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Abstract: During the pandemic of the coronavirus disease (COVID-19), statistics showed that the
number of affected cases differed from one country to another and also from one city to another.
Therefore, in this paper, we provide an enhanced model for predicting COVID-19 samples in different
regions of Saudi Arabia (high-altitude and sea-level areas). The model is developed using several
stages and was successfully trained and tested using two datasets that were collected from Taif
city (high-altitude area) and Jeddah city (sea-level area) in Saudi Arabia. Binary particle swarm
optimization (BPSO) is used in this study for making feature selections using three different machine
learning models, i.e., the random forest model, gradient boosting model, and naive Bayes model. A
number of predicting evaluation metrics including accuracy, training score, testing score, F-measure,
recall, precision, and receiver operating characteristic (ROC) curve were calculated to verify the
performance of the three machine learning models on these datasets. The experimental results
demonstrated that the gradient boosting model gives better results than the random forest and naive
Bayes models with an accuracy of 94.6% using the Taif city dataset. For the dataset of Jeddah city,
the results demonstrated that the random forest model outperforms the gradient boosting and naive
Bayes models with an accuracy of 95.5%. The dataset of Jeddah city achieved better results than the
dataset of Taif city in Saudi Arabia using the enhanced model for the term of accuracy.

Keywords: k-nearest neighbor; binary particle swarm optimization; random oversampling; random
forest model; gradient boosting model; naive Bayes model

1. Introduction

Abdelsalam, M. et al. [1] state that the COVID-19 pandemic was widely spread all
over the world and that many countries all over the world were affected by the COVID-19
pandemic. COVID-19 has infected more than 147 million people around the world. The
spread of the COVID-19 pandemic can through a symptomatic form or an asymptomatic
form. Snuggs, S. et al. [2] demonstrated that due to the COVID-19 pandemic, many types
of food were limited for patients who suffered from COVID-19. Galanakis, C. M. [3]
illustrated that food systems are very efficacious with respect to human health since these
systems effect psychological health. The CDC [4] demonstrated that COVID-19 infirmity
was due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that arose
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in Wuhan city in China at the end of 2019. This led to the beginning of the COVID-19
pandemic. Arias-Reyes, C. et al. [5] illustrated that for people residing at altitudes of more
than 3000 m, the research clearly showed a decrease in the prevalence and impact of SARS-
CoV-2 infection. The explanation for the global COVID-19 outbreak’s decreased intensity at
a high altitude could be due to both environmental and physiological reasons. Castagnetto-
Mizuaray, J. M. et al. [6] demonstrated that people believed that altitude could protect
them against COVID-19 infection and death was not real; however, their experimental
results illustrated that there was no influence of altitude on COVID-19 infection. Intimayta-
Escalante, C. et al. [7] illustrated that there were some drawbacks to the study, and that
the results were only applicable to the region in which it was conducted and could not be
applied to people that live in other regions. Furthermore, The statistical analysis was carried
out using data from COVID-19 positive cases; however, a large number of COVID-19 cases
have not yet been verified through laboratory testing; In many nations, including Peru, it
is impossible to accurately count all COVID-19 fatalities using national methods. Lin, E.
M. et al. [8] illustrated that environmental circumstances may have a comparable impact
on the prevalence of COVID-19 disease in Brazil. Deaths from COVID-19 have a strong
correlation with low altitude and dense population. It has been revealed that high altitude
could be a protective factor in its own right. Because there was little change in daylight
over the study period, sunshine did not appear to have a substantial impact on COVID-19
outcomes. Segovia-Juarez, J. et al. [9] used data from the COVID-19 pandemic in Peru,
where the first case was recorded in March 2020. There were 224,132 SARS-CoV-2 positive
cases and 6498 deaths in June 2020. The incidence of COVID-19 infection was reduced
at a high altitude, based on data from 185 provincial capitals with altitudes from 3 to
4342 m. Woolcott, O. O. et al. [10] illustrated that in Mexico and the United States, people
who live above 2000 m have a greater total cumulative number of COVID-19 cases and
a higher COVID-19-related mortality rate than those who live below 1500 m. In Mexico,
altitude has been linked to COVID-19 deaths for patients younger than 65 years old. Shams,
M. Y. et al. [11] proposed a model called the healthy artificial nutrition analysis (HANA)
during the COVID-19 pandemic to maintain food for patients. Ferri, M. [12] presented
that the prediction of COVID-19 samples was very vital by using deep learning of artificial
intelligence (AI) and machine learning. Machine learning is a subset of AI that allows
systems and algorithms to automatically learn without human intervention and gives
computers the ability to make decisions regarding many problems in several fields such as
finance, banking, and medicine, where the algorithms and systems improve based on the
experience gained and without any traditional programming. In this work, an enhanced
model for predicting COVID-19 samples in different regions of Saudi Arabia (high-altitude
and sea-level areas) is proposed. The model uses several machine learning models, i.e., the
random forest model, gradient boosting model, and naive Bayes model, as we will discuss
in the next sections.

The remainder of this paper is organized as follows: Section 2 outlines the related
work, Section 3 presents the materials and methods, Section 4 illustrates the experiments
results and discussion, and Section 5 presents the conclusion and future work.

2. Related Work

De Castro, Y. et al. [13] used methods like polynomial regression (PR) combined
with the polynomial kernel of degree 6 for COVID-19 prediction. Hao, Y. et al. [14] have
used methods based on the Bertalanffy-Pütter (BP) model, logistic model, and Gompertz
model to describe the growth of COVID-19. Their comparison results for the prediction of
the cumulative number of confirmed diagnoses showed that the three models can better
forecast COVID-19 evolution trends in the later stages of the epidemic. Yang, Z. et al. [15]
used a logistic model. They also employed exponential models in their predictions. Adnan,
M. et al. [16] predicted the overall spread of COVID-19 using the Artificial Neural Network
(ANN) algorithm, as well as polynomial regression, SVM, and Bayesian Ridge Regression
(BRR). Batista, A. et al. [17] trained and tested neural networks (NN), gradient boosting trees
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(GBDT), random forests (RF), logistic regression (LR), and support vector machines (SVM)
for comparison. The best prediction was provided by SVM, with an AUC of 0.85. To predict
the symptoms of infected patients, Sun, et al. [18] proposed the use of a Support Vector
Machine (SVM)-based model and used the area under the receiver operating characteristic
curve (AUROC) as a performance metric. They achieved 99.6% accuracy in the training
phase and 97.57% accuracy in the testing phase. Salama, A. et al. [19] used artificial neural
network (ANN), support vector machine (SVM), and linear regression (LR) models to
predict the recovery estimation of COVID-19 patients. They concluded that SVM provided
the best prediction accuracy, reaching 85%. Laatifi, M. et al. [20] illustrated a feature
engineering machine learning (ML) method used to predict COVID-19 illness severity.
This method is based on the Uniform Manifold Approximation and Projection (UMAP),
a top-level data reduction method. They mainly used the following classifiers: AdaBoost
classifier, random forest, XGB classifier, and extra trees, achieving 100% accuracy. However,
they faced a challenge due to the limited data size. For the purpose of clustering low and
high severity risk patients, Banoei, MM. et al. [21] used the statistical method SIMPLES
for prediction and a Latent class analysis (LCA) for clustering. Their model had an AUC
higher than 0.85. Iwendi, C. et al. [22] proposed a model to forecast the gravity of different
cases, including recovery, outcome, and death, using a fine-tuned random forest boosted
by the AdaBoost model. CSSE J. [23] utilized a dataset called the "novel Coronavirus 2019
dataset" and incorporated several features to achieve high accuracy, reaching 94% accuracy
and an F1 Score of 0.86. In the field of COVID-19 mortality risk prediction, Pourhomayoun.
et al. [24] utilized various machine learning (ML) algorithms, including support vector
machine (SVM), decision tree (DT), logistic regression (LR), random forest (RF), and k-
nearest neighbor (KNN). Their findings revealed that the ANN algorithm achieved the
highest level of accuracy., at 89.98%. In another comparative study, Yadaw. et al. [25]
employed an extreme gradient boosting (XGBoost) model, which outperformed LR, RF,
and SVM. They used three features: age, minimum oxygen saturation, and healthcare
setting. Moulaei, K. et al. [26] developed J48 DT, RF, KNN, multi-layer perceptron (MLP),
naive bayes, XGBoost, and LR models using a laboratory-proven COVID-19 hospitalized
patient dataset. Their results indicated that RF achieved the best accuracy at 95.03%. Hu,
C. et al. [27] compared bagged flexible discriminant analysis (FDA), partial least squares
(PLS) regression, LR, RF, and elastic net (EN) model. The AUC results demonstrated that
LR, RF, and bagged FDA models performed well. Their final model used LR (with age, CRP
level, lymphocyte count, and D-dimer level) and reached an 88.1% AUC. As an evolution
of machine learning, deep learning (DL) has been widely used in the COVID-19 literature.
Chae, S. et al. [28] proposed a DL framework based on the long short-term memory
method, the autoregressive integrated moving average method (ARIMA), and ordinary
least squares (OLS). Ezzat, D. et al. [29] proposed an approach called GSA-DenseNet121-
COVID-19 using a hybrid Convolutional Neural Network (CNN), DenseNet121, with an
optimization algorithm, the gravitational search algorithm (GSA). Their results indicated
an accuracy of 98%. Deep neural networks (DNN), random forests (RF), and XGBoost were
used by Yang. et al. [30] for diagnosis prediction. They used features including age, routine
blood test results, and gender of patients were gathered from patients hospitalized to the
Department of Infectious Diseases at the University Medical Center Ljubljana (UMCL),
Slovenia. XGBoost performed the best, with a sensitivity of 81.9% and specificity of 97.9%.

3. Materials and Methods

In this paper, an enhanced model is used to predict COVID-19 samples for two datasets
in Saudi Arabia. The proposed enhanced model is based on eight major steps, as demon-
strated in Figure 1. There are eight steps used to develop the enhanced model, which are:
(1) dataset collection, (2) utilizing the random oversampling method for data balancing,
(3) applying the KNN imputation algorithm to impute missing data, (4) conducting data
preprocessing, (5) employing the BPSO optimization algorithm for feature selection, (6) de-
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termining training and testing sets, (7) using random forest, gradient boosting, and naive
Bayes models, and (8) evaluating the model’s performance.
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3.1. Database Collection and Description

This research utilized two datasets collected from Taif city (a high-altitude area) and
Jeddah city (a sea-level area) in Saudi Arabia for COVID-19 samples. The two datasets
were employed to predict COVID-19 samples using different machine learning models,
specifically the random forest model, gradient boosting model, and naive Bayes model.
Between April and December 2020, a total of 1244 patients were gathered from three
hospitals: King Faisal Hospital and Al-Ameen Hospital in Taif city, and the Saudi German
Hospital in Jeddah city [1]. Among these, 1036 patients (83.3%) were included from Taif city
(high-altitude area), and 208 patients (16.7%) were recruited from Jeddah city (sea-level area)
during the same study period. The mean age of the entire patient cohort was 39.4 ± 15.9,
with a male predominance of 63.3%. Most of the included patients (81.5%) tested positive
for COVID-19, while 18.5% had a negative PCR result. The most common comorbidity
among the patient cohort was diabetes mellitus (18.4%), followed by hypertension (14.8%),
and then asthma (3.7%). The vast majority of patients complained of fever, coughing,
and shortness of breath with percentages of 68%, 52%, and 49.4%, respectively. Only
32.7% of them had a known history of contact with positive cases, and 11.3% of them
were healthcare workers. Most patients were admitted for less than a week, with a mean
admission duration of 6 days, and 23% of them were admitted to the intensive care unit
(ICU). The great majority of patients (81.2%) recovered before discharge (81.2%), while
only 4.2% of patients died. Table 1 presents the baseline characteristics of the entire cohort
(N = 1244).

Table 1. Baseline characteristics of the whole cohort (n = 1244).

Sociodemographic Data and Comorbidities Possible Infection Source

Mean age 39.4 ±15.9 Known history of positive
contact 378 32.7%

Male patients (n) 788 63.3% Health care worker 127 11.3%

Female patients (n) 456 36.7% Laboratory investigations
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Table 1. Cont.

Sociodemographic Data and Comorbidities Possible Infection Source

Taif city patients (n) 1036 83.3% Mean Red blood cell count
(RBCs) 7.2 ±2.09

Jeddah city patients (n) 208 16.7% Mean Hemoglobin 15.6 ±6.99

Positive COVID-19 PCR
results 1013 81.5% Mean Hematocrit 46.5 ±15.63

Negative COVID-19 PCR
results 230 18.5% Mean MCV 82.8 ±38.81

Diabetes mellites 228 18.4% Mean MCH 28.5 ±8.67

Hypertension 184 14.8% Mean MCHC 31.9 ±10.48

Asthma 46 3.7% Mean RDW (%) 29.4 ±66.87

Deep venous thrombosis
(DVT) 7 0.6% Mean Platelet Count 250.9 ±94.23

Pulmonary embolism (PE) 10 0.8% Mean Total WBCs 10.92 ±13.46

Myocardial infarction (MI) 13 1% Mean Neutrophil 51.56 ±22.04

Ischemic stroke 20 1.6% Mean Lymphocyte 27.70 ±16.64

Acute respiratory distress
syndrome (ARDS) 25 2% Mean basophil 3.07 ±9.75

Acute large vessel
occlusion 3 0.2% Mean Eosinophil 2.12 ±3.00

Coronary disease 29 2.3% Mean Monocyte 7.32 ±6.05

Tumors 9 0.7% Mean INR 4.51 ±9.04

Chronic kidney disease 26 2.1% Mean PT 16.32 ±10.11

Hospital course Mean aPTT 26.36 ±13.62

Mean days of
hospitalization 6.25 ±6.25 Mean D-dimer 10.07 ±123.48

Patient was admitted to
the intensive care unit 273 23.1% Mean ESR 28.4 ±176.27

Discharged due to
recovery 1009 81.2% Mean CRP 49.8 ±144.4

Discharged due to death 45 4.2% Mean Ferritin 269.1 ±359.69

Discharged upon the
patients’ request (DAMA) 25 2.3% Mean ALT 47.9 ±111.75

Presenting symptoms Mean AST 30.6 ±28.31

Fever 794 68.2% Mean ALP 66.4 ±54.2

Cough 646 52% Mean Albumin 30.9 ±18.06

Shortness of Breath 575 49.4% Mean Bilirubin 6.35 ±8.03

GIT symptoms 312 26.8% Mean Serum Creatinine
test 36.18 ±53.62

Headache, sore throat, or
rhinorrhea 259 22.6% Mean Blood urea nitrogen

(BUN) 14.28 ±22.38

Smell loss 201 20% Mean troponin T 9.70 ±12.70

3.2. Random Oversampling

The random sampling method is considered a basic strategy because it makes no
assumptions about the data when applied [31]. This method entails creating a modified
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version of the data with a new class distribution in order to reduce the data’s inherent
biases. Imbalanced data in classification become a challenge when there is a significant
skew in the class distribution of the training data. This issue can significantly impact
the performance of machine learning models because it tends to overlook the minority
class, which is often the class of primary interest. One approach to address this problem
is the random oversampling method, which involves creating new samples by randomly
selecting and duplicating instances from the existing training data with replacements [32].
This process results in a newly balanced training dataset, where both classes have a more
equal representation. Classification models tend to yield improved results when both
classes are more evenly distributed within the dataset.

3.3. K Nearest Neighbor (KNN) Imputation Algorithm

KNN is a supervided learning method used for matching a point with its nearest K
neighbors [33]. It can handle discrete, continuous, ordinal, and categorical data, making it
very useful for dealing with missing data of any kind. The values known from the KNN
algorithm are utilized to impute the missing values in the dataset instance. The closest
and most comparable neighbors are identified by minimizing distance function, which is
referred to as the Euclidean distance and is defined as shown in Equation (1):

E(a, b)=
√

∑iεD(xai − xbi)
2 (1)

where E(a, b) is the distance between the two instances a and b, xai and xbi are the values of
features i in instances a and b, respectively, and D is the set of attributes with non-missing
values in both patterns. An important parameter for the KNN algorithm is the value of
K, which refers to the number of neighbors. When the value of K is low, it increases the
impact of noise in the data, and less generalizability exists in the results. As opposed to
that, when the value of K is high, the distance to the donors increases, potentially leading
to less precise replacement values. The recommended value for K is typically chosen as
K ≈

√
N, where N is the number of data points. There are three ways to categorize missing

data in the dataset [34]:

1. Missing completely at random (MCAR): In this case, the dataset contains missing
values that are fully independent of any observed variables in the dataset. When data
is MCAR, the data analysis performed is unbiased.

2. Missing at random (MAR): This means that missing values in the dataset are depen-
dent on observed variables in the dataset. This type of missing data can introduce
bias in the analysis, potentially unbalancing the data due to a large number of missing
values in one category.

3. Missing not at random (MNAR): In this case, missing values in the dataset are de-
pendent on the missing values themselves and do not depend on any other observed
variable. Dealing with missing values that are MNAR can be challenging because it is
difficult to implement an imputation algorithm that relies on unobserved data.

3.4. Data Preprocessing

The data preprocessing stage holds significant importance in machine learning [35].
Data quality and preparation can greatly impact the performance of ML models during
the learning process. Therefore, it is crucial to perform data preprocessing before using
the data as inputs in ML models [36]. In this paper, the preprocessing stage involves
normalization. When the input values in the data exhibit varying scales, normalization is
applied to standardize these values [37]. Normalization is a technique used to scale the
input values individually. It involves subtracting the mean (centering) and then dividing
by the standard deviation. This process aims to transform the distribution of the mean
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value to zero and the distribution of the standard deviation value to one. The normalization
process can be computed using Equation (2):

z =
x− µ

σ
(2)

where x denotes the input value, µ denotes the mean value, and σ denotes the standard
deviation value. Mean value (µ) is computed via Equation (3):

µ =
1
N

N

∑
i=1

xi (3)

Standard deviation (σ) is computed using Equation (4):

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (4)

3.5. Particle Swarm Optimization (PSO)

Feature selection is the is the technique of removing irrelevant features from a large
set of original features to reduce computation and reduce computation time [38]. Selecting
the optimal feature subset can be challenging, and traditional methods have limitations
in handling this task. To address these challenges, evolutionary computation (EC) has
been proposed. One of the EC algorithms used for feature selection is Particle Swarm
Optimization (PSO) [39]. In PSO, the potential solutions are referred to as particles or birds,
and they do not possess volume and weight [40,41]. PSO is employed as an optimizer
to find the most suitable feature subset. The best solution is found by the ith particle
that is located in the D-dimensional search space. The position of particle i is presented
through the vector xi = (xi1, xi2, . . . , xiD), where xid∈[ld ,ud ]

, d ∈ [1, D], ld, and ud present
the lower bound and upper bound, respectively, of the dth dimension. The ith particle
velocity is given by vi = (vi1, vi2, . . . , viD). For any particle, the best previous position is
called the personal best (pbest). The best solution is called the global best (gbest). Random
solutions are used to initialize the swarm with a population. Using pbest and gbest, the
algorithm gains the best solution through updating particle velocities and positions using
Equations (5) and (6):

vt+1
id = w× vt

id + c1 × r1 ×
(

pid − xt
id
)
+ c2 × r2 ×

(
pgd − xt

id

)
(5)

xt+1
id = xt

id + vt+1
id (6)

where t is the number of the tth iteration for the algorithm. c1 and c2 refer to acceleration
constants. r1 and r2 are random values that are uniformly distributed in the range [0, 1].
pid is the pbest while pgd is the gbest. w represents the inertia weight. w provides a balance
between the local search and the global search in order to improve PSO performance. v
is the velocity, vt+1

id ∈ [vmax, vmin]. The boundary of the velocity is between the maximum
velocity, vmax, and minimum velocity, vmin.

Binary Particle Swarm Optimization (BPSO)

Binary particle swarm optimization (BPSO) algorithm is a variant of particle swarm
optimization (PSO) algorithm designed to handle binary optimization problems. BPSO
algorithm is used for discrete problems. In BPSO, the particle position is encoded by a string
that is binary. xid, pid, and pgd have values 0 or 1. The velocity of BPSO is the probability
that takes value 1. The velocity is updated using Equation (5). s(vid) is a sigmoid function
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to make the value of vid between 0 and 1. Particle position is updated by BPSO using
Equation (7):

xid =

{
1 i f rand() < 1

1+e−vid

0 otherwise
(7)

where rand() is a random number in the range 0–1. vid is in the range 0–1 by the sigmoid
function. In BPSO, the particle is represented by binary string. When the feature mask is 1,
this means that the feature is selected and otherwise, is 0. The steps of BPSO algorithm are
demonstrated in Figure 2.
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3.6. Machine Learning Models
3.6.1. Random Forest Model

Random forest (RF) is a type of ensemble learning method [42] used for both classifi-
cation and regression problems. RF belongs to the category of ensemble learning where
multiple classifiers are combined to address complex problems and enhance the overall
performance of machine learning models. In the RF model, a large number of decision
trees are generated and combined. The final prediction is made through techniques such as
majority voting or averaging the outputs of these individual trees. Random forest reduces
variance by utilizing different samples during the training process, employing subsets of
the data that contain random subsets of features, and combining the predictions of multiple
smaller trees [43]. It is important to note that the decision trees in the random forest model
are constructed independently. Initially, random forest may overfit the training data, but
it subsequently mitigates overfitting by leveraging multiple predictors and performing
averaging to achieve more robust and accurate predictions.
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3.6.2. Gradient Boosting Model

The gradient boosting model is a supervised machine learning algorithm used for both
regression and classification problems [44]. In boosting, the fundamental concept involves
combining several simple classifiers, typically derived from weak learners, to create a
more powerful classifier that outperforms any single weak classifier. The gradient boosting
model constructs a model based on weak learners, often using decision trees, similar to
other boosting methods. However, what sets it apart is its utilization of gradients in the
loss function to identify the weaknesses of these weak learners [45]. Gradient boosting
employs decision trees in its process, where each decision tree’s training depends on the
results obtained from the previous decision tree. This sequential and iterative nature of the
training process distinguishes gradient boosting from other machine learning techniques.

3.6.3. Naive Bayes Classifier Model

The naive Bayes classifier is a supervised machine learning algorithm for classification
purpose [46]. In the context of the naive Bayes classifier, it assumes that all features are
independent. This implies that the presence (or absence) of one particular feature in a
class does not have any relation to the presence (or absence) of another feature [47]. In
supervised learning, depending on the structure of the probability model, naive Bayes
classifiers can be efficiently trained. The maximum likelihood strategy is used to estimate
parameters for naïve Bayes models. This classifier is particularly well-suited for handling
large datasets due to its simplicity and efficiency [48]. The naive Bayes classifier is well-
known for outperforming even the most advanced classification algorithms due to its
simplicity. It is fundamentally based on Bayes’ theorem, which can be computed using
Equation (8):

P(Z|Y) = P(Y|Z) P(Z)
P(Y)

(8)

where P(Z) is the prior probability of Z, P(Y) is the prior probability of Y, P(Z|Y) is the
posterior probability of Z given Y, P(Y|Z) is the posterior probability of Y given Z. In
Equation (8), P(Y) represents the evidence probability and no knowledge about the event
Z, and Z can be true or false, then, Bayes’ theorem can be written as in Equation (9):

P(Z|Y) = P(Y|Z)P(Z)
P(Y|Z)× P(Z) + P(Y|¬Z)× P(¬Z)

(9)

where, P(¬Z) is the probability of Z that is false, P(Y|¬Z)is the probability of Y given Z
that is false. To define naive Bayes classifier, X = {X1, X2, . . . .Xn} is a set of finite observed
random variables, these variables are called features, and every feature has values from
the domain Di. A set of features is represented by ϕ = D1 × D2 × . . .× Dn. Assume C,
where c ∈ {0, . . . , u− 1}, is random variable that denotes the class of the features, and
h : ϕ→ {0, . . . , u− 1} , where h is a hypothesis that assigns the class to set of variables.
Every class c assigns a function called discriminant ( fc(x)), c = 0, . . . , u− 1. The class is
selected by a classifier with the discriminant function for a set of variables which is given
by h(x) = argmaxc∈{0,...,u−1} fc(x). The discriminant function is given by Equation (10):

f *(x) = p(C = c|X = x
)

(10)

By applying Bayes’ theorem from Equation (8) to Equation (10), we obtain Equation (11):

p(C = c|X = x ) =
p(X = x|C = c )p(C = c )

p(X = x)
(11)
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When p(X = x) is similar across all classes, it can be ignored; so, the discriminant
function can be produced by Equation (12):

f × (x) = p(X = x|C = c )p(C = c ) (12)

where p(X = x|C = c )p(C = c ) is referred to as class conditional probability distribution.
The Bayes’ classifier h× (x) is given by Equation (13):

h× (x) = argmaxc p(X = x|C = c )p(C = c ) (13)

The Bayes’ classifier h× (x) in Equation (13) returns the maximum posterior probabil-
ity for x. Equation (14), which represents the naïve Bayes’ classifier, can be used when the
features are independent given the class in Equation (13):

f NB
c (x) = ∏n

j=1 p
(
Xj = xj|C = c )p(C = c ) (14)

3.7. Evaluation Metrics

Five indicators are used to evaluate the predictive capabilities of the presented pre-
diction models and assess their performances. Each model's performance is evaluated
using metrics such as accuracy, training score, testing score, F-measure, recall, precision,
and the receiver operating characteristic (ROC) curve [49]. Accuracy is computed using
Equation (15):

Accuracy =
TPos + TNeg

TPos + FPos + FNeg + TNeg
(15)

where TPos is true positive, TNeg is true negative, FPos is false positive, and FNeg is
false negative.

Precision is calculated using Equation (16):

Precision =
TPos

TPos + FPos
(16)

Recall is computed using Equation (17):

Recall =
TPos

TPos + FNeg
(17)

F-measure is calculated using Equation (18):

F−measure =
2× Recall × precision

Recall + precision
(18)

Training scores and testing scores serve as indicators to assess the presence of overfit-
ting (OF) and underfitting (UF) in machine learning models. When the training score has a
high value while the testing score is low, it indicates overfitting. Conversely, when both the
training score and testing score have low values, it suggests underfitting. Therefore, it is
of paramount importance to avoid both overfitting and underfitting in order to achieve
optimal results. The best results are typically obtained when both the training score and
testing score exhibit high values. Training score and testing score are typically calculated
using the "score" function in Jupyter Notebook version (6.4.6) or similar tools. These scores
provide valuable insights into the model’s performance and its generalization ability to
unsee data.

A binary classification model’s performance is evaluated graphically using the Re-
ceiver Operating Characteristic (ROC) curve [50]. This curve plots the true positive rate
(TPR) on the y-axis and the false positive rate (FPR) on the x-axis. The ROC curve effectively
illustrates the performance of a classifier across various threshold values. It allows for the
identification of the threshold value where the TPR is high and the FPR is low, which is
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often a desirable operating point for a classifier. The ROC curve plots TPR against FPR
at different thresholds. The true positive rate (TPR) represents the fraction of positive
examples that are correctly classified and is calculated using Equation (19):

TPR =
TPos

TPos + FNeg
(19)

The percentage of negative cases that are misclassified as positive is known as the
false positive rate (FPR). Equation (20) yields FPR:

FPR =
FPos

FPos + TNeg
(20)

4. Results and Discussion

The machine learning models were implemented using the Jupyter Notebook version
(6.4.6). Jupyter Notebook makes creating and running Python code easier. To effectively
evaluate the performance of the enhanced model in the prediction COVID-19 samples,
three machine learning models were utilized for comparison. The machine learning models
employed in this paper are the gradient boosting model, random forest model, and naive
Bayes classifier model. In order to achieve the best performance in the prediction process,
several preprocessing steps were applied:

• Random oversampling was used to balance the data before the training process.
• The KNN imputation algorithm was applied to handle missing data in the dataset.
• Binary Particle Swarm Optimization (BPSO) was utilized as an optimization algorithm

to select important features for training, aiming for improved prediction results.

For the Jeddah city dataset, 47 features were selected out of a total 61, using the BPSO
algorithm. Similarly, for the Taif city dataset, 51 features were selected out of 61 using the
BPSO algorithm. The data were then normalized before being split into a training set (70%)
and a testing set (30%).

In the random forest classifier model, the number of estimators was set to 100 and
the same value was used for the gradient boosting model. These models were trained on
the training set and evaluated using the testing set. Several evaluation metrics, including
accuracy, training score, testing score, F-measure, recall, and precision, were calculated to
to assess the performance of the three prediction models,

For the Taif city dataset (located in the high-altitude area of Saudi Arabia), the experi-
mental results of accuracy, training score, testing score, F-measure, recall, and precision for
the testing set are presented in Table 2 using the gradient boosting model, random forest
model, and naive Bayes model, respectively.

Table 2. Comparison of the performances of three different machine learning models for Taif
city dataset.

Models Accuracy Training Score Testing Score F-Measure Recall Precision

Gradient Boosting 94.6% 100% 94.5% 94.5% 94.6% 94.6%
Random Forest 93.8% 100% 93.7% 93.6% 93.7% 93.7%

Naive Bayes 83.3% 87.7% 83.4% 83.3% 83.3% 83.3%

Among all of the experimental models shown in Table 2, the gradient boosting model
exhibits superior accuracy compared to the random forest and naive Bayes models. Specifi-
cally, its accuracy, training score, testing score, F-measure, recall, and precision are 94.6%,
100%, 94.5%, 94.5%, 94.6%, and 94.6%, respectively. The random forest model also performs
well, with an accuracy of 93.8%, training score of 100%, testing score of 93.7%, F-measure
of 93.6%, recall of 93.7%, and precision of 93.7%. In contrast, the naive Bayes model
demonstrates the lowest accuracy among the three models. Its accuracy, training score,
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testing score, F-measure, recall, and precision are 83.3%, 87.7%, 83.4%, 83.3%, 83.3%, and
83.3%, respectively.

Figure 3 provides a visual comparison of the accuracy of the gradient boosting model,
random forest model, and naive Bayes model using the dataset from Taif city in Saudi Arabia.
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Table 3 demonstrates the results of accuracy, training score, testing score, F-measure,
recall, and precision of the testing set using gradient boosting model, random forest model,
and naive Bayes model, respectively, without applying random oversampling using the
dataset of Taif city in Saudi Arabia.

Table 3. Comparison of the performances of three machine learning models without applying random
oversampling using Taif dataset.

Models Accuracy Training Score Testing Score F-Measure Recall Precision

Gradient Boosting 85.3% 95.2% 85.4% 85.2% 85.6% 85.6%
Random Forest 83.8% 94.7% 83.7% 83.5% 83.8% 83.8%

Naive Bayes 75.4% 80.3% 75.3% 75.6% 75.6% 75.6%

Figure 5 demonstrates a comparison between the gradient boosting model, random
forest model and naive Bayes model in terms of accuracy without applying random over-
sampling using the dataset of Taif city in Saudi Arabia.
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From Tables 2 and 3, the gradient boosting model gives a better accuracy than the
random forest and naive Bayes models. When applying random oversampling, the accuracy
of the gradient boosting model is 94.6% and without applying random oversampling, the
accuracy of gradient boosting model is 85.3%; so, applying random oversampling performs
better results.

For the dataset of Jeddah city (sea-level area) in Saudi Arabia, the experimental results
of accuracy, training score, testing score, F-measure, recall, and precision of the testing set
are shown in Table 4 using the gradient boosting model, random forest model, and naive
Bayes model, respectively.
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Table 4. Comparison of prediction performances using different machine learning models using
Jeddah dataset.

Models Accuracy Training Score Testing Score F-Measure Recall Precision

Gradient Boosting 95% 100% 95.1% 95% 95% 95%
Random Forest 95.5% 100% 95.4% 95.5% 95.5% 95.5%

Naive Bayes 88.7% 88.4% 88.1% 88.7% 88.6% 88.6%

Among all the experimental models presented in Table 4, the random forest model
achieves the highest accuracy compared to the gradient boosting and naive Bayes models.
Specifically, its accuracy, training score, testing score, F-measure, recall, and precision are
95.5%, 100%, 95.4%, 95.5%, 95.5%, and 95.5%, respectively. The gradient boosting model
also performs well, with an accuracy of 95%, a training score of 100%, a testing score of
95.1%, an F-measure of 95%, a recall of 95%, and a precision of 95%. On the other hand, the
naive Bayes model demonstrates the lowest accuracy among the three models. Its accuracy,
training score, testing score, F-measure, recall, and precision are 88.7%, 88.4%, 88.1%, 88.7%,
88.6%, and 88.6%, respectively.

Figure 6 provides a visual comparison of the accuracy of the gradient boosting model,
random forest model, and naive Bayes model using the dataset from Jeddah city in
Saudi Arabia.
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Figure 7 shows the ROC curve for the gradient boosting model, random forest and
naive Bayes models, respectively, using the dataset of Jeddah city in Saudi Arabia.

In terms of accuracy, the enhanced model employed in this paper yields better results
for the Jeddah city dataset compared to the Taif city dataset in Saudi Arabia. Specifically,
the random forest model achieves a higher accuracy with a rate of 95.5% for the Jeddah city
dataset, while the best result for the Taif dataset is obtained by the gradient boosting model
with an accuracy of 94.6%.

Figure 8 provides a visual comparison between the datasets of Jeddah city and Taif city
in Saudi Arabia in terms of accuracy, as obtained by the enhanced model used in this paper.
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Table 5 provides a comparison between the proposed work in this paper and vari-
ous studies.
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Table 5. Comparison of the proposed work with a number of studies.

Studies Model Accuracy

Ref [19] SVM 85%
Ref [24] ANN 89.98%
Ref [26] RF 95.03%

Proposed Work for high-altitude area BPSO with gradient boosting 94.6%
Proposed Work for sea-level area BPSO with random forest 95.5%

However, we acknowledge the importance of comparing the performance of BPSO
against other algorithms to ensure the robustness of our findings. To address this sug-
gestion, we have initiated a comparative study where we will implement and evaluate
several alternative optimization algorithms, including Genetic Algorithms (GA), Simulated
Annealing (SA), and Differential Evolution (DE), among others. We will analyze their
performance in terms of accuracy, as shown in Table 6.

Table 6. Comparison between the performance of BPSO against other algorithms.

Model Accuracy

BPSO 95.5%
GA 91.3%
SA 90.6%
DE 90.4%

5. Conclusions and Future Work

In this paper, an enhanced model was developed to predict COVID-19 samples in
Saudi Arabia. Two datasets were utilized, one from Taif city (high-altitude area) and
the other from Jeddah city (sea-level area) in Saudi Arabia. The inclusion of these two
datasets aimed to demonstrate the effectiveness and applicability of the enhanced model
in different geographical areas. The enhanced model consists of eight key steps: dataset
collection; using the random oversampling method for data balancing; utilizing the KNN
imputation algorithm to impute missing data; data preprocessing; employing the Binary
Particle Swarm Optimization (BPSO) algorithm for feature selection; selecting training and
testing sets; utilizing the random forest, gradient boosting, and naive bayes classification
models; and performance evaluation, including metrics such as accuracy, training score,
testing score, F-measure, recall, precision, and the receiver operating characteristic (ROC)
curve, calculated for each model. The COVID-19 samples were predicted using these three
classification models. For the Taif city dataset (high-altitude area), the gradient boosting
model proved to be the most efficient classification prediction model, outperforming
random forest and naive Bayes models. Conversely, for the Jeddah city dataset (sea-level
area), the random forest model yielded the best results, surpassing the gradient boosting
and naive Bayes models. Notably, in terms of accuracy, the enhanced model in this paper
demonstrated more effective results for the Jeddah city dataset compared to the Taif city
dataset in Saudi Arabia.

Future research will explore the application of this proposed model on additional data
collected from similar areas in Saudi Arabia, including high-altitude and sea-level areas.
This will help identify the best prediction model for each specific region. Additionally,
several machine learning and deep learning techniques will be used on these datasets to
produce better forecasts for COVID-19 cases across a number of nations and locations.
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