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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder marked by motor and non-motor
symptoms that have a severe impact on the quality of life of the affected individuals. This study
explores the effect of filter feature selection, followed by ensemble learning methods and genetic
selection, on the detection of PD patients from attributes extracted from voice clips from both PD
patients and healthy patients. Two distinct datasets were employed in this study. Filter feature
selection was carried out by eliminating quasi-constant features. Several classification models were
then tested on the filtered data. Decision tree, random forest, and XGBoost classifiers produced
remarkable results, especially on Dataset 1, where 100% accuracy was achieved by decision tree and
random forest. Ensemble learning methods (voting, stacking, and bagging) were then applied to the
best-performing models to see whether the results could be enhanced further. Additionally, genetic
selection was applied to the filtered data and evaluated using several classification models for their
accuracy and precision. It was found that in most cases, the predictions for PD patients showed more
precision than those for healthy individuals. The overall performance was also better on Dataset 1
than on Dataset 2, which had a greater number of features.

Keywords: Parkinson’s disease (PD); filter feature selection; ensemble learning; genetic selection

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that affects millions of
individuals worldwide. It is characterized by motor symptoms such as tremors, rigidity,
bradykinesia (slowness of movement), and postural instability. PD not only impairs the
quality of life for patients but also poses significant challenges for accurate and timely
diagnosis. The presence of voice deficits, which are frequently defined by alterations
in speech patterns, cadence, and tone, emerges as an important element of Parkinson’s
disease symptomatology. The study by Tjaden, Lam, and Wilding [1] revealed that speakers
with PD displayed expanded peripheral and non-peripheral vowel space areas during
articulate speech, accompanied by a reduction in speech rate and an increased vocal
intensity. Furthermore, the study by Tsanas et al. [2] highlighted the feasibility of utilizing
straightforward, self-administered, and non-intrusive speech tests as a potential strategy for
regular, remote, and precise monitoring of PD symptom progression with the employment
of the Unified Parkinson’s Disease Rating Scale (UPDRS). These studies showcase the
potential of voice-related changes to act as valuable indicators for the early detection of
Parkinson’s disease, despite receiving less recognition than motor symptoms.

Recent advances in machine learning techniques, as well as the availability of large-
scale datasets, have opened new avenues for the automated identification of PD utilizing
various forms of data, including voice recordings. Furthermore, machine learning-based
PD detection systems have the potential to be non-invasive, low-cost, and easily scalable.
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A voice recording can be collected easily through commonly available devices such as
smartphones, making it a convenient and accessible tool for screening and monitoring PD.

A series of studies have delved into the domain of Parkinson’s disease (PD) classifi-
cation, harnessing voice data as a diagnostic indicator. However, one notable gap is the
limited size and diversity of the datasets employed in many prior studies. This limitation
raises concerns about the generalizability and reliability of the resulting classification mod-
els. This study makes a significant contribution to the field by decisively addressing this
issue through the utilization of two distinct datasets. Another gap has been the lack of
comprehensive feature selection methods employed in PD classification studies. While
some efforts have been made to apply feature selection techniques, this study takes a
step forward by introducing a novel combination of filter feature selection methods with
ensemble learning and genetic selection. This fusion holds the promise of uncovering more
relevant and discriminative features inherent in the voice data, potentially leading to a
substantial enhancement in the accuracy of PD classification. Furthermore, the limited
exploration of model ensemble techniques in prior studies has presented a significant
gap, which this research effectively addresses. While several investigations have focused
primarily on individual classification algorithms, the untapped potential of leveraging the
strengths of various algorithms through ensemble methods has been underutilized. Ensem-
ble learning methods have the inherent advantage of integrating the diverse strengths of
different algorithms, thereby enhancing the overall predictive power and accuracy of the
classification process. By exploring this avenue, this research provides a vital contribution
to the field by demonstrating the potential of ensemble techniques to significantly elevate
the performance and efficacy of PD classification models.

In this study, a combination of filter feature selection methods with ensemble learning
and genetic selection was used to detect PD from voice clips. The filtered data was fed into
different classification models, which were then evaluated based on their accuracy and
precision. By evaluating the models on these diverse datasets with varying characteristics
and complexities, the generalizability and scalability of the approach may be assessed. The
outcomes of this study may enhance our understanding and augment the efficacy of early
PD detection, ultimately leading to improved patient care and prognosis.

2. Related Work

Several studies have investigated the use of machine learning and statistical mod-
elling techniques to extract discriminative features from voice recordings and to develop
classification models for PD detection. These have been summarized in Table 1.

Table 1. Summary of studies that utilized machine learning for PD detection.

Study Dataset Method Results

Sheikhi and Kheirabadi,
2022 [3] Voice UCI PD dataset

Combination of the Random
Forest (RF) and Rotation

Forest algorithms for
classifying prediction

outcomes as severe
or non-severe

Accuracy for:
total UPDRS—76.09%

motor UPDRS—79.49%

Mohammed et al., 2021 [4] Voice UCI PD dataset Feature selection and
classification Accuracy—96.6%

Velmurugan and Dhinakaran,
2022 [5]

UCI machine
learning repository

Combination of linear
regression and Adaboost
ensemble methods with
Random Forest (RF) and

extreme gradient
boosting (XGBoost)

Accuracy—90.13%
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Table 1. Cont.

Study Dataset Method Results

Sharma et al., 2021 [6]

Dataset collected by Max
Little of Oxford University for

voice disorders by
collaborating with the

National Centre for Voice
and Speech

Feature selection using the
Rao algorithm and

classification using the
k-Nearest Neighbors

(KNN) classifier

Accuracy—99.25%

Sabeena et al., 2022 [7] Voice dataset from the UCI
machine learning repository

Feature selection using
optimization-based ensembles

and different
classification algorithms

Accuracy ranging from 83.66%
to 98.77%.

Ul Haq et al., 2020 [8] Voice dataset

Feature selection using
different feature selection

methods and different
classification using Support

Vector Machine (SVM)

Accuracy ranging from 98.20%
to 99.50%

Sarankumar et al., 2022 [9] Voice dataset

Feature selection using the
firming bacteria foraging

algorithm and classification
using the Deep Brooke
inception net algorithm

Accuracy—99.88%

Pahuja and Nagabhushan,
2021 [10]

Voice dataset from the
UCI repository

Classification using Artificial
Neural Network (ANN),
Support Vector Machine

(SVM) and k-Nearest
Neighbors (KNN) algorithms

Accuracy—95.89%, 88.21%,
and 72.31%, respectively

Yücelbaş, 2021 [11] Voice dataset

Feature selection using the
Information gain

algorithm-based KNN hybrid
model (IGKNN)

Accuracy—98%

Pramanik et al., 2021 [12]
Acoustic features from the

UCI machine
learning repository

Feature selection using
Correlated Feature Selection
(CFS), Fisher Score Feature

Selection (FSFS), and Mutual
Information-based Feature

Selection (MIFS) techniques,
and classification using Naïve

Bayes classifier

Accuracy—78.97%

Salmanpour, Shamsaei, Saberi,
et al., 2021 [13]

Combination of non-imaging,
imaging, and radiomic

features from
DAT-SPECT images

Sixteen algorithms for feature
reduction, eight algorithms for
clustering, and 16 classifiers

Subdivided the PD into three
subtypes, namely mild,

intermediate, and severe

Nahar et al., 2021 [14]
Acoustic features from the

UCI machine
learning repository

Feature selection using Boruta,
Recursive Feature Elimination

(RFE), and Random Forest
(RF), and classification using
Gradient Boosting, Extreme
Gradient Boosting, Bagging,

and Extra Tree Classifier

Accuracy—82.35% from
applying the RFE feature

selection methods and
Bagging classifier

In a recent study by Sheikhi and Kheirabadi [3], a voice dataset from the UCI Reposi-
tory was utilized for the classification of PD. The dataset comprised voice recordings from
42 patients, totaling 5875 instances. They proposed a model that combined the Random
Forest (RF) and Rotation Forest algorithms to classify the predictions into two categories:
severe or non-severe. The accuracy results for the total Unified PD Rating Scale (UPDRS)
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and motor UPDRS using this model were found to be 76.09% and 79.49%, respectively. In
another study conducted by Mohammed et al. [4], a multi-agent approach was employed to
filter and identify the most relevant features that could enhance PD classification accuracy
while reducing training time. They utilized a dataset consisting of 31 human voice record-
ings, 23 of which were diagnosed with PD. Initially, the dataset contained 22 features, which
were reduced to 14 after the filtering process. Eleven different classification algorithms were
applied to the selected features, and the results were evaluated. This approach achieved an
accuracy of 96.6%.

Recently, Velmurugan and Dhinakaran [5] proposed an approach known as the Ensem-
ble Stacking Learning Algorithm (ESLA) for PD classification. The ESLA method integrated
the linear regression and Adaboost ensemble techniques with the RF and Extreme Gradient
Boosting (XGBoost) algorithms to effectively identify individuals with PD. The dataset
employed was collected from 188 PD patients. Initially, basic models were developed
using the RF and XGBoost algorithms for prediction. Subsequently, the outputs of these
prediction models were utilized as inputs in the next step to fine-tune parameters and
create models with enhanced accuracy. The top models for the RF and XGBoost were then
chosen. The RF model’s accuracy increased from 84.21% to 84.86%, while the XGBoost
model’s accuracy increased from 88.15% to 88.85%. The proposed ESLA method leveraged
the stacking technique to create four stacked models, combining RF, XGBoost, logistic re-
gression, Adaboost, and multilayer perceptron (MLP), to further enhance the classification
performance. This method outperformed the individual classifiers, yielding an accuracy
of 90.13%.

The study by Sharma et al. [6] proposed a binary version of the Rao algorithm to
overcome the problem of feature selection. The Rao algorithm was applied to four public
PD datasets using the kNN classifier for PD classification. The highest accuracy of the
classifications obtained from the four datasets was 99.25%.

In their study, Sabeena et al. [7] proposed a novel framework for feature selection and
classification to identify individuals with PD. The dataset used consisted of speech samples
from 188 PD patients and 64 healthy individuals. An optimization-based ensemble feature
selection method was employed. It involved three different approaches for selecting the
optimized subsets of features. The results from these approaches were combined using an
ensemble technique. The selected features were then utilized in various classifiers, which
yielded accuracies ranging from 83.66% to 98.77%. In another study by Ul Haq et al. [8],
a dataset of 196 voice samples with 23 attributes was utilized. Among the 31 individuals
in the dataset, 23 were diagnosed with PD, and eight were considered healthy. Relief-ant-
colony optimization (ACO), and Relief-ACO methods were employed to select subsets of
features. The selected feature subsets were then used with the SVM classifier. The results
showed that when the Relief-ACO feature selection method was combined with SVM using
the radial basis function (RBF) kernel, an accuracy of 98.20% was achieved, outperforming
other feature selection methods. Similarly, when used with SVM using the linear kernel,
the Relief-ACO feature selection method achieved a high accuracy of 99.50% compared to
other feature selection methods.

In the study conducted by Sarankumar et al. [9], a dataset of voice data collected
from 42 patients was analyzed. The dataset contained a total of 5875 audio files. After
preprocessing the dataset, a clustering process was performed using wavelet cleft fuzzy.
Next, feature selection was carried out from the clustering step using the firming bacteria
foraging algorithm. The selected features were then employed to predict PD patients using
the Deep Brooke inception net classification algorithm, resulting in an accuracy of 99.88%.
In another study by Pahuja and Nagabhushan [10], a free voice dataset of PD patients from
the UCI repository was used. This dataset had six recordings for each patient. Classification
algorithms ANN, SVM, and kNN, were employed and achieved accuracies of 95.89%,
88.21%, and 72.31%, respectively.

The research conducted by Yücelbaş [11] used a dataset comprising voice recordings
of 252 individuals. The dataset employed 188 patients with PD and 64 healthy individuals,
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with three recordings for each person, resulting in a total of 756 recordings. The study
proposed an information gain algorithm-based KNN hybrid model (IGKNN) for feature
selection analysis. The proposed IGKNN method, using 22 selected features, achieved an
accuracy of 98%. Pramanik et al. [12] used a publicly available dataset from the UCI machine
learning repository in a different study. This dataset included 752 acoustic features for
252 people, including 188 PD patients and 64 healthy people. A total of 21 baseline features
(BF), 22 vocal fold features (VFF), and 11-time frequency features (TFF) were extracted
from this dataset. A collaborative feature bank was built to evaluate the performance of
PD detection using three feature selection techniques: Correlated Feature Selection (CFS),
Fisher Score Feature Selection (FSFS), and Mutual Information-based Feature Selection
(MIFS). The Naïve Bayes classifier was used in the evaluation. The best accuracy obtained
from utilizing the three feature selection strategies was 78.97%.

The study conducted by Salmanpour, Shamsaei, Saberi, et al. [13] aimed to categorize
PD into its distinct subtypes. To achieve this, the researchers compiled 30 datasets over a
period of four years from 885 individuals diagnosed with Parkinson’s Progressive Marker
and 163 healthy individuals. These datasets encompassed a combination of non-imaging,
imaging, and radiomic features extracted from DAT-SPECT images. The study used
16 algorithms for feature reduction, eight algorithms for clustering, and 16 classifiers.
The radiomics features aided in generating a consistent cluster structure, enabling the
subdivision of PD into three distinct subtypes: mild, intermediate, and severe.

The study by Nahar et al. [14] was based on 44 acoustic features extracted from
a dataset of 80 people, 40 of whom were PD patients and 40 who were healthy. The
feature selection was performed using three different methods: Boruta, Recursive Feature
Elimination (RFE), and RF. Gradient Boosting, Extreme Gradient Boosting, Bagging, and
an Extra Tree Classifier were employed. The classifier results were examined using the
original 44 features, and the Extreme Gradient Boosting classifier achieved a good accuracy
of 78.08%. Furthermore, the classification results were analyzed after using the three feature
selection methods, and an accuracy of 82.35% was achieved using the RFE feature selection
method and the Bagging classifier.

While previous studies have explored PD diagnosis using voice analysis, significant
gaps remain. Concerns related to generalizability and accuracy have been highlighted due
to the inadequate dataset diversity and feature selection methodologies. This study tackles
these limitations by combining two independent datasets and offering a fusion of filter
feature selection with ensemble learning and genetic selection.

3. Materials and Methods
3.1. Datasets

Two distinct biomedical voice datasets were employed in this study for the assessment
of PD.

The first dataset encompasses a compilation of biomedical voice measurements ob-
tained from 31 individuals, 23 of whom were diagnosed with PD. Each row in the dataset
corresponds to a voice recording from these individuals, while each column represents a
specific voice measure. This dataset was expertly curated through a collaborative effort
between Max Little of the University of Oxford and the National Center for Voice and
Speech in Denver, Colorado, entailing the meticulous recording of speech signals [15].

The dataset contains 195 sustained vowel phonations, encompassing a range of time
since diagnosis spanning from 0 to 28 years. The subjects’ ages vary from 46 to 85 years,
with a mean age of 65.8 and a standard deviation of 9.8. For each subject, an average of six
phonations were captured, varying in duration from one to 36 s. These phonations were
recorded within an IAC sound-treated booth, utilizing a head-mounted microphone (AKG
C420) positioned 8 cm away from the lips. The calibration of the microphone involved a
Class 1 sound level meter (B&K 2238) situated 30 cm from the speaker. The voice signals
were directly recorded onto a computer through CSL 4300B hardware (Kay Elemetrics),
sampled at 44.1 kHz, and with a 16 bit resolution. To ensure the robustness of the algorithms,
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all samples underwent digital amplitude normalization prior to the computation of the
metrics. The details of the subjects are given in Table 2.

Table 2. List of subjects with sex, age, Parkinson’s stage, and number of years since diagnosis 1.
Entries labeled “n/a” for healthy subjects for whom Parkinson’s stage and years since diagnosis are
not applicable. “H&Y” refers to the Hoehn and Yahr PD stage, where higher values indicate a greater
level of disability.

Subject Code Sex Age Stage (H&Y) Years Since
Diagnosis

S01 M 78 3.0 0
S34 F 79 2.5 1

4
S44 M 67 1.5 1
S20 M 70 3.0 1
S24 M 73 2.5 1
S26 F 53 2.0 1 1

2
S08 F 48 2.0 2
S39 M 64 2.0 2
S33 M 68 2.0 3
S32 M 50 1.0 4
S02 M 60 2.0 4
S22 M 60 1.5 4 1

2
S37 M 76 1.0 5
S21 F 81 1.5 5
S04 M 70 2.5 5 1

2
S19 M 73 1.0 7
S35 F 85 4.0 7
S05 F 72 3.0 8
S18 M 61 2.5 11
S16 M 62 2.5 14
S27 M 72 2.5 15
S25 M 74 3.0 23
S06 F 63 2.5 28

S10 (healthy) F 46 n/a n/a
S07 (healthy) F 48 n/a n/a
S13 (healthy) M 61 n/a n/a
S43 (healthy) M 62 n/a n/a
S17 (healthy) F 64 n/a n/a
S42 (healthy) F 66 n/a n/a
S50 (healthy) F 66 n/a n/a
S49 (healthy) M 69 n/a n/a

1 Adapted from [15].

The second dataset utilized in this study was built by Sakar et al. [16] for their study,
which comprised a comparative analysis of speech signal processing algorithms for PD
classification and the use of the tunable Q-factor wavelet transform. This dataset was
collected at the Department of Neurology in the Cerrahpaşa Faculty of Medicine, Istanbul
University. It entailed the comprehensive data of 188 PD patients (107 men and 81 women)
spanning an age range of 33 to 87 years (mean age: 65.1 ± 10.9). Additionally, a control
group consisting of 64 healthy individuals (23 men and 41 women) with ages ranging from
41 to 82 years (mean age: 61.1 ± 8.9) was included. During the data collection process, voice
recordings were captured using a microphone set to a frequency of 44.1 KHz. Specifically,
sustained phonation of the vowel /a/ was necessary to collect from each subject with three
repetitions. Subsequently, a comprehensive set of speech signal processing algorithms,
including Time-Frequency features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet
Transform-based features, Vocal Fold features, and TWQT features, were diligently applied
to the speech recordings of PD patients.
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3.2. Filter Feature Selection

The goal of feature selection in machine learning and data mining is to identify and
maintain a subset of important features from the original dataset. The motivation for
feature selection stems from its ability to increase model performance, reduce compu-
tational complexity, and improve model interpretability. Filter methods have received
substantial attention among the various approaches to feature selection due to their simplic-
ity, efficiency, and capacity to evaluate feature significance independently of any specific
learning algorithm.

Filter feature selection methods attempt to prioritize and choose features based on
their unique properties and association with the target variable without considering the
learning process of the specific model. In this study, we focus on the importance of filtering
quasi-constant features as a crucial step in the filter feature selection process. Quasi-constant
features refer to those with minimal variance or almost constant values across the dataset,
providing limited or negligible discriminatory information.

Identifying and removing quasi-constant features reduces dimensionality and im-
proves model generalization. By eliminating these features, we may reduce noise, improve
computational performance, and promote more meaningful dataset exploration. However,
to effectively filter out quasi-constant features, it is essential to set an appropriate thresh-
old that determines the acceptable level of variance below which a feature is considered
quasi-constant and subsequently removed.

3.3. Genetic Algorithm

Genetic Algorithms (GAs), members of the evolutionary algorithm family, have
emerged as a popular and robust solution to addressing the limitations encountered by
conventional optimization techniques in terms of efficiency and effectiveness. They are
inspired by concepts of natural selection and genetics, imitating the process of evolution to
find optimal solutions within a specific area.

The concept of a population-based search is at the heart of GAs, in which a set of poten-
tial solutions, referred to as individuals or chromosomes, undergo iterative refinement to
explore the solution space. GAs enable the propagation of desirable features and the exami-
nation of new solution regions by utilizing genetic operators such as selection, crossover,
and mutation. This population-centric method enables GAs to tackle complicated optimiza-
tion problems with high dimensionality, non-linearity, and multimodality effectively.

GAs work by iteratively generating new populations, with each population being
evaluated based on a fitness function that assesses the quality of individual solutions. They
promote convergence towards optimal or near-optimal solutions across generations by
repeatedly applying selection, crossover, and mutation operators. This repeated exploration
and exploitation approach enables them to navigate the solution space with ease, exceeding
local optima and delivering strong solutions.

3.4. Methods

Two distinct methods were employed in the experiments to evaluate the effectiveness
of the filtering approach.

The selection of the quasi-constant threshold for filtering features was performed
using a trial-and-error method. After careful evaluation of different threshold values, it was
found that the best results were achieved when the threshold was set to 0.0001. However,
both lower and higher threshold values yielded decreased accuracy in our experiments.

A combination of filter feature selection and ensemble learning methods was employed
in the first method. First, quasi-constant features with a threshold value of 0.0001 were
identified and subsequently removed from the dataset, resulting in a refined dataset. This
refined dataset was then subjected to five different classification algorithms: Gaussian
Naïve Bayes classifier, Support Vector Machine (SVM), Decision Tree, Random Forest,
and XGBoost.
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The performance evaluation revealed that among the tested classification algorithms,
Decision Tree, Random Forest, and XGBoost exhibited the highest classification accuracy
and predictive power. Building upon this finding, further analysis was conducted by em-
ploying ensemble learning methods: stacking and voting, using the three best-performing
algorithms. Additionally, bagging was also applied to the three selected algorithms to
explore potential performance enhancements and model robustness. The first method is
summarized in Figure 1.
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Figure 1. Method 1, where filter feature selection was applied to five different classification algorithms
followed by ensemble learning methods.

In the second method, after filtering out the quasi-constant features, a genetic algo-
rithm was utilized to further optimize the feature selection process for the same set of
classification algorithms: GaussianNB, SVM, Decision Tree (with entropy and Gini index),
XGBoost, Random Forest, and additionally, logistic regression. A pictorial representation
of the second method is shown in Figure 2.

The genetic selection was performed after 40 generations of populations with 50 in-
dividuals. The crossover probability was 0.5, and the mutation probability was 0.2. The
crossover independent probability was set to 0.5 and the mutation independent probability
to 0.05. The tournament size was set to three, and the number of generations after which
the optimization is terminated when the best individual has not changed in all the previous
generations (n_gen_no_change) was set to 10.
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4. Results and Discussion

With the quasi-constant threshold set to 0.0001, five of the twenty-four features in
Dataset 1 and 188 of the 754 features in Dataset 2 were identified as quasi-constant and
subsequently eliminated. This was a significant number of features in both datasets
and enabled streamlining the feature space to enhance the efficiency and effectiveness of
subsequent modeling tasks.

Different classification models were then tested on the filtered datasets. The accuracies
of these models are given in Table 3.

Table 3. Results on applying filter feature selection.

Classification Model Accuracy (in %) after Filter Feature Selection

Dataset 1 Dataset 2

GuassianNB 67.34 75.13
SVM 85.71 76.72

Decision Tree-entropy 100.00 76.72
Random Forest 97.95 92.06

XGboost 100.00 86.24

Among the various models tested, Decision Tree, Random Forest, and XGBoost demon-
strated notably higher accuracies compared to the others on both datasets. Therefore, en-
semble methods, namely voting, stacking, and bagging, were applied to these three models.
Both hard voting and soft voting were employed. The models were stacked to leverage the
strengths of multiple classifiers. Bagging was applied independently to each of the three
models, utilizing 5-fold cross-validation and a total of 500 trees. The resulting accuracies
obtained from these ensemble approaches on Dataset 1 and Dataset 2 are presented in
Tables 4 and 5, respectively.

Voting with both hard and soft voting classifiers attained perfect accuracy (100%) on
Dataset 1. Stacking also displayed good results, with a 96.2% accuracy on Dataset 1 and a
90.06% accuracy on Dataset 2. Bagging had lower accuracy than voting and stacking.

Ensemble approaches take advantage of the diversity and complementary features
of individual models, resulting in higher accuracy. The perfect accuracy achieved by
voting on Dataset 1 suggests strong agreement among the models, contributing to accurate
classification. The relatively high accuracy of the stacked models verifies the efficiency of
combining the predictions of the base models to produce greater performance. Bagging
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decreases the variance and instability of classification models by training individual models
on diverse subsets of the dataset and aggregating their predictions. The slight decrease
in accuracy from bagging could have resulted from the intrinsic randomness introduced
during the resampling process, which may result in a minor trade-off between accuracy
and model stability.

Table 4. Results on applying ensemble learning methods to Dataset 1.

Ensemble Learning Method Accuracy (in %)

Voting Hard voting 100.00
Soft voting 100.00

Stacking Stacking 96.20
Bagging Decision Tree-entropy 91.05

Random Forest 89.70
XGBoost 92.40

Table 5. Results on applying ensemble learning methods to Dataset 2.

Ensemble Learning Method Accuracy (in %)

Voting Hard voting 91.53
Soft voting 88.89

Stacking Stacking 90.06
Bagging Decision Tree-entropy 88.34

Random Forest 86.56
XGBoost 87.76

In the second method, the filtered dataset was subjected to further feature refinement
using genetic selection. A genetic algorithm investigates several feature combinations
to determine an optimal subset that achieves the maximum classification accuracy. The
genetic selection process begins with the generation of an initial population of potential
feature subsets, each of which represents a unique combination of features. These subsets
were then analyzed using the same classification models in addition to logistic regression.
The results thus obtained are summarized in Table 6.

Table 6. Results from applying genetic selection.

Classification Model Accuracy (in %) after Filter Feature Selection

Dataset 1 Dataset 2

GuassianNB 91.83 77.63
SVM 81.63 77.63

Decision Tree-entropy 81.63 76.65
Decision Tree-Gini 81.63 74.34

Random Forest 83.67 74.34
XGboost 87.75 76.97

Logistic Regression 89.79 76.97

It can be observed that the accuracy of the Guassian Naïve Bayes classifier improved
to 91.83% for Dataset 1 and 77.63% for Dataset 2 after genetic selection. This indicates
that genetic algorithms were effective in choosing the relevant features that boosted the
performance of the classifier. However, with the SVM classifier, the accuracy declined to
81.63% for Dataset 1 and improved only slightly for Dataset 2 with 77.63% accuracy. The
accuracy of the decision tree model, measured using both entropy and the Gini index,
also failed to improve significantly with genetic selection. The same was true for random
forest and XGBoost classifiers. Logistic regression also produced similar results to the rest,
with an accuracy of 89.79% with Dataset 1 and 76.97 with Dataset 2. In summary, genetic
selection had varying effects on the accuracy of the different classification models. This
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implies that the effectiveness of genetic algorithms may also be dependent on the properties
of the classification model.

Precision may also be an important evaluation metric for the detection of PD. Precision
is a performance metric that quantifies the accuracy of a classification model’s positive
predictions. It determines the proportion of true positive predictions (positive instances
correctly identified) out of all predicted positive instances (true positives + false positives).
By focusing on precision, we can ensure that the models accurately identify actual PD
patients while also reducing the risks of misclassifying individuals in good health as having
the disease, as that can lead to unnecessary fear, stress, and even medical interventions. A
high precision score gives reliability and greater confidence to employ the models in PD
diagnosis. The precision of the predictions made by the models with filter feature selection
and genetic selections on both datasets is given in Tables 7 and 8, respectively.

Table 7. Precision in applying filter feature selection.

Classification Model Precision (in %) after Filter Feature Selection

Dataset 1 Dataset 2

PD Patient Healthy PD Patient Healthy

GuassianNB 100 41 83 48

SVM 84 100 77 100

Decision Tree-entropy 100 100 86 51

Random Forest 100 92 94 86

XGboost 100 100 88 79

Table 8. Precision in applying genetic algorithms.

Classification Model Precision (in %) after Genetic Selection

Dataset 1 Dataset 2

PD Patient Healthy PD Patient Healthy

GuassianNB 90 100 78 73

SVM 85 62 78 78

Decision Tree-entropy 84 67 76 62

Decision Tree-Gini 85 62 77 50

Random Forest 89 64 74 0

XGBoost 94 69 78 64

Logistic Regression 92 80 79 61

It is notable that the decision tree and XGBoost classifiers achieved perfect precision
in identifying both PD patients and healthy individuals. The Gaussian Naïve Bayes and
random forest classifiers attained perfect precision in identifying PD patients in Dataset
1, whereas the SVM classifier showed perfect precision in detecting healthy individuals
in both datasets. It is also noteworthy that SVM was the only classifier that achieved
perfect precision in identifying at least one category (PD patients or healthy individuals) in
Dataset 2.

After genetic selection on Dataset 1, all the models achieved relatively high precision in
identifying PD patients, ranging from 84% to 94%. The Gaussian Naïve Bayes classifier was
100% precise in identifying healthy individuals. However, all the other models showed less
precision in identifying healthy individuals (ranging from 62% to 80%) than PD patients.
The same can also be observed in the case of Dataset 2 after genetic selection. All models
showed higher precision in identifying PD patients (ranging from 74% to 79%) than in



Diagnostics 2023, 13, 2816 12 of 14

identifying healthy individuals (ranging from 0% to 78%). This suggests that identifying
PD patients may be easier than identifying healthy people from the selected datasets.
One possible reason for this could be the unequal distribution of PD patients and healthy
individuals in both datasets. Both datasets contained information from a higher number of
PD patients than healthy people, which made the models more proficient in learning the
patterns and characteristics associated with PD. This imbalance in class distribution may
have led to a bias towards PD patients during the training process, potentially resulting in
higher precision in identifying PD cases.

The overall results for Dataset 1 were better than those for Dataset 2. This disparity
may be due to the difference in the number of features between the two datasets. Initially,
Dataset 1 had only 24 features, which is substantially fewer than Dataset 2, which had
754 features. Even after applying the filter feature selection technique, a relatively large
number of features (566 features) were preserved in Dataset 2 compared to Dataset 1. The
presence of a larger feature space in Dataset 2 might have introduced additional complexity
and made it more challenging for the models to discern the meaningful patterns associated
with PD. This demonstrates that having a greater number of features may not necessarily
translate to better results and may even generate noise or redundancy, resulting in poor
model performance.

While previous research has established the efficacy of ensemble techniques [5,7], a
comparative analysis with the current literature demonstrates a remarkable outperformance
of ensemble learning methods, as exemplified by the perfect accuracy (100%) achieved
by both hard and soft voting on Dataset 1. Moreover, the hard voting classifier achieved
an accuracy of 91.53% on Dataset 2, surpassing the performance reported in the related
literature [5]. The introduction of genetic selection is a novel approach. While certain
models responded differently to genetic selection, this nuanced approach illustrates the
complicated interplay between feature selection strategies and classification outcomes.
Following genetic selection, the GaussianNB classifier achieved the best accuracy for both
datasets, with an accuracy of 91.83% for Dataset 1 and 77.63% for Dataset 2. The emphasis
on precision ensures that PD patients are accurately identified while minimizing the risk
of misclassifying healthy individuals, a crucial aspect for real-world clinical applications.
Filter feature selection led to perfect (100%) precision in the predictions of decision trees
and XGBoost classifiers. With genetic selection, there was an average precision of 88.42% in
identifying PD patients and 72% in identifying healthy individuals in Dataset 1. In Dataset
2, these values were 77.14% for PD patients and 55.43% for healthy individuals. This
holistic viewpoint illustrates the depth and breadth of this research, effectively establishing
its relevance and impact on improving patient care and prognosis. Overall, this research
not only benchmarks favorably against the prior literature but also offers a novel strategy
for enhancing the accuracy and reliability of PD detection through voice data analysis.

5. Conclusions and Future Scope

This study aimed to develop an efficient method for the detection of PD from voice
clips. A combination of filter feature selection, ensemble learning, and genetic selection
was employed. The results of the study demonstrated the effectiveness of filter feature
selection in streamlining the feature space and enhancing the efficiency of subsequent
modeling tasks. By eliminating quasi-constant features, a significant number of irrelevant
features were successfully removed, leading to high model accuracy. The application of
ensemble learning techniques, such as voting, stacking, and bagging, further explored the
classification performance of these models. Additionally, the genetic selection approach
analyzed the precision of the classification models in identifying PD patients and healthy
individuals. The models exhibited relatively high precision in identifying PD patients,
while the precision in identifying healthy individuals was comparatively lower. Moreover,
the comparison between Dataset 1 and Dataset 2 demonstrated the effect of feature space
on model performance. Dataset 1, with a smaller number of features, yielded better results
compared to Dataset 2, which had a larger feature space even after filter feature selection.
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While this study contributes significantly to the field of PD detection, a few limitations
warrant careful consideration. The precision analysis performed in this study reveals
a potential bias toward recognizing PD patients more accurately than healthy people.
This bias stems from the inherent class imbalance within the datasets, where PD patients
are overrepresented compared to healthy individuals. This discrepancy could lead to a
skewed learning process, affecting the models’ generalizability when applied to larger,
more balanced populations. Furthermore, the variation in performance between Dataset
1 and Dataset 2 underscores the sensitivity of model outputs to the dimensionality of the
feature space. The larger feature set of Dataset 2, even after filter feature selection, sug-
gests the possibility of increased noise or redundancy, thereby affecting model robustness
and performance.

Future studies could explore the use of sampling techniques, such as oversampling or
undersampling, to balance the datasets. This would help in achieving better performance
and addressing the bias towards the majority class. The current study utilized specific
datasets for model development and evaluation. Future research could involve testing
the developed models on external datasets or real-world data to assess their generaliz-
ability and robustness. This would provide insights into the practical applicability of the
proposed methods and their performance across different populations. By addressing
these future research areas, we can further advance the field of PD detection from voice
data and contribute to the development of accurate, reliable, and clinically applicable
diagnostic tools.
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