A Survey,

in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 45(3). (cit. on p. 108.)

Yadati, K., Larson, M. A., Liem, C. C. and Hanjalic, A. (2014), Detecting Drops in Electronic Dance

Music: Content Based Approaches to a Socially Significant Music Event, in Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR), Taipei, Taiwan, pp. 143–48.

(cit. on pp. 33 and 82.)

Yang, G., Yang, S., Liu, K., Fang, P., Chen, W. and Xie, L. (2021), Multi-Band MelGAN: Faster Waveform

Generation for High-Quality Text-to-Speech, in IEEE Spoken Language Technology Workshop (SLT),

pp. 492–8. (cit. on p. 2.)

Zeiler, M. D. and Fergus, R. (2014), Visualizing and Understanding Convolutional Networks, in

Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, pp.

818–33. (cit. on p. 62.)

Zölzer, U., Amatriain, X., Arfib, D., Bonada, J., De Poli, G., Dutilleux, P., Evangelista, G., Keiler, F.,

Loscos, A., Rocchesso, D. et al. (2002), DAFX-Digital Audio Effects, John Wiley & Sons, Hoboken,

USA. (cit. on p. 104.)

Appendix A

Publications

145

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

ADVERSARIAL SYNTHESIS OF DRUM SOUNDS

Jake Drysdale, Maciek Tomczak, Jason Hockman

Digital Media Technology Lab (DMT Lab)
Birmingham City University

Birmingham, United Kingdom
jake.drysdale, maciek.tomczak, jason.hockman@bcu.ac.uk

ABSTRACT

Recent advancements in generative audio synthesis have al-
lowed for the development of creative tools for generation and
manipulation of audio. In this paper, a strategy is proposed for the
synthesis of drum sounds using generative adversarial networks
(GANs). The system is based on a conditional Wasserstein GAN,
which learns the underlying probability distribution of a dataset
compiled of labeled drum sounds. Labels are used to condition
the system on an integer value that can be used to generate audio
with the desired characteristics. Synthesis is controlled by an input
latent vector that enables continuous exploration and interpolation
of generated waveforms. Additionally we experiment with a train-
ing method that progressively learns to generate audio at different
temporal resolutions. We present our results and discuss the ben-
efits of generating audio with GANs along with sound examples
and demonstrations.

1. INTRODUCTION

Sample-based electronic music (EM) describes a variety of genres
that emerged through advancements in audio production and digi-
tal sampling technologies. EM is mainly created through the use of
digital audio workstation (DAW) software for arranging and ma-
nipulating short audio recordings, commonly referred to as sam-
ples. Early sampling technologies (e.g., Akai S950) were limited
by a small amount of memory; however, this constraint stimulated
creativity, artistic choices, and new genres of music. Considering
the abundance of free and affordable audio sample libraries avail-
able at present, there is the potential for an EM producer’s personal
collection of samples to become unwieldy and therefore difficult
to navigate and maintain.

Sample selection is an integral part of the EM production work-
flow and is one of the key skills harnessed by EM producers. The
selection of samples in this context is a meticulous retrieval task in-
volving careful listening for key subjective attributes (e.g., warmth,
boominess) of particular timbral features. Online sample libraries
such as Splice1 and Loopmasters2 have well-annotated databases
with high quality sounds; however, when a producer is searching
a collection for an exact sample or a sample with certain charac-
teristics (e.g., bass-heavy kick), the sound selection process can be
tedious and labor-intensive.

1https://splice.com/
2https://www.loopmasters.com/

Copyright: © 2020 Jake Drysdale et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

In this paper, a system is presented that allows EM producers
to interactively generate and fine tune novel audio sounds based on
their own personal collections. The system is based on a generative
adversarial network, which learns a mapping between a collection
(i.e., dataset) of labelled drum sounds and a low-dimensional latent
space that provides high-level control of the input data distribution.

1.1. Background

Advancements in generative modelling have allowed for the de-
velopment of novel tools for the generation and manipulation of
audio. Generative models learn the underlying probability distri-
bution of a given dataset and produce new data based on example
observations. Generative methodologies include generative adver-
sarial networks (GANs) [1], autoencoders [2] and autoregressive
networks [3]. Autoencoders map high-dimensional data distribu-
tions onto low-dimensional latent spaces and reconstruct the out-
put from this representation using a decoder. Several generative
models using autoencoders have been proposed for the task of gen-
eralised musical audio generation including autoregressive (AR)
models (e.g., [4, 5]) and non-AR models (e.g. [6, 7, 8]). AR mod-
els for raw audio synthesis have the capacity to generate high fi-
delity audio, yet this comes at the cost of slow generation and the
inability to learn compact latent space representations. An alter-
native solution is found in GANs, a subset of non-AR generative
models, which map low-dimensional latent spaces to complex data
distributions through an adversarial training strategy [1]. The gen-
erator learns to produce realistic synthesized data from a prior dis-
tribution, while the discriminator learns to correctly classify real
and synthetic data. GANs can be conditioned on additional infor-
mation (e.g., pitch, instrument class) enabling high-level control
over data generation [9]. Unlike AR models, GANs are capable
of parallelised training and generation. However, GANs require
much larger models to generate longer audio recordings, becom-
ing computationally expensive. Thus, GANs are well-suited for
the synthesis of short audio recordings such as drum sounds.

Donahue et al. [10] were the first apply adversarial learning
to musical audio using a modified deep convolutional GAN [11]
that operates on raw audio data. Alternatively, Engel et al. [12]
proposed GANSynth, an adversarial approach to audio synthesis
that utilised recent improvements in the training stability of GANs
[13, 14, 15]. Musical notes are conditioned with labels represent-
ing the pitch content and are modelled as log magnitude and in-
stantaneous frequency spectrograms, which are used to approxi-
mate the time-domain signal. More recently, Engel et al. [16]
achieved high resolution audio generation without the need for
large AR models or adversarial losses through a modular approach
to generative audio modeling that integrates digital signal process-
ing elements into a neural network.

Specific to the generation of drum sounds, Aouameur et al.

DAFx.1

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

167

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

[8] used a conditional Wasserstein autoencoder to generate audio
spectrograms that are inverted to audio through a multi-head CNN.
Ramires et al. [17] synthesized percussion sounds with high-level
control over timbral characteristics using Wave-u-net [18]. Tom-
czak et al. [19] proposed a method for joint synthesis and rhythm
transformation of drum sounds by combining the use of adversar-
ial autoencoders with a Wasserstein GAN adversarial framework.

1.2. Motivation

In this paper, a system for synthesising drum samples is presented,
which is suitable for generating novel drums sounds based on a
producers personal sample collection. The system is designed to
be lightweight, in that it can learn to generate high-quality audio
when trained using a small amount of data. High-level condition-
ing organises drum sounds into specific categories, while a com-
pact latent space with low dimensionality is used for intuitive syn-
thesis control to output a variety of different drum sounds. In addi-
tion, interpolating the compact latent space of a learned generative
model provides an intuitive way for EM producers to morph be-
tween generated drum samples when composing new grooves and
rhythms.

The system is realised through a conditional Wasserstein gen-
erative adversarial network trained with a small dataset of labelled
drums sounds. Conditioning is achieved with the three main per-
cussion instruments from the common drum kit—that is, kick drum,
snare drum, and cymbals—and it can generate a diverse range of
sounds when trained on a relatively small dataset of short audio
recordings.

By varying the input latent vector, large or subtle variations
can be made to the timbral characteristics of the output. In order
to reduce training time, a progressive growing training methodol-
ogy similar to [13] is considered, in which audio is incrementally
generated at increasingly higher temporal resolutions.

The remainder of this paper is structured as follows: Section
2 presents our proposed method for drum sound generation. Sec-
tion 3 presents our training procedure and dataset processing, and
Section 4 provides the results and discussion. Conclusions and
suggestions for future work are presented in Section 5.

2. METHOD

The proposed approach to drum synthesis builds upon the architec-
ture of WaveGAN [10] but is designed specifically for conditional
audio generation of a variety of different drum sounds. Figure 1
presents a general overview of the proposed system. Generator G
is trained to generate audio signals given a latent vector z and a
conditional variable y, and discriminator D is trained to estimate
the Wasserstein distance between the generated and observed dis-
tributions. Both networks are optimised simultaneously until G
can produce drum samples that are indistinguishable from the ob-
served training data.

The original GAN framework as proposed by [1] defines an
adversarial game between generator network G and discriminator
network D. G is used to learn mappings from a noise space Z to
drum data space X . Z = Rdz , where dz is a hyperparameter that
controls the dimensionality of Z. Latent variables z ∈ Z are sam-
pled from a known prior p(z), which is modelled with a simple
distribution (e.g., Gaussian, Uniform). X is the drum data space
that represents the input to D or output of G. As training data,
drum samples D are drawn from a real distribution pD(x). By

Figure 1: Overview of proposed system for drum synthesis: Gener-
ator G (left) is trained to generate audio given a latent vector z and
conditioning variable y. Discriminator D (right) is trained to min-
imise the Wasserstein distance between the generated distribution
and the observed distribution.

sampling from p(z), G can be used to output drums that represent
a synthetic distribution q(x). Following the more general formula-
tion introduced in [20], the GAN learning problem aims at finding
a min-max optimisation of objective V between the pair of G and
D (i.e., Nash equilibrium), of the value function defined as:

min
G

max
D

V (G,D) = Ex∼pD(x)[f(D(x))] +

Ez∼p(z)[f(−D(G(z)))], (1)

where E[·] denotes expectation, and f : R −→ R is a concave func-
tion. G is trained to output q(x) as close to pD(x) as possible. D
is trained to distinguish between real data PX and synthesised data
q(x). Convergence occurs when G can mislead D by generating
synthesized samples that are indistinguishable from real samples.

Training GANs correctly utilising the original formulation is
difficult and prone to mode collapse, resulting in reduced sample
variability. To help stabilise training, Arjovsky et al. [14] suggest
minimising the Wasserstein distance between the generated and
observed distributions.

D is modified to emit an unconstrained real number rather than
a probability value to recover the traditional GAN [1] formulation
f(x) = −log(1 + exp(−x)), where f is the logistic loss. This
convention slightly differs from the standard formulation in that
the discriminator outputs the real-valued logits and the loss func-
tion would implicitly scale this to a probability. The Wasserstein
GAN is achieved by taking f(x) = x. Within this formulation,
f has to be a 1-Lipschitz function and D is trained to assist in
computing the Wassertein distance, rather than to classify samples
as real or fake. To enforce the Lipschitz constraint, Arjovsky et al.
[14] suggest the application of a simple clipping function to restrict
the maximum weight value in f . To avoid subsequent difficulties
in optimisation (i.e., exploding or vanishing gradients), the authors

DAFx.2

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

168

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

in [15] utilised a gradient penalty parameterised by penalty coeffi-
cient λ to enforce the constraint.

In the conditional formulation of the GAN, the G and D net-
works use additional input layers with labels y. The updated ob-
jective function can be stated as:

min
G

max
D

V (G,D) = Ex,y∼pD(x,y)[f(D(x))] +

Ey∼p(y),z∼p(z)[f(−D(G(z, y), y))], (2)

where p(y) is the prior conditioning distribution. Conditioning the
system on labels allows for targeted generation of drum sounds
from a specific category. Methods for categorical conditioning
commonly involve encoding conditional labels as one-hot vectors
and concatenating them with the latent code [9]; however, this can
lead to undesirable behaviour such as cross-over between classes.
Following [21], an embedding space Y is used to condition the
model on external information, where Y = RdY , where dY is a
hyperparameter used to control the dimensionality of Y .

2.1. Model Details

In order to learn an instrument-specific encoding, conditioning
variable y is passed through an embedding layer with a dimen-
sionality w, such that each of the three drum classes are mapped
to a different w-element vector representation that is learned by G
(w = 50). The embedding layer and latent vector are then scaled
to the initial size of the network using a dense layer, then concate-
nated together and passed through a series of upsampling blocks to
output a generated waveform. Each upsampling block consists of
one-dimensional nearest neighbour upsampling with a stride of 4,
a one-dimensional convolutional layer with a kernel length of 25,
and a ReLU activation. Thus, at each block the number of audio
samples is increased by a factor of 4 with the output layer passed
through a tanh activation.

Discriminator network D mirrors the architecture in G. D
takes an audio signal and conditioning variable y. In D, y is passed
to an identical embedding layer to that in G and is scaled to the size
of the input waveform using a dense layer and reshaping. This
representation is then concatenated with the input waveform and
passed through a series of downsampling blocks. Each downsam-
pling block consists of a convolutional layer with a stride of 4 and
kernel length of 25, a leaky ReLU activation (α = 0.2). Thus, at
each stage of the discriminator the input waveform is decreased by
a factor of 4. The final layer of D is a dense layer with a linear
activation function that outputs the authenticity of the input audio
sample through the Wasserstein distance.

Upsampling in generator networks is known to cause peri-
odic checkerboard artifacts when synthesising images [22]. When
generating raw audio, checkerboard artifacts can be perceived as
pitched noise that degrades the overall audio quality. An optimi-
sation problem can occur when D learns to reject generated audio
with artifact frequencies that always occur at a particular phase.
Donahue et al. [10] introduced a phase shuffle module that ran-
domly perturbs the phase at each layer of D. Phase shuffle forces
D to become invariant to the phase of the input waveform and is
controlled by hyperparameter s that perturbs the phase of a layer’s
activations by -s to s samples (s = 2).

Figure 2: Progressive growing procedure, in which D and G be-
gin learning with low resolution audio resolution of 256 samples.
As training advances new layers are added to the models to incre-
mentally increase the number of samples by a multiple of 4 thus,
learning higher frequencies as training progresses.

3. TRAINING

3.1. Network training

In order to optimise Equation 2 we use alternating updates between
networks G and D. At each training iteration, the parameters of
network D are updated k times for each G parameter update (k =
5). The model is trained using the Adam optimiser [23] with a
learning rate 2e–4, β1 = 0.5, β2 = 0.99 for a 2000 epochs and
50000 iterations in total, where each iteration takes a mini-batch
of 64 examples. The model is trained using a gradient penalty
coefficient (λ = 10). n upsampling and downsampling blocks are
used to allow for the generation of T samples of audio. Following
[10], the latent dimensionality dz was initially set to 100 and a
second model is trained with a lower dimensionality (dz = 3) to
explore the tradeoff between dimensionality and audio quality.

3.2. Progressive Growing

To reduce the length of training time, a progressive growing pro-
cedure is adopted during training. Following [13], the model is
initially trained with downsampled input audio data, then learns
to generate output at samplerates of incrementally higher qual-
ity. Figure 2 depicts the progressive growing procedure for net-
works D and G, which are trained on low resolution audio un-
til stable. Additional layers are then added to support more au-
dio samples and thus higher samplerates can be used to sample
the audio. Higher frequencies are learned in successive epochs as
training progresses. As in [10], the output size of layers grows in
increments of 4 until the desired samplerate of is met. When train-
ing completes at its current resolution, networks are incrementally
grown by adding a new set of layers to increase the resolution each
time by a multiple of 4. Skip connections are used to connect the
new block to the input of D or output of G and the newly added

DAFx.3

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

169

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Figure 3: Example waveform generations (left) and corresponding
Mel-scaled log frequency spectrograms (right) for kick drum (top),
snare drum (middle) and cymbal (bottom).

layers are linearly faded in to prevent shocks from the sudden ad-
dition of a larger layer. Fading between layers is controlled by
parameter r, which is linearly interpolated from 0 to 1. Learning
the earlier simple models first helps to stabilise training and pro-
gressively learn finer high frequency details. G and D both start
training with a short audio length of 256 samples. As training ad-
vances, we incrementally add layers to both G and D to increase
the number of samples used in the generated audio.

3.3. Dataset

For all experiments, both networks are trained using raw audio
waveforms. We compiled a dataset of drums sounds D selected
from a wide variety of sample libraries (including Loopmasters
and Splice). Sounds were categorised manually into p domains
comprising kick, snare and cymbal samples. Each domain contains
3000 individual samples resulting in a total dataset size of 9000
samples. All samples are mono 16-bit PCM audio files sampled at
44.1kHz. Prior to preprocessing, the mean sample length of each
audio file in the dataset was 18234 samples (i.e., 0.41s). In accor-
dance with the network architecture in [10], we choose the training
data input length to the nearest power of two (T = 16384) to sat-
isfy the symmetric structure of networks G and D. Each training
sample is trimmed or zero-padded to ensure a constant length of T
samples. All waveforms are normalised and a short linear fade of
samples is applied to the start and end of each waveform to ensure
that they consistently begin and end at 0 amplitude.

4. RESULTS

A system for generative audio synthesis of drum sounds has been
implemented as presented in Sections 2 and 3. We report on the
system’s capacity for generating coherent drum samples and pro-
vide an accompanying webpage3 for examples of individual gener-
ated audio samples, interpolation experiments, and example usage
within electronic music compositions. These examples allow for
subjective evaluation of audio generation quality and waveform
interpolation properties.

4.1. Generation Quality

Figure 3 presents examples of a kick drum, snare drum and cymbal
generated through the system output. Informal listening tests were
conducted to assess the generation quality of audio samples from
each class. Conditioning the system with labels improves overall
quality and omits overlap between classes. Generally, kick and
snare drums can be more easily modelled by the system and are
less prone to artifacts. As can be seen from the spectrograms in
Figure 3, some checkerboard artifacts remain; however, this does
not have a considerable effect on the overall perceived quality of
the drum sounds and in most cases could be removed with simple
post-processing (e.g., amplitude fading, equalisation). Inclusion of
the progressive growing procedure results in both reduced training
time and coherent audio generated at an earlier stage. Unfortu-
nately, this results in an increase in artifacts present, degrading the
perceived quality of the generations. Due to its fast training time,
the progressive growing model could be used as a tool to preview
drum samples from a large collection.

4.2. Latent Space Dimensionality

As the proposed system is intended to allow producers to interac-
tively navigate a compact representation of audio sounds, experi-
mentation was undertaken with a small latent dimensionality. The
dimensionality of the latent space and its relationship to generation
quality and diversity in GANs has yet to be thoroughly explored in
literature.

For comparison, we provide a selection of randomly generated
drum sounds from each domain using dz = 100 and dz = 3. Inter-
estingly, the size of the latent space had little effect on output audio
quality, following findings in other similar research [24]. Different
values for dz returned similar results, leading to our early con-
clusion that latent parameters up to rank three define the majority
of parameter variance within the set of 100 dimensions; however,
additional investigation is required to validate this.

4.3. Waveform Interpolation

The proposed system learns to map points in the latent space to the
generated waveforms. The structure of the latent space can be ex-
plored by interpolating between two random points. Experiments
with linear interpolation and spherical linear interpolation are pro-
vided on the accompanying webpage. The purpose of the spher-
ical linear interpolation experiment is to ensure that the curving
of the space is taken into account as linear interpolation assumes
that the latent space is a uniformly distributed hypercube. When
traversing the latent space, changes in audio quality are continuous

3https://jake-drysdale.github.io/blog/
adversarial-drum-synthesis/

DAFx.4

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

170

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

Figure 4: Interpolation in the latent space for kick drum genera-
tion. Kick drums are generated for each point along linear paths
through the latent space (left). Paths are colour coded and subse-
quent generated audio appears across rows (right).

and without abrupt variation. Figure 4 demonstrates the transition
between output kick drums when navigating linearly through the
latent space. Timbral modifications can be made to a generation
by making adjustments to latent variables Z. Larger steps in the
latent space are perceptually equivalent to smoothly mixing ampli-
tudes between distinct drum sounds whereas smaller adjustments
result in subtle variations of timbral characteristics. Subtle varia-
tions in timbre could be a useful for humanizing programmed drum
sequences to provide a more natural feel. While the effect each
dimension in d has on the output can not be anticipated, many ex-
amples demonstrate consistent variations in pitch, envelope shape
and the presence or omission of high and low frequencies. Spher-
ical interpolation seem to result in a more abrupt change of tim-
bral characteristics (e.g., alteration between different kick drum
sounds) than linear interpolation.

5. CONCLUSIONS AND FUTURE WORK

A method for generative audio synthesis of drum sounds using a
generative adversarial network has been presented. This system
provides a music production tool that encourages creative sound
experimentation. The results demonstrate the capacity of the con-
ditional model to generate a wide variety of different class-specific
drums sounds. High-level conditioning organises drum sounds
into specific categories, while a compact latent space allows for
intuitive synthesis control over output generations. The model is
lightweight and can be trained using a reasonably small dataset
to generate high-quality audio, further demonstrating the potential
of GAN-based systems for creative audio generation. The exper-
imental dataset could be replaced with an EM producers personal
collection of samples and custom tags could be defined for condi-
tioning. Future work will involve embedding the system into an
audio plug-in that can be evaluated by EM producers in efforts to
inform and improve the breadth of the design goals. The plug-in
will be designed to have various parameters that enable navigation
of the latent space.

6. REFERENCES

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio, “Generative adversarial nets,” in Proceed-
ings of the Advances in Neural Information Processing Sys-
tems (NIPS), pp. 2672–2680, 2014.

[2] Diederik P. Kingma and Max Welling, “Auto-encoding vari-
ational bayes.,” in Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2014.

[3] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu, “WaveNet: A gen-
erative model for raw audio,” in Proceedings of the ISCA
Speech Synthesis Workshop, 2016.

[4] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Diele-
man, Mohammad Norouzi, Douglas Eck, and Karen Si-
monyan, “Neural audio synthesis of musical notes with
WaveNet autoencoders,” in Proceedings of the International
Conference on Machine Learning (ICML), pp. 1068–1077,
2017.

[5] Maciek Tomczak, Jake Drysdale, and Jason Hockman,
“Drum translation for timbral and rhythmic transformation,”
in Proceedings of the International Conference on Digital
Audio Effects (DAFx), 2019.

[6] Philippe Esling, Axel Chemla-Romeu-Santos, and Adrien
Bitton, “Bridging audio analysis, perception and synthesis
with perceptually-regularized variational timbre spaces,” in
Proceedings of the International Society of Music Informa-
tion Retrieval Conference (ISMIR), pp. 175–181, 2018.

[7] Adrien Bitton, Philippe Esling, Antoine Caillon, and Mar-
tin Fouilleul, “Assisted sound sample generation with musi-
cal conditioning in adversarial auto-encoders,” in Proceed-
ings of the International Conference on Digital Audio Effects
(DAFx), 2019.

[8] Cyran Aouameur, Philippe Esling, and Gaëtan Hadjeres,
“Neural drum machine: An interactive system for real-time
synthesis of drum sounds,” in Proceedings of the Inter-
national Conference on Computational Creativity (ICCC),
2019.

[9] Mehdi Mirza and Simon Osindero, “Conditional generative
adversarial nets,” arXiv:1411.1784, 2014.

[10] Chris Donahue, Julian J. McAuley, and Miller S. Puckette,
“Adversarial audio synthesis,” in Proceedings of the Inter-
national Conference on Learning Representations (ICLR),
2019.

[11] Alec Radford, Luke Metz, and Soumith Chintala, “Unsuper-
vised representation learning with deep convolutional gen-
erative adversarial networks,” in Proceedings of the Inter-
national Conference on Learning Representations (ICLR),
2016.

[12] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan
Gulrajani, Chris Donahue, and Adam Roberts, “GANSynth:
Adversarial neural audio synthesis,” in Proceedings of the In-
ternational Conference on Learning Representations (ICLR),
2019.

[13] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen,
“Progressive growing of gans for improved quality, stability,
and variation,” in Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2017.

DAFx.5

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

171

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

[14] Martin Arjovsky, Soumith Chintala, and Léon Bottou,
“Wasserstein gan,” in Proceedings of the International Con-
ference on Machine Learning (ICML), pp. 214–223, 2017.

[15] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C. Courville, “Improved training of
wasserstein gans,” in Proceedings of the Advances in Neu-
ral Information Processing Systems (NIPS), pp. 5767–5777,
2017.

[16] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and
Adam Roberts, “Ddsp: Differentiable digital signal pro-
cessing,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2020.

[17] António Ramires, Pritish Chandna, Xavier Favory, Emilia
Gómez, and Xavier Serra, “Neural percussive synthesis pa-
rameterised by high-level timbral features,” in Proceedings
of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 786–790, 2020.

[18] Daniel Stoller, Sebastian Ewert, and Simon Dixon, “Wave-
u-net: A multi-scale neural network for end-to-end audio
source separation,” in Proceedings of the 19th International
Society for Music Information Retrieval Conference (ISMIR),
pp. 334–340, 2018.

[19] Maciek Tomczak, Masataka Goto, and Jason Hockman,
“Drum synthesis and rhythmic transformation with adversar-
ial autoencoders,” in Proceedings of the ACM International
Conference on Multimedia, 2020.

[20] Vaishnavh Nagarajan and J. Zico Kolter, “Gradient descent
gan optimization is locally stable,” in Proceedings of the
Advances in neural information processing systems (NIPS),
pp. 5585–5595, 2017.

[21] Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob
Fergus, “Deep generative image models using a Laplacian
pyramid of adversarial networks,” in Proceedings of the Ad-
vances in Neural Information Processing Systems (NIPS),
pp. 1486–1494, 2015.

[22] Augustus Odena, Vincent Dumoulin, and Chris Olah, “De-
convolution and checkerboard artifacts,” in Distill, 2016.

[23] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[24] Thomas Pinetz, Daniel Soukup, and Thomas Pock, “Impact
of the latent space on the ability of GANs to fit the dis-
tribution,” https://openreview.net/forum?id=
Hygy01StvH , 2019.

DAFx.6

DAF
2

x
21in

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

172

STYLE-BASED DRUM SYNTHESIS WITH GAN INVERSION

Jake Drysdale, Maciek Tomczak, Jason Hockman
Sound and Music Analysis (SoMA) Group, Digital Media Technology Lab (DMT Lab)

School of Computing and Digital Technology
Birmingham City University

Birmingham, UK
jake.drysdale@bcu.ac.uk

ABSTRACT

Neural audio synthesizers exploit deep learning as an al-
ternative to traditional synthesizers that generate audio
from hand-designed components, such as oscillators and
wavetables. For a neural audio synthesizer to be applica-
ble to music creation, meaningful control over the output is
essential. This paper provides an overview of an unsuper-
vised approach to deriving useful feature controls learned
by a generative model. A system for generation and trans-
formation of drum samples using a style-based generative
adversarial network (GAN) is proposed. The system pro-
vides functional control of audio style features, based on
principal component analysis (PCA) applied to the inter-
mediate latent space. Additionally, we propose the use of
an encoder trained to invert input drums back to the latent
space of the pre-trained GAN. We experiment with three
modes of control and provide audio results on a supporting
website.

1. INTRODUCTION

One of the chief skills harnessed by electronic music
(EM) producers is the ability to select and arrange suit-
able drum sounds. The integration of drum sounds into an
EM composition may be achieved either through the time-
consuming task of browsing sound libraries for an appro-
priate drum recording or alternatively through the use of
traditional drum synthesizers, which require mastery over
a large number of parameters, and provide only limited
control over sound generation. More recently, neural drum
synthesis [1–3] has been proposed to allow EM produc-
ers to interactively generate and manipulate drum sounds
based on personal sound collections.

As compared to traditional drum synthesis techniques
(e.g., subtractive, FM), control parameters are learned
through an unsupervised process. Neural audio synthesis
enables intuitive exploration of a generation space through
a compact latent representation. A crucial requirement of

© Jake Drysdale, Maciek Tomczak, and Jason Hockman.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jake Drysdale, Maciek Tomczak, and
Jason Hockman, “Style-based Drum Synthesis with GAN Inversion”, in
Extended Abstracts for the Late-Breaking Demo Session of the 22nd Int.
Society for Music Information Retrieval Conf., Online, 2021.

a well-trained latent representation is its ability to gener-
ate audio with musically-meaningful control over the out-
put. In the case of neural drum synthesis, previous methods
have been proposed to enable continuous semantic control
over generations by supplying high-level conditional infor-
mation based on a chosen set of audio features [2–4].

In this paper, an unsupervised approach for deriving
useful synthesis parameters is used as an alternative to
selecting and extracting a fixed set of audio features.
The proposed system is based on [1], and is extended
with a conditional style-based generator network [5] for
drum style (i.e., timbre) transformations. A mapping be-
tween a distribution of labelled drum sounds and a low-
dimensional latent space is learned, providing high-level
control over generation. The system operates directly on
waveforms and leads to an unsupervised separation of
high-level features (e.g., pitch, envelope shape, loudness),
and enables intuitive, layer-wise control of the synthesis.
Additionally, we introduce a novel approach to audio re-
construction through GAN inversion—a set of techniques
for inverting a given input back into the latent space of a
pre-trained GAN [6]. Using the predicted latent code, an
input can be reconstructed by the GAN and manipulated
using directions found in its latent space.

2. SYSTEM OVERVIEW

Figure 1 provides an overview of the proposed system for
neural drum synthesis, which is achieved using four net-
works: (1) mapping network, (2) generator, (3) discrimina-
tor, (4) encoder. In a style-based GAN formalisation [5,7],
latent space Z is transformed into an intermediate space
W using mapping network M : Z −→ W . To facilitate
the functionality of the mapping network, G is modified
to take a constant value as input, and an intermediate la-
tent vector w ∈ W is provided to each upsampling layer.
The mapping network M is a conditional multilayer per-
ceptron, that learns to create disentangled features that are
integrated at each upsampling block of the generator net-
work G through adaptive instance normalisation (AdaIN).
The generator is trained to output audio waveforms given
a constant input and latent vector w for each upsampling
block with affine transform A. Gaussian noise is added to
each upsampling block using per-layer scaling factors B
to introduce stochastic variation at each layer. Discrimi-

Figure 1. Overview of proposed style-based drum synthesis system.

nator D takes both a waveform and conditioning variable
as an input and is trained to estimate the Wasserstein dis-
tance between the generated and observed distributions.
All three networks are optimised simultaneously until G
can produce waveforms that are indistinguishable from the
observed training data.

The model was trained using a dataset of 9000 single
drum hits selected from multiple commercially available
sample libraries [1]. To increase the size of the dataset,
individual drum sounds were augmented by pitch shifting
between ±3 semitones, resulting in a total of 63000 sam-
ples. The system uses WGAN-GP [8] training strategy to
minimise the Wasserstein distance [9] between the train-
ing data distribution and generated data distribution. The
model is trained using Adam optimiser [10] with a learn-
ing rate of 0.002 for the D and G networks and a minibatch
size of 64 on an NVIDIA 2080ti GPU for 200k iterations.

2.1 Audio Inversion Network

Based on recent advances in the image domain [6], an en-
coder network E is trained separately to embed a given
waveform into the intermediate latent space of the pre-
trained generator. The predicted latent vectors are fed into
the generator to synthesise drum sounds with similar char-
acteristics to the input waveform. E replicates the architec-
ture of the discriminator network D; however, the model is
unconditional and its final dense layer has been modified
to have has 128 output units to match the dimensionality
of W . Using a dataset of 10000 drum sounds generated
with pre-trained network G, E is trained to minimise the
MSE between the ground truth latent vectors and the pre-
dicted latent vectors.

2.2 Principal Feature Directions

PCA identifies patterns within the intermediate latent space
W , deriving a set of coordinates that emphasise variation in
timbre. G feature controls are achieved by layer-wise per-
turbation along the principal directions. Following [11],
principal axes of p(w) are identified with PCA. N ran-
dom vectors are sampled from Z and the corresponding wl

values are computed with M . At inference, PCA can be
computed on wl to obtain a basis V forW . The principal
components of wl can then be used to control features of

the generator by varying PCA coordinates scaled by con-
trol parameter g such that w′ = w + V g. Each entry gi is
initialised with zeros until modified by a user.

2.3 Synthesis Control Parameters

Style-based drum synthesis with GAN inversion allows the
user to interact with the system parameters in three ways.
In the first approach, drum synthesis can be controlled by
sampling from the intermediate latent space and exploring
the timbral characteristics with a preset number of style
faders (i.e., PCA coordinates at each layer). In the second
approach, the user can input a single drum sample to the
encoder and modify its characteristics with style faders. In
the third approach, the encoder can be used to reconstruct
two arbitrary drum sounds, and various interpolation tech-
niques may be incorporated for style transformation. Ad-
ditionally, in each control method, Gaussian noise can be
introduced into individual generator layers to modify the
amount of stochastic variation within network layers. This
is useful for shaping the high-frequency content of the gen-
erated drum sounds—especially for cymbals and snares.

3. EXPERIMENTAL RESULTS

For a demonstration of the generated drum sounds and
synthesis parameters, we invite the reader to listen to the
results and experiment with the code available on the ac-
companying website. 1 A python script is provided, which
loads the networks pre-trained weights and enables utilisa-
tion of the synthesis control parameters described in Sec-
tion 2.3. By traversing the latent space using the controls
provided, a user can explore a space of different drum
sounds. The audio examples demonstrate the systems
capacity to generate a variety of different drum sounds,
manipulate timbral characteristics and perform transfor-
mations between different inputs such as beatboxing and
breakbeats. Although it is currently difficult to anticipate
the exact effect that each principal direction has on the gen-
erated drum sounds, the directions correlate to changes in
timbre, pitch and amplitude envelope.

1 https://jake-drysdale.github.io/blog/
stylegan-drumsynth/

4. REFERENCES

[1] J. Drysdale, M. Tomczak, and J. Hockman, “Adver-
sarial synthesis of drum sounds,” in Proceedings of
the International Conference on Digital Audio Effects
(DAFx), 2020.

[2] A. Ramires, P. Chandna, X. Favory, E. Gómez, and
X. Serra, “Neural percussive synthesis parameterised
by high-level timbral features,” in Proceedings of the
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 786–790, 2020.

[3] J. Nistal, S. Lattner, and G. Richard, “DrumGAN: Syn-
thesis of drum sounds with timbral feature condition-
ing using generative adversarial networks,” in the 21st
International Society for Music Information Retrieval
Conference (ISMIR), 2020.

[4] M. Tomczak, M. Goto, and J. Hockman, “Drum syn-
thesis and rhythmic transformation with adversarial au-
toencoders,” in Proceedings of the ACM International
Conference on Multimedia, pp. 2427–2435, 2020.

[5] T. Karras, S. Laine, and T. Aila, “A style-based gener-
ator architecture for generative adversarial networks,”
in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 4401–4410, 2019.

[6] W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-
H. Yang, “GAN inversion: A survey,” arXiv preprint
arXiv:2101.05278, 2021.

[7] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehti-
nen, and T. Aila, “Analyzing and improving the image
quality of stylegan,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pp.8110–8119, 2020.

[8] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. C. Courville, “Improved training of wasserstein
GANs,” in Proceedings of the Advances in Neural In-
formation Processing Systems (NIPS), pp. 5767–5777,
2017.

[9] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein
GAN,” in Proceedings of the International Conference
on Machine Learning (ICML), pp. 214–223, 2017.

[10] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in Proceedings of the In-
ternational Conference on Learning Representations
(ICLR), 2015.

[11] E. Härkönen, A. Hertzman, J. Lehtinen, and S. Paris,
“GANspace: Discovering interpretable GAN con-
trols,” in Proceedings of the Advances in Neural In-
formation Processing Systems (NIPS), pp. 9841–9850,
2020.

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

IMPROVED AUTOMATIC INSTRUMENTATION ROLE CLASSIFICATION AND LOOP
ACTIVATION TRANSCRIPTION

Jake Drysdale ∗ and Jason Hockman

Sound and Music Analysis Group, Digital Media Technology Lab
School of Computing and Digital Technology

Birmingham City University
Birmingham, UK

jake.drysdale@bcu.ac.uk

António Ramires ∗ † and Xavier Serra

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
antonio.ramires@upf.edu

ABSTRACT

Many electronic music (EM) genres are composed through the
activation of short audio recordings of instruments designed for
seamless repetition—or loops. In this work, loops of key struc-
tural groups such as bass, percussive or melodic elements are la-
belled by the role they occupy in a piece of music through the task
of automatic instrumentation role classification (AIRC). Such la-
bels assist EM producers in the identification of compatible loops
in large unstructured audio databases. While human annotation is
often laborious, automatic classification allows for fast and scal-
able generation of these labels. We experiment with several deep-
learning architectures and propose a data augmentation method for
improving multi-label representation to balance classes within the
Freesound Loop Dataset. To improve the classification accuracy
of the architectures, we also evaluate different pooling operations.
Results indicate that in combination with the data augmentation
and pooling strategies, the proposed system achieves state-of-the-
art performance for AIRC. Additionally, we demonstrate how our
proposed AIRC method is useful for analysing the structure of EM
compositions through loop activation transcription.

1. INTRODUCTION

Affordable music production technologies (e.g., digital audio work-
stations) for incorporating and manipulating samples have democra-
tised the EM creation process, allowing users with varying levels
of musical knowledge to experiment in the creation of EM. A large
majority of popular music is composed in this manner, inheriting
some characteristics of EM, such as the use of samples, sequence-
driven composition and a fixed tempo throughout the piece.

For sampled content, EM producers often rely on well-known
sample libraries (e.g., Splice), which consist primarily of individ-
ual sounds and loops—short audio recordings (one, two or four
bars in length) of instruments designed for seamless repetition [1].
Loops may be created by sequencing individual sounds or sam-
pling a short musical phrase from a solo or polyphonic instrumen-
tal recording. These loops serve as the material from which music
makers can generate EM compositions through various editing and

∗ Both authors have contributed equally
† This project has received funding from the European Union’s Horizon

2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 765068, MIP-Frontiers.
Copyright: © 2022 Jake Drysdale et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, adaptation, and reproduction in any medium,

provided the original author and source are credited.

Figure 1: A simplified EM composition structure, built with five
loop layers. Log-scaled STFT power spectrogram (top) and corre-
sponding role activations: Chords (C), Melody (M), Sound Fx (F),
Bass (B), and Percussion (P) at 4-bar intervals (bottom).

combinatory processes (e.g., layering, splicing, rearranging). Fig-
ure 1 depicts a simplified representation of the EM creation pro-
cess involving the layering and repeated activation of loops with
different roles.

In this paper, we propose a system for automatic instrumenta-
tion role classification (AIRC) to label a loop by its specific func-
tion within a EM composition (e.g., drums, chords, melody, bass,
sound Fx). System performance is measured through evaluation
with state-of-the-art audio classification models and a data aug-
mentation procedure that utilises common production techniques
used in commercial music recordings. By estimating instrumen-
tation roles for fixed-length segments of an EM composition, it is
possible to retrieve an informative map of musical structure.

1.1. Related Work

In recent years, there has been an increased focus on research re-
lated to audio loops within the field of music information retrieval.
There are several methods that exist for automated loop retrieval
[2, 3, 4, 5, 6], and loop creation [7, 8, 9].

In addition, there are two recent methods proposed for loop ac-
tivation transcription, a task that involves estimating the locations

DAFx.1

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

264

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

in which loops occur throughout a piece of music. López-Serrano
et al. [10] proposed a method for decomposing loop-based EM us-
ing non-negative matrix factorization deconvolution (NMFD) [11]
to estimate spectral templates and rhythmic activations from mag-
nitude spectrograms. Following this work, Smith et al. [12] pro-
pose an alternative method to discovering loop activations of EM
using non-negative tensor factorization (NTF) [13]. While non-
negative matrix factorization approaches allow for separation of
mixed audio into the constituent loops of a music composition,
they rely on non-varying repetitions of loops and do not optimise
independence between learned loop representations.

As an alternative to the aforementioned approaches, which
seek to identify the instrument within a loop and its associated ac-
tivation, music auto-tagging is a multi-label classification task that
may be used to denote presence of an attribute or instrument. Pre-
vious approaches have applied standard Convolutional Neural Net-
works (CNNs) to this task [14, 15], while recent work has focused
on the application of musical knowledge for pitch and loudness
invariance through musically-motivated filter shapes [16]. Won et
al. [17] achieved state-of-the-art accuracy for auto-tagging by us-
ing data-driven Harmonic filters, a harmonically-stacked trainable
representation to preserve time-frequency locality in convolution
layers.

AIRC is a music auto-tagging task that estimates the pres-
ence of active instrumentation role groups (e.g., percussion, bass,
melody, chords, sound Fx) within audio recordings. Research in
AIRC has been facilitated by the development of the Freesound
Loop Dataset (FSLD), a large public collection of loops and corre-
sponding instrumentation role annotations from Freesound.1 Ching
et al. [18] benchmark AIRC performance of neural network and
non-neural network models on the non-sequenced loops of FSLD,
and achieve the current state-of-the-art performance using a Har-
monic CNN [17].

1.2. Motivation

As EM production (i.e., creation, selection, manipulation) is
guided heavily by aesthetic preferences, producers often select
sounds based on their function within loops. With a wide range
of traditional and synthesized timbres from which to select, in-
struments are often utilised outside traditional roles. We thus fol-
low the AIRC problem formalisation as represented in Ching et al.
[18], which associates instrumental roles with short loops. We ex-
pand on this approach by applying AIRC to full EM compositions,
in which multiple instrumentation roles (e.g., percussion, melody,
bass playing together) are often active. [18] observed that accuracy
and bias were reduced by the overuse of single labels, due to lim-
ited coverage of multi-label annotations in the FSLD. To mitigate
this imbalance, we introduce a novel data augmentation technique
to balance classes and experiment with several deep-learning ar-
chitectures and pooling operations, resulting in a state-of-the-art
AIRC system.

We then demonstrate the usefulness of AIRC in EM structural
analysis by comparing our system with previous approaches for
loop activation estimation. Additionally, the proposed AIRC sys-
tem is shown to derive key structural information from full-length
EM compositions in the form of instrumentation role activation
maps, which would be of use in tasks such automatic DJing [19],
mashups [20], and loop creation [4]. Finally, we show that the sys-
tem is capable of identifying percussion only passages and then

1https://freesound.org/

compare it against the previous state-of-the-art for breakbeat iden-
tification. For reproducibility, we provide open-source code for the
proposed data augmentation method and AIRC system.

The remainder of this paper is structured as follows: Section 2,
presents the proposed method for AIRC and loop activation tran-
scription. Evaluation methodology and the datasets used in this
study are detailed in Section 3 and the results and discussion are
provided Section 4. Conclusions and suggestions for future work
are presented in Section 5.

2. METHODOLOGY

In this study, several CNN architectures are evaluated to identify
the best system for AIRC. Each architecture utilises different con-
figurations of front-end filter shapes to learn a representation from
spectrograms and pooling operations that derive the final predic-
tions by summarising the information learned by the network.

As the data employed in AIRC contains different types of mu-
sical audio, from tonal melodies to noise-like sound Fx, this moti-
vates the experimentation of architectures aimed at different sound
classification tasks. Three front-end filter shapes are used: general
domain square filters, vertical filters [16] tailored towards classify-
ing the timbre of melodic instruments, and previous state-of-the-
art for AIRC—harmonic band-passfilters which capture harmonic
characteristics.

To improve the AIRC predictions, two methods for summariz-
ing the information learned in the final convolutional layers of a
CNN are investigated. The standard approach to is to use global
max-pooling (GMP); however, this infers strict assumptions about
the label characteristics of the data. In the closely related field
of sound event detection, auto-pooling has been proposed to auto-
matically learn the best suited operation by interpolating between
max-, mean-, or min-pooling during training. We implement both
GMP and auto-pooling and compare their performance for the task
of AIRC.

2.1. Implementation

Audio is input into the networks as a spectrogram representa-
tion, from which features are extracted through convolutional lay-
ers. Output predictions return values between [0., 1.] depicting the
presence of active instrumentation roles.

For each network, the input layer is a four-dimensional tensor
t ∈ Rb×w×h×c, with batch size b, number of frames w, number of
frequency bins h, and channels c. Following [16], each model uses
L2-norm regularization of filter weights to encourage loudness in-
variance with the exception to the harmonic CNN-based models,
which use a weight decay of 1e–4 [17].

2.1.1. Vertical filter network

The vertical filter network (VF-CNN) is based on the multi-layer
architecture in [16] for musical instrument recognition. Figure 2
provides an overview of the VF-CNN configuration. The input spec-
trogram is set to be of size 500 × 128 to accommodate for longer
observations of audio loops (see Section 2.2). The front-end uti-
lizes several vertical convolution filter sizes (black rectangles in
Figure 2) to efficiently model timbral characteristics present in the
spectrogram. Custom filter sizes are used to capture both wide
(e.g., bass, chords) and shallow spectral shapes (e.g, percussion).

DAFx.2

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

265

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Ba
tc

h
N

or
m

al
iz

at
io

n
M

ax
 P

oo
lin

g

C
on

ca
t

C
on

v:
12

8
(3

,3
)

Ba
tc

h
N

or
m

al
iz

at
io

n
M

ax
Po

ol
in

g

C
on

v:
12

8
(3

,3
)

Ba
tc

h
N

or
m

al
iz

at
io

n
M

ax
 P

oo
lin

g

C
on

v:
12

8
(4

,1
)

Ba
tc

h
N

or
m

al
iz

at
io

n
Ti

m
e

D
is

tri
bu

te
d

D
en

se

Au
to

Po
ol

Pr
ed

ic
tio

ns

Frequency

Ti
m

e

Figure 2: Block diagram showing the configuration of the vertical filter network with auto-pooling.

The numbers and sizes of filters used in the front-end are as fol-
lows: 128 filters of sizes 5× 1 and 80× 1; 64 filters of sizes 5× 3
and 80× 3; and 32 filters of sizes 5× 5 and 80× 5.

All convolutions in the front-end use same padding, and max-
pooling is applied to obtain a 16 × 16 summary of each feature
map. This is followed by two 2-D convolutional layers with batch
normalisation [21] and exponential linear unit (ELU) [22] activa-
tion functions. The first 2-D convolutional layer is followed by
strided (2, 2) max-pooling. After the final 2-D convolutional layer,
we experiment with two pooling operations to summarise the in-
formation learned by previous layers prior to predictions (see Sub-
section 2.1.4).

2.1.2. Square filter network

The square filter network (SF-CNN) contains four 2-D convolu-
tional layers with 128 small-rectangular filters of size 3 × 3 and
same padding. After each convolutional layer, batch normaliza-
tion is applied with an ELU [22] activation function. Each con-
volutional layer is followed by strided (2, 2) max-pooling, with
the exception of the final convolutional layer, which also uses one
of the two summarization pooling operations described in Section
2.1.4.

2.1.3. Harmonic CNN

In [18], AIRC was approached using a CNN with a data-driven
harmonic filter-based front-end (H-CNN) [17]. We re-implement
this architecture and use it as a baseline to test our proposed mod-
els. The input t is passed through a set of triangular band-pass
filters to obtain a tensor representing it as six harmonics. Har-
monic structure is captured by treating the harmonics as channels
and processed by a 2-D CNN. The CNN consists of seven convo-
lution layers and a fully connected layer. All but the final convolu-
tional layer is followed by 2×2 max-pooling, batch normalization
and a ReLU activation function. Global max-pooling is applied to
the final convolutional layer. The output layer is a 5-way fully-
connected layer with, a sigmoid activation function and a 50 %
dropout.

2.1.4. Summarization Pooling

We consider two pooling operations for summarizing the infor-
mation learned in the final convolutional layers: auto-pooling and
standard global max-pooling.

Auto-pool is a trainable pooling operator capable of adapt-
ing to data characteristics by interpolating between min-, max-, or
average-pooling [23]. For the configurations that use auto-pooling,
the final convolutional layer uses as kernel size (4,1). This is fol-
lowed by batch normalisation and a time-distributed dense layer
with a sigmoid activation function and r output nodes, where r is
equal to the number of classes. The output of the time-distributed
dense layer is fed to the auto-pooling operation, which produces
the final predictions.

For configurations that use GMP, the final convolutional layer
is summarised with global max-pooling and then fed to a fully-
connected output layer consisting of r output nodes, sigmoid acti-
vation functions and a 50% dropout.

2.1.5. Loss function

The loss function used for updating the parameters of each model
is binary cross-entropy (BCE). BCE can be calculated as:

BCE = − 1

N

N∑
i=1

yi · log(p(yi))+(1−yi) · log (1−p(yi)), (1)

where N represents the number of examples in the training set and
p(yi) s the predicted probability of the ith example.

2.2. Network Training

Input audio is pre-processed through resampling and conversion
to a spectrogram representation. Audio loops are resampled to
16kHz and the short-time Fourier transform (STFT) of each loop
is calculated using a window size of 512 samples and a hop size
of 256 samples. For the H-CNN, magnitudes of STFT are provided
as input to the model. For the SF-CNN and VF-CNN, the inputs are
log-scaled Mel spectrograms with 128 Mel-frequency bands.

All models are trained using the Adam optimiser [24] with a
learning rate 1e–4, where each iteration takes a mini-batch of 8
examples. All weights are initialized using He’s constant [25] to
promote equalized learning. Early stopping was used to complete
the training once the model performance ceases to improve over
15 epochs. The epoch that achieves the best accuracy on the vali-
dation set is used for testing.

2.3. Loop Activation Transcription

Loop activation transcription involves predicting the loop activa-
tions of instrumentation roles as they occur over time. Taking ad-

DAFx.3

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

266

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

vantage of the grid-based structure and consequently fixed tempo
of loop-based EM, we are able to use the proposed AIRC system
to analyse the loop structure of a given composition. The AIRC
system enforces separation between roles by design and does not
rely on loops being an exact repetition of themselves, thus making
it robust to variation such as automation and resequencing.

Instrumental role predictions for full EM compositions are ob-
tained by passing an audio file into the AIRC system in 4-bar
segments and assessing output activations. By segmenting a full-
length EM composition into 4-bar loops, on which we then per-
form AIRC, instrumentation role activations may be derived for
each loop, resulting in a form of EM transcription.

3. EVALUATION

The AIRC model presented in Section 2 is assessed through two
evaluations to determine: 1) AIRC performance using the various
configurations and augmented version of the FSLD, and 2) perfor-
mance for loop activation transcription.

3.1. Automatic Instrumentation Role Classification

3.1.1. Evaluation Methodology

The architectures (i.e., VF-CNN, SF-CNN, and H-CNN) and pool-
ing strategies (i.e., auto-pooling and GMP) presented in Section
2 are evaluated in order to determine the optimal configuration
for AIRC. Following [18, 26], we use two sets of performance
measurements: Area under receiver operating characteristic curve
(ROC-AUC) and area under precision-recall curve (PR-AUC). The
metrics were calculated on the test set for each of the models under
evaluation.

In [18], the authors also calculate the F1 score; however, we
omit this evaluation metric as it depends on a decision threshold
applied to the per-class output scores; whereas, ROC-AUC and
PR-AUC measure model performance globally, integrating all pos-
sible thresholds.

3.1.2. Augmented Freesound Loop Dataset

To train and evaluate the different models we use the Freesound
Loop Dataset (FSLD) [27], comprising of various loops uploaded
to Freesound [28] under Creative Commons licensing. Of the var-
ious annotations present within the FSLD, we use tempo, key and
loop instrumentation roles. The most important of which is the
instrumentation role—a multi-label annotation for which the pos-
sible roles are: percussion, bass, chords, melody, sound Fx and
vocals.

The original FSLD contains 2936 loops, of which 1531 have
only one instrumentation role and 1405 have more than one. As
can be seen from the class distribution in Table 1, the classes in
this dataset are heavily imbalanced.

Percussion 54.95 Fx 24.80
Bass 19.10 Melody 21.31
Chords 11.90 Vocal 2.29

Table 1: Distribution (%) of instrumentation roles in FSLD.

In order to adapt this dataset to our task, we apply modifica-
tions to the data. We first remove all vocal loops as they do not pro-
vide sufficient training and testing material. All remaining loops

are time-stretched to 120 beats per minute (BPM). Longer loops
are cropped to a length of 4 bars (i.e., 8 secs), while loops shorter
than 4 bars are cropped to either 1 or 2 bars and repeated to a length
of 4 bars. We separate loops which have multiple instrumentation
roles from those which only have one, and randomly select 70%
of each for training and 30% for validation and testing. From the
latter split, 60% are used for testing and 40% for validation.

Besides using the previously described training set of the
FSLD, we applied a data augmentation procedure to handle the
main imbalance issues on the dataset. These are 1) the lesser pres-
ence of loops with more than one instrumentation role (i.e., multi-
label) compared to the ones with just one role (i.e., single-label)
and; 2) the number of loops for each instrumentation role class,
shown in Table 2.

The data augmentation procedure utilises common production
techniques that are used in commercial music recordings including
key matching, tempo matching and the use of audio Fx such as
distortion, reverb and chorus.

Percussion 929 Fx 222
Bass 92 Melody 174
Chords 102

Table 2: Distribution of the loops with only one instrumentation
role in FSLD.

To balance the number of loops per class, we use an augmen-
tation methodology similar to the one proposed in Ramires et al.
[29]. The loops are processed through several effects, including
delay, bitcrusher, chorus, flanger, reverb, tube saturation and pitch-
shifting, resulting in 1000 loops for each of the r classes under
observation (r = 5), totalling 5000 loops.

We create multi-role data by overlapping loops from each aug-
mented single label class such that all single and combined classes
contain the same number of loops. We start by calculating the
possible combinations

(
r
k

)
, where k is the number of instrumen-

tation roles in the combination (2 ≤ k ≤ 5). To balance the
dataset in both the number of loops per instrumentation role and
in k, the number of augmented loops (5000) is divided by

(
r
k

)
to

obtain the number of loops required for each combination (e.g.,
for k=2, 5000/

(
r
k

)
= 500 for each combination of roles). The

final loops are then created by harmonically combining the single
instrumental role loops. We combine only loops with compatible
modes (e.g., Major with Major), and pitch shift the selected loops
to their average key.

Discarding the original multi-label loops of the training set,
this process results in a total of 25000 loops that can can used
for training. In order to evaluate the effect of this augmentation
procedure (Aug), we compare the accuracy of the models trained
with those trained with the original dataset (FSLD) on the same
test and validation data.

Percussion 27.59 Fx 23.17
Bass 20.33 Melody 18.15
Chords 10.77

Table 3: Distribution (%) of instrumentation roles in the test set.

DAFx.4

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

267

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Model Dataset Pooling Param. PR-AUC ROC-AUC Bass Fx Perc. Chords Melody
H-CNN Aug GMP 3619986 59.18 77.34 40.30 57.05 94.60 47.92 56.01
H-CNN Pure GMP 3619986 61.83 80.39 53.65 42.21 94.10 60.30 58.89
VF-CNN Aug GMP 1098869 65.60 80.99 47.11 64.92 97.62 63.11 55.22
VF-CNN Pure Auto 1102394 66.98 82.52 57.59 66.43 95.75 50.37 64.77
VF-CNN Aug Auto 1102394 67.47 81.40 46.18 67.10 97.05 56.13 70.89
SF-CNN Aug Auto 313674 68.15 82.19 55.12 68.30 98.03 58.81 60.49
SF-CNN Aug GMP 445701 68.40 81.59 62.21 59.80 95.93 62.39 61.68
SF-CNN Pure GMP 445701 68.74 83.83 58.72 63.11 95.97 64.74 61.14
VF-CNN Pure GMP 1098869 70.62 85.72 53.83 71.73 97.84 64.90 64.78
SF-CNN Pure Auto 313674 71.28 85.12 57.76 59.18 95.98 73.20 70.30

Table 4: AIRC performance (%) and model size for each configuration, where bold indicates highest scores.

3.2. Loop Activation Transcription

3.2.1. Evaluation Methodology

To investigate the capacity of the AIRC system for transcribing
loop activations in EM compositions, we compare all the AIRC
configurations (Section 2). The best performing configurations are
then compared with the results of the previous approach to loop
activation transcription by Smith et al. [12].

As in [30, 12], we evaluate the loop activation predictions
against a ground truth in terms of accuracy. As accuracy expects
a binarised transcription, we use a repeated k-fold cross validation
together with a grid search to identify the best threshold for bi-
narising the predictions of each role. In order to investigate the
generalization of the proposed models, we use 2-fold cross vali-
dation repeated 10 times, where one fold is used as a validation
set to identify thresholds and the other is reserved for computing
accuracy against the ground truth. Thresholds for each class are
identified by performing a grid search over a range between 0.01
and 1 with a step size of 0.01, then selecting the thresholds which
provide highest accuracy on the validation set.

In [12], approaches which require the downbeat tracking are
considered guided. As our proposed approach requires BPM an-
notations for time-stretching, we only compare our models with
the guided algorithms.

3.2.2. Dataset

We apply our proposed models to the dataset used in [30, 12]. The
dataset consists of simplified EM compositions built by generating
templates similar to the ones in Figure 1 with 4-bar loops. We refer
to this as the Artificial dataset for the reason that the the loops are
repeated without variation, which would usually be achieved in
professional music through DAW techniques, such as automation
and resequencing.

The automatic arrangement method provided in [12] is used
to build 21 music compositions with seven genres and three
templates–composed, factorial and shuffled factorial. For the com-
posed template, loops are introduced and removed in an iterative
manner. The factorial template contains all possible combinations
of loops, arranged iteratively. The shuffled factorial template con-
tains the same loop combinations, with shuffled ordering. Facto-
rial and shuffled factorial datasets are useful for seeing how the
models perform on all of the loop combination possibilities for the
Artificial dataset, whereas composed layout is more representative
of typical EM compositions in regards to the way that loops are
iteratively introduced and removed throughout the composition.

Following the AIRC procedure, compositions are time-
stretched from their annotated tempo to 120BPM and divided into
4-bar loops, which are provided as input to the AIRC systems.

4. RESULTS & DISCUSSION

4.1. Automatic Instrumentation Role Classification

The models are evaluated using use the marco-average (MA) of
the PR-AUC and of the ROC-AUC as a global metric. For individ-
ual instrumentation roles, we only show the PR-AUC. Due to the
imbalance of the FSLD, which also affects the test set (Table 3),
MA is used to provide an average accuracy over each class.

Table 4 presents the results of our AIRC experiment for the
models discussed in Section 2, in which each model is presented
in ascending order of their average PR-AUC. The ROC-AUC per-
formance measure is consistently higher than PR-AUC; however,
this metric can lead to over-optimistic scores when the dataset is
unbalanced [31].

The best performing models w.r.t PR-AUC, are the SF-CNN
with auto-pooling (71.28%) followed by the VF-CNN with GMP
(70.61%). Both models surpass the current state-of-the-art, H-CNN
trained on FSLD (61.82%) by a substantial margin. The SF-CNN
mostly performs better than its VF-CNN counterpart. Vertical fil-
ters have been demonstrated to produce comparatively better re-
sults with tonal musical audio [32]; however, the results of our
evaluations suggest that square filters generalise better to the non-
standard types of audio associated with EM.

The overall best performing model in terms of PR-AUC is the
SF-CNN with auto-pooling trained on the Pure dataset. However,
by closely inspecting the results achieved for individual instrumen-
tation roles, it can be seen that it surpasses by almost 10% the
PR-AUC achieved by other models in the Chords class, while not
achieving such a high result in Bass, Fx and Percussion.

The highest performing instrumentation role for all models is
Percussion, which was expected due to this role having the largest
number of examples in the FSLD dataset. The roles that gener-
ally perform worst are Bass and Chords, which have the smallest
number of examples in the FSLD. The performance of Bass has
a considerable increase when using a combination of the SF-CNN
with GMP and augmented data. Additionally, Chords performs
significantly better when using the SF-CNN and auto-pooling con-
figuration trained with the Pure dataset.

The best three performing models in terms of PR-AUC are
trained on the Pure dataset, followed by the Augmented one. How-
ever, it can be seen that the Bass, Percussion and Melody roles tend

DAFx.5

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

268

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

to benefit from training with the Augmented dataset. As the con-
figurations perform better for different classes, it is possible to use
a combination of the models for classifying individual instrumen-
tation roles. This combination would lead to an average PR-AUC
of 75,213%, substantially surpassing each model.

4.2. Loop Activation Transcription

Table 5 presents the loop activation transcription results using the
AIRC configurations (Section 2) to transcribe the compositions in
the Artifical dataset. Each model is presented in ascending order of
their mean classification accuracy over the instrumentation roles.
Additionally, Table 5 provides the classification accuracy for each
individual role (Bass, Drums, Fx and Melody).

Model Data Pooling Mean Bass Drums Fx Melody
H-CNN Pure GMP 75.1 71.8 96.1 55.6 76.7
H-CNN Aug GMP 79.5 53.1 95.8 81.6 87.6
VF-CNN Pure Auto 80.2 63.7 98.6 63.1 95.3
VF-CNN Pure GMP 80.9 69.0 99.3 65.8 89.4
SF-CNN Pure Auto 81.0 66.9 97.3 71.6 88.4
SF-CNN Pure GMP 81.8 69.2 100.0 63.4 94.6
VF-CNN Aug Auto 82.5 74.2 99.7 79.7 76.6
VF-CNN Aug GMP 84.7 71.7 100.0 75.7 91.4
SF-CNN Aug GMP 86.2 71.7 100.0 79.6 93.2
SF-CNN Aug Auto 86.9 68.3 100.0 85.7 93.4

Table 5: Loop activation transcription accuracy (%) results for
AIRC configurations, where bold indicates highest scores.

The overall best performing model uses the SF-CNN with
auto-pooling configuration trained using the augmented dataset
(86.9%) followed by the SF-CNN with GMP (86.2%). For this
task, models trained with the augmented dataset generally appear
to outperform those trained with Pure dataset, which could be due
to the fact that the augmentation process ensures there is a bal-
anced distribution of all possible role combinations and it is com-
mon in the compositions for several roles to be active in a sin-
gle loop. Drums are classified most accurately for all model con-
figurations with four models achieving 100% accuracy. This is
expected as percussion has the largest number of samples in the
FSLD dataset, and is usually the most prominent element in EM
compositions. In some cases, the VF-CNN configuration seems to
improve performance of Melody and Bass roles, which could sug-
gest that the classification of roles containing melodic instruments
benefit from using vertical filters at the front end of the system.

Figure 3 presents loop activation transcription results for the
three template variations using our two best performing AIRC con-
figurations (i.e., SF-CNN-AUTO and SF-CNN-GMP) compared with
the NTF [12] and NMFD [10] methods previously proposed for
this task.

On a glance, we can see our architectures out perform the pre-
vious methods in regards to accuracy for the composed layout,
with SF-CNN-GMP (red) achieving the highest score. NTF (blue)
achieves the best performance for the factorial layouts closely fol-
lowed by our SF-CNN-AUTO architecture. Furthermore, the AIRC
system has a considerably faster runtime than NTF (∼30 secs per
composition) and NMFD (∼10 mins per composition). Predic-
tions for a full EM composition are calculated in under a second
using AIRC, which could be beneficial when analysing large col-
lections of music in DJ software. As mentioned in [12], an ad-

ditional shortcoming of the NTF and NMFD approaches is that
the algorithms depend on loop roles not co-occurring throughout
the composition. The proposed AIRC approach enforces indepen-
dence between the different roles, thus making it more suitable for
transcribing loop activations of real-world EM compositions, in
which loops often vary through automation and resequencing.

Figure 3: Loop activation transcription accuracy scores.

4.3. Real-world Scenario

Our approach to loop activation transcription with AIRC can be
applied to full-length, professionally produced EM, which has not
been explored in previous literature.

An instrumentation role activation map (IRAM) of the EM
composition Joyspark (2020) by Om Unit2 using the proposed
method for loop-based EM structure analysis (Section 3.2) is pre-
sented in Figure 4. For visualisation and comparison, we show a
log-scaled STFT power spectrum of the EM composition above
the IRAM. The IRAM allows us to visualise activations for each
role over the duration of the EM composition, where each square
is a measurement of four bars. Furthermore, we can see how each
role develops throughout the EM composition. For example, the
melody role activations progressively increase between bars 1–41,
which corresponds with a synthesizer arpeggio that is gradually
introduced by automating the cut-off frequency of a low-pass fil-
ter. Additionally, the chord role activations increase between bars
1–49 in correlation with the chords in this section that gradually
increase in volume. Activations for the percussion role also corre-
late well with the composition as can be seen between bars 49–81
and 97–129—the only sections that contain percussion. Finally,
the key structural sections of the composition are easily identifi-
able. For example, the introduction to the composition (bars 1–49)
begins relatively sparse in the composition and IRAM; whereas,
bars 49–81 and 97–129 are quite clearly the core of the piece—
that is, the most energetic sections of the composition typically
established by the drop [33].

Additionally, the transcription enabled by our system could
help EM producers identify sections of music that contain specific
roles. For example, this would be useful for finding breakbeats
(i.e., percussion-only passages) in digital music recordings [3].

2https://omunit.bandcamp.com

DAFx.6

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

269

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

Figure 4: Estimated loop activation structure of Joyspark (2020) by Om Unit using our proposed model. Log-scaled STFT power spec-
trogram of the EM composition (top) and estimated templates corresponding to the loop activations showing predictions for each class:
Chords (C), Melody (M), Sound Fx (F), Bass (B), and Percussion (P) at 4-bar intervals (bottom).

5. CONCLUSIONS

In this study, we have introduced a system for automatic instru-
ment role classification of loops that utilises a novel data augmen-
tation method and CNN-based architecture with auto-pooling. The
evaluation results show that we outperform previous state-of-the-
art performance in AIRC, allowing for a more reliable transcrip-
tion of loops in unstructured collections of audio. Furthermore, we
have introduced a deep learning approach for estimating the struc-
ture of loop-based electronic music and compared it with previous
loop activation detection methods. Our approach achieves com-
parable results while achieving a considerably faster computation
time.

The IRAM derived from our system has many potential use
cases in music production and performance. MIR tasks that rely on
structural information could benefit from this transcription (e.g.,
automatic DJing [19], music mashups [20]). The IRAM could be
used as a visual aid for DJs to anticipate upcoming sounds (e.g.,
drums, bass) or to help to identify key structural events in EM [33].

A possible direction for future research in this area would be
to train the system using a smaller timescale (e.g., 1-bar measures)
to achieve higher resolution transcription of instrumentation role
activations. Additionally, as no annotations for ground-truth in-
strumentation roles exist for real-world EM compositions, future
work could involve annotating a corpus of these recordings for the
evaluation of this task.

6. ACKNOWLEDGMENTS

The authors would like to kindly thank Patricio López-Serrano and
Jordan B. L. Smith for the fruitful discussions and access to the
loop activation transcription datasets and Eduardo Foncesca for the
guidance on the implementation of auto-pooling.

7. REFERENCES

[1] Glenn Stillar, “Loops as genre resources,” Folia Linguistica,
vol. 39, no. 1-2, pp. 197 – 212, 2005.

[2] Olivier Gillet and Gaël Richard, “Drum loops retrieval from
spoken queries,” Journal of Intelligent Information Systems,
vol. 24, no. 2, pp. 159–177, 2005.

[3] Patricio López-Serrano, Christian Dittmar, and Meinard
Müller, “Finding drum breaks in digital music recordings,”
in Proceedings of the International Symposium on Computer
Music Multidisciplinary Research, 2017, pp. 111–122.

[4] Zhengshan Shi and Gautham J Mysore, “Loopmaker: Auto-
matic creation of music loops from pre-recorded music,” in
Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, 2018, pp. 1–6.

[5] Jordan BL Smith, Yuta Kawasaki, and Masataka Goto, “Un-
mixer: An interface for extracting and remixing loops.,” in
Proceedings of the 20th International Society for Music In-
formation Retrieval Conference, 2019, pp. 824–831.

[6] Bo-Yu Chen, Jordan BL Smith, and Yi-Hsuan Yang, “Neu-
ral loop combiner: Neural network models for assessing the
compatibility of loops,” in Proceedings of the 21th Interna-
tional Society for Music Information Retrieval Conference,
2020.

[7] Diogo Cocharro, George Sioros, Marcelo F. Caetano, and
Matthew E. P. Davies, “Real-time manipulation of syncopa-
tion in audio loops,” in Music Technology meets Philosophy
- From Digital Echos to Virtual Ethos: Joint Proceedings of
the 40th International Computer Music Conference and the
11th Sound and Music Computing Conference, 2014.

[8] Guillaume Alain, Maxime Chevalier-Boisvert, Frederic Os-
terrath, and Remi Piche-Taillefer, “Deepdrummer : Gen-
erating drum loops using deep learning and a human in the
loop,” in Proceedings of The 2020 Joint Conference on AI
Music Creativity, 2020, pp. 81–91.

DAFx.7

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

270

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 2022

[9] Pritish Chandna, Antonio Ramires, Xavier Serra, and Emilia
Gómez, “Loopnet: Musical loop synthesis conditioned on
intuitive musical parameters,” in 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing Pro-
ceedings, 2021.

[10] Patricio López-Serrano, Christian Dittmar, Jonathan
Driedger, and Meinard Müller, “Towards modeling and
decomposing loop-based electronic music.,” in Proceedings
of the 17th International Society for Music Information
Retrieval Conference, 2016, pp. 502–508.

[11] Paris Smaragdis, “Non-negative matrix factor deconvolu-
tion; extraction of multiple sound sources from monophonic
inputs,” in Proceedings of the International Conference
on Independent Component Analysis and Signal Separation,
2004, pp. 494–499.

[12] Jordan BL Smith and Masataka Goto, “Nonnegative ten-
sor factorization for source separation of loops in audio,” in
2018 IEEE International Conference on Acoustics, Speech
and Signal Processing Proceedings, 2018, pp. 171–175.

[13] D. FitzGerald, M. Cranitch, and E. Coyle, “Sound source
separation using shifted non-negative tensor factorisation,”
in 2006 IEEE International Conference on Acoustics Speech
and Signal Processing Proceedings, 2006.

[14] Keunwoo Choi, George Fazekas, and Mark Sandler, “Au-
tomatic tagging using deep convolutional neural networks,”
in Proceedings of the 17th International Society for Music
Information Retrieval Conference, 2016.

[15] Sander Dieleman and Benjamin Schrauwen, “End-to-end
learning for music audio,” in 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing Pro-
ceedings, 2014, pp. 6964–6968.

[16] Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez,
and Xavier Serra, “Timbre analysis of music audio signals
with convolutional neural networks,” in Proceedings of the
25th European Signal Processing Conference. IEEE, 2017,
pp. 2744–2748.

[17] Minz Won, Sanghyuk Chun, Oriol Nieto, and X. Serra,
“Data-driven harmonic filters for audio representation learn-
ing,” 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing Proceedings, pp. 536–540,
2020.

[18] Joann Ching, António Ramires, and Y. Yang, “Instrument
role classification: Auto-tagging for loop based music,” in
Proceedings of The 2020 Joint Conference on AI Music Cre-
ativity, 2020, pp. 196–202.

[19] Len Vande Veire and Tijl De Bie, “From raw audio to a
seamless mix: creating an automated dj system for drum and
bass,” EURASIP Journal on Audio, Speech, and Music Pro-
cessing, vol. 2018, no. 1, pp. 1–21, 2018.

[20] Matthew EP Davies, Philippe Hamel, Kazuyoshi Yoshii, and
Masataka Goto, “Automashupper: An automatic multi-song
mashup system.,” in Proceedings of the 18th International
Society for Music Information Retrieval Conference, 2017.

[21] Sergey Ioffe and Christian Szegedy, “Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift,” in Proceedings of the 32nd International Con-
ference on Machine Learning, 2015, pp. 448–456.

[22] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter, “Fast and accurate deep network learning by exponen-
tial linear units (elus),” in 4th International Conference on
Learning Representations, 2016.

[23] Brian McFee, Justin Salamon, and Juan Pablo Bello, “Adap-
tive pooling operators for weakly labeled sound event detec-
tion,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 26, no. 11, pp. 2180–2193, 2018.

[24] Diederik P. Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in 3rd International Conference on
Learning Representations, 2015.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification,” in Proceedings of the
IEEE International Conference on Computer Vision, 2015,
pp. 1026–1034.

[26] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik Schmidt,
Andreas Ehmann, and Xavier Serra, “End-to-end learning
for music audio tagging at scale,” in Proceedings of the 18th
International Society for Music Information Retrieval Con-
ference, 2017.

[27] Antonio Ramires, Frederic Font, Dmitry Bogdanov, Jordan
B. L. Smith, Yi-Hsuan Yang, Joann Ching, Bo-Yu Chen,
Yueh-Kao Wu, Hsu Wei-Han, and Xavier Serra, “The
freesound loop dataset and annotation tool,” in Proceedings
of the 21st International Society for Music Information Re-
trieval, 2020.

[28] Frederic Font, Gerard Roma, and Xavier Serra, “Freesound
technical demo,” in ACM International Conference on Mul-
timedia, 2013, pp. 411–412.

[29] António Ramires and Xavier Serra, “Data augmentation for
instrument classification robust to audio effects,” in Pro-
ceedings of the International Conference on Digital Audio
Effects, 2019.

[30] Patricio López-Serrano, Christian Dittmar, Jonathan
Driedger, and Meinard Müller, “Towards modeling and
decomposing loop-based electronic music,” in Proceedings
of the 17th International Society for Music Information
Retrieval Conference, 2016.

[31] Jesse Davis and Mark Goadrich, “The relationship between
precision-recall and roc curves,” in Proceedings of the 23rd
International Conference on Machine Learning, 2006, pp.
233–240.

[32] Jordi Pons, Deep neural networks for music and audio tag-
ging, Ph.D. thesis, Universitat Pompeu Fabra, 2019.

[33] Karthik Yadati, Martha A Larson, Cynthia CS Liem, and
Alan Hanjalic, “Detecting drops in electronic dance mu-
sic: Content based approaches to a socially significant music
event.,” in Proceedings of the 15th International Society for
Music Information Retrieval Conference, 2014, pp. 143–148.

DAFx.8

DAF
2

x
’sVienna

DAF
2

x
in22

Proceedings of the 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna, Austria, September 6-10, 2022

271

	Abstract
	Acknowledgements
	Acronyms
	Mathematical Notation
	Introduction
	Motivation
	Aim and Objectives
	Contributions
	Open Source Implementations and Datasets
	Publications
	Thesis Structure

	Review of Sample-based Electronic Music Production Literature
	Music Sampling: An Overview
	Origins
	Breakbeats
	Modern Sampling Technology
	Sample Typology

	Sample-based Electronic Music Production
	Sample Sourcing
	Sample Selection
	Sample Manipulation
	Arrangement and Structure

	Drum Creation in Sample-based Music
	The Drum Kit
	Drum Machines and Virtual Drumming Software
	Drum Synthesis

	Related Research
	Music Tagging
	Instrumentation Role Classification
	Structure Analysis
	Sample Identification
	Sample Retrieval
	Neural Audio Synthesis

	Chapter Summary

	Deep Learning Preliminaries
	Mutli-layer Perceptrons
	Convolutional Neural Networks
	Convolutional Layers
	Pooling Layers

	Training Procedures
	Loss Functions
	Parameter Optimisation
	Initialisation
	Regularisation

	Audio Representations
	Raw Audio Waveform
	Short-Time Fourier Transform
	Linear Spectrogram
	Logarthimic Spectrogram
	Mel Spectrogram

	Deep Generative Models
	Autoregressive Models
	Variational Autoencoders
	Generative Adversarial Networks
	Upsampling Layers
	Conditioning
	Latent Space Manipulation

	Chapter Summary

	Analysing SBEM with Automatic Instrumentation Role Classification
	Instrumentation Roles
	Method
	Architectures
	Network Training
	Loop Activation Transcription

	Evaluation 1: Automatic Instrumentation Role Classification
	Evaluation Methodology
	Evaluation Data
	Results and Discussion

	Evaluation 2: Loop Activation Transcription
	Evaluation Methodology
	Evaluation Data
	Results and Discussion

	Evaluation 3: Automatic Retrieval of Samples from Existing Recordings
	Evaluation Methodology
	Evaluation Data
	Results and Discussion

	Conclusions
	Chapter Summary

	Drum Sample Synthesis with Generative Adversarial Networks
	Method
	Implementation
	Network Training

	Evaluation Methodology
	Evaluation Data
	Network Hyperparameters
	Evaluation Metrics

	Results and Discussion
	Evaluation Results
	Generation Quality

	Latent Space Exploration
	Interpolation
	Layer-wise Control
	Arithmetic
	Dimensionality Reduction
	Embedding Existing Audio into the Latent Space

	Additional Experiments
	Generating Drum Loops
	Multimodal Conditioning

	Chapter Summary

	Conclusions
	Summary
	Contributions
	Future Work
	Final Thoughts

	Appendices
	Publications

