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ABSTRACT

Real-time energy consumption is a crucial consideration when assessing the effectiveness
and efficiency of communication using energy hungry devices. Utilizing new
technologies such as UAV-enabled wireless powered communication networks (WPCN)
and 3D beamforming, and then a combination of static and dynamic optimization
methodologies are combined to improve energy usage in water distribution systems
(WDS).

A proposed static optimization technique termed the Dome packing method and dynamic
optimization methods such as extremum seeking are employed to generate optimum

placement and trajectories of the UAV with respect to the ground nodes (GN) in a WDS.

In this thesis, a wireless communication network powered by a UAV serves as a hybrid
access point to manage many GNs in WDS. The GNs are water quality sensors that collect
radio frequency (RF) energy from the RF signals delivered by the UAV and utilise this
energy to relay information via an uplink. Optimum strategies are demonstrated to
efficiently handle this process as part of a zero-power system: removing the need for
manual battery charging of devices, while at the same time optimizing energy and data
transfer over WPCN.

Since static optimization does not account for the UAV's dynamics, dynamic optimization
techniques are also necessary. By developing an efficient trajectory, the suggested
technique also reduces the overall flying duration and, therefore, the UAV's energy
consumption. This combination of techniques also drastically reduces the complexity and

calculation overhead of purely high order static optimizations.

To test and validate the efficacy of the extremum seeking implementation, comparison
with the optimal sliding mode technique is also undertaken. These approaches are applied
to ten distinct case studies by randomly relocating the GNs to various positions. The
findings from a random sample of four of these is presented, which reveal that the
proposed strategy reduces the UAV's energy usage significantly by about 16 percent
compared to existing methods.

The (hybrid) static and dynamic zero-power optimization strategies demonstrated here
are readily extendable to the control of water quality and pollution in natural freshwater

resources and this will be discussed at the end of this thesis.
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CHAPTER 1

INTRODUCTION

Climate change and its impact on sustainability has been, and is likely to remain most keenly
felt in the distribution, refinement and availability of clean water resources, which are key to
human health, food production as well as environmental life cycles. Sophisticated
management and control of this resource is therefore also of great geopolitical significance. A
pre-requisite of its management is effective monitoring of the flow and quality of water, viz:
levels of acidity (pH), Dissolved Oxygen (DO), Biological/Chemical Oxygen Demand
(B/COD), etc.

This chapter provides a brief overview of the technological background of water monitoring
and distribution systems along with the key motivations for undertaking research into their
energy management. The problem statement, aim, objectives, outline methodology, research
contributions and thesis organisation are formalised at the end of this chapter.

1.1 Intelligent Monitoring in Water Distribution Systems (WDS)

Intelligent monitoring is described as a technique used to monitor, regulate, manage, and
optimise networks using various computational techniques that will provide users with
pertinent resources and data (Xu et al., 2014). Intelligent monitoring, which connects people
and things via wireless sensor technology, includes the Internet of Things (IoT) as a basic
component by utilising the underlying technologies such as embedded systems, internet
protocols, communication technologies, software platforms, etc. (Al-Fugaha et al., 2015). This
allows things or devices to ‘see’, ‘think’, and communicate autonomously, as well as provide
outcomes using various decision-making algorithms based on historical data. It is a rapidly
expanding field of application for the military, energy management, healthcare, and many
other fields, and some of these are represented in Figure 1.1. In 1999, Kevin Ashton coined
the term IoT. Later, it was used to connect a collection of devices (Zhou et al., 2011). By this
means, information may be sent across various electronic devices equipped with cutting-edge

technology.
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Figure 1.1 Applications of 1oT

One of the most important things that needs to be undertaken for environmental monitoring is
dealing with the growing problem of water-borne infections, which are a potentially
catastrophic health risk. Consequently, guaranteeing the water's quality is essential to the
maintenance of a stable living environment for everyone. The increase in biological and non-
biological components, as well as a change in the water's colour and odour seriously affects
water quality (Lehtola et al., 2004). Bacteria and viruses would be considered biological
pollutants, whereas changes in the concentration of chlorine, salt, ammonia, etc. would be
considered as non-biological contaminants. The entire water ecology is seriously threatened
by all these toxins. Consequently, it is necessary to monitor and safeguard the water using a
system that is both affordable and effective (Zulkifli and Noor, 2017). The suitability of water
for a given purpose, taking into account both its biotic (e.g., bacteria, fungus, etc) and abiotic
(B.0O.D., D.O., pH) features, is how its quality may be evaluated. Detecting components and
evaluating them in relation to predetermined benchmark criteria and ranges is an essential part
of water quality monitoring. In most cases, determining the quality of water requires
conforming to certain requirements based on the water's intended use. For an analysis that is

both more accurate and more dependable, additional samples need to be gathered.



When compared to real-time monitoring for early warning and prompt action against water
pollution, manual techniques are seen as inefficient. The monitoring of daily activities in the
WDS is made easier by communication and cognitive technologies included in 10T. Huan et
al. (2020) developed automated solutions with the use of Narrow Band Internet of Things (NB-
loT) technology in order to monitor the water quality at aquaculture farms. Using this
technology, automatic collection, storage, and processing of water quality information such as
pH, dissolved oxygen (DO), and other similar information may be sent to the cloud for
decision making, which helps in making emergency decisions and promotes breeding in

ponds.

Nie et al. (2020) suggest using loT and big data-based supervisory controller and data
acquisition (SCADA) systems for monitoring water quality as well as notifying water
suppliers regarding any leaks for the purpose of underwater management so that issues can be

resolved in a significantly shorter amount of time.

A combination of hardware and software was described by Cao et al. (2020) in order to
monitor the water quality in open water sources such as rivers, lakes, and other similar bodies
of water. They introduce the intelligent cruise unmanned surface vehicle (USV), which is
equipped with a solar panel for power, global positioning system (GPS), and communication
antennas, as well as a water quality detecting module that contains data-gathering water quality
sensors. The method of ensemble learning is then applied in order to get an understanding of
how the patterns of water vary and facilitate rapid measurements.

On the other hand, Kumar and Hong, (2022) implemented an 10T-based surveillance system
called the Sewage Wastewater Monitoring System (SWMS) in order to monitor the treatment
of wastewater and enhance water quality. In this system, the data is delivered from devices
such as sensors to a system that is running intelligent analytic software along the course of a
wireless sensor network via a secure networking protocol. The sewage system will then collect
and treat any impurities that it finds in order to produce effluent. These effluents can then be
applied to or recovered directly from the water source with the least amount of environmental
impact. In addition to measuring water flow dynamics throughout the treatment process, the
loT-enabled smart water sensor measures water temperature, quality, and pressure.
Furthermore, the method evaluates the plant's efficiency in treating wastewater and ensures

that chemical emissions remain within allowable limits.



Water quality monitoring for smart farming is used by Said Mohamed et al. (2021), Viani et
al. (2017) and Lambrinos (2019) to increase agricultural production while reducing food
demand. Mohamed et al. (2021) use UAV and robots to support farming methods such as
irrigation, harvesting, control pesticides in real time by using a smart decision support system
(SDSS) that combines 10T, machine learning (ML), deep learning (DL) and artificial
intelligence (Al) methods. Viani et al. (2017) recommended using a wireless decision support
system (WDSS) as the basis for a decision support system (DSS) in order to optimise
agricultural irrigation and reduce the amount of water that is wasted. The management of the
farming operation is made easier with the help of this system, which makes use of a wireless
sensor and actuation network to collect a variety of different biological parameters. It also uses
a fuzzy logic (FL) method to provide a realistic experience for farmers, allowing them to
examine the impacts of irrigation and climate on the soil and plants, and to suggest actions
that would improve crop yields as well as improving water quality and prevent environmental
damage. On the other hand, Lambrinos (2019) proposed a DSS that would improve smart
farming by collecting data on crops and weather from a variety of sensors connected to a
LoRaWAN network. This would allow for more intelligent decision-making. In terms of
integrating data from a wide variety of sources, it employs a technique known as "data fusion™.
On the basis of the information gathered, recommendations for irrigation guidance are
provided in order to guarantee that crops are efficiently watered while also conserving water
in situations where this is possible. In addition, farmers should have the ability to protect their

crops from unfavourable weather conditions by employing a method that provides alerts.

Security, standardization of the protocols and privacy are some of the main challenges in 10T.
Kamalinejad et al. (2015) and Nordrum (2016) predicted that the extensive use of 10T devices
will result in a significant rise in energy use around 2022, which will have an impact on the
effectiveness of wireless network monitoring. The management of energy in wireless networks
must therefore become a bigger research priority. Using energy harvesting methods, which are
ways of gathering energy from natural sources like light, vibration, pressure, etc., makes
energy management feasible (Sun et al., 2019; Jushi et al., 2016; He et al., 2018). IoT is made
possible by the integration of several technologies, including wireless sensor networks (WSN),
radio frequency identification (RFID), energy harvesting (EH), and Al.



1.2 Radio Frequency Energy Transmission

EH entered the market at a time when the majority of 10T devices were battery-focused and
required battery life extension. Energy harvesting equipment becomes more sustainable when
disposable batteries are replaced with rechargeable batteries and super capacitors. Many
features of energy harvesting techniques are attracting greater research attention currently. The
new energy harvesting methods and their desirable properties such as low cost, efficiency,
availability and high robustness could benefit water management (Bhatti et al., 2016). An
energy harvesting module is a piece of technology that produces energy and controls it for the
attached sensors, processors, and communication components (Kosunalp, 2016). The EH
gadget gathers energy from the application environment, such as light, vibrations, radio
frequency waves, etc., and transforms it into electrical energy for its operations (Alshattnawi,
2017). Over the past several years, wireless energy transfer (WET) has drawn greater interest,
particularly for use in charging mobile devices and implanted medical devices in patients
within a limited range of a few centimetres. Since the gadget used magnetic resonant coupling,
its range proved to be a significant problem. To deliver energy across very long distances,
radio frequency (RF) enabled WETSs employ electromagnetic waves. In RF energy harvesting,
RF waves are originated from a transmitter and use fixed frequency bands such as UHF, VHF
etc. through which they propagate and reach the receiver for long distance communications.
For integrating into application devices, RF energy receivers are less expensive and more
compact (Bi et al., 2015). The problem of attenuation over long distances is why RF is used
only for energy constrained devices such as sensors. Recent advancements in antenna arrays
and communications protocols enable for more energy-efficient power transfer in far-field

communications (Bevacqua et al., 2021).
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Fig 1.2 Wireless powered communication architecture

The WET technologies use a technique called simultaneous wireless information and power
transfer (SWIPT) to send information and power over the same wireless signal. In SWIPT, the
information received from the same signal was encoded using energy that the receivers were
receiving. The wireless powered communication network (WPCN) architecture in Figure 1.2,
which uses the signal energy received to transmit information to the sender, is a new technique

being employed, which is similar to SWIPT, attracting attention of researchers.

WPCN, EH utilizing RF and Al could all work together to promote the wider implementation
of 10T (Zhou et al., 2011).

The advancement of aforementioned technologies has aided the creation of effective strategies
to address several pressing problems in real time. 10T, a related technology that has gained
significant attention because of its connectedness and intelligence. 10T helps to link all devices
to form a network, including machines and sensors and the WPCN helps to transmit both
information uplink (GN’s to the HAP) and downlink (HAP to the GN’s) communication. By
allowing relays to utilise the RF signal of the HAP for transmitting both energy and
information transmission during communication by making use of the SWIPT concept in
WPCN. Only a small number of water distribution applications have been adapted for this
relatively new technology. Most approaches in WDS have focused more on network data

management than on energy management.



1.3 Research Motivations and Problem Statement

The most significant issue with wireless devices water distribution systems (WDS) is limited
battery life, which necessitates battery replacement or recharging after a predetermined period
with a large number of energy constrained IoT devices in need of innovative wireless energy
charging techniques to alleviate this issue. The same can be said of manned and unmanned

aerial vehicles.

The majority of research work focuses on data management and transmissions during
communication within WPCN by taking into account only uplink communications (Wang et
al., 2021; Xu et al., 2018). The adaptable and effective wireless communication solutions of
UAVs have garnered significant attention from researchers and industries equally. Companies
such as Facebook and Google have utilised this technology to provide internet connectivity to
remote areas, while Amazon has employed it for the purpose of charging electric vehicles
(Fotouhi et al., 2019; Karagianni, Rigas and Bassiliades, 2022). But a very little of the current
research takes into consideration the energy management of the combined uplink and
downlink communication using charging over air, a UAV as a HAP ina WPCN within a WDS.
Additionally, the UAV's on-board energy is limited and must be allocated for communication,
moving, hovering, and other activities. These are therefore the major motivations for the
research. The main challenge using WPCN within WDS is energy optimization during
communication. By optimizing the UAV's trajectory and calculating an optimum height for
the UAV, the overall energy efficiency, including for communication could be improved. This
should reduce the total flight time and energy needed throughout the flight. Since water quality
must be examined, often due to several problems including leaks, floods, and other concerns,
results in significant data overhead that can impact the energy consumption during

communication. Therefore, this thesis focuses on filling this research gap.

1.4 Aim and Objectives

1.4.1 Aim

The main aim of the thesis is to develop an energy optimization (zero-power) method for near
real time monitoring (due to the delay in the signal processing to and from the base station) in
water distribution system. The zero-power is defined instruments that require no batteries or

manual charging mechanism. To achieve this goal, the current sensor technologies, various



energy harvesting methods and other relevant technologies are taken into account and applied.
Since the smart water monitoring system includes different levels in the architecture, the
sensing and communication requirements are also part of this discussion. More specifically,
investigating the methods that could be adopted to optimize energy usage during both charging

and communication in a real time water monitoring system.
1.4.2 Objectives
To achieve the aim above, the thesis objectives can be identified as:

1. Review energy harvesting methods methods and select a method suitable for water
distribution system (WDS) to produce sufficient energy.

2. Propose and design a zero-power system using both static and dynamic optimization
methods to manage energy usage and improve performance of the wireless powered
communication network (WPCN).

3. Evaluate the energy management scheme in comparison with existing schemes and

demonstrate its efficacy and feasibility.

To achieve the aim and objectives above, inclusion of an unmanned aerial vehicle (UAV) is
to be investigated that serves as a flying base station for the uplink and downlink
communication between the base station and the ground nodes (GNSs) in order to meet the goal

of efficient energy transfer and optimization.

There is currently a drive among the research community to optimize energy usage of both
unmanned and manned aerial vehicles to reduce fuel consumption and emissions. However,
achievement of this has become illusive, especially using a single technology or technique.
This thesis will primarily address this research gap by using a variety of optimization

techniques, both static and dynamic, implementable in real time with zero-power performance.

Random clustering of GNs is unlikely to be an optimum strategy for the purposes of optimizing
position and energy usage of a UAV. Alternatively, using a 3D dome packing approach to
construct an ideal charging path along which the UAV navigates while energising the GN's
and collecting data, the overall energy consumption of the UAV may be lowered. It is further
contended that by using static optimization to establish a static initial condition, the dynamics
of the UAV could be included in the reckoning of overall energy usage during a flight. Then,

the UAV's energy use, total flight time and recycling time can all be optimized under combined



static and dynamic optimization strategies (The time difference between each of the UAV's
hovering positions is known as the recycle time).

1.5 Research Scope

A detailed literature review, as a first step, aims to identify the most appropriate energy
harvesting, data collection and sensor technologies for WDS. The criteria of steady state
energy generated by each published approach is used to evaluate effectiveness.

The second step aims to evaluate the various remote technologies applied in WPCN for energy

management in WDS.

Once the appropriate sensor and network technologies have been identified, a static simulation
of the system can be undertaken by arranging the GNs at different positions in 3D space to
determine the amount of energy utilised by a UAV enabling a WPCN. To achieve the objective
of energy optimization, the UAV would act as a flying base station for the uplink and downlink
communication between the base station and the GNs. In this process, the total energy
consumption of the UAV is to be calculated and then optimized by using a proposed 3D dome
packing method to create an optimal charging path through which the UAV navigates by
energizing the GNs while gathering data. This is to be achieved by calculating the centroid of
a cluster of GNs, rather than position the UAV randomly. This position is to be adjusted for
the practicality of beaming range. As a result, the energy consumption of the UAV, the total
flight time and recycling time can then be minimized. Several configurations of different
positions of the GNs are proposed to test the feasibility of the method.

The optimized heights obtained by the 3D dome packing method can further become initial
conditions for a dynamic state model developed to provide a more realistic calculation of the
total energy usage by including UAV dynamics. The total energy consumption of the system
could then be optimized based on a cost function, which includes terms from both the static
and dynamic parts of the overall trajectory. Energy usage terms for data transmission and
charging may also be included. Dynamic optimization schemes are then to be developed, and
extensive MATLAB and Simulink model simulations used to evaluate the proposed static and

dynamic methods.

For clarity, thesis development is structured as follows:



1. To undertake a comprehensive review of published literature of the existing
technologies and methods used in WDS.

2. Determination of a static energy cost (objective) function to include charging and
communication between GN’s and a UAV.

3. Optimization of the static energy cost function using 3D dome packing.

4. Derivation of a physical (dynamic) model of the UAV suitable for dynamic
optimization.

5. Determination of a dynamic cost function to include UAV dynamics.

6. Optimization of the dynamic cost function using extremum seeking methods and
optimal sliding modes.

7. Combined static and dynamic optimization of overall cost function.

8. Parametric study of the robustness of the overall strategy over different GN topologies.

The aforementioned structure is depicted in Figure 1.3. This diagram shows how the research
process begins with the identification of research gaps, followed by the disclosure of existing
sensors in WDS and the technologies, such as UAV-enabled WPCN, that could be integrated.
It is then followed by a conceptual design and mathematical formulation of the scenario
employing GNs, UAVs, and water quality sensors, and how this is developed in the following
chapters of the thesis is detailed here: First, a static optimization technique is developed by
incorporating the latest technologies; next, a dynamic optimization method is implemented,
which will include the dynamics of the system. The optimization of energy is carried out by
constructing an ideal trajectory for the UAV, which is accomplished by calculating an optimal
height for the UAV. This optimal height would utilise the best route, and as a result, the energy
consumption and total flight duration of the UAV are both to be optimized. In conclusion, to
determine whether or not the suggested approach is successful, it will be assessed by a number

of case studies.
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Investigate and analyse water quality sensors, UAV enabled WPCN
in WDS

l

Conceptual Design and Mathematical Formulation

l

Static Optimization

Dynamic Optimization

}

Optimal Trajectory Design

l

Evaluating the proposed framework using Case studies

Figure 1.3 Research Design

1.6 Research Contributions

Even though there are many advancements in RF based charging methods, there is still much
opportunity for the optimization of UAV energy and data transfer, particularly as UAVs are
known to have limitations of flight time and power, while flying without replenishment of

their own battery state of charge. This work addresses the following in this regard:

1. Identifying sensors, communication technologies and harvesting methods which can
be used for the implementation of UAV enabled WPCN in WDS, through which the
UAYV can optimally complete its mission with zero-power performance.

2. Development of a new static optimization (Dome packing) method applied to the
packing of sensors / GN’s in the WDS, focusing on optimizing the energy during
communication with beamforming.

3. Design of optimal trajectories based on a dynamic model of the UAV using novel

dynamic optimization methods.
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4. Application of hybrid static and dynamic energy optimization techniques to construct
a trajectory that maximises the UAV's energy efficiency and minimizes flight duration

over an exhaustive range of different GN topologies.

1.7 Thesis Organization

The subsequent chapters will provide a more in-depth analysis of each approach, as well as an
explanation of the findings. The rest of the thesis is organized as follows:

Chapter 2 provides a background of the smart water system and a detailed discussion of
WPCN, UAV enabled data acquisition and how the energy is sub-optimized in the existing

literature.

Chapter 3 develops methodologies for the conceptual design of the system and how the
proposed methods will be mathematically formulated utilising static and dynamic optimization
techniques to be applied in the WDS.

Chapter 4 presents the simulation results of the proposed system that optimizes the energy
and mission completion time of the UAV for optimal energy transfer / emergency-based
charging using Dome packing, a static optimization approach. This comprises of 3D clustering

and beamforming.

Chapter 5 provides an optimal trajectory design for the UAV using both the static methods
of Chapter 4 and dynamic optimization methods such as extremum seeking and optimal sliding

mode algorithms.

Chapter 6 analyses and discusses the findings of the simulation results. Additionally, case
studies are exhaustively applied across a range of topologies to verify the convergence of the

algorithms used and evaluate outcomes in context of past research.

Chapter 7 summarises the thesis, highlighting the contributions made to the field of study, as
well as provide some prospective future research directions for applying the work to regulation

of water quality monitoring.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The water sector is facing many issues when it comes to long term management of urban water
systems. Climate change, drought, and rising population all necessitate a greater focus on
developing sustainable water management systems. The water distribution system (WDS) is
an essential field of research that has an impact on the world's economic development. As a
result of the aforementioned, people's health and safety are compromised. Water loss due to
leaks, water quality management, enhanced service quality, and operational efficiency are
some of the factors that are now being considered for WDS. According to a 2020 WHO
report, over 2 billion people across the globe lack access to safe drinking water. As a result,
advanced communication technologies must be integrated into the WDS to ensure water
quality and reduce water loss. The cost of operating a water distribution system and conducting
water quality control tests consume a significant amount of energy, which varies depending
on the location. As a result, a cost-effective water quality monitoring system is required to
monitor and preserve water (Zulkifli and Noor, 2017). As the world's population grows, so
does the demand for clean water, necessitating the need for technological improvements in

water management.

2.2 Smart Water Systems

Water pipeline monitoring, water quality in open water sources, smart water meter reading,
0T security for smart water systems (SWS), and other smart water applications are among
smart water applications. A structure and methodology were designed to secure the integrity
of client information, the security of devices, and the integrity of data transported via the
network (Pacheco et al., 2017). Pipe leakage detection is an application that has emerged as a
result of 10T expansion. Because a significant volume of water was leaking from pipes, various
IoT devices, WSNSs, and cloud services are employed to detect and warn the user about leaks
(Wu et al., 2017). The amount of leakage is largely dependent on the flow pressure, and it is
difficult to quantify the precise volume of water loss in a specific location. To address this

problem, water distributors devised the District Metered Area (DMA) mechanism, which
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applies a divide-and-conquer strategy in which the complicated water distribution system
(WDS) is partitioned into independent regulated sub networks. As a result, leaks are quickly
identified, water pressure is regulated during emergency circumstances, and accidental
contamination is reduced. Another application that was developed utilising 10T devices was
water quality monitoring of open water sources. It uses low-cost devices and network
virtualization to effectively maintain water quality and safeguard the economy's health (Prasad
etal., 2016; Menon et al., 2017).

A five-layer smart water architecture was developed by the Smart Water Network Forum
(SWAN) to address the problems with water management (Cahn, 2014) as in Figure 2.1. The
physical assets consist of pipes, valves, reservoirs etc that help in collecting data from the SWS
using different sensors attached to it. The data will be transferred from one point to another or
a central data server using the collection and communication layer. The collected data will be
managed and presented meaningfully to utility companies or end users. The last layer is the
data fusion and analysis consisting of tools that help in integrating data analytics and
intelligent algorithms to manage operations such as water quality monitoring, leak detection
and respond in real time. As a result of how significant they are to the thesis's work, the layers
2 and 3, which are the sensing and control, and the collection and communication layers, are
taken further in the following sub sections:

Data Fusion
and Analysis

Data Management
and Display

Collection and
Communication

Sensing and
Control

Physical
Assets

Figure 2.1 A layered view of the Smart Water Architecture Source: Dr Qi Wang, (2018)
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2.2.1 Sensing and Control

The sensing and control layer's main function is to connect devices of the loT network with
the data servers of the operator. When applied to WDS, this layer consists of sensors, EH
devices and remotely controlled devices such as pumps and valves. A smart pipeline is one
among the smart components used in SWS designed to condition monitor the pipe which helps
in the real time monitoring of the flow, pressure, vibration, corrosion, water quality and leaks,
without affecting the operations of the pipeline. The smart meter is another technological
device that can measure, analyse, store and transmit the amount of water consumed by an
individual/company so that the supplier can keep track of any water loss, damaged meters or
illegal water use. The customer can also keep track of the water usage. The monitoring of this
data necessitates the installation of advanced metering infrastructure (AMI) by water providers
to increase hydraulic and energy efficiency, as well as leakage control and illegitimate water
connections. Some of the relevant commercially available devices are tabulated below:

Table 2.1. Commercially available water quality sensors and measuring parameters

Water quality
parameter

Turbidity, temperature,
Broeke(2005) Spectro::lyser pressure, colour,
dissolved ions, UV254

Source Sensor

pH, dissolved
, oxygen(DO),
gog;yrm ctal, SmartCoast conductivity,

temperature, turbidity,
phosphate, water level
Chlorine, temperature,

Mcdougle et al.,

2012 Kapta 3000 AC4 pressure, conductivity
pH, dissolved
oxygen(DO),

Smart conductivity,

Libelium(2014) temperature, oxidation-
reduction
potential(ORP),
turbidity, dissolved ions

Any specific bio-

water(Libelium)

Tsopela et al.,

2016 Lab-on-chip chemical
S::can(2017) I::scan Sc\)/lggz turbidity,

15



In SWS, there are different commercially accessible sensors also called nodes of various kinds
that are used for real-time water monitoring as represented in Table 2.1 and discussed further
in (Radhakrishnan and Wu, 2019). The Smart Water Solution by Libelium, Kapta 3000 AC4,
electrochemical optical sensors and Spectro::lyser are some of the sensing devices used widely
for collecting water quality data (Abirami and Karlmarx, 2013). The data includes information
such as temperature, pressure, conductivity, water flow, chlorine, pH, turbidity, COD, BTX,
O3 and other toxins etc. The cost, effectiveness, and choice of water quality variables influence
the sensor's selection (Miao Wu et al., 2010; Philipp Hohenblum, 2014). Batteries are
necessary for the operation of each and every one of these nodes but, maintaining and

managing their energy consumption is always problematic and expensive.

2.2.2 Data Collection and Communication

Data must be gathered and transmitted to the higher layers via the collection and
communication layer. The sensors utilise the data they gather from various remote places and
send it to base station to analyse and process data for the SWS. In these levels, there is
interpersonal communication that allows information to be transmitted as well as decisions to
be made depending on the data analysis, carried out by the top layers. Communication
techniques are selected based on the distance over which the data is being carried, the cost, the
standards, the level of technical development, and the topology (Azhar et al, 2020).

The cellular technology enables a two-way mobile communication between the controller and
applications group, since it will be located further away from the site. When long-distance
transmission is necessary, such as 2G, 3G, 4G or 5G, this technology is employed. Other long-
distance transmission technologies include GSM and GPRS. It necessitates higher power
consumption, making them unsuitable for WDN. Short-range protocols such as Zigbee,
6lowpan, and RFID are examples of protocols that might be used between sensors and
controllers. RFID is a data collection system that employs an electronically programmed tag
(Farook et al., 2015). It is unreliable to use for measurement since it requires a programmed
static tag. The 6lowpan protocol is an IP-based protocol that can connect to the next IP network
without using gateways. Its cheap cost and power usage are further advantages. It supports
both star and mesh topology. LoRa (Low Power Wide Area Network) is another protocol that
has received a lot of attention because of its cheap power consumption, low cost, and high data
rate when used in 10T, and it employs a star topology. Zigbee is a popular low-power wireless

technology that offers low-cost and secure communication. It also supports topologies such as
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star, mesh, and tree (Sarawi et al., 2017). The benefits of 6lowpan, LoRa, and Zighee make
them the best candidates for WDS, out of which LoRa has been selected here, since the data
is to be transmitted to longer distances with very low energy consumption and low
communication cost based on Table 2.2 and Table 2.3 as has been discussed in (Radhakrishnan
and Wu, 2019; Mutiara, Herman and Mohd, 2020).

Table 2.2. Comparison of commonly used protocols based on cost, energy use, and data rate

Energy
Protocol Cost Data Rate
consumption
Zigbee Low Low 40-250 kbps
6lowpan Low High 20-250 kbps
(IPv6)
BLE Very Low Low 100-230 kbps
NB-lot Medium Very High 200-240 kbps
(4G)
LoRa Very Low Low 0.3-50Kbps
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Table 2.3. Analysis of protocols based on their benefits and drawbacks

Protocol Advantage Disadvantage
Cost effective, self- More power consumption,
GSM
calibrating attenuation
More power consumption,
GPRS Communication range
Performance issues (Speed)
Very low power, cost and
Limited amount of data
BLE more security compared to

Wi-Fi

transfer

Low power Wi-

Longer range

Less data range

Fi
Low power, cost and provide

Zigbee Less range
security
Low cost & power

6lowpan (IPv6) Security of data

consumption

All types of data can be

Need of a programmed

static tag makes it unreliable

RFID
transferred to use for measurement and
limited range
Very low power
LoRa consumption & high data Security issues and high

rate

cost
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2.2.3  Wireless Energy Transfer for Smart Water Systems

The management of energy in the sensor network and the sensor nodes may be divided into
two parts for the purpose of energy distribution. The project in SWS reqires a lot of energy
since it aims to monitor activities in close to real time, especially for data transfer and
communication. For all forms of processing and data analysis, this produced data must be sent
to the base station. Furthermore, the current sensors are more battery-reliant, requiring more
power to detect and transmit data. Therefore the need for extra power for the sensor nodes to
transmit data is one of the key issues with wireless networks. A viable solution to this issue is
to transmit power to/between the sensor nodes. According to Bhatti et al. (2016), a thorough
investigation of the various energy transfer methods such as mechanical waves, magnetic
fields and electromagnetic radiations were employed in wireless networks for various
applications. Power transmission utilising a magnetic or thermal field will be acceptable since
the current thesis is focused on analysing the water quality in pipelines. A wireless power
transmission protocol developed by Nikoletseas et al. (2017) and an energy-efficient
scheduling strategy for power transfer by Ejaz et al. (2016) were two recent advancements for
this issue. The wireless power transfer protocol consists of two protocols: one checks the
energy balance, and the other determines if each sensor node has enough power to send energy.
Reduced energy consumption of the transmitters in software defined wireless sensor networks
is the goal of the scheduling study of Ejaz et al. (2016). A multipoint scheduling approach was
created to enhance network output in a related study by Xiao et al. (2015). The utilization of
network resources such as sensors, base stations, software’s, data etc., which uses more energy
and cost, is another issue in wireless communication networks.

To address the existing energy management problems, a fresh perspective is offered by the
energy management of sensor nodes. The study by Dial et al. (2016) serves as an introduction
to concentrate on the individual sensor nodes rather than the network. By applying online
reinforcement learning, the work offers an adaptive sampling approach where real-time data
is gathered using a sampling interval and an adaptive algorithm is utilised to pick out the
sampling data of high quality. The study by Dias et al. was able to show that node lifespan
increased but was unable to address the issue of enhancing sensor node storage. The author
also suggested that cloud computing services that use machine learning techniques would be
able to address this problem. Since the actual deployment instructions of the project weren’t
present as the research was conducted in a simulated setting which makes it difficult to verify

this method. To reduce the number of transmissions, Borgne et al. (2017) apply prediction
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algorithms in the sensor node and gateway to detect future measurements. The management
of energy and memory for storing and processing data in the sensor was a challenge for all the

aforementioned techniques.

2.2.3.1  Techniques used for Wireless Energy Transfer

According to how distant GNs can be from the power source, the technologies utilised for
wireless energy transmission are divided into two categories: near field communication and
far field communication as represented in Figure 2.2. Near field communication is used in
applications like wireless charging, electric automobiles, tiny robots, etc. to wirelessly transfer
power to the receiver using electric and magnetic fields using inductive and capacitive
coupling (Lu etal., 2016). Far field radiation, on the other hand, is made up of electromagnetic
waves that travel at the speed of light. The nondirective RF power transfer is mainly used in
Radio frequency identification (RFID) applications where non-line of sight communication is
established. The RFID system employs a tag that is electronically configured to capture data
(Farooq et al., 2016; Bevacqua et al., 2021). To employ RFIDs, the distance between the
source and the receiver has to be relatively short. To charge sensors and gather data, the UAV
with RFID must have up and down motions and as a result, the majority of the energy is lost.

Thus it is unreliable for measurement since a programmed static tag is required .

Inductive Coupling

Near Field

Wireless Energy

Transfer Capacitive Coupling

Far Field
Directive RF

Electromagnetic power Transfer
Radiation

Non Directive RF
power Transfer

Figure 2.2 Categorizing wireless power transfer techniques

In directional RF power transfer, the radio waves are emitted isotropically for broadcasting
applications or in a specified direction for node-to-node transmissions. In wireless

communication, beamforming is used to guide a signal or beam to the target recipient using
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antenna arrays. In order to vary the direction of the active main lobe of the beam, the depiction
of an n-element phased array transmitter will be used and is shown as in Figure 2-3.
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Figure 2.3: n-element phased array transmitter. Source: Natarajan, (2005).

The directional antennas may be combined with the UAV to use the beamforming technique,
which will increase communication coverage and effectiveness. Beamforming is a technique
that makes use of a number of antennas to concentrate the waveform in a particular direction.
This method helps to reduce issues relating to coverage as well as interference. For example,
if a laptop that is connected to a beamforming router is relocated from one area to another, the
beam will be recalculated and travel along with the laptop. Beamforming in energy-harvesting
wireless networks has been the subject of research into its underlying principles, topologies,
and a variety of application-specific approaches (Alsaba et al., 2018). In full-duplex wireless
powered communication, this technology has been utilised to reduce self-interference and
increase user data rates (Wang et al., 2018).

The advancement of water management research has been enhanced by the combination of
various technologies as discussed above. And the challenges with the water distribution
system’s energy management could be addressed by integrating energy harvesting with 10T
technology. To improve the smart water system, the sensing and control layer might be
integrated with solar cell, piezoelectric, electromagnetic or thermoelectric harvesting
techniques. Research on micro-electro-mechanical systems (MEMS) such as piezoelectric
nanowires, lead zirconate titanate (PZT) films, multi-parameter sensor chips employing

iridium oxide film, and X-ray photoelectron spectroscopy (XPS) analysis is now underway
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and might advance water research (Zhou et al.,, 2017). The integration of these new
technologies would also help to improve factors such as maximizing coverage, energy

management etc.

2.2.3.2 Issues in WET

Maximizing Coverage

Maximizing the coverage is one of the major optimization issues in all wireless networks. The
distance between the source and the ground nodes in a wireless network determines how far
signals may travel to reach them. This distance is referred to as the network’s coverage. One
of the ways to increase operation, performance, and coverage is the development of UAVs

that are capable of operating as flying base stations.
Energy Management

The power transmission between sensor nodes is an important technical innovation that was
implemented using 10T to manage energy consumption. An electromagnetic field will be
appropriate for wireless power transmission if it is determined that the water quality in the
pipes must be assessed. The solutions to the WET issues are further discussed through the

literature review in the following sections.

2.3  Energy Management in UAV enabled WPCN

The components used in SWS are currently powered by batteries, however research in WPCN
is opening new opportunities for energy management and harvesting as a result of charging
through air as opposed to the traditional battery charging scheme. Its lack of battery
replacement difficulties leads to minimal operational costs and an improvement in
performance.

The WET has achieved more attention over the recent years especially in charging mobile
devices and embedded medical device in patients for collecting data within a specific range
within few centimetres. The range of the device was a major issue as it uses magnetic resonant
coupling. The RF enabled WET uses electromagnetic waves to transfer energy over much
longer distances. The RF energy receivers are cheaper and compatible for integration into the
application devices (Bi et al., 2015). Simultaneous wireless information and power transfer
(SWIPT) is a method used in WET is to transmit both energy and information using the same

signal. In SWIPT the receivers use the received energy to encode the information received
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from the same signal. An upcoming method used like SWIPT which attain the researchers
focus is the wireless powered communication network (WPCN) architecture where the energy

received from the signal is used to transmit information to the sender.

2.3.1 Wireless Powered Communication Network

The WPCN architecture, which uses the energy received from the signal to transfer
information to the sender, is a possible approach such as utilised by SWIPT that has attracted
the attention of researchers. When compared to the traditional battery charging technology,
research in the domain of WPCN is leading to new techniques in energy harvesting and
management owing to charging over air. Consequently, it does not require battery
replacement, resulting in lower operating costs and improved performance. Another benefit of
WHPCN is that it provides a consistent and controllable power supply under a variety of needs
and physical situations, making it ideal for low-power loT devices. WPCN is a preferable
alternative for wireless energy transmission because of its cheap operational cost, increased
range, and tiny form factor (Bi et al., 2016). The design of resource allocation schemes,
interference management, and other factors are carefully considered when extending WPCN
into loT. (Ramezani and Jamalipour, 2017; Olatinwo et al., 2018). The communications used
in SWS are currently powered by batteries, however research in WPCN is opening new
opportunities for energy management and harvesting because of charging through air, as
opposed to the traditional battery charging scheme.

In cellular communication using WPCN, fixed base stations transmit energy to the receivers,
allowing for the collection and transmission of data. Since the base stations are fixed, there is
a "double near-far" issue since users at greater distances get less energy and demand more
energy to transmit data. Using the UAV as a mobile base station in the WDS should help
alleviate the near-far problem caused by LOS problems with fixed antennas (Bi et al., 2015,
Cho et al., 2018)

2.3.2 UAV Enabled Wireless Energy Transfer

UAVs have been under development for decades. They were primarily intended for military
use as well as emergency scenarios such as floods. Maintenance, resources, and network costs
were high in typical numerous stationary base stations, leading to the deployment of UAVs as
flying base stations to gather data. Since the advent of advancements in electronics, such as
sensors and microprocessors, UAVs have become quite popular and are deployed

commercially. The UAV may operate as a flying base station to boost coverage, performance,
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and operation, which is appropriate for the application scenario shown in Figure 2.4. The study
of how to save energy by focusing on throughput has received a lot of attention. The
deployment of UAVs in 2D space (level terrain), the best altitude for improved coverage, and
the minimizing number of drones were all investigated (Lyu et al., 2017; Kalantari et al.,
2016).
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Figure 2.4: UAV enabled WPCN

An investigation into the use of beamforming in energy-harvesting wireless networks included
compiling a list of the several conceptual frameworks, physical implementations, and
operational procedures that were discovered during the course of the research (Alsaba et al.,
2018). In full-duplex wireless powered communication, this method has been utilised to
reduce self-interference and improve data rate among users (Wang et al., 2018). Beamforming
is also employed in one of the studies where a high UAV uplink throughput is attained on
board the UAV. This offers a variety of benefits, including the following: (Tomasz et al., 2020;
Yamen et al., 2018; Angeletti and Lisi, 2014).

i. Broader coverage: The beam is concentrated on a particular spot, the same frequency may

be reused, which allows for an increased number of users and greater coverage.

Ii. Higher data rate and quality of service: The beam is concentrated on a single receiver, the
signal-to-interference noise ratio (SINR)is increased, which results in an increase in

efficiency.

iii. Improved security: It offers a higher level of protection and safety due to the fact that the

beams are not disseminated in all directions.
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Iv. Less interference: Instead of broadcasting in all directions, which might result in
interference, beamforming makes use of directional antennas to help guide the beam in the

desired direction.

2.3.2.1  Approaches used in UAV enabled energy transfer

There are primarily two approaches that may be taken to extend the amount of time an
UAYV can remain in the airspace, which in turn extends the capability of both energy transfer
and communication. An initial approach might be to expand the size of the battery; however,
this will result in greater costs and will make the UAV heavier to fly, which will result in
increased fuel consumption. It is better however, to obtain power for the UAV from
intermittent sources. These sources could employ wireless power transfer technologies like
electromagnetic field (EMF) or non-electromagnetic field transmissions (non-EMF) (Lu et al.,
2018).

In the EMF based method, high voltage power lines are used to recharge the UAV’s using the
electromagnetic field from the lines. Adjusting coupling coeffients between the power line and
the UAV and managing the frequency within the onboard UAV makes it practically difficult
to apply it in real life (Choi et al., 2015; Bi et al., 2016). Non-EMF consists of different
methods such as PV arrays, laser beaming, dynamic soaring etc. In PV arrays, the UAV will
be integrated with PV arrays which use solar radiation to charge the battery and store the
energy for the night-time. But this method had some limitations as it is completely depending
on the solar radiation which is not the constant source of energy required for communication
(Safyanu et al., 2019). In laser beaming, an external source feeds the laser source to create a
strong laser beam that is used to charge the UAV, but the difficulties in the practical
implementation of having a moving charge source are that the UAV should remain close to
the charging station (Achtelik et al., 2011).

Currently, researchers are encouraged to combine Beamforming in antenna design with
applications such as satellite, energy harvesting, wireless communication, and so on (Angeletti
and Lisi, 2014). Beamforming has been utilised to boost the capacity of the uplink for on-
board UAVs in various studies (Alsaba et al., 2018; Izydorczyk et al., 2020). Because the beam
is focused on a single receiver, it provides more coverage, security, and quality of service, as
well as a higher data rate with little interference. Aquilina et al. (2019) and Yang et al. (2019)
utilised iterative algorithms in UAV enabled sensor networks to optimise the energy transfer
and therefore increase the energy efficiency, while Zhan et al. (2018) and Yang et al. (2018)
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used iterative (static) algorithms in UAV enabled sensor networks to optimise the energy
transfer and thus increase the energy efficiency.

2.3.2.2 Optimization Algorithms for Energy Management in Wireless Communication

There are several benefits of employinga UAV as an airborne base station, such as the
flexibility to move about and deploy fast, as well as a greater line of sight (LoS) (Mozaffari et
al., 2017) for data collection, though some still prefer to use ground-based stations. UAVs
provide a variety of significant technological challenges, including interference, battery life,
energy management, trajectory planning, and deploying in three dimensions, despite the fact
that they offer a number of considerable benefits. The deployment is the key problem, and its
success is dependent on energy consumption.

The development of a wireless power transfer protocol and an energy-efficient power transfer
scheduling approach are some recent examples of improvements in energy management
(Nikoletseas et al., 2017). The wireless power transfer protocol is comprised of two protocols:
one protocol checks the power of each sensor node to determine whether or not it can transmit
energy, and the second protocol determines whether or not there is a balance of energy. In a
software-defined wireless sensor network, energy transmitters are activated by the process of
scheduling and thereby reducing the amount of energy consumed by the transmitters by
requesting power transfer, energy transfer activation optimization and confirmation. At
network layer, energy management in water distribution systems might be handled by
deploying this technology (Ejaz et al., 2016).

During real-time deployment of wireless powered networks, energy efficiency was still an
important consideration. Some of the authors anticipated that the UAV would have sufficient
energy to operate, and they employ techniques such as sequential convex approximation
(SCA), scheduling and energy harvesting to control the UAV’s energy consumption. Table
2.4 provide a comparison of the approaches that are currently in use as well as their

deficiencies.
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Table 2.4. Comparison of current methods and its shortcomings

Ref.

Method

Limitations

(Yang et al., 2018; Zhan
etal., 2018)

Utilize iterative algorithms to
maximize the transmission of
energy.

It is not implemented in WPCN.

(Izydorczyk et al., 2020;
Alsaba et al., 2018)

Beaming to enhance uplink
wireless data transmission
(WDT).

The UAV's energy
consumption is not considered.

To reduce completion time,

The sensors are presumptively

(Bi et al., 2015; Cho et | use the bisection search | on an even plane with the

al., 2018) techniqgue with the sub | UAV's fixed height and RF
gradient algorithm. charging mechanism.
Scheduling

(Ejaz et al.,, 2016; | Wireless power transfer .

Nikoletseas et al., 2017) | protocol  combined  with Not applied in WPCN for WDS
scheduling.
Convex approximation is

(Chen et al., 2020)

being used in an iterative
process to maximize transmit
power.

Achieved using sophisticated
mathematical techniques, and
the height of the UAV is fixed.

Power  distribution, path

. | planning, user scheduling, and | Implemented exclusively in
ﬁgggﬁaﬁtgt;lqzof%zo’ bandwidtha!li_nteracttogether mobile communication
B to maximize energy | networks.
efficiency.
Mainly implemented in

(Mozaffari et al., 2017;
Kalantari et al., 2016)

Reduce overall flying duration
by cell partitioning.

telecommunications;
Not applied in WPCN

2.4

Navigation optimization of the UAV using WPCN

The UAV s effective in keeping a constant level of service, and numerous approaches and
designs have been created to increase the efficiency of energy harvesting by optimising the
trajectory path. Xu et al. (2018) adopted a trajectory based on time discretized technique with
an estimated mission completion time in order to optimise the minimum amount of energy
that was harvested. Wang et al. (2018) on the other hand, used this technique in order to
maximise both the average and the minimum throughput to all devices. With a single ground
user and a UAV at constant speed, a framework for optimising the trajectory in two-

dimensional space has been introduced (Zeng and Zhang, 2017). The ground users, on the
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other hand, were treated evenly in a one-dimensional plane for simplicity's sake, however this
has an impact on applicability throughout implementation. An iterative method of sub slot
allocation and UAV trajectory design was presented by (Xu et al., 2018) to maximise the mean
information rate of 10T devices in the communication service.

Additionally, a clustered non-orthogonal multiple access system was taken into consideration.
During the time that the UAV is either collecting data or energy, the tangential line method is
used to establish the trajectory route that it will take. The research carried out by Tang et al.
(2020) uses the tangential line technique for path planning and ‘broadcasting’ energy to the
ground nodes. The trajectory departs from the starting point and avoids the obstacles by using
the circle's tangent line approach. The sub-paths are common tangents connecting adjacent
obstacle circles. This approach could provide the shortest collision-free route by joining the
arcs between tangent points on the same obstacle circle and contrasting the lengths of several
paths from the starting point to the concluding point. This is implemented with the goal of
achieving the highest possible minimum throughput. In contrast, Zeng and Zhang (2017)
employs the technique for trajectory planning and optimization. The UAV consumes a
significant amount of its available energy to ascend to higher altitudes in order to collect data,
and then it descends to a lower level in order to be closer to the sensors so that it may transmit
energy to them. Beamforming offers the potential to significantly cut down on the loss of both
time and energy.

In wireless mobile communication, when the UAV serves as an airborne base station, the
power distribution, trajectory, user scheduling, and bandwidth may be optimised to produce
the highest possible level of energy efficiency (Yang et al., 2018). The majority of unmanned
aerial vehicle (UAV) communication systems include either trajectory, routing, or route
optimization as a way to improve energy economy, performance, and throughput. (Zeng et al.,
2020; Zhan et al., 2018) proposed an energy efficiency model and design based on a fixed
wing UAV's trajectory, speed, and duration. (Sun et al., 2019) utilised a three-dimensional
trajectory and resource allocation for the purpose of overall throughput optimization in solar-
powered UAV communication. The vast majority of the currently available research
concentrates on the optimization of energy consumption on a horizontal plane, with the
assumption that the height of the UAV remains unchanged. According to the studies that have
already been conducted, there has not been a large amount of study conducted on minimising

the overall energy that a UAV consumes when operating in an uneven terrain.
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2.4.1 Path Planning Challenges

There are a number of challenges associated with UAV technology, such as those associated
with channel estimates, resource allocation, path planning, privacy and security concerns,
interference, etc. and that there is a significant investment of both time and money involved in
finding an optimum path to finish the mission in the WDS. The challenges associated with
path planning will be the key concern in this work. The following list provides a full analysis
of the many obstacles that the UAV must overcome while choosing its flying path (Majeed
and Oun Hwang, 2022; Ait Saadi et al., 2022):

Flight path length: The measure of the distance that must be travelled by the UAV
between its point of departure and its destination in order to successfully complete the mission
in an optimal way.

Energy efficiency: The process of making the most efficient use of the energy that the
UAV has by reducing the amount of fuel consumed, the amount of battery power used, and
any other operations that use up the energy that is on board the UAV.

Time efficiency: This refers to how long it takes the UAV to complete the mission
while using the route that has the least amount of travel time. It also depends on the distance
travelled and the total amount of time that must be invested in order to accomplish the task at
hand.

Cost efficiency: It comprises the total cost of the operations of the UAV, which
includes computational cost, fuel usage, communication costs between sensor nodes or access
points, expenditures for battery recharge and maintenance costs. It has a direct relationship to
both the total amount of time and energy that the UAV consumes.

Optimality: The solution to a problem that requires the least amount of money, effort,
and time to implement the best option. The solutions may also be non-optimal, in which case
they provide a solution without taking into account any of the limitations, or they may be

suboptimal, in which case they provide a solution that does not satisfy any of the criteria.

2.4.2 Optimization algorithms and techniques used for Trajectory Design

There are different 3D trajectory planning algorithms have been developed throughout the
course of time for use in a variety of various rural and urban applications. Due to the fact that
its design is both effective and easy to understand, it is frequently utilised in real-time UAV
applications. The algorithms are broken down into four primary categories: those that are

mathematical model-based, those that are bioinspired, those that are machine learning-based,
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and those that are node-based. (Liang Yang et al., 2014; Majeed and Oun Hwang, 2022). The
algorithm/techniques to be used are determined by the application and its environment.

2.4.2.1  Mathematical model-based algorithms

Based on computational complexity and design strategy, this method, which employs several
mathematical functions and equations for an optimal path planning of the UAV focusing on
minimizing cost, time and energy. Specifically, this focuses on minimising the cost of the
mission while also reducing its flight time. Control theory, metaheuristics, linear
programming, mixed integer linear programming, and nonlinear programming are some of the

examples of algorithms that belong to this area.

For example, much of the research has provided evidence focusing on obstacle avoidance for
path planning of a UAV using Integer linear programming (ILP) and mixed integer linear
programming (MILP) in linear programming method (Waen et al., 2017; Almutairi et al.,
2022), whereas some authors used Markov decision process (MDP) algorithms such as state-
action-reward-state-action (SARSA) (Zhang et al., 2021; Zhao et al., 2019). But the energy
efficiency of the UAV/communication is not considered. By taking a different approach, some
of the probabilistic models such as an improved ant colony optimization with penalty strategy,
were used to find the trajectory path focusing on obstacle avoidance which provide efficient
result, but energy utilisation during the communication were not considered (Yue and Chen,
2019; Li et al., 2020).

2.4.2.2  Bioinspired algorithms

Bio-inspired problem-solving entails exploiting biological behaviours to tackle problem
inspired by the environment. This strategy for route planning eliminates the requirement for
complicated environment models and replace them with timesaving search procedures in order
to get the best possible answer. To address these difficulties, evolutionary algorithms like
particle swarm optimization (PSO), adaptive multi-objective differential algorithms, and
neural network algorithms are utilised. These algorithms analyse the problem at several

distinct levels.

Several publications have acknowledged the potential of evolutionary algorithms for use in
path planning with UAVS, such as the genetic algorithm coupled with sequential convex
approximation, in which the trajectory was optimised by significantly reducing the amount of
time it took for the UAV to complete its mission (Pi and Zhou, 2021). ANN and A* algorithms
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were used by Sanna et al.(2021) to address the problem of coverage, path planning and to
determine a path that would avoid collisions and congestion.

2.4.2.3  Machine learning algorithms

Machine learning algorithms are a subset of Al techniques in which the system make decisions
independently without any external interference. It incorporates many approaches that were
used to train the system and detect certain patterns. It is mainly classified into supervised,

unsupervised and reinforcement learning based on how the data is arranged.

For instance, the literature of Yoo et al. (2017) emphasis on contrasting the effectiveness of
applying Kalman and Gaussian filters, both of which were used to reduce the problems of
noise and probability of collision during communication. The model recognises a pattern in
the way that networked elements influence UAV motion, learns and improves its estimation
precision through the use of Gaussian techniques, which fall under the category of supervised
learning. Despite the fact that it produces superior outcomes, the error rate was not particularly
high while utilising this strategy. The unsupervised method consists of clustering algorithms
such as quality threshold clustering (QTC), K-means etc. For instance, the research conducted
on implementing clustering leads to clustered nonorthogonal multiple access (C-NOMA) and
density-based clustering for trajectory designing of the UAV (Chen et al., 2021; Na et al.,
2021). The above strategy also focuses on improving the achievable uplink throughput
whereas Shen et al.(2022) used greedy learning clustering to group the machines and an energy
map to identify an optimal hovering position for better throughput. The research of optimizing
the path planning by applying further methods leads to Reinforcement learning (RL)
(Kosunalp, 2016), Q learning (QL)(Wang et al., 2021b; Alam and Moh, 2022) and Deep Q
learning (DQL) (Tang et al., 2020; Jo et al., 2022). Since maximizing minimum throughput
by planning the trajectory and optimizing the time is a non-convex problem, Tang et al. (2020)
applied multi agent Deep Q learning using a penalty and reward scheme. Alam and Moh,
(2022) provided a survey of the different QL based position aware routing protocols and its
future research directions which include precise energy consumption of the UAV, space-air-
ground integrated network (SAGIN) routing for mobile communications to improve the
coverage and the need of HAP’s and accurate channel models whereas Wang et al. (2021b)
used iterative hybrid algorithm using Q learning to reduce the position errors and correct it

for energy efficient navigation. The research of Dong and Liu, (2021) focussed on coverage
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route planning with UAV cameras under a two-dimensional plane with constrained power

integrating deep reinforcement learning merged with double Q learning and clustering.

2.4.2.4  Node based algorithms

To build a route based on a set of nodes such as sensors, node-based optimization methods are
utilised. It searches through a collection of nodes that have precalculated sensing, placement,
and processing. This is a dynamic programming approach that generates a cost function and
explores all accessible nodes in the graph or map to find the shortest path (Liang Yang et al.,
2014; Al-Janabi and Al-Raweshidy, 2017).

To create an optimal trajectory for data collection, Tong et al. (2019) used affinity propagation
(AP) method to find the hovering points or collection points of the UAV and a dynamic
programming approach is used to create an optimal trajectory by selecting the shortest path
whereas Wu et al. (2022) used TSP and dynamic programming. A comparison of path
algorithms such as Dijkstra and heuristic algorithms are employed for an efficient path
planning, and Dijkstra outperforms heuristic methods based on the simulation results
(Danancier et al., 2019) whereas the famous searching algorithms such as Dijkstra, A*
dynamic and D* were compared to explore the recent technologies for path planning in multi
robot systems (Madridano et al., 2021). An adaptive lazy theta* algorithm is developed for the
purpose of calculating an ideal path in three-dimensional space in real time. In this approach,
the three-dimensional space is subdivided into multiple levels in order to filter successor nodes
that are unsuitable due to the limitations of the UAV. Additionally, dynamic heuristics are
utilised in order to enhance the precision of the computed route (Wu et al., 2020). Mandloi et
al. (2021) performed a comparative analysis of the A*, slow theta*, and theta* algorithms in
two-dimensional and three-dimensional space with the goal of determining the most efficient
route for the UAV to take from its origin to its destination. Table 2.5 provides a comparison
of the algorithms that are most commonly used as well as the restrictions associated with each

method throughout the process of path planning for the UAV.
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Table 2.5.

Comparison of methods for path planning using UAV

Ref.

Method

Limitations

(Pi and Zhou, 2021;
Sanna et al., 2021)

Genetic Algorithm combined
Sequential convex
approximation,

ANN

Minimum completion time by
resource  allocation  and
trajectory optimization.

Nodes are deployed only in 2D
space.

Energy consumption of the
UAV is not considered.

(Zhan et al.,, 2018;
Wu et al., 2018)

Successive convex approximation

Consider only uplink
communication scenario.
Focus only on minimize
energy consumption of sensor
nodes

(Huaetal.,2017; Sun | Maximizing of the sum | Design of the trajectory and
et al., 2019; Tang et | throughput using convex | the energy consumption model
al., 2020) optimization. are not considered.

. . Total service time of the UAV
(Waen et al., 2017; E?It_ng)?r Linear  Programming is minimized while energy
Almutairi et al. - . efficiency is not considered.

' | Mixed Integer Linear
2022) . Focus only on obstacle
Programming (MILP) avoidance.
oo .| 2D space with obstacle

(Yue and Chen, Ant colony optimization - with avoidance is considered.

2019; Li et al., 2020)

penalty strategy,
Modified Ant colony optimization

Real time trajectory planning
is not considered.

(Zhang et al., 2021;
Zhao et al., 2019)

Markov decision process (MDP);
SARSA

Focus only on obstacle
avoidance in real time.

Energy consumption of UAV
is not considered.

Delaunay Triangulation DT(P)

Energy efficiency of the UAV

(Miller etal., 2011) | combined  with ~ Polynomial | . .
approximation, is not considered.
m?]récg\?v' g[n%l" dZeOZI_l a;l Graph search algorithm | Survey on the standardization,
Cruz. 2010 Hossein (NAMOA¥*), safety, collision avoidance and
! ! A* algorithm obstacle detection.

Motlagh et al., 2016)

(Joetal., 2022; Tang
et al., 2020;
Kosunalp, 2016)

Deep Reinforced Learning,
DQL based power control
algorithm,

Q Learning

Only transmit power is taken
into account for optimization.
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According to the disclosure of several optimization methods for UAV-enabled WPCN, the
implementation of each strategy resulted in a number of constraints, which are detailed in
Table 2.5. Some of the approaches only take into consideration a two-dimensional view of the
situation, which prevents them from providing a real-time implementation of the solution. On
the other hand, methods such as DT(P), ANN, Genetic algorithm with convex approximation
doesn’t take energy efficiency into account at all as its focus was on obstacle avoidance. Since,
the consumption of energy is such a significant aspect in the WDS which takes into account
of sensor nodes and communication systems that require a lot of power. At this point in the
project, combinatorial and clustering optimizations, integrated with technologies such as
beamforming, will be used.

2.4.3 Path Planning Constraints

There are different constraints that need to be taken in to account while planning the trajectory
of the UAV (Ait Saadi et al., 2022; Aggarwal and Kumar, 2020).

e Altitude: The altitude of the UAV is measured in metres. The low flying height of the
UAYV causes it to come into contact with a number of obstacles as it travels along its
path. When flying at a high altitude, on the other hand, there is a greater demand placed
on the UAV’s energy supply as well as concerns regarding coverage.

e Energy consumption: It is the total amount of energy that the unmanned aerial vehicle
(UAV) consumes in order to communicate, move, hover, and do other computational
activities. It is dependent on the time, altitude, path length, and environment with
which the UAV interacts.

e Obstacles/threats: It is anything that interferes with the UAV’s normal flight path, and
it might be static obstacles like buildings or mountains, or dynamic threats like other
drones or objects that are in motion. It is possible that the UAV may be destroyed or
damaged by it, which would result in a considerable increase in the costs associated
with maintaining it.

e Velocity: It is crucial for both the planning of the UAV’s flight route and the control
of its flight. A lower velocity has an immediate influence on the amount of fuel that is
used, in contrast to a higher velocity which makes flying the UAV more difficult but
speeds up the task. Because of this, a fair average velocity is always selected in order

to save both time and energy.
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In this thesis, the navigation of the UAV takes into consideration energy consumption, altitude,
and obstructions; however, velocity is assumed to be a constant other than during the hovering

process (when it approaches zero at constant height).

2.5 Research Gaps

As described in the background section 1.1, intelligent water monitoring is a sophisticated
technique that integrates computing, engineering, and environmental elements to ensure water
quality and thereby maintain the water ecosystem. The literature review in this study assesses
the diverse contributions made by researchers in smart water distribution systems in sensing,
collection and communication, and WET. It reveals some of the new water quality sensors and
protocols that could be integrated with wireless energy transfer methods to resolve issues such
as coverage and energy management in WDS. The recent advancement of WPCN, UAV and
EH technologies has aided in water monitoring by lowering costs and boosting efficiency in

determining water quality.

However, while the use of a UAV alleviates the doubly near far problem (where the nearby
nodes receive sufficient energy whereas the far away nodes starve) because it is mobile, it still
uses energy to travel close to GNs in order to either supply energy or facilitate communication,
the problem of minimizing its travel remains to be addressed. This will be a key focus of the

work.

The literature research also exposes, however, current challenges in data and energy
management in WDS, as a proliferation of energy hungry sensors are used during monitoring

and communication.

The problem is compounded by inadequate solutions to the problem of maintaining both
unmanned and manned aerial vehicles in flight for an adequate amount of time due to finite
battery charge and onboard devices draining it. It is clear that no one solution has been able to
resolve this problem and is unlikely to in the foreseeable future. It is inevitable that any
solution to this problem will necessitate zero-power performance of the devices utilized
including the UAV itself.

This thesis proposes a solution by integrating advanced technologies such as WPCN,
beamforming with the UAV along with optimization methods in wireless communication. It

is evident that there is a significant paucity of research on energy management of the UAV

35



enabled technologies to wirelessly charge the GNs and collect data. Most of the study therefore
focuses on energy management of the UAV to enable data management and monitoring of

water quality using wireless networks and WPCN.

The navigation optimization of the UAV for path planning using different algorithms such as
mathematical/machine learning was also considered to satisfy different constraints and analyse
the advantages and limitations of each method. It is observed that some of the studies focus
only on energy optimization on an even plane, with the height of the UAV considered to be
constant, as discussed above. According to Table 2.4, there has been little research in
minimising the overall energy of the UAV over uneven terrain. The thesis is therefore mainly
focussing on resolving this research gap by optimizing the energy and height of the UAV using
3-dimensional beamforming in UAV enabled WPCN and dynamic optimization methods for

energy management.

2.6  Summary

The discussion in this chapter starts with the layered view of smart water systems to identify
the current sensors and new technologies that could be used in WDS. This thesis focuses on
the communication and sensing layer in the WDS. In this layer, energy usage was the focus as
there are large number of GNs in the WDS and battery life limitation was always a major
concern. Using the literature study, different wireless communication methods were taken into
consideration to review and identify the method compatible with WDS. For battery recharging
issues, the doubly near far problem of the UAV was raised and is to be resolved using a UAV
enabled WPCN. This chapter discusses how it could be applied. It also reviews different
energy harvesting methods/technologies used in WDS and identifies a research gap in the need
for energy optimization in WDS and how it could be effectively implemented with new
technologies such as UAV enabled WPCN and beamforming. In order to focus on this, energy
management strategies and navigation optimization methods were considered which could
optimize the energy of the UAV by constructing an optimal trajectory with respect to charging,

communication and UAV dynamics.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1. Introduction

This chapter not only provides a more in-depth description of the WPCN that is enabled for
UAVs and been deployed for WDS but also introduces the optimization algorithms and
techniques to be used for their energy management. When reaching an optimum hovering
point, the UAV which is part of the communication environment serves as a hybrid access
point in the WPCN and will be able to send energy and gather data on the water quality. Some

of the contributions made in this chapter have been presented in Radhakrishnan et al. (2021).

In order to focus the radio frequency (RF) signals that are transmitted to GNs, the UAV makes
use of a technology known as three-dimensional beamforming. The energy that can be
harvested from these energy signals by the GNs is then utilised for the transmission of data.
An equal time is assigned for both energy and data transmission during the communication.
Information (I = -plogzp) is optimized at dl/dp = 0. Thus logzp.dp/dp+p(1/p) = 0. Hence logzp
=-1or p =%. Therefore, equal transmission and charging probabilities and rates are required

for optimal energy and data transmission.

In current cellular communication schemes, the WPCN is deployed with the help of fixed base
stations that broadcast energy to recipients for the purposes of data gathering and
transmission. Since the base stations have been fixed, users who are further away receive less
energy and demand more energy for data transmission. This scenario is known as the doubly
near-far problem. Due to issues regarding line of sight (LoS) with fixed-based stations, the
double near-far problem will be resolved in this thesis by deploying a UAV as a flying base
station but, its deviation from a centroid of GN clusters is also optimized with respect to beam
strength.
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3.2. System Conceptual Design

A system model is presented to optimise the position of the UAV in order to reduce the amount
of time and energy required for the flight, as shown in Figure 3.1. The WPCN system used in
this model consists of rotary-winged UAVs that can communicate through line of sight (LoS)
with GNs that are equipped with rechargeable batteries. To generate a three-dimensional
perspective of the GN points, the GNs must first be positioned using Cartesian coordinates of
apointin 3D is X, y, and z and in this thesis height (h) is used instead of z. The UAV receives
power from an RF energy charging station, and then it beamforms the power to the GNs using
the WET components that are on board. The location of the ground sensors are positioned
inside an ellipse with radius Rc. Since both the UAV and the GNs are observed from a three-
dimensional viewpoint, a dome is an effective shape to use when attempting to portray how

the GNs are clustered together in the terrain region.

Figure 3.1: A system perspective of a UAV-enabled WPCN incorporating 3D beaming

The radius of the clusters is denoted by the notation ‘r’ in this context. The starting location
of the UAV will be determined by utilising a 3D K-means clustering method in combination
with the GN points (xn, Yn, and hn) to estimate the centroids of the clusters. It is anticipated
that the nodes involved in beamforming will also receive energy, since they are located in the
same line of sight as the nodes that are involved in charging. This task will be completed using

arotary wing UAYV that is equipped with beamforming due to the requirement for hovering as
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well as flying motions. A downlink channel model will make use of a 3D perspective of the
ground nodes, which will be viewed as being on an uneven plane, as opposed to being limited

by a 2D perspective of fixed base stations (as is assumed for even terrain).

Optimal position between

two or more nodes to transfer
energy and collect data

.

Horizontal Reference line

Figure 3.2: Application scenario of monitoring water quality with UAV-enabled WPCN

The implementation of UAV enabled WPCN in a water quality monitoring scenario is
illustrated in Figure 3.2 which offers a detailed picture of one among the cluster nodes. In this
scenario, the GNs are distributed at random along a water pipeline at various points that are
designated by a horizontal reference line and are positioned at variable heights above the
ground. A UAV that can function as a flying base station is capable of sending RF energy
signals through beamforming while simultaneously collecting data on water quality. Matlab
is used to perform simulations and analysis of antenna signals by using the research of
COMSOL (n.d.), which allows the beamforming concept to be integrated with the onboard
functionality of the UAV. During the communication, the UAV will be hovering in an optimal
position with respect to the amount of energy it uses and the overall amount of flying time it
needs to complete the mission. The implementation of dynamic optimization methods in
conjunction with the suggested ‘Dome packing’ method will be used to arrive at the ideal

location. These methods will be formulated in subsequent sections of this and later chapters.
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Figure 3.3 Proposed Conceptual Diagram for Energy optimized Navigation Model

The concept could suitably be deployed in emergency scenarios, such as when a water pipeline
bursts, when water is contaminated by outside sources, or any other situation in which urgent
information on water quality is to be gathered. In the proposed conceptual diagram in Figure
3.3, a proposed dome packing method will be used to provide an energy optimized trajectory

design for the WDS. In this approach, a 3D clustering algorithm will be implemented to pack

40



the sensors in a specified region, which in this case is a water pipeline structure. In other words,
the water pipeline will serve as the location of the sensors. The LoRa protocol is employed for
data collecting, and a 3D beamforming technology is used to charge the water quality sensors
that are installed in the water pipeline. The suggested technique allows for the calculation of

the best possible location for the UAV, which in turn allows for the design of the trajectory.

The energy consumption of the UAV as well as the energy received by the GNs is firstly
calculated using the dome packing method. The energy time graph of the UAV and the GNs
are generated with n rounds of iteration and a comparison made with the non-dome packing
approach. After the implementation of the proposed dome packing approach, dynamic
optimization methods are developed to integrate the dynamics of the UAV with the proposed
dome packing method to increase overall optimality of the system. Utilizing two distinct
algorithms for dynamic optimization allows this optimization approach to be reviewed and

validated.

3.2.1 Downlink Communication Design

The UAV is equipped with a uniform rectangular antenna array (URA) with N radiating
elements, and the horizontal position at each time tis u(t) = (x(t), y(t)) and it could be identified
using global positioning system (GPS) integrated in UAV. The GN’s have fixed positions on
the ground gn = (Xn, Yn, hn) and are mounted with two omnidirectional antennas for WIT and
WET. The distance formula may be used to determine the distance between the UAV and the
GNs (d) at any given time (Wang et al., 2021a):

d= J(u(t)—gn(t))z + huav2 (3.1)

where h,,, denotes the UAV's flight altitude. A theoretical path loss model could be
integrated with this model using a vector 1 € CN*! used to compute the communication link
power loss between the UAV and GNs, where CN*! represents an N element transmitter with

the space of Nx1 complex matrices (Zeng et al., 2019).

1= /1, l,a(N,8,0) (3.2)

The steering vector is represented as a(N, 6, @) triple, while the elevation and azimuth angles
of the LoS/NLoS route between the UAV and the ground node are denoted as 6, @ and range

41



of 6 from -90 to 90, @ from -180 to 180 for NLoS. The large-scale and small-scale fading
variables are 1, and 1;, respectively, where 1; € CN*! and 1, rely on the LoS and NLoS

connectivity between the transmitter and the receiver (Zeng et al., 2019).

Prios PLLostPINLos PLNLos
lp = 10_( 10 ) (3.3)
PL1os = PLps(dg) + 10 Ep4slog(d) and PLypes = PLgs(dg)10 Enpos log(d) (3.4)
4t
where PLgs = 20log (d, f *) — Gt — Gr (3.5)

and

d, is the reference distance which equates to 1 metre
PL stands for propagation loss

Pry,os 1S the probability of LoS , Pry o +Prypos =1
FS stands for free space path loss

c is the speed of light

fis frequency.

The environmental-dependent path loss exponents for LoS and NL0oS communication are £
and Enpos, While the transmitter and reception antenna gains are Gt and Gr (Radhakrishnan
and Wu, 2019).

In this thesis, pathloss factors are not considered as the focus is on optimizing energy
consumption of the UAV during charging and communication than considering the whole
communication. If the pathloss were considered, it could have resulted in some amount of

energy lost during communication.

To study, analyse and implement the beamforming technique, different tools were considered
at the initial phases of the research which included Ansys, Matlab etc. Matlab was selected to
implement the scenario as the Ansys tool is mainly focussed on antenna design and it is beyond
the scope of this thesis to integrate this with sensor placement and optimization methods. On
the other hand, Matlab enables the construction and analysis of common sensor array

configurations.
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Initially, the 3D beam is constructed and analysed in Matlab R2022a as part of the research
using the sensorArrayAnalyzer toolbox. Phased Array System Toolbox is a Matlab-based tool
which is a subset of Sensor Array Analyzer. This package includes functions for designing
and simulating beamforming and sensor arrays for wireless communication in 2D and 3D.
Active and passive arrays, including subarrays can be modelled and analysed. These arrays
enable the transmission and reception of simulated signals for the development of
beamforming methods. The array types include uniform arrays such as rectangular, linear,
circular or concentric, spherical etc and element type include choices such as custom, isotropic
or cosine antennas. By analysing the beam formation using different arrays, rectangular array
provided the required beam strength for the work. Figure 3.4 depicts the outcome of an 8x6
uniform rectangular array antenna pattern using custom antenna type study at a frequency of
1GHz followed by the analysis of the 3D beam represented as in Table 2.3. A 1GHz frequency
Is used as the waves with higher frequency carries more energy and with lower frequencies,
charging the sensors in WDS would be difficult. Different frequencies were used during this
simulation and 1GHz were the optimized one for the thesis as in appendix C.4. The different
parameter value selections were based on the strength (half power beam width) and array
directivity of the beam provided by Sensor Array Analyzer during analysis. In this project,
antenna design is not considered, and the Matlab tool is actually used to analyse the strength

and directivity of the beam.

3D Directivity Pattern
1 GHz No Steering 110

Directivity (dBi)

Az0
EIO
-20

-25

-30

Figure 3.4: A Constructed 3D beam pattern
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Table 3.1: Outputs of 3D beam analysis

Parameters

Value

Array Directivity

17.18 dBi at Az; 0 El

Array Span

X=0 my=750 mm z=1.05m

Number of Elements

48

HPBW 22.04° Az /18.00° El
FPBW 61.19° Az / 44.00° El
SLL 30.00dB Az /30.01dB EI

Formulations to create antenna radiation patterns (beamwidth) pointing at the GN’s have been

provided by Balanis (2016). These are summarized in equations (3.6 - 3.8) below in which the

antenna gains created in horizontal and vertical planes (Ag, Ay) are calculated as follows:

A(8,0) = Au(6) + Ay(®)

Au(8) = min[12( )2 A

Ay(®) = min[12( Z2iltyz p

P3dB

(3.6)

3.7)

(3.8)

where A, is the side lobe level attenuation of the generated beam, @, is the beam tilting

angle required by the UAV to reach GN, and 6545 and @345 represent the 3dB beamwidth of

the horizontal and vertical patterns of the beam, respectively (M Series Mobile, 2017). The

distances (horizontal and vertical) from the cluster centre to the ground terminal node, d and

H, are used to compute the angle, tan~1( H/d), to guide the beam in the direction of the GN.

The range of the beam dsin(«), where « is the beamwidth, is also determined by calculating

the half power beamwidth (HPBW). To construct a beamforming energy signal (S), equation

(3.9) will be used (Zhang and Ho, 2013).

S = P w HPBW

(3.9)
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where Pr is the transmitted power from the antenna array, and w is the beamforming vector
of the energy signal. The formula for the beamforming vector is w = v /||v4]|, in which v,
Is an eigenvector determined by taking the largest eigen value (Ei) from matrix L, where L =
11"and H is the conjugate transpose of matrix L. The power spectrum density of each sub band
should be less than or equal to the square of the Euclidean norms of the beaming signal, and

hence ||w]||5 = 1 can be assumed (Liu et al., 2020; Timotheou et al., 2014).

In this case, an assumption is made that the energy received will be mostly utilised by the GNs
for data transmission apart from activities such as activating sensors etc. Let T,,; be the
overall time necessary for energy transfer and information transmission. Then according to
probability, (1-X) T, be the time needed for data transfer and let XT,,; be the time needed for
energy transfer and X is the fraction of probability for data and energy transfer. As explained
in the introduction (3.1), it is expected that data transmission and energy transfer are assigned

equal amounts of time.

The harvested power (Pgy) ought to be higher than the threshold (Pry) value of the GNs,
which can be considered constant while Py varies with transmission distance. Therefore, Pgy
depends on Pr/d?, where d is the distance between the GN's and the UAV:

Pey = nXTiotPrEi/d* = Pry (3.10)

where the efficiency of energy conversion, also considered as constant is denoted as n and
E; = 1/||v1]||? where ||v1]|? is the norm of the eigen vector. Similarly, the UAV's energy
consumption for WET is Egt and given by: (Wang et al., 2021; Radhakrishnan and Wu,
2022).

Epr = PrXTo (3.11)
3.2.2 Uplink Communication Design
The amount of energy utilised (Ept) during data transfer depends on the harvested power of
the GNs as (3.12)
Epr = Py (1-X) Tiot (3.12)
The LoRa protocol will be used to implement data transmission due to its low power

consumption, cost and high data rate when applied in 10T and assuming that the UAV acts as

a LoRaWAN gateway to receive the packets that has been sent by the GNs. Therefore, LoRa
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protocol is used in this thesis along with the findings from literature review, Table 2.2 and
Table 2.3 for data transmission from the GNs to the UAV. In this thesis the LoRa is
implemented using the packet format as the focus is on optimizing the energy consumption of
the UAV. The LoRa packet format is represented in Figure 3.5 where ‘Preamble’ is used for
synchronisation of the information between the transmitter and the receiver. Payload is where
the message is encoded and followed by cyclic redundancy check (CRC) whereas the header
provides information about the payload length, spreading factor (SF), coding rate (CR) etc.
‘Whitening’ is used in this simulation by adding a known sequence to the payload to reduce
the redundancy during transmission. LoRa is also compatible with the advanced water quality
sensors such as tibellium based on the reveal in the Table 2.1 (Libelium, 2015).

Preamble Sync | Header (if explicit) Payload Uplink CRC
0—-65535 symbols | 4.25 symbols 0-3 bytes 0-255 bytes 0—2 bytes
SF SF SF-2 SF SF
No coding No coding | CR4 CR CR

Figure 3.5: LoRa packet format

The data transfer rate R will be calculated in bits per second (bps) using the formula as below:
(Pukrongta and Kumkhet, 2019).

4
R = SF»££0 % 1000 (3.13)

BW

Where BW is the bandwidth used for communication. In the simulation, the following values
are used as in Table 3.2. The control of congestion in the SF (Spreading Factor) plays a crucial
role in optimizing communication networks. By adjusting the transmission range, a smaller
value of SF can effectively reduce congestion and improve the overall efficiency of data
transmission. In this context, a higher value of 7 is assumed, ensuring a larger transmission
range that can accommodate more devices. On the other hand, (CR) is employed to eliminate
interferences, a lower value of CR (4 is chosen) is preferable as it minimizes transmission
delays within the communication system. This ensures smoother and more reliable data

transfers, which ultimately enhances the overall performance of the network.
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Table 3.2: Assumed simulation values for LoRa data transmission

Parameter Value
Bandwidth 50 KHz
SF 7

CR 4

The data transfer time (Tpr) will be proportional to the data transmission rate multiplied by
the size of data delivered (Sz) (Zeng and Zhang, 2017; Hua et al., 2017). Therefore,

Tpr =Sz / (1-X ) R (3.14)

Finally, the total energy consumed by the UAV through each communication cycle, i.e., the

amount of energy needed by the UAV for the movement and WET, is calculated.

Erot = Eyav + Ept + Egr (3.15)

where Ey 5y stands for the propulsion energy that the UAV uses to move and hover, which

will be calculated in the next section.

Table 3.3: Referenced and author defined parameters

Referenced Parameter Author defined parameters

Energy conversion efficiency () | Transmit Power (Pr)
(Wang et al., 2021)

Norm of Eigen vector (E;) (Wang | Harvested Power (Pgy)
etal., 2021)

Data transfer rate (R) | Threshold Power (Pry)
Pukrongta and Kumkhet, 2019

Size of data delivered (Sz) Zeng | Energy consumption of UAV
and Zhang, 2017; Hua et al., 2017 for WET (Egr)

Energy utilized by GN’s during
data transfer (Ept)

Data transfer time ( Tpr)

Total energy consumed by
UAV (Erot)

Propulsion energy (Eyav)
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3.3. Static Energy Function Formulation

3.3.1 Placement of the Ground Nodes

The placement of GNs or sensor nodes in the WDS has been addressed in the literature by,
Shahra and Wu (2020) and others such as Geelen et al. (2021). The actual placement of the
sensor nodes in the WDS is not explored in this thesis, the emphasis is on optimising energy
and time during communication. The nodes are arranged in a 3D for an uneven surface using
Matlab by calculating x, y and z quadrants where these X, y axes are measured in kilometres
and z is in metres. The UAV’s maximum flying height is restricted to 122 metres while the
minimum is limited to 30 m by the UK Civil Aviation Authority (2019). It can be assumed

that the GNs are arranged in a random order over the 3D plane as illustrated in Figure 3.6.

Zinm

100

Y in km 0 o0 i kn

Figure 3.6: Placement of GNs on uneven 3D surface

3.3.2 3D Clustering

Clustering is a process of grouping data into different clusters according to the similarity in
their behaviour or properties. It is mainly performed by calculating the distance between the

points or objects from the origin and groups are created based on these distances. There are
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different types of clustering methods such as K-means, hierarchical etc. The selection of the
clustering method depends on the application.

3.3.2.1 3D K-means

K-means is the simplest and one of the most efficient clustering methods that have been used
for more than 50 years. In the three-dimensional (3D) K-means method, the data points which
lie in 3D space are divided into different clusters and a cluster centre is assigned to each. To
find the three-dimensional distance, the horizontal, vertical and diagonal distances are
calculated. The number of cluster centres can be defined by the user, if the user is able to
identify based on the different categories of behaviour from the data. Otherwise, the elbow
method is used to automatically identify the number of cluster centres. To find the optimal
number of clusters, the method minimizes the sum of squared error of distances with respect
to the number of clusters. To then determine the optimal point, the selection of the elbow point
where there is minimum number of clusters and minimum square error is identified. This point
corresponds to the number of cluster centres for implementing K-means in order to obtain the
centroid. A graph with the elbow method is shown in Figure 3.7, which indicates that a value
of k = 3 is optimal as the change in distortion values are small after k = 3 (Chunhui and Haitao,
2019; Lakhmi et al., 2014).

18 The Elbow Method showing the optimal k

16
14
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08

Distortion
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00
1

Figure 3.7: Elbow method. Source: Chunhui and Haitao, (2019).

In this thesis, clustering is used to group the water quality nodes based on the distance so that

the nodes with similar distances to each other are grouped into the same clusters. A cluster
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centre is calculated for each cluster by finding the centroid and then the beamforming
technique is applied. After node placement at fixed sites, a dome packing method will be

implemented that will be covered in the later chapters.

3.3.3 Energy Function Formulation including UAV Dynamics

A UAV's energy consumption and utilisation have always been a problem in WPCN. This
issue could be alleviated by reducing the overall energy consumption and flight execution time
of the UAV during communication and energy transfer in the WDS. A cost function can be

computed to determine the UAV's ideal energy usage. This includes:

Kinetic energy T = Yamv?,

Potential energy V = mgh,

Transmitted energy Egr,

associated with the UAV.

Based on Lagrange's formulation L = V-T, an extended Lagrangian, L = V-T+Er, is proposed

and consequently, the energy function, E, can be formulated as follows:

1
E = mgh - Ernvuav2 + Etot(hyay) (3.163.)
1 2
Or E= mghuav - Emazhuav + ETot(huav) (3-16b)

where m is the UAV mass and the (vertical) dynamics of the UAV are represented by the
UAYV state model (see section 5.3.1 for further details) in terms of UAV altitude, h:

Vyay = 1 = -ahyay (3.17)

where a is the reciprocal of the time constant, t = ¢/m where c is viscous coefficient of air.

Accordingly,

The problem is stated as follows: min E (3.18)

uav

Subject to constraint 1: v5y = Viax (3.19)

constraint 2: u(0) = uy, u(T) = ug (3.20)
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constraint 3: Egr(hyay) = Ery d? (3.21)

The problem constraints may be restated as:

Egr (hyay) should be larger than the threshold energy (Ery) of the GNs times d? for it to be
detectable, which is h?/sin?0 where 0 is the elevation of the UAV (3.21), due to inverse square

law of power transmission.

The velocity is presumed to be maximal (3.19), and the starting and ending positions of the
UAV to finish the mission are u; and ug (3.20).

If the energy function is quadratic and the state equation is linear, this combination may be
solved with the help of Matlab using a linear quadratic regulator design. The design calculates
the UAV's range/position h where the Energy function is at its optimum. However, these
assumptions are not necessary for the purposes of this thesis.

The following Table 3.4 lists the variables defined in this section for ease of reference.

Table 3.4: Variables defined in Energy function formulation

Constants and Variables Definition

m UAV mass

c Viscous friction of air

h, hyay UAV altitudes

h, V, Vyays Vinax UAV velocities

T=1/a Time constant = ¢c/m

E, Eti, Etot Energy function, Threshold

energy, Total of charging and
transmission energies

L Lagrangian

Kinetic energy

\/ Potential energy
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3.4. Dynamic Optimization Models for Optimal Trajectory Design

There are many different engineering disciplines that experience challenges of optimization.
In many cases, they are vulnerable to non-linear differential and algebraic models as well as
other process restrictions. It is necessary to have an efficient and adaptable implementation of
numerical algorithms for their solution and for their formulation to be suitable for the usage
of methods that are based on dynamic optimization. The process of constructing intelligent
strategies for the purposes of result prediction with the use of mathematical models of
differential and algebraic equations is referred to as dynamic optimization. In order to
undertake this kind of process, one may choose from a large number of different tools and
techniques (Caspari et al., 2019). However, most if not all physical and other systems are based
on a linear physical model and a quadratic cost or energy function and such is the case in this
thesis. Solutions to this kind of problem are well rehearsed in the literature and standard
methodologies relating to linear quadratic regulation (LQR) are well established.
Nevertheless, the methods described below such as extremum seeking and optimum sliding
mode are also applicable to non-linear state models and cost/energy functions that are not
necessarily quadratic. These methodologies applied here will also work for non-linear systems

and cost functions of any order, provided that an optimum exists.

Matlab Simulink is used in this thesis to simulate solutions for the dynamic
optimization techniques used since it was readily accessible and compactible with the

aforementioned methodology and implementation in section 3.3.

3.4.1 Extremum Seeking Optimal Trajectory

Extremum seeking control is underpinned by the Theorem of Averages, which states thata T-

periodic signal can be represented by its average value over the period T, i.e.:

ho f(hut) (3.22)

is proportional to its 'average' value to within O(€), where € >0,

heq— = f, f(h,u,t)dt (3.23)

Note that this is the state equation that represents the physical-dynamic system and it is not

necessarily linear. In the case of the UAV, if this is also the input signal u that is fed to the
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developed Simulink model in Figure 3.8 then the system is linear and system dynamics of the
UAV are simply represented by an integrator.

In a Taylor series, the input to the integrator (E(h + asinwt) asinwt) in Figure 3.8 can be

expanded as follows:

heq = (E(h) + asin wt. Z—E + % a%sinwt. ZZTE + O(a3)) asin wt (3.24)
Using the Theorem of Averages, it follows by integration that:

heq == = (3.25)

As a result, the stationary point of E is an equilibrium point of the system, as demonstrated in

(3.25) and can be proven to be stable (Lehman and Weibel, 1999; Krsti¢ and Wang, 2000) if

2
ZTE < 0, the criterion for a maximum, is met. The greater the perturbation, the sooner the

maximum is achieved. The block diagram of the extremum seeking control is represented in
Figure 3.8b; Note that there is no requirement for E to be quadratic. In the example below, E
is the cubic function

E(h) = 250 h3 — 250 h? + 70h — 8

Figure 3.8a: Cost function E
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a.gnwt
E(h)
h
1 . ™
s T
Integrator Product

Figure 3.8b: Block diagram of Extremum seeking control

The results of the optimization are shown below, clearly reaching a maximum of E clearly at
h=0.2

0.25

P N N T N T SO A O
0

Figure 3.8c: Optimal equilibrium

3.4.2 Sliding Mode Optimal Trajectory

A more robust convergence to the optimum may be possible by adopting sliding modes
(Aarsnes et al., 2019; Sbarciog et al., 2020), in which the necessity for perturbation of the state

h and input u is partially eliminated by switching.

Recognizing that E(h) is independent of inputs and is at the optimum when it resembles a

monotonically increasing function of time alone, or a ramp r(t), allows one to build an optimal
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sliding mode towards which the energy can be made to converge. Thus, the definition of a
potential sliding-mode is as follows:

s=E—-r=0 (3.26)

A switching control could then direct the system performance parameter E towards r(t). Here,
the switching gain k is used to force this outcome for a state model simplified to an integrator

as in the example above;

u=—ksgn(E—r) (3.27)
h=u (3.28)

By defining the Lyapunov function V as the energy of the sliding mode and replacing (3.26),

(3.27), and (3.28), the sliding mode existence requirements are as follows:

V= —s? (3.29)

For the sliding-mode to be stable, this energy function must always be decreasing. Thus:

“V<0 (3.30)
L55<0 (3.31)
ss=s(E—F)<0 (3.32)
s(Eth—1) <0 (3.33)
s(Epu — 1) < 0 (3.34)
u>i/Ey (3.35)
Thus, k > |- (3.36)
5

The partial derivative of E is also forced to be positive since a monotonically increasing

function r(t) is being followed. Equation 3.36 establishes a condition on the switching gain k
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to maintain a stable optimal sliding mode. This solution is depicted in the block diagram of

Figure 3.9:

—»| 1 >/\ >
: /

Integrator

/

r

k }. e

Gain Sign

Figure 3.9: Block diagram of Extremum seeking sliding control

The optimal sliding algorithm can be modified by constraining the sliding mode sinusoidally
and updating the system input as follows:

u= —ksgnsinfs (3.37)
Substituting sin g s for sigma (¢ = sin 8 s), the Lyapunov function (3.29) is modified as

V=142 (3.38)

Similarly, the stability criteria will be updated as below:

V=06<0 (3.39)
BsinBscosfss <0 (3.40)

£ sin2pss < 0 (3.41)

~ Lapss<o fors=0 (3.42)
or p?ss<0 (3.43)
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This results in the same conditions (3.31-3.36). The solution is demonstrated in Figure 3.10b
below, where s and f$ effectively replace s and § in the Lyapunov function. This further
results in a scaling of time, enabling easier tuning of the algorithm. Note that 8 = 2pi/a, where

a is a small positive tuneable parameter < 1, in this case 0.1.

E(h) /
Ramp r
sgma |
—<|<— 1; <« —— ¢ gma .,
Gain k Integrator Sign Trigonometric Gain
Function

Figure 3.10a: Modified Block diagram of optimal sliding mode control

025

Figure 3.10b: Extremum Sliding Mode Control & Response

The optimum seeking sliding control will be implemented using a modified version of the

model shown in Figure 3.10a in chapter 5 to understand the logic of the method.

3.5. Parameters and System Specifications

To implement the proposed optimisations to achieve the UAV’s up, down, and hovering
motion requirements, rotary wing beamforming on board UAV will be employed.

Additionally, a three-dimensional view of the users on the ground as well as the UAV's
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trajectory in an uneven plane is adopted. Libellium water quality sensors were tested and
characterised in case of the need for simulation using Matlab. Similarly, the frequency (f)
selection and antenna design to implement beamforming is analysed and simulated using
Matlab equations and sensorArrayAnalyzer toolbox as mentioned in section 3.2.1. All the
parameters used for the implementation of the simulated model are tabulated in Table 3.5. The
speed of the UAV (v) will be set at a maximum based on the research of Yang et al. (2020)
and power coefficient (PCoeff) value is set to a maximum of 10 for the energy conversion
efficiency in an ideal environment. The required power (ReqPower) and data transmission
power (Ppr) of the GN’s were setup based on the literature work using Libellium water quality
sensors (Libelium.com, 2022).

Table 3.5: Parameter set up for the simulation of UAV enabled WPCN

Parameters Values
No. of GN’s 40

Speed of light (c) 3x108m/s
Speed of UAV (V) 30 m/s
Frequency (f) 1.5 GHz

Power coeffient of the UAV(PCoeff) | 10

Transmit Power of UAV (Pr) 10W

Required Power of GN (RegPower) 5mwW

Data Transmission Power (Ppr) 0.5 mW

3.6. Summary

In this chapter, a system model design of the application scenario is introduced in section 3.1
for aWDS in a WPCN which make use of the concept of 3D beamforming to focus the energy
signals to the terminal GNs in a terrain. The GN’s use this energy to transmit data to the uplink
by implementing the Lora protocol. The doubly near far problem of using the fixed base
stations is resolved using a UAV which acts as a flying base station in this model. A
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mathematical design of the uplink and downlink communication model followed by the
problem formulation is presented in section 3.2. In section 3.3, the methodology to address the
static optimization problem is proposed, whereas two separate strategies for solving the
dynamic optimization subject to the constraints of the UAV physical model were demonstrated
in section 3.4. All system parameters and specifications have been addressed and tabulated in

section 3.5.
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CHAPTER 4

THE DOME PACKING METHOD FOR ENERGY

OPTIMIZATION OF GROUND NODES AND UAV IN WPCN

4.1. Introduction

According to the literature review of Chapter 2, the proliferation of 10T devices in the WDS
consumes a significant amount of the total energy for wireless communication. The previous
Chapter 3 outlines the proposed optimization strategies, their mathematical formulation and
design methodologies to be utilized to address this issue. It also informed how the WPCN's
energy-efficient communication system was to be developed. The implementation of the
proposed dome packing method will now be covered in detail in this chapter. By hovering at
an optimal position to maximise the energy throughput, the communication between the UAV
and the GNs offer both a method of charging and also data transmission to and from the GNs.
This method could be suitable for emergency charging and data collection in critical situations
such as sudden spread of water illness, contamination owing to leakage and flooding or other

scenarios in which the WDS becomes inaccessible.

4.2. Dome Packing Method for Optimal Energy Transfer

The Dome packing method consists of implementing 3D clustering to pack the GN sensors as
discussed in section 3.3.1 and calculating the optimal number of clusters at k = 6 using elbow
method discussed in 3.3.2.1 and applying a 3D beamforming method to charge the GNs using
the downlink communication design, as discussed in section 3.2.1. These two methods are

combined to develop the Dome packing method.

The dome packing method involves fitting M domes into a simulated space with a radius of
R¢ to achieve the highest possible packing density as represented in Figure 3.2. These domes
do not intersect one another throughout the packing process. This enhanced 3D K-means

method also organises the GNs into a uniform pattern based on the detectivity of the beam by
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the sensors.. In addition to packing and grouping the GNs and the 3D K-means technique also
predict the cluster centroids at which the UAV (one UAV in this thesis) might be positioned
in order to perform beaming. The following is the developed algorithm that is used

to implement this dome packing approach.

Algorithm 4.1: Algorithm to implement Dome packing method (DPM)

1: Initialize the system parameter values u(t), g, (t), huav

2: Repeat for n=1:k Perform 3D k means clustering of the GN’s and calculate the clusters
and its cluster centroids (c1...cx)

3:end
4: Repeat n= cl:cx, Position the UAV at the cluster centroid

5: Calculate beamforming range based on the antenna array to find h,,, from the cluster
centroids

6: If GN’s are unreachable then, calculate A (uAX,uAy,uAZ) which will be the change in
position and the UAV will be repositioned until a LoS is established.

7: else
8: goto step 4
9:end

4.2.1 Implementation of 3D K-means

The three-dimensional clustering using the K-means algorithm of 3D coordinates is required
to group the GNs in order to implement the 3D Beamforming technique. The horizontal
position of the UAV at time t, the fixed positions of the GNs, and the height of the UAV are
represented in algorithm 1 by the variables u(t), g, (t) and h,, respectively. The following is

the detailed procedure for applying the K-means method:
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Algorithm 4.1a: Algorithm to implement 3D K means

1. Choose k data points from g, (t) as initial centroids.

2. for each data point, compute the distance to each centroid C,, using Euclidean norm
dist, = (X, lga (1) — Cal2)Y/?

Calculate the index and values of the nearest centroid

end

Recompute centroids using current cluster memberships

fori=1: C,

N o o k~ w

find the points in each of the existing clusters and compute row-wise mean to
calculate the new centroid Ce,

8. end

9. if UAV’s minimum height (h,,, ) is not above 30 m to earth centroid value

10. then, Ce,(2z) = Ce,(2) + 30 where z represents the height coordinates of the new

cluster centroid.

In Algorithm 4.1a, the 3D clustering using K-means is applied to find an initial optimal
position of the UAV for downlink communication to charge the GNs. By considering each of
the data points, the Euclidian distance from each of the initial centroids is calculated to
compute the nearest centroid for each GN. Based on the newly calculated cluster, the centroids
are recomputed. Since it is an iterative method, a maximum of 1000 iterations are used during
the simulation. This algorithm takes into account the assumption that the UAV should be at a
minimum flying height of 30 m in order to provide people with safety while also reducing the

risk of obstacles and damage and that is the reason to add it along with the centroid value
(Cepn(2).

62



4.2.2 Implementing 3D Energy Beamforming

Algorithm 4.1b: Algorithm to implement 3D Beamforming and find beam range

1. Compute the horizontal (H), vertical (V) and diagonal (d) distances using

Ce, and g, (1).
-1 %4 -1 H
2. Then, calculate 8 < cos (E) ,P « tan (;)

.

Assign the constants 6345, @345 and Ap,

4. function Powercompute (H,V, d, 6, @,0545, D345, Am)
B tan™ ()

A(6,0) « Ax(0) + Ay (@) calculate the beamwidth

x « A(8,0)/2

HP_BeamW « dsin(«) range of the beam

return HP_BeamW

© o N o o

10. end function

11. if HP_BeamW < -30

12. goto step 6 algorithm1

13. else

14. TotalbeamStrength « TotalbeamStrength+HP_BeamW * Py
15. fligttime_unit = ReqPower. / (HP_BeamW * Py)

The implementation of 3D Beamforming of step 5 is explained and formulated in 3.2.1 and
the 3dB bandwidth of the horizontal and vertical patterns 6545 and @545 are assigned to be -
30dB and side lobe level attenuation A, to 1000 for simulation purposes. All these values are
selected based on the beam analysis performed and optimized as discussed in 3.2.1 using
sensorArrayanalyser toolbox. The cluster centroids calculated using the algorithm 1b is used
to calculate the half power beamwidth (HPBW) for Beamforming using A(6, @) which is the
beaming angle directed towards the GN using equations (3.7) and (3.8). The UAV needs to
realign its position if any of the GNs cannot be reached or if the power generated from the

beam is less than -30 dB (1 microwatts) (a stronger beam requires less charging time) which
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will be the checking a condition to verify whether a centroid is valid or not. The change in Ax,
Ay and Ah will be taken into account until a line of sight is established with the GNs when
calculating the UAV's new location (Ax, Ay, Ah) and is estimated based on the position of the
GN and the area covered by the beam. Otherwise, the total beam strength will be calculated
using HPBW and transmit power (Pr), and fligttime_unit calculates how many time units will
be required to charge each GN using the required power of the GN’s (ReqPower), which make
use of the parameters set in Table 3.2.

4.3. Analysis and Discussion of the Simulation Results

In this section, the implementation of the dome packing method to optimize the energy
consumption of the UAV and the GN’s will be discussed. Figure 4.1a illustrates the output
that is produced as a result of implementing the proposed dome packing method for calculating
the optimal position of the cluster centroids which establish the optimized hovering position
through which the UAV will be navigating. In this illustration, 40 nodes that are situated in
3D space are clustered together using a 3D clustering approach. Each cluster is visualized as
a collection of dots that are filled with different colours for each, and a cluster centroid in the
form of a blue triangle marked with red cross. Figures 4.1b and c are visualisations depicting
different perspectives of the clusters and their centroids in the xz and yz planes, respectively.
The amount of time it takes to compute the implementation of the proposed method with the
help of 3D K-means and the beamforming algorithm is less than 0.37 seconds. If the method
has executed longer, which would have made impossible to implement the project in real time
This demonstrates that the performance of the suggested method could be carried out within a

time frame that is acceptable.
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Figure 4.1: Simulation results of calculating the centroids using 3D dome packing method
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Figure 4.3: UAV power consumption vs clusters

66



The results of the simulation shown in Figs. 4.2 and 4.3 offer a clearer picture of how the
energy consumption of the UAV fluctuates depending on the change in height and also
dependent on whether or not it is servicing various clusters as it is travelling along its flight
route. It can be seen in Figure 4.2 that the amount of energy that the UAV uses up throughout
the flight has a direct impact on the change in height that the UAV experiences during the
mission. On the other hand, beginning at Figure 4.3, the amount of energy that is used by the
UAV shifts at various clusters since it is dependent on the number of GNs that are being served
by the UAV. It is possible to conclude from Figure 4.3 that the number of GNs found in cluster
3 is higher compared to other clusters. The GNs were randomly positioned as the placement
of nodes is not a part of this research, thereby executing the proposed method, which
determines the number of nodes in each cluster.

RxPower(dBm)
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Figure 4.4: Power harvested depending on height hyay using N = 24 antenna modules
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Figure 4.5: Energy harvested by the GT nodes based on clusters and its received power

Figure 4.4 is a visualization of the quantity of harvested power that is gathered by the GNs at
a height hyay from the UAV with N = 24 antenna components analysed using Matlab’s Sensor
Array Analyser as discussed in section 3.2.1. It also shows that the energy harvested during
the mission has a direct impact on the flying height of the UAV as well as the number of GNs
in that cluster. The output power is measured in decibels-mW, and hence the term "decibel-
milliwatt". Every 3 dBm increase in output power approximately doubles power, and every 10
dBm increase in output power amplifies by ten times the power. Similarly, a power level of 0
dBm is equivalent to 1 mW of power (Downey, 2013). As a result, clusters 1, 3 and 6 receive
around 1mW of power during beaming, whereas the other clusters receive less power around
0.6 mW. Both Figure 4.4 and Figure 4.5 illustrates how the amount of energy that can be
gathered by beaming to each of the GN clusters at time t seconds, varies dependent upon the
clusters and height measured in metres. The RxPower variation in Figure 4.4 between 65 and
95 m is due to the less number of nodes in that cluster and the same can be observed at cluster
4 in Figure 4.5. The following section evaluates the proposed dome packing method by making

use of the F1 score, precision and computation time.
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4.3.1 Evaluating the Dome Packing Method

In order to evaluate the dome packing method, a machine learning method is used which works
by calculating Precision, Recall and F score, the first requirement is to calculate the clusters
and classes used in the simulation. As the elbow method is being used, the number of clusters
is optimised to 6 as discussed in Chapter 3. A class is the position of GN’s based on how it is
classified and to calculate the classes, the region where the GN’s are located is equally divided
into regions x = [0 33], y = [0 33], x1 = [34 66], y1 = [34 66], x2 = [67 100], y2 = [67 100],
such that the cluster result table will be a KxP matrix, where K is the number of clusters and

P is the number of classes, as represented in Figure 4.6.

Classes

Clusters P1 P ... Pp
K1 a1 az | ... aip
K2 a1 a2 | ... azp
Kk ak1 ;177 2 O akp

Figure 4.6: KxP matrix

The term "akp" refers to the total number of GNs that have been grouped into the kth cluster
and P are intervals or classes in this context. Now, in order to assess how effective the
suggested dome packing technique is, the KxP matrix together with the following criteria are
being used in the simulation analysis: Precision, recall, and the F1 score are the requirements
that must be met. Precision determines, for each cluster, the class that has the most objects that
have been assigned to it or how correct classification of instances are measured . After that,
the GNs in each cluster are added together, and the total is then divided by the total number of
objects that are clustered (Mallawaarachchi, 2020). The calculation is as follows:

Zk maxp{ akp } (4 1)

Precision =
Xk Zp akp

The cluster that has been assigned the most GNs for each class is identified as the one to use

in the calculation of Recall. The total number of clustered and unclustered nodes is then
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summed up, and the result is added to the maximum number of nodes for each class, which is
then divided by that total. It also provides a calculation of any non-classified instances in the

matrix.

_ Zp maxy{ akp }
Recall = ey akptU (4.2)

where U will be the number of unclustered GN’s in the simulation graph.

The harmonic mean of Recall and Precision is the F-score which is calculated using the

equation (4.3).

Precision x Recall
Fscore = 2x (4.3)

Precision+ Recall

In the process of determining the overall efficiency of the approach, F-score is required, and
for this, the precision and recall values need to be calculated. A good Fscore should provide
at least an average of precision and recall The evaluation of the dome packing method is

presented in Figure 4.7.

Cluster Performance
T T T T
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I Recall
[ Fmeasure
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Figure 4.7: Performance of Dome packing method

In Figure 4.7, the Precision reaches a maximum of 88% with higher intra-cluster similarity

and maximum Recall and F scores are 70% and 75%, respectively based on 10 case studies.
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The average of Precision and Recall calculates to 73% which is around 75%, the value that
were calculated separately. Furthermore, it shows that a cluster's characteristics are more
comparable to one another than to those of other clusters. Therefore, the algorithm seems to
plausibly implement a static optimization solution based on the simulation. The algorithm
performs 1000 iterations with different recalculated centroid points to calculate an optimal
centroid point of the clusters. Using this analysis method, the number of clusters predicted
using the proposed technique causes the overall accuracy to rise while recall falls. The Figure
4.8 supports the efficiency of the proposed dome packing algorithm with a computation time

of 0.47 seconds.

Command Window

3D k-Means will run with 6 clusters and 40 data points.

Domepacking used 1000 iterations of changing centroids.
Computation time for Domepacking: 4.715990e-01 seconds.
>>

Figure 4.8: Computation time using Dome packing method

By contrasting the proposed method with a solution that does not use the dome packing method
iI.e., without implementing 3D clustering and beamforming, Figure 4.9 illustrates the extent to
which the proposed method is plausible. As can be observed from figure, the power
consumption of the suggested method is significantly more efficient than that of the non-dome

packing approach.
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4.4, Summary

Communication using 5G networks relies heavily on a technology called beamforming.
Beamforming allows an array of antennas to dynamically modify the direction and down-tilt
towards receivers by rotating the antenna pattern. This is accomplished by tilting the array.
Moreover, in order to perform the processing, communication, and decision making, the
WDS's IoT devices require a significant amount of power. Based on this, the primary objective
of this simulation is to come up with a strategy that will enable minimization of the energy
during communication. In this chapter, a dome packing method that combines positioning of
a UAV with respect to 3D clustering using beamforming is used to optimise the energy
consumption of the UAV by optimally packing the sensors or GNs and finding an ideal
hovering position for the UAV to reduce energy consumption while minimising the total flight
time. The proposed method was evaluated using an F score based on Precision and Recall

clustering criteria.
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CHAPTER 5
OPTIMAL TRAJECTORY DESIGN FOR THE UAV IN THE

WPCN

5.1. Introduction

In this chapter, the trajectory is designed initially by using the static optimization methods,
where the approaches and formulation were discussed in Section 3.3. Then the algorithms
developed using extremum seeking and sliding mode methods are used to dynamically
optimize hovering points. Finally, both static and dynamic methods are combined for overall
optimization of the trajectory, with respect to energy cost functions.

5.2. Static Optimization for the Trajectory Design

This method of optimization minimizes the distance from the GNs and cluster centroids and
will be used to build an optimised trajectory using the computed ideal hovering points
calculated and simulated in Chapter 4. Thereafter, the recycle time of the UAV will be
optimised in a manner that is analogous to the Traveling Salesman Problem (TSP). The total
flying time is determined from the recycle time, which takes into account the delays that occur
between the several rounds flown by the UAV before the mission is complete. This contributes
to keeping the flying time as short as possible without any complications such as power loss,
data loss etc.

The Algorithm 5.1 provides a precise outline of the procedures that must be undertaken
in order to optimize the recycle time and, as a result, reduce the cost of the UAV's route. This
approach uses the distF variable, which has an initial value set to a, to determine the optimal
distance. The value of the loop variable in ‘iv’ in Algorithm 5.1 is initially set to 1. Using the
loop conditions, over 1000 iterations, a random permutation sequences for the six cluster
centroids (C) are created with the shortest amount of flight time (bestseq). Following this,
step 6 will be used to determine the shortest distance, with the locations of the GNs and the
cluster centroids serving as inputs. If the value that is computed for dist is smaller than the
value that is calculated for ‘distF’, then the new optimum distance is set as ‘distF’, and the
best sequence that may be used by the UAV to produce an optimal trajectory is saved. This
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approach, which is based on finding the minimum distance travelled, is used to optimise the

amount of energy that the UAV consumes.

Algorithm 5.1: Algorithm to optimize recycle time

© o N o g bk~ w Nhoe

e T e =~ e
S =
© N o o~ w O R B

Initialize distF variable to a and a loop variable iv set to 1.

while iv < 1000

Set a random sequence (seq) using randperm(k) function
foric=0:k

ific==

dist = dist + (X1, |gn (t) — C(seq(ic + 1)|?)*/?
elseific ==

dist = dist + (1%, C(seq(ic) — ga(H))"/?

else

. dist = dist + (X, |C(seq(ic) — C(seq(ic + 1)|?)/?
. end

. end

. if dist < distF

then, distF = dist

. bestseq = seq
. end
. increment iv

. end
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Figure 5.2: The optimized routing path of the UAV with power consumption

After utilising the aforementioned technique to calculate the optimum distances, the trajectory
of the UAV is illustrated in Figure 5.1 as it travels through 3D space to reach its destination.
The routing pathway that the UAV will take through these cluster centroids is determined by
calculating the best sequential path. Figure 5.2 shows how the UAV’s optimized trajectory is

determined based on its height and how the power consumption is related to the flight time.
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Based on this figure, it is also possible to compare the power consumption of optimized
trajectory with other trajectories.

The overall flight time of the UAV may be determined with the use of Algorithm 5.2 below.
The power coeffient value is set to 10 in this approach to calculate the power consumption of
the UAV via the best efficient sequence of the trajectory. The goal of this calculation is to
determine how much power the UAV uses.

In a similar fashion, both the power and ‘flighttime’ variables start off with a value of zero. In
step 2, the loop will iterate the specified number of times, ‘numel’ = 6, which will determine
the total number of elements in the array (bestseq).

Having determined the clusters using algorithm 1a described in Section 4.2, the following step
is to compute the index of the best sequential order path using those determined clusters. In
step 5, the distance (dist) from the sequential cluster centroids is determined by using the best
sequential paths.

In step 6, the power consumption of the UAV is determined by utilising the computed distance
(dist). In step 9, a loop is used to iterate and determine the power of the UAV, as well as its
flying time and hovering time, when all of the indices of the sequential route will have been
calculated.

In the following phases, the value that is returned by the function “fligttime_unit” is the number
of time units that will be required to charge each GN in accordance with the energy
specification requirement that it has. For instance, if each GN needs 5J for its functioning and
the UAV can act as a beaming source and can supply 1J for 1 second, the UAV needs five
flighttime_units to fully charge a single GN that is part of a cluster. The computation of the
fligttime_unit has previously been covered in Algorithm 5.2 in Section 4.2.2. It is dependent

on the charging time for the GN's, which in turn relies on the beaming strength of the UAV.

Algorithm 5.2: Algorithm to calculate the total flight time

Initialize powercoeff to 10 and Power and flighttime to 0.

for ij = 1. numel(bestseq)

Find the index of the bestseq from the calculated cluster to variable ind
if ij < numel(bestseq)

dist = (X, |C(bestseq(ij) — C(bestseq(ij + 1)|?)*/?

o ~ w0 DD P

76



Power = Power + dist. * powercoeff / 100
end for
if (~isempty(ind))

© © N o

for k = 1: numel(bestseq)

10. Power = Power + flighttime_unit(ind(k)). * powercoeff
11. flighttime = flighttime + flighttime_unit(ind(k))

12. hoveringtime = flighttime_unit(ind(k))

13. end for

14. end if

15. end
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Figure 5.3: Power consumption of the UAV based on flight time and height
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The rise in the amount of power required by the UAV as a function of flight duration and
altitude is shown in this Figure 5.3. The power consumption of the UAV with respect to the
flight duration and height while applying the algorithms is represented in Figures. 5.3 a & b.
Figure 5.3c further illustrates how the amount of energy used by the UAV at each cluster with
the number of nodes and how it varies when the height of the UAV is modified. The heights
calculated for each cluster centroid using this method is represented as ho in Table 5.1 and the

values obtained are as follows:

Table 5.1: Height of the UAV at each cluster centroid

ho 19.4345 | 23.1136 | 16.6705 | 106.5611 | 11.3139 | 46.4073

The throughput of the GNs based on the clusters is shown in Figure 5.4. As mentioned in
Section 3.2.1, the purpose of the illustration is to offer an example of the quantity of data that

will be provided to the UAV from each of the clusters by making use of the LoRa protocol.
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Figure 5.4: Throughput of the GN’s based on clusters
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5.3. Dynamic Optimization for the Optimal Height of the UAV

Dynamic optimization is performed by taking into account the UAV dynamics, which are not
included in the static optimization discussed so far in this chapter. In this approach, the optimal
height of the UAV is calculated based on both the output of the static optimization (which is
the initial condition input to the dynamic optimization process) as well as the dynamics of the
UAV. The UAV will then hover about a point calculated using dynamic optimization methods
with the aim of optimizing the energy/power usage. The methodology of these dynamic
optimization methods, i.e., extremum seeking and optimum sliding mode, have already been
formulated in section 3.4. Before this can be applied, a dynamic model of the UAV itself must

be formulated.

5.3.1 Dynamic Model of the UAV

The physical state model of the UAV may be formulated as follows:

# +ch

Figure 5.5: Schematic of the UAV

Figure 5.5 represents the dynamic model of the system. According to Newton’s second law:
mh = F — ch — mg (5.2

where m is the mass of the UAV, F is the force acting upwards, c is the viscous friction
coeffient, h the speed, h the acceleration, g is the gravitational constant and h is the height of
the UAV, all of which are illustrated in Figure 5.5. Since ch and mg act in the direction

opposite to the force acted upon the UAV by its motor, they are of negative sign.
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Equilibrium condition: F = mg, h = —ih (5.2)

Therefore, h = —é h,and h = —% h (5.3)

Motor power, P = Fh, so F = E = mg (5.4)
P = mgh

h= mig (5.5)

Total power (Pt) =P + P (staTic) (5.6)

where PstaTic is the power used by the UAV calculated from the static optimization methods.

5.3.1a Alternative model with the UAV’s power rating

Power, P = Fph (5.7)
Fm is the UAV motor force, obtained from rotor radius and motor torque,

Rated Power

Tm = Rated Speed (5.8)

Or model input, u = P instead of Fn (5.9)

The alternative model uses the power of the UAV as input rather than the traction force.

dE _ dE dh

Since P:E_EE

-0 (5.10)

Simultaneously optimizing E and obtaining equilibrium equates to zero power. These are
precisely the goals that were sought to be achieved by the extremum seeking controller

introduced in chapter 3. Additionally, P may replace the sliding mode s = 0, also formulated
later in that chapter.

Table 5.2 contains all the parameters that are now utilised to create the dynamic model to
compute the optimum height and, therefore, the trajectory of the UAV. For the state model of
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the UAV, h and h are the designated states and A is the state matrix, B, is the input matrix and

matrices C and D are unity and zero matrices in the state block.

Table 5.2: Parameter set up for dynamic optimization

Parameters Values
Mass of UAV (m) 1kg
Drag coeffient (c) 1.5x107°
State model and values
X = Ax + Bu
y = Cx+Du
for A:x=[h,h]’,%=[h,h],h = —=h
for B: u = Fmh, Fm nominally 1 due to k
forC:y=h
0 1
A o —e/m]
[0
B 1
C [1 0]
D [0]

5.3.2 Extremum Seeking Optimal Trajectory

The extremum seeking optimal trajectory (ESOT) was discussed in the methodology Section

3.4.1. The modifications described in the previous section, i.e., replacement of the integrator

with the UAV dynamics state model and the input to this model by Power (Equation 5.10),

simulate the optimal height of the UAV as in Figure 5.6.
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Figure 5.6: Simulink model for optimum seeking of height

The energy graph is a look up table constructed from the energy consumption of the UAV as

represented as follows in equation 5.11.

AE = mgAh — ~ma?Ah? + Eroy(hyay) (5.11a)

1
AE = mg(hyay —ho) — Emaz (hyay = ho)? + Eqot(hyay) (5.11b)

Where h, is the height of the cluster centroids calculated from the static optimization in Table
5.1. To compute the power output, the energy that is produced must first be differentiated. The
result of the calculation in equation 5.10 is then applied to the product block together with a
perturbation, which is also an additive input as per the algorithm described in Section 3.4. The
optimum height is determined from an initial condition of ho = 46.4073 m as in Figure 5.7.
(Additional simulations for the other initial conditions of Table 5.1 may be found in Appendix
C).

I\;;\e {3ec)
Figure 5.7: Optimized height using Extremum seeking for initial condition ho = 46.4073 m

The simulation shows that an optimal height of 56.2 m is calculated about which the UAV

hovers before remaining in that position and thereby optimize the energy consumption of the
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UAYV before completing the mission. This calculation would take a few seconds offline after
which the UAV could fly directly to this position.

The zero-power performance of the system is illustrated in Figure 5.8 below where the power

Is optimizing to zero when the UAV is at an optimal position confirming a zero-power system.

power(w)

5] 8 10 12
Time (sec) <10%

Figure 5.8: Power used by UAV when reaching the optimal height

Retuning of the perturbation parameters such as amplitude, frequency etc., however, affords
the possibility of the dynamic algorithm operating in real time. The simulation in Figure 5.9
was undertaken with a perturbation amplitude of 0.05 and perturbation frequency of 100 rad/s.
If these are changed to 0.5 and 10 rad/s, respectively, the following simulation is obtained for
the same initial condition:
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Figure 5.9: Optimized height using Extremum seeking after modifying perturbation

The zero-power performance is maintained as shown below:
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Figure 5.10: Modified perturbation power used by UAV when reaching the optimal height

The algorithm converges to optimum height in about 1min, which is approximately how long

it might reasonably take for the UAV to fly to the new optimum in any case. Therefore, it has

been possible to find a set of perturbation parameters for the algorithm to be implementable in

real time. Further tuning may yet be possible to improve convergence time.

Another reason for switching from energy to power in the formulation of the control algorithm

Is so that the static power calculated previously can be added to the dynamic power calculation

above. This is achieved in the block diagram of Figure 5.11 below.
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Figure 5.11: Simulink model for optimum seeking of height including static power

T

1-D T(u)

P(Static)

Inclusion of the static power term modifies the convergence time to nearer 2 mins as shown

in Figure 5.12 and zero-power performance is also confirmed in Figure 5.13.
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Figure 5.12: Optimized height using Extremum seeking with static power
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Figure 5.13: Modified perturbation power used by UAV including static power

Over all of the initial conditions of Table 5.1, a new trajectory path is derived as in Figure
5.14.
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Figure 5.14: New optimized trajectory using extremum seeking model
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5.3.3 Sliding Mode Optimal Trajectory

The sliding mode optimal trajectory (SMOT) method uses a similar, but not identical
formulation to that discussed in the previous section and in Chapter 3, Section 3.4. The
extremum seeking controller uses the Theorem of Averages to derive an optimization
algorithm, whereas optimal sliding modes minimize a Lyapunov function representing the
energy of the sliding mode. In this application, the sliding mode becomes the power derived

from the energy function, as formulated in Equation 5.10.

The acceleration input (gain K) to the state model is switched according to control law (3.27),

where the sliding mode, s, is dynamic power (PDynamic).
A state model, UAV dynamics, of Section 5.3.1 is utilised.

The optimization scheme for finding the optimal height using sliding mode is depicted in
Figure 5.15:
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Figure 5.15: Simulink model for optimum height using sliding mode

It was possible for the height to be optimized for algorithm parameters, gain (k) = 100,
coefficient (o) = 0.5 and ramp (r) = 0.01t. Larger values of k require greater control effort for
no real improvement in convergence time. The case studies of Chapter 6 will show Tables of
optimized altitudes in terms of convergence times for an exhaustive range of clustering
scenarios. Nevertheless, it is not possible to optimize the height in real time because of longer
convergence time and this optimization can only be performed offline as represented in Figure
5.16. However, the optimized height is identical to that for the extremum seeking control of

Figure 5.9 for the same initial condition, ho.
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Figure 5.16: Optimized height value using sliding mode

When taking into account the instantaneous static power (Figure 5.17) at each height, h, the
same optimized height is achieved but at the cost of a much longer convergence time. Also,
the controller gain had to be reduced in order to achieve convergence at all. The optimized

height and zero-power responses are shown in Figure 5.18 and Figure 5.19, respectively.
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Figure 5.17: Simulink model for sliding mode optimization including static power
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Figure 5.18: Optimized height using sliding mode with static power
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Figure 5.19: Zero power for reaching the optimal height with static power

Figure 5.20 provides a visual representation of the various optimized heights that are achieved.
These values were found by using the sliding mode optimal trajectory approach while
experimenting with different values for the initial ho parameter calculated from the static
optimization Table 5.1 of Section 5.2. and all the simulation results other than Figure 5.18 are

in Appendix C.2.
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Figure 5.20: New optimized trajectory using sliding mode optimization

The optimal trajectory is designed by applying a hybrid approach which is a combination of

static and dynamic optimization methods. The static optimization is implemented by reducing
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the recycle time between the UAV rounds and then calculating the height of the UAV at each
cluster centroids as represented in Table 5.1. The outputs from static optimization were used
as inputs to dynamic optimization to calculate further optimized heights by taking into
consider the UAV dynamics by designing a dynamic state model. An extremum seeking
method is used to optimize the energy consumption of the UAV and it is clearly analysed from
the Figure 5.7 and Figure 5.9 where the heights optimizing to a specific value. A zero-power
performance is also verified to confirm the energy optimization where the power is settling to
zero in few seconds as in Figure 5.10. In order to validate the results from extremum seeking,
a sliding mode method is applied and it is observed that both provide with same result
optimizing at a height of 56 m for one of the clusters as presented in Figure 5.12 and Figure

5.18 with zero-power performance.

5.4. Summary

An ideal trajectory for the UAV was designed using a combination of both static and dynamic
optimization approaches, which have been discussed in this Chapter. To begin, in Chapter 5 a
dome packing approach is developed in order to locate the most energy-efficient placements
for the ground nodes and the UAV in a WPCN. Second, the amount of time spent recycling is
improved so that an ideal trajectory can be designed for the UAV. As a consequence of this,
static optimization is used to determine the best height by including the UAV dynamics while
flying through the cluster centroids. These positions become the initial conditions for dynamic
optimization. During the process of dynamic optimization, two techniques, namely extremum
seeking and optimal sliding were used to further calculate the optimal height of the UAV,
taking into account UAV dynamics and energy consumption. It is also interesting to note that
these two approaches yield identical results in terms of optimal height value, even though they
use different optimization approaches; the one applies the Theorem of Averages while the
other derives and optimises Lyapunov functions. These results served to validate the two
approaches against each other. The inclusion of static instantaneous power within the dynamic
models made little or no difference to the results of the optimization, only to the time to
convergence of the algorithms. In summary, the methodologies of both static and dynamic
optimization formulated in Chapter 3 have been successfully implemented in this and the

previous chapter, respectively.
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CHAPTER 6
ANALYSIS AND DISCUSSION OF SIMULATION RESULTS

USING CASE STUDY

6.1. Introduction

In this chapter, an analysis of the simulation findings using ten distinct case studies is
undertaken. Out of these, four will be presented: a variety of GN locations are considered in
differing cluster formations. Then, both the static and the dynamic optimization techniques
developed in Chapters 4 and 5 are applied. The static optimization comprises Dome packing,
which is used both to cluster GNs and for beamforming to optimize charging and data transfer.
This allows trajectory design in order to compute the initial height of the UAV to facilitate
effective wireless charging and data transfer. This is because the energy term Exot is included
in the cost function to be optimized. This is practically realised by equally distributing the
probabilities between charging and data transfer (much like phone charging being faster and
more efficient while simultaneously transmitting data to another device). The static
optimization provides a starting point for dynamic optimization utilising extremum seeking
and sliding mode optimal trajectory design to compute optimised heights for efficient system

performance in terms of energy utilization, charging and data transfer.

6.2. Case Study Design

The case study consists of positioning 40 GNs in three-dimensional space at random positions.
Space packing is a formal method for the best utilization of space. However, in this
application, it is not space but distance which is to be optimized between GN’s and UAV in
order to optimize energy and data transmission between them. Therefore, the randomly placed
GNs must be clustered so that this can be achieved with respect to beaming range. Four random
placements (case studies) of the 40 GNs have been selected so that clustering and UAV
trajectory optimization can be demonstrated, and these are shown in Figure 6.1.
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Figure 6.1 (a-d): Selected GN locations for application of the proposed approaches

Using the selected GN locations, the proposed Dome packing method is applied, whereby
clustering of the GNs is simulated. Figure 6.1 (a-d) shows how the different clusters are
represented as different coloured dots. A centroid can be calculated for each cluster which
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determines the best position of the UAV to take up for the purposes of energy and data transfer

between the GNs of that cluster. The beaming range determines the initial height values of the

UAYV, represented as light blue triangles with a red cross for each cluster. Figure 6.2 (a-d) also

provides a picture of the different stages of the trajectories as the dome packing calculation

proceeds and so illustrates the optimized trajectory of the UAV through the calculated height

values.
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Figure 6.2 (a-d): UAV trajectories calculated for selected case studies
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6.3. Analysis and Discussion

In order to verify the effectiveness of the proposed Dome packing method, the throughput
received based on the energy collected by the nodes is represented in Figure 6.3 (a-d) and to
be analysed. It is clear from Figure 6.3 that at some of the points the throughput is at its
maximum, which is based on the lesser distance between the UAV and the GN’s as well as

the transmission time, since distance affects the time required for charging and data transfer.
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Figure 6.3 (a-d): The throughput of the system for the proposed Dome packing method

The comparison between the proposed Dome packing approach and the default positioning of
the GNs without any form of clustering is shown in Figure 6.4, from which it is abundantly
evident that the suggested dome packing approach, in conjunction with trajectory planning,
produces more effective outcomes by lowering the amount of energy that the UAV needs to

function to around 15 percentage. The variations of the outliers at each round with UAV power
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consumption due to the number of GNs in each cluster based on the different case studies. In
a similar manner, Figure 6.5 presents a visual representation of the wireless power transfer
from the UAVs to the GNs for all 10 different topologies (rounds). The outliers at some rounds
in the graph is due to the random positioning of the UAV during WET. The wireless power
transfer rate is proportional to the flighttimeunit or the amount of time needed to charge the
GNs, and that this, in turn, affects the amount of energy that the UAV as a whole consumes.

This is something that will be taken into consideration later via dynamic optimization.
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Figure 6.4: Energy consumed by the UAV with existing and proposed methods
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Figure 6.5: Comparison of wireless power transfer from UAV to GN’s
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The power consumption of the UAV and flying duration for each of the clusters is depicted in
Figure 6.6 and 6.7, respectively. These indicate, as expected that the UAV would demand
more energy with respect to the number of clusters/nodes traveresed and flight time. However,
it is equally clear that power consumption is lower around 16 percentage for dome packing

than for non dome packing.
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In chapter 5, one example was presented (ho = 46.4073 m) for which the static optimization
had been achieved using the Dome packing technique. Here, the results of four of the ten case
studies will be presented over a range of different topologies, resulting in different values of
ho. Table 6.1 summarizes the results of static optimization for four case studies over six

clusters.

Table 6.1: Height of the UAV at each cluster centroid using Dome packing

Cluster | Cluster | Cluster | Cluster | Cluster | Cluster
1 2 3 4 5 6

hoCase 1 | 10.3844 | 44.0529 | 66.4556 | 87.9171 | 26.6012 | 15.1577

50.9126 | 44.2011 | 17.4232 | 15.3343 | 12.9443 | 87.2014

ho Case 2
ho Case 3 22.4445 | 10.8931 | 28.9041 | 14.3083 | 29.7003 | 95.7170
ho Case 4 | 20-3241 | 51.3543 | 16.2861 | 67.0070 | 15.6760 | 90.393

These results for ho now become the initial conditions for the dynamic optimization problem.
The extremum seeking technique was one of the approaches used and demonstrated in section
5.3.2 for the initial condition ho = 46.4073 m.

As for the static optimization, Table 6.2 presents the results of dynamic optimization using
extremum seeking optimal trajectory method for the initial conditions of Table 6.1 over the

same four selected case studies and six clusters.

It can be seen that convergence for extremum seeking optimization is achievable in real time
(Table 6.3) whereas sliding mode takes longer convergence (simulation) time to reach optimal
height . The improved convergence times are as a result of larger perturbation amplitudes,

which also result in a larger discrepancy between optimal heights from optimal sliding mode.
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Table 6.2: Optimized heights (m) of the UAV using extremum seeking

Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6
h ES Case 1 20.2 53.85 76.30 97.57 36.20 24.34
h ES Case 2 59.04 54.0 26.8 27.45 25.0 97.10
hESCase3| 32.30 20.5 39.0 23.90 39.60 105.0
hESCase4 | 30.20 61.50 25.80 76.80 25.20 100.0

Table 6.3: Real time convergence (s) of the UAV to reach optimum using extremum seeking

Cluster | Cluster | Cluster | Cluster | Cluster | Cluster

1(s) 2(s) 3(s) 4(s) 5(s) 6(s)
h ESOT 60 60 70 60 130 55
Case 1
h ESOT 130 50 60 50 50 48
Case 2
h ESOT 70 40 60 60 60 30
Case 3
h ESOT 60 75 70 50 60 40
Case 4

In contrast to the extremum seeking method, dynamic optimization using the sliding mode

optimal trajectory approach was also applied, firstly, to verify that the same optimum heights

98



were predicted, and as a secondary consideration, to see if an improved convergence time

could be achieved.

Using the same initial conditions (Table 6.1), the optimal heights of Table 6.4 are presented

for the sliding mode optimal trajectory method.

Table 6.4: Optimized heights (m) of the UAV using sliding mode

Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6
h SMOT Case 1 | 21.42 53.853 76.40 97.85 36.94 24.67
h SMOT Case 2 | 61.40 53.86 26.6 25.0 22.7 97.155
h SMOT Case 3 | 30.90 20.7 39.6 23.80 39.76 105.6
h SMOT Case 4 | 30.5 61.6 25.94 77.12 25.22 100.32

As can be seen in Table 6.2, the sliding mode and extremum seeking both generate outcomes
that are very similar to one another, within about 1min or so. The amount of time required for
convergence of the extremum seeking method is significantly less than the amount of time
required by the sliding mode optimal trajectory design of the UAV. This is not surprising
considering the example of Section 5.3.3. One reason for this is that the size of switching gain,
‘k’, was limited by the rate of switching. Therefore, the sine (sgn) function was replaced by a
saturation function in the hope of alleviating this issue. However, this was successful to a
limited extent only. The ‘hard’ discontinuity is replaced by a ‘boundary layer’ or ‘soft’
discontinuity at the expense of accuracy. This also accounts for the slight difference in the
optimized heights between the extremum seeking and sliding mode optimal trajectory

approaches.
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6.4. Summary

This chapter presents the results of four of the ten case studies that were undertaken across six
clusters to calculate optimal trajectories of the UAV using both static and dynamic
optimization methods. Whereas the results of the previous chapters demonstrated the efficacy
of the method for one particular example only, the purpose of the case study was to show that
the method was applicable across all topologies and initial conditions. As for the results of
Chapter 5, the results for the two dynamic optimization results were verified against each
other. The extremum seeking method proved to be the more effective and rapidly convergent
of the two, while the sliding mode optimal trajectory only served to confirm its results. The
simulations of each dynamic optimization approach were conducted under identical initial
conditions, which themselves were derived using the Dome packing method for each of the

topologies.

The case studies serve to verify and validate, not only the three static algorithms of Chapters
4 and 5, but also the two different dynamic optimization strategies developed in Chapter 3 and

applied in Chapter 5.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

As per the aim of this thesis stated in Chapter 1, energy harvesting methods have been
reviewed for the purposes of near real time monitoring and control of WDS and, as a result, it
was confirmed that utilization of a UAV would provide a novel and suitable method for

charging and communicating between GNs in a WDS, using the UAV as a mobile base station.

The key motivation of this research was to use a UAV as a flying base station for the charging
and data collection from GNs within a WPCN for optimal energy management in a WDS. A
variety of techniques were employed, not only for the modelling of the UAV but also for
statically designing its trajectory using 3D dome packing and then dynamically optimizing its

altitude based on energy cost functions.

A key consideration in addressing the second objective of optimizing energy usage was to
resolve the so-called doubly-near-far problem, anticipated in Chapter 3, whereby nodes near
to the energy transmitter receive the majority of energy, whereas the far away nodes that are
starved, actually require more energy for data transmission due to their further distance from
the transmitter. This problem is not solved merely by deploying a UAV, though it may
alleviate LOS issues because the UAV does not have an unlimited store of energy to move to
energy starved GNs. A mathematical optimization problem known as space-packing was
therefore adapted to optimize distances between GNs and the UAV in 3D space to facilitate
energy and information transmission, instead of optimally packing space. As this process
traced out ellipsoids between GNs and UAV, this new method was termed ‘Dome packing’
by the author. Algorithms were derived to optimize UAV location with respect to charging

and transmission efficiency using this static optimization approach.

The successful resolution of static problems through the implementation of static optimization
methods, as discussed previously, has greatly improved the overall efficiency. However, one
crucial aspect that has not been adequately addressed in these solutions is the energy
consumption of UAV’s during their operation. The development of a dynamic model of the

UAYV enabled, in turn, the formulation of a dynamic optimization problem, which was then
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solved using two separate approaches, i.e., extremum seeking and optimal sliding mode
trajectory design. Both methods not only resulted in zero-power behaviour of the UAV, but
also produced near identical optimal solutions for UAV altitude, thus mutually validating these
solutions. The static solution was used as the initial condition of the dynamic optimization

problem.

Finally, the combined strategies of static and dynamic optimization were proposed, designed,
tested and verified across a range of GN cluster formations and proved to be robust and
effective in terms of energy optimization and data transfer, resulting in estimated energy
savings of 15 percent.

7.1. Theoretical Justification and Achievements

A detailed literature review (Chapters 1 and 2) identified both, the variables of the WDS that
needed to be monitored, and also the means by which this could be undertaken, using existing
sensor technologies. One particular device was identified (Libelium, 2015), which sufficiently
integrated water quality measurements (pH, ORP, DO, BOD etc.), solar self-charging and
efficient data acquisition using universal data transmission protocols. However, it required
adaptation for the purposes of optimized near real-time continuous monitoring using the
techniques developed later in the thesis. As discussed in Chapter 2, the smart water monitoring
system has several layers of design, but the emphasis of this thesis was to investigate the
sensing and communication components of the system. In particular, the strategies that may
be used to maximise their efficiency in the management of energy during communication in a
real-time water monitoring system. The low power LoRa protocol was identified as the most

suitable for the purposes of communication between GNs and the UAV.

The development of an energy optimization approach applicable to near real-time monitoring
inside a WDS requires the formulation of a static energy cost or objective function. In chapter
3, the distances between GNs and UAV were calculated to determine the energy that the UAV
would need to supply to the GNs via a beam by LOS. Additionally, the uplink and downlink
communication energies were taken into consideration to form this cost function (3.15). The
static optimization procedure places the UAV at the centroid of a cluster of GNs. This location
enabled optimized data and energy transfer through beamforming. Clusters are formed by
proximity to a centroid iteratively, through consideration of beamforming range (threshold for

sensor operation). The Algorithms 4.1a and 4.1b achieved static optimization with respect to
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both energy and data transfer using a Dome packing method, while Algorithm 5.1 optimized
flight time between all cluster centroids. These algorithms were created using the K-means

clustering method and verified by calculating precision, recall and F score criteria.

The successful static optimization of the UAV’s flight path does not take into consideration
the energy used by the motion of the UAV itself. To remedy this, a dynamic model of the
UAYV was developed as part of dynamic optimization problem formulation (5.1-5.5). Standard
dynamic optimization procedures assume linear dynamics and quadratic cost functions (LQR).
However, the optimization methods adopted in Chapter 3 have required neither of these
assumptions to be satisfied. The formulation of the Lagrangian of the UAV dynamics allows
the design of a dynamic cost function, which though quadratic, is summed with the static cost
function discussed above.. The same cost function could also be non-quadratic that also works
with the designed cost function. Therefore, a non-quadratic overall cost function needed to be
anticipated. The dynamic optimization approaches used were based on two different

paradigms:

e The Theorem of Averaging

e Lyapunov Stability

The first of these generates an extremum seeking algorithm while the second, an optimal
sliding mode. In the former, equilibrium of the UAV (h = 0) is only possible at the optimum
of the cost function (En = 0) while, for the latter, the energy in the Lyapunov function must
always be decreasing (eventually to zero) so that the sliding mode, s = 0, remains stable. These
methodologies are demonstrated in Chapter 3. However, in Chapter 5, using zero-power as the
optimization criteria, both conditions, for equilibrium and an optimum, are satisfied
simultaneously because P = dE/dt = Exh = 0. This further motivated adoption of P as a second
order sliding mode, replacing s = 0. So, therefore, the simulations of Chapter 5 all converge to
P = 0, satisfying conditions for both extremum seeking and sliding mode existence criteria,

respectively, as well as zero-power performance of the UAV.

It is noteworthy that the two approaches converged to within 1 m of the same optimal height
(where the algorithms converged to a legal requirement) therefore, verifying their results
against each other. However, the superiority of the extremum seeking approach over the
optimal sliding mode approach is demonstrated by its real time convergence. The latter was
therefore only implementable offline in river water system where the degradation of the water

quality parameters will be slower. In both cases, the outputs of the static optimization, ho, were
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used as initial conditions for dynamic optimization. In an additional step, both static and
dynamic optimization was combined by adding static power to dynamic power in the
formulation of the input to the UAV model. It is notable that, not only was there no change to
the optimal height, but also that the zero-power performance of the UAV was maintained. The
convergence time, however, was compromised by addition of static power. This was indicative
of the overall mission flight time combining static and dynamic phases. Nevertheless, real time
implementation was still demonstrated by extremum seeking optimization. The parametric
study confirmed results of the combined static and dynamic optimization approaches over an

exhaustive scenario of different clusters/initial conditions.

7.1.1 Significance of the Study

A summary of the achievements of this thesis is itemized as below:

e To meet the goal of implementing an energy optimization scheme, a UAV was
incorporated that acts as a flying base station in a novel approach for the uplink and
downlink communication and energy transfer between the base station and the GNs in
a WDS. Key sensor and communication protocols have been identified for this
purpose.

e Anintegration of static and dynamic optimization methods along with a dynamic UAV
model was proposed in which four novel algorithms were formulated, all of which
were found to converge to an optimum:

o A Dome packing algorithm to optimally cluster GNs within the UAVs range.
o Additionally, a flight time optimization algorithm, verified by F-score.

o An Extremum seeking algorithm to dynamically optimize UAV altitude.

o An Optimal Sliding mode algorithm to confirm optimal UAV altitude.

e The UAV was shown to operate as a zero-power system while optimizing altitude and
maintaining stable equilibrium.

e It was possible to tune the extremum seeking algorithm to converge in real-time.

7.2. Future Work

While the application of the current work is intended for use with WDS, the focus remained
entirely on energy optimization of its components. The future work would refocus on the
application that initially motivated the study, i.e., water quality. There are several possible

developments that may naturally arise from the present work, particularly in terms of
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extending the use of a single UAV to multi-UAV approaches, and the application of dynamic

optimization, not just to energy management, but also to water quality regulation and

distribution. Before elaborating on this in detail, other aspects of possible future work that

could follow on from this thesis are identified as below:

1.

To investigate the possibility of tuning automatically, variations of algorithms, such as
extremum seeking and optimum sliding that converge to optimum in real time.

The necessity of securing the proposed UAV enabled WPCN to protect it from attacks
such as virus, worms, phishing etc in the physical and sensing layer; security of the

network layer is another possible concern.

For the application of dynamic optimization, a dynamic model of the water distribution system

will be required. Only then, dynamic optimization algorithms can be designed to regulate

water quality. For this purpose, the following aspects of future work would be required to be

undertaken:

3.

A dynamic model of water quality parameters such as DO and BOD from the data
collected by the UAV in the current project will need to be developed (see Appendix
C).

By replacing the UAV dynamic model with the water quality model of 3, an extremum
seeking method can be extended to optimize the DO and BOD of successive reaches
of a river/pipeline/reservoir by perturbation of the fresh water and/or effluent supply
to the WDS.

Use optimal sliding mode as an alternative algorithm to that in 4 above. It is plausible
that this could operate in real time due to the larger time constants for water quality
parameters than those of the UAV.

Apply linear quadratic regulation (LQR) instead of the methods in 4 and 5 above by
using a linearized model of the water quality (Appendix C) and adopting a quadratic
cost function.

Separate UAVs may be required to monitor separate sections or reaches of the WDS
or river, respectively. The implementation of multi-UAV enabled WPCN by
integrating the proposed methodologies using Al such as reinforcement learning

methods could be another possible extension of the current work.

In this work, only a narrow scope of the multiple uses of UAV, WPCN technologies and

optimization methodologies has been explored. However, it has been possible to apply a

105



significant depth of knowledge about the latter to the former, which has demonstrated to the
author that the sky truly is the only limit of the application of UAVs in the solution of complex

problems.
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Abstract— A serlous drop in ensuring the water
quality in the distribution system s a factor that affects
public health. This could lead to increase in blological and
mon-hislogical contents, change in colour and odour of the
water. These contaminants cause a serions threat to the
whaole water ecosystem. The conventional methods of
analyzing the water quality require muoch time and
labour. So there is @ need to monktor and protect the water
with a real tme water quality monltoring system in order
to make active measurements to redoce contaminathon.
The growth of the technology had helped in developing
efficient methoeds to solve many serious lssues in real-time.
Internet of things (loT) has achieved a great focus due to
Its faster processing and intelligence. This paper locuses
on discussing the architecture, applications and need of
IoT in water management systen.

Keywordy— Imiermes of Things, WEN, RFID, Al Woer
distribaiton sysicon.
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Intelligent monitoring is defined as a method which is
used to monitor, control, manage and optimize the network
by using different computational methods that will provide
customers with relevant tools and information [1]. The
internet of things (1oT) forms an important part of imtelligent
maonitoring which connects people and devices using wireless
sensor technology. It is & fast growing research area in the
military, energy management, healthcare and many more.

The concept of loT was propesed by Kevin Ashton to
demonsirate a set of interconnected devices [1]. loT makes it
possible o transfer information between different electronic
devices embedded with new technology. The energy
management 15 possible  using  energy  harvesting
mechanisms, which is a method of collecting energy from
natural sources swch as light, vibration, pressure ete. The
combination of technologies such as Wireless sensor network
(WSN), Radio frequency identification (RFID), Energy
harvesting{ EH) and Arntificial Intelligence {Al) helps loT to
flourish widely.

‘Water distribution system{WDS) is a very important
research area that affects the economic growth of our country.
WDS mainly have two issues, first is the water loss due to
leakage and the second is that it is prone to contamination. 1t
is affecting the health and safety of the people. According to
the report of world health organization (WHO) in 2017,
arpund 2.1 hillion people around the world lack safe drinking
water. 5o there is a need to ensure the water quality and
wastage by using lot to reduce such issue.
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There are different traditional metheds to collect water
datasets 0 measure its quality, but managing and monitoring
the data from WDS in real time is challenging as the data is
heterogeneous, data collection 5 time-consuming, energy
required for processing, coverage and connectivity of the
nodes in the network. By using loT and combining
technologies such as WSN, Al and EH can be used to ensure
the water quality in real time and aleris the users to take
remedial measures.

In this survey, we look at the need of loT in smart water
system. In the first step, a basic architecture is selected and
applied in WDS by analysing and comparing different
technologies, equipment, cost and methods o build a sman
water system. [t reveals the meed for an loT architecture with
technologies combined for water distribution system. It also
takes into acoount of its advantages and disadvantages based
on the literature review. The selection of the best choice can
be identified for smart water system at the end of this step.
The next step involves selection of the parameters required
using loT for water distribution. At this step, the current
issues during the selection of parameters and some suitahle
suggestions are provided. Finally, an overview of the benefits
which s necessary to implement loT in smart water system
is discussed.

The survey structure is organized as follows. Section 2
explains the basie architecture and technologies applied at
ecach layer im loT for water management and section 3
specifies the parameters required to identify water quality,
section 4 provides the applications of loT in water and section
5 explains the benefits of loT in smart water system based on
the architecture and concluding with section &

II. ARCHITECTURE

There are different architectures proposed by different
awthors based on the type and lewvel of security required by
cach application. A six layered architectune has been proposed
in [2] by combining Web services, RFID and W5N whereas a
five lewvel architecture has been mentioned in [4] based on
telecommunication management network. The basic and
simple architecture [3] consists of three layers which are
perception, network and application layer. This architecture
will be used in the review paper focusing on WDS.

A Perceprion Layer

The main use of the perception laver is to connect deviees
and collect data for processing from the loT network. This
layer consists of sensors, EH devices when applied to WDS.
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Different types of sensors are available commercially
which 5 used to detect water monitoring in real tme, A
sensor network using electrochemical optical sensors [7] s
one among the sensors to identify temperature, water flow,
pH ete. Another one is kapta 3000 AC4 to measure chlorine,
ternperatune, pressure and conductivity of the water and it
coats around 3200 pounds whereas spectro:lyser is another
one o monitor colour, turbidity, COD, BTX 03 ete. with a
lomger range and costs abowt 11000 pounds. Smart water
golution by libelium s another sensor in identifying water
contaminants and costs around 3000 pounds [5], [6]. The
choice of the water quality sensor depends upon the cost,
efficiency and the selection of the water quality attributes.

Energy harvesting is a method of collecting energy from
different natural sources such as light, wind, vibration etc.
and converting it into electricity to power up a device or
extend its battery lifie.

Thie selection of the energy harvesting method iz based on
the type and location of the application. Kinetic, radiant,
thermal and biochernical are the sources wsed to generate
energy. The amount of energy produced by energy harvesting
depends upon the pressure, flow rate and structure of the
pipelines. Table | provides a list of the available harvesting
technigues and the amount of power and cost involved in
each method [13], [16], [17].

The energy harvesting methods suitable for water
mionitoring are the solar cell, piczo electric, electro-magnetic,
fuel cell and thermo-electric. The practical implementation of
solar cell seems to be difficult as the transferring of energy to
underground water pipelines will be difficult wherzas the fuel
cell uses a chemical reaction 1o generate power which will be
a slow process. The piezoelectric, electromagnetic and
thermselectric are the other three methods which are used
widely for monitoring water pipelines [18], [19], [20]. Table
2 provides a companison of these three techniques in the
wireless network. The selection of the harvesting method was
based on considering its advantages and disadvantages that
were analysed during the literature [21], [22], [23].

TABLEL COMMERCIALLY AVAILABLE WATER QUALITY SENSORS
AND THE MEASURING PARAMETERS
= T :::" 1|"m? Source
Turksidity, temperature,
Spactro::lyser pressure, colour, Broekey 2004) 9]
dissolved bome, 1244
pH, dissolved
axypend DO, .
Sanarinasi m:;r:h:n:l.'iry. ;.;:imlﬂ al.,
temperaiure, tarbidity,
phosphase wmer bevel
Chlonne, iemperature, Medougle e1al
e  conduriivity 1)
pH, dissolved
oy gen] D),
comductivity,

water| Libelium) lemperature, ox idation- Libelimmi3014){12]
reduction poteniial/ORF),

twrhidity. dissolved isns

. Amy specific bin- Tsogezla et al,
Lab-om-chip chemical H00813]
I:seam Codorr, varbidity, LV2S | S:pand 201 7)[£]

Energy harvesting module is an electronic device used to
generate energy and manage it for the working of its
connected sensers, processing and communication wits [14].
Energy harvesting methods are gaining more research intenest
each year due to their different properties. The new energy
harvesting methods and their desirable properties such as low
coat, efficiency, availability and high robustness could benefit
the water management system [15].

IABLE L HARVESTING TECHMHAES AdaBST ENERGY PRODLUCED
AMDUOST
:::;::ﬂ: Pawer generated Cast
Light (solar cell) 1 SmWiem® Liow
Wihratiom LG em Low
RF - 100w om Madium
Thermoeleciric 4w o’ Law
Electro-magmstic | 12mWiem’ High
Piezo-electric 331 W o' High

FABLE I CobiFaRBON OF HARVESTING TECHSI)UES USED N
WATER PUFELINES] 20, [21], [22], [23]
Harvesoing
scchmlanz Advaninges Dissdvaninges
High efficiency, easy Small leakage of
Piezo-eleatric o design, Mo m2ed of charge dee to
extermal volage source | polarization
' Size bigger compared
Elsctromagnetic ::Lﬁlf‘:r M‘g;.:r“ o cther methods, bow
toge wolizage load
Difficalt to design due
Lo EnaimtaEn optimal
Thermeslectric Lightweigha, Reliahle thermal comdection
coefficient, low power
genermed

B Network Layer

The network layer of loT in WDS combines processing,
managing and transmission of the data passed from the
perception layer. This layer also helps in managing the
network  devices and communication technologies  for
fransmission.

The communication technology is classified info two
hased on the range of transmission. The cellular technology s
used when long-distance transmission is requined by using 20,
30, 4G [26]. The GSM, GPRS are some of the protocols used
for long distance transmission. It requires more power
consumpiion which makes them not much feasible for WDN.
The short range protocols include Fighee, Slowpan, Radio
frequency  identification (RFID). The RFID uses an
electromnically programmed tag that is used to used o collect
data [27].

The need of a programmed static tag makes it unreliable
o s for measurement. The &lowpan is an [P based protocol
which can be easily connected to another 1P network without
any gateways. Another advantage is s low cost and power
consumpiion. It suppors both star and mesh topology. LoRa
(Low Power Wide Area Network) is another protocol which
gained public interest due o its low power consumption, cost
and high data rate when applied in IoT and it uses the star
topology. Fighee is a widely wsed low power wireless
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provecol  that  provides  low  eost,  security  during
communication. It alse suppons star, mesh and tree topology
[26]. The advantages of Glowpan, LoRa and Zighee make the
best choices to be used in WDS.

Another technobegy that could be imegrated with WDS s
Anificial intelligence{ Al). It is defined &5 a systermn that helps
in problem-solving, decision-making, data identification,
processing, Adaptive Mewro fuzzy inference system is one
among the new Al method to predict the wastewater quality
from industries [28] whereas an adaptive network based
fuzzy system is used in [29] to detect the water quality from
a paper mill. Artificial peural networks (ANN) and Al
algorithms are also used in the water industry to monitor and
predict the water quality which provides accurate resulis [30].

O Applicarion Layer

The application layer manages the applications that will
b used in WDE, This layer also provides user's security and
privacy.

Clowd computing is one of the upcoming technology that
could be used in the application layer of the WDS. Cloud
computing is a solution for the storage, processing and
management of heterogensous data from differemt wireless
devices and the cost of the service is based on the usage [31].
It can be considered as a separate layer between network and
application layer It helps loT in storing backup data’s,
analysis and prediction of the received data based on each
application.

III. PARAMETERS [N SMART WATER SYSTEM

The parameters o detect the water quality depends on the
propenty they exhibit and where it is applied. There are a
number of parameters o detect the water qualing, but
monitoring all the parameters will affect the increase in
workload and thereby affecting the quality of analysis. The
parameters that are usually used to detect water quality in the
pipeline include chemical, physical and biological properties.
A Quality Factors

The chemical properties include pH, dissolved oxygen and
oxidation-reduction potential. The amount of acidity or
alkalinity of a solution is determined using pH. In WDS, a pH
between & and 9 is considered normal. The ability of the water
1o rerowe the impurities by itselfis called oxidation-reduction
potential and a high wvalue of oxidation-reduction potential
repwesents the good quality of water. The disselved oxyzen s
the amount of oxygen dissolved in water and it should be
05mg/L for WDS [24].

The physical factors include temperature, turbidity and
conductivity of water. Turbidity is the opacity or cloudiness
due to the microscopic materials dissolved in the solution and
it should not be bess than INTU in WS, High iemperature
affects the amount of oxygen in the water and disturbing the
water quality [25].

The presence of bacteria, virus, algae and pesticides forms
the biological factors affecting the water quality [25].

These are included in the basic category o determineg the
water quality. It is rather confusing as there aren’t any
international standard methods from any professional bodies
for the selection of water quality parameters.
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B Ouareity Facrors

The water level, pressure of flow and velocity are the
quantity factors that should be considered when collecting the
water data. The ultrasonic sensors and flow sensors can be
used to detect the velocity and identify the change in water
flowe [32], [33], [34].

The management of sensor data in real-time is difficult as
centralized or distributed approach is used fo handle them. A
hybrid approach with an efficient compreszsion technology
could be used to handle and filter the neal-time data based on
the necessity and to reduce the cost of transmission in the
network layer.

. Technological Faciors

The self-adapting network technology is a technological
factor supporting the smart water system. The intelligent
selection of stations, data fusion and forecasting o provide
water quality information based on an emergency situation
and make a rapid decision-making is essential for a smart
water system. This could be integrated with the network layer
of the architecture to achieve a more accurate real time
monitering [33].
D Topodogical Factors

The topological factor consists of sctive and passive
elements that form the network. The active element consizs
of valves, turbines and pumps through which water flow and
pressure can be controlled whereas the passive element
consists of pipes and reservoirs which depends on the active
clements.  Real-time monitoring  and  controlling  the
operations from different water sources and managing the
operational cost is a major factor affecting the water system.
The recent researches of different optimization methods on
dynamic topelogy using convex programming, clustering efc.
could be an added advantage to the smart water system [36].

IV, APPLICATIONS OF 10T IN WATER

A Smart Water Sysrem

The smart water applications include water pipeline
monitoring, water quality in open waler sourse, smart water
mieter reading, loT security for sman water gystemd SWS) ete.
In order to ensure the integrity of customer information,
security of the devices and data passed through the network,
a framework and methodology were developed [37]. Water
quality monitoring of open water sources was  anather
application that was implemented using loT devices. It helps
o preserve the water quality and protect the health of the
economy using low-cost devices and network virtealization
[38], [39]. Another application developed due to the growth
of loT was pipe leakage detection. Different loT devices,
WEN and cloud service were used to detect and alberis the user
ahout the pipe leakage because a good amount of water
wastage = occurring through leakage [40]. Wastewater
monitoring and treatment s another upcoming application in
loT tio treat the wastewater and wse it for household activities
and thereby saving the amount of water to & great extent [41],
[42].

B, Smart Trvigation

loT based mobile applications have developed in farming
to contro] the amount of water for crops based on the
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surrounding terperature. [t also manages the whole imigation
system by smartly monitoring the soil and growth of the crops
and the wrigation sprinkler will get activaied whenever
necessary thereby reducing the water wastage and workload
[43], [44].

O Smart Gardening

The zman gardening application was focused on
improving the memntal health of the elderly people interested
in gardening which uses loT for il implementation. It uses a
set of sensors to detect the temperature, light, water, soil
miodsture and a mobile application to remind the need and
ampount of water and nutrients for the plants [45].

v Aguaculiure Systent

The squaculiure is a technigue of determining and alerting
users about the water quality for culturing of aguatic
organisms using loT. This application is alse used o monitor
the plant’'s environment in squarioms. It helped the aguatic
farmers to recyele the water whenever they receive user alens
on their mobile devices and results in increased productivity
[46].

Most of the applications mentioned above are
developed in the last year which clearly depicts the growth of
loT, especially in water. There is a need for more research in
water with the growth of new technologies such as loT.

V. BENEFITS OF 0T ARCHITECTURE IN WATER
MANAGEMENT

The follewing benefits of loT help to expand the research
into WDE.

A Tniegravion of Technologies

The integration of different technology has taken water
management research to a new level. The combination of
energy  harvesting inte loT could resolve the energy
management issues in the water disinbution system. The
solar cell, piezpelectric, electromagnetic and thermoelectric
harvesting are the methods that could be integrated with the
perception layer to enhance the smart water system. The up-
coming research in micro-electro-mechanical  systems
(MEMS) such as piezoclectric nanowires, Lead zirconate
titanate (PET) films and multi-parameter sensor chip using
iridium oxide film and X-ray photoelectron spectroscopy
(X8} analysis could also improve the research in water [47].

B Data storage, Managemen and Cobrprfaniiod

A solution 1o the storage issue of the wireless sensor
network has been made posaible by loT-cloud combination.
The use of cellular protecols, interaction aware schemes and
clustering methods were used 1o store and manage sensor data
using the cloud. Using these methods, the sensor data will be
transferred into the cloud wsing specific algorithms and
thereby provide network stability [48], [49].

Data fusion is another method o manage data in WSMN. It
15 a method of awomatically combining data from different
sources that helps users io0 make decisions in many
complicated situations. The most widely used model is Joint
Diirector of Laboratories (JDL) which was developed to
improve the cooperation and carry technological data within
a group [30]. This concept has been implemented wsing the
least square technigue to identify the quality of water usage

in houses. It requires more computational power and cost
The data storage and management are applied in the network
layer of loT architecture.

. Energy Management

The power transfer between the sensor nodes is another
technological advancement o manage energy in IoT for
water distribution system. The thermal or magnetic field will
b guitable for the power transfer in determining the water
quality in pipelines. An energy efficient scheduling scheme
for power transfer and a wireless power transfier protecol
were some of the recent developments in energy Management
[51], [52]. The wircless power transfer protocol consists of
two protecols, one for balancing the energy and the other one
for checking the power of cach sensor nodes for energy
transfer. The research on scheduling is to reduce the energy
consumption of the ransmitters in software-defined wireless
sensor network [31]. This technique could be implemented in
the network layer to manage energy in water distribution
gy siem.

As the growth loT is rapidly increasing every yvear and several
IoT architectares has been introduced based on the
application. The current water distribution system now uses
sreant devices, artificial intelligent methods and MEMS
which later on could be integrated with energy harvesting
methods and more loT devices, the basic architecture seems
to e imefficient to be used in water distribution system with
new technobogies integrated. So there is a need for more
research in creating an loT architecture to be used in water
distribution gysteny.
Wi COoMCLUSION

Water quality is a serious factor that affiects the health of the
economy. The increase in the number of loT devices and the
development of new techmology requires a standard IoT
architecture which could help the cliems to create a low cost
and efficient system., This paper discusses about the
implementation of loT in water distribation system on the
basis of loT architecture, upcoming technologies such as
cloud  computing, Anificial  inelligence, transmission
technigues etc; applications and the advantage of loT in
water distribution, The paper reveals some of the curment
mswes when selecting parameters for the sman water system.
The paper also suggests some solutions by referring o the
recent of upooming researches which could resolve the issues
and integrate them to produce a more cost and energy
efficient sman water system. The paper also provides a
comparison of energy harvesting methods and water quality
sensors used in the current water pipelines to select the best
mthod suitable fior the application. The basic architecture of
IoT lacks a proper structure and requires more research for
developing and implementing an architecture and integrate it
imto the water distribution system.

VIL CHALLENGES AND FUTURE WORK

As loT is growing every day with new technologies involved,
new challenges arise. The loT has encouraged people o
connect i devices using the internet and the increase in the
use of loT devices motivated people to wse smart
techmologies. The water guality in the distribution system is
a serious factor that affects public health and sman water
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system provides a user-friendly interface to monitor the water
quality in houses and take remedial measurements if
necessary. One of the main challenges in smart water system
is managing the cost, energy and efficiency required for water
distnibution system. The selection of water quality, quantity
and topological parameters is another challenge in the smart
water system. So there is in need of research about these
challenges to provide a new cost and energy efficient solution
to the sman water system. The future work will focus on
developing an IoT architecture in water distribution system
with integration of new technologies such as cloud, energy
harvesting etc.
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EXTENDED ABSTRACT
INTRODUCTION

Water distribution system (WDS) 15 a very important research area that affects the economic growth of our country and
requires a great amount of energy for momitoring and management. Many routing protocols has been developed to
conserve energy and extend the battery life. In spite of considening the energy conservation, it results in performance
degradations. So there is a need to ensure the water quality and wastage in real time by integrating new technologies
such as wireless powered communication network (WPCN), Encrgy harvesting (EH) and Al methods to reduce such
issues. In WPCN, the wircless devices first harvest energy from the BF source signals and then manage this encrgy for
its processing. The research in the area of WPCH is leading more ways in energy harvesting and management due to
charging over air when compared to the conventional battery charging system. Therefore, its free from battery
replacement issues which results in low operational cost and increase in performance. Another advantage of WPCN is
its stable and controlled power supply under different requirements and physical conditions. All these advantage makes
WPCHN a better choice in wireless energy transfer [2]. To extend WPCHN into [oT, the designing of resource allocation
schemes, interference management etc is considered carefully [1][3].

This research paper focusses on optimizing the energy used in the WPCN with multiple energy sources and multiple
sensors in order to achieve zero power state where the the amount of energy produced and consumed reaches to a
constant value. The problem of unfair information transmission and EH in a dynamic environment is planned to solve
by implementing an energy management scheme where important decisions are taken using artificial intelligence
methods.

METHODS

The representation of system model is as in figure 1 which consists of multiple BF energy sources and multiple sensors
where different water quality data will be collected and transmitted to the base station from the pipeline. The model
consists of three group of sensors which will be collecting different types of water quality parameters. The energy will
be harvested and transmitted to the sensors by considenng the issues such as EH faimess, doubly near far problem ete
using the controller. Every process wall be controlled and monitored by the controller where the energy management
scheme using Al methods will be implemented. The energy and data transfer will be based on TDMA using a dynamic
allocation scheme. A mathematical model is dertved from to achieve zero power energy in the system.

RESULTS AND DISCUSSION

This paper makes a novel contribution to achieve energy optimization using WPCHN for real time monitoring in water
distribution system. The paper also extends WPCN by considering all the design considerations such as resource
deployment, energy allocation, self-interference etc. The simulation is deployed in a 20 by 20 m environment by
refeming to a previous model [3] and the channel model position 1s calculated by subtracting the path loss along with
the distance of the sensor node from the energy node from a constant value which dependshhbb on the assigned
deploying environment space. In this model one of the node is chosen as a base node for data transmission based on the
equal distance from the networks to the energy node. The table] provides the assumptions that are used for simulation.

Parnmeter Value

Transmissson energy for BF nodes L LULE T
EF frequency 91 5MH=
Medium Access control BDZ.15.4

Table!. Assumptions consideved for simulation

There are a few parameters that should be considered when setting up the model. One of them s the energy
consumption of the sensor modes which varies depending on the type and mamufacturer of the sensors, energy
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consumption of the energy harvesting nodes, setting the distance for the transmission and finally, the selection of
frequency for transmission. The energy consumption of the nodes vary based on the amount of data to be sent,
transmission distance etc. In this expeniment, plug and sense by hbelium has been used which consumes the power as m
table 1.

State Fower Comsnmpdion
Om 1TmA

Sleep J0pa

Hibermaie Tpt

Table2. Energy consumption af Libefium plug and sense

In this mode] three different groups of sensors are used to collect data. The first growp 1s used to detect the water quality
ions and the second to find the physical parameters such as temperature, pressure and third group to calculate pH, DO
and turbidity. These values which are sent to the remote station will provide a clear picture about the quality of water
real time to the clients based on the energy produced by the energy sources and managing the energy using the
algorithms implemented in the controller.

Hman R
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Figure I. The Svstem Model

The result of this model depends on how the energy i1s managed to achieve zero power by considering the faimess
issues of the energy source and data transmission. The selection of the energy source is based on clustening by
calculating the distance of the sensors from the energy source and every operation including the energy consumption
will be momitored and controlled by the controller to achieve the desired result.

COMNCLUSIONS

The water quality has always been a serious issue and intelligent monitoring of the water is a powerful process that
combines computing, engineering and environmental factors for ensuring the water quality and thereby protecting the
water ecosystem. The upcoming WPCN technology with [oT helps to build an energy efficient and self-sustainable
svstem that helps to reduce the energy scarcity issue without performance degradations.
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Abstract— In the practical implementation of wirdess
powered communication network (WPCN) project. the energy
consumption is an  important factor to  evaluate the
performance and efficiency of the communication. In this
project, a UAY enabled WPOCN acts as a hybrid access point to
handle multiple ground terminals (GT7s) in an uneven plane.
The ground terminals will harvest radio frequency (RF)
energy from the RF signals directed by the UAY and these
terminal uses this harvested energy to send information to the
uplink. The obhjective of the paper is to find an sptimal position
of UAV using a proposed dome packing method to navigate the
AV, thus UAV will be able to charge the GTs within the
cluster using 3D beamforming method where the beam will be
focusing to a particular terminal rather than broadcasting the
signals everywhere and therehy minimize the total energy
consumption and mission completion time.

Keywords— Wireless povered communication network,
Water distribution metwork, Unmianned aevial vehicle, 3D
Beamforning, optimization.

I. INDRODUCTION

The water distnbution network (WDN) 15 an important
research area that focus on different issues such as
intelligent monitonng for water quality, leakage etc and
integrates new technologies for better and easier use. The
WDMN in the urban terrain covers wider area with pipes,
sensors  (nodes) and  other components.  Contineous
monitonng reguires communication between nodes and
pipelines and these nodes send information to the control
station and hence the power and its usage during
communication is important for contineous monitoring [ 1-
2]. Currently these components are powered by battery,
however compared to the traditional battery charging
technology, WPCN research is leading to new technigues in
energy harvesting and management due to wireless
charging. As a result, 1t does not require  battery
replacement, resulting in lower operating costs and
improved performance. Another use of WPCN is its
consistent and controlled power delivery under various

Birmingham, United Kingdom
wenyan wugiuac.uk

hrbwymie! 163 com

application specific demands that makes it best suited for
low powered IoT devices. All these makes WPCN a
preferable choice in wircless energy transfer (WET) for low
operational cost, higher range and small form factor [3].

It is beeen past few decades that the UAV were developed
for different applications such as military and emergency
situations like flood [4]. Ina UAV enabled WPCN, the UAV
can act as an energy provider, data access point or as a
hybrid access point depending on its purpose or application.
In traditional fixed base station, much cost was involved in
the mamtenance, networking and resources which lead to
use LAV as a flying base station. It 15 widely used recently
because of the advantage in electronics such as high-speed
MicToprocessors, sensors and new type of antennas etc. To
increase the coverage, performance and operation, the UAY
can act as a flying base station to work effectively that suits
the application scenario as in figure 1.

In the past, sensors deployed in the ground needs to be
recharged by replacing the battery after a fixed time-period
which requires time and labour. This issue could be solved
by combiming WPCN and UAV which uses energy
harvesting methods to harvest radio frequency (RF) energy
from the RF waves directed by the UAV and the sensors
uses this energy to transmit information to the uplink.
Hence, the development of research in UAV enabled WPCN
and 1ts energy consumption is of great importance. There
are huge benefits of using LAV as acnal base station such
as the flexibility to move around and deployment helps
rapid communication and a better line of sight (LoS) [5].
Even though the UAV creates huge benefits, there are some
technical challenges which require some serious concerns
such as battery life, energy consumption, 3D placement of
UAV, trajectory planning which evaluates the performance
of the communication.

The UAY helps to provide a constant LoS communication
and different methods and architectures were recommended
to increase the energy efficiency during commumication by
optimizing the trajectory path while acting as a flying base
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station [6]. A trajectory based on time discretized approach
with an assumed mission completion ime to maxmize the
minimum harvested energy were wsed in one of the
rescarches whereas another approach is used to maximize
the average performance and minimum throughput to all
devices [6]. A framework to optimize the trajectory in two-
dimensional space has been introduced with single ground
user and a UAV with constant speed 15 studied [7].
However, the ground users were considered uniformly i a
two-dimensional plane for simplicity, but it may affect the
applicability during implementation if it is considered in an
uncven plane. The placement of the sensors 1s based on the
work of [§]

The limited capacity and availability using a single UAV
leads to its enhancement to use of mult UAY enabled
communication system to handle different groups of ground
terminal in large area. It helps to achieve higher throughput
and lower delay. The research on improving the energy by
focussing on throughput gained much attention.

Fig 1: UAY as a flying base station

The deployment of UAV s in 21D space, the optimal altitude
to achieve better coverage, finding the minimum mumber of
drones alse were studied in [9]. The energy efficiency 1s still
a major factor dunng practical implementation in wircless
powered networks. Some rescarch assumed that the UAY
would have surplus energy for its operation and some used
methods like successive convex approximation for solving
non-convex optimization problems, scheduling to manage
the energy used by UAV [10].

The mnovation m the ficld of antenna design by
developing  Beamforming  method  aftracted  more
rescarchers to imtegrate it and implement in different
scenarios such as mobile commumnication, energy harvesting
ctc. It is a method which uses multiple antennas to focus the
waveform to a specific direction and alleviate the coverage
issues as well as interference issues. For example, when
moving a laptop from one place to another using a
beamforming router, it recalculates the energy and the beam
moves along with the movement of the laptop. A review of
the implementation of beamforming in energy harvesting
wireless networks summanze the concepts, architectures
and different approaches [11]. This method has also been
applied in full-duplex wireless powered communication to
curtail self-interference and improve the throughput among
the users [I12]. In [13] and [14], a review of the
beamforming methods and the factors which affects
beamforming were discussed. The first factor which affects

beamforming 15 the armay design which focus on the armay
configuration used in the design of the antenna as its ablity
to scan the main beam in three-dimensional space based on
the elevation and azimuth angle. The second factor 1s the
beaming period which depends on the network throughpat
and delay, and throughput drops and delay increases with
increasing beaming time. Finally, the third factor is the
range and it is used in wircless networks at medium and
small ranges to provide a better signal to noise ratio. So, all
these factors need to be considered while designing a beam.
This paper focus on optimizing of the third factor which is
the optimal position of the UAV which is required to
minimize the energy during the communication by
assuming some of the beaming factors as constant. In the
practical apphication, the energy consumphion affects the
efficiency of wircless communication and the energy
consumption of network which depends on the UAV's
optimal position and time for moving and hovering. Hence
this paper develops a algorithm for optimal position of the
UAV to reduce the energy consumption and communication
time for its operation.

To extend UAV enabled WPCN mto water distribution
network (WDN) application, the major factor that require a
senous concern 15 minimizing the usage of energy duning
communication due to large scale of WDN. The
optimization of unmanned aerial wvehicle (UAV)
positioning, height, throughput and time are the factors that
should considered carefully while the minimizing the
energy usage [15]. This case study is to apply on a water
distribution system where a terrain 1s considered, which
consists of surface with various clevations and hence a
three-dimensional perspective of the ground nodes and the
UAV is essential for delivening energy and communication
services to the ground nodes. Therefore, a dome could be
the perfect geometrical shape that could be applied to the
considered model. As mentioned above, the altitude or
height of the UAV 15 one of the aspects mfluencing the
encrgy and bme of the flight and this paper targets to
optimize the position to efficiently use the power for UAV
communication later in the rescarch. Hence, a dome
packing method with 3-dimensional beamforming method
will be used to implement this work. The three-dimensional
beamforming method is used to direct the energy signals to
a destined ground terminal for an efficient communication
compared to the traditional broadeasting method. The
antenna arrays will be mtegrated with the UAV in this model
to implement beamforming which will improve the
coverage and efficiency of energy duning commumcation.

In this paper, the remaining sections are organised as
follows. Section 2 explains the related works and
maotivation for the project and section 3 specifies the model
of the system, section 4 provides the proposed dome
packing method and section 5 explams the simulation

results and concluding with sechion 6.

II. RELATED WORE AND MOTIVATION
Beamforming uses multiple radiating clements integrated
into the antenma and phase shift them by adjusting the
magnitude to point at different directions to reach the
ground sensors. The maim advantage is to gain more energy
at the destination compared to the traditonal antennas. |he
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direction of arrival is calculated using adaptive algonthms
processed by the digital signal processor. For example, in
order to change the direction of the active main lobe of the
beam, an n-element phased array with vanable delays can
be used.

A, Beamforming using LAY

The Beamforming wsed in UAV  for  wircless
communication to direct a signalbeam to an intended
receiver. Beamforming is applied in some research where
uplink has higher throughput for on board UAV [11][14].
The bencfits of implementing beamforming  mclude
increased coverage since the beam is directed to a
destination, higher data rate and quality of service, high
security since the beams are not broadeasted in all the

directions and less iterference.

A two-dimensional (2-D) beamforming 15 mostly
applicable in cellular commumnication or networks where the
nodes to be accessed are placed in the horizontal axis of the
antenna and it uses beamforming to control the beam
pattern. Each of the sectors in cellular communication used
a one- dimensional array of antenna elements to provide a
circular shaped mdiation pattern [16]. In [I7], a 2-
dimensional beaming algonthm 15 wsed I iImaging using
microwaves to detect the target behind the wall by
reconstructing the images whereas [ 18] used for millimetre
wave communication to attain high throughput in mobile
communication. Even though 21} beamforming is widely
used in different mobile communication network, it will not
be an ideal fit in this paper as the scenario is considered on
a three- dimensional perspective and hence a 2d approach
will not be applicable.

A 3-I beamforming design with mm wave 1s used to
identify beam coverage of the target area with fixed height
in a plane whereas 3-D beamforming design for 5G cellular
communication with fixed base station is used to study the
impact of beaming [19][20]. Most of the previous literature
focus on the coverage radius with less focus on the height
of the UAV[19][21] whereas a 2-D (two-dimensional )
trajectory planning, energy optimization and throoghput
maximization were inveshigated assuming it i an even
planc[ 18][22]. One of the main attnibutes to optimize 15 the
height of the UAV in a downlmk commumnication while
considering an uneven plane from a three- dimensional

perspective of the UAV and ground node.

The tangential line method is used to find the trajectory of
the UAY while collecting the energy or data. The research
work in [23] uses tangential line method for path designing
and broadcast energy to the ground nodes to achieve
minimum throughput maximization. Whereas, [24] uses it
for trajectory planning and trajectory optimization. The
AV requires much energy to fly higher to collect data and
then lower the height to be available near the sensors to

transfer energy. This time and energy loss can be reduced
by using 3-dimensional beamforming.

The optimization is often performed in UAY to manage the
time, energy, performance and throughput during the
communication. In [25], the UAV acts as a flying base
station and the performance optimization of the UAV 1o
ground communication under time constraints using a cell

partitioning approach 15 implemented. In [26] and [27],
energy cificiency is optimized by considenng the hardware
components such as landing gear, blades etc that constitute
the weight of the UAV. Whereas [28],[29] used an iterative
algonthm for optimizing the energy transfer and power and
thercby increasing the energy efficiency in relay assisted
WPCHN and UAY enabled sensor network. In [30] where
UAV acts as an aerial base station, energy efficiency is
mxamized by optimizng power allocation, trajectory, user
schedulimg  and  bandwidth  in wircless  mobile
communication. The optimization of trajectory, routing or
path are common in most of the UAV communication
design for improving encrgy efficiency, performance and
throughput. The authors of [9] proposed a model and a
design for energy efficiency by considenng the trajectory
path. speed and time of a fixed wing UAV. Whereas, [31]
used 3d trajectory and resource allocation for sum
throughput maximization in solar  powered UAV
communication. Most of the research work focus n energy
optimization in an even plane and the height of the UAV 15
assumed to be a constant. Based on the literature [25]-[31]
there are no relevant research in minimizing the total energy
of the UAV in a terrain.  The authors m [32] proposed a
multiantenna  beamforming to maximize the minmmum
throughput performance on an even plane, but this work
will focus on optimizing the altitude on a terrain by
considering the maximum coverage of the GT's and
planming to extend later towards increasing the energy
efficiency by considering trajectory and time constraints.

This research focus to find the 3D position of the AV
to achieve the optimal altitude using beamforming m the
wircless powered communication network in application of
WDS. A beamforming model of UAV is proposed in this
work, where the algonthm named dome packing to group
and pack the sensors based on the beamforming range’
coverage will find the optimal height of the UAV to charge
the sensors on the ground. This paper also proposes a
theoretical model to optimize the energy used i UAY
enabled WPCN by optimizing the position of the UAV in
the terraim.

L SysTEM MODEL
A system model i proposed to optimize the posiion of the
VAV and thereby reducing the ime and energy of the flight
shown in figure 2. In this model, a WPCN system with
rotary wing-based UAVs which will be in line of sight
(Lo%) communication with the ground terminal nodes
(GT's) comnected to a rechargeable battery wall be used.
The GT's arc positioned with xy.h values to get a 3D
perspective of the GT points. The UAV collects energy
from an KF energy charging point and brosdceast energy to
GTs through WET using beamforming on board. The
elliptical shape in the figure 2 represents the area whers the
ground sensors ane placed with in the radius of Re. Since a
three-dimensional perspective of both the UAY and the
ground nodes are considered, dome will be the ideal shape
to represent clustering of the GT's i the termin area. The
radivs of the clusters is represented vsing r. The mitial
position of the UAY will be calculated by using a 3D K-
means clustering algorithm using the GT points (xs,¥ahe) to
caleulate the clusters and 115 centroads. 1t 1% also considered
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that the energy will also be received by the nodes during
beamforming which is on the same line of sight as that of
the nodes while charging.

This work will be using rotary wing UAV with
Beamforming on board as it requires up, down motions and
hovering positions. It will be using a three-dimensional
perspective of the ground users which 15 assumed to be on
an uneven plane with a downlink channel model.

Let the GT's be k€ {1,2.. N} wall be on the ground
and the AV at position P at precalculated height H with a
line of sight (LOS) communication path. The height 15
calculated after the mtial clusterng by using the mean
progression of the different heights of the GT's in a cluster.
A Uniform rectangular array (URA) with MxMN antenna
array elements with half wavelength spacing which wall be
integrated in the UAV to implement 3D beam forming and

the GT's with a single recerving antenna.

’.'f:-_
h'\d

Figure 2: Representation of UAY enabled WPCN with 3d beaming

The beam receiving area is assumed to be an ellipse
of area “Re’. The channel vector can be represented as (M,
M8, 8) where #and @ are the azimuth and elevation
angles. The antenma radiation pattern in GT's direction is
formulated by

A9, 2) = 4,(8) + A, () {n

And the antenna gamns in horizontal and vertical planes
{Ag, Ay) 15 calculated as
X [}
AR () = min[12{ e 1 Ar] {2}

Ap(@) = min[12( T2 4] (3)

where B34y and By represents the 3dB beamwidth of the
horizontal and vertical patterns, and 4,, is the side lobe
level attenuation, and @y, represents the beam tltng
angle[ 13][33]. The angles to steer the beam towards the GT
direction is calculated by tan™'(H/d) where d 15 the
distance (horizontal and vertical) from the cluster center to
the ground terminal k. The half power beamwidth 15 also
calculated to find the range of the beam created using
dsin{ec) where o 15 the beamwidth.

IV. ProroseDn DoMe Packmc METHOD
In the: proposed dome packing method, the ground terminal
devices are randomly distributed at an area represented by
radius Re, which can be partitioned into K master clusters
c={cl...cK} by 3D clustenng using K-means [34] and a
cluster center “t° for cach cluster is calculated. The UAY 15
positioned at ¢ and 3D beamforming s applied at the
precalculated height H. A heunistic approach will be used so
that the UAY wall not perform any height caleulabon
operations  at child nodes to save enerzy  during
recalculations. If any of the GT's are not reachable or the
strength of the beam is less than -30 dB power (stronger the
beam, less charging time), then the UAWV should be adjusted
to caleulate the optimal positon. The new position (Ax, Ay,
Ah) of the UAV will be caleulated where Ax, Ay, Ah are the
change in x, v and H. It 15 calevlated on the basis of the
position of the GT and the coverage of the beam. If the GT
15 not in the coverage, a re-clustermg with chald clusters wall

be performed followed using 3D beam forming,

Algonthm: Proposed Dome packing Method
Finding the Optimal position of LAV for a single dome

1 Initialize target network and the AV,

2: Imtialize UAVS" mbal posibon P and loT ground
terminal (GT)" positions

FlorGT k=1, -, N, do

4 Perform imitial clistening of the loT devices.
5: end for

6: Asa result ol cK master clusters will be formed
7: Calculate centroid of cach master cluster ©

8: forc=cl...cK
G dis
10: Position the UAY to the cluster ¢*s centroid at a

precaleulated position (x,y,HJ;

11: Apply 3D Beamforming at the current UAV"s
location

12: if any GT's in the cluster 15 not reachable and
strength of beams is less than -30db power

13: then a delta value will be caleulated for a new
position of UAY with Ax, Ay, Ah

14: if the new position 15 within the coverage

15: then, apply 3D Beamforming at the new
position

16 else, based on optimal position, perform
re-clustering (child cluster) at h value to
cover the GT's

17: Apply 3D Beamforming at the new position

18: else the precaleulated position (x,v,H) will be the

same
19: end for

V. SiMULATION RESULTS

Based on the model and simulation, the numencal resulis
are used to validate the effectivensss of the proposed
approach in optimizing the position of the UAV for energy

MinImEation.
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In the simulation, its assumed that 8 ground terminal nodes
were placed at predefined positions at varying height from
the ground and the UAV is positioned at an altitude of H
metres from the ground. The transmission power of the
UAV to communicate with the GT's is 25dBm, frequency
f= 1x10%, ¢=3x10%and the pathloss in the channel is p. The
UAV and the GT's have a line of sight (LOS)
communication. Initially, a 3D clustering is applied to all
the GTs and the clusters with their centroids arc fed to the
UAV.

Figure 3: 3D Beamforming in UAV enabled WPCN

At the next step the optimal position of the UAV (x, v, H) is
calculated using the proposed algorithm and 3D
beamforming is performed with vertical and horizontal
angles with the GT nodes as represented in Figure 3. After
calculating the optimal position, the beam will be steered
towards cach GT's to charge it effectively. Based on the
model, the results are represented as in Figure 4, 5 and 6.

TOP VIEW OF GT'S

o

Figure 4: Position of GT's vs UAV position

The figurc 4 represents a top view of the model with the
position of the UAV and the GT's in the coordinates of the
X, y axis. A side view of the GT's is represented as in figure
5, since it depicts a 3D view of the model and the x,y.H axis
were scaled down to 1:20. From the simulation results on
Figurc 5, the optimal position of the UAV for charging of
the GT's is calculated and a comparison of the model with
an existing model [27] (represented as UAV charging) is
performed to compare its rate of change. In the figure 6. a
mathematical calculation of the energy used by the UAV
(moving. hovering and beaming) is computed [35-36] after
cnergizing cach GT's and a comparison of the total energy
consumed by the UAV against the GT's with and without
using DOM packing is represented.

To calculate the energy consumption of the UAV the model
proposed in [36] 1s used for this work. From the simulation

results on figure 6, it is cvident that the proposed dome
packing method provides better energy consumption than
the compared method.

Side View of GT's
t2

10
3 phetwwme

e LTI Ny

i—i_i l I t i‘_i

290 12T A2 1527 12037 a2 ™

Moot

Radhan podoty of G
Figure 5: The optimal posations of UAV for charging the GT's using
DOM packing and without DOM packing methed

Without using DOM packing

:\I’x;(:

nnnnnnnnn

Completion time ()

(2) Without using DOM packing method

Total UAY snergy consumgtion (1)

i 1A am (2] 1544 1764 7184 R B M
Completion time (1)

{b) Using DOM packing method

Figure 6: Total energy consumption of the UAV vs completion time with
and without DOM packing method

VI. CONCLUSION AND FUTURE WORK

The research in WPCN is fast growing, combining
with computing, beamforming and energy harvesting could
lead new way of communication. In this work, a UAV
enabled wireless powered communication network is used
as a flying base station to provide energy to the ground
sensor nodes in an uneven plane using 3D beamforming
technique and this energy will be used to send information
to the uphink. The total energy consumed by the UAV could
be reduced by optimizing different factors and in this work,
the position of the UAV is optimized by applying a dome
packing algorithm. The future work is planned to extent the
scenario to multi-UAV deployment and energy efficient
trajectory design of UAV by considering the time factor.
Later, the total combined energy consumption for the
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communication is calculated against the energy received
using artificial intelligent methods to reach a constant value
tr achieve energy efficiency in the wireless powered
communication network.
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APPENDIX B

The Implementation Source Code

The B1 Block of consists of code required to set up the scenario to create a terrain for the

placement of the GN’s and the initial position for the UAV to start the mission.

B1. Blocks of code to set up the scenario and position GN’s and initial position of the
UAV

global xmin xmax xres ymin ymax yres X Y Z PI
rng (15, twister')
%% Create un-even surface
xmin=0;ymin=0;
xmax=100;ymax=100;
xres=0.5; yres=0.5;
[X,Y] = meshgrid(xmin:xres:xmax,ymin:yres:ymax);
Z = Y.*c0s(X/12) - X.*cos(Y/12);
Z(Z<0)=0;
% %% Charging % %% New
itr=10;
PrecisionH=zeros(1,itr);
RecallH=zeros(1,itr);
F1H=zeros(1,itr);
for i1=1:itr
hO=figure(1);
clf;
hl =surf(X,Y,Z,'FaceAlpha',0.5)
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camlight(110,70)

brighten(0.6)

h1.EdgeColor ='none’;
h1l.AmbientStrength = 0.4;

a=gca;

a.TickLabellnterpreter = 'latex’;

a.Box ='on";

a.BoxStyle = "full’;
xlabel("$x$','Interpreter’,'latex’)
ylabel('$y$','Interpreter’,'latex’)
zlabel('$z$','Interpreter’,'latex’)

hold on

%% Node placement

nk=40; % No of nodes

% Emax=1000; % max Energy of nodes
% Emin=5; % min Energy of nodes
% V=20;

RegPower=5;

%% UAV

c = 3e8;

fc = 1.5e9;

lamda = c/fc;

h_rec = phased.URA('Size',[16 16],'ElementSpacing',lamda/2,'Lattice’,'Rectangular’)
Ptx=40 ; %40dBm --> 10Watts
noOfNodes=nk;

R =4.8; %node transmission range in km
a=1;

b=noOfNodes;

X0 = xmin+(xmax-xmin)*rand(1,nk);

YO0 = ymin+(ymax-ymin)*rand(1,nk);
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x=X0;
y=Y0;
[u, v]=getgrid(x, y, xmin, xmax, xres, ymin, ymax, yres);
for ik=1:nk
Xe=X(v(ik),u(ik));
Ye=Y (v(ik),u(ik));
Zc=2Z(v(ik),u(ik));

plot3(Xc,Yc,Zc,'0','LineWidth',1,...
‘MarkerEdgeColor''K',...
‘MarkerFaceColor','y',...
‘MarkerSize',8');
text(Xc, Yc,Zc, num2str(ik),'FontSize',10);

end

hold on
% UAV position

X1= xmin+(xmax-xmin)*rand(1,1);

Y 1= ymin+(ymax-ymin)*rand(1,1);

[ul, vi]=getgrid(X1, Y1, xmin, xmax, Xres, ymin, ymax, yres);

plot3(X(v1,ul)+2,Y(v1,ul)+2,Z(v1,ul)+2,'0",'LineWidth',1,...
‘MarkerEdgeColor''K',...
‘MarkerFaceColor','g’,...
‘MarkerSize',12');

hold on

plot3(X(v1,ul),Y(v1,ul),Z(v1,ul),'o','LineWidth'1,...
‘MarkerEdgeColor','k',...
'‘MarkerFaceColor','k',...
‘MarkerSize',14");

xlabel("X in m")

ylabel("Y in m’)



hold on

text(X(v1,ul),Y(v1,ul),Z(v1,ul),'UAV Stay Room','FontSize',10);
%% 3D Clustering

%% Input arguments (and print them)

k=6; % number of clusters

numP = nk; % number of points

fprintf('k-Means will run with %d clusters and %d data points.\n', k, numP);
%% Create random data points
% Create a random matrix of size 2-by-numP
% With row 1/2 (x/y coordinate) ranging in [minX, maxX]/[minY, maxY]
for ik=1:nk
XP(ik) = X(v(ik),u(ik));%xMax * rand(1,numP);
yP(ik) = Y (v(ik),u(ik));%yMax * rand(1,numP);
zP(ik) = Z(v(ik),u(ik));%zMax * rand(1,numP);
end
xMax = max(xP); % x between 0 and xMax
yMax = max(yP); % y between 0 and yMax
zMax = max(zP);
points = [xP; yP; zP];
%% Beam strength calculation with 3D K-means
tic;
[cluster,

centr, TotalbeamStrengthPr, TotalbeamStrengthEx,k,RxPowerl,fligttime_unit,height,
Rb] = 3DkMeans(k, points,Ptx,ReqPower); % my k-means

myPerform = toc;

[Precision,Recall,F1]= measurement(cluster,points,k,nk);
PrecisionH(il)=Precision;

RecallH(i1)=Recall;

F1H(i1)=F1;

fprintf('Computation time for kMeans.m: %d seconds.\n', myPerform);
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%% Show Centroid Regions
hold on;
scatter3(centr(1,:),centr(2,:),centr(3,:),"c','LineWidth',1.5);
axis([0 xMax 0 yMax 0 zMax]);
%% Optimization of Recycle Time
iv=1;
distF=inf;
while(iv<5000)

seg=randperm(k);

dist=0;

for ic=0:k

if(ic==0)

dist=dist+norm([X(v1,ul)+2,Y(v1,ul)+2,Z(v1,ul)+2] -
centr(:,seq(ic+1)));

elseif(ic==k)

dist=dist+norm(centr(:,seq(ic)) -
[X(v1,ul)+2,Y(v1,ul)+2,Z(v1,ul)+2]);

else
dist=dist+norm(centr(:,seq(ic)) - centr(:,seq(ic+1)));
end
end
if(dist<distF)
distF=dist;
bestseq=seq;
end
iv=iv+1;
end
%% Show Routing
for ic=0:k
if(ic==0)
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line([X(v1,ul)+2 centr(1,bestseq(ic+1))],[ Y(v1,ul)+2
centr(2,bestseq(ic+1))],[Z(v1,ul)+2 centr(3,bestseq(ic+1))],
‘Color','r",'LineWidth',2, 'LineStyle',"-")

elseif(ic==k)

line([centr(1,bestseq(ic)) X(v1,ul)],[centr(2,bestseq(ic))
Y (v1,ul)],[centr(3,bestseq(ic)) Z(v1,ul)], 'Color','r",'LineWidth',2,

'LineStyle','-")

else
line([centr(1,bestseq(ic)) centr(1,bestseq(ic+1))],[ centr(2,bestseq(ic))
centr(2,bestseq(ic+1))],[centr(3,bestseq(ic)) centr(3,bestseq(ic+1))],
‘Color','r','LineWidth',2, 'LineStyle',"-"

end

end
%% Flight Time
RxPowerH=[];
powercoeff=10;
Power=0;
flightime=0;
RbCluster=zeros(1,numel(bestseq));
ab=1;
Pcluster=[];
Ftcluster=[];
Pe=[l;
Ftc=[];
for ij=1:numel(bestseq)
ind=find(bestseq(ij)==cluster);
if(ij<numel(bestseq))
distl=norm(centr(:,bestseq(ij)) - centr(:,bestseq(ij+1)));
Power=Power+distl.*powercoeff/100;
end
if(~isempty(ind))
for k=1:numel(ind)
Power = Power +(fligttime_unit(ind(k))).*powercoeff;
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flightime=flightime+fligttime_unit(ind(k));
hoveringtime(ab)=fligttime_unit(ind(k));
RxPower(ab)=RxPowerl(ind(k));
Height(ab)=height(ind(k));

P(ab)=Power;

Ft(ab)=flightime;

Pc(k)=Power;
Ftc(k)=flightime;
ab=ab+1,
end
RbCluster(ij)=sum(Rb(ind));
RxPowerH(ij)=max(RxPowerl(ind));
Pcluster(ij)=sum(Pc);
Ftcluster(ij)=sum(Ftc);
end
end
%% Existing Method
RxPowerHex=[];
powercoeffex=10;
Powerex=0;
flightimeex=0;
RbClusterex=zeros(1,numel(seq));
ab=1;
Pclusterex=[];
Ftclusterex=[];
Pe=[l;
Ftc=[l;
for ij=1:numel(seq)

ind=find(seq(ij)==cluster);
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if(ij<numel(seq))

distl=norm(centr(:,seq(ij)) - centr(:,seq(ij+1)));

Powerex=Powerex+dist1.*powercoeffex/100;

end
if(~isempty(ind))

for k=1:numel(ind)

Powerex = Powerex +(fligttime_unit(ind(k))).*powercoeffex;

flightimeex=flightimeex+fligttime_unit(ind(k));
Pex(ab)=Powerex;

Ftex(ab)=flightimeex;

Pc(k)=Powerex;

Ftc(k)=flightimeex;

ab=ab+1;

end

RbClusterex(ij)=sum(Rb(ind));
RxPowerHex(ij)=max(RxPowerl(ind));
Pclusterex(ij)=sum(Pc);

Ftclusterex(ij)=sum(Ftc);

end
end
ac=[Ft ;P;Ftex;Pex;]";
figure(2),
bar(ac)
hold on
xlabel('Flight Time (s)")
ylabel('Power Consumption (W)')
axis([0 40 0 75]);
figure(3),
plot(1:numel(bestseq),Pcluster,’-*r")

hold on
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plot(1:numel(bestseq),Pclusterex,’-*b")
xlabel('Cluster")

ylabel('Power Consumption (W)")

legend('With DOM Packing','Without DOM packing')
title('ClusterWise")

figure(31),

plot(Rb/1000,'-*r")

xlabel('nodes")

ylabel('max Throughput(Kbps))

figure(4),
plot(1:numel(bestseq),RbCluster(bestseq)/1000,-*r")
xlabel('Cluster")

ylabel('max Throughput(Kbps)")

figure(5),
plot(1:numel(bestseq),RxPowerH(bestseq),-*r")
xlabel('Cluster")

ylabel('max Rx-Power")
[val,inds]=sort(Height);

figure(6),
plot(Height(inds),hoveringtime(inds),'-*r')
xlabel('Height")

ylabel('Hovering Time")
figure(7),plot(Height(inds),RxPower(inds),"-*r')
xlabel('"Height")

ylabel('RxPower")

%% Compute Energy

Energycoeff=0.1;
EnergyPr(i1)=distF.*EnergycoefT;
EnergyEx(il)=dist.*Energycoeff;

% Save Result
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TotBSPr(i1)=TotalbeamStrengthPr;
TotBSEXx(il)=TotalbeamStrengthEX;

pause(1);

end

%% Plot Result

%% Performance

figure,

bar([EnergyPr; EnergyEX]’)
xlabel('Rounds")

ylabel'UAV PowerConsumption(w)")
legend('Proposed','Existing’)

figure,

bar([TotBSPr; TotBSEX]')
xlabel("Rounds’)

ylabel("Wireless Power Transfer(w)")
legend('Proposed','Existing’)
title('Power Transfer')

%% Performance

ac=[PrecisionH ;RecallH;F1H]’;
figure,

bar(ac.*100)

xlabel('lteration’)

ylabel('% Value')
legend('Precision’,'Recall’,'Fmeasure’)

title('Cluster Performance")
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The B2 Block consists of implementation of three-dimensional clustering algorithm by

computing the cluster centroids as well as calculating the throughput from the GN’s.

B2. Blocks of code to perform 3D clustering using K-Means

function [ cluster, centr, TotalbeamStrengthPr, TotalbeamStrengthEx , k, RxPower,
fligttime_unit,height, Rb] = 3DkMeans( k, P, Ptx, ReqPower)

global xmin xmax xres ymin ymax yres X 'Y Z PI

% 3D K-Means Clusters data points into k clusters.

% Input args: k: number of clusters.

% Points: m-by-n matrix of n m-dimensional data points.

% Output args: cluster: 1-by-n array with values of 0, ..., k-1

% Representing in which cluster the corresponding point lies in

% centr: m-by-k matrix of the m-dimensional centroids of the k clusters
numP = size(P,2); % number of points

dimP = size(P,1); % dimension of points

%% Choose k data points as initial centroids

% Choose k unigue random indices between 1 and size(P,2) (number of points)
randldx = randperm(numpP,K);

% Initial centroids

centr = P(;,randldx);

%% Repeat until stopping criterion is met

% init cluster array

cluster = zeros(1,numP);

% Initialize previous cluster array clusterPrev (for stopping criterion)

clusterPrev = cluster;
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% For reference: count the iterations
iterations = 0;
% Initialize stopping criterion
stop = false; % if stopping criterion met, it changes to true
TotalbeamStrengthPr=0;
while stop == false
% For each data point
for idxP = 1:numP
% init distance array dist
dist = zeros(1,k);
% Compute distance to each centroid
for idxC=1:k
dist(idxC) = norm(P(:,idxP)-centr(:,idxC));
end
% find index of closest centroid (= find the cluster)
[~, clusterP] = min(dist);
cluster(idxP) = clusterP;
end
% Recompute centroids using current cluster memberships:
% init centroid array centr
centr = zeros(dimP,k);
% For every cluster compute new centroid
for idxC = 1:k

% Find the points in cluster number idxC and compute row-wise mean
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centr(:,idxC) = mean(P(:,cluster==idxC),2);
end
%% Check condition
% Verify UAV’s minimum 10 m above to earth centroid value
flag=0;
for ab=1:k

[u, v]=getgrid(centr(1,ab) ,centr(2,ab) , xmin, xmax, xres, ymin, ymax, yres);

ab;

if(Z(v,u) < centr(3,ab)+10)

centr(3,ab) = centr(3,ab)+10;

end
end
TotalbeamStrength=0;
for ik=1:numP

H=abs(centr(1,k)-P(1,ik)); % X

V=abs(centr(2,k)-P(2,ik)); % Y

d=sqrt(H"2 + V"2);

theta=acos(V/d);

phi=atan(H/V);

% assign constants

theta3db=-30;

phi3db=-30;

Am=1000;

HP_BeamW=Rxpowercompute(H,V,theta,phi,theta3db,phi3db,Am);%-
PI(d)/100;
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if(HP_BeamW <-30)
flag=1;

end

TotalbeamStrength=TotalbeamStrength+db2mag(HP_BeamW)*db2mag(Ptx);

RxPower(ik)=HP_BeamW;
% Assign min height to 30 m
d(d<=30)=30;

height(ik)=d;

fligttime_unit(ik)=RegPower./(db2mag(HP_BeamW)*db2mag(Ptx));

%% Maximum Throughput
SF=6; % spreading factor
CR=4; % code rate
BW=50;% bandwidth in KHz
Rb(ik)=SF*(4/(4+CR))/(2"SF/BW) * 1000 ./ fligttime_unit(ik);
end
% Checking for stopping criterion: Clusters do not change anymore
if ((TotalbeamStrengthPr< TotalbeamStrength) & (flag ~= 1))
TotalbeamStrengthPr=TotalbeamStrength;
end
% Update previous cluster clusterPrev
clusterPrev = cluster;
if(iterations==1)
TotalbeamStrengthEx=TotalbeamStrength;

end
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iterations = iterations + 1;
if(mod(iterations,1000)==0)
if(TotalbeamStrengthPr ==0)
TotalbeamStrengthPr=TotalbeamStrengthEX;
end
break;
end
end
% For reference: print number of iterations
fprintf('kMeans.m used %d iterations of changing centroids.\n',iterations);

end

The A3 Block consists of codes required to implement three-dimensional beamforming
method.

A3. Blocks of code to perform beaming calculations

function HP_BeamW=Rxpowercompute (H,V, theta, phi, theta3db, phi3db, Am)
d=sqrt(H."2 + V.*2);

phitilt= atan(H/d);

A_H=@(theta) min([12*(theta/theta3db).”2; Am]);

A_V=@(phi) min([12*(phi-phitilt)./phi3db; Am]);

A=A_H(theta) + A_V(phi);

alpha= A/2;%beamwidth(A);

HP_BeamW=d.*sin(alpha);

end
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APPENDIX C

Matlab script of setting the parameters for dynamic optimization methods to find
optimal height of the UAV

A=[0 1,0 -c/m];
B=[0;1];
C=[10];

hO= Dcentr;

h=0:.001:120;

E= m*g*(h-h0)-0.5*m*a"2*(h-h0).72;

plot (h,E)

% Reciprocal of time constant
% Drag Coeffient

% Acceleration

% Mass of UAV

% State model values A,B,C,D

% Height values from static optimization
% Height variation from 0 to 120 maximum

% Energy Equation

% Power and Height values from Dome packing Method

P= [8.1884 8.7458 9.7211 10.5155 11.3031 12.0327 13.0276
14.1735 15.6767 17.596 19.6626 20.3271 27.4831
28.3072 28.971 34.3243 34.83 35.3301 35.8512 36.3613
36.8616 37.4125 43.5545 44,0545 44,5549 45.0552
45.5552 46.0553 46.5563 47.0563 47.5563 56.9637
57.464 57.9698 58.5097 59.2119 59.822 60.564 61.3353
61.9872] ;

Height=[90.0161 30  67.0812 51.2056 66.359 43.5117 66.6128
84.1629 75.2106 86.0262 91.5452 58.4894 117.6356
113.2675 1100819  88.4068 55.4821 64.3604 50.4234
57.5306 95.7589 92.0904 50.2147 60.6271 36.5413
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49.5532 40.2028 37.246 35.3255
30 90.9829 86.9311 102.3359

plot (P, Height,'-r");
xlabel (UAV Power Consumption P (W)");

ylabel ("Height (m)');

30 30 30

30 30

74.9568 73.9874];

C.1. Extremum Seeking Trajectories

The optimal height values that were calculated based on the initial height values from static

optimization is represented as in Figure C1.
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Figure C1 (a-e): The optimized height values using Extremum seeking based on different
clusters values as input from the static model a) h = 29.86 b) h = 33.47 c) h = 26.78
d) h=116.42 e) h=21.93
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Figure C2 (a-e): The optimized height values using Extremum seeking based on different
clusters values as input from the static model after tuning a) h = 29.53 b) h = 33.52
c) h=26.82d) h =116.36 €) h = 21.68
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Figure C3 (a-e): The optimized height values using Extremum seeking based on different

clusters values using initial condition and P(static) as input a) h =29.13 b) h=33.42c) h =

26.11 d) h=118.21 ¢) h = 21.68

(output of differentiator block approaches zero).

The different optimized height values are presented in Figure C3. These values were
determined by applying the extremum seeking technique to the physical model with varying
initial conditions (h0). When the UAV reaches an optimum height value by applying the

optimization, a zero-power system is forced to be maintained because the energy is optimized
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Table C.1 contains a listing of the height values that were calculated and optimised with the

help of extremum seeking optimal trajectory.

Table C.1: Optimized heights of the UAV using Extremum seeking

ESOT
h (m)

29.13

33.42

26.11

118.21

21.68

56.2

C.2. Sliding Mode Optimal Trajectories
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Figure C4 (a-e): The optimized height values using Sliding mode based on different clusters
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Figure C5 (a-e): The optimized height values using Sliding mode based on initial conditions
(h0) and P(static) as input a) h =28.93 b) h =32.68 ¢c) h =26.12 d) h =118.31 ¢) h =21.32

The optimal height values calculated using extremum seeking algorithm, the newly optimised
height values, which were determined through sliding mode optimization, will be utilised in
conjunction with the reasoning that is given in Section 5.2 on methods of static optimization
confirms this. Table C.2 contains a listing of the height values that were calculated and
optimised with the help of the sliding mode optimal trajectory model.

Table C.2: Optimized heights of the UAV using Sliding mode

SMOT
h (m) 29.93 32.68 26.12 118.31 | 21.32 56.12

C.3. WDS Model for Dynamic Optimization

To apply the dynamic optimization methodologies of the future works (4-6) in Chapter 7 to
the regulation as well as monitoring of water quality, a dynamic WDS model may be

developed as follows:
For B.O.D.:  dbi/dt = -Dzi bi + (Qi-1/Vi) bi.1 — (Qi+QE)/Vi + eiQe/Vi
For D.O.: doi/dt = -D»;i 0i + (Qi-1/Vi) 0i-1 - (Qi+QE)/Vi 0i -Dyi bi

where, for a stirred tank reactor model for each reach i,
B.O.D. = Biochemical oxygen demand
D.O. = Dissolved oxygen
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D1i=B.0.D. decay rate
D2i= D. O. reaeration rate

Qi/ Vi = rate of stream flow per unit volume for reach i at a particular point
Qe/ Vi = rate of effluent flow per unit volume in reach i at a particular point
ei = effluent input concentration for BOD

If this model replaces the UAV dynamics model of earlier chapters, a cost function can also
be constructed for optimization of the water quality parameters (BOD and DO). The extemum
seeking and sliding mode algorithms above could then readily be employed. For the LQR

algorithm, the following cost function may be constructed:

o

1
] =—f x'Qx +u'Rudt

2
0
where
Abi
_|40i-1
| doi
Ab;_4
and,

U= A(Qi + QE)/Vi]
| eidQE/Vi
For the linearized state model, the x2uy cross term can either be neglected or included using a
separate weighting matrix, N.

The changes A represent deviations in the values of states BOD, DO from predetermined

benchmark criteria and flow rates u, from steady state values.

Q and R are symmetric weighting matrices which emphasize the relative importance of either
the states x, or the inputs u, in the optimization. e.g., Q, R, are fourth and second order identity

matrices respectively, for equal weightings.

As aresult, the LQR control law can be calculated from the well-known Riccati equation as u

= -Kx, where K is the optimal gain that minimizes cost J.

It is possible to decentralize the model in several ways. The two reaches may be separated and

interconnected, thereby making the multivariable problem single-input-single-output. Each of

157



these sub systems can then be optimized with respect to BOD and DO successively, using any
of the three algorithms, 4-6. There would be an added advantage if the extremum seeking and
optimal sliding mode were used because the neglected cross term above could be

reincorporated as both of these algorithms do not require a linear model.

Alternatively, the multi-input-multi-output optimization, u = -Kx, could be simplified as two
single-input-single-output problems. These could then be augmented with an error state in

order to drive the error to zero using integral action.

If separate UAVSs are used for each decentralized zone to monitor water quality parameters in

neighbouring reaches, then multiple UAVs would need to be coordinated within the WPCN.

C.4. Beam analysis at different frequencies
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Array Characteristics :

@ 300 MHz

Array Directivity 057 dBiat0Az; 0 El -

Array Span x=0 m y=250 mm z=350 mm

Mumber of Elements 48

HPBW 360.00° Az / 360.00° El

FNBW Az /-2 El

SLL -dBAz/-dB El

Element Polarization MNone -
b)

Figure C6 (a,b): Beam analysis at 300MHz
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Array Characteristics :

@ 100 MHz

Array Directivity

0.11 dBiat 0 Az; O EI

Array Span

x=0 m y=250 mm z=350 mm

Number of Elements

48

»

Figure C7 (a,b): Beam analysis at 100 MHz
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